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Abstract. Few-shot learning methods operate in low data regimes. The
aim is to learn with few training examples per class. Although significant
progress has been made in few-shot image classification, few-shot video
recognition is relatively unexplored and methods based on 2D CNNs are
unable to learn temporal information. In this work we thus develop a
simple 3D CNN baseline, surpassing existing methods by a large mar-
gin. To circumvent the need of labeled examples, we propose to leverage
weakly-labeled videos from a large dataset using tag retrieval followed by
selecting the best clips with visual similarities, yielding further improve-
ment. Our results saturate current 5-way benchmarks for few-shot video
classification and therefore we propose a new challenging benchmark
involving more classes and a mixture of classes with varying supervision.

1 Introduction

In the video domain annotating data is time-consuming due to the additional
time dimension. The lack of labeled training data is more prominent for fine-
grained action classes at the “tail” of the skewed long-tail distribution (see
Fig. 1), e.g., “arabesque ballet”. It is thus important to study video classification
in the limited labeled data regime. Visual recognition methods that operate in
the few-shot learning setting aim to generalize a classifier trained on base classes
with enough training data to novel classes with only a few labeled training
examples. While considerable attention has been devoted to this scenario in the
image domain [4,24,25,37], few-shot video classification is relatively unexplored.

Existing few-shot video classification approaches [2,43] are mostly based on
frame-level features extracted from a 2D CNN, which essentially ignores the
important temporal information. Although additional temporal modules have
been added at the top of a pre-trained 2D CNN, necessary temporal cues may
be lost when temporal information is learned on top of static image features. We
argue that under-representing temporal cues may negatively impact the robust-
ness of the classifier. In fact, in the few-shot scenario it may be risky for the
model to rely exclusively on appearance and context cues extrapolated from
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Fig. 1. Our 3D CNN approach combines a few class-labeled videos (time-consuming
to obtain) and tag-labeled videos. It saturates existing benchmarks, so we move to a
more challenging generalized many-way few-shot video classification task.

the few available examples. In order to make temporal information available we
propose to represent the videos by means of a 3D CNN.

While obtaining labeled videos for target classes is time-consuming and chal-
lenging, there are many videos tagged by users available on the internet. For
example, there are 400,000 tag-labeled videos in the YFCC100M [32] dataset.
Our second goal is thus to leverage such tag-labeled videos (Fig. 1) to alleviate
the lack of labeled training data.

Existing experimental settings for few-shot video classification [2,43] are lim-
ited. Predicting a label among just 5 novel classes in each testing episode is in
fact relatively easy. Moreover, restricting the label space to only novel classes at
test time, and ignoring the base classes is unrealistic. In real-world applications
test videos are expected to belong to any class.

In this work, our goal is to push the progress of few-shot video classification
in three ways: 1) To learn the temporal information, we revisit spatiotempo-
ral CNNs in the few-shot video classification regime. We develop a 3D CNN
baseline that maintains significant temporal information within short clips; 2)
We propose to retrieve relevant videos annotated with tags from a large video
dataset (YFCC100M) to circumvent the need for labeled videos of novel classes;
3) We extend current few-shot video classification evaluation settings by intro-
ducing two challenges. In our generalized few-shot video classification task, the
label space has no restriction in terms of classes. In many-way few-shot video
classification with, the number of classes goes well beyond five, and towards all
available classes. Our extensive experimental results demonstrate that on exist-
ing settings spatiotemporal CNNs outperform the state-of-the-art by a large
margin, and on our proposed settings weakly-labeled videos retrieved using tags
successfully tackles both of our new few-shot video classification tasks.
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2 Related Work

Low-Shot Learning Setup. The low-shot image classification [14,23,25] set-
ting uses a large-scale fully labeled dataset for pre-training a DNN on the base
classes, and a low-shot dataset with a small number of examples from a disjoint
set of novel classes. The terminology “k-shot n-way classification” means that
in the low-shot dataset there are n distinct classes and k examples per class for
training. Evaluating with few examples (k small) is bound to be noisy. There-
fore, the k training examples are often sampled several times and results are
averaged [6,14]. Many authors focus on cases where the number of classes n is
small as well, which amplifies the measurement noise. For that case [25] intro-
duces the notion of “episodes”. An episode is one sampling of n classes and k
examples per class, and the accuracy measure is averaged over episodes. It is
feasible to use distinct datasets for pre-training and low-shot evaluation. How-
ever, to avoid dataset bias [33] it is easier to split a large supervised dataset into
disjoint sets of “base” and “novel” classes. The evaluation is often performed
only on novel classes, except [14,28,41] who evaluate on the combination of base
and novel classes.

