
Curves with Fast Computations
in the First Pairing Group

Rémi Clarisse1,2(B), Sylvain Duquesne2, and Olivier Sanders1

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
remi.clarisse@univ-rennes1.fr

2 Univ. Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France

Abstract. Pairings are a powerful tool to build advanced cryptographic
schemes. The most efficient way to instantiate a pairing scheme is
through Pairing-Friendly Elliptic Curves.

Because a randomly picked elliptic curve will not support an efficient
pairing (the embedding degree will usually be too large to make any
computation practical), a pairing-friendly curve has to be carefully con-
structed. This has led to famous curves, e.g. Barreto-Naehrig curves.

However, the computation of the Discrete Logarithm Problem on the
finite-field side has received much interest and its complexity has recently
decreased. Hence the need to propose new curves has emerged.

In this work, we give one new curve that is specifically tailored to be
fast over the first pairing-group, which is well suited for several crypto-
graphic schemes, such as group signatures, and their variants, or accu-
mulators.

1 Introduction

Pairings and cryptography have a long common history. Initially used as a way
to shift the discrete logarithm problem from elliptic curves to finite fields [35], it
has first been used for constructive purpose by Joux [30] in 2000. Following this
seminal result, pairings have been massively used in cryptography. This is due in
large part to the nice features of this mathematical tool but also to its apparent
simplicity. Indeed, the features of pairings can easily be abstracted so as to be
used even by non-specialists. Actually, almost all pairing-based cryptographic
papers (e.g. [6,10,37]) consider so-called “bilinear groups” as some kind of black
box given by a set of three groups G1, G2 and GT (usually of prime order �)
along with an efficiently-computable non-degenerate bilinear map between them

e : G1 × G2 −→ GT .

This way, cryptographers can design their protocols without being bothered
by the technicalities of the concrete implementations of pairings. The only sub-
tlety considered in cryptographic papers is the existence of efficiently computable
morphisms between G1 and G2, which has led to so called type-i pairings, for
i ∈ {1, 2, 3}, according to the classification by Galbraith et al. [23]. However,
c© Springer Nature Switzerland AG 2020
S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 280–298, 2020.
https://doi.org/10.1007/978-3-030-65411-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65411-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-65411-5_14

Curves with Fast Computations in the First Pairing Group 281

type-3 pairings are now preponderant in cryptography because they are the most
efficient ones [23] and because they are compatible with cryptographic assump-
tions, such as Decisional Diffie-Hellman in both G1 and G2, that do not hold
with the other types. Actually, some recent results [1,16] cast some doubts on
the real interest of type-1 and type-2 pairings for cryptography. For all these
reasons, we only consider type-3 pairings in this paper.

In all cases, at some point, it becomes necessary to instantiate these bilinear
groups. To date, the only secure instantiations are (to our knowledge) based on
elliptic curves as the constructions based on lattices [19,25] have been proved
insecure [17,18]. More specifically, on one hand, G1 and G2 are usually defined
as cyclic groups of prime order � of some elliptic curve E over a finite field Fq.
On the other hand, GT is the group of �-th roots of unity in Fqk , where k is the
order of q in Z/�Z, called the embedding degree of q.

It is thus important to understand that, despite being considered as similar
objects by the cryptographic abstraction of bilinear groups, the groups G1, G2

and GT are extremely different in practice. The main difficulty when it comes to
instantiate these groups is to carefully select the different parameters (essentially
�, q and k) in order to ensure that security holds in each group while retaining
the best efficiency. Here, by “security” we mean the hardness of the Discrete
Logarithm Problem (DLP) although cryptographic schemes usually rely on easier
problems.

Actually, for a long time, the problem of selecting these parameters was
thought to be rather easy. It was indeed thought that the hardness of the DLP
problem in Fqk only depended on the bitlength of this field (namely k log2(q))
and not on k and q themselves. Using this assumption, it was quite simple to
derive concrete bounds on �, q and k to achieve some specific security level λ.
For example, in the standard case λ = 128, a simple look at [42, Table 4.6]
reveals that we must have log2(�) � 256 (and so log2(q) � 256 because of the
Hasse’s bound) and k log2(q) � 3072. In this case, parameters q ∼ � ∼ 2256 and
k = 12 are optimal. Moreover the choice of an even k leads to very efficient
implementations of pairings and of the arithmetic in Fqk . This largely explains
the success of the so-called Barretto-Naehrig curves (BN) [8] (that perfectly
match these parameters) which have become de facto the standard pairing curves
in the literature.

Unfortunately, two recent papers [32,33] have shown that the assumption
regarding Fqk was wrong. We will discuss the details later but intuitively these
results imply that the bitlength of the elements of Fqk is no longer the good
metric to estimate security in this group as it now depends on the shape of both
integers q and k. We now face a somewhat chaotic situation where a 3000-bit
finite field Fqk may offer the same security level as a 5000-bit one provided that k
and q have some specific properties. And GT is not the only group concerned by
these considerations as the parameter q has a direct impact on G1 and G2. Con-
cretely, it is now sometimes necessary to significantly increase the parameter q
(that becomes much larger than the advised minimal bound 2256) to remain com-
patible with some values of k that enables efficient pairing computations. This

282 R. Clarisse et al.

is illustrated by the BLS12 curves promoted by Barbulescu and Duquesne’s [4]
for the standard 128-bits level of security. These curves lead to a 450-bit prime
integer q, i.e. 75% higher than old BN curves.

These examples are representative of the current strategy to select pairing
parameters [4]. The goal is indeed to find a nice compromise between the com-
plexity of the different groups/operations. More specifically, it aims at provid-
ing parameters that would not significantly penalize one particular operation.
This strategy thus makes the implicit assumption that cryptographic protocols
present some kind of symmetry, between the groups G1, G2 and GT , but also
between the entities that will perform the operations in these groups. This may
be true in some specific scenarios but there are many others were this assumption
is false.

