
Revisiting ECM on GPUs

Jonas Wloka1(B), Jan Richter-Brockmann2, Colin Stahlke3,
Thorsten Kleinjung4, Christine Priplata3, and Tim Güneysu1,2

1 DFKI GmbH, Cyber-Physical Systems, Bremen, Germany
jonas.wloka@dfki.de

2 Ruhr University Bochum, Horst Görtz Institute Bochum, Bochum, Germany
{jan.richter-brockmann,tim.gueneysu}@rub.de

3 CONET Solutions GmbH, Hennef, Germany
{cstahlke,cpriplata}@conet.de

4 EPFL IC LACAL, Station 14, Lausanne, Switzerland
thorsten.kleinjung@epfl.ch

Abstract. Modern public-key cryptography is a crucial part of our
contemporary life where a secure communication channel with another
party is needed. With the advance of more powerful computing archi-
tectures – especially Graphics Processing Units (GPUs) – traditional
approaches like RSA and Diffie-Hellman schemes are more and more in
danger of being broken.

We present a highly optimized implementation of Lenstra’s ECM algo-
rithm customized for GPUs. Our implementation uses state-of-the-art
elliptic curve arithmetic and optimized integer arithmetic while provid-
ing the possibility of arbitrarily scaling ECM’s parameters allowing an
application even for larger discrete logarithm problems. Furthermore, the
proposed software is not limited to any specific GPU generation and is to
the best of our knowledge the first implementation supporting multiple
device computation. To this end, for a bound of B1 = 8192 and a modu-
lus size of 192 bit, we achieve a throughput of 214 thousand ECM trials
per second on a modern RTX 2080 Ti GPU considering only the first
stage of ECM. To solve the Discrete Logarithm Problem for larger bit
sizes, our software can easily support larger parameter sets such that a
throughput of 2 781 ECM trials per second is achieved using B1 = 50 000,
B2 = 5 000 000, and a modulus size of 448 bit.

Keywords: ECM · Cryptanalysis · Prime factorization · GPU

1 Introduction

Public-Key Cryptography (PKC) is a neccessary part of any large-scale crypto-
graphic infrastructure in which communicating partners are unable to exchange
keys over a secure channel.

PKC systems use a keypair of public and private key, designed such that to
retrieve the secret counterpart of a public key, a potential attacker would have to

c© Springer Nature Switzerland AG 2020
S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 299–319, 2020.
https://doi.org/10.1007/978-3-030-65411-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65411-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-65411-5_15

300 J. Wloka et al.

solve a mathematically hard problem. Traditionally – most prominently in RSA
and Diffie-Hellman schemes – factorization of integers or computing a discrete
logarithm are the hard problems at the core of the scheme. For reasonable key
sizes, both these problems are considered to be computationally infeasible for
classical computers.

If built, large-scale quantum computers, are able to compute both factoriza-
tion and discrete logarithms in polynomial time. However, common problem sizes
are not only under threat by quantum computers: With Moore’s Law still mostly
accurate, classical computing power becomes more readily available at a cheaper
price. Additionally, in the last decade more diverse computing architectures are
available. Graphics Processing Units (GPUs) have been used in multiple scien-
tific applications – including cryptanalysis – for their massive amount of parallel
computing cores. As the problem of factorization and computing a discrete log-
arithm can (in part) be parallelized, GPU architectures fit these tasks well.

Nowadays the NIST recommends to use 2048- and 3072-bit keys for RSA [3].
Factoring keys of this size is out of reach for current publicly known algorithms
on classical computers. However, in [35], the authors found that still tens of
thousands of 512-bit keys are used in the wild, which could be factored for
around $70 within only a few hours.

To find the prime factorization of large numbers, the currently best perform-
ing algorithm is the General Number Field Sieve (GNFS). During a run of the
GNFS algorithm, many numbers smaller than the main target need to be fac-
tored which is commonly done by Lenstra’s Elliptic-Curve Factorization Method
(ECM) and is inherently parallel.

Related Work. ECM has been implemented on graphic cards before and several
approaches at optimizing the routines used in ECM on the different levels have
already been published.

A general overview of factoring, solving the Discrete Logarithm Problem
(DLP) and the role of ECM in such efforts is given in [26,27]. The most recent
result in factorization and solving a DLP was announced in December 2019
with the factorization of RSA-240 and with solving the DLP for a 795-bit prime
[13]. Previous records for the factorization of a 768-bit RSA modulus and the
computation of a 768-bit DLP are reported in [21,22] and [23], respectively. A
general overview of factorization methods, and the use of ECM on GPUs within
the GNFS is given in [30].

The original publication of ECM by Lenstra in [28] has since received much
attention, especially the choice of curves [5,7] and parameters [17] was found to
have a major impact on the algorithm’s performance. Optimizing curve arith-
metic for parallel architectures – mostly GPUs – has been a topic of many
scientific works as well [1,2,19,25,29]. A detailed description of a parallel imple-
mentation for GPUs is given in [11].

To this end, the implementation of ECM on GPUs has attracted a lot of
attention in the years around 2010, as General Purpose Computing on GPU
(GPGPU) became readily available to the scientific community. The beginning
of the usage of GPUs for cryptanalytic purposes is marked by [34], including

Revisiting ECM on GPUs 301

elliptic curve cryptography, an early implementation of ECM on graphics cards
was published in [4,8]. A discussion of the performance of ECM on available
GPUs around 2010 is given in [12,32]. With the application of ECM in the
cofactorization step of the GNFS, the discussion of an implementation for GPUs
that includes ECM’s second stage on the GPU was published in [31].

Existing Implementations. Although many authors have already worked on
implementing ECM on GPUs, only a few implementations are openly avail-
able. GMP-ECM1, which features support for computing the first stage of ECM on
graphic cards using Montgomery curves, was introduced by Zimmermann et al.

Bernstein et al. published GPU-ECM in [8] and an improved version CUDA-ECM
in [4]. In the following years, Bernstein et al. [5] released GMP-EECM – a variant of
GMP-ECM using Edwards curves –, and subsequently EECM-MPFQ, which is available
online at https://eecm.cr.yp.to/. Both latter, however, do not support GPUs.

To the authors’ knowledge, the most recent implementation, including ECM’s
second stage by Miele et al. in [31] has not been made publicly available. Addi-
tionally, almost all previous implementations of ECM on GPUs only consider a
fixed set of parameters for the bit length and ECM bounds. As we will show in
Section 2, these restrictions do not meet real world assumptions and scalability
seems to be significant even for larger moduli.

Contribution. We propose a complete and scalable implementation of ECM suit-
able for NVIDIA GPUs, that includes:

1. State-of-the-art Fast Curve Arithmetic All elliptic curve computations
are performed using a = -1 Twisted Edwards curves with the fastest known
arithmetical operations.

