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Preface

The 19th International Conference on Cryptology and Network Security (CANS 2020)
was held during December 14–16, 2020, as an online conference, due to the COVID-19
pandemic. CANS 2020 was held in cooperation with the International Association for
Cryptologic Research (IACR).

CANS is a recognized annual conference focusing on cryptology, computer and
network security, and data security and privacy, attracting cutting-edge research find-
ings from scientists around the world. Previous editions of CANS were held in Taipei
(’01), San Francisco (’02), Miami (’03), Xiamen (’05), Suzhou (’06), Singapore (’07),
Hong Kong (’08), Kanazawa (’09), Kuala Lumpur (’10), Sanya (’11), Darmstadt (’12),
Parary (’13), Crete (’14), Marrakesh (’15), Milan (’16), Hong Kong (’17), Naples (’18),
and Fuzhou (’19).

In 2020, the conference received 118 submissions. The submission and review
process was done using the EasyChair Web-based software system. We were helped by
40 Program Committee members and 110 external reviewers. The submissions went
through a doubly-anonymous review process and 30 papers were selected. This volume
represents the revised version of the accepted papers.

Following the CANS tradition, the Program Committee awarded some authors. This
year, the Best Paper Award was given for three papers:

– Daniel Kales and Greg Zaverucha for “An Attack on Some Signature Schemes
Constructed From Five-Pass Identification Schemes”

– Andrea Caforio, Fatih Balli, and Subhadeep Banik for “Energy Analysis of
Lightweight AEAD Circuits”

– Bar Meyuhas, Nethanel Gelernter, and Amir Herzberg for “Cross-Site Search
Attacks: Unauthorized Queries over Private Data”

We were honored to have four keynote speakers: Atsuko Miyaji, Kenny Paterson,
Mathias Payer, and Zhiyun Qian. We also had a tutorial by Amir Herzberg.

We would like to thank the ATHENE National Research Center for Applied
Cybersecurity, as well as the H2020 initiative CyberSec4Europe, for their support
during the planning of the conference. We would also like to thank Springer for their
support with producing the proceedings. We heartily thank the authors of all submitted
papers. Moreover, we are grateful to the members of the Program Committee and the
external sub-reviewers for their diligent work, as well as all members of the Organizing
Committee for their kind help. We would also like to acknowledge the Steering
Committee for supporting us.

November 2020 Stephan Krenn
Haya Shulman

Serge Vaudenay
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An Attack on Some Signature Schemes
Constructed from Five-Pass Identification

Schemes

Daniel Kales1(B) and Greg Zaverucha2

1 Graz University of Technology, Graz, Austria
daniel.kales@iaik.tugraz.at

2 Microsoft Research, Redmond, WA, USA
gregz@microsoft.com

Abstract. We present a generic forgery attack on signature schemes
constructed from 5-round identification schemes made non-interactive
with the Fiat-Shamir transform. The attack applies to ID schemes that
use parallel repetition to decrease the soundness error. The attack can
be mitigated by increasing the number of parallel repetitions, and our
analysis of the attack facilitates parameter selection.

We apply the attack to MQDSS, a post-quantum signature scheme
relying on the hardness of the MQ-problem. Concretely, forging a sig-
nature for the L1 instance of MQDSS, which should provide 128 bits of
security, can be done in ≈295 operations. We verify the validity of the
attack by implementing it for round-reduced versions of MQDSS, and
the designers have revised their parameter choices accordingly.

We also survey other post-quantum signature algorithms and find
the attack succeeds against PKP-DSS (a signature scheme based on the
hardness of the permuted kernel problem) and list other schemes that
may be affected. Finally, we use our analysis to choose parameters and
investigate the performance of a 5-round variant of the Picnic scheme.

Keywords: Public-key signatures · Security analysis · Post-quantum
cryptography · Fiat-Shamir transform · MQDSS

1 Introduction

Digital signatures are one of the fundamental cryptographic building blocks and
are widely used for authentication of data and in protocols. Recently, advances in
quantum computing have motivated new designs for digital signature schemes,
having post-quantum security, i.e., schemes that are implemented on classical
computers but have security against attacks by quantum computers. NIST has
started a standardization project for post-quantum cryptographic primitives [24].

A popular approach to designing signature schemes is to start with an interac-
tive identification (ID) scheme and use the Fiat-Shamir transformation to make

D. Kales—Part of this work was conducted during an internship at Microsoft Research.

c© Springer Nature Switzerland AG 2020
S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 3–22, 2020.
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4 D. Kales and G. Zaverucha

it non-interactive and transform it into a signature scheme. The most well-known
example of this is Schnorr’s ID and signature scheme. Multiple signature schemes
with conjectured post-quantum security also use this approach (e.g., Dilithium,
MQDSS, Picnic, PKP-DSS, and qTESLA, among others).

However, while the Fiat-Shamir transform for 3-round (also called 3-pass) ID
schemes (where a total of three messages are exchanged between the prover and
verifier) is well understood, some signatures are built on identification schemes
with five or more rounds. One such example is MQDSS, which builds on the
5-pass identification scheme of Sakumoto et al. [27]. Chen et al. [12] give a
construction for a Fiat-Shamir transformation for a certain class of 5-pass iden-
tification schemes, which includes the one from [27], and use it to build MQDSS.

ID schemes are closely related to zero-knowledge proofs and arguments, and
some of the terminology is shared; we often refer to the parties as prover and
verifier, the prover’s secret is called a witness, and the public key is called a
statement. The soundness error of a proof protocol, denoted ε, is the probability
that a malicious prover can get a verifier to accept without knowing the witness.
For κ-bit security, we thus require ε < 2−κ.

Some proof protocols have a large constant soundness error, such as ε = 1/2.
In this case, we can hope to amplify the soundness of the protocol by repeating
the protocol r times. In the best case, the effect is exponential, and r repetitions
give soundness error of εr. This is known to be the case for interactive proto-
cols when the repetitions are performed sequentially. The question for parallel
repetition has been a topic of study for many years.

Parallel repetition does decrease soundness error exponentially for 3-round,
public-coin protocols (i.e., protocols where the verifier has no secret key) [4]. For
more than three rounds there are examples of non-public coin protocols where
parallel repetition is not effective [25], but when considering only public-coin
protocols parallel repetition is effective [18].

However, these positive results only apply to interactive protocols, and only
hold asymptotically, so they do not give a concrete number of repetitions for
κ bits of security. Intuitively, soundness for non-interactive protocols can only
be worse, since the verifier’s steps can be implemented by a malicious prover
and run many times during a search for a cheating proof. Thus, choosing r to
achieve κ-bit security for concrete non-interactive proof protocols and signature
schemes is not obvious, especially so for protocols with more than three rounds.
Choosing r such that εr < 2−κ seems to work for three-round protocols (we are
not aware of cases where this fails), so we name this approach the εr-heuristic.
As we will show, the εr-heuristic does not hold for five-round protocols. Instead,
the secure choice of r is a function of ε and the challenge spaces of the protocol.

Contributions. In this paper, we give a generic attack on five-round identification
schemes made non-interactive using the Fiat-Shamir transform. This shows that
the εr-heuristic fails for non-interactive 5-round protocols, and care must be
taken when choosing r. The concrete attack complexity is influenced only by the
size of the challenge spaces in the different rounds and whether the identification
scheme has a property we call capability for early abort. We give general formulas
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for the attack complexity and show how this influences the parameter choices
of different signature schemes, and discuss strategies for designers using 5-round
protocols to build signatures.

As an application of our result, we show an attack on the proposed parameter
sets for MQDSSv2. We show that at the 128-bit security level, our attack finds
forgeries with 295 operations. We practically verify the attack on round-reduced
versions of MQDSS and discuss ways to reduce its practical complexity. The
designers of MQDSS have confirmed our attack and changed their proposed
instances according to our recommendations during the latest round of updates
in the NIST post-quantum standardization project (MQDSSv2.1).

Even though the construction of [12] has a security proof, its non-tightness
allows for the attack to exist, i.e., the attack does not contradict the asymptotic
security reduction, and takes exponential time. This is an example of a non-tight
proof reflecting the real-world security a scheme. This is somewhat rare, and has
been called the “nightmare scenario” by Menezes [23, §5.4] since there are many
examples of non-tight proofs where security is thought to hold for the natural
choice of parameters (Schnorr signatures being a prominent example). To our
knowledge this is the first such example for a public-key signature scheme.

Our attack also applies to PKP-DSS [8], a signature scheme based on a five-
round proof protocol for the permuted kernel problem [28]. The latest proposed
parameters for PKP-DSS have also been updated to account for our attack.

We also use our analysis to select parameters for a 5-round version of the
Picnic signature scheme [11,31], and quantify the resulting performance. The
designers chose to collapse the 5-round protocol to three rounds with only an
informal justification, and left open the question of using five rounds. Our analy-
sis confirms that the parameters of the underlying proof system [21] would need
to increase such that both the proof size and runtime is better when using the
three-round variant.

1.1 Additional Related Work

In [22], Kiltz et al. give a tight security proof for signatures based on a Fiat-
Shamir transformation of a 5-pass identification scheme. For their proof, they
require the underlying identification scheme to have a property called security
against non-adaptive parallel impersonation key-only attacks (naPIMP-KOA).
However, they do not consider the case of parallel repetition, which is needed
if the soundness error of a single invocation of the identification scheme is not
small enough. Although their FS transformation has slight differences to the one
used in MQDSS, these differences are minor, and our attack can also be adapted
to the transformation of [22] in case parallel repetition is used.

Five-to-Three Round Signature Schemes. The Picnic signature scheme instances
based on the KKW proof system [21], have a 5-round structure, arising from the
choice of MPC protocol used to implement the MPC-in-the-head construction
[19]. The protocol has a preprocessing phase used to establish correlated ran-
domness between the parties, to be used in an online phase. In the KKW proof
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protocol, the first and second rounds correspond to the preprocessing and online
phases (resp.). By performing the online phase for all preprocessing instances,
[21] carefully collapses the 5-round protocol to three rounds.

In [6], Beullens generalizes KKW to design sigma protocols for the permuted
kernel problem (PKP), solutions of multivariate quadratic (MQ) equation sys-
tems and the shortest integer solution (SIS) in lattices. These sigma protocols
are named “sigma protocols with helper”, where a trusted third party acts as
a helper to set up correlated randomness in a preprocessing step. The trusted
third party is then replaced by a cut-and-choose approach as in [21]. The overall
structure of these sigma protocols is also 5-round, collapsed to three.

These five-to-three schemes then beat the εr-heuristic, by doing the cut-and-
choose step across all parallel repetitions, effectively replacing the independent
parallel repetitions with a single repetition.

In [3] Baum and Nof give interactive five-round protocols for proving knowl-
edge of a solution to the short integer solution lattice problem. Their work also
generalizes [21] but changes the cut-and-choose step to use the sacrificing tech-
nique. A direct application of the Fiat-Shamir transform to these protocols would
need to address our attack.

There are many 5-pass identification protocols for code and lattice problems
that are inspired by early three and 5-pass protocols based on syndrome decod-
ing by Stern [29,30]. Stern uses the εr-heuristic when discussing the signature
scheme associated with the 3-pass variant of his scheme, then presents the 5-pass
variant without re-visiting the choice of r. In [9] Cayrel et al. present a lattice-
based threshold ring signature scheme based on 5-round identification schemes
with soundness error 1/2 and 1/3, and choose the number of parallel repetitions
using the εr-heuristic. Some follow-up papers in this area [5,14] also use the
εr-heuristic.

In [10] Cayrel et al. describe an interactive 5-pass identification scheme based
on the q-ary syndrome decoding problem with ε = 1/2. Then in [16], El Yousfi
Alaoui et al. rely on previous analysis of the Fiat-Shamir transform for 5-pass
schemes [2] that does not consider parallel repetition in detail and use the εr-
heuristic to choose parameters and benchmark the resulting signature scheme.
Similarly, Aguilar et al. [1] present a new five-pass ID scheme based on the
syndrome decoding, and choose parameters for the associated signature scheme
using the εr-heuristic, and these parameters were used in the implementation
and performance comparison of Dambra et al. [15]. We have not done a thorough
analysis of these code-based signatures to conclude which are impacted by our
attack, and by how much.

2 Preliminaries

We give a short background on generic 5-pass ID schemes, and the MQDSS
signature scheme. We keep the notation consistent with the MQDSS specification
document [13], and denote by $← the uniform random sampling from a set.
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2.1 Canonical (2n + 1)-Pass Identification Schemes

Canonical (2n + 1)-pass identification schemes are a class of ID schemes which
follow a certain message structure. First, the prover sends an initial commit-
ment com, then the two parties engage in n rounds, where the verifier sends
a challenge chi drawn from the corresponding challenge set ChSi, to which the
prover responds with rspi. We depict a 5-pass identification scheme in Fig. 1.
Such identification schemes can be made non-interactive using the Fiat-Shamir
transformation [17], replacing the job of the verifier by calls to random functions,
usually instantiated using cryptographic hash functions. We give details of this
process in the caption of Fig. 1.

Prover Verifier
com ← P0(sk) com

ch1
$← ChS1(1k)ch1

rsp1 ← P1(sk , com, ch1) rsp1

ch2
$← ChS2(1k)ch2

rsp2 ← P2(sk , com, ch1, rsp1, ch2) rsp2

b ← V(pk , com, ch1, rsp1, ch2, rsp2)

Fig. 1. A canonical 5-pass identification scheme. To make the scheme non-interactive,
ch1 and ch2 are computed as ch1 = H1(com) and ch2 = H2(com, ch1, rsp1) for crypto-
graphic hash functions H1 and H2. The proof is π = (com, rsp1, rsp2). In a signature
scheme, the message m is included in both H1 and H2 and π is the signature on m.

2.2 Fiat-Shamir Transformation for a Class of 5-Pass ID Schemes

In [12], Chen et al. give a Fiat-Shamir transformation for a certain class of 5-
pass identification schemes. They note that many existing 5-pass identification
schemes follow a certain structure, which they call a q2-identification scheme
(q2-IDS), where the challenge spaces have sizes q and 2, respectively. The class
of q2-ID schemes may have an associated q2-extractor, which extracts a witness
from two accepting but different transcripts. See the full version of this work
[20] for a precise definition.

The soundness error of an identification scheme, denoted ε, is the probability
that the q2-extractor fails. The soundness error can be boosted by running r
parallel repetitions of the scheme. Chen et al. [12] use a variant of the Fiat-
Shamir transformation in Fig. 1 to turn a q2-IDS into a signature scheme and
provide analysis and a security proof for their Construction 1 in the random
oracle model (ROM), if the q2-IDS additionally has a q2-extractor.
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Construction 1 (Fiat-Shamir transform for q2-IDS [12]). Let κ ∈ N be the
security parameter, IDS = (KGen,P,V) a q2-Identification scheme that achieves
soundness with constant soundness error ε. Select r the number of (parallel) rep-
etitions of IDS, such that εr = negl(κ), and that the challenge spaces of the com-
position IDSr, Cr

1 , Cr
2 have size exponential in κ. Moreover, select cryptographic

hash functions H1 : {0, 1}∗ �→ Cr
1 and H2 : {0, 1}∗ �→ Cr

2 . The q2-signature
scheme q2-Dss(1κ) derived from IDS is the triple of algorithms (KGen,Sign,Vf)
with:

– (sk , pk) ← KGen(1κ)
– σ = (σ0, σ1, σ2) ← Sign(sk ,m) where σ0 = com ← Pr

0 (sk), h1 = H1(m,σ0),
σ1 = rsp1 ← Pr

1 (sk , σ0, h1), h2 = H2(m,σ0, h1, σ1) and σ2 = rsp2 ←
Pr
2 (sk , σ0, h1, σ1, h2).

– Vf(pk ,m, σ) parses σ = (σ0, σ1, σ2), computes the values h1 = H1(m,σ0),
h2 = H2(m,σ0, h1, σ1) as above and outputs Vr(pk , σ0, h1, σ1, h2, σ2).

Theorem 1 (EU-CMA security of q2-signature schemes [12]). Let κ ∈ N,
IDS(1κ) be a q2-IDS that is honest-verifier zero-knowledge, achieves soundness
with constant soundness error ε and has a q2-extractor. Then q2-Dss(1κ), the
q2-signature scheme derived applying Construction 1 is existentially unforgeable
under adaptive chosen message attacks.

The proof of Theorem1 is given in [12]. However, the authors also note that the
proof is non-tight due to its use of the forking lemma [26]. The number of parallel
repetitions r are chosen according to the εr-heuristic, based the soundness error
of the underlying IDS, ignoring the potential loss in security that comes from
the non-tightness of the proof.

3 Forgery Attacks on MQDSS

Chen et al. [12] give a concrete instantiation – called MQDSS – by applying
Construction 1 to the 5-pass identification scheme from Sakumoto et al. [27].
MQDSS is a post-quantum signature scheme submitted to the NIST post-
quantum standardization project. We first recall the details of the MQDSS sig-
nature scheme and then describe our attack.

3.1 Description of MQDSS

The main idea of the 5-pass identification scheme by Sakumoto et al. [27] is
to prove knowledge of a solution s of a multivariate quadratic equation system
v = F(s). To achieve this, the secret s is split into two shares s = r0 + r1
and the public key v can be represented using the polar form of F as v =
F(r0) + F(r1) + G(r0, r1). One of the shares of the secret (with an additional
masking factor α) is then split further, so that the polar form is not dependent
on both shares of the secret: αr0 = t0 + t1 and αF(r0) = e0 + e1. Due to the
properties of the polar form, we arrive at the relation

αv = (e1 + αF(r1 + G(t1, r1)) + (e0 + G(t0, r1) ,



An Attack on Some Signature Schemes 9

where each of the two separate summands does not reveal any information about
the secret. This is used in the identification protocol where one of these sum-
mands is revealed to the verifier and checked for consistency. For more details
we refer to [27, Section 4].

The key generation of MQDSS samples a MQ relation v = F(s), but does so
pseudorandomly from a k-bit seed sk, by using SHAKE256 as a pseudorandom
generator (PRG) and using rejection sampling to sample field elements when
necessary. The function XOFF generates a multivariate system from a seed, and
H,H1, and H2 are cryptographic hash functions. In the MQDSS signing algo-
rithm the secret key sk is, as in key generation, expanded into four seeds. These
seeds are used to derive the MQ relation and, in combination with a pseudo-
random salt D, the shares of the secret r, t, e and the commitment randomness
ρ. We can observe the 5-pass structure with the five messages σ0, ch1, σ1, ch2
and σ2. For a complete description of the MQDSS key generation, signing and
verification, we refer to the MQDSS design document [13] or the full version of
this work [20].

MQDSS Versions. In August 2018, the MQDSS team updated their specifica-
tion and recommended parameter sets, due to the original parameters mistak-
enly being selected for a higher security level. This new parameter sets were
called MQDSS v1.1. Additionally, in March 2019 the MQDSS team modified
the scheme to include a random string ρ of length 2κ in their commitments,
resulting in MQDSS v2.0. Our attack applies to both, MQDSS v1.1 and v2.0,
but in the following, we will use MQDSS v2.0 to be compatible with the most
recent reference implementation. After disclosing our attack to the authors, they
updated their parameter sets to resist our attack. At the time of writing, v2.1 is
the most recent version of MQDSS.

Table 1. Parameter sets for MQDSS instances. r is the number of parallel repetitions in
MQDSS v2.0, rnew is the number of repetitions required to resist our attack. (Instance
for security level L5 not officially submitted to NIST). τ∗ is the optimal number of
repetitions to attack in the first phase, while #H gives an estimate of the required
hash function calls for a single forgery.

Parameter Set κ m = n q r τ∗ #H rnew

MQDSS-toy 38 48 31 40 11 229 53

MQDSS-L1 128 48 31 135 41 295 184

MQDSS-L3 192 64 31 202 61 2141 277

MQDSS-L5 256 88 31 268 82 2180 370



10 D. Kales and G. Zaverucha

Algorithm 1. Forge(pk,Msg)
Parse pk as SF,v
F ← XOFF(SF)

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0

$← F
n×3r
q

α∗ $← Fq

s∗ $← F
n
q

for j ∈ {1, . . . , r} do

r
(j)
1 ← s∗ − r

(j)
0

t
(j)
1 ← α∗ · r(j)0 − t

(j)
0

e
(j)
1 ← α∗ · F(r

(j)
0 ) − e

(j)
0

ρ
(j)
0 , ρ

(j)
1

$← {0, 1}2κ×2

com(j)
0 ← H

(
ρ
(j)
0 , r

(j)
0 , t

(j)
0 , e

(j)
0

)

com(j)
1 ← H

(
ρ
(j)
1 , r

(j)
1 , α∗ · (v − F(r

(j)
1 )) − G(t

(j)
1 , r

(j)
1 ) − α∗ · F(r

(j)
0 ) + e

(j)
0

)

end for
σ0 ← H(com(1)

0 , com(1)
1 , . . . , com(r)

0 , com(r)
1 )

repeat

R
$← {0, 1}2κ

D ← H(pk ||R||Msg)
ch1 ← H1(D, σ0)
Parse ch1 as ch1 = {α(1), . . . , α(r)}, α(j) ∈ Fq

until at least τ∗ of α(j) are equal to α∗

repeat

guess $← {0, 1}r // in practice, a counter is used to ensure unique hash inputs
for j ∈ {1, . . . , r} do

if α(j) = α∗ then
rsp(j)1 ← (t

(j)
1 , e

(j)
1 )

else if bit j of guess is 0 then

rsp(j)1 ←
(
α(j) · r(j)0 − t

(j)
0 , α(j) · F(r

(j)
0 ) − e

(j)
0

)

else
rsp(j)1 ←

(
t
(j)
1 , (α(j) − α∗) · (v − F(r

(j)
1 )) + α∗ · F(r

(j)
0 ) − e

(j)
0

)

end if
end for
σ1 ← (rsp(1)1 , . . . , rsp(r)1 )
ch2 ← H2(D, σ0, ch1, σ1)

until bits of ch2 agree with guess in positions j where α(j) �= α∗

σ2 ← (r
(1)

b(1)
, . . . , r

(r)

b(r)
, com(1)

1−b(1)
, . . . , com(r)

1−b(r)
, ρ

(1)

b(1)
, . . . , ρ

(r)

b(r)
)

return σ = (R, σ0, σ1, σ2)

3.2 Description of the Attack on MQDSS

The basic idea of the attack is to split the attacker work between two phases:
we try to guess ch1 for τ∗ repetitions, and then move on to guess ch2 for the
remaining repetitions. For many 5-pass identification schemes, including the one
used in MQDSS, guessing just one of the two challenges correctly allows the
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prover to cheat. In the non-interactive version, we leverage the fact that these
phases can be repeatedly and separately attacked offline.

In [12], Chen et al. give a basic strategy for a cheating adversary, that
works as follows: The cheater chooses α∗ as guess for ch1 and uses a ran-
domly chosen secret key s∗. He follows the protocol as specified, but com-
putes r1 = s∗ − r0, t1 = α∗r0 − t0 and e1 ← α∗ · F(r0) − e0 instead. He
also computes the commitment (com0, com1) as com0 ← H (ρ0, r0, t0, e0) and
com1 ← H (ρ1, r1, α∗ · (v − F(r1)) − G(t1, r1) − α∗ · F(r0) + e0). If ch2 is equal
to 0, the recomputed check does not involve the public key v and will therefore
always pass. For ch2 = 1, the cheater set up the values in a way that the check
will still pass if ch1 was equal to α∗. For our attack, it is important that a bad
guess for α∗ (i.e., ch1) can be masked by a correct guess of ch2, without the ver-
ifier noticing. This fact allows us to improve the basic attack strategy by trying
to guess ch1 for all parallel repetitions (and subsequently fixing any bad guesses
in phase 2), not only for a predetermined subset of the repetitions, increasing
the success probability to guess τ∗ first round challenges correctly from (1q )τ∗

to
P1(τ∗) as given by Eq. 1.

Our cheater now has the problem of how to efficiently generate different
inputs (still passing verification) to the challenge hash functions H1 and H2. For
phase 1, this is quite easy, since the signature includes a random salt value R,
which is allowed to be chosen freely by the attacker. Therefore an attacker can
fix a guess of α∗ once, compute the first message σ0, and then try different values
of R until τ∗ of the first challenges agree with α∗. For the second phase, we have
already fixed R and can therefore not use the same strategy. However, we can
modify the values sent in the second message σ1 in the following way. While the
values of t1 and e1 computed as given by the cheating strategy outlined above
are always correct for ch2 = 0, and fail to verify for ch2 = 1, we can also come
up with different t1 and e1 that are correct for ch2 = 1, but fail for ch2 = 0. To
achieve this we use the same t1, but compute e1 such that it corrects the error
in com1, specifically as

e1 ← (α(j) − α∗) · (v − F(r1)) + α∗ · F(r0) − e0.

Now our attacker has two possible values to send in the second phase of each
repetition, enabling him to try 2r−τ∗

different inputs to H2, and with high
probability one of those inputs results in the correct guess for all ch2 for the
remaining r − τ∗ repetitions. The full attack is given in Algorithm1.

Alternative for Phase 2. Instead of the adversary trying all different combina-
tions as shown above, he can also fix all but the last repetition, and just vary
the responses for this last repetition in the following way. Choose a random t1
and then calculate e1 as e1 ← (α(j) −α∗) · (v−F(r1))+α∗ ·F(r0)+G(t0, r1)−
G(t1, r1) − e0. This response is always valid for ch2 = 1. Due to choosing t1 at
random, we have qn different possible hash inputs. This method allows us to fix
all other repetitions but requires us to always calculate G(t1, r1) instead of being
able to cache the output once as we can do for the other variant. Additionally,
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this can be used in combination with the other strategy, especially for the case
when we exhaust all 2r−τ∗

possible inputs to H2, allowing us to continue the
attack without having to repeat the first phase.