As an example, let us consider the case of Enhanced Privacy ID (EPID)
scheme introduced by Brickell and Li [14] and now massively used to secure Intel
SGX enclave [2]. EPID is a variant of Direct Anonymous Attestation (DAA) [12]
with enhanced revocation capabilities, meaning that it is possible to revoke a
secret key sk by simply adding a signature generated using sk to a revocation
list. The next signatures will then have to contain a proof that they were issued
using a different secret key. This is a nice feature but it implies to perform a
high number of exponentiations in G1 [13], linear in the number n of revoked
signatures, as illustrated in Table 1. Actually, this table shows a clear imbalance
between the different groups as soon as the revocation list contains dozens of
elements, a threshold that should be quickly reached in most scenarios. In those
cases, we note that trying to stick to the minimal bound for q (thus decreasing
the complexity of operations in G1), even if it significantly deteriorates the com-
putational cost of a pairing, is a worthwhile goal as there is only one pairing to
compute against roughly 6n exponentiations to generate or to verify the signa-
ture. This is all the more true since this pairing is only computed by the verifier,
an entity that is assumed, in the context of DAA, to be much more powerful
than the signer (usually a constrained device). To put it differently, we here need
a curve that will optimize operations in G1 even if it is at the cost of a much
more expensive pairing.

This scenario illustrates the limits of the global strategy for selecting param-
eters. The mainstream curves do not seem suitable here and we can hope for
dramatic performance improvements by using a tailored curve. And this is not
an isolated case as we explain in Sect. 3.

Our Contribution. The contribution of our paper is twofold. First, we investi-
gate a different approach for selecting curve parameters. We indeed believe that
standard families of curves, like BLS12, do not fit all cryptographic protocols
and in particular impose a tradeoff (between the complexities of the different
groups and operations) that is irrelevant in many contexts. Realizing that the
era of optimality using Barreto-Naehrig curves is over, we choose to focus on
the family of cryptographic protocols whose practicality depends on the imple-
mentation of the group G1. This family is quite large because cryptographers

Curves with Fast Computations in the First Pairing Group 283

usually try to avoid as much as possible the other groups (G2 and GT) as the lat-
ter are much less efficient and even incompatible with some constrained devices
(see e.g. [6]). We then look for curves with minimal G1 scalar multiplication
complexity, which leads us to the case of prime embedding degree k, a setting
that has been overlooked for a long time despite being immune to Kim’s and
Barbulescu’s attacks [32,33] mentioned above. We provide a security assessment,
some benchmarks and a complexity evaluation of some curves from this setting
that we compare to the most known alternatives. Our results show that the
computational complexity of the operations on the first pairing group is 65%
higher for the standard curves (with composite embedding degrees) comparing
to our proposal (with prime embedding degrees), while yielding elements in G1

that are 20% larger. Of course, those composite-embedding-degree curves come
at the cost of a less expensive pairing but our analysis shows that this overhead
is acceptable in the context we consider.

Based on these results we investigate new curves that would match our need.
We find a new one that goes one step further in the quest for optimizing the
performance of G1. We call this new curve, which constitutes our second con-
tribution, BW19-P286 as it was generated using the Brezing-Weng strategy [11],
has embedding degree 19 and is defined over a 286-bit field Fq. The use of such
a small q, which is close to the optimal bound 2256, is particularly interesting for
constrained devices (more specifically those with 32 -or less- bits of architecture)
as it reduces the number of machine-words compared to the state-of-the-art.

In the end, our results show that Kim’s and Barbulescu’s attacks do not
necessarily imply a large increase of the complexity of pairing-based protocols
that would in particular rule out the latter for constrained devices. On the
contrary, we prove that we can retain the original efficiency for some parties.
Of course, this is done to the detriment of the other parties but we argue that
there are few use-cases where all entities are equally powerful. We nevertheless
do not claim that our curves fit all contexts and in particular we do believe
that standard curves still remain relevant, in particular when a large number of
pairings is to be computed.

Roadmap. In Sect. 3 we describe some examples that justify our strategy for
selecting curves. In Sect. 4 we outline the strategy to assess the cost of the Dis-
crete Logarithm Problem and the security of our curves and provide two tailored
curves in Sect. 5. Finally, we compared an implementation of the proposed curves
with other curves in Sect. 6.

2 Preliminaries

Let q > 3 be a prime number. The field having q elements is noted Fq and,
for any n > 1, the extension field having qn elements is noted Fqn . When we
compute discrete logarithms in Fqn , we mean solving the Discrete Logarithm
Problem in the group (Fqn\{0},×).

284 R. Clarisse et al.

2.1 Elliptic Curves

An elliptic curve E/Fq is the set of points (x, y) satisfying y2 = x3 + ax + b,
where a, b ∈ Fq and 4a3 + 27b2 �= 0, enlarged with another point ∞, called point
at infinity. This equation is called the Short Weierstrass Model of the curve. For
integer n � 1, the set of point (x, y) ∈ (Fqn)2 on E is noted E(Fqn). The set
E(Fqn) can be equipped with a commutative internal law, with ∞ as identity
element. We follow the convention of cryptographic literature and denote this
group multiplicatively. For an integer � coprime to q, we note E(Fqn)[�] the sub-
group of E(Fqn) formed by points of order dividing �, i.e. all points g such that
g� = ∞. The group E(Fqn)[�] is called the �-torsion over Fqn . When we com-
pute discrete logarithms in E(Fqn)[�], we mean solving the Discrete Logarithm
Problem in the group (E(Fqn)[�], ·), i.e. if h is a power of g, find x such that
h = gx. There is a minimal k � 1 such that E(Fqk)[�] is isomorphic to (Z/�Z)2,
this integer is called the embedding degree of q (with respect to �), it is the order
of q (mod �).

The Frobenius endomorphism is defined as (x, y) �→ (xq, yq) ∈ End(E). Its
minimal polynomial is X2 − tX + q, where t is aptly called the trace of the
Frobenius, and the number of Fq-rational points is q − t + 1. The discriminant
Δ of that polynomial is Δ = t2 − 4q. We can always write Δ = Df2, where
D < 0 is square-free. D is called the Complex Multiplication discriminant.