2. Scalability to Arbitrary ECM Parameters We show that currently used
parameters for ECM in related work do not meet assumptions in realistic
scenarios as most implementations are optimized for a set of small and fixed
problem sizes. Hence, we propose an implementation which can be easily
scaled to any arbitrary ECM parameter and bit length.

3. State-of-the-art Integer Arithmetic We demonstrate that the com-
monly used CIOS implementation strategy can be outperformed by the less
widespread FIOS and FIPS approaches on modern GPUs.

4. No Limitation to any Specific GPU Generation Our implementation
uses GPU-generation independent low level code based upon the PTX-level
abstraction.

The corresponding software is released under an open source license and is avail-
able at https://github.com/Chair-for-Security-Engineering/ecmongpu.

Outline. The remainder of this paper is organized as follows: Sect. 2 briefly
summarizes the DLP and the background of ECM. In Sect. 3 we describe our

1 Available at http://ecm.gforge.inria.fr/.

https://eecm.cr.yp.to/
https://github.com/Chair-for-Security-Engineering/ecmongpu
http://ecm.gforge.inria.fr/

302 J. Wloka et al.

optimizations for stage one and stage two on the algorithmic level. This is fol-
lowed by Sect. 4 introducing our implementation strategies for GPUs. Before
concluding this work in Sect. 6, we evaluate and compare our implementation in
terms of throughput in Sect. 5.

2 Preliminaries

This section provides the mathematical background of ECM and introduces
cofactorization as part of GNFS.

2.1 Elliptic Curve Method

ECM introduced by H. W. Lenstra in [28] is a general purpose factoring algo-
rithm which works on random elliptic curves defined modulo the composite num-
ber to be factored. Thus, ECM operates in the group of points on the curve.
Whether ECM is able to find a factor of the composite depends on the smooth-
ness of the order of the curve. Choosing a different random curve most likely
results in a different group order. To increase the probability of finding a factor,
ECM can be run multiple times (in parallel) on the same composite number.
ECM consists of a first stage and an optional second stage.

Stage 1. In the first stage, one chooses a random curve E over Zn with n the
composite to factor, with p being one of its factors, and a random point P on
the curve. With s a large scalar, one computes the scalar multiplication sP and
hopes that sP = O (the identity element) on the curve modulo p, but not modulo
n. As p is unknown, all computations are done on the curve defined over Zn.

This can be regarded as working on all curves defined over Zp for all factors
p simultaneously. If p was known, reducing the coordinates of a point computed
over Zn modulo p yields the point on the curve over Zp.

If s is a multiple of the group order, i.e., the number of points on the curve
over Fp, sP is equal to the point at infinity O = (0 : 1 : 0) modulo p, e.g., on
Weierstrass curves, but not n. Thus, the x- and z-coordinates are a multiple of
p, and so gcd(x, n) (or gcd(z, n)) should reveal a factor of n.

One chooses s to be the product of all small powers of prime numbers pi
up to a specific bound B1, i.e., s = lcm(1, 2, 3, . . . , B1). If the number of points
on the chosen curve #E modulo p divides s, a factor will be found by ECM.
This is equivalent to stating that the factorization of #E consists only of primes
≤ B1, thus is B1-smooth.

Stage 2. Stage two of ECM relaxes the constraint that the group order on E
has to be a product of primes smaller than B1 and allows one additional prime
factor larger than B1 but smaller than a second bound B2.

Thus, for Q = sP the result from stage one, for each prime pi with B1 <
p1 < p2 < · · · ≤ B2, one computes piQ = pisP and hopes that pis is a multiple
of the group order. If so, piQ – as in stage one – is equivalent to the identity
element modulo p, the x- and z-coordinates equal 0 modulo p but not modulo
n, hence the gcd of the coordinates and n reveals a factor of n.

Revisiting ECM on GPUs 303

Curve Selection and Construction. As ECM’s compute intensive part is essen-
tially scalar multiplication, we chose a = -1 Twisted Edwards curves [6] with
extended projective coordinates [19] as these offer the lowest operation costs
for point additions and doublings. Each point P = (X : Y : T : Z) is thus
represented by four coordinates, each of the size of the number to factor.

As ECM works on arbitrarily selected elliptic curves modulo the number to
factor, multiple parameterized curve constructions have been proposed (see [37]
for an overview). Our implementation constructs random curves according to
the proposal by Gélin et al. in [17].

2.2 Discrete Logarithm Problem

In 2016 the DLP was solved for a 768-bit prime p [23]. The computation of a
database containing discrete logarithms for small prime ideals took about 4000
CPU core years. Using this database, an individual discrete logarithm modulo p
could be computed within about two core days. Using more than one CPU core,
the latency could be decreased, but the parallelization is not trivial. Recently,
Boudot et al. announced a new record, solving the DLP for a 795-bit prime [13].

The computation of an individual logarithm of a number z consists of two
computationally intensive steps: the initial split and the descent. During the
initial split the main task is to find two smooth integers that are norms of certain
principal ideals, such that their quotient modulo p equals z. The prime factors of
these two integers correspond to prime ideals with not too large norms. During
the descent step, each of these prime ideals can be replaced by smaller ideals
using relations found by sieving realized in the same way as during the sieving
step in the first step of the GNFS. Eventually, all prime ideals are so small,
that their discrete logarithms can all be found in the database. These discrete
logarithms can easily be assembled to the discrete logarithm of the number z.

The initial split is done by first performing some sieving in some lattice.
The dimension of this lattice can be two or eight for example, depending on the
number fields. This produces a lot of pairs of integers. There are many lattices
that can be used for sieving, which offer obvious opportunities for parallelization
and lead to even more pairs of integers. It is enough to find just one pair such
that both integers are smooth enough. Smoothness of integers can be tested by
a combination of several factorization algorithms. The most popular are trial
division, Pollard-(p − 1) and ECM.

One goal of our work was to reduce the latency of two CPU core days for the
computation of individual 786-bit discrete logarithms using 25 CPUs with 4 cores
each (Intel Core i7-4790K CPU @ 4.00GHz). In the initial split it is important
to find good parameters for the factorization algorithms. For our purpose we
found that

B1 ≈ 7 · exp(n/9)
B2 ≈ 600 · exp(0,113 · n)

are good choices for ECM to detect an n-bit factor (n ∈ {44, 45, . . . , 80}) using
our CPUs. This is close to the widely used B2 ≈ 100 · B1. The sieving of the

304 J. Wloka et al.

descent step was parallelized with Open MPI and the sieving strategy was care-
fully chosen and balanced with the factorization strategies used in the initial
split. Finally, we managed to compute individual discrete logarithms on 25 CPUs
(i.e., 100 cores) within three minutes.

The implementation of ECM on GPUs provides several opportunities to
speed up the computation of discrete logarithms. First, it can be used for smooth-
ness testing in the sieving step in the first step of the GNFS in order to reduce
the 4000 core years by supporting the CPUs with GPUs. Second, in the same
way it can speed up the sieving in the descent step. Third, it can be used for
speeding up the smoothness tests in the initial split.