Recently, a low-shot video classification setup has been proposed [7,43]. They
use the same type of decomposition of the dataset as [25], with learning episodes
and random sampling of low-shot classes. In this work, we follow and extend the
evaluation protocol of [43].

Tackling Low-Shot Learning. The simplest low-shot learning approach is
to extract embeddings from the images using the pre-trained DNN and train
a linear classifier [1] or logistic regression [14] on these embeddings using the
k available training examples. Another approach is to cast low-shot learning
as a nearest-neighbor classifier [40]. The “imprinting” approach [24] builds a
linear classifier from the embeddings of training examples, then fine-tunes it. As
a complementary approach, [18] has looked into exploiting noisy labels to aid
classification. In this work, we use videos from YFCC100M [32] retrieved by tags
to augment and improve training of our few-shot classifier.

In a meta-learning setup, the low-shot classifier is assumed to have hyper-
parameters or parameters that must be adjusted before training. Thus, there is
a preliminary meta-learning step that consists in training those parameters on
simulated episodes sampled from the base classes. Both matching networks [37]
and prototypical networks [30] employ metric learning to “meta-learn” deep fea-
tures and adopt a nearest neighbor classifier. In MAML [11], the embedding
classifier is meta-learned to adapt quickly and without overfitting to fine-tuning.
Ren et al. [26] introduce a semi-supervised meta-learning approach that includes
unlabeled examples in each training episode. While that method holds out a sub-
set from the same target dataset as the unlabeled images, our retrieval-enhanced
approach leverages weakly-labeled videos from another heterogeneous dataset
which may have domain shift issues and a huge amount of distracting videos.

Recent works [4,40] suggest that state-of-the-art performance can be
obtained without meta learning. In particular, Chen et al. [4] show that
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Fig. 2. Our approach comprises three steps: representation learning, few-shot learn-
ing and testing. In representation learning, we train a R(2+1)D CNN using the base
classes of our target dataset starting from a random initialization or from a Sports1M-
pretrained model. In few-shot learning, given few-shot support videos from novel
classes, we first retrieve a list of candidate videos for each class from YFCC100M [32]
using their tags, followed by selecting the best matching short clips from the retrieved
videos using visual features. Those clips serve as additional training examples to learn
classifiers that generalize to novel classes at test time.

meta-learning methods are less useful when the image descriptors are expressive
enough, which is the case when they are from high-capacity networks trained on
large datasets. Therefore, we focus on techniques that do not require a meta-
learning stage.

Deep Descriptors for Videos. Moving from hand-designed descriptors [5,22,
27,38] to learned deep network based descriptors [9,10,20,29,34,39] has been
enabled by labeled large-scale datasets [20,21], and parallel computing hard-
ware. Deep descriptors are sometimes based on 2D-CNN models operating on a
frame-by-frame basis with temporal aggregation [12,42]. More commonly they
are 3D-CNN models that operate on short sequences of images that we refer to
as video clips [34,36]. Recently, ever-more-powerful descriptors have been devel-
oped by leveraging two-stream architectures using additional modalities [10,29],
factorized 3D convolutions [35,36], or multi-scale approaches [8].

3 Learning Spatiotemporal Features of Videos

In the few-shot learning setting [43], classes are split into two disjoint label
sets, i.e., base classes (denoted as Cb) that have a large number of training
examples, and novel classes (denoted as Cn) that have only a small set of training
examples. Let Xb denote the training videos with labels from the base classes
and Xn be the training videos with labels from the novel classes (|Xb| � |Xn|).
Given the training data Xb and Xn, the goal of the conventional few-shot video
classification task (FSV) [2,43] is to learn a classifier which predicts labels among
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novel classes at test time. As the test-time label space is restricted to a few novel
classes, the FSV setting is unrealistic. Thus, in this paper, we additionally study
the generalized few-shot video classification (GFSV) which allows videos at test
time to belong to any base or novel class.

3.1 3D CNN for FSV (3DFSV)

In this section, we introduce our spatiotemporal CNN baseline for few-shot video
classification (3DFSV). Our approach in Fig. 2 consists of 1) a representation
learning stage which trains a spatiotemporal CNN on the base classes, 2) a few-
shot learning stage that trains a linear classifier for novel classes with few labeled
videos, and 3) a testing stage which evaluates the model on unseen test videos.
The details of each of these stages are given below.