When the CM discriminant is small enough, there exist an endomorphism φ
easily computable and an integer λ > 0 such that φ(g) = gλ for all g ∈ E(Fq)[�].
The main advantage of using the endomorphism φ is to roughly halve the com-
putational cost of an exponentiation in E(Fq)[�] as evaluating φ is much more
efficient than directly raising to the power λ. This is called the GLV method [24].
Suppose we want to compute ga for a point g ∈ E(Fq)[�] and a scalar a (mod �).
We proceed as follow: compute a0 and a1 such that a = a0 + a1λ (e.g. the
Euclidean division of a by λ) and compute ga0 · φ(g)a1 . The result is ga:

ga0 · φ(g)a1 = ga0 · ga1λ = ga0+a1λ = ga.

The size of a0 and a1 is expected to be half the size of � as λ is a root of a degree
2 polynomial. The point φ(P) can be precomputed (if needed) and ga0 · φ(g)a1

can be computed with any multi-exponentiation algorithm.

2.2 Bilinear Groups

Pairing-based cryptographic protocols consider a setting defined by three cyclic
groups, G1, G2, and GT , of prime order � (with respective identity element 1G1 ,
1G2 and 1GT

), along with a bilinear map e : G1 × G2 → GT with the following
properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Z/�Z, e(ga, g̃b) = e(g, g̃)a·b;
2. for any g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
3. the map e is efficiently computable.

Curves with Fast Computations in the First Pairing Group 285

As all these groups are of the same prime order, we know that there exist non-
trivial homomorphisms ϕ1 : G1 → G2 and ϕ2 : G2 → G1. However, the latter
may not be efficiently computable, which has a strong impact on cryptographic
protocols and more specifically on the underlying computational assumptions.
Following Galbraith, Paterson and Smart [23], this has led cryptographers to
distinguish types of pairings: type-1, where both ϕ1 and ϕ2 are efficiently com-
putable; type-2, where only ϕ2 is efficiently computable; and type-3, where no
efficiently computable homomorphism exists between G1 and G2, in either direc-
tion. All these types can be instantiated with elliptic curves but type-3 pairings
are preferred in practice both for their efficiency and their ability to support
some useful cryptographic assumptions, e.g. decisional Diffie-Hellman in groups
G1 and G2.

We also note that it is possible to consider bilinear groups of composite
order. However, prime order bilinear groups are much more efficient [26] and can
actually emulate most features of their composite-order counterparts [21].

Usually, when bilinear groups are instantiated over an elliptic curve, the curve
is ordinary (i.e. t �≡ 0 (mod q)), the number of Fq-rational points q − t + 1 is
a multiple of � but not of �2 and pairing groups are taken as G1 = E(Fq)[�],
G2 ⊂ E(Fqk)[�]\G1 and GT ⊂ Fqk , where k is the order of q (mod �).

That will be our case here.

3 Schemes with Numerous Computations in G1

Before providing details on the way we select elliptic curve parameters, we elabo-
rate on the motivation of our work, namely the benefits of selecting such param-
eters based on the characteristics of the cryptographic protocols. We are more
specifically interested in the family of cryptographic protocols whose complexity
essentially depends on the efficiency of G1. This family may include protocols
requiring to perform many exponentiations in G1, as is the case with the EPID
scheme we discuss in the introduction, but also schemes where the most con-
strained entity only has to compute operations in G1, as in Direct Anonymous
Attestation. These two primitives are today massively used in industrial prod-
ucts [2,43] and are thus meaningful examples of this family of cryptographic
protocols. To illustrate that the latter is not restricted to authentication algo-
rithms we will also consider the case of two cryptographic accumulators that
would benefit from the tailored curves we propose in our paper.

Table 1 highlights the specific need of two different anonymous authentica-
tion schemes [6,13] that are, to our knowledge, the most efficient of their kind.
For [13], we use the proof of non-revocation described by the same authors
in [14]. We note that most alternatives and variants (e.g. [37] for group sig-
nature) present similar features so our conclusions also apply to them. Table 1
shows that the size of the signature only depends on the one of G1 elements (and
on �) and that the signer only has to perform operations in G1. There are few
pairings and operations in G2 to compute and only on the verifier side, which

286 R. Clarisse et al.

is usually considered as more powerful than the signer in those contexts. Cryp-
tographic protocols with such features are thus a good incentive for designing
curves with efficient computations/elements in G1.

Table 1. Complexity of some anonymous authentication schemes. ei refers to an expo-
nentiation in Gi and P to a pairing computation, n is the number of revoked signatures.

Primitive Ref. Signature
elements

Operation counts

Sign Verify

DAA [6] 5G1 + 2Z/�Z 6e1 4e1 + 3P

EPID [13] 3G1 + 6Z/�Z
+ n(3G1 + Z/�Z)

3e1 + 4eT

+ 6ne1

4e1 + 2e2 + 4eT

+ 1P + 6ne1

In Table 2, we consider two pairing-based accumulator schemes [15,22]. We
recall that the point of an accumulator system is to project a large number
of elements into a single short value, called the accumulator. Additionally, for
each of these elements, it is possible to generate a short evidence, called witness,
that the element has indeed been accumulated. In practice, there are essentially
two kinds of entities, the one that needs to prove that an element has been
accumulated (by computing the corresponding witness) and the one that checks
this proof. We will then divide the public parameters of such systems between the
ones (pk) necessary for the proof and the ones (vk) necessary for the verification.
Here again, Table 2 shows a clear asymmetry between the prover and the verifier.
The former is only impacted by the performance of G1 and so would clearly
benefit from a curve tailored to optimize this group. This is all the more true that
in the applications considered in [15] and [22], the prover is usually a user’s device
whereas the verifier is some service provider that can reasonably be considered
as more powerful.

Table 2. Complexity of some accumulators schemes. The latter are called set com-
mitment schemes in [22]. Here m1 refers to a group operation in G1, n is a bound
on the number of values to be accumulated and j is the number of values currently
accumulated. The other notations are those from the previous table.