In our experiment we utilized two GeForce RTX 2080 TI GPUs filtering
the pairs of integers in the initial split between the sieving and the smoothness
tests. The parameters of the sieving in the initial split were relaxed, such that
the sieving was faster, producing more pairs (and reducing their quality). This
leaves us with a huge amount of pairs of integers, most of them not smooth
enough. These integers were reduced to a size of 340 bit at most by trial division
(or otherwise dropped). The surviving integer pairs were sent to the two GPUs in
order to find factors with ECM using two curves, B1 = 5000, and B2 = 20 000. A
pair survived this step, if ECM found a factor in both integers and after division
by this factor the integers were still composite. The remaining survivors were
sent to the GPUs in order to find factors with ECM using 50 curves, B1 = 5000,
and B2 = 30000. The final survivors were sent to a factorization engine on
CPUs. Eventually, the use of GPUs reduced the latency of the computation of
individual logarithms from three minutes to two minutes.

To this end, the aforementioned experiments demonstrate that our ECM
implementation on GPUs can support the GNFS substantially, speeding up the
computation of discrete logarithms and possibly also the factorization of RSA
moduli with the GNFS.

After building a database for a prime p, individual discrete logarithms can
be computed rather easily. We estimate the cost for building such a database
within a year using CPUs to roughly 106 US$ for 768 bit, to 109 US$ for 1024 bit
and to at least 1014 US$s for 1536 bit. In our experiments we could compute
individual logarithms for 1024 bit within an hour on 100 CPU cores (up to the
point of looking up in a database which we did not have). This is an upper
bound since we did not focus on optimizations on polynomial selection and on
choosing good parameters and a good balance between initial split and descent.
The initial split produced 448-bit integers after trial division and the parameters
for ECM went up to B1 = 50 000 and B2 = 5000 000. Due to the opportunity to
scale our ECM implementation to any arbitrary parameter set, these numbers
can be processed on GPUs which should considerably reduce the latency of one
hour for 1024-bit individual logarithms.

Revisiting ECM on GPUs 305

3 Algorithmic Optimizations

With the general algorithm and background of ECM discussed in Sect. 2.1, this
section introduces optimizations to both stages of the algorithm suitable for
efficient GPU implementations.

3.1 Stage 1 Optimizations

As introduced in Sect. 2.1, during stage one of ECM a random point P on an
elliptic curve is multiplied by a large scalar s = lcm(1, 2, . . . ,B1 − 1,B1), e.g.,
for a B1 = 50 000 s is 72115 bit. To this end, stage one of ECM is essentially a
scalar multiplication of a point on an elliptic curve. This section will deal with
the possible optimizations, leading to a faster computation of s · P for large s.
This section introduces methods for reducing that effort.

Non-Adjacent Form. In general, our implementation uses a w-NAF (Nonad-
jacent form) representation for the scalar s =

∑t−1
i=0 si2i, where si ∈ C =

{−2w−1 +1,−2w−1 +3, ..,−1, 0, 1, ..., 2w−1 − 1}. While the necessary point dou-
blings roughly stay the same, the number of point additions is reduced at the
cost of needing to precompute and store a small multiple of the base point for
each positive coefficient from C. For example, choosing w = 4 reduces the num-
ber of point additions to 14 455 for a B1 = 50 000 at the cost of storage for three
additional points (3P, 5P, 7P).

The w-NAF representation of any scalar can be computed on-the-fly during
program startup. For all upcoming experiments we decided to set w = 4 allowing
a fair comparison and removing one degree of freedom.

Different Scalar Representations. For fixed values of B1 used repeatedly, other
representations of the scalar can be found with significantly more precomputa-
tion. Addition chains have been proposed by Bos et al. in [12], however finding
(optimal) addition chains with low operation cost for large scalars is still an
open question. In [15] Dixon et al. also proposed so-called batching for split-
ting the scalar s into batches of primes in order to lower the overall number of
required point operations. In [9] Bernstein et al. introduced fast tripling formulas
for points on Edwards curves and presented an algorithm finding the optimal
chain for a target scalar s with the lowest amount of modular multiplications.
Bouvier et al. also used tripling formulas and employed double-base chains and
double-base expansions in combination with batches to generate multiple chains
to compute scalars for somewhat larger bounds in [14]. Recently Yu et al. pro-
vided a more efficient algorithm to compute optimal double-base chains in [36].

However, these approaches are limited to small bounds B1 (i.e., for B1 ≤
8 192) and therefore do not match our requirements of an arbitrary value for B1.
Nevertheless, we generated double-base chains for small values of B1 with the
algorithm from [9] choosing S = ±{1, 3, 5, 7} and benchmarked them.

The two approaches – batching and addition chains – can be combined by
generating multiple addition chains, one for each batch [12,14]. We also included

306 J. Wloka et al.

Table 1. Comparison of different strategies optimizing the ECM throughput for stage
one setting B1 = 8 192 and the modulus size to 192 bit. To count modular multiplica-
tions, we assume 1M = 1S.

B1 Optimal Chains [9] 4-NAF Random Batching Adapted from [14]

Mb Ic trials
second Mb Ic trials

second Mb Ic trials
second Mb Ic Trials

second

4 096 48 442 4 311 032 49 777 4 354 422 48 307 20 294 466 N/A

8 192 N/Aa 99 328 4 215 495 95 756 64 163 751 90503 0 138565

50 000 N/Aa 605 983 4 37 476 585 509 432 25 718 N/A
a The calculation of an optimal chain is too computation-intensive b Modular multiplications
c Modular inversions (during computation of small multiples and/or point optimization)

results for a slightly modified version of the chains from [14]. We used their
batching but generated only optimal double-base chains using the code from
[9] with S = ±1 (no precomputation), whereas the authors use 22 double-base
expansions and switch to Montgomery coordinates for 4 batches out of a total
of 222 batches. As a result, our variant needs to perform 931 additional modular
multiplications. We disabled our optimized point representation (see Sect. 4.2)
due to the high number of chains resulting in many costly inversions.

While in general the best batching strategy for larger B1 is unclear, we were
able to generate multiple addition chains for a B1 = 50 000 by randomly selecting
subsets of primes smaller than B1 and using the algorithm from [9]. Keeping only
the best generated chains, we continued generating new batching variants for
the rest of the primes still to cover until the overall cost of the chains stabilized.
This strategy will be called Random Batching in the following. We supply all
generated batched double-base addition chain for our B1 with the software.