Representation Learning. Our model adopts a 3D CNN [36] φ :
R

F×3×H×W → R
dv , encoding a short, fixed-length video clip of F RGB frames

with spatial resolution H ×W to a feature vector in a dv-dimensional embedding
space. On top of the feature extractor φ, we define a linear classifier f(•;Wb)
parameterized by a weight matrix Wb ∈ R

dv×|Cb|, producing a probability dis-
tribution over the base classes. The objective is to jointly learn the network φ
and the classifier Wb by minimizing the cross-entropy classification loss on video
clips randomly sampled from training videos Xb of base classes. More specifi-
cally, given a training video x ∈ Xb with a label y ∈ Cb, the loss for a video clip
xi ∈ R

F×3×H×W sampled from video x is defined as

L(xi) = − log σ(WT
b φ(xi))y (1)

where σ denotes the softmax function that produces a probability distribution
and σ(•)y is the probability at class y. Following [4], we do not do meta-learning,
so we can use all the base classes to learn the network φ.

Few-Shot Learning. This stage aims to adapt the learned network φ to rec-
ognize novel classes Cn with a few training videos Xn. To reduce overfitting,
we fix the network φ and learn a linear classifier f(•,Wn) by minimizing the
cross-entropy loss on video clips randomly sampled from videos in Xn, where
Wn ∈ R

dv×|Cn| is the weight matrix of the linear classifier. Similarly, we define
the loss for a video clip xi sampled from x ∈ Xn with a label y as

L(xi) = − log σ(WT
n φ(xi))y (2)

Testing. The spatiotemporal CNN operates on fixed-length video clips of F
RGB frames and the classifiers make clip-level predictions. At test time, the
model must predict the label of a test video x ∈ R

T×3×H×W with arbitrary time
length T . We achieve this by randomly drawing a set L of clips {xi}Li=1 from
video x, where xi ∈ R

F×3×H×W . The video-level prediction is then obtained by
averaging the prediction scores after the softmax function over those L clips. For
few-shot video classification (FSV), this is:
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1
L

L∑

i=1

f(xi;Wn). (3)

For generalized few-shot video classification (GFSV), both base and novel classes
are taken into account and we build a classifier by concatenating the base class
weight Wb learned in the representation stage with the novel class weight Wn

learned in the few-shot learning stage:

1
L

L∑

i=1

f(xi; [Wb;Wn]). (4)

3.2 Retrieval-Enhanced 3DFSV (R-3DFSV)

During few-shot learning, fine-tuning the network φ or learning the classifier
f(•;Wn) alone is prone to overfitting. Moreover, class-labeled videos to be used
for fine-tuning are scarce. Instead, the hypothesis is that leveraging a massive
collection of weakly-labeled real-world videos would improve our novel-class clas-
sifier. To this end, for each novel class, we propose to retrieve a subset of weakly-
labeled videos, associate pseudo-labels to these retrieved videos and use them to
expand the training set of novel classes. It is worth noting that those retrieved
videos may be assigned with wrong labels and have domain shift issues as they
belong to another heterogeneous dataset, making this idea challenging to imple-
ment. For efficiency and to reduce the label noise, we adopt the following two-step
retrieval approach.

Tag-Based Video Retrieval. The YFCC100M dataset [32] includes about
800K videos collected from Flickr, with a total length of over 8000 h. Processing
a large collection of videos has a high computational demand and a large portion
of them are irrelevant to our target classes. Thus, we restrict ourselves to videos
with tags related to those of the target class names and leverage information that
is complementary to the actual video content to increase the visual diversity.

Given a video with user tags {ti}Si=1 where ti ∈ T is a word or phrase and S is
the number of tags, we represent it with an average tag embedding 1

S

∑S
i=1 ϕ(ti).

The tag embedding ϕ(.) : T → R
dt maps each tag to a dt dimensional embed-

ding space, e.g., Fasttext [17]. Similarly, we can represent each class by the text
embedding of its class name and then for each novel class c, we compute its
cosine similarity to all the video tags and retrieve the N most similar videos
according to this distance.