Ref. Public parameters Operation counts

pk vk Sign Verify

[15] 2nG1 nG2 jm1 2P

[22] nG1 nG2 (j − 1)e1 1e2 + 2P

Curves with Fast Computations in the First Pairing Group 287

4 Attacks Solving the DLP

Most cryptographic schemes using bilinear groups rely on problems that are
easier than the Discrete Logarithm Problem (DLP). Unfortunately, the concrete
hardness of these problems is not known so the common approach to generate
bilinear groups is to select parameters that yield three groups G1, G2 and GT

where the DLP is believed to be hard. The latter problem has indeed been
extensively studied over the last 40 years and several algorithms were proposed
to solve it.

The DLP on elliptic curves is called ECDLP (EC stands for Elliptic Curve)
and is considered the hardest discrete logarithm problem to solve as only generic
algorithms [41] are known and used, such as Baby-Step-Giant-Step [40] or
Pollard-rho [38]. Moreover, the Pohlig-Hellman method [36] reduces an instance
of the DLP in a cyclic group of composite order n to several easier instances of
the DLP in cyclic groups of order strictly dividing n. Hence, for efficiency and
security reasons, the groups G1 and G2 must be of prime order, i.e. � is a prime
number. And since the best variant of Pollard-rho [9] compute a discrete loga-
rithm in at most

√
π�/4 ≈ 0.886

√
� steps, � of 2λ bits is enough for a security

of λ bits.
A well-known value, called ρ-value, is used to describe the efficiency of the

representation of elements of G1. It is computed as ρ = log(q)/ log(�) or as
ρ = deg(q)/deg(�) when q and � are polynomial in Q[X]. When ρ = 1, the curve
is of prime order �, this is the best case for the arithmetic efficiency on the curve
(and so for G1).

While determining the size of G1 and G2 over the elliptic curve is pretty
straightforward, doing the same for GT over the finite field Fqk is much harder!
Indeed, discrete logarithms in Fqk are computed in sub-exponential time (and
sometimes even in quasi-polynomial time) by Number Field Sieve (NFS) algo-
rithms. In the general case, it is difficult to evaluate the complexity of the NFS
algorithm, and of its variants (see [29] for more details). To give an idea of the
time-complexity of NFS algorithms, we need to introduce the L-notation, which
is defined by:

Lqk [α, c] = exp
(
(c + o(1))(ln qk)α(ln ln qk)1−α

)

with α ∈ [0, 1] and c > 0. Intuitively, if α = 1 then Lqk [α, c] is exponential
in log2(qk) whereas it is polynomial in log2(qk) if α = 0. NFS-type algorithms
(of our concern) all have time-complexity Lqk [1/3, c] for c ranging from 3

√
32/9

to 3
√

96/9. The constant c plays an important role in the concrete (i.e. not
asymptotic) world, as between 20 and 30 bits of security can be lost for the
same size of Fqk depending on the choices of q and k [4]. Two criteria determine
which NFS-variant to use: whether q is special, i.e. if q is computed as the image
of a polynomial of degree at least 3, and whether k is composite. This is summed
up in Table 3.

Until recently, only curves with special q and composite k were consider
as they offer the best performance for pairing computations. Barbulescu and

288 R. Clarisse et al.

Table 3. How to choose the right NFS-variant.

q not special q special

k prime NFS [39] (9c3 ∈ [64, 96]) SNFS [5] (9c3 ∈ [32, 64])

k composite exTNFS [32] (9c3 ∈ [48, 64]) SexTNFS [32] (9c3 = 32)

Duquesne updated key size estimations in [4]. For a 128-bit security level, they
urge to use a finite field of size at least k log2(q) = 2930 (respectively 3618, 5004)
if NFS (respectively exTNFS, SexTNFS) is the best algorithm for computing
discrete logarithms in Fqk (the common practice was k log2(q) = 3072 [42]).
To access curves’ security, we will use the algorithm provided by Guillevic at
https://gitlab.inria.fr/tnfs-alpha/alpha.

The only known methods for constructing curves with ρ close to 1 give the
characteristic of the finite field as a polynomial (thus q is special), like Brezing-
Weng constructions [11]; other general methods having ρ close to 2, like Cocks-
Pinch constructions (see [28]). In this context, we will consider the recent bounds
[3072, 5376] on the finite field size provided by Guillevic [27] to achieve 128 bits
of security.

If we have log2(�) = 256 to satisfy 128 bits of security on the curve side, we
then know that log2(q) = 256ρ and the finite field Fqk has size 256ρk. Guillevic’s
bounds then give us:

3072 � 256ρk � 5376,

which, together with the inequalities 1 � ρ � 2, allows us to derive the set of
potential values for k: 6 � k � 21. Concretely, this means that there is no point
in considering values k < 6 as they are incompatible with the targeted 128-bit
security level (for the range of ρ-values we consider) and selecting a value k > 21
would be an overkill.

So far, we have just managed to derive some bounds on the different param-
eters of the curves. Unfortunately, as we explain above, there is no simple choice
within these bounds as security and efficiency of the resulting bilinear groups
may significantly differ from one set of parameters to another. In particular,
there is no linearity in the security evaluation as, for instance, the security of
Fqk is significantly higher in the “prime” cases k ∈ {11, 13} than in the case
k = 12. This means that we can select smaller q values (which improves perfor-
mance of G1) in the former case. Unfortunately, a similar issue arises regarding
efficiency of Fqk , but with opposite conclusions, as non-prime k (especially even
ones) yield more efficient pairings and group operations. It is thus necessary to
make a choice between these different parameters, in particular in the case of
cryptographic protocols with unbalanced complexities, such as the ones we con-
sider in Sect. 3. As the latter would benefit of fast G1 computations and short
representations of its elements, we dedicate the next section to the selection of
parameters that will optimize the performance of this group.

https://gitlab.inria.fr/tnfs-alpha/alpha

Curves with Fast Computations in the First Pairing Group 289

5 Curves Optimizing Operation in G1

The first group of the pairing G1 is defined as E(Fq)[�]. We have an incentive to
reduce the size of q as computations in G1 would be faster. To ensure security
on the elliptic curve, we need log2(q) � log2(�) � 256. Thus q is at least a 5-
machine-word on a 64-bit computer. Indeed, q has more than 257 bits, because
a 256-bit field would imply ρ = 1 and, the biggest known k ∈ [6, 21] for that
ρ-value is 12, which does not ensure a 128-bit security in GT [4].