Table 1 compares the ECM stage one’s throughputs for B1 ∈ {
4 096,

8 192, 50 000
}

using the naive 4-NAF approach, our random batching, the results
from [9] and our adaptation of [14] on an NVIDIA RTX 2080Ti. Although the
batching based approaches require less modular operations (also compared to an
optimal chain for B1 = 4096), the absolute throughput is drastically lowered.
We found that in practice the cost of using multiple chains quickly remedied
the benefit of requiring less point operations: For each chain one needs to com-
pute small multiples of the (new) base point when using a larger window size.
Our implementation stores precomputed points in a variant of affine coordinates
to reduce the cost of this point’s addition, each requiring one inversion during
precomputation (cf. Sect. 4.2). This approach is not well suited if precomputed
points are only used for relatively few additions on a single chain.

In addition, for each digit in double-base chains the software has to check
whether it has to perform a doubling or tripling. Even if using only the base
point and disabling the optimization of its coordinates, the overhead introduced
by the interruption of the GPU program flow between chains slows down the
computation, even though the full set of batches are processed on the GPU with
one kernel launch.

Revisiting ECM on GPUs 307

In our experiments, we found that using our optimized coordinates for point
addition with w-NAF scalar representation is more beneficial to the overall
throughput than using multiple addition chains without the optimization of pre-
computed points. Hence, our NAF approach achieves better results as only dou-
blings are executed, the program flow is uninterrupted and no switching between
operations is needed.

3.2 ECM Stage 2 Optimizations

As introduced above, in the second stage of ECM one hopes that the number
of points on E is B1-powersmooth, except for one additional prime factor. For
stage two, a second bound B2 is set, and each multiple of the result of stage one
pk+iQ for each prime B1 < pk+1 < pk+2 < · · · < pk+l ≤ B2 is computed.

Reducing Point Operations. The number of point operations can be reduced by
employing a baby-step giant-step approach as in [30]. Each prime pk+i is written
as pk+i = vg ± u, with g a giant-step size and u the number of baby-steps. To
cover all the primes between B1 and B2, set

u ∈ U =
{

u ∈ Z

∣
∣
∣ 1 ≤ u ≤ g

2
, gcd(u, g) = 1

}

v ∈ V =
{

v ∈ Z

∣
∣
∣
∣

⌈
B1

g
− 1

2

⌉

≤ v ≤
⌊

B2

g
+

1
2

⌋}

.

As in stage two, one tries to find a prime pk+i = vg±u such that (vg±u)Q =
O on the curve modulo a factor p. This is equivalent to finding a pair of vg and u,
such that vgQ = ±uQ mod p. If this is the case, then the (affine) y-coordinates
of vgQ and uQ are also equal and

yvgQ
zvgQ

− yuQ
zuQ

= 0 mod p.

Since yP

zP
= y(−P)

z(−P)
on Twisted Edwards curves, one only needs to check for

yvgQzuQ−yuQzvgQ, if either vg+u or vg−u is a prime, thus saving computation
on roughly half the prime numbers. Our implementation uses a bitfield to mark
those combinations that are prime.

The result of the difference for all l primes of y-coordinates can be collected,
so that stage two only outputs a single value m with

m =
∏

v∈V

∏

u∈U

yvgQzuQ − yuQzvgQ.

If any of the differences yvgQzuQ − yuQzvgQ equals zero modulo p, gcd(m,n)
is divisible by p and usually not n thus a non-trivial factor of n is found.

When for all u ∈ U points the point uQ is precomputed together with the
giant-step stride of gQ, this approach only needs |V | + |U | + 1 point additions,
plus 3|V ||U | modular multiplications for the computation of m.

308 J. Wloka et al.

Reducing Multiplications. Our approach is to normalize all points vgQ and uQ
to the same projective z-coordinates instead of affine coordinates. This way
the computation of m only requires y-coordinates, because – as introduced
above – the goal is to find equal points modulo p. Given a ≥ 2 points P1, . . . , Pa

– in this case all giant-step points vgQ and baby-step points uQ – the following
approach sets all zPi

to
∏

1≤i≤a zPi
: To do so, each zPi

needs to be multiplied
by

∏
1≤i≤a,i �=k zPi

. An efficient method to compute each
∏

1≤i≤a,i�=k zPi
is given

in [24, p. 31].
Normalizing all points to the same z-coordinate costs 4(|V |+ |U |) multiplica-

tions during precomputation and the cost of computing m drops down to |V ||U |
modular multiplications, as m =

∏
v∈V

∏
u∈U yvgQ − yuQ.

However, for this normalization all baby- and giant-step points need to be
precomputed which needs quite a lot of memory to store z- and y-coordinates
of all |V | + |U | baby-step and giant-step points, as well as the storage of the
batch cross multiplication algorithm from [24, p. 31] with |V ||U | entries. If less
memory is available, the giant-step points can be processed in batches. In this
case, the normalization has to be computed again for each batch.

4 Implementation Strategies

The following sections discuss in more detail the implementation of multi-
precision arithmetic and elliptic curve operations tuned to our requirements and
those of GPUs.

4.1 Large Integer Representation on GPUs

Our implementation follows the straight-forward approach of, e.g., [29,31] and
uses 32-bit integer limbs to store multi-precision values. The number of limbs
for any number is set at compile time to the size of the largest number to fac-
tor. Thus, all operations iterating over limbs of multi-precision numbers, can be
completely unrolled during compilation, yielding long sequences of straight-line
machine code. To avoid inversions during multi-precision arithmetic, all compu-
tation on the GPU is carried out in the Montgomery domain. All multi-precision
arithmetic routines use inline Parallel Thread Execution (PTX) assembly to
make use of carry-flags and multiply-and-add instructions. Note that PTX code,
while having an assembly-like syntax, is code for a virtual machine that is com-
piled to the actual architecture specific instructions set. PTX has the advantage
of being hardware independent and ensures our proposed implementation is exe-
cutable on a variety of NVIDIA hardware.

To enable fast parallel transfer of multi-precision values from global device
memory to registers and shared memory of the GPU cores, multi-precision values
in global memory are stored strided: Consecutive 32-bit integers in memory are
arranged such that they are retrieved by different GPU threads, thus coalescing
memory accesses to the same limb of different values by multiple threads into
one memory transaction.

Revisiting ECM on GPUs 309

GPU-Optimized Montgomery Multiplication. As the modular multiplication is
at the core of elliptic curve point operations, the speed of the implementation
is most influenced by the speed of the modular multiplication routine. As in
the implemented software architecture, a single thread performs the full multi-
plication to avoid any synchronization overhead between threads, reducing the
amount of registers per multiplication is of high importance.

Tesla P100

Tesla V100

RTX 2080 Ti

5877

20066

25738

5534

29340

32240

5536

29980

32800

192-bit

2103

7739

10132

1962

9327

9672

1945

12377

13799

320-bit

CIOS

FIOS

FIPS
1024

3914

5056

1009

5018

5125

937

6679

7575

448-bit

Fig. 1. Million modular multiplication per second for different Montgomery implemen-
tation strategies and architectures.

