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Abstract. For human motion understanding and generation, it is com-
mon to represent the motion sequence via a hidden state of a recur-
rent neural network, learned in an end-to-end fashion. While powerful,
this representation is inflexible as these recurrent models are trained
with a specific frame rate, and the hidden state is further hard to inter-
pret. In this paper, we show that we can instead represent the contin-
uous motion via latent parametric curves, leveraging techniques from
computer graphics and signal processing. Our parametric representation
is powerful enough to faithfully represent continuous motion with few
parameters, easy to obtain, and is effective when used for downstream
tasks. We validate the proposed method on AMASS and Human3.6M
datasets through reconstruction and on a downstream task of point-to-
point prediction, and show that our method is able to generate realistic
motion. See our demo at www.github.com/WeiyuDu/motion-encode.
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1 Introduction

Human motion understanding and generation techniques commonly employ
recurrent neural networks [2,6] that aggregate information across the temporal
domain by processing each frame step-by-step [1,4,5,11,14]. While this allows
using powerful black-box neural networks for the task at hand, such as action
classification or future prediction, the representation is also inflexible in several
key ways. It requires operating at a fixed frame rate, while real-world data often
have different or even variable frame rates, which makes current systems cum-
bersome in practice. Similarly, when used for motion generation, the generated
motion is restricted to the training frame rate, and different networks need to
be trained for different temporal resolution.

Instead of taking this per-frame perspective, we argue that human motion
should be represented holistically in a continuous manner, using latent para-
metric curves. We introduce two motion encoding schemes based on classical
techniques from computer graphics and signal processing, namely Bezier and
Sine Motion Encoding that represent the motion with Bezier and Sine curves
respectively. Crucially, we apply this parametrization in a latent space instead of
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the original joint space. This combination of a powerful per-step latent encoding
with a simple and interpretable parametric temporal encoding makes our app-
roach both powerful and flexible. Our approach can be used with input sequences
of any framerate, or even variable framerate. When used for generation, it further
enables us to generate frames at any desired rates and timestamps. Moreover,
as these curves only require a few parameters, they provide a compact represen-
tation compared to the original full-size embedding.

We also study the task of controllable human motion generation with end-
points as an application of our proposed method. In animation production, in
order to generate an animated motion, artists usually define key frames for the
character’s pose and design a trajectory using spline interpolation. Motion gen-
eration with end points can greatly expedite this process as it can automatically
fill in the blanks between two poses with relatively long, realistic motion and
reduces the number of key frames needed from the artists.

Experiments on AMASS [10] and Human3.6M [7] data show that our model
with Bezier and Sine Motion Encoding beats latent linear interpolation baseline
by a large margin both visually and with joint angle mean squared error. Our
model generates realistic and smooth motion on the AMASS and Human3.6
datasets. Please see video results on the demo website.

2 Method

We want to encode and represent a motion sequence x1:M and time stamps
t1:M , where xm ∈ RN is an individual pose at time tm. First, we trained a
Variational Auto-Encoder (VAE, [8,13]) that encodes individual frames x1:M

into per-frame latent codes z1:M . Given this per-frame encoding, we want to
find a representation of the continuous sequence F such that F (t) approximates
the latent sequence z1:M .

2.1 Bezier Motion Encoding

We first evaluate Bezier Motion Encoding, a technique inspired by classic com-
puter graphics techniques [3]. The encoding is defined as the set of control points
P for Bezier curves in the latent space of pose VAE. To ensure maximal expres-
siveness, we model a time channel in addition to the latent dimensions. To gener-
ate pose at different timestamps, we discretize the curve by taking 1000 samples
in time channel and take the latent code with closest matching time. Formally,
Bezier Motion Encoding is defined as Fbezier(t) = B(s) s.t. t = T (s), B(s) =∑n

i=0

(
n
i

)
(1 − s)n−isiPi where t is time, T (s) is the matching process in time

domain, 0 ≤ s ≤ 1, P is the set of control points and n is its size. We do not use
s to represent time because s is not evenly distributed along the curve. Taking
s as time flattens the curve, which limits the expressiveness of the encoding.

Bezier Motion Encoding has several advantages: 1) The curve begins at P0

and ends at Pn, which is desirable in the controllable motion generation appli-
cation. 2) Displacement of control point in a direction corresponds to a smooth
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drag of the curve. However, Bezier curve has global control points, which makes it
hard to adjust the curve locally in detail. This can result in overly smooth latent
trajectories, which have trouble modeling highly subsampled motion sequences.