We would like to be able to use the GLV method [24], that is, our curves
should have a small Complex Multiplication discriminant. When curves are cho-
sen either in the form y2 = x3 + ax with a primitive fourth root of unity in Fq

and CM discriminant −1, or in the form y2 = x3 + b with a primitive third root
of unity in Fq and CM discriminant −3, the GLV-endomorphism is easy to write
down and relatively cheap to compute.

As explained above, we cannot hope for better than 5 machine-words for q
on 64-bit architecture. A 5-machine-word q means that 1 < ρ � 1.25. Searching
in the Taxonomy by Freeman, Scott and Teske [20], the curve we are looking for
has embedding degree k ∈ {8, 11, 13, 16, 17, 19}.

The embedding degree 8 does not provide a secure finite field Fqk , as it is of
at most 8 × 1.25 × 256 = 2560 bits, and so is discarded. The embedding degree
16 corresponds to the well-known KSS family of pairing-friendly curves [31].
Barbulescu and Duquesne [4] state that q must be at least a 330-bit prime, i.e.
a 6-machine-word prime, and they give such primes.

Thus we focus our search for curves from the taxonomy [20] having embed-
ding degree k ∈ {11, 13, 17, 19}. All those curves correspond to Freeman, Scott
and Teske Construction 6.6, which is a generalization of the Brezing and Weng
construction [11]. It defines the prime q, the Frobenius trace t and the order �
as polynomials in Q[X], where �(X) is a cyclotomic polynomial dividing both
q(X) − t(X) + 1 and q(X)k − 1.

5.1 Curves Over a Five-64-Bit-Machine-Word Prime Field

Construction 6.6 from [20] is different given the residue k (mod 6). Since we
have 13 ≡ 19 ≡ 1 (mod 6) and 11 ≡ 17 ≡ 5 (mod 6), we only give the relevant
cases of Construction 6.6.

In the case k ≡ 1 (mod 6), the prime q(X), the Frobenius trace t(X) and
the order �(X) are given as:

q(X) =
1
3
(X + 1)2(X2k − Xk + 1) − X2k+1,

t(X) = −Xk+1 + X + 1 and
�(X) = Φ6k(X),

290 R. Clarisse et al.

and in the case k ≡ 5 (mod 6), they are given as:

q(X) =
1
3
(X2 − X + 1)(X2k − Xk + 1) + Xk+1,

t(X) = Xk+1 + 1 and
�(X) = Φ6k(X).

Plugging in the different values of k gives Table 4. Note that to find a curve,
we need to find a x0 ∈ Z such that �(x0) and q(x0) are prime integers. We choose
x0 satisfying x0 ≡ 2 (mod 3) so q(x0) is an integer. The last column of Table
4 is the search range of log2(|x0|) in [256/deg(�), 320/deg(q)[so that q(x0) is
a 5-machine-word integer and �(x0) is at least a 256-bit integer (for readability,
the interval is given with rounded integer values).

Table 4. Parameters and search range for curves with k ∈ {11, 13, 17, 19}

k deg(q) deg(�) ρ log2(|x0|)
11 24 20 1.20 [12, 14[

13 28 24 1.167 [10, 12[

17 36 32 1.125 [8, 9[

19 40 36 1.111 [7, 8[

After a computer search, we have found no solution for k ∈ {11, 17}. For
k = 13, we found x0 = −2224 and for k = 19, we found x0 = −145. Inferring the
naming convention used in relic-toolkit [3], the first curve is named BW13-P310
and the second one BW19-P286. As Construction 6.6 curves have CM discriminant
−3, both curves are of the form y2 = x3 + b.

Curve BW13-P310. Setting k = 13 into Construction 6.6 [20] gives:

q(X) =
1
3
(X + 1)2(X26 − X13 + 1) − X27,

t(X) = −X14 + X + 1 and
�(X) = Φ78(X).

Plugging in x0 = −2224 yields a q(x0) of 310 bits and a �(x0) of 267 bits, thus
ρ = 1.161. The corresponding Fq13 is a 4027-bit finite field.

To look for a b, we increase the value of |b|, check that the number of points
on the curve y2 = x3 + b is equal to q(x0) − t(x0) + 1. We found b = −17. So we
defined the curve BW13-P310 by the equation y2 = x3 − 17.

We also point out that the exact same curve has been given by Aurore Guille-
vic in [27]. She made a thorough security analysis and estimated that the cost
of the DLP in the finite field Fq13 is 140 bits. Hence, the curve BW13-P310 has a
security of at least 128 bits.

Curves with Fast Computations in the First Pairing Group 291

Curve BW19-P286. Setting k = 19 into Construction 6.6 [20] gives:

q(X) =
1
3
(X + 1)2(X38 − X19 + 1) − X39,

t(X) = −X20 + X + 1 and
�(X) = Φ114(X).

Plugging in x0 = −145 yields a q(x0) of 286 bits and a �(x0) of 259 bits, thus
ρ = 1.105. The corresponding Fq19 is a 5427-bit finite field.

To look for a b, we do the same as before. The smallest |b| is b = 31. So we
defined the curve BW19-P286 by the equation y2 = x3 + 31. To our knowledge,
this curve has never been proposed in the literature.

To evaluate the cost of the DLP in Fq19 , we follow the work of Guillevic [27],
the same she did for the previous curve BW13-P310. To find the curve BW19-P286
using Guillevic’s Algorithm 3.1 [27], we plugged in the parameters k = 19, D = 3,
e0 = 13 and use the substitution of indeterminate X �→ −X.

Before running the estimating program on our parameters, we applied Vari-
ant 4 [27] to the polynomial q(−X), yielding a polynomial Q(X) such that
Q(u3) = 3q(−u), for u = −x0 = 145 and

Q(X) = (u + 1)X13 + u2X12 + X7 + u(1 − 2u)X6 + u2 − 2u + 1.