Different strategies to implement multi-precision Montgomery multiplication
and reduction have been surveyed in [20]. These differ in two aspects: The tight-
ness of interleaving of multiplication and reduction, and the access to operands’
limbs. In [32], Neves et al. claimed that the Coarsely Integrated Operand Scan-
ning (CIOS), Finely Integrated Operand Scanning (FIOS) and Finely Integrated
Product Scanning (FIPS) strategies are the most promising, and CIOS is most
widely used, e.g., in [34]. All three methods need 2l2 + l multiplications of limbs
for l-limb operands (see [20, Table 1] for a complete cost overview). Using PTX,
each of these multiplications requires two instructions to retrieve the lower and
upper half of the 2l product. PTX offers multiply-and-add instructions with
carry-in and -out to almost entirely eliminate additional add instructions.

Our implementation of FIOS follows [18] in accumulating carries in an addi-
tional register to prevent excessive memory accesses and carry propagation loops.
Our FIPS implementation follows [32, Algorithm 4].

Comparing FIPS, FIOS and CIOS on current GPUs, our benchmarks show
varying results for newer architectures. Figure 1 shows the runtime of different
strategies on different hardware architectures. For each of these benchmarks,
32 768 threads are started in 256 blocks, with 128 threads in each block. Each
thread reads its input data from strided arrays in global memory and performs
one million multiplications (reusing the result as operand for the next iteration)
and writes the final product in strided form back to global memory.

For the most recent Volta and Turing architectures featuring integer arith-
metic units, the FIPS strategy is the most efficient especially for larger moduli.
On the older Pascal architecture, the difference between the implementation

310 J. Wloka et al.

strategies’ efficiency is much smaller. However, on the Tesla P100 CIOS slightly
outperformed both finely integrated methods.

GPU-Optimized Montgomery Inversion. While modular inversions are costly
compared to multiplications and are not used during any hot arithmetic, pre-
computed points are transformed needing one modular inversion per point.
Montgomery Inversion, given a modulus n and a number Ã = AR to invert in
Montgomery representation, computes its inverse Ã−1 = A−1R mod n, again
in Montgomery representation.

The algorithm implemented in this work is based on the Binary Extended
Euclidean Algorithm as in [33, Algorithm 3]. Divisions by two within the algo-
rithm are accomplished by using PTX funnel shifts to the right. The PTX
instruction shf.r.clamp takes two 32-bit numbers, concatenates them and shifts
the 64-bit value to the right, returning the lower 32 bit. Thus, each division by
two can be achieved with l instructions for an l-word number. However, the
inversion algorithm needs four branches depending on the number to invert and
thus produces inner warp thread divergence.

4.2 Elliptic Curve Arithmetic on GPUs

Based on the modular arithmetic of the last section, the elliptic curve arithmetic
can be implemented. With offering the lowest operation count (in terms of mul-
tiplications/squarings) of all proposed elliptic curves, our GPU implementation
uses a = -1 twisted Edwards curves, with coordinates represented in extended
projective format.

Point Arithmetic. The implementation of point addition and subtraction is
a straight-forward application of the addition and doubling formulas from [19]
using the multi-precision arithmetic detailed in the previous section.

Point Addition. Addition of an arbitrary point with Z �= 1 is only needed
seldom: During precomputation of small multiples of the base point for the
w-NAF multiplication and during computation of the giant-steps for stage two.
General point addition is implemented by a straight-forward application of the
formulas from [10,19] as given in Algorithm 1.

Algorithm 1: Point addition on a = -1 twisted Edwards curves [10, 19].
Data: Points P = (xP , yP , zP , tP) and Q = (xQ, yQ, zQ, tQ) in extended projective

coordinates, curve parameter k = 2d
Result: Point R = P + Q = (xR, yR, zR, tR)

1 a ← (yP − xP) · (yQ − xQ)
2 b ← (yP + xP) · (yQ + xQ)
3 c ← tP · k · tQ
4 d ← zP · zQ
5 d ← d + d

6 e ← b − a
7 f ← d − c
8 g ← d + c
9 h ← b + a

10 xR ← e · f

11 yR ← g · h
12 zR ← f · g
13 tR ← e · h
14 return

(xR, yR, zR, tR)

Revisiting ECM on GPUs 311

Table 2. Modular operation cost of the implemented point arithmetic.

projective� extended�

M S ADD M S ADD

Doubling† 3 4 8 4 4 8

Tripling† 9 3 10 11 3 10

Addition∗ 8 9 9 9

Precomputed addition‡ 6 7 7 7
� result coordinate format † operand in projective
coordinates ∗ operand in extended coordinates ‡ one
operand in our modified coordinates

If one of the points of the addition is precomputed and used in many addi-
tions, further optimization is beneficial. As in the w-NAF point multiplication,
precomputed points are only used for addition, all operations that solely depend
on values of the point itself are done once during precomputation. These are
addition and subtraction of x- and y-coordinates, as well as the multiplication of
the t-coordinate with the curve constant k = 2d. To further save one multiplica-
tion per point addition, the precomputed point can be normalized such that its
z-coordinate equals one at the cost of one inversion and three multiplications.
Applying these optimizations yields the modified format of a precomputed point
P̃ from the general point representation P , such that

xP̃ = yP − xP yP̃ = yP + xP zP̃ = 1 tP̃ = 2 · dcurve · tP

Using this representation, point additions require seven multiplications only.
Computing the inverse of a point −P = (−xP , yP , zP ,−tP) in its modified rep-
resentation is achieved by switching the x- and y-coordinates, and computing
−tP̃ = n − tP̃ mod n, i.e., −P̃ = (yP̃ , xP̃ , 1, n − tP̃).

Point Doubling and Tripling. Point doubling is used for each digit of the scalar
in scalar multiplication, tripling also on double-base chains. As all intermediate
values do not fulfill the condition of Z = 1, no further optimized doubling
formulas can be applied in this case. The implemented doubling and tripling
routines follow [10,19] and [9].

Mixed Representation. Using extended projective coordinates, the point dou-
bling formula does not use the t-coordinate of the input point. When using the
w-NAF scalar multiplication, the number of non-zero digits is approximately

l
w−1 for an l-bit scalar. Thus, there are long runs of zero bits in the w-NAF,
resulting in many successive doublings without intermediate addition.

Thus, to further reduce multiplications during scalar multiplication com-
puting the t-coordinate can be omitted if the scalar’s next digit is zero, as no
addition follows in this case. Furthermore, as each point addition is followed by
a point doubling, which does not rely on the correct extended coordinate, again,

312 J. Wloka et al.

the multiplication computing tR can be omitted from all point additions within
the scalar multiplication. The same applies to tripling. The resulting operation
counts as implemented are listed in Table 2.

Scalar Multiplication. To compute the scalar multiple of any point P , as in
the first stage of ECM, w-NAF multiplication is used. The first stage’s scalar
s = lcm(1, . . . , B1) is computed on the host and transformed into w-NAF rep-
resentation, with w a configurable compile time constant defaulting to w = 4.
Thus, each digit of sw-NAF is odd or zero and in the range of −2w−1 to 2w−1.