3.3 Attack Parameters and Mitigation

For the attack, we want to achieve an optimal tradeoff between the work needed
for passing the first phase and the work needed for passing the second phase. If
we guess τ∗ challenges for the first phase correctly, we can answer both possible
challenges for these correct guesses in the second phase, only needing to correctly
guess the remaining r − τ∗ second round challenges.

The probability of guessing at least τ first-round challenges from a challenge
space of size |C1| = q correctly is given by Eq. 1:

P1(τ, r, q) = Pr

(guess at least τ of
r challenges with
size q

)
=

r∑
k=τ

(
1
q

)k (
q − 1

q

)r−k (
r

k

)
. (1)

To achieve the best tradeoff in terms of attack efficiency, we want to minimize
the total work for completing both phases. Therefore, the optimal number of
repetitions to attack in the first phase is given by

τ∗ = arg min0≤τ≤r

{
1

P1(τ, r, q)
+ 2r−τ

}
,

assuming that both phases are of equal cost. We give some discussion of the cost
of the two phases in Sect. 3.4. A slightly better choice of τ∗ might be possible by
weighting the cost of each phase, based on the concrete costs of a given attack
implementation.

We give an optimal choice for τ∗ for different instances of MQDSS in Table 1,
together with the estimated number of random oracle calls for a single forgery
and the number of parallel repetitions rnew that are required so that the expected
number of random oracle calls for this attack is at least 2κ. After communicating
the attack to the MQDSS designers, they have updated their specification to our
recommended number of repetitions in MQDSS version 2.1.

Comparison to a 3-Pass Version of MQDSS. In [27], Sakumoto et al. additionally
give a 3-pass variant of their MQ-based identification scheme. Chen et al. [12]
motivated their choice of the 5-pass variant over the 3-pass variant by the lower
resulting signature size of the 5-pass variant. However, in light of our new attacks
and the resulting increase in parameters to prevent it, this conclusion is no longer
as clear as it used to be. In [12, Appendix A], Chen et al. discuss parameters for
the 3-pass scheme and come to a signature size of 54.81 KB for the L5 security
level. Based on the formulas given in [12,13] the 3-pass signature size for the L1
security level would be approximately 27.7 KB, whereas the signature size for
the updated parameters of the 5-pass signature is now 27.73 KB, almost exactly
equal. The impact of our attack therefore arguably makes the 3-pass variant
of MQDSS a more natural choice, since 3-pass schemes are more common, and
their security is arguably better understood.
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3.4 Practical Verification

To verify the validity of the attack, we implemented it and attacked versions
of MQDSS with reduced r. The code is based on the reference implementation
of MQDSS1 and is available at https://github.com/dkales/MQDSS-forgery. Our
MQDSS-toy instance from Table 1 has the same parameters as the instance for
the L1 security level, however, we reduced the number of parallel repetitions of
the underlying identification scheme from 135 to 40. Since the soundness error of
one instance of the identification scheme of [27] is ε = 1

2 + 1
2q , these 40 repetitions

should provide about 38 bits of security based on the analysis of Construction 1
by Chen et al. The underlying MQ problem instance is not modified and still
provides 128-bit security against attacks on the MQ problem itself.

Based on our analysis in Sect. 3.3, we choose the number of repetitions to
attack in phase 1 to be τ∗ = 11. The estimated number of random oracle calls is
approximately 229, while for our experiments the average over 10 runs is 227.98,
all taking between 1 and 12 min on a standard desktop PC. Additional details
of our implementation are given in the full version of this work [20].

4 Attacks on Five Round Protocols Using
the Fiat-Shamir Transform

In this section, we generalize the attack described on MQDSS in the previous
section to a canonical five-round proof protocol and discuss choosing a secure
number of parallel repetitions. We also give guidance to protocol designers to
increase the costs of our attack, to reduce the number of parallel repetitions
required for a given security level. We end the section with a brief discussion of
the more general (2n + 1)-round protocols.

Recall the general structure of a 5-pass identification scheme from Fig. 1. In
the attack on MQDSS in Sect. 3.2, we observed that an attacker could mask a
bad guess for the first challenge with a correct guess for the second challenge.
However, this is not the case in general. Some 5-pass identification schemes have
the capability for early abort. We formalize this as an additional verification
function Vearly(com, ch1, rsp1) that enables the verifier to check the validity of
the first three messages. Conceptually, this can also be seen as splitting the
protocol into two interleaved 3-pass protocols.

Even if such an algorithm Vearly is not specified explicitly for a scheme, i.e.,
it may be implicitly contained in V, we are interested in its theoretical existence
since it would allow the verifier to detect wrong guesses for ch1, affecting the
complexity of the attack.

For identification schemes where no such algorithm exists (e.g., MQDSS),
we can employ the improved attack strategy of trying to guess all first-round
challenges, subsequently fixing bad guesses in the second challenge. However, if
Vearly exists, a malicious prover has to select the parallel repetitions to attack
beforehand, increasing the complexity of the attack. Protocols that use the first
1 https://github.com/joostrijneveld/MQDSS/tree/NIST.

https://github.com/dkales/MQDSS-forgery
https://github.com/joostrijneveld/MQDSS/tree/NIST
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challenge in a cut-and-choose construction, where the prover commits to a large
set of values, and only some of them are revealed to the verifier, usually allow
for the existence of such an early verification algorithm. As an example, we will
cover the five-round variant of the KKW [21] proof protocol in Sect. 5.1.

Recall that for an identification scheme to be honest-verifier zero-knowledge
(HVZK, a requirement for security of the associated Fiat-Shamir signature),
there must exist a simulator S that, given pk, outputs simulated transcripts of
protocol executions between P and V, which are indistinguishably distributed
from real protocol executions. (For a formal definition, see [12, Def. 2.5].)

For our attack to apply to a canonical 5-pass ID scheme, it must satisfy a
stronger type of simulation that we call piecewise simulatability. Informally, this
means that S can be refactored (in two different ways) to output the transcript
in two parts, allowing for one of the challenges to be chosen as an input. In
contrast to standard simulators, which output the whole transcript on input pk,
piecewise simulators are a more limited class of algorithms. However, since the
simulator is always able to choose at least one of the challenges by itself, it can
function without knowledge of the secret. Although piecewise simulatability is
a stronger assumption, it is fulfilled by all of the schemes we investigate in this
work.

Definition 1. We say that a 5-round, HVZK ID scheme is piecewise simulat-
able if there exists algorithms (A1, A2) and (B1, B2), defined as follows:

Simulator A Simulator B
A1(pk) outputs T1 := (com, ch1, rsp1) B1(pk) outputs T1 := (com′)
A2(pk, T1, ch

∗
2) outputs (rsp2) B2(pk, T1, ch

′∗
1 ) outputs (rsp′

1, ch
′
2, rsp

′
2)

T := (com, ch1, rsp1, ch
∗
2, rsp2) T ′ := (com′, ch′∗

1 , rsp′
1, ch

′
2, rsp

′
2)

where T and T ′ are distributed as the output of the HVZK simulator S(pk) when
ch∗

2 and ch′∗
1 are chosen uniformly at random from ChSi(1κ).

If the ID scheme has the early abort property, then we additionally require
that Vearly(pk, T1) = 1 for simulator A and Vearly(pk, (com′, ch′∗

1 , rsp′
1)) = 1 for

simulator B. Note that A2 is given a ch∗
2 and can choose rsp2 in such a way that

T1 is a prefix for a valid transcript T . Using B1 and B2, we can also produce a
valid transcript T ′ for a given value of ch∗

1. Together, these properties capture
the ability of the attacker to cheat by guessing either one of ch1 or ch2 correctly.
In the MQDSS example, we described the concept of “fixing bad guesses for
ch1”, which is captured by the fact that in schemes without early abort, we can
use the com output of A1 as input to B2, whereas in schemes with early abort,
this might lead to situations where the first three messages (com, ch′∗

1 , rsp′
1) of

the resulting transcript do not pass Vearly.

Generic Attack. The forger is given pk as input, and uses the algorithms (A1,
A2, B1, B2) to create a forgery, as follows. Let m be the message to forge; we
assume it is an input to both H1 and H2. Let τ∗ < r be the number of repetitions
to guess the first challenge.
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1. Using A1, compute a triple of the form (com, chS
1 , rsp1) for each of the r

repetitions (in the case of protocols with early abort, only use A1 for τ∗

repetitions and B1 for the remaining). Then compute (ch(1)1 , . . . , ch
(r)
1 ) =

H1(com(1), . . . , com(r)). Repeat this step until ch(i)1 = chS
1 for τ∗ repetitions.

2. Fix the value of com for all repetitions so that the ch1 values do not change.
Let R be the set of indices of the τ∗ repetitions where chS

1 = ch
(i)
1 . For

repetitions i �∈ R, compute (rsp∗
1, ch

S
2 , rsp∗

2) using B2 and set rsp∗
1 = rsp1

(from the output of A1) when i ∈ R. Now compute

(ch(1)2 , . . . , ch
(r)
2 ) = H2({com(i)}, {ch(i)1 }, {rsp∗

1
(i)})

where i ∈ {1, . . . , r}. Repeat until repetitions i �∈ R have ch
(i)
2 = chS

2 .
3. For i ∈ R, use A2 to calculate a valid response rsp∗

2. Output the forgery
({com(i)}, {rsp∗(i)

1 }, {rsp∗(i)
2 }) for i ∈ {1, . . . , r}.

We highlight why this attack is only possible for non-interactive proofs. First,
in the interactive setting, each try in Step 1 requires interaction with the verifier,
which is slow, and may be subject to limits by the verifier. But more importantly,
the repeated guesses for ch2 are not possible while holding the ch1 values fixed
since the verifier will force the prover to restart from the very beginning: all
effort to guess the τ∗ ch1 values correctly is lost.

4.1 Cost Analysis

The analysis differs depending on whether the scheme has the early abort prop-
erty. In both cases, the attack complexity is dependent on the size of the two
challenge spaces C1, C2. Let IDS be a 5-pass identification scheme with chal-
lenge spaces C1, C2 and |C1| = q1, |C2| = q2 and let Dss be the signature scheme
derived from r parallel repetitions of IDS by applying a generalized Fiat-Shamir
transformation like Construction 1.

Schemes Without Capability for Early Abort. Recall the probability P1(τ, r, q) of
guessing at least τ of r challenges with a challenge space of size q each correctly,
as given per Eq. 1. The expected cost of our attack on Dss is given by

Costnon−abort(r) =
1

P1(τ∗, r, q1)
+ qr−τ∗

2 ,

where τ∗ is the optimal number of repetitions to attack in the first challenge,
given by

τ∗ = arg min0≤τ≤r

1
P1(τ, r, q1)

+ qr−τ
2 ,

minimizing the overall cost of the attack.
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Schemes with Capability for Early Abort. The cost of our attack on Dss is given
by

Costabort(r) = qτ∗
1 + qr−τ∗

2 ,

where τ∗ is the optimal number of repetitions to attack in the first challenge,
given by

τ∗ = arg min0≤τ≤r qτ
1 + qr−τ

2 ,

again minimizing the overall cost of the attack.
Following the derivation of the attack costs, the number of parallel repetitions

r of the underlying identification scheme IDS needed to achieve a security level of
κ bits is given by selecting the minimum value of r such that the corresponding
cost function Cost(r) ≥ 2κ.

4.2 Discussion

Benefit of Early Abort. We can now quantify the security benefit of protocols
with an early abort functionality in some specific examples.2 If MQDSS were
instead based on a (hypothetical) proof protocol with early abort, the number
of parallel repetitions required for 128-bit security would be 153, rather than
184. This is less than half of the increase from 135 (the choice of r given by
the εr-heuristic), motivating the design of a 5-round proof protocol for MQ with
early abort; one such protocol is MUDFISH [6], which does result in signifi-
cantly shorter signatures. Similarly, if the five-round variant of Picnic described
in Sect. 5.1 did not have the early abort property, the number of required online
phases for 128-bit security is 50 rather than 43, increasing signature size by
roughly 1.16x. Thus we find that having the early abort property is a desirable
goal for designers of five-round proof protocols, if it does not add additional costs
to the protocol itself.

Unbalanced Size of the Challenge Spaces. An interesting observation is the fact
that if the two challenge spaces are not of equal size, the attack complexity
increases, as an attacker cannot divide the work evenly between the two phases.
MQDSS is an example of this, as one challenge space is of size 31 and the second
one of size 2, meaning an attacker has to spend more effort guessing the first
challenge. However, to get the best attack complexity, the attacker wants to
spend an equal amount of work in both phases, meaning attacking fewer rounds
in the first challenge than the second one. Again, the five-round variant of Picnic
in Sect. 5.1 serves as an example. Both of its challenge spaces are of equal size,
and the number of repetitions needs to be doubled to resist the attack, compared
to the ≈1.4x more repetitions needed for MQDSS.

2 Because the Cost functions do not have a nice closed form a general comparison
appears to be difficult.
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Security of (2n + 1)-Round Protocols. We can also ask about similar attacks on
proof protocols with more than five rounds. For example, a recently proposed
signature scheme that we discuss in Sect. 5.3 has seven rounds, and we can fully
generalize the canonical protocol to 2n + 1 rounds. Selecting the number of
parallel repetitions for these protocols is also an interesting question.

However, when considering multiple abort points, analyzing such protocols
seems challenging, as there are n − 1 places where early aborts are possible, and
a specific protocol may have 0 ≤ m ≤ n − 1 of n − 1 abort points. One could
begin by analyzing the worst-case m = 0, however, the choice of r would likely
be inefficient for protocols with m > 0. However, for some protocols, it might
be possible to conceptually split them into sub-protocols that have three or five
passes and analyze them individually.

5 Application to Other Schemes

In the area of post-quantum signatures, many recent proposals are built using
5-round protocols, made non-interactive using the Fiat-Shamir transformation.
We now investigate the applicability of the attack of Sect. 4 on some schemes
from the literature.

5.1 Five Round Picnic

Picnic [11] is a second-round candidate in the NIST post-quantum standardiza-
tion project. It is built using a non-interactive zero-knowledge proof of knowl-
edge, proving knowledge of a secret key of a block cipher. One variant of Picnic
is based on the KKW proof system [21].

The KKW proof system is a 5-round interactive protocol based on a multi-
party computation protocol with an offline preprocessing phase. In the first
round, the prover commits to M executions of the offline phase of the MPC pro-
tocol and then gets challenged to open all but one of them. In the third round,
the prover then uses the unopened offline phase to execute an online phase for
N parties and commits to all of their states and subsequently gets challenged to
open all but one of the internal states. Based on the N − 1 privacy property of
the MPC protocol, the protocol is zero-knowledge and has a soundness error of
max{ 1

M , 1
N }. However, in Picnic, the scheme is collapsed into a 3-round protocol,

as described in Sect. 1.1. In [31], the authors discussed that the 5-round protocol
could offer different performance tradeoffs, but also remarked that the sound-
ness calculation changes since “both challenges have to be sufficiently large”. In
this section we apply our analysis to choose concrete parameters for the 5-round
variant of Picnic, and find that the 3-round variant is indeed preferable.

Cheating Strategy for the Picnic2 Zero-Knowledge Proof. For the attack to work,
a cheating signer needs to be able to cheat in either of the two phases of the zero-
knowledge proof. In detail, for the KKW proof system, this means either cheating
in the pre-preprocessing phase by producing invalid multiplication triples or



18 D. Kales and G. Zaverucha

cheating in the online phase by sending wrong messages. Both approaches allow
the prover to flip the output of arbitrary AND gates in the circuit, if not detected
by the verifier. A cheating prover, given a plaintext-ciphertext pair from a target
public key, can therefore select a random secret key and start the encryption
with the plaintext and change AND gates during the circuit evaluation until the
output matches the ciphertext.

Based on the soundness error of the interactive version of 5-round Picnic
(max{ 1

M , 1
N }, where M is the number of preprocessing phases and N is the

number of parties in the online phase) it is optimal to set both of them to be
equal. One choice used by [21] is 64, since this fits register widths for modern
CPUs, allows for a performant bit-sliced implementation, and provides a good
tradeoff between proof size and runtime. To achieve a soundness error of < 2−128,
one needs τ = 22 parallel repetitions in the interactive version of the protocol.
However, applying the straightforward Fiat-Shamir transformation as shown in
Construction 1 enables our attack.

Since the protocol in [21] is a commit-and-open style protocol, it has the
property of early abort (guessing the wrong challenge in the second message
cannot be hidden later on). Therefore we need to choose the repetitions to attack
in each phase from the start.

The complexity of the attack on 5-round Picnic is Mτ∗
+ Nτ−τ∗

, where τ∗

repetitions are attacked in the first challenge. The optimum number of repeti-
tions τ∗ which is equal to ≈ τ/2, since both challenge spaces are of equal size.
For the specific choice of M = N = 64, the total number of parallel repetitions
required for an attack complexity of greater than 2128 random oracle calls is
therefore τ = 43.

In contrast to the collapsed 3-round variant, which needs 343 offline phases
and the same number of online phases, this 5-round variant needs 43 · 64 = 2752
offline phases and 43 online phases. We give the performance characteristics of
the 3-round (Picnic2-*) and 5-round (Picnic2-5-*) variants in Table 2. Observe
that even though the number of online phases that need to be simulated is lower
in Picnic2-5, this is only true during signing, as during verification this number is
actually higher in the 5-round variant. Furthermore, the number of offline phases
and, more importantly, the hashing costs associated with this phase are much
higher in the 5-round variant. Even tough we did not implement the 5-round
variant, we conclude based on this evidence that the 5-round variant has slower
signing and verification times. With regards to signature size, the maximum
signature size for the 5-round variant is given (in the notation of [21]) by

τ · ((
log2(M)� + 
log2(N)�) · κ + 2 · |C| + 3κ + |ch1| + |ch2|) .

In all cases, this leads to larger signature sizes than the three round variants,
confirming the choice made in [21] to collapse the protocol to three rounds.
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Table 2. Comparison of Picnic2 using the 3- and 5-round variants of the underlying
proof system at the three NIST security levels. Picnic2 numbers from [31].

Instance # offline phases # online phases max. signature size

sign (verify) sign (verify) [KiB]

Picnic2-L1-FS 343 (316) 343 (27) 13.47

Picnic2-5-L1-FS 2752 (2709) 43 (43) 16.46

Picnic2-L3-FS 570 (531) 570 (39) 29.05

Picnic2-5-L3-FS 4032 (3969) 63 (63) 36.17

Picnic2-L5-FS 803 (753) 803 (50) 53.45

Picnic2-5-L5-FS 5440 (5355) 85 (85) 63.75

5.2 PKP-Based Signature Scheme

In [8], the authors proposed a digital signature scheme based on the Permuted
Kernel Problem (PKP) [28]. Since the underlying identification scheme is a 5-pass
scheme and the transformation into a signature scheme is using Construction 1
while inheriting all security proofs from the original MQDSS paper [12], it is
susceptible to the same attack.

In fact, a pre-print of [8] originally chose the number of parallel repetitions
r using the εr-heuristic, however, it was later revised to account for our attack
and use larger parameters. We shortly summarize the parameters of the scheme
and show using the formulae in Sect. 4 that the parameters as proposed in the
most recent version of [8] are secure.

In PKP-DSS, the size of the first challenge is based on the size of the under-
lying prime field (excluding 0). Like MQDSS, the second challenge is a binary
choice, and the identification scheme does not have the property of early abort.
Therefore, we use the same formula as in MQDSS and arrive at 156, 228, and
289 parallel repetitions for their L1, L3, and L5 security levels, respectively. Note
that the number of parallel repetitions for the L1 and L3 security levels is lower
than the parameters given in [8] (157 and 229, respectively); this might be due
to the authors weighting of the cost of the two phases slightly differently.

5.3 LegRoast

LegRoast and PorcRoast [7] are two new proposals for post-quantum secure
signature schemes. Our attack is not directly applicable to these schemes, but it
is interesting to see why, as they are based on 7-round proof protocols.

The schemes work by proving knowledge of the secret key of evaluations of
the Legendre-PRF, in a similar fashion to Picnic, which uses LowMC as a one-
way function. The scheme has some more differences to Picnic signatures: since
the PRF only outputs a single bit, it needs many different evaluations of the PRF
to achieve the needed soundness, however, this would lead to large signatures.
Therefore a relaxed notion is used, where the prover proves that B of the total
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L evaluations are correct under his secret key. Additionally, instead of using a
cut-and-choose construction for the MPC-in-the-head preprocessing step, they
use a method based on sacrificing multiplication triples by Baum and Nof [3].

The prover uses a 7-pass identification scheme, where the first challenge
selects the subset B of evaluations to prove, the second challenge is for the
sacrificing step of the MPC protocol, and the third challenge selects one of N
parties to reveal for verification. However, the challenge space of the second
challenge is about 128 bits and is therefore much bigger than the third challenge
space (which ranges from N ∈ {16, 64, 256}). As already shown in [3], this essen-
tially means an adversary gains a negligible advantage when trying to guess the
second challenge, and the overall attack complexity is not reduced by attacking
this phase. The parameters of LegRoast are thus chosen in a way that rules out
attacks that split the work between the first and last phase.

6 Conclusion

In this work, we have shown forgery attacks against a class of signature schemes
built from five-pass ID schemes and the Fiat-Shamir transform, highlighting
the importance of concrete parameter selection. Our analysis gives designers
an accessible way to choose the number of parallel repetitions to meet a given
security requirement.

An interesting conclusion for the two schemes we investigated in detail,
MQDSS and Picnic, is that initially, the 5-pass variants look more attractive
in terms of runtime and signature size, but once accounting for this attack, the
3-pass variant becomes more efficient. In addition to being more well analyzed,
this is another reason to prefer 3-round ID schemes.

We did not investigate some of the schemes mentioned in Sect. 1.1, this may
be interesting future work. Additionally, with some recent practical 7-round
protocols being proposed [3,7], generalizing our attack beyond five rounds may
also be interesting. Finally, our classification of protocols that are vulnerable to
this type of attack could be improved, as the properties we used (early abort
and piecewise simulatability) are non-standard. Perhaps these properties can be
related to existing and more well-studied properties.
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Abstract. The selection criteria for NIST’s Lightweight Crypto Stan-
dardization (LWC) have been slowly shifting towards the lightweight
efficiency of designs, given that a large number of candidates already
establish their security claims on conservative, well-studied paradigms.
The research community has accumulated a decent level of experience on
authenticated encryption primitives, thanks mostly to the recently com-
pleted CAESAR competition, with the advent of the NIST LWC, the de
facto focus is now on evaluating efficiency of the designs with respect to
hardware metrics like area, throughput, power and energy.

In this paper, we focus on a less investigated metric under the umbrella
term lightweight, i.e. energy consumption. Quantitatively speaking,
energy is the sum total electrical work done by a voltage source and
thus is a critical metric of lightweight efficiency. Among the thirty-two
second round candidates, we give a detailed evaluation of the ten that
only make use of a lightweight or semi-lightweight block cipher at their
core. We use this pool of candidates to investigate a list of generic imple-
mentation choices that have considerable effect on both the size and the
energy consumption of modes of operation circuit, which function as an
authenticated encryption primitive.

In the second part of the paper, we shift our focus to threshold
implementations that offer protection against first order power analy-
sis attacks. There has been no study focusing on energy efficiency of
such protected implementations and as such the optimizations involved
in such circuits are not well established. We explore the simplest possible
protected circuit: the one in which only the state path of the underlying
block cipher is shared, and we explore how design choices like number of
shares, implementation of the masked s-box and the circuit structure of
the AEAD scheme affect the energy consumption.

Keywords: Energy · Power · Lightweight cryptography · AEAD ·
Block ciphers · Unrolling · Hardware · Logic synthesis

1 Introduction

Applications running on resource-constrained devices generally require a decent
level of protection regarding their communication layer, even though the allo-
cated budget for security tends to be sparse. It presents itself in the form of con-
straints over few metrics, such as circuit size, energy consumption, or latency;
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and prioritization among them depends on the particular application and the
device in question. Sensor networks, medical implants, smart cards, and Internet-
of-Things are a selection of applications where either one or few of these metrics
play a key role.

These constraints spurred multiple lines of research in the crypto community,
one mainly focusing on realizing the standardized symmetric primitives in a
more lightweight manner. For instance, reducing the circuit-size of AES has been
extensively studied [6,21,23]. On a separate line of research, bootstrapping new
primitives from scratch is taken as an alternative and is possibly more fruitful
approach to obtain symmetric primitives with better lightweight characteristics.
This justifies why the literature has seen a large number of new block ciphers
such as PRESENT [13], SKINNY [11], and GIFT [10], to name only a few. There
are even some attempts to discover new techniques to improve lightweightness
of these new block ciphers [3,21]. As block ciphers alone are not ready-to-use
primitives but rather need to be wrapped in a mode of operation, a group of
candidates in NIST LWC utilize these lightweight block ciphers to attain an
authenticated encryption (AE) primitive, i.e. the ten candidates on which this
paper focuses [1].

Banik et al. [5] finally presented a model that captures the energy consump-
tion of a block cipher in terms of r, where r denotes the number of unrolling in an
implementation. For many ciphers, including AES, their model verifiably predicts
that the energy-optimal choice is r = 1, where for some lighter block ciphers, such
as PRESENT, the optimal point shifts to r = 2. However, as stated before, block
ciphers usually are not ready-to-use primitives and must be wrapped within a
mode of operation. Therefore, the effects of additional circuitry to energy con-
sumption remains unanswered.

1.1 Contributions and Organization

1. We explore the effects of clock-gating, r-round unrolling, fully-unrolling and
inverse-gating techniques to deduce the architectural design choices that lead
to the most energy efficient implementations. We look at each candidate
individually and identify optimal circuit configurations that would reduce
the energy consumption of AEAD circuit. The large number of implementa-
tions helps us make broader observations regarding energy efficiency in AEAD
modes instantiated with lightweight block ciphers.