Then we obtain that the cost of the DLP in Fq19 is 160 bits, thus providing
BW19-P286 with a security of at least 128 bits.

5.2 GLV Endomorphism on BW13-P310 and BW19-P286

As stated in the preliminaries, the discriminant of the minimal polynomial of
the Frobenius endomorphism can be written as Df2 = t2 − 4q, where D < 0
is the CM discriminant and t is the trace of the Frobenius. The endomorphism
φ : (x, y) �→ (ωx, y), with ω a primitive third root of unity, corresponds to an
exponentiation (ωx, y) = (x, y)λ in G1 = E(Fq)[�] for q and � distinct primes.

For both our curves, the CM discriminant is D = −3, as a consequence we
have 4q = t2 + 3f2. Since ω ∈ Fq is a primitive third root of unity, ω satisfies
ω2 + ω + 1 = 0. We can take ω = (

√−3 − 1)/2, where
√−3 ≡ t/f (mod q).

Thus
ω ≡ t − f

2f
(mod q).

Similarly, since φ3 = idE in End(E), we know that λ ∈ Z/�Z satisfies the
equation λ2 + λ + 1 = 0, i.e. it can also be taken as (

√−3 − 1)/2. However,
here,

√−3 ≡ (t − 2)/f (mod �). Indeed, � divides the number of points on the
curve, so q ≡ t − 1 (mod �) and 4(t − 1) ≡ t2 + 3f2 (mod �). Thus

λ ≡ t − f − 2
2f

(mod �).

292 R. Clarisse et al.

Note that in practice, adjustments may be needed as (ωx, y) = (x, y)±λ or
(ω2x, y) = (x, y)±λ. In the case of BW13-P310, λ has bit-length 146, whereas it
is only 137 in the case of BW19-P286.

Comments on BW13-P310 and BW19-286. We provide in the next section sev-
eral benchmarks to compare our new curve with BW13-P310 but also with other
curves from popular families. However, we can already note that BW13-P310 and
BW19-P286 clearly match our strategy of optimizing the group G1 to the detri-
ment of the other groups. In this respect, our new curve BW19-P286 goes one step
further than BW13-P310 by reducing the size of q by roughly 25 bits. This differ-
ence is significantly amplified in the context of constrained devices as it results
in less machine words. Indeed, even for 32-bit architecture, BW19-P286 yields
a prime q with one less machine-word than BW13-P310, which clearly impacts
performance, as illustrated below.

6 Implementation and Comparison

We implemented the G1 arithmetic of both curves using relic-toolkit [3], and
made some comparison with other curves already implemented in relic-toolkit
and aiming the 128-bit security.

The curves selected from the framework are BN-P446, a Barreto-Naehrig
curve [8] over a 446-bit prime field; K16-P339, a Kachisa-Schaefer-Scott curve [31]
of embedding degree 16 over a 339-bit field; B12-P446, a Barreto-Lynn-Scott
curve [7] of embedding degree 12 over a 446-bit field; and CP8-P544, a Cocks-
Pinch curve [28] of embedding degree 8 over a 544 prime field. We chose the
last curve as it is coming from recent works [27,28] that promote them for the
128-bit security level. We included a BN, BLS and KSS curves in our table as
those families of curves are well-known and were updated by Barbulescu and
Duquesne [4]. Also note that, setting aside our curves, only the curve K16-P339
was implemented by us in the framework.

All curves enjoy GLV-endomorphisms which were already implemented or
have been implemented.

6.1 Operation in G1

In Table 5 we compare the cost of one exponentiation in the group G1 by com-
piling the relic-toolkit either for x64 architecture or for x86 architecture with a
word size of 32 bits. Times are given in microseconds (the number of iterations
was 106) and computations were done on a laptop equipped with a Intel Core
i7-6600u CPU at 2.60 GHz.

This table shows a clear relation, almost quadratic, between complexity and
the number of words necessary to represent q. It also highlights the downside
of Barreto-Naehrig curves that generate elliptic curves of prime order � ∼ q.
Indeed, what was considered as an advantage (prime order curves make group
membership tests trivial) turns out to be a strong limitation as it forces � to grow

Curves with Fast Computations in the First Pairing Group 293

Table 5. Benchmark for one exponentiation in G1. For both architectures, row “words”
indicates the number of machine words used to store the prime q, row “time” indicates
the obtained computation time of one exponentiation in G1 rounded to the nearest
microsecond (1 μs = 10−6 s), and row “time ratio” indicates the time ratio between
the curve in the column and the curve BW19-P286.

Curve BW19-P286 BW13-P310 K16-P339 B12-P446 BN-P446 CP8-P544

64-bit words 5 5 6 7 7 9

time (µs) 293 304 482 611 855 1058

time ratio 1 1.04 1.65 2.09 2.92 3.61

32-bit words 9 10 11 14 14 17

time (µs) 1010 1220 1664 2510 3600 4180

time ratio 1 1.21 1.65 2.49 3.56 4.14

unnecessarily. This negatively impacts both exponentiation (as the exponents are
roughly 75% greater than those of the other curves) and the size of scalars.

In all cases, this table shows that our curve BW19-P286 offers the best per-
formance for G1, in particular for architecture smaller than 64 bits. It at least
halves the complexity of exponentiations in G1 compared to mainstream curves
such as B12-P446 and also significantly decreases the size of group elements,
which clearly fits the needs of some cryptographic protocols such as the ones we
presented in Sect. 3.

6.2 Operation in G2

The operations in G2 are unfortunately the ones that are the most impacted
by our choice of prime embedding degree. Indeed, BW13-P310 and BW19-P286
have G2 defined over Fq13 and Fq19 respectively, whereas B12-P446, BN-P446
and CP8-P544 all have G2 defined over Fq2 thanks to quartic or sextic twists,
and K16-P339 has G2 defined over Fq4 thanks to a quartic twist. As all curves are
usually expressed with the same model using the same system of coordinates,
only the cost of the multiplication in the extension impacts the cost of the
operations in G2. Using a Karatsuba-like implementation, the multiplication in
Fqk is roughly klog3 2 times as expensive as the one in Fq.