Our precomputation generates 2P by point doubling and the small odd multi-
ples of P , i.e., {3P, . . . , (2w−1−1)P} with repeated addition of 2P . Precomputed
points are stored with strided coordinates along with other batch data in global
memory, as registers and shared memory are not sufficiently available.

All threads read their corresponding precomputed point’s coordinates from
global memory to registers with coalesced memory accesses. In case the current
digit of the NAF is negative, the precomputed point is inverted before addition.
Again, as all threads are working on the same limb, this does not create any
divergence.

5 Evaluation

Three different GPU platforms were available during this work, a Tesla P100
belonging to the Pascal family, a Tesla V100 manufactured in the Volta archi-
tecture, and a RTX 2080 Ti with a Turing architecture.

As the actual curves in use for ECM are not within the scope of this paper, the
yield, i.e., the numbers for which a factor is found, is not part of this evaluation.
Of interest is, however, the throughput of the implementation: How many ECM
trials can be performed per second on moduli of a given bit length. Therefore, each
benchmark in this work is conducted on 32 768 randomly generated numbers
n = pq, with

√
n ≈ p ≈ q and p and q prime.

Benchmarks for different problem sizes are carried out in two standard con-
figurations, with the first being a somewhat standard throughout the literature
to enable a comparison with previous works. As most previously reported GPU
implementations only support the first stage of ECM on the GPU, this first case
only executes stage one of the implementation with a bound of B1 = 8192. The
second benchmark parameter set is aimed at much larger ECM bounds and does
include the second stage, with bounds B1 = 50 000 and B2 = 5000 000.

5.1 Stage One Bound

Firstly, we evaluate the impact of the bound B1. Figure 2 gives the number of
ECM trials per second for moduli of 192 bit and 320 bit for growing values of B1.
Note that the size of the scalar s = lcm(1, . . . , B1) grows very fast with B1. Using
w-NAF multiplication, the runtime of ECM mainly depends on the number of
digits in s, resulting in the values seen in Fig. 2. Note that each single trial (per

Revisiting ECM on GPUs 313

second) on the y-axis is equivalent to log2 lcm(1, . . . , B1) operations (double and
possibly add) per second and thus changes for each value of B1, e.g., 1 trial is
equivalent to 14 447 ops for B1 = 10 000 and 28 821 ops for B1 = 20 000.

5.2 Stage Two Bound

For a given bound B2, the number of primes less than or equal to B2 are the key
factor in determining the runtime of stage two. Via the prime number theorem,
with a fixed negligible value for B1, this value is approximately π(B2) ≈ B2

lnB2
.

See Fig. 3 for the achieved ECM trials per second for different values of B2.
While for small values of B2, the RTX 2080 Ti outperforms the Tesla V100, as
soon as B2 grows larger than 1 000 000, the Tesla V100 performs slightly better.
As described in Sect. 3.2 for larger values of B2 not all baby-step and giant-step
points can fit into GPU memory, but have to be processed in batches. Our Tesla
V100 setup features 16 GB of GPU memory while the RTX 2080 Ti only has
11 GB available. Again, note that the plot shows trials

second where with growing B2

the number of operations per trial increases with B2.

10000 20000 30000 40000 50000 60000 70000 80000
0

0.5

1

1.5

·105

B1

th
ro

u
g
h
p
u
t
(

tr
ia

ls
se

c
o
n
d
)

Tesla V100 192-bit

Tesla P100 320-bit

RTX 2080 Ti

Fig. 2. ECM first stage trials per second for varying size of B1.

1 · 106 2 · 106 3 · 106 4 · 106 5 · 106 6 · 106 7 · 106 8 · 106 9 · 106
0

1

2

3

·105

B2

th
ro

u
g
h
p
u
t
(

tr
ia

ls
se

c
o
n
d
)

Tesla V100 192-bit

Tesla P100 320-bit

RTX 2080 Ti

Fig. 3. ECM first and second stage trials per second for varying size of B2, with
B1 = 256, and a stage two window size of w = 2310 (cf. Sect. 3.2).

314 J. Wloka et al.

5.3 ECM Throughput

With these benchmarks giving the runtime dependency on different parameters,
this section gives absolute throughput numbers for the two exemplary cases of
first stage only ECM with B1 = 8192, and both stages with more ambitious
B1 = 50 000 and B2 = 5000 000.

Stage 1. The absolute throughput for the first case for different moduli sizes
is given in Table 3. Interestingly, when comparing the throughput for 192-bit
moduli between the high-performance GPU Tesla V100 with the consumer GPU
RTX 2080 Ti, the consumer card processes more ECM trials per second by a
factor of 1.44.

Table 3. Absolute throughput of ECM trials for stage one (in thousands per second)
on different platforms with B1 = 8 192 and varying moduli sizes.

128 160 192 224 256 288 320 352 384 416 448

Tesla P100 103.9 66.6 46.8 33.5 19.0 14.3 9.9 8.3 7.0 6.0 5.2

Tesla V100 228.9 188.8 149.1 141.3 117.6 73.4 61.9 52.4 35.4 29.4 24.7

RTX 2080 Ti 450.6 310.0 214.1 152.5 124.2 98.9 77.1 58.8 37.2 29.7 24.7

2×RTX 2080 Ti 542.6 481.3 377.1 285.5 232.9 191.4 150.2 113.6 73.0 58.3 48.2

Table 4. Absolute throughput of ECM trials for stage one and stage two (in thousands
per seconds) on different platforms with B1 = 50 000, B2 = 5 000 000 and varying
moduli sizes.

128 160 192 224 256 288 320 352 384 416 448

Tesla P100 10.79 7.15 4.97 3.52 1.91 1.42 1.11 0.91 0.77 0.65 0.55

Tesla V100 46.88 30.74 22.85 17.12 13.58 7.99 7.12 5.78 4.60 3.49 2.78

RTX 2080 Ti 40.86 27.39 20.21 14.77 11.62 9.34 6.85 6.30 4.11 3.32 2.78

2×RTX 2080 Ti 80.46 53.79 39.42 28.61 22.51 17.91 13.50 9.72 7.89 6.46 5.39

Stage 1 and Stage 2 Eventually, Table 4 states the absolute throughput of the
entire ECM setting the bounds to B1 = 50 000 and B2 = 5000 000. For the
exemplary application with a modulus size of 448 bit mentioned in Sect. 2.2,
only one RTX 2080 Ti is capable of processing 2 781 ECM trials per second.

Multiple Devices Our implementation is designed to use multiple GPUs to
increase throughput. Table 3 and Table 4 show that the throughput is almost
doubled when utilizing two RTX 2080 Ti, and more so for larger moduli and
larger ECM parameters, as the ratio of host side to GPU computation shifts
towards more work on the GPU.