Selecting Best Clips. The video tag retrieval selects a list of N candidate
videos for each novel class. However, those videos are not yet suitable for training
because the annotation may be erroneous, which can harm the performance.
Besides, some weakly-labeled videos can last as long as an hour. We thus propose
to select the best short clips of F frames from those candidate videos using the
few-shot videos of novel classes.
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Given a set of few-shot videos Xc
n from novel class c, we randomly sample

L video clips from each video. We then extract features from those clips with
the spatiotemporal CNN φ and compute the class prototype by averaging over
clip features. Similarly, for each retrieved candidate video of novel class c, we
also randomly draw L video clips and extract clip features from φ. Finally, we
perform a nearest neighbour search with cosine distance to find the M best
matching clips of the class prototype:

max
xj

cos(pc, φ(xj)) (5)

where pc denotes the class prototype of class c, xj is the clip belonging to the
retrieved weakly-labeled videos. After repeating this process for each novel class,
we obtain a collection of pseudo-labeled video clips Xp = {Xc

p}
|Cn|
c=1 where Xc

p

indicates the best M video clips from YFCC100M for novel class c.

Batch Denoising. The retrieved video clips contribute to learning a better
novel-class classifier f(•;Wn) in the few-shot learning stage by expanding the
training set of novel classes from Xn to Xn

⋃
Xp. Xp may include video clips with

wrong labels. During the optimization, we adopt a simple strategy to alleviate
the noise: half of the video clips per batch come from Xn and another half
from Xp at each iteration. The purpose is to reduce the gradient noise in each
mini-batch by enforcing that half of the samples are trustworthy.

4 Experiments

In this section, we first describe the existing experimental settings and our pro-
posed setting for few-shot video recognition. We then present the results com-
paring our approaches with the state-of-the-art methods in the existing setting
on two datasets, the results of our approach in our proposed settings, model
analysis and qualitative results.

4.1 Experimental Settings

Here we describe the four datasets we use, previous few-shot video classification
protocols and our settings.

Datasets. Kinetics [21] is a large-scale video classification dataset which covers
400 human action classes including human-object and human-human interac-
tions. Its videos are collected from Youtube and trimmed to include only one
action class. The UCF101 [31] dataset is also collected from Youtube videos, con-
sisting of 101 realistic human action classes, with one action label in each video.
SomethingV2 [13] is a fine-grained human action recognition dataset, containing
174 action classes, in which each video shows a human performing a prede-
fined basic action, such as “picking something up” and “pulling something from
left to right”. We use the second release of the dataset. YFCC100M [32] is the
largest publicly available multimedia collection with about 99.2 million images
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and 800k videos from Flickr. Although none of these videos are annotated with a
class label, half of them (400k) have at least one user tag. We use the tag-labeled
videos of YFCC100M to improve the few-shot video classification.

Table 1. Statistics of our data splits on Kinetics, UCF101 and SomethingV2 datasets.
We follow the train, val, and test class splits of [43] and [2] on Kinetics and SomethingV2
respectively. In addition, we add test videos (the second number under the second test
column) from train classes for GFSV. We also introduce a new data split on UCF101
and for all datasets we propose 5-,10-,15-,24-way (the maximum number of test classes)
and 1-,5-shot setting.

# classes # videos

Train Val Test Train Val Test

Kinetics 64 12 24 6400 1200 2400+2288

UCF101 64 12 24 5891 443 971+1162

SomethingV2 64 12 24 67013 1926 2857+5243

Prior Setup. The existing practice of [2,43] indicates randomly selecting 100
classes on Kinetics and on SomethingV2 datasets respectively. Those 100 classes
are then randomly divided into 64, 12, and 24 non-overlapping classes to con-
struct the meta-training, meta-validation and meta-testing sets. The meta-
training and meta-validation sets are used for training models and tuning hyper-
parameters. In the testing phase of this meta-learning setting [2,43], each episode
simulates a n-way, k-shot classification problem by randomly sampling a support
set consisting of k samples from each of the n classes, and a query set consisting
of one sample from each of the n classes. While the support set is used to adapt
the model to recognize novel classes, the classification accuracy is computed at
each episode on the query set and mean top-1 accuracy over 20,000 episodes
constitutes the final accuracy.

Proposed Setup. The prior experimental setup is limited to n = 5 classes in
each episode, even though there are 24 novel classes in the test set. As in this
setting the performance saturates quickly, we extend it to 10-way, 15-way and 24-
way settings. Similarly, the previous meta-learning setup assumes that test videos
all come from novel classes. On the other hand, it is important in many real-
world scenarios that the classifier does not forget about previously learned classes
while learning novel classes. Thus, we propose the more challenging generalized
few-shot video classification (GFSV) setting where the model needs to predict
both base and novel classes.