6.3 Pairing Computation

The computation of the pairing is usually split between two parts: the evaluation
of the Miller loop and the final exponentiation. Here we give computation for a
multiple of the Optimal Ate Pairing [44], since we picked the final exponentiation
from Kim, Kim and Cheon [34]. The values in Table 6 are from [27,28], completed
with the ones from below.

Let mk, sk, ik, fk respectively denote a multiplication, a square, an inversion,
a Frobenius map (i.e. the q-th power map) over Fqk . We drop the index when
the operation is over Fq (e.g. m = m1). As k ∈ {13, 19} is prime, we estimate

294 R. Clarisse et al.

mk = sk = klog2 3m with a Karatsuba-like implementation and fk = (k − 1)m
as in [28].

Miller Loop. Using Equation (7) from [27], Guillevic gives a lower bound on
the cost of the Miller loop. For both BW13-P310 and BW19-P286, the optimal ate
Miller loop has length u2 + up + p2, as it is a multiple of � [44].

For BW13-P310, the Miller loop has length u2 + up + p2, where u = 2224
is a 12-bit integer with Hamming weight 4 and p is a 310-bit prime. From her
Equation (7) [27], Guillevic obtains 949m + 313m13 + 177s13 + 5f13 + 2i13.
Substituting m13 = s13 = 59m and f13 = 12m in that formula yields a lower
bound on the cost of the optimal ate Miller loop, i.e. 29919m + 2i13.

For BW19-P286, the length of the Miller loop is u2+up+p2, where u = 145 is
a 8-bit integer with Hamming weight 3 and p is a 286-bit prime. From the same
equation as Guillevic [27], we obtain 912m + 212m19 + 115s19 + 5f19 + 2i19.
Substituting m19 = s19 = 107m and f19 = 18m in that formula yields a lower
bound on the cost of the optimal ate Miller loop, i.e. 35991m + 2i19.

Final Exponentiation. As usual, the final exponentiation (qk − 1)/� of the
Optimal Ate Pairing is split between an easy part (qk − 1)/Φk(q) and a hard
part Φk(q)/�. Since k ∈ {13, 19} is prime, the easy part is simply q − 1, costing
fk + ik. For the hard part, Kim, Kim and Cheon [34] noticed that Φk(q)/� can
be decompose in base q to make use of the Frobenius and the coefficients can be
reduced by looking for a short vector in a specifically designed lattice. However,
instead of raising to the power Φk(q)/�, this method [34] raises to a multiple
power mΦk(q)/�.

More precisely, they write

m
Φk(q)

�
=

k−2∑

i=0

aiq
i

and find the k − 1 coefficients (ai)0�i�k−2 as the shortest vector in the dim-
(k − 1) lattice spanned by the lines of the following matrix:

⎡

⎢
⎢⎢⎢⎢
⎣

Φk(q)
� 0 0 · · · 0

−q 1 0 · · · 0
−q2 0 1 · · · 0

...
...

−qk−2 0 · · · 0 1

⎤

⎥
⎥⎥⎥⎥
⎦

.

Then, they compute the Frobenius of the element they want to exponent, up to
the (k − 1)-th q-power, costing (k − 2)fk.

If the exponents ai’s were longer, we would have needed (2k−1 − k)mk to
compute all combinations of (k − 1) Frobenius powers. However, we do not use all
of these combinations, only roughly O(log2 q) of them. Finally the length of the

Curves with Fast Computations in the First Pairing Group 295

multi-exponent is maxi{�log2 ai}, resulting in an average final exponentiation
costing

(k − 1)fk + (O(log2 q) + max
i

{�log2 ai})mk + max
i

{�log2 ai}sk + ik,

omitting some inversion due to the sign of some ai’s.
For BW13-P310, the value of maxi{�log2 ai} is 287 and 8 of the 12 ai’s are

negative. Only 191 different combinations of Frobenius powers are used and
it costs 341m13 to compute them. Also, there are 5 positions (in the binary
expansion) where all the ai’s have their bit set to 0, resulting in no mul-
tiplication at those positions for the multi-exponentiation, that thus requires
282m13 + 287s13. Combining everything yields an final exponentiation cost of
12f13 + 623m13 + 287s13 + 9i13, i.e. 53 834m + 9i13.

For BW19-P286, the value of maxi{�log2 ai} is 271 and 12 of the 18 ai’s
are negative. Only 222 different combinations of Frobenius powers are used
and it costs 1028m19 to compute them. The multi-exponentiation requires
271(m19 + s19). Combining everything yields an final exponentiation cost of
18f19 + 1299m19 + 271s19 + 13i19, i.e. 160 824m + 13i19.

Table 6. Operation count for Miller loop (M.), final exponentiation (E.) and total
pairing (T.). Inversions over odd-degree extension field are displayed as they are more
costly than over an even-degree one (those usually cost one conjugaison over a quadratic
subfield).

BW19-P286 BW13-P310 K16-P339 B12-P446 BN-P446 CP8-P544

M. 35991m + 2i19 29919m + 2i13 7691m 7805m 11620m 4502m

E. 160824m + 13i19 53834m + 9i13 18235m 7723m 5349m 7056m

T. 196815m + 15i19 83753m + 11i13 25926m 15528m 16969m 11558m

From Table 6, the cost of the pairing for BW19-P286 is roughly 12 times
higher than the one for B12-P446. However, doing the benchmark on both finite
field gives a multiplication twice faster on the 286-bit finite field (90 ns) than
the 446-bit one (190 ns). Hence, we estimate that the pairing over BW19-P286 is
6 times slower than the pairing over B12-P446.

7 Conclusion

In this paper, we have given an incentive to change the way pairing-friendly
elliptic curve are constructed by shifting the optimization away from the balance
between all operations (group exponentiation and pairing) towards only some
operations (that might be used by constrained entities involved in cryptographic
protocols).

