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Abstract. Multi-task learning (MTL) is to learn one single model that
performs multiple tasks for achieving good performance on all tasks and
lower cost on computation. Learning such a model requires to jointly
optimize losses of a set of tasks with different difficulty levels, magni-
tudes, and characteristics (e.g. cross-entropy, Euclidean loss), leading to
the imbalance problem in multi-task learning. To address the imbalance
problem, we propose a knowledge distillation based method in this work.
We first learn a task-specific model for each task. We then learn the multi-
task model for minimizing task-specific loss and for producing the same
feature with task-specific models. As the task-specific network encodes
different features, we introduce small task-specific adaptors to project
multi-task features to the task-specific features. In this way, the adaptors
align the task-specific feature and the multi-task feature, which enables a
balanced parameter sharing across tasks. Extensive experimental results
demonstrate that our method can optimize a multi-task learning model
in a more balanced way and achieve better overall performance.

1 Introduction

The objective of multi-task learning (MTL) [3,26] is to develop methods that
can tackle a large variety of tasks within a single model. MTL has multiple prac-
tical benefits. First, learning shared parameters across multiple tasks leads to
representations that can be more data-efficient to train and also generalize bet-
ter to unseen data. Second, sharing parameters and computations across tasks
can significantly reduce both training and inference time over running multiple
individual models, which is especially important in platforms with limited com-
putational resources such as mobile devices. Therefore there is a growing interest
in developing MTL methods and MTL has been successfully applied to machine
learning problems in several fields including natural language processing [5], com-
puter vision [2,14] and speech recognition [27].

There are at least two challenges to achieve better performance and efficiency
with MTL. The first one is to design a multi-task deep neural network architec-
ture that shares only the relevant parameters across the tasks and keeps the
remaining ones task-specific. This is in contrast to the standard MTL meth-
ods that share all the layers except the last few ones across all the tasks. This
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Fig. 1. Diagram of our method. We first train a task-specific model for each task
in an offline stage and freeze their parameters (i.e. (a), (c)). We then optimize the
parameters of the multi-task network for minimizing a sum of task-specific losses and
also for producing similar features with the single-task networks (i.e. (b)). Best seen
in color.

heuristic is possibly suboptimal when the tasks have different characteristics
and goals (e.g. semantically low and high-level tasks), however, searching for an
optimal architecture in an exponential configuration space is extremely expen-
sive. The second one is to develop MTL training algorithms that achieve good
performance not only in one of the tasks but in all of them. This problem is espe-
cially important when MTL involves jointly minimizing a set of loss functions for
various problems with different difficulty levels, magnitudes, and characteristics
(e.g. cross-entropy, Euclidean loss). Thus a naive strategy of uniformly weighing
multiple losses can lead to sub-optimal performances and searching for optimal
weights in a continuous hyperparameter space can be prohibitively expensive.

Concerned with the second problem, previous work [4,10,12,16,28] addresses
the unbalanced loss optimization problem with balanced loss weighting and
parameter updating strategies. Kendall et al. [12] weigh loss functions by con-
sidering the task-dependent uncertainty of the model at training time. Sener et
al. [28] pose the MTL as a multiple objective optimization problem and propose
an approximate Pareto optimization method that uses Frank-Wolfe algorithm
to solve the constrained optimization. Yu et al. [32] project the gradients for
each loss function to a space where conflicting gradient components are removed
to eliminate the disturbance between the tasks. Although the previous work
improves over the uniform weighing loss strategy in MTL, they still suffer from
the problem of one task dominating the remaining ones and lower task perfor-
mance than the single task models in standard multi-task benchmarks.
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In this paper, we approach the unbalanced MTL problem from a different
point and propose a knowledge distillation based method inspired from [11,25].
As weighing the individual loss functions (e.g. [12]) or modifying the gradients
for the loss functions by simple transformations (e.g. [4,32]) provide a limited
control on the learned parameters and are thus limited to prevent one task
dominating the rest, we propose a more strict control on the parameters of the
multi-task network. Given that single-task networks often perform well with suf-
ficient training data, we hypothesize that the solution of the multi-task network
should be close to the single task ones’ and lie in the intersection of the single-
task solutions. To this end, we first train a task-specific model for each task in
an offline stage and freeze their parameters; then optimize the parameters of
the multi-task network for minimizing a sum of task-specific losses and also for
producing similar features with the single-task networks. As each task-specific
network can compute different features, we introduce small task-specific adap-
tors that map multi-task features to the task-specific one’s. The adaptors align
the features of the single-task and multi-task networks, and enables a balanced
parameter sharing across multiple tasks.