To evaluate a n-way k-shot problem in GFSV, in addition to a support and a
query set of novel classes, at each test episode we randomly draw an additional
query set of 5 samples from each of the 64 base classes. We do not sample
a support set for base classes because base class classifiers have been learned
during the representation learning phase. We report the mean top-1 accuracy of
both base and novel classes over 500 episodes.
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Kinetics, UCF101 and SomethingV2 datasets are used as our few-shot video
classification datasets with disjoint sets of train, validation and test classes (see
Table 1 for details). Here we refer to base classes as train classes. Test classes
include the classes we sample novel classes from in each testing episode. For
Kinetics and SomethingV2, we follow the splits proposed by [2,43] respectively
for a fair comparison. It is worth noting that 3 out of 24 test classes in Kinetics
appear in Sports1M, which is used for pretraining our 3D ConvNet. But the
performance drop is negligible if we replace those 3 classes with other 3 random
kinetics classes that are not present in Sports1M (more details can be found in
the supplementary material). Following the same convention, we randomly select
64, 12 and 24 non-overlapping classes as train, validation and test classes from
UCF101 dataset, which is widely used for video action recognition. We ensure
that in our splits the novel classes do not overlap with the classes of Sports1M.
For the GFSV setting, in each dataset the test set includes samples from base
classes coming from the validation split of the original dataset.

Implementation Details. Unless otherwise stated our backbone is a 34-layer
R(2+1)D [36] pretrained on Sports1M [20] which takes as input video clips con-
sisting of F = 16 RGB frames with spatial resolution of H = 112 × W = 112.
We extract clip features from the dv = 512 dimensional top pooling units.

In the representation learning stage, we fine-tune the R(2+1)D with a con-
stant learning rate 0.001 on all datasets and stop training when the validation
accuracy of base classes saturates. We perform standard spatial data augmenta-
tion including random cropping and horizontal flipping. We also apply temporal
data augmentation by randomly drawing 8 clips from a video in one epoch. In
the few-shot learning stage, the same data augmentation is applied and the novel
class classifier is learned with a constant learning rate 0.01 for 10 epochs on all
the datasets. At test time, we randomly draw L = 10 clips from each video and
average their predictions for a video-level prediction.

As for the retrieval approach, we use the 400 dimensional (dt = 400) fast-
text [16] embedding trained with GoogleNews. We first retrieve N = 20 candi-
date videos for each class with video tag retrieval and then select M = 5 best
clips among those videos with visual similarities.

4.2 Comparing with the State-of-the-Art

In this section, we compare our model with the state-of-the-art in existing eval-
uation settings which mainly consider 1-shot, 5-way and 5-shot, 5-way prob-
lems and evaluate only on novel classes, i.e., FSV. The baselines CMN [43]
and TAM [2] are considered as the state-of-the-art in few-shot video classifica-
tion. CMN [43] proposes a multi-saliency embedding function to extract video
descriptor, and few-shot classification is then done by the compound memory
network [19]. TAM [2] proposes to leverage the long-range temporal ordering
information in video data through temporal alignment. They additionally build
a stronger CMN, namely CMN++, by using the few-shot learning practices from
[4]. We use their reported numbers for fair comparison. The results are shown
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Table 2. Comparing with the state-of-the-art few-shot video classification methods.
We report top-1 accuracy on the novel classes of Kinetics and SomethingV2 for 1-shot
and 5-shot tasks (both in 5-way). 3DFSV (ours, scratch): our R(2+1)D is trained from
scratch; 3DFSV (ours, pretrained): our model is trained from the Sports1M-pretrained
R(2+1)D. R-3DFSV (ours, pretrained): our model with retrieved videos.

Kinetics SomethingV2

Method 1-shot 5-shot 1-shot 5-shot

CMN [43] 60.5 78.9 - -

CMN++ [2] 65.4 78.8 34.4 43.8

TAM [2] 73.0 85.8 42.8 52.3

3DFSV (ours, scratch) 48.9 67.8 57.9 75.0

3DFSV (ours, pretrained) 92.5 97.8 59.1 80.1

R-3DFSV (ours, pretrained) 95.3 97.8 - -

in Table 2. As the code from CMN [43] and TAM [2] is not available at the time
of submission we do not include UCF101 results.