296 R. Clarisse et al.

Thus, we focused on elliptic curves with a fast exponentiation in the first pair-
ing group upon noticing that the instantiation of some cryptographic protocols,
e.g. Group Signature-like schemes, would benefit from such curves.

Along the way, we have described a new curve that is particularly relevant
for cryptographic protocols extensively using exponentiation in the first pairing
group. That curve is twice faster in that group and its pairing computation is
reasonably six times slower compared to a BLS curve over a 446-bit field.

We leave to future work to investigate other protocol-curve dependencies.

Acknowledgements. The authors are grateful for the support of the ANR through
projects ANR-19-CE39-0011-04 PRESTO and ANR-18-CE-39-0019-02 MobiS5.

References

1. Abe, M., Hoshino, F., Ohkubo, M.: Design in type-I, run in type-III: fast and
scalable bilinear-type conversion using integer programming. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 387–415. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 14

2. AlLee, G.: EPID for IoT Identity (2016). https://img.en25.com/Web/
McAfeeE10BuildProduction/a6dd7393-63f8-4c08-b3aa-89923182a7e5 EPID
Overview Public 2016-02-08.pdf

3. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic

4. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32, 1298–1336 (2019)

5. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the dis-
crete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 129–155. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 6

6. Barki, A., Desmoulins, N., Gharout, S., Traoré, J.: Anonymous attestations made
practical. In: ACM WiSec 2017, pp. 87–98. ACM (2017)

7. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

8. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

9. Bernstein, D.J., Lange, T., Schwabe, P.: On the correct use of the negation map
in the Pollard rho method. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 128–146. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 8

10. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15317-4 24

11. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des.
Codes Cryptogr. 37, 133–141 (2005)

https://doi.org/10.1007/978-3-662-53015-3_14
https://img.en25.com/Web/McAfeeE10BuildProduction/a6dd7393-63f8-4c08-b3aa-89923182a7e5_EPID_Overview_Public_2016-02-08.pdf
https://img.en25.com/Web/McAfeeE10BuildProduction/a6dd7393-63f8-4c08-b3aa-89923182a7e5_EPID_Overview_Public_2016-02-08.pdf
https://img.en25.com/Web/McAfeeE10BuildProduction/a6dd7393-63f8-4c08-b3aa-89923182a7e5_EPID_Overview_Public_2016-02-08.pdf
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-662-46800-5_6
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-642-19379-8_8
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-642-15317-4_24

Curves with Fast Computations in the First Pairing Group 297

12. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
CCS 2004, pp. 132–145. ACM (2004)

13. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. Int. J. Inf. Priv. Secur. Integr. 2 1, 3–33 (2011). IEEE
Computer Society, In IEEE SocialCom

14. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. IEEE Trans. Dependable Secur. Comput.
9(3), 345–360 (2012)

15. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00468-1 27

16. Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revis-
ited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp.
286–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 13

17. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the CLT13
multilinear map. J. Cryptol. 32, 547–565 (2019)

18. Cheon, J.H., Lee, C., Ryu, H.: Cryptographic multilinear maps and their cryptanal-
ysis. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101, 12–18 (2018)

19. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

20. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23, 224–280 (2010)

21. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

22. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019)

23. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156, 3113–3121 (2008)

24. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 11

25. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

26. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1 22

27. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at
the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020. LNCS, vol. 12111, pp. 535–564. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45388-6 19

https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-662-48797-6_13
https://doi.org/10.1007/978-3-662-48797-6_13
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/978-3-030-45388-6_19
https://doi.org/10.1007/978-3-030-45388-6_19

298 R. Clarisse et al.

28. Guillevic, A., Masson, S., Thomé, E.: Cocks-pinch curves of embedding degrees
five to eight and optimal ate pairing computation. Des. Codes Cryptogr. 88(6),
1–35 (2020)

29. Guillevic, A., Morain, F.: Discrete Logarithms. In: Guide to Pairing-Based Cryp-
tography. CRC Press - Taylor and Francis Group (2016)

30. Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol. 17, 263–
276 (2004)

31. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85538-5 9

32. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20

33. Kim, T., Jeong, J.: Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10174, pp. 388–408. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 16

34. Kim, T., Kim, S., Cheon, J.H.: On the final exponentiation in Tate pairing com-
putations. IEEE Trans. Inf. Theory 59(6), 4033–4041 (2013)

35. Menezes, A., Vanstone, S.A., Okamoto, T.: Reducing elliptic curve logarithms to
logarithms in a finite field. In: ACM STOC (1991)

36. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance (Corresp.). IEEE Trans. Inf. Theory 24,
106–110 (1978)

37. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

38. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32, 918–924 (1978)

39. Sarkar, P., Singh, S.: New complexity trade-offs for the (multiple) number field sieve
algorithm in non-prime fields. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 429–458. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 17

40. Shanks, D.: Class number, a theory of factorization, and genera. In: 1969 Number
Theory Institute, pp. 415–440. American Mathematical Society (1971)

41. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

42. Smart, N.P.: Algorithms, key size and protocols report, ECRYPT - CSA (2018).
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

43. TCG (2015). https://trustedcomputinggroup.org/authentication/
44. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56, 455–461 (2010)

https://doi.org/10.1007/978-3-540-85538-5_9
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-54365-8_16
https://doi.org/10.1007/978-3-662-54365-8_16
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-662-49890-3_17
https://doi.org/10.1007/978-3-662-49890-3_17
https://doi.org/10.1007/3-540-69053-0_18
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://trustedcomputinggroup.org/authentication/

	Curves with Fast Computations in the First Pairing Group
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curves
	2.2 Bilinear Groups

	3 Schemes with Numerous Computations in G1
	4 Attacks Solving the DLP
	5 Curves Optimizing Operation in G1
	5.1 Curves Over a Five-64-Bit-Machine-Word Prime Field
	5.2 GLV Endomorphism on BW13-P310 and BW19-P286

	6 Implementation and Comparison
	6.1 Operation in G1
	6.2 Operation in G2
	6.3 Pairing Computation

	7 Conclusion
	References