In the remainder of this paper, we first discuss how our method relates the
previous MTL and data distillation methods in Sect. 2, formulate our method
in Sect. 3, demonstrate that our method outperforms the state-of-the-art MTL
methods in two standard benchmarks in Sect. 4 and conclude the paper with
future remarks in Sect. 5.

2 Related Work

2.1 Multi-task Learning

Multi-task learning (MTL) is one of the long-standing problems in machine learn-
ing and has been used broadly [3,7,12,14,18,18,19,23,26,33]. In computer vision,
MTL has been used for image classification [23], facial landmark regression [33],
segmentation and depth estimation [12] and so on. In this work, we specifically
focus on tackling the unbalance in the optimization of multi-task networks to
achieve good performance not only in a few tasks but in all tasks.

In recent years, several methods have been proposed for solving the imbal-
ance problem in MTL by either designing loss weighting schemes [4,10,12,16,28]
to weigh each task-specific loss or modifying parameter updates [32]. Chen et
al. [4] develop a training strategy, namely GradNorm, that looks at the gradi-
ent’s norm of each task and learns the weight to normalize each task’s gradient
so as to balance the losses for MTL. In [28], Sener et al. formulate the MTL
as a multiple objectives optimization problem and proposed an approximation
Pareto optimization method using Frank-Wolfe algorithm to learn weights of
losses. Kendall et al. [12] propose to weigh multiple loss functions by consider-
ing the homoscedastic uncertainty of each task during training. To design the
weighting scheme, Guo et al. [10] observe that the imbalances in task difficulty
can lead to an unnecessary emphasis on easier tasks, thus neglecting and slow-
ing progress on difficult tasks. Based on the observation, they introduce dynamic
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task prioritization for MTL, which allows the model to dynamically prioritize
difficult tasks during training, where the difficulty is inversely proportional to
performance. Rather than weighing the losses, Yu et al. [32] propose a form of
gradient “surgery” that projects each task’s gradient onto the normal plane of
the gradient of any other task and modifies the gradients for each task so as to
minimize negative conflict with other task gradients during the MTL optimiza-
tion.

Unlike existing methods, we propose a knowledge distillation based MTL
method to solve the unbalanced loss optimization problem from a different angle.
To this end, we first train a task-specific model for each task in an offline stage
and freeze their parameters. We then train the MTL network for minimizing
task-specific loss and also for producing the same features with the task-specific
networks. As the task-specific network encodes different features, we introduce
small task-specific adaptors to project multi-task features to the task-specific
features. In this way, the adaptors align the task-specific feature and the multi-
task feature, which enables a balanced parameter sharing across tasks.

2.2 Knowledge Distillation

Our work is also related to knowledge distillation [11,17,22,25,31]. Hinton et
al. [11] show that distilling the knowledge of the whole ensemble of models
to a neural network can achieve better performance and avoid an expensive
computation. Romero et al. [25] introduce the knowledge distillation to training
a small student network to achieve better performance than the teacher network.
Apart from the success in single-task learning, knowledge distillation has also
been shown to be effective in MTL. Parisotto et al. [21] exploits the use of deep
reinforcement learning and model compression techniques to train a single policy
network that learns to perform in multiple tasks by using the guidance of several
expert teachers. In the contrast, in [5], Clark et al. extends the Born-Again
network [9] to MTL setting for NLP. More specifically, they apply the knowledge
distillation loss proposed in [11] on each task’s predictions and propose a weight
annealing strategy to update the weight of the distillation losses and multiple
tasks losses.