On Kinetics, we observe that our 3DFSV (pretrain) approach, i.e. without
retrieval, outperforms the previous best results by a wide margin in both 1-shot
and 5-shot cases. On SomethingV2, we would like to first highlight that our
3DFSV (scratch) significantly improves over TAM by 15.1% in 1-shot (42.8% of
TAM vs 57.9% of ours) and by surprisingly 22.7% in 5-shot (52.3% of TAM vs
75.0% of ours). This is encouraging because the 2D CNN backbone of TAM is
pretrained on ImageNet, while our R(2+1)D backbone is trained from random
initialization. Our 3DFSV (pretrain) yields further improvement after using the
Sports1M-pretrained R(2+1)D. We observe that the effect of the Sports1M-
pretrained model on SomethingV2 is not as significant as on Kinetics because
there is a large domain gap between Sports1M to SomethingV2 datasets. Those
results show that a simple linear classifier on top of a pretrained 3D CNN, e.g.
R(2+1)D [36], performs better than sophisticated methods with a pretrained 2D
ConvNet as a backbone.

Although as shown in C3D [34], I3D [3], R(2+1)D [36], spatiotemporal CNNs
have an edge over 2D spatial ConvNet [15] in the fully supervised video classifi-
cation with enough annotated training data, we are the first to apply R(2+1)D
in the few-shot video classification with limited labeled data. It is worth noting
that our R(2+1)D is pretrained on the Sports1M while the 2D ResNet back-
bone of CMN [43] and TAM [2] is pretrained on ImageNet. A direct comparison
between 3D CNNs and 2D CNNs is hard because they are designed for differ-
ent input data. While it is standard to use an ImageNet-pretrained 2D CNN
in image domains, it is common to apply a Sports1M-pretrained 3D CNN in
video domains. One of our goals is to establish a strong few-shot video classi-
fication baseline with 3D CNNs. Intuitively, the temporal cue of the video is
better preserved when clips are processed directly by a spatiotemporal CNN as
opposed to processing them as images via a 2D ConvNet. Indeed, even though we
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Fig. 3. Results of 3DFSV and R-3DFSV on both Kinetics and UCF101 in the one-shot
video classification setting (FSV). In this experiment we go beyond the classical 5-way
classification setting. We use 5, 10, 15 and 24 (all) of the novel classes in each testing
episode. We report the top-1 accuracy of novel classes.

train our 3DFSV from the random initialization on SomethingV2 which requires
strong temporal information, our results still remain promising. This confirms
the importance of 3D CNNs for few-shot video classification.

Our R-3DFSV (pretrain) approach, i.e. with retrieved tag-labeled video clips,
lead to further improvements in 1-shot case (3DFSV (pretrain) 92.5% vs R-
3DFSV (pretrain) 95.3) on Kinetics dataset. This implies that tag-labeled videos
retrieved from the YFCC100M dataset include discriminative cues for Kinetics
tasks. In 5-shot, our R-3DFSV (pretrain) approach achieves similar performance
as our 3DFSV (pretrain) approach however with an 97.8% this task is almost
saturated. We do not retrieve any weakly-labeled videos for the SomethingV2
dataset because it is a fine-grained dataset of basic actions and it is unlikely
that YFCC100M includes any relevant video for that dataset. As a summary,
although 5-way classification setting is still challenging to those methods with
2D ConvNet backbone, the results saturate with the stronger spatiotemporal
CNN backbone.

4.3 Increasing the Number of Classes in FSV

Although prior works evaluated few-shot video classification on 5-way, i.e. the
number of novel classes at test time is 5, our 5-way results are already saturated.
Hence, in this section, we go beyond 5-way classification and extensively evaluate
our approach in the more challenging, i.e., 10-way, 15-way and 24-way few-shot
video classification (FSV) setting. Note that from every class we use one sample
per class during training, i.e. one-shot video classification.

As shown in Fig. 3, our R-3DFSV method exceeds 95% accuracy both in
Kinetics and UCF101 datasets for 5-way classification. With the increasing num-
ber of novel classes, e.g. 10, 15 and 24, as expected, the performance degrades.
Note that, our R-3DFSV approach with retrieval consistently outperforms our
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3DFSV approach without retrieval and the more challenging the task becomes,
e.g. from 5-way to 24-way, the larger improvement retrieval approach can achieve
on Kinetics, i.e. our retrieval-based method is better than our baseline method
by 2.8% in 5-way (ours 3DFSV 92.5% vs our R-3DFSV 95.3% ) and the gap
becomes 4.3% in 24-way (our 3DFSV 82.0% vs our R-3DFSV 86.3%).