Revisiting ECM on GPUs 315

Table 5. Comparison of scaled throughput for Montgomery multiplication from the
literature and this work. Throughput values are given in multiplications

core×cycle
× 10−3.

GPU [25] [31] [16]d this work

GTX 480 GTX 580 GTX 980 Tia Tesla P100b Tesla V100c RTX 2080 Tic

Cores 480 512 2816 3584 5120 4352

Clock∗ 1401 1544 1000 1316 1530 1665

Modulus†

128 3.54063 7.34319 4.03125 2.65388 9.01974 8.65915

160 2.85956 4.75631 1.74424 6.40737 6.01596

192 2.32423 3.32816 1.24673 4.65732 4.62363

224 1.90638 2.45785 0.91325 3.61875 3.46953

256 1.53313 1.88861 1.32813 0.70659 2.92659 2.80919

320 1.04687 1.21691 0.44531 1.97959 1.88013

384 0.75839 0.84880 0.64063 0.30303 1.41461 1.36107
∗ in MHz † in bits a two-pass approach b CIOS c FIPS
d Values have been scaled from throughput per Streaming Multiprocessor per clock cycle

5.4 Comparison to Previous Work

Multiple factors make it hard to compare our results to previous work: Espe-
cially the fast changing GPU architectures make a comparison very difficult, but
also no comparable set of parameters for B1 and B2 has been established. In
lack of a better computation power estimate, we adopt the approach of [31] to
scale the results accomplished on different GPU hardware by scoring results per
cuda cores × clock rate.

Montgomery Multiplication. Comparing the most influential building block, the
Montgomery multiplication algorithm to previous publications is a first step.
Table 5 lists relevant work, the hardware in use and a score for the throughput
scaled by the number of Compute Unified Device Architecture (CUDA) cores and
their clock rate. The implementation of this work is the fastest of all implemen-
tations under comparison on the RTX 2080 Ti and more so for larger moduli,
however comes in last place for the Pascal architecture platforms. Using our
implementation and a modern GPU manufactured in the Turing architecture,
clearly outperforms the previous results.

ECM Throughput. Comparing the achieved throughput of the developed soft-
ware with previously published results suffers from various problems: different
hardware, varying modulus sizes and varying settings for both first and second
stage bounds across different publications.

Especially, as to the authors’ knowledge, apart from Miele et al. in [31], no
other publication of ECM on GPUs implemented the second stage. Additionally,
in [31] only very small bounds of B1 = 256 and B2 = 16 384 were chosen. Note
that the implemented w-NAF approach in stage one in this work benefits from
larger B1 as precomputation costs amortize.

316 J. Wloka et al.

Table 6. Comparison of this implementation with [12] and their parameter sets for
192-bit moduli. Values are given in ECM trials

core×cycle
× 10−5.

Bos et al. [12] this work

no-storage windowing

GPU GTX 580 Tesla P100 Tesla V100 RTX 2080 Ti

cores/clock∗ 512/1544 3584/1316 5120/1530 4352/1665

B1 = 960 2.1692 1.0014 0.64070 0.20936 0.49398

B1 = 8 192 0.2513 0.1151 0.09917 0.20134 0.29373

B1 = 50 000 N/A N/A .01650 0.04609 0.05168
∗ in MHz

For bounds this small our implementation is actually significantly slower, as
host-side and precomputation overhead dominate the runtime.

Albeit already published in 2012, the comparison with [12] is the most inter-
esting for the stage one implementation, as they also use a somewhat larger
bound of B1 = 8192, but do not implement stage two. However, the comparison
lacks modulus sizes other than 192 bit, as [12] only published these results. The
comparison to our implementation is shown in Table 6 and perfectly shows the
advantage of our approach for larger bounds. Considering B1 = 8192, our imple-
mentation slightly outperforms the no-storage approach by Bos et al. although
we do not use highly optimized addition chains.

Even less recent, published in 2009, is the implementation by Bernstein et al.
[8]. A comparison is somewhat unfair, as Bernstein developed a = -1 Edwards
curves after this paper was published. However, their GPU implementation uses
the bound B1 = 8192, and in comparison the proposed implementation is sig-
nificantly faster. However, this comparison is unfair as multiple generations of
hardware architectures aimed at GPGPU have been released within the last ten
years, and the authors of [8] decided to use a floating point representation.

6 Conclusion

In this work we present a highly optimized and scalable implementation of the
entire ECM algorithm for modern GPUs. On algorithmic level, we demonstrated
that a w-NAF representation seems to be the most promising optimization tech-
nique realizing the scalar multiplication in the first stage. For the second stage
we rely on an optimized baby-step giant-step approach. For the underlying
Montgomery multiplication, we implemented three difference strategies where
against our expectations FIPS performs best. Eventually, we demonstrate that
the throughput of previous literature is achieved – and actually exceeded – on
the most recent Turing architecture. We hope that the scalability, flexibility and
free availability of our ECM implementation will support other researchers in
achieving new factorization and DL records, reducing costs and reassessing the
security of some algorithms used in PKC.

Revisiting ECM on GPUs 317

References

1. Antao, S., Bajard, J.C., Sousa, L.: RNS-based elliptic curve point multiplication
for massive parallel architectures. Comput. J. 55(5), 629–647 (2012)

2. Antao, S., Bajard, J.C., Sousa, L.: Elliptic curve point multiplication on GPUs. In:
ASAP 2010–21st IEEE International Conference on Application-specific Systems,
Architectures and Processors. IEEE, July 2010

3. Barker, E.B., Dang, Q.H.: Recommendation for Key Management Part 3:
Application-Specific Key Management Guidance. Technical Report NIST SP 800–
57Pt3r1, National Institute of Standards and Technology, January 2015

4. Bernstein, D.J., et al.: The billion-mulmod-per-second PC. In: SHARCS 2009
Workshop Record (Proceedings 4th Workshop on Special-purpose Hardware for
Attacking Cryptograhic Systems, Lausanne, Switserland, September 9–10, 2009)
(2009)

5. Bernstein, D., Birkner, P., Lange, T., Peters, C.: ECM using edwards curves. Math.
Comput. 82(282), 1139–1179 (2013)

6. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 26

7. Bernstein, D.J., Birkner, P., Lange, T.: Starfish on strike. In: Abdalla, M., Bar-
reto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 61–80. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14712-8 4

8. Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on
graphics cards. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–
501. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 28

9. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Double-base scalar multiplication
revisited. Cryptology ePrint Archive, Report 2017/037 (2017). https://eprint.iacr.
org/2017/037

10. Bernstein, D.J., Lange, T.: Explicit-Formulas Database. https://hyperelliptic.org/
EFD/index.html

11. Bos, J.W.: Low-latency elliptic curve scalar multiplication. Int. J. Parallel Prog.
40(5), 532–550 (2012)

12. Bos, J.W., Kleinjung, T.: ECM at work. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 467–484. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 29