Different from these methods, we aim at solving the unbalanced loss opti-
mization problem in MTL. Aligning the predictions from the multi-task network
and the task-specific networks would still result in unbalance as the dimension
of tasks’ predictions is usually different and we need to use different loss func-
tions for matching different tasks’ predictions [5], e.g., a kl-divergence loss for
classification and l2-norm loss for regression. In this work, we first introduce
a task-specific adaptor for each task to transform features from the multi-task
network and we apply the same loss function to align the transformed multi-
task feature and the task-specific networks’ features. We train the MTL network
for minimizing task-specific loss and for producing the same feature with task-
specific networks. This enables the MTL to share the parameters in a balanced
way.
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3 Methodology

3.1 Single-Task Learning (STL)

Consider that we are given a dataset D that contains N training images xi and
their labels yi

1, . . . ,yi
T for T tasks (e.g. semantic segmentation, depth estimation,

surface normals). In case of the STL, we wish to learn T convolutional neural
networks, one for each task, each maps the input x to the target label yτ , i.e.
f(x; θs

τ , ϑs
τ ) = yτ where the superscript s indicates the single-task, θs

τ and ϑs
τ

are the parameters of the network. Each single-task network is composed of
two parts: i) a feature encoder φ(·; θs

τ ) that takes in an image and outputs a
high-dimensional encoding φ(x; θs

τ ) ∈ R
C×H×W where C, H, W are the number

channels, height and width of the feature map; ii) a predictor ψ(·; ϑs
τ ) that takes

in the encoding φ(x; θs
τ ) and predicts the output for the task τ , i.e. ŷτ = ψ(·; ϑs

τ )◦
φ(x; θs

τ ) where θs
τ and ϑs

τ denote the parameters of the feature encoder and
predictor respectively. The parameters for the network can be learned for each
task independently by optimizing a task-specific loss function �τ (ŷ,y) (e.g. Cross-
Entropy loss function for classification) over the training samples that measure
the mismatch between the ground-truth label and prediction as following:

min
θs

τ ,ϑs
τ

∑

x,yτ ∈D
�τ (ψ(·; ϑs

τ ) ◦ φ(x; θs
τ ),yτ ). (1)

3.2 Multi-task Learning (MTL)

In the case of MTL, we would like to learn one network that shares the majority
of its parameters across the tasks and solves all the tasks simultaneously. Similar
to STL, the multi-task network can be decomposed into two parts: i) a feature
encoder φ(·; θm) that encodes the input image into a high-dimensional encoding,
now its parameters θm are shared across all the tasks; ii) a task-specific predictor
ψ(·; ϑm

τ ) for each task that takes in the shared encoding φ(x; θm) and outputs
its prediction for task τ , i.e. ψ(·; ϑm

τ ) ◦ φ(x; θm). Note that we use superscript m
to denote MTL. The multi-task network can be learned by optimizing a linear
combination of task-specific losses:

min
θm,ϑm

1 ,...,ϑm
T

T∑

τ=1

∑

x,yτ ∈D
wτ �τ (ψ(·; ϑm

τ ) ◦ φ(x; θm),yτ ) (2)

where wτ is a scaling hyperparameter for task τ that is used for balancing the
loss functions among the tasks.

In contrast to the STL optimization in Eq. (1), optimizing Eq. (2) involves a
joint learning of all the task-specific and shared parameters which is typically
more challenging when the task-specific loss functions �τ have different char-
acteristics such as their magnitude and dynamics (e.g. logarithmic, quadratic).
One solution to balance the loss terms is to search for the best scaling hyperpa-
rameters wτ by a cross-validation which has two shortcomings. First, the hyper-
parameter search in a continuous space is computationally expensive, especially
when the number of tasks is large, as each validation step requires the training
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of the model. Second, even when the optimal hyperparameters can be found, it
may be sub-optimal to use the same fixed ones throughout the optimization.

3.3 Knowledge Distillation for Multi-task Learning

Motivated by these challenges, the previous work [4,12,28] propose dynamic
weighing strategies that can adjust them at each training iteration. Here we
argue that these hyperparameters provide a limited control on the parameters of
the network for preventing the unbalanced MTL and thus we propose a different
view on this problem inspired by the knowledge distillation methods [11,25].

To this end, we first train a task-specific model f(·; θs
τ , ϑs

τ ) for each task τ
by optimizing Eq. (1) in an offline stage, freeze their parameters and use only
their feature encoders φ(·; θs

τ ) to regulate the multi-task network at train time
by minimizing the distance between the features of task-specific networks and
multi-task network for given training samples (see Fig. 1). As the outputs of
the task-specific encoders can differ significantly and the feature encoder of the
multi-task network cannot match all of them simultaneously. Instead, we project
the output of the multi-task feature encoder into each task-specific one via a task-
specific adaptor Aτ : RC×H×W → R

C×H×W where H, W and C are the height,
width and depth (number of channels) of the features. In our experiments, we use
a linear layer that consists of a 1×1×C ×C convolution for each adaptor. These
adaptors are jointly learned along the parameters of the multi-task network to
align its features with the single-task feature encoders.