2. In parallel to the first effort, we provide a fair evaluation of the aforementioned
candidates from NIST LWC. The data we obtain shows how each candidate
fares, when implemented with the similar approach.

3. In partially unrolled circuits, we demonstrate that the optimal choice of r boils
down to two factors; the complexity of the core cipher and the complexity of
the surrounding mode of operation circuitry. Whereas the optimal choice for
block ciphers is typically r ∈ {1, 2}, for full AE circuits we experimentally
show that this becomes r ∈ {2, 3}.

4. In the last part of the paper we move to threshold implementations that
provide security against power analysis attacks. Although there have been
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many papers that optimize the circuit area of these circuits [11,25], there have
not been many papers that look at the energy consumption of these circuits
as an optimizable metric. We look at both 3-share and 4-share threshold
circuits, and look at factors like number of shares, decomposability of s-boxes
that affect the energy consumption of such circuits.

The paper unfolds as follows. Section 2 reiterates known energy-reduction
techniques and lays out a common interface and test bench for all implementa-
tions. In Sect. 3, we briefly introduce the chosen schemes alongside their internal
block ciphers and detail their implementations. Section 4 evaluates the effects
of the individual design choices on the schemes and extends Banik et al.’s
energy model of block ciphers to modes of operations in the chosen authen-
ticated encryption algorithms. We also elaborate on the obtained energy mea-
surements and chart the results. In Sect. 5, we turn our attention to first order
threshold implementations of the AEAD schemes. We conclude our paper with
the takeaway claims for designers and implementors in Sect. 6.

2 Preliminaries

To guarantee fair conditions in our evaluation we unified our implementations
under a common interface. Our hardware API is designed to be simple, as it
assumes that the associated data and message bits are properly padded so that
they only consists of multiple blocks. This padding must be done according to the
individual specification of the AE scheme, before the AE operation is initiated
in the circuit. Then our AEAD implementations can be used in all possible
configurations (e.g. partial blocks, no authenticated data or no message blocks)
and comply with the exact specification.

Our reasoning for favoring this simpler API (with external-padding) is that
it ensures that no significant energy is consumed to handle the API itself. For
instance, the CAESAR HW API [18] requires padding to be done by the circuit,
which brings a large array of multiplexers and amplifies the energy consump-
tion for each loaded associated data and message block. However, depending on
the application, this padding cost can be avoided, e.g. handling padding on a
microprocessor that makes the call can be less costly, or the application might
not even need padding, if the transmitted data always respects the block sizes.
Nonetheless, a preprocessor circuit could be placed before our AE schemes to
ensure CAESAR HW API compatibility. The input and output ports of our
hardware API are defined in the following way:

– input wire CLK, RST: System clock and active-low reset signal. We distin-
guish two different clock rates; 10 MHz for the partially-unrolled versions and
5 MHz for the fully-unrolled implementations1.

1 The inverse-gating technique uses only the first phase of the clock cycle to compute
the full block cipher call, therefore the clock period is doubled to ensure all glitches
are stabilized during this clock phase.



26 A. Caforio et al.

– input vector KEY, NONCE: Key and nonce vectors. These signals are stable
once the circuit is reset and are kept active during the entire computation.

– input vector DATA: Single data vector from which both associated data
and regular plaintext blocks are loaded into the circuit. This choice saves an
additional large multiplexer, since all the schemes process associated data and
plaintext blocks separately and not in parallel.

– input wire EAD, EPT: Single bit signals that indicate whether there are no
associated data blocks (EAD) or no plaintext blocks (EPT). Both signals are
supplied with the reset pulse and remain stable throughout the computation.

– input wire LBLK, LPRT: Single bit signals that indicate whether the cur-
rently processed block is the last associated data block or the last plaintext
block (LBLK), and also whether it is partially filled (LPRT). Both signals are
supplied alongside each data block and remain stable during its computation.

– output wire BRDY, ARDY: Single bit output indicators whether the circuit
has finished processing a data block and a new one can be supplied on the
following rising clock edge (BRDY) or the entire AEAD computation has been
completed (ARDY).

– output wire CRDY, TRDY: Single bit output indicators whether the CT and
TAG ports will have meaningful ciphertext and tag values starting from the
following rising clock edge.

– output vector CT, TAG: Separate ciphertext and tag vectors. This again
saves an additional multiplexer in schemes where the ciphertext and tag are
not ready at the same time, or they appear at different wires.

2.1 Test Bench and Synthesis Options

One of the criteria in the NIST lightweight competition lies in the optimization of
the proposed schemes when they are fed with messages as short as eight blocks.
Hence, our test bench focuses on supplying the circuit with various input lengths
where a single AE call contains at most one associated data block (where we
consider each block as 128-bit), along with a random number of message blocks
(not more than eight blocks to make it short). The corner cases are also captured
by generating inputs with either empty authenticated data or empty message,
as well as incomplete last blocks. Each round-based AEAD implementation is
run with the same test vector, where the length ratio between authenticated
data blocks and message blocks is roughly one to eight. This is summarized in
Table 1.

Another point to consider is that the power dissipation and energy con-
sumption of an ASIC circuit is highly sensitive to the actual silicon technol-
ogy it is implemented, as well as generic optimization techniques available to
the development kit. The RTL synthesizer (in our case Synopsys Design Vision
v2019.03) can also bring a significant change in the results depending on the
compilation flags. In order to isolate variations in energy consumption caused
by these, besides using the same technology (TSMC 90 nm), we maintain compi-
lation options consistent when comparing candidates. Although these variations
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are not likely to change the final ordering of candidates, it makes it difficult to
reproduce results if subtle details are not reported.

In order to keep things simple, we used them in the following combinations:
The compile ultra option instructs the compiler to perform an all-in-one, com-
putationally intensive optimization, during which boundaries between compo-
nents are removed and the whole design is considered as one large circuit. This
provides better results for r-round unrolled implementations, but becomes time
consuming and works poorly as r grows larger. Therefore we do not use this
option with fully-unrolled implementations. The command compile -exact map
-area effort high command essentially ensures that sequential elements are
not touched, and that Synopsys favors area as a metric to improve (a common
flag used by designer, but not of vital importance in our case). This combination
is ideal for unrolled circuits, as the area by default is already quite large and
there are possibly many optimizations to perform. A third combination compile
-no autoungroup is used only to obtain results in Sect. 4.2. This flag instructs
Synopsys not to remove the boundaries between components at lower level, so
that we can obtain power consumption of each individual element, and com-
pute necessary parameters in our model. For clock-gating implementations, we
first compiled clock-gating circuitry and then used set dont touch option to
ensure that Synopsys does not try to optimize it later, as it may lead to timing
violations.

Table 1. Synthesis options, and the size of test vectors

Implementation Synopsys Compilation Flags # AD blocks # Msg blocks

r-Round AE compile ultra 535 4278

Fully-unrolled compile -exact map -area effort high 28 207

Section 4.2 compile ultra -no autoungroup 535 4278

Threshold compile ultra 535 4278

For all results reported in the paper, we maintained the following design
flow. The design was implemented at RTL level. A functional verification of the
VHDL code was then done using Mentor Graphics ModelSim. Thereafter, Syn-
opsys Design Compiler was used to synthesize the RTL design using the compile
options in Table 1, and post-synthesis correctness is verified with Synopsys VCS
MX Compiled Simulator. The switching activity of each gate of the circuit was
collected by running post-synthesis simulation. The average power was obtained
using Synopsys Power Compiler, using the back annotated switching activity.
The “energy per processed block” metric was then computed as the product
of the average power and the total time taken to process x number of blocks,
divided by x itself.

Clock-Gating: Clock-gating describes a general power-reduction technique that
aims to limit the switching activity of register banks. A classic, non-gated flip-
flop is continuously charged and discharged by the system clock which results in
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wasted activity during periods when the flip-flop needs to preserve its content
for multiple cycles. The clock signal in a clock-gated register is artificially held
constant through additional logic during these constant phases.

Inverse-Gating: In a sequential arrangement of round function circuits, the
glitches generated in the first computation, until a stable value is reached, are
amplified in the subsequent round function calls, which is responsible for most
of the dynamic power consumption of the entire implementation. Banik et al.
suggested round-gating as an effective countermeasure against the propagation
of glitches between the round functions [7]. The technique saw a revision in
2018, coined inverse-gating, through an addendum by the same authors [8]. In
broad terms, inverse-gating suppresses the glitches between round functions by
inserting AND gates on the critical path which are then activated by a delayed
clock signal. Preferably, the delay time should be at least as big as the signal
latency at each round function output. Figure 1 depicts an inverse-gated unrolled
arrangement.

RF RF RF

Delay BuffersCLKEN EN
EN

Fig. 1. Partitioned clock-gated register (left), fully-unrolled inverse-gated round func-
tion (right).

3 Implementations

Out of the 32 remaining candidates in the second round of the NIST lightweight
competition we singled out ten schemes that are bootstrapped either directly
via lightweight block ciphers or variants of them. Five out of the ten schemes
are directly instantiated with the GIFT block cipher [10] or through a slightly
adapted tweakable alteration. Three other schemes are based on the SKINNY
block cipher [11] or a forked version of it. Finally, the Pyjamask and SATURNIN
AEAD schemes deploy their own dedicated substitution-permutation networks
of the same names. Table 2 lists all investigated schemes alongside their internal
block cipher.

3.1 r-Round Unrolled

The sequential placement of multiple round function circuits allows the com-
putation of several rounds during a single clock cycle. This results in fewer
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Table 2. AEAD Schemes Based on Lightweight Block Ciphers. CG denotes clock-gated
and IG inverse-gated implementations.

Scheme Block Cipher Reference Best Implementation

GIFT-COFB GIFT-128 [9] 2-Round-CG

SUNDAE-GIFT GIFT-128 [4] 3-Round

HYENA GIFT-128 [16] 2-Round-CG

LOTUS-AEAD TWE-GIFT-64 [15] 3-Round-CG

LOCUS-AEAD TWE-GIFT-64 [15] 3-Round-CG

SKINNY-AEAD SKINNY-128-384 [12] Unrolled-IG

Romulus SKINNY-128-384 [19] 2-Round

ForkAE ForkSkinny [2] 2-Round-CG

Pyjamask Pyjamask-128 [17] Unrolled-IG

SATURNIN SATURNIN [14] Unrolled-IG

required cycles to complete one encryption, i.e. in an r-round partial unrolling
setting a block cipher composed of R rounds can be computed in �R

r � cycles.
The adverse effects of unrolling include a larger overall circuit area and an
increased signal delay across the circuit. Nevertheless, as shown by Banik et
al. [5], partial unrolling can reduce the energy consumption of certain (especially
lightweight) block ciphers noticeably. In broad terms, it is possible to quantify
the total amount of consumed energy E as a quadratic polynomial function of
the unrolling factor r such that E = (Ar2 +Br +C)

(�1 + R
r �) , where A,B and

C represent energy values depending on the internal switching activity of the
block cipher such as registers, multiplexers and arithmetic logic. Hence, if the
block cipher is on the lighter side, E can be minimized for r ≥ 2, on the other
hand complex and heavy circuits such as AES incur large constants A,B and C
where E is only minimized for r = 1. Using partial r-round unrolling the round
function and key expansion circuits can be replicated r times and connected
through data paths where the output of the last replicated circuit is stored in
the state and key registers. Special care has to be taken when r � R, here the
ciphertext will not be produced by the last replicated instance but it must come
from an intermediate computation as can be seen in Fig. 2.

3.2 Fully-Unrolled

In a fully-unrolled setting we have r = R, i.e. an entire encryption is performed
in a single clock cycle. Such a configuration results in large combinatorial and
latency-heavy circuit. However, state registers that store intermediate results,
as previously seen for partially-unrolled block ciphers, are not needed anymore.
The propagation and the subsequent amplification of glitches between the round
function circuits cause a large spike in terms of energy consumption for which
inverse-gating is an effective remedy. In particular, the overall reduction in energy
can be as large as 90% for certain schemes as demonstrated in [8].
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Fig. 2. r-round partial unrolling of a generic block cipher consisting of an internal
state, round keys and round constants for r = 2 (left) and r = 3 (right).

4 Effects of Design Choices

4.1 Clock Frequency

Note that it has already been shown in numerous papers [5,7,22] that in low
leakage environments, at high enough frequencies, the total energy consumption
of a circuit is independent of clock frequency since it is the measure of total
circuit glitch. To provide more evidence for this we constructed a typical circuit
for a round based implementation of AES-128, in the TSMC 90 nm library and
measured the energy per encryption value at 4 different frequencies. The results
are summarized in Fig. 3. The Energy vs Frequency plot on the left clearly sug-
gests that for frequencies larger than 10 MHz, the energy consumption is more
or less constant.
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Fig. 3. Variation of energy with frequency (left), percentage contribution of the
dynamic, leakage component of the power at different frequencies (right).

Why does this happen? The total power consumption in a CMOS circuit
comes form two components a) dynamic and b) leakage. Dynamic power is
consumed due to the charging and discharging of the capacitive nodes of the
transistors of the circuit. Every 0 → 1/1 → 0 transition, as well as every transient
glitch contributes to this type of power consumption. On the other hand, leakage
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power is mainly due to the sub-threshold leakage current, which is the drain-
source current in a CMOS gate when the transistor is off, and other continuous
currents drawn by the power source. It is generally well known that, the leakage
component of the power drawn by a circuit is generally independent of the
frequency of operation of the circuit and only varies as its total silicon area. Also
the dynamic component of the power consumption varies directly as the clock
frequency of the circuit and hence inversely as the clock period. Since the total
physical time to complete any operation, all other things being the same, varies
directly as the clock period, the dynamic component of the energy consumption
(product of dynamic power and total time) is generally constant with respect
to change in clock period or frequency. Therefore, at higher frequencies the
dynamic energy of the same circuit remains a constant as the contribution of
the leakage energy (product of the frequency independent leakage power and
the physical time taken) becomes lesser and lesser. This was what led [5,22] to
conclude that at high frequencies the total energy (sum of dynamic and leakage
energies) consumption of block ciphers is more or less a constant and frequency-
independent. All the above facts are borne out by right hand plot in Fig. 3,
which breaks down the percentage contributions of the dynamic/leakage power
at different frequencies of the same AES circuit. The dynamic component indeed
scales as the frequency and the leakage component remains constant at 2.9µW.
As a result at higher frequencies, the contribution of the leakage part becomes
more and more insignificant. In fact at 10 MHz it is less than 1.2%.

Note that for libraries with standard cells composed of transistors of lower
feature size, the leakage power is significant even at 10 MHz. Typically, a 15 nm
library will have leakage power many orders more than a 90 nm library. For
such libraries, a similar exercise of comparing dynamic energy must be done
at frequencies much higher than 10 MHz, (for the Nangate 15 nm library for
example a clock frequency of around 5–10 GHz may be required). Once this is
done, the results reported in 90 nm libraries, can be seamlessly reproduced in
15 nm or lower feature size libraries.

4.2 Optimal Unrolling

In Sect. 3.1, we had briefly mentioned that the energy consumed by an r-round
unrolled block cipher as described in [5] is given as E = (Ar2+Br+C)

(�1 + R
r �).

The (Ar2 +Br +C) term is actually the average power consumed by the circuit
and is typically output by any standard power compiler engine after inspecting
either the switching statistic of every node or the value change dump file that
records all the signal transitions in the circuit in a given time period. The term
is then multiplied with

(�1 + R
r �) to produce the energy consumed. Consider an

example from [5]. The authors had estimated that in the STM 90 nm process,
the energy consumption of an unrolled implementation of PRESENT followed
the expression (3.15 + 1.40r + 0.795r2) · (

1 + � 32
r �) pJ. It is elementary to see

that r = 2 is the minimum of this expression, as for r = 1, 2, 3 the expression
evaluates to 176.85, 155.21, 174.06 pJ respectively. Now consider PRESENT used
in a mode of operation that employs, some other operations like doubling over a
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finite field, writing on a register, XORing values etc., i.e. operations that increase
the constant term in the quadratic expression.

Suppose that to encrypt 8 blocks of plaintext using the mode requires 10 calls
to the block cipher and the extra energy per cycle consumed in the unrolling-
independent operations is α pJ per cycle. Let’s say the mode requires

(
1 + � 32

r �)
cycles for the computation (10 block cipher calls). This makes the energy expres-
sion for the mode E(r) = [α + (3.15 + 1.40r + 0.795r2)] · (

1 + � 32
r �) · 10 pJ. If

α ≈ 4 or more, it is now clearly visible that the minima of this expression is
r = 3, since it evaluates to 3.084, 2.232, 2.220, 2.292 nJ, for r = 1, 2, 3, 4. Thus
although, the block cipher itself may be energy-optimal at a particular degree
of unrolling, it does not necessarily imply that the mode will also be energy-
optimal at the same degree. In fact, this is a phenomenon we have observed for
3 lightweight modes of operation SUNDAE-GIFT, LOTUS-AEAD, LOCUS-AEAD.
The modes of operation are all based on the GIFT block cipher. Although the
block cipher itself is energy-optimal at r = 2, the modes are optimal at r = 3.
Note that this optimum is subject to other operating parameters like choice of
library, or the level of compile time optimization of the circuit etc., but all other
things remaining same, this observation stands.

To illustrate the point further, we experimented with 3 non-clock-gated
lightweight modes of operation: GIFT-COFB, SUNDAE-GIFT, and LOTUS-AEAD,
all of which are instantiated with some version of the GIFT cipher. Table 3 illus-
trates the power consumption breakdown of individual components of the 1,
2 and 3-round unrolled implementations of the modes2. Note that the 3-round
unrolled implementation uses an additional multiplexer to filter signals. Since the
total number of rounds in both GIFT-64/128 are not multiples of 3, the signals
used to update the state after the execution of 3 rounds in each clock cycle, and
the final output of the block cipher are to be tapped from different circuit nodes
and hence the need for an extra mux. Note that for this particular implemen-
tation, GIFT-COFB and SUNDAE-GIFT attain optimal energy configuration at
r = 2, whereas LOTUS-AEAD optimizes at r = 3. Take the case of LOTUS-AEAD,
in which as the degree of unrolling r increases, the power consumption contri-
bution of the terms depending on r, which are the individual round functions
and the incremental components of the state/key registers, increase moderately.
This is in contrast to the constant power consumption sources like control sys-
tem, writing values to various registers and consumption of other gates, all of
which increase the constant term in the power consumption. Hence the energy
consumed to process eight blocks of plaintext and one block of associated data
is around 10.88, 7.20, 6.15 nJ for r = 1, 2, 3 respectively. This is not the case for
both of these particular implementations of GIFT-COFB or SUNDAE-GIFT, and
hence the optimum point remains at r = 2.

2 To obtain these figures which illustrate the power consumption of individual circuit
elements, we used a different compile directive to the circuit compiler, hence the
figures are slightly different from the optimal energy figures tabulated in Table 4.
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Table 3. Breakdown of power consumptions of three lightweight modes.

Candidate Impl. µW

Key Reg. State Reg. Other Regs. Multiplier Control RF1 RF2 RF3 Extra Mux. Total

GIFT-COFB 1-Round 19.2 22.5 7.3 – 10.2 12.5 – – – 71.1

2-Round 20.1 36.4 3.1 – 14.5 13.8 31.1 – – 119

3-Round 20.8 34.3 8.1 – 12.4 17.8 33.9 48.7 13 189

SUNDAE-GIFT 1-Round 19.3 28.7 – 3.0 10.8 13 – – – 74.8

2-Round 20.1 36.4 – 3.1 14.5 13.8 31.1 – – 119

3-Round 20.8 45.2 – 3.1 12.1 16.4 31.3 46.7 13.4 189

LOTUS-AEAD 1-Round 22 12.3 44.4 – 17.3 9 – – – 105

2-Round 22.1 13.9 52.4 – 23.9 8.8 17.9 – – 139

3-Round 22.2 16.7 45.7 – 20.9 11.5 16.4 25.4 6.2 165

4.3 Clock-Gating

We have applied clock-gating technique only for those implementations which
contain idle registers, i.e. round-based implementations. These are GIFT-
COFB, HYENA, LOTUS-AEAD, LOCUS-AEAD, SKINNY-AEAD, ForkAE, Pyja-
mask, Romulus and SATURNIN.

In Table 4, we report the number of clock cycles it takes to process the base-
line AEAD input, which consists of one authenticated data and eight message
blocks, where each block contains 128 bits. As already explained, clock-gating
saves energy by preventing unnecessary reloading of registers with the same
value, therefore the total energy saving grows proportionally with the total num-
ber of clock cycles of an AEAD operation. In other words, the effects of this tech-
nique becomes obvious for (1) candidates with more AEAD registers (2) r-round
unrolled implementations with small r ∈ {1, 2} as they require more clock cycles.
For instance, because 1-round unrolled LOTUS-AEAD implementation lasts 1036
clock cycles, and the design contains a couple of 64-bit registers, this technique
saves more than one third in energy. This gap between the implementations are
presented in Fig. 4 for LOTUS-AEAD, ForkAE, SKINNY-AEAD.

Therefore, as a rule of thumb, clock-gating is a worthwhile effort if the par-
ticular design in question contains large number of flip flops, e.g. registers, that
stays frozen for hundreds of cycles.

4.4 Inverse-Gating

The general effect of an inverse-gated fully-unrolled block cipher is a drastic
reduction in terms of energy as already demonstrated in [7,8]. Most of the ten
selected AEAD in this paper are thin wrappers around a core block cipher, i.e.
additional storage elements but no large combinatorial circuits on the critical
path. It thus not surprising that those results extrapolate to the full AEAD
construct, however with different magnitudes.

The largest reduction can be observed for SKINNY-AEAD due to its isolated
block cipher instance that is directly fed from either the data input or the state
registers and whose output glitches are not amplified in a subsequent combina-
torial function. Such an arrangement is thus even more energy-efficient than the
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Fig. 4. The energy consumption (per 128-bit block) of round based implementations
of LOTUS-AEAD, ForkAE, SKINNY-AEAD with/without clock-gating, in comparison to
the number of clock cycles.

partially-unrolled implementations. Similar effects can be noted for the schemes
that are based on GIFT or TWE-GIFT whose structures only place relatively
lightweight combinatorial functions in front or after the core block cipher. How-
ever, the reduced energy does not fully undercut the partially-unrolled implemen-
tations. An energy consumption chart of all the fully-unrolled implementations
with inverse-gating or without can be seen in Fig. 5.

4.5 Results

Figure 5 (left) charts the optimal energy per 128-bit block value for each r
and candidate. The category is dominated by GIFT-COFB and HYENA which
both are lightweight in terms of gate count but respond equally well to partial
unrolling. The situation is different for the fully-unrolled implementation where
inverse-gating equalizes most of the measured values. Figure 5 (right) charts
the energy per 128-bit block results for the fully-unrolled variants. A detailed
tabulation of all the measurements including gate count, latency and throughput
can be found in Tables 4 and 5.

The measurements are reached as follows:

– The latency reports the total number of clock cycles it takes for an AEAD
circuit to process 128 bits of authenticated data followed by 8 × 128 = 1024
bits of message.

– Throughput of the circuit is calculated by TP = 9×128
latency×τ where τ denotes

the critical path delay. This is the maximum achievable on this circuit. Fur-
ther throughput optimizations are possible by instructing Synopsys Design
Compiler to recompile the design with additional time constraints, but this
falls outside the scope of the paper.

– Average power Pavg is directly obtained by the Synopsys Power Compiler. The
total energy is computed by Etotal = Pavg × t where t is the time it takes to
process the full test vector (see Table 1). Then we divide Etotal by the number
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of processed data blocks (authenticated data and message combined). In the
Tables 4–5 below, the flag CG represents circuits designed with the clock-
gating technique.

5 Threshold Implementations

The idea of threshold implementations (TI) are based on the concept of multi-
party computation and secret sharing, and aims to implement non-linear func-
tions in order to use it as a d-th order DPA countermeasure on a device that
leaks information through side channels like power consumption.

It is well known that the minimum number of input shares required to imple-
ment the first order TI of a function of algebraic degree w is w + 1 [24]. This
means that quadratic s-boxes need at least 3 shares and cubic s-boxes need at
least 4 shares even for first order TI. However the more the number of shares,
we proportionally need to scale up the number of registers and other constituent
logic gates in the circuit. Needless to say this comes with proportional scaling
up of not only the circuit area but also power and energy consumption of the
circuit. Thus at first glance it might appear that, from an energy efficiency point
of view, one should rather aim to minimize the number of shares in the circuit.

Most lightweight cryptographic s-boxes are of algebraic degree 3 (e.g. those
of PRESENT, GIFT, MIDORI) and hence for a while it was inconceivable to
construct a TI of less than 4 shares. However, in [25], the authors showed how
to construct 3-share TI of a block cipher cubic s-box. In the paper, the authors
presented a 2300 GE 3-share TI of the PRESENT block cipher. The idea is
as follows: although the s-box S of PRESENT is cubic, it can be written as
S = F ◦ G, where F and G are quadratic s-boxes. So a 3 shared implementation
of the PRESENT s-box can be done by implementing the TI of G and F separated
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Table 4. Measurements for the GIFT-COFB, SUNDAE-GIFT, HYENA, LOTUS-AEAD,
LOCUS-AEAD, SKINNY-AEAD, Romulus and ForkAE implementations.