2.2 Sine Motion Encoding

Motivated by the shortcomings of the Bezier encoding, we further evaluate Sine
Motion Encoding that represents the curve via the most salient frequences in
the frequency domain, as common in signal processing techniques [12]. The
Sine encoding is defined as a linear combination of Sine curves Fsin(t) =∑n

i=0 A sin(ωt + φ), where n is the number of Sine curves, A is amplitude, ω
is angular frequency and φ is phase. Sine curves are periodic and smooth and a
linear combination of them can model complex signals with few parameters. We
can also increase the level of complexity and details in encoding by using more
Sine curves. This is hard to achieve by Bezier encoding.

2.3 Optimization

Given motion sequence x0:T , we obtain Bezier or Sine Motion Encoding from
the following optimization: minF

∑
m ||F (tm) − zm||2 where F is either Fbezier

or Fsin defined in the above sections.

2.4 Controllable Human Motion Generation

To evaluate the proposed encodings on a downstream task, we study the task
of controllable human motion generation with endpoints. Given a pair of poses
(x1, xM ), the task is to fill in the motion sequence x2:M−1 in between.

We first embed the input pose pair with the pre-trained pose VAE to latent
codes (z0, zM ). Then we use a Multilayer Perceptron (MLP) that takes this as
input and outputs a Gaussian distribution for control points P in the case of
Bezier Motion Encoding and A,ω, φ in the case of Sine Motion Encoding. We
use the ground truth latent trajectory and motion sequence as supervision. The
loss is formulated as follows

Lgen = ||F0:M − z0:M ||2 + ||Dec(F1:M ) − x1:M ||2 − DKL(N (μ̂, σ̂)||N (0, 1)) (1)

where Dec is the pose VAE decoder, μ̂, σ̂ is the output of MLP. The first two
terms are reconstruction loss and the last term helps as regularization.

3 Experiments

We experiment on Human3.6M [7] and AMASS [10] datasets in SMPL [9] for-
mat. We use linear interpolation in the latent space of pre-trained pose VAE as
baseline. We split the AMASS data into 30-frame sequences with interval of 10
frames. On Human3.6M, we subsample the data 5 times to evaluate our method
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Fig. 1. Visualization on AMASS test set. Our Sine Motion Encoding (top) encodes
walking motion while baseline (bottom) fails. On the website, we show further gener-
ations, including generating frames at a higher frequency than training data.

on long-term motion, then split it using the same scheme. We use 4 free control
points for Bezier Motion Encoding and 3 curves for Sine Motion Encoding. To
model more local and detailed movements, we experiment with adding 3 more
curves to Sine Motion Encoding, where they only contribute to local portions of
the sequence. We use MSE on joint angles as evaluation metric.

3.1 Motion Representation

We first evaluate the ability of our method to represent continuous motion. Our
results are shown in Table 1, first row, as well as on the demo website. We see that
our method is able to faithfully reproduce the encoded motion, demonstrating
potential for sequence representation learning for many downstream tasks.

Table 1. Row 1: motion reconstruction error from Bezier and Sine encoding on AMASS
test set. Row 2–3: Motion generation error in joint angle MSE per sequence. Our motion
encodings generate motions with better visual quality and smaller error.

LERP Bezier Sine (3 curves) Sine (6 curves)

Reconstruction – 1.89 2.87 1.32

AMASS 194.13 15.91 14.90 14.43

Human3.6M 307.66 30.25 29.28 27.19

3.2 Controllable Motion Generation

We show that our representation is suitable for point-to-point motion generation
in Table 1. In Fig. 1 and on the demo website, we see that latent linear interpo-
lation baseline (LERP) can only generate smooth transitions, while parametric
latent curves capture the diversity in the data, and can even model cyclic motion
where the initial and ending poses are similar. Also qualitatively, we observe that
only the Sine (6 curves) representation models the Human3.6 data faithfully.
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This method is more powerful, and better captures high-frequency details (such
as in fast walking) that contribute little to quantitative metrics but are crucial
for visual quality.

3.3 Variable Frequency Motion Generation

An advantage of our approach for motion generation is that it is possible to
sample the generated curve at a frequency different than training data. To
demonstrate this, we show the same predicted sequence that is sampled with
12 frames per second, 30-frame-long (training data) and 24 frames per second,
60-frame-long from our predicted representation. Our method produces good
quality motion even on higher temporal resolution. This improves the visual
quality of the motion by making it smoother. The video result of this experi-
ment is shown on the demo website.
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