Ld =
T∑

τ=1

∑

x,yτ ∈D
�d(Aτ (φ(x; θm)), φ(x; θs

τ )) (3)

where �d is the Euclidean distance function between the L2 normalized feature
maps:

�d(a, b) =
∥∥∥∥

a

||a||2 − b

||b||2

∥∥∥∥
2

2
. (4)

Now we can write the optimization formulation that is employed to learn the
multi-task model as a linear combination of Eqs. (2) and (3):

min
θm,ϑm

1 ,...,ϑm
T

T∑

τ=1

∑

x,yτ ∈D
wτ �τ (ψ(·; ϑm

τ ) ◦ φ(x; θm),yτ ) + λτ �d(Aτ (φ(x; θm)), φ(x; θs
τ ))

(5)
where λτ is the task-specific tradeoff hyperparameter.

Discussion. Alternatively, the inverse of each adaptor function can be thought
as a mapping from each task-specific representation to a shared representation
across all the tasks. The assumption here is that a large portion of encodings
in the task-specific models is common to all the models up to a simple linear
transformation. While the assumption of linear relations between the features
of highly non-linear networks may be surprising, such linear relations have also
been observed in multi-domain [24] and multi-task problems [30].
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4 Experiments

4.1 Datasets

We evaluate our method on three multi-task computer vision benchmarks, includ-
ing SVHN & Omniglot, NYU-v2, and Cityscapes.1

SVHN & Omniglot consists of two datasets, i.e. SVHN [20] and Omniglot [15]
where SVHN is a dataset for digital number classification and Omniglot is the one
for characters classification. Specifically, SVHN contains 47,217 training images
and 26,040 validation images of 10 classes. Omniglot consists of 19,476 train-
ing and 6492 validation samples of 1623 categories. As the testing labels are
not provided, we evaluate all methods on the validation images and report the
accuracy of both tasks. Note that in contrast to the NYU-V2 and Cityscapes
datasets where each image is associated with multiple labels, each image in this
benchmark is labeled only for one task. Thus the goal is to learn a multi-task
network that can learn both tasks from SVHN and Omniglot.

NYU-V2 [29] contains RGB-D indoor scene images, where we evaluate perfor-
mances on 3 tasks, including 13-class semantic segmentation, depth estimation,
and surface normals estimation. We use the true depth data recorded by the
Microsoft Kinect and surface normals provided in [8] for depth estimation and
surface normal estimation. All images are resized to 288 × 384 resolution as [16].

Cityscapes [6] consists of street-view images, each labeled for two tasks: 7-class
semantic segmentation2 and depth estimation. We resize the images to 128×256
to speed up the training.

4.2 Baselines

In this work, we use the hard parameters sharing architecture for all methods
where the early layers of the network are shared across all tasks and the last
layers are task-specific (See Fig. 1). We compare our method with two baselines:

– STL learns a task-specific model for each task.
– Uniform: This vanilla MTL model is trained by minimizing the uniformly

weighted loss Eq. (2).

We also compare our method to the state-of-the-art MTL methods which are
proposed for solving the unbalanced MTL, including Uncert [12], MGDA [28],
GradNorm [4] and a knowledge distillation based method, namely BAM [5],
that applies knowledge distillation to network’s prediction. On NYU-v2 and
Cityscapes, we also compare our method with Gradient Surgery (GS) [32] and
1 The implementation of our method is available at https://weihonglee.github.io/

Projects/KD-MTL/KD-MTL.htm.
2 The original version of Cityscapes provides labels 19-class semantic segmentation. We

follow the evaluation protocol in [16], we use labels of 7-class semantic segmentation.
Please refer to [16] for more details.

https://weihonglee.github.io/Projects/KD-MTL/KD-MTL.htm
https://weihonglee.github.io/Projects/KD-MTL/KD-MTL.htm
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Dynamic Weight Average (DWA) [16] with using different architectures, i.e. Seg-
Net [1] and MTAN [16] which is the extension of SegNet by introducing task-
specific attention modules for each task.