(a) GIFT-COFB

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round 400 4710 615.38 69.3 0.363
1-Round-CG 400 4700 569.17 61.9 0.324
2-Round 200 5548 1192.55 106.8 0.280
2-Round-CG 200 5510 952.06 95.5 0.251
3-Round 140 6372 1211.87 159.0 0.293
3-Round-CG 140 6311 1172.16 156.2 0.288
4-Round 100 7144 1304.64 237.0 0.314
4-Round-CG 100 7036 1140.59 232.4 0.308
Unrolled 10 35735 2015.75 12628.4 3.841
Unrolled-IG 10 43584 711.15 1107.0 0.337

(b) SUNDAE-GIFT

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round 720 3548 430.11 69.4 0.583
2-Round 360 4313 642.57 107.8 0.454
3-Round 252 5136 769.42 147.7 0.437
4-Round 180 5858 863.70 242.5 0.513
Unrolled 18 34571 1145.93 12045.5 5.551
Unrolled-IG 18 42419 395.01 1076.7 0.496

(c) HYENA

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round 400 3941 744.19 68.3 0.358
1-Round-CG 400 3850 662.07 59.8 0.313
2-Round 200 4746 1062.73 97.5 0.256
2-Round-CG 200 4787 1066.67 94.4 0.248
3-Round 140 5629 1380.63 151.7 0.280
3-Round-CG 140 5542 1413.84 149.2 0.276
4-Round 100 6327 1425.74 227.2 0.301
4-Round-CG 100 6238 1500.00 232.4 0.307
Unrolled 10 34988 2045.45 12389.3 3.768
Unrolled-IG 10 49661 711.02 134.5 0.409

(d) LOTUS-AEAD

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round 1036 6462 223.29 88.08 1.117
1-Round-CG 1036 6150 223.29 57.9 0.734
2-Round 518 6938 358.70 108.3 0.721
2-Round-CG 518 6710 376.94 88.10 0.586
3-Round 370 7404 431.23 138.3 0.625
3-Round-CG 370 7154 441.63 102.2 0.463
4-Round 259 7843 481.37 181.5 0.661
4-Round-CG 259 6238 539.14 171.9 0.627
Unrolled 37 19867 819.56 4013.4 3.704
Unrolled-IG 37 27912 216.64 623.9 0.576

(e) LOCUS-AEAD

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round 1036 5969 265.39 84.96 1.048
1-Round-CG 1036 5724 287.34 55.6 0.686
2-Round 518 6471 402.89 102.6 0.634
2-Round-CG 518 6229 503.15 80.1 0.495
3-Round 370 7035 522.40 132.2 0.585
3-Round-CG 370 6688 540.54 102.4 0.453
4-Round 259 7445 617.76 175.2 0.544
4-Round-CG 259 7048 597.03 171.9 0.524
Unrolled 37 19410 819.99 3880.6 3.582
Unrolled-IG 37 27455 216.58 615.6 0.568

(f) SKINNY-AEAD

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round 560 8011 493.32 159.1 1.079
1-Round-CG 560 7451 400.22 136.3 0.924
2-Round 280 8701 645.88 200.9 0.683
2-Round-CG 280 8205 683.44 184.7 0.628
3-Round 190 11109 682.02 320.5 0.742
3-Round-CG 190 10546 648.47 304.4 0.705
4-Round 140 12890 691.48 528.4 0.904
4-Round-CG 140 12354 783.67 513.8 0.879
Unrolled 10 69155 1422.22 26581.4 7.588
Unrolled-IG 10 110012 829.85 2125.9 0.607

(g) Romulus

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round 514 5729 642.19 123.2 0.782
2-Round 262 6315 657.24 153.1 0.497
3-Round 181 8960 665.06 286.4 0.644
4-Round 136 10398 662.80 472.9 0.801
Unrolled 19 68095 751.79 26480.1 13.409
Unrolled-IG 19 79277 683.63 4513.2 2.285

(h) ForkAE

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round 752 7362 363.88 159.4 1.335
1-Round-CG 752 6841 330.87 135.9 1.138
2-Round 380 8433 487.39 198.7 0.843
2-Round-CG 380 7618 478.92 173.3 0.735
3-Round 251 9863 666.13 309.0 0.868
3-Round-CG 251 9125 587.66 301.5 0.847
4-Round 190 12082 485.44 548.7 1.170
4-Round-CG 190 11608 482.74 528.0 1.126
Unrolled 9 103713 1606.63 55318.4 13.418
Unrolled-IG 9 166923 1177.01 15418.5 3.740
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Table 5. Measurements for the Pyjamask and SATURNIN implementations.

(a) Pyjamask

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round-CG 180 15158 1485.04 193.3 0.387
2-Round 96 19552 1956.26 467.1 0.498
2-Round-CG 96 19184 1959.60 426.5 0.454
3-Round 72 26707 2287.67 897.4 0.718
3-Round-CG 72 26353 2287.67 859.0 0.687
4-Round 60 34363 2249.45 1354.9 0.903
4-Round-CG 60 34031 2241.19 1315.1 0.876
Unrolled 12 60540 4027.83 8602.7 1.147
Unrolled-IG 12 65610 2491.91 2494.1 0.333

(b) SATURNIN

Implementation Latency Area TPmax Power Energy
(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

1-Round 273 15214 638.78 413.8 1.255
1-Round-CG 273 14540 622.96 382.6 1.161
2-Round 143 20530 2226.89 564.8 0.897
2-Round-CG 143 19184 2226.89 531.3 0.844
4-Round 78 22895 2062.23 858.1 0.744
4-Round-CG 78 22160 2092.87 823.3 0.714
Unrolled 13 70348 3322.58 37791.1 5.459
Unrolled-IG 13 87854 2491.91 4790.6 0.623

by a register bank in between, which suppresses the glitches produced by the TI
of G. The approach has been summarized in Fig. 6a.

The structure has an additional disadvantage that they require 2 clock cycles
to compute the shared s-box output, whereas a 4-share implementation would
require only one cycle. Since time efficiency is also an equally important compo-
nent of energy efficiency, this implies that it is not immediately evident that a
3-share would beat 4-share, as far as energy consumption of a TI is concerned.
To make a fair evaluation of the energy efficiency of the AEAD schemes we
implemented first order TI with the following characteristics:

1. We implemented first order TI of only round based circuits. This is neces-
sary because r-round unrolled circuits must necessarily have higher algebraic
degree, and as per the observation in [24], it will require more shares to con-
struct a TI. For example a 2-round unrolled TI of a block cipher with a
cubic s-box has algebraic degree 6, if properly designed and then 7 shares are
required. The exact algebraic forms of each bit of a 7-share of a 1st order TI
is likely to be very complicated, due to high degree, with multiple terms in
each expression, eventually leading to large costs in area and power.

2. We implement TI profiles in which only the state path of the underlying
encryption primitive is shared, but not the keypath. Many previous papers
have taken this approach [11,25], as it is adequate for first order security and
for simplicity we follow the suit. If the keypaths were also shared, we estimate
that it would increase the power consumption of the AEAD schemes by a
similar factor, and energy consumption comparisons would probably lead to
similar results. In short, we implement threshold circuits for all the AEAD
schemes except SATURNIN. The mode SATURNIN was designed in an unusual
way that the output of block cipher is used as the key in the subsequent block
cipher call. And so a TI which only considers shares in the datapath is not
possible for this mode.
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Fig. 6. (a) TI of a cubic s-box in 3 shares, (b) Energy consumptions in Pyjamask.

5.1 S-Box Details

Most of the schemes benchmarked in this work have cubic s-boxes with 4-bit
inputs that are decomposable into quadratics F ◦ G, and so efficient 3 and 4-
share implementations are possible.

GIFT: The s-box of GIFT belongs to the cubic class C172 which is decomposable
into 2 quadratics using a direct sharing approach. The algebraic expressions
of the output shares of both the 3 and 4-share TI can be found in [20].
Pyjamask-BC: The s-box of Pyjamask-BC belongs to the cubic class C223 which
is decomposable into 2 quadratics also using a direct sharing approach.
SKINNY: The s-box S8 of SKINNY takes 8 input bits and has algebraic degree
equal to 6. Therefore, a single cycle implementation would require 7 shares.
Instead, we implement only a 3-share TI of all SKINNY based modes based
on the recommendation given by the designers in [11]. S8 can be decomposed
into I ◦H◦G ◦F where each of these functions is an 8-bit quadratic s-box. In
this particular case, a MUX is placed at the output of F , G, H and I (which
is merged with the round function circuit). The algebraic expressions of the
output shares of the 3-share TI can be found in [11, page 32].

5.2 Results

Table 6 lists the simulation results using the same measurement setup as the
unshared round-based implementations (see Table 1). It can be seen that the
schemes using SKINNY consume most energy, which is intuitive since the s-box
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needs 4 clock cycles for evaluation. On the other hand, it is surprising to see
that 4-share TI circuits have similar energy-efficiency when compared to the
corresponding 3-share circuits.

Table 6. Measurements for the 1-round threshold implementations. The schemes using
GIFT are colored in light gray whereas, SKINNY based schemes are in white

Candidate Conf. Shares Latency Area TPmax Power Energy
# (cycles) (GE) (Mbps) (mW) (nJ/128-bit)

GIFT-COFB CG 3 800 16386 208.9 0.214 2.243
CG 4 400 25850 350.8 0.358 1.875

SUNDAE-GIFT - 3 1440 13297 145.7 0.215 3.719
- 4 720 21848 285.2 0.357 2.999

HYENA CG 3 800 14769 344.9 0.212 2.216
CG 4 400 24540 497.4 0.358 1.875

LOTUS-AEAD CG 3 2072 14176 121.7 0.145 3.581
CG 4 1036 19712 133.0 0.262 3.232

LOCUS-AEAD CG 3 2072 12366 121.7 0.137 3.362
CG 4 1036 17597 176.8 0.255 3.148

SKINNY-AEAD CG 3 2240 18501 92.83 0.2264 6.134

Romulus CG 3 2056 13450 130.00 0.1865 4.656

ForkAE CG 3 3008 17008 76.60 0.2483 8.304

Pyjamask CG 3 348 42001 620.2 0.472 1.825
CG 4 180 64577 927.6 0.814 1.628

One of the reasons for the above observation can be justified as follows:
the fact that a 3-share circuit takes 2 cycles to evaluate s-box works against
it. To understand the reasons better, we re-ran the Pyjamask simulations (with
-no autoungroup directive to the compiler) and obtained a breakdown of the
energies consumed by individual circuit components to process 1 associated data
and 8 plaintext blocks. A summary is presented in Fig. 6.

One can see that whereas the energy consumed by the other components
are comparable, the shared s-box layer (marked as S-Layer in the figure) of the
4-share TI consumes a lot of energy which is to be expected because the shares
are algebraically more complicated. However, the 3-share TI does one additional
operation, which the 4-share TI is not required to do, and that is writing values
output by the G-layer on to the intermediate register bank. As it turns out these
intermediate register writes consumes almost as much energy as the shared s-
box circuit in the 4-share TI. Thus on average the energy consumed by the block
cipher components in both the implementations balance out.

6 Final Observations and Conclusion

We tried to give a comprehensive guide to designing energy-efficient authenti-
cated encryption schemes by evaluating a selection of ten NIST LWC candidates
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that make use of a lightweight or a semi-lightweight block cipher at their core.
In the process we were able to look at each candidate individually and iden-
tify optimal circuit configurations that would reduce the energy consumption
of the AEAD circuit as a whole. We were also able to make broader observa-
tions regarding energy efficiency in AEAD modes instantiated with lightweight
block ciphers. In the second part of the paper, we turned our attention towards
threshold implementations. We looked at both 3-share and 4-share threshold
implementations of the schemes and made energy measurements. For schemes
based on SKINNY, the fact that 4 cycles are required to evaluate the shared s-box,
means that the AEAD scheme must sacrifice more of its energy for the cipher
itself. For the other candidates we note an up to 20% decrease in energy con-
sumption for the 4-share implementation in comparison to the 3-share designs.
We conclude our paper with the following claims, which applies to block cipher
based AEAD paradigm, that can hopefully help achieve the ultimate goal of
lightweightness with respect to energy consumption.

1. The size of register banks play an important role, in energy and area of
an r-round unrolled AEAD circuit.3 In order to achieve efficiency, the designers
should favor choices which lead to fewer number of storage elements, i.e. utilize a
small number of temporary variables as possible in the mode of operation. 2. The
r-round unrolled implementations strike a good balance between area, through-
put and the energy consumption. However, the optimal value for r depends both
on the block cipher and the surrounding mode of operation. Designers are recom-
mended to experiment with different choices of r for the full AEAD scheme, and
keep in mind that experiments based solely on block ciphers are not sufficient.
3. If a given AEAD scheme contains many storage elements, implementors are
recommended to employ techniques such as clock-gating as much as possible to
reduce the energy consumption. The efficiency of the clock-gating scales up with
the number of idle storage elements and the total number of clock cycles during
which they remain inactive. 4. From the energy perspective, there is almost a
direct correlation between the lightweightness of non-threshold and threshold
implementations of an AEAD scheme. Hence the optimal design choices for TI
align well with the aforementioned decisions.
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Abstract. Cross-site search attacks allow a rogue website to expose
private, sensitive user-information from web applications. The attacker
exploits timing and other side channels to extract the information, using
cleverly-designed cross-site queries.

In this work, we present a systematic approach to the study of cross-
site search attacks. We begin with a comprehensive taxonomy, clarifying
the relationships between different types of cross-site search attacks, as
well as relationships to other attacks. We then present, analyze, and
compare cross-site search attacks; We present new attacks that have
improved efficiency and can circumvent browser defenses, and compare
to already-published attacks. We developed and present a reproducibil-
ity framework, which allows study and evaluation of different cross-site
attacks and defenses.

We also discuss defenses against cross-site search attacks, for both
browsers and servers. We argue that server-based defenses are essential,
including restricting cross-site search requests.

1 Introduction

When a user requests a page from a web-application, the response sent to the
browser often includes instructions for the browser to make additional requests
for other content. These additional requests are often cross-site requests to a
different domain. Cross-site requests are allowed by many websites and widely
used to include off-site content in a web page. Unfortunately, they are also abused
for cross-site attacks.

Cross-site (XS) attacks are often launched by a malicious website that is
accessed by the user, who is unaware of the risk. The malicious website asks the
browser to send a request to a benign website that contains private information
belonging to the client; the ultimate goal is to expose that information to the
malicious website. Such information may be user data stored by the web-service
(e.g., webmail) or private meta-data related to the user (e.g., information on the
user’s browsing history or previous interactions with the web-services). CSRF,
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XSS, and Clickjacking [19,27] are common cross-site attacks. Cross-site attacks
are easy to launch, as they do not require Man In The Middle (MITM) or even
eavesdropping capabilities.

Defenses against such cross-site attacks are the cornerstone of browser secu-
rity. The main defense implemented by all browsers is the Same Origin Policy
(SOP). SOP prevents scripts at one origin (site) from directly accessing content
at a different origin (site).

Side channel attacks exploit attributes such as size and timing to obtain
insight about the data, even though the access is restricted and the data are
encrypted. It has been shown that side-channel information, such as packet tim-
ing, makes it possible to break cryptography systems or infer keystrokes in SSH
[25]. For example, Zhang et al. [28] hijacked user accounts in a cloud environment
using a cache-based side-channel.

Cross-site side-channel attacks are a combination of these two attack types.
They can be used to bypass cross-site defenses using side-channel leaks. SOP
may not be able to prevent the exposure of information via cross-site side-
channels attacks. This particular attack type was demonstrated in several works.
Heiderich et al. [18] tried to extract the cross-site request forgery (CSRF) token
in order to bypass CSRF-defenses, while Bortz and Boneh [2] focused on extract-
ing the current state of the web-page view. Malicious CAPTCHA [14] has also
been used to trick the user into disclosing private information. In another attack,
cross-site side-channel was used to detect whether a user is contacting a given
web-site, even when the user uses Tor browser [16].

Fig. 1. Cross-site side-channel attacks are a combination of two attack types: cross-
site and side-channel. This particular combination can be used to bypass cross-site
defenses using side-channel leaks [2,14,18]. XS-Search attacks are also an example of
this combination [13]. Similar to cross-site attacks, XS-Search attacks allow a script
from a rogue website to perform an attack on data of other websites. Yet, similar
to side-channel attacks, XS-Search attacks exploit side-channel analysis to expose the
user’s private information.
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In this paper, we investigate cross-site search (XS-Search) attacks. XS-Search
attacks abuse the search capability provided by many web-services to expose the
private information of a user. This may be user data stored in the site (e.g., for
webmail) or private meta-data related to the user (e.g., information on the user’s
browsing history). XS-Search attacks leverage the fact that when a search query
has several matches, the resulting size of the response when there is a match
will usually be larger than the size of a response that does not have any matches
i.e., an empty response. Moreover, the computation time, and the transmission
and processing times are often related to the number of matches in the response.
XS-Search attacks are a composite of cross-site attacks and side-channel attacks;
Fig. 1 presents the relationship between XS-Search attacks and other categories
of cross-site and side-channel attacks. XS-Search attacks are considered cross-site
attacks since they are launched by a rogue website and exploit requests sent from
the browser, which includes the user’s cookie in some web-services, to expose
private information related to the user and their operations in this web service.
Because SOP restrictions prevent the rogue web-page from directly accessing the
response received from the web-service, these attacks also employ side-channel
techniques that provide information about the response-time and/or response-
length.

Figure 2 depicts an example of a XS-Search attack that exploits the side-
channel analysis of responses to queries on the victim’s account. This is done
by checking if the victim’s name is a specific guess, say ‘victim’. The attacker
sends a pair of queries to a web service like Gmail. The first is a challenge query
for all messages sent by ‘victim’, which will obviously match many records. The
second is a dummy query that will not match any records. We use the notation
fSC to denote a function that exposes the side-channel information. The attacker
analyzes the information and tries to detect whether the challenge query returns
‘many’ records (i.e., user name is indeed ‘victim’) or no results (i.e., user name
is not ‘victim’).

Similar to other side-channel attacks, XS-Search attacks face significant chal-
lenges. These include delays that depend on dynamically changing factors, such
as congestion and concurrent processes in the client and server. Moreover, the
side-channel leak is often influenced by several different factors, including client
bandwidth, server load, client CPU performance, and more. Section 5 evaluates
several methods to overcome these errors, such as inflation methods to increase
the difference between empty and non-empty responses.

We investigate two XS-Search side-channels: length-based and time-based.
Section 3 reviews several time-based XS-Search attacks, which use time measure-
ments to distinguish between search-responses that contain results and responses
that are empty with no results. Length-based XS-Search attacks use the length of
the response as a side-channel. In Sect. 4, we introduce the first effective length-
based XS-Search attack. This attack exploits browser features to discover the
exact length of the response; this overcomes the imprecision of time measure-
ments and exposes information more efficiently.
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Fig. 2. An example of XS-Search attack exposing the name of the victim. The malicious
script instructs the victim’s browser to send a pair of search queries to the web service
(e.g., Gmail). The second search query has a ‘dummy’ query that will not match any
records but serves as a baseline for the side-channel analysis. The malicious script
analyzes the side-channel information exposed by fSC. Time measurements and length
samples can serve to distinguish between non-empty and empty responses.

Contributions of this work:

1. Taxonomy, presentation and evaluation of XS-Search attacks. XS-
Search attacks were presented in [13,15]; we provide a taxonomy, overview,
and evaluation of these and other novel attacks, to provide a complete, orga-
nized view of this non-trivial threat vector. This includes a description of the
primary known XS-Search attacks, including the Network-Time (NT) XS-
Search, Cache-Time (CT) XS-Search, and Processing-Time (PT) XS-Search
attacks described in Sects. 3.1, 3.2, and 3.3, respectively.

2. Introduction of highly-efficient length-based (LB) XS-Search
attack. LB XS-Search, described in Sect. 4, exploits new browser features
to directly and precisely discover the length of responses. This results
in improved performance, compared to time-based XS-Search attacks as
described in Table 1. We performed responsible disclosure of the vulnera-
bility (and assigned CVE), and it was fixed in recent browser release.

3. Reproducible evaluation of XS-Search attacks and defenses. Previ-
ous works reported XS-Search results based on experiments conducted on
‘real’ web-services. Such results are interesting and we also perform this kind
of evaluation. However, such experiments are not reproducible. Changes in
the sites, their content, and even the network conditions can influence the
results. To allow reproducible experiments, we set up an infrastructure that
is independent of external web-services (available on GitHub [17]). This infras-
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tructure allows us, and other researchers, to investigate and evaluate known
and new XS-Search attacks as described in Sect. 7.

4. Defenses. In Sect. 8, we present guidelines and defense methods to help web-
services preclude XS-search attacks, including attacks that may exploit new
browser vulnerabilities.

Table 1. This table presents the results of two experiments: extracting a credit card
number from a Gmail email account and detecting whether the victim sent an email
to a specific user (in the Enron dataset). See full experiment details in Sect. 7.

XS-Search

attack

Gmail: credit card

theft

Enron Dataset:

expose contact from

the sent emails

Success rate

(%)

Average time

(sec)

Number of

requests

Success rate

(%)

Average time

(sec)

Number of

requests

NT (Sect. 3.1) 90 1200 2000 82 110.9 2000

CT (Sect. 3.2) 96 60 115 95 45.32 2

LB (Sect. 4) 100 10 115 100 0.5 2

2 Taxonomy of XS-Search Attacks and Related Work

As mentioned earlier, XS-Search attacks are both cross-site attacks and side-
channel attacks. In Sect. 1 we presented related works and attacks, Fig. 1 presents
the relationship between XS-Search attacks, and other categories of cross-site
and side-channel attacks.

Fig. 3. XS-Search attacks exploit side-channel analysis to expose a user’s private infor-
mation. There are two exploitable side-channels: length and time. This figure presents
several attacks that exploit these side-channels and several methods to upgrade these
Boolean attacks. These methods can be applied to allow efficient exposure of complex
data.
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In this section, with the aid of Fig. 3, we present the taxonomy of all XS-
Search attacks and methods. In Subsect. 2.1, we describe two XS-Search attack
types and in Subsect. 2.2, we present several methods to improve and upgrade
these attacks.

2.1 XS-Search Attack Types

XS-Search attack performs side-channel analysis of responses to queries against
the victim’s account. We investigate two XS-Search side-channels: length-based
and time-based.

1. Timed-based XS-Search attacks [13,15]:
1.1 Network-Time (NT) XS-Search (see Sect. 3.1) attempts to distinguish

between responses that produced search results and responses that did
not, using numerous network time (round-trip delay) measurements.

1.2 Cache-Time (CT) XS-Search (see Sect. 3.2) is based on measuring the
time it took to load the response from the browser’s cache. This is as
opposed to measuring the time the response loads from the network, as
is done for NT XS-Search attacks.

1.3 Processing-time (PT) XS-Search (see Sect. 3.3) is based on causing a sig-
nificant difference in the time required to process the search queries in
the server. This difference can often be significant for carefully engineered
queries, such as queries that are constructed as a conjunction of many
terms. This exploits the fact that these complex queries may cause exces-
sive computation time in the server. The attack was shown to be effective
only for simple Boolean queries.

2. Length-Based (LB) XS-Search (introduced in Sect. 4). While previous timed-
based XS-Search attacks used time measurements to learn the length of a
response, LB XS-Search exploits the browser’s features to discover it directly.
These vulnerable browser features allow LB XS-Search to overcome the lack
of determinism in previous attacks and more effectively expose the length of
the cross-site response.

2.2 XS-Search Methods

XS-Search attacks face significant challenges, these include delays that depend
on dynamically changing factors, such as congestion and concurrent processes in
the client and server. We evaluate several methods to overcome these errors:

1. Inflation methods (see Subsect. 5.1) work by increasing the difference between
non-empty and empty responses so they can be distinguished from one
another.
1.1 Response-Length Inflation increases the length of responses using inflating

parameters in the query.
1.2 Processing-Time Inflation increases the time it takes the server to process

the responses, causing excessive computation time in the server using
carefully engineered queries.
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2. Second-Order (see Subsect. 5.2) methods use storage manipulation to take
advantage of the victim. The attacker adds to the victim’s account (e.g.,
email inbox), multiple records that contain information in which the attacker
is interested (e.g., reset password token). When the data appears in many
records, the attacker can search for it and detect whether the response is
empty or contains many records.

3. Search methods (see Subsect. 6) We show several search methods to efficiently
resolve complex queries:
3.1 Any-Term Identification (ATI) (see Subsect. 6.1) is a term-identification

algorithm. Term-identification algorithms are useful when the attacker
has a large set S containing n potential search terms, e.g., name of per-
son/location/project/other names, phone-numbers, credit-card numbers,
or passwords. The attacker wants to identify which, if any, of these terms
appear in the private data records of the client.

3.2 Char-by-Char (see Subsect. 6.2) can be used when the indexing technique
in the attacked service is based on partial strings and the search interface
supports searching based on parts of strings.

For the sake of simplicity, Sects. 3 and 4 focus on the ability to answer Boolean
questions about the user. Sections 5 and 6 suggest several methods that can
upgrade the simple Boolean attacks to expose complex data e.g., credit-card
number.

3 Time-Based XS-Search Attacks

Time-based XS-Search attacks exploit the fact that the loading time of an
HTTP response in the browser provides information about the response’s con-
tent. Specifically, the loading time of a non-empty and an empty response is often
different. This difference could be due to the processing time of the request or
due to the size of the response. The attack measures the time it takes to receive
a response resulting from search requests.

To launch the attack, the attacker sends multiple pairs of challenge requests
alongside dummy requests. Based on the response time values that are measured,
the attacker can decide whether the challenge request resulted in an empty
response or a non-empty response, i.e., there were some matching records. Using
statistical tests on both measurements can indicate whether they were drawn
from similar distributions. If they weren’t drawn from similar distributions, the
challenge request resulted in a non-empty response (See Fig. 2).

3.1 Network-Time (NT) XS-Search Attack

NT XS-Search attacks focus on the network delays and measure the round-trip
delay of search requests. The transmission and the loading time of a resource
depends on its size: the larger the resource, the more time it takes to transmit
and load it. The size of non-empty responses is greater than the size of empty
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responses, thus resulting in a longer measured delay time. To overcome factors
that affect the measurements, such as client bandwidth and server load, the
attacker has to send each request multiple times. To improve the accuracy of the
measurements, the attacker can also use inflation techniques. Inflation techniques
increase the difference between non-empty and empty responses, making them
more distinguishable (see Subsect. 5.1).