13. Boudot, F., Gaudry, P., Guillevic, A., Heninger, N., Thomé, E., Zimmermann,
P.: Comparing the difficulty of factorization and discrete logarithm: a 240-digit
experiment. Cryptology ePrint Archive, Report 2020/697 (2020). https://eprint.
iacr.org/2020/697

14. Bouvier, C., Imbert, L.: Faster cofactorization with ECM using mixed represen-
tations. Cryptology ePrint Archive, Report 2018/669 (2018). https://eprint.iacr.
org/2018/669

15. Dixon, B., Lenstra, A.K.: Massively parallel elliptic curve factoring. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 183–193. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-47555-9 16

16. Emmart, N., Luitjens, J., Weems, C., Woolley, C.: Optimizing Modular Multiplica-
tion for NVIDIA’s Maxwell GPUs. In: 2016 IEEE 23nd Symposium on Computer
Arithmetic (ARITH), pp. 47–54. IEEE, Silicon Valley, CA, USA, July 2016

https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-642-14712-8_4
https://doi.org/10.1007/978-3-642-01001-9_28
https://eprint.iacr.org/2017/037
https://eprint.iacr.org/2017/037
https://hyperelliptic.org/EFD/index.html
https://hyperelliptic.org/EFD/index.html
https://doi.org/10.1007/978-3-642-34961-4_29
https://doi.org/10.1007/978-3-642-34961-4_29
https://eprint.iacr.org/2020/697
https://eprint.iacr.org/2020/697
https://eprint.iacr.org/2018/669
https://eprint.iacr.org/2018/669
https://doi.org/10.1007/3-540-47555-9_16

318 J. Wloka et al.

17. Gélin, A., Kleinjung, T., Lenstra, A.K.: Parametrizations for families of ecm-
friendly curves. In: Proceedings of the 2017 ACM on International Symposium
on Symbolic and Algebraic Computation, ISSAC 2017, Kaiserslautern, Germany,
July 25–28, 2017, pp. 165–171 (2017)

18. Großschädl, J., Kamendje, G.-A.: Optimized RISC architecture for multiple-
precision modular arithmetic. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M.
(eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 253–270. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-39881-3 22

19. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted edwards curves revisited.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 20

20. Kaya Koc, C., Acar, T., Kaliski, B.: Analyzing and comparing Montgomery mul-
tiplication algorithms. IEEE Micro 16(3), 26–33 (1996)

21. Kleinjung, T., et al.: Factorization of a 768-Bit RSA modulus. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 18

22. Kleinjung, T., et al.: A heterogeneous computing environment to solve the 768-bit
RSA challenge. Cluster Comput. 15(1), 53–68 (2012)

23. Kleinjung, T., Diem, C., Lenstra, A.K., Priplata, C., Stahlke, C.: Computation of a
768-Bit prime field discrete logarithm. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 185–201. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 7

24. Kruppa, A.: A Software Implementation of ECM for NFS. Research Report RR-
7041, INRIA (2009). https://hal.inria.fr/inria-00419094

25. Leboeuf, K., Muscedere, R., Ahmadi, M.: A GPU implementation of the Mont-
gomery multiplication algorithm for elliptic curve cryptography. In: 2013 IEEE
International Symposium on Circuits and Systems (ISCAS2013), pp. 2593–2596,
May 2013

26. Lenstra, A.K.: Integer factoring. Des. Codes Crypt. 19(2–3), 101–128 (2000).
https://doi.org/10.1023/A:1008397921377

27. Lenstra, A.K.: General purpose integer factoring. Cryptology ePrint Archive,
Report 2017/1087 (2017). https://eprint.iacr.org/2017/1087

28. Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126(3), 649–673
(1987). https://doi.org/10.2307/1971363

29. Mahé, E.M., Chauvet, J.M.: Fast GPGPU-based elliptic curve scalar multiplica-
tion. Cryptology ePrint Archive, Report 2014/198 (2014). https://eprint.iacr.org/
2014/198

30. Miele, A.: On the analysis of public-key cryptologic algorithms (2015). https://
infoscience.epfl.ch/record/207710

31. Miele, A., Bos, J.W., Kleinjung, T., Lenstra, A.K.: Cofactorization on graphics pro-
cessing units. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
335–352. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-
3 19

32. Neves, S., Araujo, F.: On the performance of GPU public-key cryptography. In:
ASAP 2011–22nd IEEE International Conference on Application-specific Systems,
Architectures and Processors, pp. 133–140. September 2011

33. Savas, E., Koc, C.K.: Montgomery inversion. J. Cryptographic Eng. 8(3), 201–210
(2018)

34. Szerwinski, R., Güneysu, T.: Exploiting the power of GPUs for asymmetric cryp-
tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 6

https://doi.org/10.1007/978-3-540-39881-3_22
https://doi.org/10.1007/978-3-540-89255-7_20
https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.1007/978-3-319-56620-7_7
https://doi.org/10.1007/978-3-319-56620-7_7
https://hal.inria.fr/inria-00419094
https://doi.org/10.1023/A:1008397921377
https://eprint.iacr.org/2017/1087
https://doi.org/10.2307/1971363
https://eprint.iacr.org/2014/198
https://eprint.iacr.org/2014/198
https://infoscience.epfl.ch/record/207710
https://infoscience.epfl.ch/record/207710
https://doi.org/10.1007/978-3-662-44709-3_19
https://doi.org/10.1007/978-3-662-44709-3_19
https://doi.org/10.1007/978-3-540-85053-3_6

Revisiting ECM on GPUs 319

35. Valenta, L., Cohney, S., Liao, A., Fried, J., Bodduluri, S., Heninger, N.: Factoring
as a service. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp.
321–338. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-
4 19

36. Yu, W., Musa, S.A., Li, B.: Double-base chains for scalar multiplications on elliptic
curves. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp.
538–565. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 18

37. Zimmermann, P., Dodson, B.: 20 years of ECM. In: Hess, F., Pauli, S., Pohst,
M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 525–542. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086 37

https://doi.org/10.1007/978-3-662-54970-4_19
https://doi.org/10.1007/978-3-662-54970-4_19
https://doi.org/10.1007/978-3-030-45727-3_18
https://doi.org/10.1007/11792086_37

	Revisiting ECM on GPUs
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curve Method
	2.2 Discrete Logarithm Problem

	3 Algorithmic Optimizations
	3.1 Stage 1 Optimizations
	3.2 ECM Stage 2 Optimizations

	4 Implementation Strategies
	4.1 Large Integer Representation on GPUs
	4.2 Elliptic Curve Arithmetic on GPUs

	5 Evaluation
	5.1 Stage One Bound
	5.2 Stage Two Bound
	5.3 ECM Throughput
	5.4 Comparison to Previous Work

	6 Conclusion
	References