4.3 Comparison to the State-of-the-art

Results on SVHN & Omniglot. First, we evaluate all methods on SVHN
& Omniglot. We extend the LeNet to MTL setting (See Fig. 2) and use the
extended network for all methods. We set the batch size of the mini-batch as
512 where 256 samples from SVHN and 256 images from Omniglot. We use
Adam [13] for optimizing the networks and adaptors. The learning rate of all
task-specific adaptors is 0.01. We train all methods for 300 epochs in total where
we scaled the learning rate by 0.85 every 15 epochs. In our method, weights of
task-specific losses (i.e. w in Eq. (5)) are set uniformly. As a validation set for
hyperparameter search (λ), we randomly pick 10% of training data. After the
best hyperparameters are chosen, we retrain with the full training set and report
the median validation accuracy of the last 20 epochs in Table 1. We search over
the set λ = {1, 5, 10, 20} of λ and we chose λ = 10.

Fig. 2. Network architecture used in SVHN & Omniglot.

Table 1. Testing accuracy on SVHN & Omniglot.

Type Methods SVHN Omniglot avg
STL - - 88.84 65.76 - -
MTL Uniform 85.88 66.91 76.40

Uncert [12] 85.43 64.1 74.77
MGDA [28] 83.93 66.8 75.37
GradNorm [4] 84.48 65.55 75.02
BAM [5] 86.57 66.08 76.33
Ours 88.05 70.12 79.09



Knowledge Distillation for Multi-task Learning 171

Table 2. Testing results on NYU-v2. ∗ Results of the ‘GS’ method are from [32].

Architecture Type Methods Segmentation Depth Surface Normal
(Higher Better ↑) (Lower Better ↓) Angle Distance

(Lower Better ↓)
Within t◦
(Higher Better ↑)

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

SegNet STL - - 17.32 55.70 0.6577 0.2828 29.99 23.81 24.31 48.06 60.05
MTL Uniform 18.14 55.82 0.5841 0.2490 31.89 26.81 20.61 42.95 55.33

Uncert [12] 16.79 52.51 0.6183 0.2612 32.44 27.27 20.81 42.41 54.47
MGDA [28] 15.57 49.05 0.6716 0.2710 29.90 24.13 23.81 47.58 59.75
GradNorm [4] 18.08 55.76 0.5819 0.2495 30.65 25.38 22.64 45.34 57.59
Ours 18.75 58.02 0.5780 0.2467 29.40 23.71 24.33 48.22 60.45

MTAN [16] STL - - 16.38 53.89 0.6792 0.2963 30.66 24.26 23.35 47.34 59.33
MTL Uniform 17.72 55.32 0.5906 0.2577 31.44 25.37 23.17 45.65 57.48

DWA [16] 17.52 55.76 0.5869 0.2549 31.75 25.64 22.60 45.12 57.05
Uncert [12] 17.67 55.61 0.5927 0.2592 31.25 25.57 22.99 45.83 57.67
MGDA [28] 15.60 52.36 0.6215 0.2767 30.26 24.01 23.98 47.77 59.85
GradNorm [4] 17.37 55.92 0.5924 0.2630 31.20 24.91 23.11 46.27 58.20
GS∗ [32] 20.17 56.65 0.5904 0.2467 30.01 24.83 22.28 46.12 58.77
Ours 20.75 57.90 0.5816 0.2445 29.97 23.96 24.24 47.78 59.78

Table 1 shows that MTL with uniform loss weights (Uniform) obtains worse
results on SVHN while it achieves better performance on Omniglot than STL.
The state-of-the-art methods which dynamically weigh the task-specific losses
cannot achieve a good trade-off between these two tasks. More specifically,
Uncert and GradNorm obtain worse overall performance than STL while MGDA
improves the performance on Omniglot and obtains worse performance on SVHN.
Though BAM obtains better overall performance on both tasks, the improve-
ment is achieved mainly because of more informative information provided by
the continuous predictions of the teacher network (task-specific models). The
unbalanced problem in MTL when we use BAM is still unsolved as BAM applies
knowledge distillation on network predictions, which would have similar prob-
lems with the vanilla MTL (Uniform). In contrast, our approach achieves signifi-
cantly better performance than any other MTL methods i.e. our method obtains
88.05 % accuracy on SVHN and 70.12 % accuracy on Omniglot. Compared with
STL, our method obtains comparable results on SVHN and significant gains on
Omniglot. These results strongly verify that our method is able to alleviate the
unbalanced problem in this benchmark and to outperform STL as it enables the
MTL model to learn more informative features.