The Caching Challenge. To speed up web browsing, browsers are designed to
download web pages and store them locally in the browser cache. When the same
page is visited for a second time, the browser loads the page locally from the
cache instead of downloading it from the network. This may foil the NT XS-
Search attack in two ways. First, it may cause the ‘dummy’ query to be served
directly from the cache. Second, if multiple queries are sent for the same request
to improve precision using many samples, then all but the first query may be
served from the cache, without any network delay or server-processing delay.

To overcome this challenge, the attacker concatenates a random dummy
parameter to each request. This forces the browser to send the request to the
server since it is not identical to the previous requests. As a result, the measure-
ment is not affected by browser caching.

3.2 Cache-Time (CT) XS-Search Attack

CT XS-Search attack exploits the fact that responses loaded from the browser
cache create a timing side-channel that allows information to be leaked. The
duration of a measurement from the cache is significantly lower than a mea-
surement from a remote server. Therefore, an attacker can compensate for the
smaller difference in the loading time by taking many local measurements. An
additional advantage of the CT XS-Search attack is that every request is sent
only once to the server; this reduces the chance of detection by shortening the
duration of the attack. A basic CT XS-Search attack tries to answer a Boolean
question. The attack sends the server only two requests, challenge and dummy,
and stores the responses in the browser cache. The attack then collects time
measurements locally in the victim’s browser by loading the responses from the
cache several times.

The Cache-Time (CT) XS-Search attack is more robust than the NT XS-
Search attack because it is not affected by the delay between the victim and the
server, nor by the variability in the processing delay at the server. An additional
advantage of this method is the fact that every request is sent only once to the
server, reducing the chance of possible detection.

3.3 Processing-Time (PT) XS-Search Attack

Processing-Time (PT) XS-Search attacks are based on causing a significant dif-
ference in the time required to process the search queries; this difference can
often be significant for carefully engineered queries. The attack exploits the fact
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that these queries may cause excessive computation time in the server. A PT
XS-search attack is applicable when the following conditions are satisfied:

1. Multiple term queries - Queries can be constructed as a conjunction of two
or more terms.

2. Early abort - Once any term(s) return false, the entire processing is aborted
(returning false) without waiting to complete the computation of any remain-
ing terms.

Consider a search query containing the conjunction σ∧θ, where σ is an easily-
computed search term and θ is a hard-to-compute term. With the ‘early abort’
condition, if there is no record matching σ, the service will immediately return a
negative response (no matching record). Conversely, if there is a matching record
and σ resolves to true, the service will proceed to evaluate the ‘hard’ term θ, and
return results only after that evaluation is completed. This technique provides
a timing side-channel that allows an attacker to determine whether or not the
response contains records matching the σ term.

4 Length-Based XS-Search Attack

In this section, we present the LB XS-Search attack, illustrated in Fig. 4b. This
attack is based on direct, precise measurements of the length of the responses. We
first describe how the attack uses the length of a response to find the number of
records returned in the response. Then, we present several methods that provide
a precise measurement of the length of the cross-site response.

4.1 Computing the Number of Records from Response-Length

We now explain how the adversary can compute the number of records returned
for a specific search query, based on the length of the response. The computation
works for the common case where search responses have the structure shown in
Fig. 4a. Namely, the response consists of a fixed length meta-data field, whose
length we denote as φ, and of ρ bytes for each record returned.

The adversary first finds the values of the constants φ and ρ for the attacked
search web-service. This is done once and can typically be done in advance before
sending requests from the script to the service.

Assume, therefore, that φ and ρ are known. The malicious script sends a
search query, assuming the script can learn the length l of the response, perhaps
using one of the methods described in the following subsections. The number of
records in the response is given by: r = (l − φ)/ρ. The process is illustrated in
Fig. 4b.

If the length of the responses exactly follows the structure of Fig. 4a, and the
length l is found precisely, then a single query, or very few queries, suffice to
know the exact number of records returned in a response. This allows quick and
precise leakage of private information. See the results in Table 1.
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(a) Structure of typical search
response (b) LB XS-Search attack

Fig. 4. Figure 4a depicts structure of typical search response allowing identification of
the number of records returned, given the length of the response. Figure 4b depicts LB
XS-Search attack, a malicious script sends a cross-site search query to a web service,
whose responses are structured as in Fig. 4a. The number of records returned r is given
by: r = (l − φ)/ρ.

nav igator . webkitTemporaryStorage . queryUsageAndQuota (
function ( usedBytes , grantedBytes ) {

conso l e . l og ( ’we are us ing ’ , usedBytes
’ o f ’ , grantedBytes , ’ bytes ’ ) ; }

Listing 1.1. The queryUsageAndQuota function of the Chrome Quota API, returning
the storage used by the cache. The function is used by Algorithm 1 to calculate the
size of a response.

4.2 Measuring the Response Length

We found several methods that provide a precise measurement of the length of
the cross-site response.

Chrome Quota Management API. This method to expose the length of
the cross-site response exploits implementations of the Chrome service workers.
Service workers allow HTTP responses to be saved in cache storage to give users
a more efficient and pleasant experience. This component also enables developers
to create and intercept HTTP requests and responses [23].

Chrome allows the developers of service workers to manage cache stor-
age using the Quota Management API [3]. Part of this API is the
queryUsageAndQuota function, which allows a script to check the remaining
storage in the cache; it is called as in Listing 1.1. This function returns the stor-
age size that is being used and the available space left. Using Algorithm 1 and
the Chrome Quota API, we were able to calculate the exact size of the query
response.

The vulnerability was reported in June 2016 [4] and was exposed in Google
Chrome from Version 51 (May 2016) to Version 62 (Oct 2017).
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Algorithm 1. Calculate a stored cross-site response size in a service worker’s
cache using Chrome Quota API
1: // Sample the usage before storing in the cache
2: used before ← queryUsageAndQuota()
3: // Store the response in the service worker’s cache
4: cache.put(response)

5: // Sample the usage after storing in the cache
6: used after ← queryUsageAndQuota()
7: // Calculate the response size
8: return used after - used before

Chrome Padding Responses Mechanism. Subsection 4.2 explained how
the queryUsageAndQuota function of the quota management API allows the
cross-site exposure of response size in Versions 51 to 62 of the Chrome browser.
To support the functionality provided by the Quota API without exposing the
cross-site response size, a padding mechanism was developed and integrated into
Chrome version 63. We next show how the attacker can circumvent this padding
mechanism and still expose the response size.

Let us first explain the padding mechanism. In this mechanism, the saved
response size is the sum of the actual response size plus an additional ‘padding’.
The goal is for the amount of this padding to be random, i.e., unpredictable to the
attacker. This way, the cache usage does not reflect the actual response size and
the designers hoped to foil the exposure of the response length. Specifically, the
padding size is calculated using a hash-based function (HMAC) on the request
URL, using a secret key k known only to the browser. Simplifying a bit:

Padding size = HMACk(requestURL) mod MAX PAD (1)

The challenge for the attacker is to find the padding size for the victim
domain, since the key k used to compute it is unknown. We show how the attacker
can compute it. The solution is based on the observation that the padding size
is the same for all responses from the same URL, as computed in Eq. (1).

Recall that the ultimate goal of the attacker is not to find the padding size
or even the response size. The attacker’s goal is to find the number of records r
in the response. We show how the attacker can still find r, using the following
steps, illustrated in Fig. 5:

1. Send search request to the URL, without cookies. We used an advanced feature
of the Fetch API that allows us to omit credentials from the sent request [12].
This results in a fixed-length response, since the attacker is not authenticated
using the cookie as required. For simplicity, assume the response is of length
φ, i.e., the length of the meta-data is included as part of the search response,
as in Fig. 4a. Then, the attacker uses Algorithm 1, to find the length of the
padded response:
x = φ + (HMACk(requestURL) mod MAX PAD).
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2. Attacker repeats the previous step, for the ‘real’ search request, to the same
URL, with cookies. The goal of the attacker is to find the number of records
r returned in this response, where each record is of known length ρ, as shown
in Fig. 4a. Then, the attacker uses Algorithm 1 again to find the length of
this padded response:
x′ = φ + rρ + (HMACk(requestURL) mod MAX PAD).

3. The number of records in the ‘real’ response is r = x′−x
ρ .

Fig. 5. LB XS-Search attack process using Chrome’s padding mechanism vulnerability.
Malicious script sends two cross-site search requests to the same URL: the first without
cookies and the second with cookies. The first results in a fixed-length response since
the attacker is not authenticated as the victim. The second response holds r search
records since the server authenticates the victim. The padding size of the two responses
is the same as per Eq. 1. The number of records in the ‘real’ response is r = x′−x

ρ

The vulnerability was exposed in Google Chrome from Version 63 (Dec
2017) to Version 81 (March 2020). We disclosed this vulnerability [5], which
was assigned CVE-2020-6442. Google addressed this vulnerability from Version
81 (March 2020), making it safe for us to present in this publication. To pre-
vent the exposure from Version 81, Google added another element to the padding
calculation. This element is a flag that indicates whether the request includes cre-
dentials. In this way, the browser uses different padding for responses to requests
with and without credentials (cookies):

Padding size = HMACk(requestURL + credentials flag)
mod MAX PAD (2)
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5 Optimizations

One of the core challenges in XS-Search is to distinguish between non-empty
and empty responses. In this section, and in Appendix A of the full version of
this paper [20], we present several optimizations that an attacker can perform
to improve the attack’s performance.

5.1 Inflation Methods

Launching a naive timing attack, as described in Fig. 2, is challenging. In many
cases, the difference between the responses is not significant enough to efficiently
distinguish between them. Inflation is a technique that helps overcome this prob-
lem by increasing the difference between non-empty and empty responses. We
consider two inflating techniques: processing-time inflation and response-length
inflation.

Processing-time inflation directly increases the time it takes the server to
process our queries. It causes an excessive amount of computation time at the
server using carefully engineered queries (see Subsect. 3.3 for details).

Response-length inflation increases the length of the responses. This way,
the time it takes to transmit and load responses may also increase. Response-
length inflation is based on three conditions that hold for a parameter in the
search request, which we refer to as the inflated parameter :

1. It is possible to send long strings, with possibly thousands of characters, as
the value of the inflated parameter.

2. The inflated parameter appears only a few times, or not at all, in an empty
response.

3. The inflated parameter appears many times in a non-empty response, usually
as a function of the number of entries in the response.

By sending a relatively long inflated parameter, the length of the response is
significantly influenced by the number of entries. This often allows the attacker
to distinguish between empty responses with no matches versus responses with
a significant number of matches. This optimization can be applied with all types
of XS-Search attacks. (See more details and examples in [13].)

5.2 Second-Order (SO) Optimization

The NT XS-Search and CT XS-Search attacks discussed in Sects. 3.1 and 3.2,
respectively, are limited to pieces of information that appear many times in the
search responses. This makes it crucial to have a noticeable difference between
the size of the responses that contain records with the searched terms and those
that are empty.

Second-Order (SO) optimization is a technique that creates such a difference
between the sizes of the responses, even when only a single record matches the
challenge search request. This optimization manipulates the victim’s account
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(e.g., email inbox) by adding multiple records that contain the information in
which the attacker is interested. Once the data appears in many records, the
attacker can search for it and detect whether the response is empty or contains
many records.

The challenge of the attacker is to inject records holding sensitive information
into the account of the victim, without knowing the content of that information.
For example, the attacker can cause third-party websites to send emails to the
victim’s account and then steal the information from these emails. A common
example is to ask third-party web services to reset the victim’s password using a
reset password email. From such reset password emails, the attacker can extract
a password-reset token (e.g., in Facebook), or details that the victim entered in
the third-party website (e.g., username). See more details and examples in [15].

6 Term-Identification Query Algorithms

The attacks presented in the previous sections answer a single Boolean query. In
this section, we show how to efficiently resolve term-identification queries. In a
term-identification query, the attacker has a large set S containing n potential
search terms, e.g., person/location/project/other names, phone-numbers, credit-
card numbers, or passwords. The attacker wants to identify which, if any, of these
terms appear in the private data records of the client. The solutions use divide
and conquer to identify the relevant term in S, using a series of Boolean queries.

A näıve term-identification method will perform n single term queries.
Because n is often large (e.g., the number of possible names), this attack may
require that the victim remains connected to the rogue site for an unreasonably-
long period of time. Therefore, this näıve method may have limited value in
practice.

In this section we present two term-identification algorithms: the Any-Term
Identification algorithm in Subsect. 6.1, and the Char-by-Char Search algorithm
in Subsect. 6.2. Due to length restrictions, we present the Optimized-Any-Term-
Identification algorithm in Appendix C of the full version of this paper [20].

6.1 Any-Term Identification (ATI) Algorithm

The ATI algorithm can find one term from the set S that appears in the private
data. The attacker assumes that at least one of the terms appears in the private
data. Assuming set S contains at least one term that has search results, simpli-
fying the algorithm’s goal to find any value in S for which the search query has
results, allows ATI to avoid the use of dummy queries. Instead, ATI divides the
set S into two subsets: S1 and S2. The algorithm compares the responses from
the two subsets and continues the search with the greater response set, based on
time or length analysis. The ATI continues recursively until one element remains.
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6.2 Char-by-Char Search Algorithm

During our study, we investigated dozens of vulnerable search interfaces and
examined the different indexing techniques used by websites to handle their data
(see Table 2 in the full version of this paper [20]). Most of the search interfaces
we investigated used the standard method of index by string, specifically whole
strings. Nonetheless, some of the web-services, even vastly popular ones, used
a more flexible and advanced indexing method that allows indexing and search
using partial strings.

The Char-by-Char Search algorithm can be used when the indexing technique
is based on partial strings, and the search interface supports searching based on
parts of strings.

The attack proceeds by searching for all available chars, one at a time. The
query with the most results contains the first char of the desired information.
Afterward, we search for the second char together with the char we already
found. This proceeds until the complete string is revealed.

Char-by-Char Search is an efficient search algorithm, but it is not neces-
sarily an optimal one. In Appendix C of the full version of this paper [20], we
present some algorithmic improvements and optimizations to further decrease
the number of sent requests.

7 Experiments

In this section, we present several experiments conducted to compare the perfor-
mance and results of all XS-Search attacks. We also introduce our reproducibility
system, which allows the reproduction of our experiments, attacks, and defenses.
Due to length restrictions, more experiments, details (network conditions, oper-
ating system, browser version, etc.) and a list of the most popular vulnerable ser-
vices that we exploit and data we were able to extract are available in Appendix
D and E of the full version of this paper [20]. We performed responsible disclosure
and allowed vendors to address the vulnerability before publication.

7.1 Reproducibility

Web services are very dynamic and frequently updated; some of these updates
may impact the site’s vulnerability to different attacks, including changes in
response to disclosures (such as our disclosure). Furthermore, XS-Search attacks
depend on the content stored by the web-service for a particular user, as well as
unpredictable network and processing delays, which may change over time. This
makes it difficult to reproduce results and to compare different methods fairly
and precisely.

To ensure the reproducibility of our experiments despite these challenges,
we set up an infrastructure that is independent of external web-services. This
infrastructure was built on a virtual machine that embodies all the technologies
necessary to perform XS-Search attacks:
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1. Local mail service that allows cross-site search requests, and supports simple
and complex queries. To simulate real user mailboxes, we used the Enron
dataset, which contains data from about 150 users, mostly senior management
of the Enron corporation [10].

2. Deter-Lab service, which allows us to simulate real network conditions, includ-
ing packet-losses and delay, in a reproducible manner [9].

3. Web service that presents the results of the search requests in a user-friendly
interface [11].

4. Service that simulates cross-site attacks and allows performing XS-Search
attacks. We implemented three XS-Search attacks: NT, CT, and LB. (See
experiment details in Subsect. 7.2.)

Using this infrastructure, researchers can reproduce our experiments and analyze
the results. We hope this infrastructure will help others investigate, implement,
and perform more XS-Search attacks. It should also allow researchers to com-
pare their results to the results of existing attacks. We made our attack scripts,
reproducible system, and some other information available on GitHub [17].

7.2 The Reproducible Enron XS-Search Experiment

The reproducible Enron XS-Search experiment is part of our reproducibility envi-
ronment. We used the Enron dataset to simulate 150 email users and performed
our attacks against this simulated mail-service. The Enron dataset consists of
more than 200,000 emails, mostly from the senior management of Enron. The
dataset is unique in that it is one of the only publicly available mass collections
of actual emails that has been made easily available for study.

Attack Goal: Map all Enron employees and detect the leaders of the company.
We wrote a malicious script that checked whether an individual employee sent
emails to the VP of Enron. We assumed that the leaders of the company sent
emails to the VP of the company, and if they did not then they were not part
of the high-level management. An attacker who wants to map the leaders of the
Enron company can use that script and send it to all the employees he would
like to examine. We implemented three scripts that executed this scenario; each
script launched a specific type of XS-Search attack: NT, CT, and LB described
in Sects. 3.1, 3.2, and 4, respectively.

Our experiment attempted to identify 5 Enron employees who were email
users; we repeated the test 10 times for each user. Table 1 presents the results
of the experiment. LB achieved the best results with 100% success. CT achieved
the second-best results, with a lower success rate. The NT attack was far inferior
to the other two, not only in terms of success rate and average time, but also in
the number of requests sent to the server. Although both LB and CT required
only 2 requests, the NT attack required 2000 (!) requests. As mentioned in
Subsect. 3.2, the CT attack collects time measurements locally (instead of send-
ing many requests to the server) in the victim’s browser by loading the responses
from the cache several times.
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7.3 Gmail: Credit Card Number Experiment

Gmail is the world’s most popular mail service and is used by more than 1.4
billion [24] active users. It supplies an advanced mailbox with progressive features
for email correspondence. Gmail allows its clients to conduct search queries and
complex filtering for data in their mailboxes.

Inside the mailbox, Gmail supplies several search interfaces that allow hackers
to expose a credit card number (16 digits) via search. We launched an attack
in January 2019 using LB XS-Search to expose a credit card number from a
victim’s mailbox. As opposed to CT XS-Search and NT XS-Search in which
the credit card number had to appear in several distinct emails (at least five), LB
XS-Search succeeded in revealing a 16-digit credit card number that appeared
only once.

Credit card numbers have a fixed structure, such as dddd-dddd-dddd-dddd.
Even if we assume the card number is completely random, every 4-digit group
has 10,000 possible values. The special structure of credit card numbers allows us
to use term identification algorithms (e.g., ATI) to efficiently extract individual
card numbers.

We compared several XS-Search attacks in Table 1. The timed-based XS-
Search attacks sent many requests and measured them several times in order
to achieve a higher success rate. NT was launched using length-inflation and
ATI. CT was launched using length-inflation, second-order, and OATI. LB XS-
Search supplied determinism and higher accuracy, even though each request was
measured and sent only once. LB was launched using OATI only. Thanks to the
single measurement policy, the attack’s duration was reduced from 1200 s (for
the NT attack) or 60 s (for the CT attack), to less than 10 s.

8 Defense Techniques

8.1 Client-Side Defenses

Hardening Quota Management API. To prevent more Length-Based
attacks and block the attack method mentioned in Subsect. 4.2, a padding mech-
anism was developed by Google to store cross-site responses in the cache; this
way the saved size does not reflect the original response size. Unfortunately, the
mechanism developed had an additional vulnerability (described in Subsect. 4.2).
Van Goethem, et al. suggest [26] a mechanism to pad the responses and store
them in the cache. Appropriate programming of this mechanism could have pre-
vented the attack technique described in Subsect. 4.2.

Cross Origin Read Blocking (CORB). Cross Origin Read Blocking
(CORB) has been a feature in Chrome since version 67 [7], and was developed to
prevent dubious cross-site requests. The feature uses an algorithm that identifies
abnormal requests and replaces their responses with empty ones. For example,
a request from an IMG tag whose response is an HTML page would return
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empty. The mechanism uses the response headers, such as Content-Type, to
decide whether or not a request should be blocked. As of today, CORB restricts
the use of cross-site search queries and prevents some of the attacks presented
in this paper. Nonetheless, CORB does not provide a foolproof solution. The
algorithm decides whether a request is suspicious according to a predetermined
set of rules, which are updated occasionally [8]. Moreover, the latest version of
CORB does not filter cross-site requests sent by extensions and external players
(such as Flash Player) [6]. It is possible that, in the future, a vulnerability will
be found that allows sending cross-site search requests.

8.2 Server-Side Defenses

Anti-CSRF. The term Cross-Site Request Forgery (CSRF) is usually applied
to describe attacks that either commit ‘an unwanted action’ or affect the server
state. Although XS-Search attacks do not commit an unwanted action, they do
expose private data using abusive cross-site requests. Known anti-CSRF tech-
niques can be applied to block these abusive requests. These include challenge-
response (CAPTCHA), anti CSRF-tokens, referrer verification, and same-site
cookies [1,21,22]. Applying any of these anti-CSRF mechanisms to all requests
that may expose sensitive data, directly or indirectly, would prevent any type
of XS-Search attacks. The web relies on connectivity. Sites load resources such
as images, advertisements, scripts, and other elements from different sites. As a
result, it is impossible to completely block all cross-site requests.

Rate Limiting. In the past, restricting the number of requests sent to the
server prevented XS-Search attacks. Rate limiting is especially effective against
time-based XS-Search attacks because these attacks require numerous requests
to leak information effectively. That said, rate limiting is futile against LB XS-
Search attacks because the attack does not depend on time measurements and
hence does not require many requests. Moreover, the attacks in Sect. 3.2 rely
on browser-based timing side channels; therefore, adding a delay in the server
will not be effective. It is also critical to block the inflation techniques. The
inflating SO XS-Search attacks presented in Sect. 5.2 are based on the injection
of maliciously crafted records that significantly increase the size of the response.
Blocking such records, will prevent these particular attacks.

9 Conclusions

With the growing improvements and adoption of web-security mechanisms such
as encrypted-connections and sanitation against cross-site scripting, attackers
are moving to new and more sophisticated attacks. In this paper, we discuss a
new, sophisticated attack vector: cross-site search (XS-Search) attacks.

XS-Search attacks leverage the fact that when a search query has several
matches, the resulting response size will usually be larger than it would be
with an empty response. Using side-channel analysis, the attacker tries to detect
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whether the query returns a sufficient number of results. We consider two side-
channels: length and time.

This paper provides a taxonomy of XS-Search attacks and several methods to
improve them. We describe several XS-Search attacks: Network-Time (round-trip
delay), Cache-Time (loading from cache delay), Processing-Time (server process
delay), and Length-Based (direct exposure using browser vulnerabilities).

We also compare these XS-Search attacks and defenses, evaluate them using
several experiments. To ensure the reproducibility of our experiments, we set up
a reproducibility system. It allows the reproduction of our experiments, attacks,
and defenses. Our evaluation shows that XS-Search attacks successfully exposed
sensitive information (e.g., credit card number) from popular web services such
as Gmail, Facebook, and YouTube. (See Table 2 in the full version of this paper
[20].)
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Abstract. Attacks on machine learning systems such as malware detec-
tors and recommendation systems are becoming a major threat. Data poi-
soning attacks are the primary method used; they inject a small amount
of poisoning points into a training set of the machine learning model, aim-
ing to degrade the overall accuracy of the model. Targeted data poisoning
is a variant of data poisoning attacks that injects malicious data into the
model to cause a misclassification of the targeted input data while keeping
almost the same overall accuracy as the unpoisoned model. Sasaki et al.
first applied targeted data poisoning tomalware detection and proposed an
algorithm to generate poisoning points to misclassify targeted malware as
goodware. Their algorithm achieved 85% an attack success rate by adding
15% poisoning points for malware dataset with continuous variables while
restricting the increase in the test error on nontargeted data to at most
10%. In this paper,we consider commondefensivemethods called data san-
itization defenses, against targeted data poisoning and propose a defense-
aware attack algorithm. Moreover, we propose a stronger targeted poison-
ing algorithm based on the theoretical analysis of the optimal attack strat-
egy proposed by Steinhardt et al.The computational cost of our algorithm
ismuch less than that of existing targetedpoisoning algorithms.As a result,
our new algorithm achieves a 91% attack success rate for malware dataset
with continuous variables by adding the same 15% poisoning points and is
approximately 103 times faster in terms of the computational time needed
to generate poison data than Sasaki’s algorithm.
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1 Introduction

Enterprises that hold sensitive data, such as personal information, are always at
risk of leakage due to malware intrusion. To prevent attacks, malware detection
technology plays an important role. Malware detection is traditionally based on
pattern matching, which detects predefined anomaly patterns [26,28]. Machine
learning-based detection [1,14,15,37] is considered to be more effective currently
for high-rate attacks as typified by zero-day exploits. Deep learning-based detec-
tion can reduce the cost required to extract the complex and large features of
malware and improve detection performance [17,19,31,46].

The security risks of machine learning-based systems have been widely
researched [5]. Evasion attacks (also called adversarial examples) assume that
an attacker does not have permission to access the training data and that the
attacker aims to fool the model by adding manipulated input. In recent work,
Kolosnjaji et al. proposed an evasion attacks against a deep learning-based mal-
ware detection system that input is raw binary file [23]. Data poisoning attacks
are another major attacks against machine learning systems. In data poisoning
attacks, we assume that the attacker is able to inject the manipulated data into
the training data. The purpose of the attack is to decrease the overall classifi-
cation accuracy of the model. Biggio et al. [6] showed the effectiveness of this
attack against the support vector machine (SVM). Newsome et al. [33] applied
poisoning attacks to existing malware detection algorithms and confirmed that
their proposed attacks are highly effective for malware detectors. Data poisoning
attacks against deep learning algorithms have also been studied [32].