The trend with a decreasing accuracy by going from 5-way to 24-way indi-
cates that the more realistic task on few-shot video classification has not yet
been solved even with a spatiotemporal CNN. We hope that these results will
encourage more research in this challenging setting.

4.4 Evaluating Base and Novel Classes in GFSV

The FSV setting has a strong assumption that test videos all come from novel
classes. In contrast to the FSV, GFSV is more realistic and requires models to
predict both base and novel classes in each testing episode. In other words, 64
base classes become distracting classes when predicting novel classes which makes
the task more challenging. Intuitively, distinguishing novel and base classes is
a challenging task because there are severe imbalance issues between the base
classes with a large number of training examples and the novel classes with only
few-shot examples. In this section, we evaluate our methods in this more realistic
and challenging generalized few-shot video classification (GFSV) setting.

Table 3. Generalized few-shot video
classification (GFSV) results on Kinet-
ics and UCF101 in 5-way 1-shot and
5-shot tasks. We report top-1 accuracy
on both base and novel classes.

Method Kinetics UCF101

Novel Base Novel Base

1-shot 3DFSV 7.5 88.7 3.5 97.1

R-3DFSV 13.7 88.7 4.9 97.1

5-shot 3DFSV 20.5 88.7 10.1 97.1

R-3DFSV 22.3 88.7 10.4 97.1

Table 4. 5-way 1-shot results ablated on
Kinetics. PR: pretraining on Sports1M;
RL: representation learning on base classes;
VR: retrieve videos with tags [32]; BD:
batch denoising. BC: best clip selection.

PR RL VR BD BC Acc

� 27.1

� 48.9

� � 92.5

� � � 91.4

� � � � 93.2

� � � � � 95.3

In Table 3, on the Kinetics dataset, we observe a big performance gap between
base and novel classes in both 1-shot and 5-shot cases. The reason is that pre-
dictions of novel classes are dominated by the base classes. Interestingly, our R-
3DFSV improves 3DFSV on novel classes in both 1-shot and 5-shot cases, e.g.,
7.5% of 3DFSV vs 13.7% of R-3DFSV in 1-shot. A similar trend can be observed
on the UCF101 dataset. Those results indicate that our retrieval-enhanced app-
roach can alleviate the imbalance issue to some extent. At the same time, we
find that the GFSV setting, e.g. not restricting the test time search space only to
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novel classes but considering all of the classes, is still a challenging task and hope
that this setting will attract interests of a wider community for future research.

4.5 Ablation Study and Retrieved Clips

In this section, we perform an ablation study to understand the importance
of each component of our approach. After the ablation study, we evaluate the
importance of the number of retrieved clips to the FSV performance.

Ablation Study. We ablate our model in the 1-shot, 5-way video classification
task on Kinetics dataset with respect to five critical parts including pretraining
R(2+1)D on Sports1M (PR), representation learning on base classes (RL), video
retrieval with tags (VR), batch denoising (BD) and best clip selection (BC).

We start from a model with only a few-shot learning stage on novel classes.
If a PR component is added to the model (the first result row in Table 4),
the newly-obtained model can achieve only 27.1% accuracy It indicates that a
pretrained 3D CNN alone is insufficient for a good performance. Adding RL
component to the model (the second row) means to train representation on base
classes from scratch, which results in a worse accuracy compared to our full
model. The main reason is that optimizing the massive number of parameters
of R(2+1)D is difficult on a small train set. Adding both PR and RL compo-
nents (the third row) obtains an accuracy of 92.5% which significantly boosts
having PR and RL alone.

Next, we study two critical components proposed in our retrieval approach.
Comparing to our approach without retrieval (the third row), directly appending
retrieved videos (VR) to the few-shot training set of novel classes (the fourth
row) leads to 0.9% accuracy drop, while performing the batch denoising (BD,
the fifth row) in addition to VR obtains 0.7% gain. This implies that noisy
labels from retrieved videos may hurt the performance but our BD handles the
noise well. Finally, adding the best clip selection (BC, the last row) after VR
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Fig. 4. The effect of increasing the number of retrieved clips, left: on Kinetics, right:
on UCF101. Both experiments are conducted on the 1-shot, 5-way classification task.
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and BD gets a big boost of 2.8% accuracy. In summary, those ablation studies
demonstrate the effectiveness of the five different critical parts in our approach.