Results on NYU-V2. We follow the training and evaluation protocol in [16].
We use cross-entropy loss for semantic segmentation, l1-norm loss for depth esti-
mation, and cosine similarity loss for surface normal estimation. We train all
methods using Adam [13] with the learning rate initialized at 1e-4 and halved
at the 100-th epoch for 200 epochs in total. The learning rate of all task-specific
adaptors is 0.1 and the batch size is 2. In our method, weights of task-specific
losses (i.e. w in Eq. (5)) are set uniformly. As a validation set for hyperparameter
search (λ), we randomly pick 10% of training data. After the best hyperparame-
ters are chosen, we retrain with the full training set and report the results of three
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Table 3. Testing results on Cityscapes.

Architecture Type Methods Segmentation Depth
(Higher Better ↑) (Lower Better ↓)
mIoU Pix Acc Abs Err Rel Err

SegNet STL - - 51.85 91.08 0.0136 22.68
MTL Uniform 50.73 90.76 0.0151 40.81

Uncert [12] 51.09 90.85 0.0143 27.66
MGDA [28] 51.69 90.99 0.0130 24.04
GradNorm [4] 50.06 90.82 0.0143 28.61
Ours 52.18 91.24 0.0140 28.90

MTAN STL - - 51.24 91.16 0.0137 24.80
MTL Uniform 52.56 91.33 0.0152 24.64

DWA [16] 51.95 91.33 0.0141 30.03
Uncert [12] 50.37 91.11 0.0142 31.78
MGDA [28] 52.32 91.59 0.0138 30.35
GradNorm [4] 51.88 91.40 0.0148 31.43
Ours 52.71 91.54 0.0139 27.33

tasks on the validation set in Table 2. We search over the set λ = {1, 2, 3, 4, 5, 6}
of λ and the distillation loss’ weight of Segmentation, depth, and surface normal
are set to 1, 1 and 2, respectively.

From the results shown in Table 2, we can see that it is possible to tackle
multiple tasks within a network and achieve performance improvement on some
tasks, e.g. when we use SegNet as the based network, the vanilla MTL (Uni-
form) achieves better performance on semantic segmentation and depth esti-
mation though it causes a drop on surface normal estimation in comparison
with STL. Though we see the benefits of using MTL, it is also clear that the
unbalanced problem exists. We then apply existing methods that introduce loss
weighting strategies for addressing the unbalanced loss optimization problem.
From the results of using SegNet, GradNorm performs the best among all com-
pared methods. However, it provides limited control on the learned parameters
(e.g. it achieves similar results to the MTL model using a uniformly weight-
ing scheme) and still suffers from lower task performance than the single task
models.

In comparison with these methods, our method obtains significant gains
over all tasks and achieves better results than single task learning models. This
strongly verifies our hypothesis that the solution of the multi-task network should
be close to the single task ones’ and lie in the intersection of the single-task solu-
tions and our method that applies stricter control on the parameters of the
multi-task network can better address the unbalanced loss problem.
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Table 4. Ablation study on NYU-v2. Here, ‘#layer’ means which layers are selected
for computing distillation loss. ‘adaptors’ indicates which kind of adaptors is used and
‘✗’ means no adaptors are used.

Segmentation Depth Surface Normal
Method (Higher Better ↑) (Lower Better ↓) Angle Distance

(Lower Better ↓)
Within t◦
(Higher Better ↑)

backbone #layers adaptors mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

SegNet last linear 18.66 57.78 0.5813 0.2375 30.17 24.74 22.96 46.44 58.76
mid + last linear 18.75 58.02 0.5780 0.2467 29.40 23.71 24.33 48.22 60.45
mid + last non-linear 19.00 58.12 0.5853 0.2398 29.74 24.25 23.06 47.16 59.53
mid + last ✗ 17.11 54.60 0.6060 0.2586 30.32 24.74 22.66 46.36 58.72

MTAN [16] last linear 18.52 56.81 0.5756 0.2489 31.13 24.93 23.52 46.29 58.18
mid + last linear 20.75 57.90 0.5816 0.2445 29.97 23.96 24.24 47.78 59.78
mid + last non-linear 20.42 56.93 0.5975 0.2589 30.32 24.86 22.98 46.21 58.55
mid + last ✗ 19.30 53.85 0.6064 0.2567 31.43 27.61 17.61 40.86 54.63