Since data poisoning attacks are indiscriminate attacks, an operator can eas-
ily detect the occurrence of the attack by checking the overall accuracy of the
model. In contrast, targeted data poisoning is a targeted variant of data poisoning.
In this attack, an attacker injects poison data into the training data so that only
the targeted class is misclassified as the attacker’s desired class while the overall
accuracy remains high. Targeted data poisoning is considered a more realistic
variant of data poisoning attacks since the operator has difficulty noticing the
attack. Shafahi et al. [40] proposed a poison generator of targeted data poison-
ing for the image classification problem. Sasaki et al. [38] presented a targeted
data poisoning algorithm against malware detectors that uses a margin-based
learning model (SVM and logistic regression).

1.1 Related Work

Backdoor Attacks. Backdoor attacks are variants of targeted data poisoning
attacks. In this attack, an attacker injects poisoning samples into the training
set that have a certain trigger added to them (e.g., white noise or a trans-
parent pattern for image classification). The goal of the attack is to have the
input samples with the trigger misclassified into the attacker’s desired class.
Chen et al. [9] proposed an attack against the DNN-based face recognition sys-
tem, in which the trigger is wearing accessories. Liu et al. [30] applied backdoor
attacks against speech recognition systems. Recently, Dai et al. [11] considered a
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backdoor attack against the LSTM-based text classification problem. Targeted
poisoning attacks against malware detection systems can be seen as a kind of
backdoor attacks if a specific malware family is considered as the target, since
a perturbation is embedded to the targeted data as a backdoor trigger to cause
the misclassification of the targeted malware.

Defensive Methods for Poisoning Attacks. There are many studies on
countermeasures against these attacks. Paudice et al. [34] proposed a defense
mechanism against label flipping poisoning, where attackers are constrained to
manipulate only labels. Baracaldo [4] presented a methodology to exclude online
poisoned data from the training data by evaluating the provenance information
of the data. Steinhardt et al. [42] computed a dataset-dependent upper bound on
the maximum test loss that a poisoning attack causes when a defender uses data
sanitization defenses, which remove the poisoned data by detecting statistical
outliers [10]. For backdoor attacks, some research has focused on the information
of the higher layers of the DNN model [29,43]. There is also a way to identify a
backdoor trigger using the reverse-engineering technique [44].

1.2 Contributions

While there are many proposals on defensive methods against nontargeted poi-
soning attacks, there has been little research about defensive methods for tar-
geted poisoning attacks. In this paper, we apply the sphere defense (also called L2
defense) against targeted poisoning attacks to evaluate the performance of the
defense for malware detection proposed in [38]. The sphere defense is known as a
essential method to disable poisoning attacks mentioned in [22]. Our evaluation
confirmed that the sphere defense indeed sanitizes existing targeted poisoning
attacks.

Then, we propose stronger targeted poisoning algorithms that can evade the
sphere defense: (1) a basic variant of the attacks that solves the optimization
problem for targeted poisoning attacks naively, i.e., by creating the poisoned
data that minimize the validation loss; (2) a streamlined version of the basic vari-
ant, which is an online learning algorithm combines the label-flip attacks [45]
and an idea from the optimal loss analysis proposed in [42]. We evaluate the
effectiveness of these algorithms on multiple malware datasets. The experimen-
tal results show that both of proposed algorithms succeed against the attack
even though the defender applies the sphere defense. Moreover, our algorithms
achieved a 91% attack success rate for dataset with continuous variables for 15%
poisoning, which exceeded the previous result of 85%. In terms of computation
time, the streamlined algorithm is almost 1000 times faster than the basic gradi-
ent based algorithm. Our proposed algorithms enable a more efficient poisoning
attack than existing methods in terms of the success rate and computational
cost.
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2 Preliminaries

2.1 Notation

We consider a binary classification from an input x ∈ X to an output y ∈ Y =
{−1,+1}. The goal of the binary classification is to learn an objective function
parameterized by w that maps X �→ Y. Let � be the loss function. In this paper,
we use logistic regression for the model, and � is logistic loss. We denote the
training data set as Dtrain and the validation set as Dval. The loss L for D and
w is defined as L(w;D) :=

∑
(x,y)∈D �(w;x, y). Let M be a learning algorithm.

2.2 Targeted Data Poisoning Attacks

We assume the same situation as (nontargeted) poisoning attacks, i.e., an
attacker has knowledge of the input space X and learning algorithm M. The
attacker is able to read the training data Dtrain and inject the poisoned data Dp

into the training data, but he cannot remove any data from Dtrain. The attacker
chooses a target class and a desired class. The mean of “class” here depends on
the problem to be solved. In malware detection problems, there are two classes:
malware and goodware, and the target class is a subclass of the malware class,
which consists of specific targeted malware.

The attacker’s objective is to construct a model that misclassifies points
in target class xtarget to desired class ydesired while keeping the accuracy of
the other classes high. In binary classification, the desired class ydesired is the
complement of the ground label of the targeted class, i.e., ȳtarget. In this paper,
we assume that any poisoning point x has the desired label ȳtarget; i.e., the
original label ytarget is flipped to ȳtarget. One of the security applications of
this attack is malware detection systems using federated learning [24] to learn
malicious behavior from users’ applications. In federated learning, a model M
is trained in a collaborative manner among a number of participants. Thus M
is shared by all the participants, including an attacker. After that, an attacker
can inject poisoning data Dp into (a part of) training data Dtrain. Then, a local
model M is trained from Dtrain∪Dp. Finally, the poisoned model M is uploaded
to a central server.

A poisoning point (x, ȳtarget) ∈ Dp is generated by solving the following
bilevel optimization problem [32]:

min
x

L(ŵ; D̄val) s.t. ŵ ∈ arg min
w

L(w;Dtrain ∪ {x, ȳtarget}). (1)

D̄val is the attacker’s validation data, where D̄val = {(x, ȳtarget) | (x, ytarget) ∈
Dval}. The generated Dp is injected into the clean training data Dtrain. Then
the learning algorithm trains on the combined training data Dtrain ∪ Dp and
outputs a model parameter w̃. The attack is considered successful if w̃ classifies
the targeted inputs as ydesired with a high probability and classifies nontargeted
inputs accurately. We introduce several representative targeted data poisoning
algorithms.
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Algorithm 1: Muñoz’s Targeted Poisoning Algorithm [32]

Input: Dtrain, D̄val, L, the initial poisoning point x(0), its flipped label ȳ, the
learning rate η, a small positive constant ε

Output: the final poisoning point x(i)

1 i ← 0, loss ← 0
2 do
3 pre loss ← loss
4 ŵ ∈ arg min

w
L(w; (Dtrain ∪ {x(i), ȳ}))

5 x(i+1) ← x(i) − η∇x(i)L(ŵ; D̄val)
6 i ← i + 1
7 loss ← L(ŵ; D̄val)

8 while pre loss − loss ≥ ε

9 return x(i)

Muñoz’s Algorithm [32]. Muñoz proposed an algorithm to solve Eq. 1 approxi-
mately and generate a poisoning point for targeted poisoning attacks. The pseu-
docode is given in Algorithm 1. In Line 4, the parameter ŵ is learned by a
gradient descent algorithm so that L(w;Dtrain) decreases (from the defender’s
perspective). The poisoning point x(i+1) is updated by adding a gradient so that
both the loss of Dtrain and (x(i), ȳ) decrease (from the attacker’s perspective). In
Line 5, we must compute the gradient of the loss for attacker’s validation data
D̄val w.r.t. the current point x(i). In [32], a back-gradient descent algorithm is
applied to compute the gradient efficiently for deep learning models. Another
solution is to use the influence function proposed in [21],

∇x(i)L(ŵ; D̄val) = −∇ŵ L(ŵ; D̄val)H−1
ŵ ∇ŵ ∇x(i)�(ŵ;x(i), ȳ). (2)

where, H−1
ŵ is a inverse of the hessian matrix Hŵ :

Hŵ = λI + ∇ŵ ∇ŵ L(ŵ; (Dtrain ∪ {x(i), ȳ})). (3)

A poisoning point is generated by iterating through several loops until the loss
remains unchanged. The whole poisoned dataset Dp is obtained by applying
Algorithm 1 |Dp| times.

Extension by Sasaki [38]. Sasaki extends the Algorithm 1 by considering
a constraint term w.r.t L2-norm between a poisoning point (x, ȳtarget) and a
randomly selected point in desired class (xdesired, ydesired) ∈ Dtrain in order to
avoid outlier detection by generating a poison data that has a label ȳtarget =
ydesired close to the distribution of the desired class. Namely,

β‖x − xdesired‖2. (4)
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where, β is a hyperparameter that determines the effect of the constraint for
β ≥ 0. Eq. 4 is combined to the optimization formula (Eq. 1):

min
x

{L(ŵ; D̄val)+β‖x − xdesired‖2}
s.t.ŵ ∈ arg min

w
L(w;Dtrain ∪ {x, ȳtarget}). (5)

Algorithm 1 is modified in Line 5 to consider Eq. 5:

x(i+1) ← x(i) − η∇x(i)L(ŵ; D̄val) − ηβ∇x(i)‖x(i) − xdesired‖2. (6)

They evaluated the effectiveness of the algorithm varying β in the range of 0 to
0.2 against the L2-defense sanitizer. Their result showed the trade-off between
the attack success rate and the detection rate, i.e., the detection rate by the san-
itizer decreases as β increases while attack success rate increases as β decreases.
Therefore, targeted poisoning attack cannot keep the high attack success rate
when a defender uses a sanitizer such as the L2-defense.

Shafahi’s Algorithm [40]. Shafahi presented optimization based targeted poi-
soning algorithm for image classification problem on neural networks. Let f(x)
be a function that propagates input x through the neural network to the input
of the softmax layer. Their optimization formula to craft a poisoning data is:

min
x

{‖f(x) − f(xdesired)‖2+β‖x − xtarget‖2}. (7)

The algorithm to solve Eq. 7 approximately is shown in Algorithm 2. Algorithm 2
reduce the left and right term in Eq. 7 alternately.

At a high level, Eq. 7 and Eq. 5 in Sasaki’s extension are comparable. ‖f(x)−
f(xdesired)‖2 in Eq. 7 can be seen as a loss term between an output of the
classifier from a poisoning point x and an output from a data of desired class
xdesired. If the loss is small, then x is expected to be classified as ydesired. Since
D̄val = {(x, ydesired) | (x, ytarget) ∈ Dval} in Eq. 5, the left term of Eq. 7 (resp.
Eq. 5) can be seen as a loss minimization between x and xdesired.

As for the right term in Eq. 5 and Eq. 7, β‖x − xtarget‖2 in Eq. 5 means
crafting poisoning data x close to xdesired intuitively. On the other hand,
β‖x−xtarget‖2 in Eq. 7 yields x near the targeted data xtarget. A unique feature
of Shafahi’s attack is that they have succeeded in a clean label attack, in which
poisoning data is crafted without flipping its label, by applying the transfer learn-
ing and watermarking techniques, while both Muñoz’s and Sasaki’s algorithm
need label-flipping. In this paper, we consider only label-flipping attacks since as
far as we experimented, no attacks succeeded without label-flipping in malware
and benign software dataset.

We note that all of these three methods do not consider a defender applies a
data sanitization to remove the poison data before a learning model M trains the
dataset Dtrain ∪ Dp, or once the sanitization is applied, the attacks may become
ineffective. It is more realistic to consider an anomaly detector to remove outlier
from the training data that is implemented as a preprocessor in the learning
phase.
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Algorithm 2: Shafahi’s Targeted Poisoning Algorithm [40]

Input: initial poisoning point x(0), desired poisoning point xdesired, targeted
poisoning point xtarget, learning rate η, constraint parameter β,
iteration number N

Output: final poisoning point x(i)

1 i ← 0
2 for i < N do

3 x̂(i+1) = x(i) − η∇x(i)‖f(x(i)) − f(xdesired)‖2

4 x(i+1) =
x̂(i+1) + ηβxtarget

1 + ηβ
5 i ← i + 1

6 return x(i)

2.3 Data Sanitization Defense

Data sanitization defense [10] is the general term for the defenses that are
employed in machine learning algorithms to detect anomalies in the training
data by using statistical information from the training data. The sphere defense
and slab defense are considered in [42] as instantiations of data sanitization
defenses. The sphere defense removes points that are outside a spherical radius,
and the slab defense projects points onto a line between the centroids of the
classes, and eliminates points that are not on the line. For these defenses, the
defender considers a feasible set F ⊆ X × Y and M trains only points on F .

ŵ := arg min
w

L(w; (Dtrain ∪ Dp) ∩ F) (8)

Let μ−:=E[x | y = −1] and μ+:=E[x | y = +1] be the centroids of the positive
and negative classes. Then, the feasible set of defenses are defined as follows:

Fsphere := {(x, y) : ‖x − μy‖2 ≤ ry} (9)

Fslab := {(x, y) : |〈x − μy,μy − μ−y〉| ≤ sy}, (10)

where ry and sy are thresholds. In what follows, we consider only the sphere
defense. In the field of anomaly detection research, the sphere defense is also
called as a centroid anomaly detection and is widely used in anomaly-based
intrusion detection systems for its low computational cost [7,18,27,35]. Anomaly
detection using centroid-based clustering, such as k-means, is an application of
centroid anomaly detection techniques [3,20]. The reason why we choose the
sphere defense for the sanitizer is because of its efficiency as a anomaly detector
and has many applications.

Steinhardt et al. [42] proposed an optimal attack strategy for (nontargeted)
data poisoning attacks against the sphere defense and slab defense based on a
worst-case analysis of the loss function. In Sect. 3.2, we apply this optimal attack
strategy to the targeted poisoning attacks and propose an algorithm to efficiently
generate poison in targeted attacks.
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3 Sphere Defense-Aware Targeted Poisoning Attacks

For targeted poisoning attacks against malware detectors, we consider a binary
classification problem in which a malware detector classifies an input x as either
malware or goodware (benign software). As we mentioned in preliminaries, we
use logistic regression for the malware detector. Some existing results show that
neural networks and decision tree models outperform naive logistic regression
algorithm in terms of detection accuracy [16,41]. However, logistic regression is
still useful for a malware detector when it is used in combination with other
tools or algorithms [8,25]. We consider the feasible set Fgood of goodware for
the sphere defense:

Fgood:={(x, ygood) : ‖x − μygood‖2 ≤ rygood}, (11)

where, μygood :=E[x | y = ygood] and rygood is the threshold. In what follows,
we assume that rygood and μygood are pre-determined by a defender using the
clean training data, i.e., rygood and μygood are determined by (x, ygood) ∈ Dtrain

for simplicity. Then, we consider an attacker-favorable situation in which the
attacker notices that the defender is using the sphere defense as an anomaly
detector and the attacker also knows Fgood (both μygood and rygood). The sphere
defense removes poison that is located in quite different place than clean data.
Solving the loss-maximization problem yields poison located far away from clean
data as is confirmed in the results for poisoning attacks to SVM [6]. Therefore,
the sphere defense may be also effective against poisoning attacks in malware
detection. The verification results of the sphere defense are shown in Sect. 4.4.

The attacker generates the poisoning data Dp carefully so that each point is
inside the sphere Fgood; i.e., he cannot generate a point that will be considered
as an outlier that has very high loss values. Then, the learning algorithm trains
on Dtrain ∪ Dp by removing points outside the sphere. Note that no point in Dp

can be removed by the defense since the attacker generated the poisoning data
so that they would not be removed.

The optimization problem to generate poison in Eq. 1 is rewritten as follows
in the case of the malware detection problem with sphere defense:

min
x

L(ŵ; D̄val) s.t. ŵ ∈ arg min
w

L(w; (Dtrain ∪ {x, ygood}) ∩ Fgood). (12)

3.1 Basic Attack

We present a naive algorithm to generate poison by solving Eq. 12. The pseu-
docode is given in Algorithm 3. The main differences between Algorithm 3 and
Algorithm 1 are as follows:

1. In Algorithm 3, the initial poisoning point x0 is chosen randomly from the
targeted malware in Dtrain so that (x0, ygood) is located in Fgood,

x0
$← {xmal B | (xmal B, ymal B) ∈ Dtrain, (xmal B, ygood) ∈ Fgood}. (13)

where, mal B corresponds to the label of the targeted malware.
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Algorithm 3: Poison Generator against Sphere Defense
Input: Dtrain, D̄val, L, the initial poisoning point x(0), its flipped label ygood,

the learning rate η, a small positive constant ε
Output: the final poisoning point x(i)

1 i ← 0
2 loss ← 0
3 do
4 pre loss ← loss
5 ŵ ∈ arg min

w
L(w; Dtrain ∪ {x(i), ygood})

6 x(i+1) ← x(i) − η∇x(i)L(ŵ; D̄val)

7 t ← μygood − x(i+1)

8 if ‖t‖ > rygood then

9 δ ← ‖t‖−rygood
‖t‖ t

10 x(i+1) ← x(i+1) + δ

11 i ← i + 1
12 loss ← L(ŵ; D̄val)

13 while pre loss − loss ≥ ε

14 return x(i)

2. We check whether x(i+1) is inside Fgood each time the point is updated.
If (x(i+1), ygood) /∈ Fgood, a perturbation δ is added to x(i+1) to project the
point onto the sphere, i.e., (x(i+1)+δ, ygood) ∈ Fgood, where (x(i+1)+δ, ygood)
is closest to (x(i+1), ygood) in terms of L2 distance.

The concept of Algorithm 3 is similar to the influence attack proposed in [22].
However, the two algorithms differ in the following ways: (1) the influence attack
is a variant of the poisoning attack algorithm that aims to degrade the overall
accuracy of the model, whereas Algorithm 3 is for targeted poisoning attacks. (2)
Algorithm 3 updates the point x(i) to decrease the loss of Dtrain ∪ {x(i), ygood},
while the influence attack updates the point to increase it.

3.2 Streamlined Attack Based on the Optimal Attack Strategy

In this section, we study the worst-case loss analysis for targeted poisoning
attacks. Then, we propose a targeted poisoning attack algorithm based on the
analysis. We repost the optimization problem for targeted poisoning attacks (we
omit the sphere defense term for simplicity).

min
Dp

L(ŵ; D̄val) s.t. ŵ ∈ arg min
w

L(w;Dtrain ∪ Dp). (14)

In previously proposed algorithms [32,42], a single poisoning point is computed
by solving the optimization problem of minimizing the loss of w multiple times.
Algorithm 3 is also of this type. The problem for these algorithms is the high
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computational cost for minimizing the loss of w. To address this issue, we con-
sider swapping the inner problem and outer problem in Eq. 14. Note that the
technique of swapping the min-max problem was previously applied to normal
poisoning attacks in [42]. In the following, we develop the discussion in a quite
different way than for the method of nontargeted poisoning attacks.

First, we divide Dtrain into two distinct sets DB
train and DN

train depending
on whether the points represent targeted malware: DB

train = {(xmal B, ymal B) ∈
Dtrain} and DN

train = Dtrain\DB
train. Then, the validation loss D̄val can be replaced

by the training loss DB
train assuming that the validation data D̄val has approxi-

mately the same distribution as the training data DB
train.

min
Dp

L(ŵ; D̄val) ≈ max
Dp

L(ŵ;DB
train) (15)

Note that minx �(w;x, ȳ) is equivalent to maxx �(w;x, y) in the case of binary
classification. We assume a set of poisoning data Dp such that adding any
element of Dp to Dtrain does not noticeably affect the loss of nontargeted
malware. Namely, Dp = {Dp | L(ŵ;DN

train) ≈ L(wc;DN
train)}, where, wc ∈

arg min L(w;Dtrain). This situation is quite natural for targeted poisoning
because the training loss for all data except for the target can be kept as low as
the loss of the clean trained model.

We show that if the poison data Dp is chosen from Dp, arg max
Dp

L(ŵ;DB
train)

can be approximated by arg max
Dp

L(ŵ;Dtrain).

Proposition 1. If Dp ∈ Dp, then,

arg max
Dp

L(ŵ;DB
train) ≈ arg max

Dp

L(ŵ;Dtrain)

where, ŵ ∈ arg min
w

L(w;Dtrain ∪ Dp). (16)

Proof. By the definition of Dp, L(ŵ;DN
train) ≈ L(wc;DN

train). Then,

arg max
Dp

L(ŵ;DB
train) ≈ arg max

Dp

(L(ŵ;DB
train) + L(ŵ;DN

train)). (17)

Since Dtrain = DN
train ∪ DB

train and DN
train ∩ DB

train = ∅, we get the proposition. ��
Proposition 1 allows us to compute the maximum loss for the whole training set
Dtrain instead of DB

train. Then, we show that maximal loss for Dtrain is bounded
by the following proposition:

Proposition 2. If Dp ∈ Dp, then,

max
Dp

L(ŵ;Dtrain) ≤ min
w

max
Dp

L(w;Dtrain ∪ Dp). (18)



Stronger Targeted Poisoning Attacks 75

Proof. maxDp L(ŵ;Dtrain) is bounded by the loss of the training data plus the
poisoning data:

max
Dp

L(ŵ;Dtrain)

≤ max
Dp

(L(ŵ;Dtrain) + L(ŵ;Dp))

= max
Dp

L(ŵ;Dtrain ∪ Dp),

= max
Dp

min
w

L(w;Dtrain ∪ Dp). (19)

We apply the min-max theorem to swap the min and max and achieve the propo-
sition. ��

Expanding the right term of Eq. 18 yields the following optimization problem:

min
w

[

L(w;Dtrain) + max
Dp

L(w;Dp)
]

. (20)

This equation suggests that we should construct a min-max swapped algorithm,
which is similar to the poisoning attack algorithms proposed in [22,42].

The remaining problem is that of computing Dp ∈ Dp. Our strategy is to
plot the poisoning point at almost the same coordinates as the targeted points
in DB

train to increase only the loss L(w;DB
train). A basic strategy is to apply a

variant of label-flip attacks [45]. In this attack, an attacker is allowed to create
the poisoning point so that the initial point is copied from DB

train and the label
is flipped:

Dp ⊆ {(x, ȳ) | (x, y) ∈ DB
train} (21)

To include the intent of the loss maximization of Eq. 20 in Eq. 21, we consider
maximizing the loss �(w;x + d, y), where x is added to a perturbation vector d
restricted to ‖d‖ ≤ r for a small radius r.

Dp ⊆ {(x + d, ȳ) | (x, y) ∈ DB
train,d ∈ arg max

d,‖d‖≤r

�(w;x + d, ȳ)}. (22)

We have no further theoretical support for the idea that the poison data gen-
erated by these equations must be in Dp, but our evaluation shows that such a
poisoning point almost satisfies Dp ∈ Dp in practice.

We constructed an online learning algorithm that combines Eqs. 20, 21 and
22. Our proposed algorithm is shown in Algorithm 4. The parameter w(t) is
trained throughout the for loop by the gradient descent algorithm. Additionally,
a single poisoning point (x(t), y(t)) is computed by solving the optimization for
each loop. To evade the sphere defense, the initial point is chosen from (x, y) ∈
Fgood, which is the same as in the maximization problem in Line 5. After burn+n
loops, the algorithm outputs n poisoning points Dp. There are some notable
points in the algorithm:
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Algorithm 4: Streamlined Poison Generator against Sphere Defense
Input: clean training data Dtrain, feasible set Fgood, poisoning rate ε, learning

rate η, burn-in number burn, optimization radius r
Output: Dp

1 w(0) ← 0
2 for t ← 1, . . . , burn + n do
3 if t > burn then

4 (x(t), y(t))
$← {(x, ȳ) | (x, y) ∈ DB

train ∩ Fgood}
5 x(t) ← x(t) + arg max

d ,‖d‖≤r,(x(t)+d ,y(t))∈Fgood

�(w(t−1); x(t) + d, y(t))

Dp ← Dp ∪ {(x(t), y(t))}
6 g(t) ← ∇L(w(t−1); Dtrain) + ∇�(w(t−1); x(t), y(t))

7 else

8 g(t) ← ∇L(w(t−1); Dtrain)

9 w(t) ← w(t−1) − ηg(t)

10 return Dp

1. If r = 0, the algorithm generates poisoning points in Eq. 21: i.e., it generates
poison data by label-flip attacks.

2. To solve the maximization problem maxd,‖d‖≤r �(w;x + d, ȳ), if the model is
margin based, then maximizing �(w;x, y) is equivalent to minimizing ywTx.
Since we use logistic regression as the model, maximizing �(w;x + d, ȳ) is
solvable by computing ȳwT(x+d) with constraints ‖d‖ ≤ r and (x+d, ȳ) ∈
Fgood. We use an optimization solver to compute it from the viewpoint of
calculation efficiency.

3. We introduce a burn-in process in the for-loop to create a point only when
w(t) ≈ wc, in the same way as for the min-max poisoning attack in [22].

We evaluate the efficiency of the algorithm in the next section. The selection
of an appropriate radius r and burn-in burn is also detailed in the next section.

4 Validation

4.1 Experimental Setup

We implemented all the algorithms in Python with PyTorch.1 All experiments
were conducted in Ubuntu 16.04 with two Intel Xeon E5-2697 3.3 GHz CPU. The
memory consists of two 12 GB NVIDIA TITAN X VRAMs. We used two malware
datasets Ransomware and M-EMBER, created by Sasaki et al. [38]. Ransomware is a
dataset with discrete variables that is based on the dataset created in Sgandurra

1 Our implementation is available on https://github.com/mlearning-security/
stronger-targeted-poisoning.

https://github.com/mlearning-security/stronger-targeted-poisoning
https://github.com/mlearning-security/stronger-targeted-poisoning
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et al. [39], in which the feature vector v is binary and the dataset consists of 942
goodware and 582 ransomware. The dimensions of v are reduced to 400 by using
the mutual information shown in [39], namely, v ∈ {0, 1}400. M-EMBER is a dataset
with continuous variables that is a combination of two datasets EMBER [2] and
the Microsoft malware dataset [36]. M-EMBER includes 9 families of malware and
300,000 goodware. A feature vector of M-EMBER is the byte histogram of the file
that represents the normalized value of the counts of each byte within the file.
Namely, v ∈ [0, 1]256. We choose a malware as the target in Ransomware and
M-EMBER as shown in Table 1. The remaining 8 malware families are used as
nontargeted malware.