Influence of the Number of Retrieved Clips. When the number of retrieved
clips increases, the retrieved videos become more diverse, but at the same time,
the risk of obtaining negative videos becomes higher. We show the effectiveness
of our R-3DFSV with the increasing number of retrieved clips in Fig. 4. On the
Kinetics dataset (left of Fig. 4), without retrieving any videos, the performance
is 92.5%. As we increase the number of retrieved video clips for each novel class,
the performance keeps improving and saturates at retrieving 8 clips per class,
reaching an accuracy of 95.4%. On the UCF101 dataset (right of Fig. 4), retriev-
ing 1 clip gives us 1.6% gain. Retrieving more clips does not further improve
the results, indicating more negative videos are retrieved. We observe a slight
performance drop at retrieving 10 clips because the noise level becomes too high,
i.e. there are 10 times more noisy labels than clean labels.

Retrieved clipsQuery video

Blasting sand

Busking

Dancing ballet

Ice skating

Paragliding

Clarkeconner, sand Clarkeconner, sand day,dirt,hat,man,ro-
cks,sand,walkway

beach,sand beach,sand

Buskers, nightlife Busking,londonist,
music,musicians

Busking,londonist,
music,musicians

Buskers,nightlife,
winstonsalem

Arnold,bandstand,
busking,circus

Ballet,dance,
nutcracker

Ballet Ballet Ballet Ballet

Cold,ice,iceskating,
Outdoor,skating

Cold,ice,iceskating,
Outdoor,skating

Cold,ice,iceskating,
Outdoor,skating

Cold,ice,iceskating,
Outdoor,skating

Cold,ice,iceskating,
Outdoor,skating

paraglider paraglider paragliding paraglider poweredparagliding

Baking,chop,
kitchen,knife,towel

Cake,cut,fondant,
zombie

Baking,chop,
kitchen,knife,towel

Baking,chop,
kitchen,knife,towel

Backyard,chickens,
eating,watermelon

Cutting watermelon

Query video Retrieved clips

Unboxing Play trumpet music , sussex, 
trombone, trumpet

base , club, jazz
Guitar, music

base , club, jazz
Guitar, music

base , club, jazz
Guitar, music

base , club, jazz
Guitar, music

Asthma, gadgets,
unboxing 

Makerbot, unboxing Asthma, gadgets,
unboxing 

iphone, apple,
unboxing 

Apple, macbook
unboxing 

Fig. 5. Top-5 retrieved video clips from YFCC100M for 8 novel classes on Kinetics.
The left column is the class name with its one-shot query video and the right column
shows the retrieved 16-frame video clips (middle frame is visualized) together with
their users tags. Negative retrievals are marked in red.

4.6 Qualitative Results

In Fig. 5, we visualize the top-5 video clips we retrieve from YFCC100M dataset
with video tag retrieval followed by the best clips selection. We observe that
the retrieved video clips of some classes are of high quality, meaning that those
videos truly reveal the target novel classes. For instance, retrieved clips of class
“Busking” are all correct because user tags of those videos consist of words
like “buskers”, “busking” that are close to the class name, and the best clip
selection can effectively filter out the irrelevant clips. It is intuitive those clips
can potentially help to learn better novel class classifiers by supplementing the
limited training videos. Failure cases are also common. For example, videos from
the class “Cutting watermelon” do not retrieve any positive videos. The reasons
can be that there are no user tags of cutting watermelon or our tag embeddings
are not good enough. Those negative videos might hurt the performance if we
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treat them equally, which is why the batch denoising is critical to reduce the
effect of negative videos.

5 Conclusion

In this work, we point out that a spatiotemporal CNN trained on a large-scale
video dataset saturates existing few-shot video classification benchmarks. Hence,
we propose new more challenging experimental settings, namely generalized few-
shot video classification (GFSV) and few-shot video classification with more ways
than the classical 5-way setting. We further improve spatiotemporal CNNs by
leveraging the weakly-labeled videos from YFCC100M using weak-labels such
as tags for text-supported and video-based retrieval. Our results show that gen-
eralized more-way few-shot video classification is challenging and we encourage
future research in this setting.
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