Results on Cityscapes. Similar to NYU-V2, we use cross-entropy loss for
semantic segmentation and l1-norm loss for depth estimation in Cityscapes as in
[16]. We train all methods using Adam [13] with the learning rate initialized at
1e-4 and halved at the 100-th epoch for 200 epochs in total. The learning rate of
all task-specific adaptors is 0.1 and the batch size is 8. In our method, weights
of task-specific losses (i.e. w in Eq. (5)) are set uniformly. As a validation set
for hyperparameter search (λ), we randomly pick 10% of training data. After
the best hyperparameters are chosen, we retrain with the full training set and
report the results of two tasks on the validation set in Table 3. We search over
the set λ = {1, 2, 3, 4, 5, 6} of λ and the distillation loss’ weight of Segmentation
and depth are set to 2 and 6, respectively.

As shown in Table 3, in overall, MTL obtains worse performance than STL.
It is clear that GradNorm obtains worse performance on semantic segmentation
while it improves the performance on depth estimation. However, MGDA assigns
much larger weight on depth estimation task and this enables the MTL model to
achieve better performance on both tasks. Our method also achieves significant
gains on both tasks. The results again demonstrate that our method is able
to optimize MTL model in a more balanced way and to achieve better overall
results.

4.4 Ablation Study

To better analyze the effect of the distillation loss, we conduct an ablation study
on NYU-V2. We first evaluate the effect of applying distillation loss to more
layer’s features. On NYU-V2, we report the results of applying distillation loss
to the last shared layer’s feature only and the results of applying distillation
loss to features of both the middle layer and the last layer. From the results
presented in Table 4, adding more layers’ features for computing distillation loss
boosts the performance on NYU-V2 in general. However, results on SVHN &
Omniglot and Cityscapes indicate that using the last layers obtains the best
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Fig. 3. Task-specific loss and distilla-
tion loss on training set of SVHN &
Omniglot. Best view in color.

Fig. 4. Task-specific loss and distilla-
tion loss on training set of NYU-V2.
Best view in color.

performance. We argue that adding more layers can enhance the distillation loss
and a more strict control on the parameters of the multi-task network. This is
not necessary for those tasks that use a small network, e.g. the network we used
in SVHN & Omniglot and would be useful for tasks using a large network, e.g.
the SegNet used in NYU-V2.

Analysis on Adaptors. We evaluate our method using different types of adap-
tors. As mentioned in Sect. 3, we use a linear layer that consists of a 1×1×C ×C
convolution for each adaptor and denote as ‘linear’ in Table 4. We also evaluate
our method without any adaptors (i.e. indicated as ‘✗’) and with ‘non-linear
’adaptors (i.e. each adaptors consists of a 1 × 1 × C × 2C convolution, a Relu
activation layer and a 1 × 1 × 2C × C convolution). From the results shown in
Table 4, it is clear to see that the adaptors help to align the features of multi-task
and single-task as each single-task model produce different features. Compared
with our method using ‘non-linear’ adaptors, which have much larger capacity
of mapping features, the results indicate that using ‘linear’ adaptors is sufficient
as we discuss in Sect. 3.

Further Analysis. We also plot the task-specific loss and distillation loss on
the training set of two benchmarks for analyzing our method. In both Fig. 3
and Fig. 4, it is clear that distillation loss is more balanced than task-specific
loss. More specifically, the task-specific loss of SVHN and Omniglot converge at
around 0.137 and 1.492, respectively. In contrast, the distillation loss of SVHN
and Omniglot converge at around 0.089 and 0.041, respectively. On NYU-V2,
the task-specific loss of semantic segmentation, depth estimation, and surface
normal estimation end up at 0.027, 0.127, and 0.039 while the distillation loss
ends up at around 0.534, 0.381, and 0.364. These results again verify that our
method can optimize the MTL method in a more balanced way.
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5 Conclusion

In this work, we proposed a knowledge distillation based multi-task method that
learns to produce the same features with the single-task networks to address the
unbalanced multi-task learning problem with the hypothesis that the solution
of the multi-task network should be close to the single task ones’ and lie in the
intersection of the single solutions. We demonstrated that our method achieves
significant performance gains over the state-of-the-art methods, on challenging
benchmarks for image classification and scene understanding (semantic segmen-
tation, depth estimation, and surface normal estimation). As future work, we
plan to extend our method to multi-task network architecture searching.
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