Table 1. The candidate of the targeted malware we used.

Dataset Malware family Malware ID

Ransomware Critroni 1

Ransomware MATSU 2

M-EMBER Ramnit 3

M-EMBER Tracur 4

The training data Dtrain, the poisoning data Dp, and the test data Dtest are
created as follows: Dtrain consists of 100 randomly selected goodware, 20 tar-
geted malware and 80 nontargeted malware. The nontargeted malware consists
of 8 malware families. We set the poisoning rate ε to ε = |Dp|/|Dtrain|. Our
poison generator (Algorithms 3 and 4) constructs Dp of size ε|Dtrain|. We vary
ε in the range 0 ≤ ε ≤ 0.15 through validation. The clean test data Dtest con-
sists of 50 goodware, 15 targeted malware and 35 nontargeted malware, which
are randomly selected. We used logistic regression for the malware detector. To
solve the gradient of the loss for D̄val in Algorithm 1 and Algorithm 3, we apply
the influence function method in Eq. 2. We set λ = 10 in Eq. 3. For the sphere
defense, we set the threshold rygood in Eq. 9 to remove 15% of the points from
Dtrain. We set β = 0.01 in Sasaki’s algorithm for ID1, ID2 and β = 0.1 for ID3,
ID4. For the optimal radius r and the burn-in number burn in Algorithm 4, we
found that r = 0.5 and burn = 2000 are optimal for these malware families by
searching with grid search. The learning rate η is 0.1. We additionally experi-
mented with the label-flip variant of our algorithm (the case of r = 0). We refer
to the case of r = 0.5 as solver and r = 0 as flip in what follows. We used
the CVXPY Python-embedded solver [12] to compute the optimization problem of
maximizing the loss for x(i)+d. We averaged the results of 10 executions for val-
idation. Shafahi’s targeted poisoning algorithm [40] is omitted in the validation
since it is for image classification problems on a neural networks model.
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Table 2. Poison removal ratio for each ID.

ID Poison removal ratio

Algorithm 1 Sasaki’s algorithm Algorithm 3 Algorithm 4

1 75.0% 0% 0% 0%

2 0.0% 0% 0% 0%

3 100.0% 5.6% 0% 0%

4 94.4% 2.8% 0% 0%

4.2 Evaluation Indicator

We evaluated the attack performance with the following indicators.

– The attack success rate, which measures how often targeted malware is clas-
sified as goodware in Dtest (the false negative rate of the targeted malware).

– The rate at which the nontargeted malware is classified goodware in Dtest

(the false negative rate of the nontargeted malware).
– The rate at which the goodware is classified as malware in Dtest (the false

positive rate of the goodware).

4.3 Defensive Performance of Sphere Defense

We validated the performance of the sphere defense against Algorithm 1, Sasaki’s
algorithm and our proposed algorithms. We calculated the ratio of poisoning
data removed by the sphere defense for 36 poison generated by each algorithm.
The result is in Table 2. As the results show, the sphere defense succeeded
to remove most of poisoning data for ID1, 3, 4 in Algorithm 1. In contrast,
not a single poison was removed in ID2. This implies that targeted malware of
ID2 are distributed near the goodware, and hard to distinguish them. However,
poisoning data can be easily detected by using the sphere defense for defense-
unaware algorithms in many cases. We confirmed that results of removal ratio for
Sasaki’s algorithm are almost 0% and defense-aware algorithms (Algorithms 3
and 4) are always 0% since these algorithms generate poison so that they are
inside the sphere Fgood. For the effect on the attack success rate of the sphere
defense, we will describe in the following subsection.

4.4 Attack Performance Against Sphere Defense

In the experiment, we compared the attack performance of previous algorithms
(Algorithm 1, Sasaki’s algorithm and label-flip algorithm) and proposed algo-
rithms (Algorithm 3 and Algorithm 4) for discrete and continuous dataset
against the sphere defense. The results except for Algorithm 1 are shown in
Fig. 1. mal B stands for the targeted malware, mal NB means non-targeted mal-
ware, and good is goodware in Fig. 1. The attack success rate of Algorithm 1
did not increase for ID1, 3 and 4 as the poisoning rate increased since almost
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poisoning points were removed. The attack success rate reached at 39% with the
poisoning rate 15% for ID2.

Fig. 1. The attack performance of Sasaki’s algorithm (sasaki), label flip algorithm
(flip), Algorithm 3 (basic) and Algorithm 4 (solver) for discrete and continuous
dataset against the sphere defense. The red lines correspond to the attack success rate
(mal B → good), green lines correspond to the false positive rate of the goodware (good
→ mal), and blue lines correspond to the false negative rate of the nontargeted malware
(mal NB → good) for each algorithm. (Color figure online)

For a discrete dataset (ID2), the attack success rate for each algorithm is
similar. The label-flip algorithm seems to be a little higher than other algorithms
for ε < 0.03 and 0.07 < ε. The reason is that the feature vector v of ID2 has
binary value and optimization-based algorithms failed to move the vector v to
the desired coordinate since the perturbation v + d is rounded to 0 or 1. The
false negative rate of the nontargeted malware is about 0.05 for ε = 0 and 0.15
for ε = 0.15 for all algorithms. This implies that the decision boundary of the
classifier is slightly displaced in the direction of nontargeted malware, depending
on the amount of poison of targeted malware. The accuracy of the goodware were
almost unaffected by the poison. Similar results were obtained for ID1.

For a continuous dataset (ID4), Algorithm 3 has the highest attack success
rate for ε < 0.11 and Algorithm 4 for ε ≥ 0.11. Algorithm 4 reached 90.7% attack
success rate for ε = 0.15. It is suggested that Algorithm 3 converges faster than
Algorithm 4 with regard to the number of poisoning data. The label-flip algo-
rithm has a lower attack success rate than Algorithm 3 and Algorithm 4 due to
the fact that the poison generated by the label-flip algorithm is not optimized for
targeted malware. Sasaki’s algorithm had the lowest attack success rate, which
solves loss minimization problem and the smallest distance problem alternately.
The false negative rate of the nontargeted malware is about 0.02 for ε = 0 and
0.09 for ε = 0.15 for all algorithms. The decision boundary between nontargeted
malware and goodware is affected by the number of poisoning data even in the
continuous dataset. The accuracy of the goodware wes nearly constant. For ID3,
we got the similar result.
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Fig. 2. The attack performance of Algo-
rithm 4 with random noises drawn from
U(−0.5, 0.5) and U(−1, 1). The dotted
line is the original result (U(0, 0)). The
meaning of each color is the same as in
Fig. 1. (Color figure online)

Fig. 3. Averaged value of the pertur-
bation d generated by Algorithm 4 for
ID4 with respect to each byte value
(dimension) for the perturbation radius
r = 0.5.

4.5 Noise Resilience

We also evaluated whether our proposed method has noise resilience to pre-
processing steps. Since Algorithm 4 adds a small perturbation to the feature
vector, small changes to the perturbation could result in an ineffective attack.
In practice, it often happens in preprocessing steps of the training phase. Also,
a defender may intentionally add random noise to the training data to detect
the poisoning data as experimented in [13]. To see the effectiveness of the ran-
dom noise addition against Algorithm 4, we consider to add random noises
n drawn from the uniform distribution U(−a, a), a ∈ R to the training data
x ∈ (Dtrain ∪ Dp) before eliminating points using the sphere defense, i.e.,
x′ = x + n for x ∈ Dtrain and x′ = x + d + n for x ∈ Dp . We set a = 0.5
and a = 1 since the perturbation radius r in Algorithm 4 is 0.5. The result is
shown in Fig. 2. As for the attack success rate, the larger noise being added, the
lower the accuracy for ε > 0.05. On the other hand, the accuracy increases for
ε ≤ 0.05. We infer that when ε is high, random noise n negates the gradient of
the perturbation d to being goodware by the addition d + n. Whereas, when ε
is low, noise rather works against (unpoisoned) targeted malware to counteract
the gradient to be classified as malware. This phenomenon is also observed in
the poisoning attacks on different dataset in [13]. For both the false positive
rate of the goodware and the false negative rate of the nontargeted malware,
the accuracy decreased as the noise range increased. Therefore, there is a trade-
off between the whole accuracy of the model and the attack success rate with
respect to the noise width.

Moreover, we observed the distribution of the perturbation d to see the direc-
tionality of d in each dimension. In the validation, we generate 100 poisoning data
x+d by the Algorithm 4 for ID4, then averaged d with respect to each dimension.
The perturbation radius r = 0.5 and the number of dimension n = 200. The the-
oretical average of the absolute values in each dimension is r/

√
n ≈ 0.035. The
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Table 3. Runtime and attack success rate for 36 poisons.

ID Basic attack (Algorithm 3) Label flip attack (Algorithm 4) Attack using solver (Algorithm 4)

Success rate Runtime [sec.] Success rate Runtime [sec.] Success rate Runtime [sec.]

1 12.0% 1,322.74 13.3% 1.27 16.7% 2.32

2 57.3% 1,504.66 57.3% 1.24 53.3% 2.27

3 73.3% 1,733.39 43.3% 1.08 66.6% 1.87

4 76.0% 1,087.94 65.3% 1.00 90.7% 1.90

result is shown in Fig. 3. Each dimension has obviously consistent directionality
and different from a uniform distribution. If d is distributed on a uniform dis-
tribution, then averaged value should be close to 0. Also, each dimension should
have a positive gradient to being classified as goodware. Therefore, attack suc-
cess rate is expected to change little for noises whose widths are nearly r/

√
n,

and we confirmed it in the experiment. As is shown in Fig. 2, even if the noise
width is considerably larger than r/

√
n ≈ 0.035, poisoning attack still succeeds

with some degree of attack success rate.

4.6 Runtime Comparison

Ultimately, we compared the computational costs of basic (Algorithm 3), flip
and solver to generate poison data for each ID. In the experiment, we set
r = 0.5 for solver, burn = 2000, η = 0.1 and ε = 0.18 (|Dp| = 36). The results
are shown in Table 3 with the attack success rate. From the result, Algorithm 4
is approximately 103 times faster than Algorithm 3. It is suggested that the cost
required to solve the optimization problem of minimizing the loss by θ occupies
the main part of the calculation time, and Algorithm 4 takes much less time since
it needs to solve the problem only once regardless of the amount of poison data.
The result also implies that embedding a solver in the label-flip algorithm can
greatly improve the attack success rate without significantly increasing the cal-
culation time. In realistic situations, poisoning attacks require a faster poisoning
generator to perform the attack without noticing by the defender. For exam-
ple, considering an attacker who is enrolled in a company that is outsourced
the training of a machine learning model. Spending more time than necessary
to generate the poison data may raise suspicion for the ordering company. The
attack must be carried out quickly to keep them from noticing the presence of
attacks.

5 Conclusion

In this paper, we focus on the problem of targeted poisoning attacks against mal-
ware detection. We apply the data sanitization defense against attacks, which
is a commonly used technique for anomaly detectors to remove malicious data
from the training set. We propose two targeted poisoning algorithms to generate
poisons that evade sanitization: the basic variant and the improved variant. Our
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streamlined algorithm is based on the combination of the label-flip attack [45]
and the optimal attack strategy to maximize the training loss of the model, which
was originally proposed for nontargeted attacks [42]. Experimental results con-
firmed that the sanitization is almost invalidated by our algorithms in attacker-
favorable situations, while the defense is indeed effective against defense-unaware
targeted poisoning attacks. Our algorithm achieved an the attack success rate
of 91% by adding 15% poisoning, which is higher than the previous result of
85% for the same poisoning rate and the dataset without the data sanitiza-
tion defense. Regarding the computational cost to generate poison data, our
algorithm is approximately 103 times faster than the previous gradient-based
algorithm.
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27. Laskov, P., Schäfer, C., Kotenko, I., Müller, K.R.: Intrusion detection in unlabeled
data with quarter-sphere support vector machines. PIK-praxis der Informationsver-
arbeitung und Kommunikation 27(4), 228–236 (2004)

28. Li, W.J., Wang, K., Stolfo, S.J., Herzog, B.: Fileprints: identifying file types by
n-gram analysis. In: Proceedings from the Sixth Annual IEEE SMC Information
Assurance Workshop, pp. 64–71. IEEE (2005)

29. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring
attacks on deep neural networks. In: Bailey, M., Holz, T., Stamatogiannakis, M.,
Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 273–294. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00470-5 13

30. Liu, Y., et al.: Trojaning attack on neural networks (2017)

https://doi.org/10.1007/978-3-540-74549-5_125
http://arxiv.org/abs/1811.00741
http://arxiv.org/abs/1610.05492
https://doi.org/10.1007/978-3-030-00470-5_13


84 S. Narisada et al.

31. McLaughlin, N. et al.: Deep android malware detection. In: Proceedings of the
Seventh ACM on Conference on Data and Application Security and Privacy,
CODASPY 2017, p. 301-308. Association for Computing Machinery, New York
(2017)
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Abstract. Sophisticated malware employs various emulation-detection
techniques to bypass the dynamic analysis systems that are running on
top of virtualized environments. Hence, a defense mechanism needs to
be incorporated in emulation based analysis platforms to mitigate the
emulation-detection strategies opted by malware. In this paper, first
we design an emulation-detection library that has configurable capabili-
ties ranging from basic to advanced detection techniques like distributed
detection and GPS information. We use this library to arm several exist-
ing malware with different levels of emulation-detection capabilities and
study the efficacy of anti-emulation-detection measures of well known
emulator driven dynamic analysis frameworks. Furthermore, we pro-
pose STDNeut (Sensor, Telephony system, and Device state information
Neutralizer) – a configurable anti-emulation-detection mechanism that
defends against the basic as well as advanced emulation-detection tech-
niques regardless of which layer of Android OS the attack is performed
on. Finally, we perform various experiments to show the effectiveness
of STDNeut. Experimental results show that STDNeut can effectively
execute a malware without being detected as an emulated platform.

Keywords: Android · Malware · Security · Sandbox ·
Emulation-detection

1 Introduction

Mobile platforms like Android are common in modern-day devices because of
its open-source availability and robust support for mobile application (App)
development. According to a recent report published by International Data Cor-
poration (IDC), the global market share of Android OS was 85.1% [16] in the
year 2018. As a consequence of such a large scale adoption of Android and ever-
increasing contributions in the Android App space, the security of these devices
has become a non-trivial challenge recently. A study related to malware activi-
ties in the Android platform published by G DATA shows that in the first half of
2018, more than 2 million new Android malware were recorded. In other words,
an Android malware is born in every seventh second [3].
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Existing approaches that address the security issues arising due to the rapid
growth of Android malware can be broadly classified into two categories: static
analysis based techniques and dynamic analysis/detection based techniques [30].
Techniques that are based only on static analysis [11,20,38] are insufficient
to address the security issues presented by the malware especially designed
to bypass the static analysis based defenses. For example, advanced malware
employ techniques such as dynamic code loading, native code exploitation,
Java-reflection mechanisms, and code encryption to bypass static analysis based
detection [33]. In order to address the limitations of static analysis techniques,
dynamic analysis techniques are preferred. While dynamic analysis is widely
used, the existing frameworks fall short in tackling platform sensing malware
which is a reality today as emulator-based analysis platforms are used as opposed
to real devices for cost-effectiveness.

The Problem: Many malware [36] employ techniques to detect the underly-
ing emulation platform before showing their true behavior. To the best of our
knowledge, none of the existing emulator driven dynamic analysis frameworks
make claims regarding their effectiveness towards nullifying possible emulation-
detection adopted by malware.

One of the root causes of the problems related to emulation-detection is
heavy usage of emulated platforms by dynamic analysis solutions. Many dynamic
analysis systems (Droidbox [21], MobSF [24], CuckooDroid [34], DroidScope [40],
CopperDroid [32], and Bouncer [22]) are based on virtualized environments to
perform malware analysis by executing the Apps in a controlled environment
and collect various event logs for further analysis. As a negative consequence,
malware developers utilize various emulation-detection techniques to detect the
underlying execution environment and adapt their behavior accordingly.

Identifying the underlying execution environment by a malware is shown
to be possible by many previous studies [18,25,27,36]. Recently, it has been
shown that the dynamic analysis performed for identifying malicious Apps by
the Google Bouncer (a dynamic analysis system deployed on Play Store) [22] can
be bypassed by detecting the underlying execution environment [25,27]. Vidas et
al. [36] present generic emulation-detection approaches that can be used to evade
dynamic analysis, whereas Morpheus et al. [18] show more than 10000 heuris-
tics to detect underlying emulated platforms. In contrast, DroidBench-3.0 [8], an
open test suite for evaluating the effectiveness of an analysis system includes a
subset of small Apps (based on [36]), which can help in analyzing the effective-
ness of dynamic analysis frameworks. However, the emulation-detection mecha-
nisms used by DroidBench-3.0 Apps are very basic and many dynamic analysis
frameworks (e.g., CuckooDroid [34], Droidbox [21]) have already incorporated
anti-emulation-detection measures in their design. Even though the dynamic
analysis frameworks are capable of providing defense mechanisms against rudi-
mentary emulation-detection, malware developers find new ways to detect the
underlying execution environment at runtime [35]. For example, Google Play
Protect which is used to certify Android Apps, fails to detect malware that
spread across 85 different Apps affecting nine million Android devices [26].
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Our Goal: We believe, a dynamic analysis system should provide a configurable
anti-emulation-detection mechanism, so that a smart malware developer would
find it difficult to evade the dynamic analysis by studying the analysis framework.
Moreover, we would like to emphasize the need for a validation mechanism to
understand the effectiveness of the same.

Our Approach: As a validation mechanism, we design a pluggable emulation-
detection library with configurable levels of emulation-detection capabilities,
which can be incorporated by any malware. We use this library to arm several
existing malware with different levels of emulation-detection capabilities and
study the efficacy of anti-emulation-detection measures of well known dynamic
analysis frameworks. Further, using the findings of our analysis, we develop STD-
Neut (Sensor, Telephony system, and Device state information Neutralizer), a
detailed anti-emulation-detection system fully designed using Qemu [9] based
Android emulator [5].

A robust and extensible validation framework can provide the basis for under-
standing the effectiveness of existing dynamic analysis systems w.r.t. their anti-
emulation-detection measures. Moreover, the framework should provide guid-
ance principles for designing new dynamic analysis systems with detailed anti-
emulation-detection measures. Towards these objectives, our contributions are
as follows:

(i) We design an emulation-detection library encompassing several advanced
detection techniques like distributed detection and GPS information (Section
3.1). We use this library to perform an empirical evaluation of existing dynamic
analysis frameworks against the basic and extended emulation-detection tech-
niques (Sect. 3.2). The library can be configured with varying levels of emulation-
detection methods and can be embedded into different malware in a seamless
manner.

(ii) We propose STDNeut by using the insights of the empirical validation
of existing frameworks (Sect. 4) that remain undetected even if the emulation-
detection is performed at any layer of the Android OS w.r.t. sensors, telephony
system and device state. Further, we show the effectiveness of STDNeut in neu-
tralizing different emulation-detection techniques (Sect. 5). Note that, detection
of an analysis framework by observing a rooted device or the existence of an
instrumentation framework like Xposed is beyond the scope of this paper.

2 Background and Related Work

In this section, we discuss the Base Transceiver Station (BTS) as a smartphone
frequently communicates with it. After that, we provide a brief overview of the
emulation-detection followed by the related work.

2.1 Base Transceiver Station

BTS [23] is a piece of wireless communication equipment that establishes com-
munication between a mobile device and a network. The BTS is associated with
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a base station ID that uniquely identifies a BTS worldwide. Base station ID com-
prises of four components: (i) mobile country code (MCC), (ii) mobile network
code (MNC), (iii) location area code (LAC), and (iv) a cell ID (CID). A combi-
nation of these gives a unique identity to a BTS. Several commercial and public
services are available which provide the geo-location of a cell by submitting its
station’s unique ID.

2.2 Emulation-Detection

The primary issue with an emulated system is its inability to replicate a com-
plete system that matches the exact configuration and characteristics of a phys-
ical device. The core idea of emulation-detection is to observe the differences
between virtual and physical machines using a program to identify the under-
lying infrastructure. Vidas et al. [36] and Morpheus [18] have shown that such
differences can be used to detect underlying emulated platforms through a stand-
alone App. Vidas et al. [36] propose a few generic detection methods based on
the device characteristics, e.g., differences in hardware components (like sen-
sors and CPU information) and software components (like Google’s Apps are
not present). Morpheus [18] presents more than 10000 heuristics to detect the
underlying emulated platform which has broadly classified it into three cate-
gories viz. i) Files, ii) APIs, and iii) System Properties related detection which
are similar to the techniques proposed in [36]. The emulation-detection methods
shown in [18,36] fall in the category of basic emulation-detection, and most of
the dynamic analysis systems are capable of bypassing them.

2.3 Related Work

Static analysis techniques fail to capture the precise characteristics of an App
because of the advanced App development techniques like dynamic code loading
and reflection [33]. This has led to the introduction of a dynamic analysis of
Android Apps. Dynamic analysis techniques execute an App in a controlled
environment called “sandbox” which can be a real device or an emulated platform
to observe its behavior. Dynamic analysis on a real device is costly and incurs
significant overhead [31]; hence, an emulator driven sandbox gets the attention
of security researchers.

Emulation driven analysis tools must provide the ability to hide the emulated
environment from the target App along with the profiling features. In the absence
of such defense mechanisms, an App can evade the dynamic analysis by detecting
the emulated platform [18,25,27,36].

The techniques in [25,27] use API based detection and IP address based
detection to evade dynamic analysis on Google Bouncer, which essentially works
by determining whether the IP address belongs to Google or not.

DroidBench [8], a recent work, provides a set of Apps to detect the underly-
ing virtual environment based on the methods proposed in [18,36]. Further,
DroidBench also introduces some new methods that utilize the call history
and number of contacts in emulation-detection. Similarly, Caleb Fento [13] and
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Gingo [14] have developed stand-alone Apps to detect Android virtual devices.
Caleb Fento [13] uses the information shown by Vidas et al. [36] as a detection
method to detect Google’s Android emulator. On the other hand, Gingo [14]
extends the same to detect custom virtual devices (like Genemotion, Nox player)
along with Google’s Android emulator.

Other than the stand-alone Apps discussed so far, some android libraries
[7,17,19] have also been developed to detect emulated Android devices which can
be integrated with any App. Libraries [7,17] use similar information as presented
in [14], whereas the library [19] uses the accelerometer data in the detection
mechanism.

Additionally, Diao et al. [12] proposed an approach to evade runtime analysis
by differentiating a user from a bot by analyzing the interaction pattern. This
detection technique is inclined to differentiate user from a bot to bypass runtime
analysis and does not focus on the emulation-detection.

Costamagna et al. [10] have shown the evasion of Android sandbox through
the fingerprinting of usage-profile. This technique works by observing the device
usage information like SMS, call history and others which remain the same when
multiple samples of a malware family execute inside a sandbox. However, the
information received at the server from numerous Apps (malware sample of the
same family) during different executions remains identical. The same information
is fed to the next subsequent malware sample to evade the dynamic analysis.

Existing sandboxes [21,24,34,40] provide some anti-emulation-detection
measures to mitigate the emulation-detection attack. For example, Droid-
Box [21] modifies the Android Open Source Project (AOSP) to bypass the
emulation-detection, while some others [24,34] utilize the hooking framework
(like Xposed [39]) and provide static but realistic information. Though, they
can defend against the basic emulation-detection in DroidBench but they do not
work in the context of extended emulation-detection.

Some other anti-emulation-detection works have also been proposed that
modify the targeted App before submitting it for analysis [29,37]. Siegfried et
al. [29] use the backward slicing method and remove the emulation-detection
related checks from an App. On the other hand Droid-AntiRM [37] performs
bytecode instrumentation to defeat the emulation-detection. In both approaches,
an App needs modification before submission for dynamic analysis. Thus, the
integrity of an App is lost through such changes.

3 Motivation

To study the effectiveness of the existing dynamic analysis frameworks, we
require a tool with varying levels of the emulation-detection method. In this
section, first, we give an overview of the flexible emulation-detection library
that we have designed with a collection of emulation-detection methods beyond
the basic detection techniques (see Sect. 2.2). We use this library to evaluate
the existing frameworks about their anti-emulation-detection measures empiri-
cally. At last, we present the insights learned from this evaluation in designing
STDNeut.
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Table 1. Classification of emulation-detection techniques.

Detection categories Description

Unique device
Information (basic)

Detection by observing unrealistic device
information values (e.g., IMEI value is 00000)

Unique device
Information (smart)

Detection based on fixed reading of unique device
information (e.g., IMEI value is constant)

Sensors reading Absence of sensor or observing static values from
fluctuating sensors (e.g., fixed reading of Light
sensor)

Device state
information

No change to the device state w.r.t. telephony
signal, battery power

GPS information No change on GPS location data or fake location
change

Distributed
detection

Observing identical unique information for
multiple devices in a network

3.1 Overview of Emulation-Detection Library (EmuDetLib)

As a validation mechanism, we have developed a flexible emulation-detection
library (EmuDetLib). The detection techniques in EmuDetLib can be broadly
classified into five categories (refer Table 1): (i) Unique device information (UDI),
(ii) Sensors reading, (iii) Device state information, (iv) GPS information, and
(v) Distributed detection.

Unique Device Information: This method uses information like IMEI (inter-
national mobile equipment identity) and IMSI (international mobile subscriber
identity), that is unique to a device and employs basic and smart methods to
detect an emulated environment. In basic detection, EmuDetLib observes any
unrealistic data (not in the prescribed format) obtained from the device, whereas
in smart detection, the library also checks whether the information is static or
not by comparing it against known static values of different frameworks.

Sensors Reading: Nowadays smartphones have various sensors for different
purposes that can be broadly classified into two categories—motion sensors and
environmental sensors. As the data observed on these sensors fluctuate continu-
ously, this insight can be used to detect the underlying emulated environment. A
recent example of sensor-based detection is the observation of TrendMicro, where
malware (in Play Store) make use of the motion-detection feature to evade the
dynamic analysis [35]. This method detects an emulated environment by utilizing
sensors count and/or by observing fixed sensor values from fluctuating sensors.

Device State Information: In reality, a device state gets changed due to
some internal/external event such as change in telephony signal strength, bat-
tery power and incoming SMS/Calls. However, such state changing behavior is
missing in an emulated environment. Our library observes these information to
detect the underlying emulated environment.
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Using the GPS Location Information: GPS is also a sensor and malware
can use similar methods (as explained above) that are used for other sensors to
detect emulated platforms. However, the emulation-detection based on the GPS
is somewhat different from other sensors, as explained below.

Android provides rich APIs to perform various tasks. One such API gives
the power to generate a mock location that can be used by an App to introduce
a fake location when queried. An Android App requires ACCESS MOCK LOCATION
permission to use the mock location API. The other source for geo-location
is BTS ID. Android provides API to query BTS ID, and we can get its geo-
location by using publicly/commercially available services (https://opencellid.
org). Hence, the geo-location-based emulation-detection technique only works
when one of the following conditions is satisfied: (i) there is no change in the
geo-location of the device, (ii) the mock location API is used to set the geo-
location of the device, or (iii) BTS geo-location is not collaborating with the
GPS location.

Distributed Emulation-Detection: Nowadays, most Apps require communi-
cation with a centralized server to share their status or get new information. To
identify a device uniquely at the server, an App typically generates a unique ID
called an AppID. A smartphone also contains device-related unique IDs namely
IMEI, IMSI, SIM Serial number, and others. These information can also help in
identifying a device uniquely at the server as explained below.

It is trivial to see that a slightly different malware in terms of its signature
can be generated easily by changing its package name, altering the function name
and variable naming convention, or by introducing dummy code while retaining
the overall functionality and the server address. Such malware can communi-
cate the unique device information to a remote server to identify the emulated
environment remotely. In this situation, the emulation-detection can happen at
the server by querying the device information from the connected devices. If a
server detects that multiple devices have identical information (expected to be
unique), it can flag those devices as emulated environment. As this emulation-
detection is carried out in the context of multiple connected devices, we classify
this detection technique as a distributed emulation-detection.

The emulation-detection methods in EmuDetLib discussed above are config-
urable and any App can change its detection mechanism by creating a suitable
configuration file. For more details on EmuDetLib and ethical concern, refer
weblink: https://skmtr1.github.io/EmuDetLib.html.

3.2 Evaluation of Existing Frameworks

To perform empirical evaluation of the existing dynamic analysis frameworks,
we have integrated EmuDetLib into the DroidBench-3.0 [8] benchmark Apps
(referred to as EmuDetLib-Bench). Apart from the EmuDetLib-Bench, we have
collected 1000 malware where the dex date is of the year 2019 from Andro-
Zoo [4] along with the motion sensor’s malware disclosed by the Trend Micro [35]
(referred to as RealMal) to evaluate the existing frameworks. We have considered

https://opencellid.org
https://opencellid.org
https://skmtr1.github.io/EmuDetLib.html
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Table 2. Evaluation of existing framework against detection library EmuDetLib.

Detection type Sub-type Emulator Droidbox CuckooDroid MobSF

Unique Device Information Basic � × × ×
Smart � � � �

Sensors Count × × × �
Reading � � � �

Device State – � � � �
GPS Cond (i) (Normal) � � � �

Cond (i) (Fake) × × × ×
Cond (i) & (ii) � � � �
Cond (i) & (iii) � � � �

Distributed (Server config) No Emulation × × × ×
W/- Emulation � � � �

Note: � represents successful detection of underlying emulation environment, whereas × repre-

sents failure in detecting emulation environment. We use this notation in the rest of the tables.

In GPS based detection, “Fake” represents a sandbox executing fake GPS location generating

App/service. Normal represents without fake location App/service, and rest of the condition is

evaluated with both the setting i.e. fake and without fake app. In distributed emulation, no

Emulation represent the server without emulation-detection algorithm whereas W/- Emulation

represent server deployed with emulation-detection algorithm.

CuckooDroid [34], Droidbox [21], and MobSF [24] along with the vanilla Android
emulator (referred to as emulator) [5] as the candidate analysis systems for the
empirical study, as they are readily available. We exclude the online analysis
systems and other sandboxes in this study. The main reason is that an online
analysis system has a long waiting queue and takes a longer time to schedule
a sample for the evaluation. Hence, these frameworks are not preferred for this
evaluation.

Further, to evaluate GPS information based detection and distributed detec-
tion, we need a different environment. For GPS, we require a fake GPS location
generation app inside an emulated device. For distributed detection, we need
a server where the emulation-detection method is deployed and requires mul-
tiple instances of the same sandbox running at the same time. We utilize the
command and control server of the real malware Dendroid [28] by employing
the emulation-detection algorithm (see Algorithm 2 at weblink: https://skmtr1.
github.io/EmuDetLib.html#al2).

Table 2 shows the evaluation result of the emulation-detection of candidate
sandbox against all the detection methods shown in Table 1. In Table 2, the
sub-type represents the subcategory/configuration of the evaluation. As shown
in Table 2, in distributed detection, when the server is configured with the
emulation-detection method, none of the frameworks can hide their emulated
environment. Similarly, in GPS-based detection, only with a fake app installed
emulated-platform can bypass the detection mechanism in condition 1 (refer

https://skmtr1.github.io/EmuDetLib.html#al2
https://skmtr1.github.io/EmuDetLib.html#al2
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to GPS information based detection). In other cases of GPS, the sandbox is
flagged as an emulated platform by the detection library. There is one other
case in the sensors category with count where MobSF is the only sandbox that
cannot bypass the detection mechanism. The reason being, it is designed on top
of VirtualBox and does not support sensors. In contrast, all other sandboxes use
an Android emulator, which comprises of 7–8 sensors inbuilt and bypasses the
emulation-detection based on sensor count.

Similarly, on executing samples of RealMal (see Table 2 at weblink:
https://skmtr1.github.io/EmuDetLib.html#tl2 for classification and evalua-
tion), Android SDK emulator cannot hide its emulated environment against mal-
ware samples with emulation-detection capability. Simultaneously, other sand-
boxes get detected by the malware samples under the category of device state and
sensors. To reason about such behavior, we have investigated BatterySaverMobi
malware from RealMal samples (see Listing 1 at weblink: https://skmtr1.github.
io/EmuDetLib.html#cs1 for code snippet), which uses accelerometer (line 5)
reading to observe motion on a device. If any motion takes place, then it exe-
cutes the malicious code (line 15). Hence, Such malware can bypass the dynamic
analysis job performed on existing sandboxes.

3.3 Summary of Emulation-Detection

Some key observations regarding the effectiveness of anti-emulation-detection
measures of the existing analysis platforms against EmuDetLib are shown below.

i) Existing analysis frameworks are able to bypass the basic emulation-detection
techniques based on unique device information. However, they fail to defend
when the emulation detection attacks are performed by analyzing the underlying
defense mechanism. The main reason being either the data is unrealistic (basic
detection) or the data is realistic but static (smart attack).

ii) Each framework fails to defend against the emulation-detection attacks based
on fluctuating sensors and GPS data since the data does not represent the real-
istic behavior of a device.

iii) Similar to the detection methods based on UDI, existing frameworks are also
not able to defend against distributed emulation-detection. The observation of
similar data for unique device-related information across multiple devices helps
in raising the red-flag regarding the underlying emulated environment.

iv) Detection methods based on the device state (e.g. Telephony, Battery Power)
also successfully detect the underlying emulated environment due to the absence
of defense mechanisms in the analysis frameworks.

In short, the extended emulation-detection techniques show that the exist-
ing publicly accessible dynamic analysis frameworks do not provide foolproof
anti-emulation-detection measures. Therefore, there is a need for a robust anti-
emulation-detection approach that can hide the underlying platform from smart
emulation-detection measures. Note that the emulation-detection techniques can

https://skmtr1.github.io/EmuDetLib.html#tl2
https://skmtr1.github.io/EmuDetLib.html#cs1
https://skmtr1.github.io/EmuDetLib.html#cs1
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also utilize the timing channel to detect the emulated platform (like timing mea-
sures against the graphics subsystem). Such heuristics require a sufficient number
of events to understand the underlying execution environment, which tends to
increase their code footprints and flag such an App as abnormal. Due to this limi-
tation, we do not discuss any timing channel based emulation-detection methods.
In the next section, we discuss the design and implementation of STDNeut which
incorporates a robust anti-emulation-detection system.

4 STDNeut: Design and Implementation

In this section, first we discuss the process of generating realistic sensor’s data
and the challenges associated with it. After that we provide an overview of STD-
Neut, a detailed anti-emulation-detection system and elaborate on the design of
its various components. STDNeut aims to neutralize emulation-detection using
different sensors, telephony system, and device state data.

4.1 Realistic Sensor Data Generation

A smartphone contains multiple sensors (e.g., accelerometer, GPS, and others)
or interacts with an external entity like BTS. A malware can use these sensors to
detect an emulated environment. To nullify the effect of sensors based emulation-
detection, we have identified three main challenges as follows:
(i) Existing sensors value should fluctuate with respect to time.
(ii) Detection of emulation environment through sensor correlation.
(iii) Model should be flexible to incorporate new sensors and sensor relations.

S2 S10

S4 S5 S6 S7

S8S9

S1 S3

S11

Fig. 1. An example of sensor’s dependency graph. Sensor S11 in shaded box represents
a new sensor introduced in the system.

To better understand these challenges, let us take a directed graph shown
in Fig. 1 that represents eleven sensors (S1 to S11), and influence of one sensor
on others in terms of driving the sensor’s values. An arrow from sensor Si to
sensor Sj denotes that the value of sensor Sj depends on the value of sensor Si.
If we see an update in the value of sensor Si, then sensor Sj ’s value should also
be seeking an update according to Si’s value. As shown in Fig. 1, some sensors
do not depend on other sensors (sensor with zero in degree); we name them as
independent sensors, whereas sensors with in degree ≥ 1 are called dependent
sensors because the value of these sensors depends on the value of others.
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Challenge (i) is easy to understand, which states that the value of the sen-
sor should fluctuate concerning time. For example, let us consider sensor S10

(assuming as a light sensor) in Fig. 1, the value of this sensor should be updated
according to the operating environment lighting condition. Similarly, other sen-
sor’s value should also be updated w.r.t. time or working environment condition.

To understand challenge (ii), consider two sensors S4 (assuming as GPS)
and S5 (assuming as BTS). As shown in Fig. 1, sensor S5’s value depends on the
value of sensor S4. This dependency is based on the distance between the values
of S4 and S5, which cannot be more than x meters. This x may vary depending
on the area density (population and obstacles) of the BTS. Further, to be more
clear about challenge (ii), let us include two more sensors S1 (as time) and S2

(as an accelerometer). The value of sensor S4 depends on both the sensors, i.e.,
S1 and S2. If we consider time and GPS, then there is a correlation between the
current GPS location and the previous location w.r.t. time elapsed. For example,
if the current GPS location is Washington DC, a person cannot reach New York
in five minutes. Similarly, when considering accelerometer and GPS, then the
measurement of the distance travelled through accelerometer should match with
the distance between two consecutive GPS locations. Hence, a sensor-based anti-
emulation-detection system should be compliance to all these scenarios so that
the use of sensor’s value in an innovative way (as described above) cannot reveal
the identity of the underlying system.

Challenge (iii) is related to the introduction of a new sensor into the system.
If a new sensor is included in the system, either it is an independent or dependent
sensor (sensor S11 as shown in Fig. 1), the system should be flexible to reprogram
so that new sensors can also be adopted for providing anti-emulation-detection
capability.

To emulate realistic values for sensors, one should consider all the scenarios,
as discussed above. Hence, a fine-grained method is needed to emulate sensors
reading while maintaining the dependencies between them along with the re-
programmable capability to adopt new sensors in the system.

To address all the challenges as mentioned above, we present Algorithm1,
which takes two lists. One list holds the available sensor object (sensorsobj)
and the other is related to the dependency between sensors (dependSensobj). A
sensor’s object comprises of sensor’s identity (like accelerometer, GPS), a default
handle and the initial value. The default handle is useful when a sensor does not
depend on others (independent sensors), and the initial value is used to initialize
the sensor. On the other hand, a dependency object comprises the identity of
two sensors Si and Sj , and a dependency function Fij , which represents the
dependency between Si and Sj . These two lists have to be provided by a user, and
Algorithm 1 generates an ordered list of sensors handle (sensorshndl), which can
be executed at the analysis time to emulate the sensor’s value while preserving
the relationship between them.
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Algorithm 1: Generate Handle for Sensors
Input : sensorsobj , dependSensobj // List of sensors and dependencies objects
Output: sensorshndl // Ordered list of handles to generate realistic sensors values

1 sensorshndl ← φ
2 Unprocessedchld ← φ // Sensors queue whose child is not processed
3 Processedchld ← φ // List of sensors whose child is already processed
4 Dependecygraph ← generate graph(dependencyobj , sensorsobj)
5 Independentsensors ← getZeroInDegreeNodes(Dependecygraph)
6 foreach S in Independentsensors do
7 Shndl ← defaulthndl(sensorsobj , S)
8 append(sensorshndl, (S, Shndl))
9 append(Unprocessedchld, S)

10 while ¬(empty(Unprocessedchld)) do
11 S ← dequeue(Unprocessedchld)
12 childs ← getChilds(Dependecygraph, S)
13 foreach C in childs do
14 depfunc ← getDepfunc(dependencyobj , (S, C))
15 Chndl ← generatehndl(sensorsobj , C, depfunc)
16 if C not in sensorshndl then
17 append(sensorshndl, (C, Chndl))
18 else if C is in Processedchld then // Handling cyclic dependency

19 depfunc ← getDepfunc(dependencyobj , (S̄, C))
20 Chndl ← generatehndl(sensorsobj , C, depfunc)
21 updatehndl(sensorshndl, (C, Chndl))

22 else
23 updatehndl(sensorshndl, (C, Chndl))
24 if C not in Unprocessedchld and C not in Processedchld then
25 append(Unprocessedchld, C)

26 append(Processedchld, S)

27 return sensorshndl

In Algorithm 1, Unprocessedchld denotes a queue of sensors whose immediate
child needs processing w.r.t. its handle to emulating the sensor value, whereas
Processedchld holds the list of sensors whose child has already been processed.
Apart from storing processed sensors, the algorithm utilizes this list to break any
cyclic dependency (see dependency among sensors S6 to S9 in Fig. 1), which is a
rare case for sensors. As shown in line 4, the algorithm generates a dependency
graph among sensors by using the list of dependSensobj and sensorsobj . Line
5 gets the list of independent sensors from the dependency graph from where
actual learning of sensor handle starts. From lines 6 to 9, the algorithm obtains a
handle for each independent sensor, which is equivalent to the default handle in
sensor object. The default handle is used to generate the value for a sensor, which
does not depend on other sensors. Apart from the sensor handle, independent
sensors are then appended in the Unprocessedchld queue, because the children
of these sensors may require a handle.

From lines 10 to 26, the algorithm generates the handles for the dependent
sensors. The algorithm terminates when the Unprocessedchld queue does not
contain any sensor for processing. Line 14 gets the dependency function between
parent sensor S and the child sensor C by using the dependSensobj and a handle
gets generated at line 15. At line 16, it checks if the sensor is not in the list of
sensorshndl, algorithm directly adds this handle into sensorshndl. In other cases,
it updates the already learned handle based on the current dependency and the



STDNeut 97

dependency learned earlier. For updating an already learned handle, there can be
two possibilities, one is related to cycle (see cyclic dependency in Fig. 1 among
sensors S6 to S9) and the other is when a sensor depends on more than one
sensor (See sensor S4 in Fig. 1). A cyclic dependency is resolved at line 18 in
Algorithm 1, where a new dependency function is calculated between parent S
and child C. To obtain the new dependency function, we utilize the last value of
S (referred to as S̄ in line 19) to update the handle of C. At last, when all the
children of a sensor S are processed, S is added to the Processedchld at line 26.
Finally, the algorithm returns an ordered list of sensorshndl, which is then used
to emulate the sensor’s value at run-time. This algorithm handles the challenge
(i) and (ii). For challenge (iii), if the user updates the list of sensor objects and
dependency objects, then it re-generates the sensor handles for all the sensors,
including the new sensors.

4.2 STDNeut Overview

STDNeut system provides robust support for anti-emulation-detection that can
be used to design an efficient framework for malware analysis. Fig. 2 shows the
architecture of STDNeut along with the design of its controller. As shown in
Fig. 2(a), there are two main subsystems of the STDNeut: (i) Extended Android
Emulator and (ii) STDNeut Controller (see Fig. 2(b)).

Extended Android Emulator: It is responsible for spoofing the information
related to sensors, telephony systems, and device data. The STDNeut controller
and config.ini file govern this spoofing information to the Android emulator.
Most of the device-specific information, like IMEI, remains constant during the
execution time, while the values for sensors and telephony signal fluctuate over
time. During the boot time, the Android emulator reads config.ini file and
configures a virtual device with device-specific information that is unique to it,
while the STDNeut controller handles the fluctuating values at run-time.

Extended Android
Emulator

STDNeut
Controller

config.ini

(a) STDNeut design
overview.

Sensor
manager

GPS
manager

GPS to
BTS

Open
Cell-ID

config.ini
generator

STDNeut
configutation

config.ini
Fluctuating data

to emulator

(b) Design of STDNeut controller.

Fig. 2. Architecture of STDNeut, an anti-emulation detection system along with the
STDNeut controller.eps
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STDNeut Controller: It is responsible for launching an App inside the emula-
tor and feeding essential information for anti-emulation-detection. For example,
the controller generates a config.ini file that is being used by the Android
emulator to configure a virtual device with unique values. The controller also
manages the hardware/environment generated events that alter the state of an
Android device such as available sensors, telephony signal, and many more. This
is achieved by frequently feeding-in realistic sensor data while maintaining the
correlation with other sensors (as described in Sect. 4.1 by utilizing Algorithm1)
and other hardware related events into the emulator. To feed the sensor data
and hardware-related events, the controller uses the emulator console APIs [6].
Other than the core features mentioned above, the controller also enables and
configures other functionalities which simulate incoming calls/SMSes, manipu-
lates signal strength, and many more. We discuss the extension made to Android
emulator in the next section.

4.3 Extensions to the Android Emulator

A smartphone contains multiple sources of information that are either unique to
a device and does not change during its life or information may get changed over
time due to the operating environment that alters its state. Mostly, a device gets
a unique identity from the telephony system that includes IMEI, IMSI, phone
number, and many more. To interact with the telephony system, we use AT
commands [1]. To provide a unique identity to a virtual device, we intercept
the AT command request at the emulator layer for spoofing the response. For
example, a smartphone makes “AT+CGSN” and “AT+CIMI” commands to
query IMEI and IMSI numbers, respectively. This spoofed information is fed to
the AT command by concerning the config.ini file. Similarly, in response to AT
command, other values are also fed that remain constant but unique to a device.
Apart from the config.ini file, these values can also be supplied to a virtual
device using command line arguments. We use the emulator console to supply
realistic data periodically for the hardware/environment events that alter the
device state. The Android emulator provides most of the hardware like sensors,
GPS, signal strength, and others; the data for them can be fed using emulator
console. Android emulator does not provide any interface to change the BTS
information with whom a device is currently associated. To provide a realistic
GPS location, the information about the BTS associated with the device should
collaborate. With this observation, we have added the BTS interface through
the emulator console, and the STDNeut controller is supplying the realistic BTS
identity.
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Algorithm 2: Path patching for GPS trajectory
Input : Latsrc, Longsrc, Latdst, Longdst, nSteps
Output: trajectory

1 trajectory ← φ
2 LatStepmax ← |Latsrc − Latdst| / nSteps × 2
3 LongStepmax ← |Longsrc − Longdst| / nSteps × 2
4 Directlat ← +1 if Latdst > Latsrc else −1 // direction
5 Directlong ← +1if Longdst > Longsrc else −1
6 (lat, long) ← (Latsrc, Longsrc)
7 append(trajectory, (lat, long))
8 foreach i in range(0, nSteps) do
9 lat ← lat + rnd.uniform(0, LatStepmax) × Directlat

10 long ← long + rnd.uniform(0, LongStepmax) × Directlong

11 append(trajectory, (lat, long))

12 return trajectory

4.4 STDNeut Controller

The primary responsibility of STDNeut controller is to generate config.ini file
and feed-in the realistic values for the fluctuating sensors and other hardware
events. As shown in Fig. 2(b), the STDNeut contains four core components: (i)
config.ini generator, (ii) sensors manager, (iii) GPS manager, and (iv) GPS to
BTS.

Config.ini Generator: It generates the config.ini file to spoof device-specific
unique information.

Sensor Manager: It manages the device sensors by feeding-in realistic data
periodically. To generate the value of sensors, it uses the same handles which are
obtained through the Algorithm1. The sensor manager manages all the sensors
and other hardware events except the GPS. However, it gathers the next GPS
coordinate to be projected by GPS manager so that the sensors on which GPS
depends, can generate appropriate values.

GPS Manager: The main reason behind the separate manager for the GPS is
the correlation between the current GPS location and the previous location. For
example, if the current GPS location is Washington DC, it is impossible for a
person to reach New York in five minutes. Hence, a random GPS location alerts
an App about the emulated environment. Therefore, a precise method is required
to feed GPS location to an emulated environment, and GPS manager provides
the same. The GPS manager reads the source and destination geo-location and
the travel time from the STDNeut configuration file and generates a route by
using a path patching algorithm, as shown in Algorithm2. This algorithm takes
source and destination geo-locations along with the number of steps required to
move from source to destination, and returns the route trajectory.
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GPS to BTS: A realistic GPS location alone is not strong enough to hide an
emulated environment. It must be assisted by the BTS location that correlates
with the current GPS location. This correlation is based on the maximum dis-
tance between the BTS and GPS locations, which may vary from 1 kms to 3 kms
depending on the area’s population and obstacles. There are several commercial
and public services that provide the GPS location by using a BTS ID. Still,
no one provides the reverse mapping of it, i.e., providing a BTS ID based on
GPS location and the SIM operator that is closer to the current GPS location.
GPS to BTS module bridges this gap with the help of the OpenCellID database.
The OpenCellID database contains information for the already installed BTS,
worldwide, which is publicly available for research purposes. As this database
stores BTS information worldwide, an efficient search mechanism is required to
retrieve BTS ID based on the current GPS location and SIM operator. With
this observation, we first filter the database based on the MCC, followed by the
MNC. MCC and MNC reduce the search space to a specific operator within a
country. Now we only need location area code and cell-ID to get the desired BTS
ID, which is retrieved by calculating the distance with stored BTS location in
the database and current GPS location, and compared against the maximum
distance allowed. We have used haversine formula to measure the distance
between the BTS location and current GPS location. The main reason for sep-
arate module for GPS to BTS correlation is because it requires to interact with
an external database for retrieving the BTS ID according to the GPS location.

5 Validation of STDNeut

We use the Android Open Source Project (AOSP-7.1) to validate the proposed
anti-emulation-detection system. For the experiments, Android Virtual Device
(AVD) instances were configured with two CPU cores, 1.5 GB of RAM, 2 GB of
internal storage and a 512 MB of SD card along with all the sensors.

STDNeut vs. EmuDetLib: We evaluated the effectiveness of the STDNeut
against EmuDetLib-Bench and RealMal samples (see Sect. 3.2). In evaluation,
we found that STDNeut remains undetected against all the attacks performed by
EmuDetLib-Bench and RealMal samples except the sample under category File
info/SysProp and Mix of RealMal. The reason being the use of Qemu specific
files and system properties that cannot be spoofed through the emulation layer.
Hence, to bypass these detection methods, we have used the Xposed Frame-
work. After evaluating the efficacy of the STDNeut, we attempt to understand
this strong defense mechanism’s reasoning by performing various experiments. In
the remaining part of this section, we discuss the reasons for the efficacy of STD-
Neut by analyzing different sensor readings and device information during the
experiments. We also demonstrate a scenario for understanding the effectiveness
of the STDNeut against distributed emulation-detection.
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(a) Distribution of accelerometer readings
with anti-emulation measures.

(b) Distribution of magneto-meter read-
ings with anti-emulation measures.

Fig. 3. Effectiveness of STDNeut in neutralizing emulation detection using sensors by
providing random reading for accelerometer and magnetometer.

Fig. 4. GPS latitude and longitude reading with anti-emulation measures by feeding-
in realistic data along with associated BTS. GPS denotes path trajectory generated
using the path patching algorithm.

5.1 Non-detectability Through Sensors

To evaluate the efficacy of STDNeut against potential malware exploiting sensor
readings, we have developed an App to record and store the values of accelerom-
eter, magnetometer, and GPS readings periodically which are shown in Fig. 3
and Fig. 4. In this evaluation, we have set two dependencies for sensors, one
for time & GPS, and another for GPS & BTS. We make rest of the sensors as
independent. The accelerometer reading represents the movement of the device
in a three-dimensional space (referred to as AccelX, AccelY, and AccelZ) where
the value in each dimension ranges from zero to ninety (0, 90). Fig. 3(a) shows
the distribution of accelerometer readings where the X-axis represents ranges
(total of nine ranges) of sensor values and the Y-axis represents the frequency.
We have collected the values by executing an experiment for 150 s and reading
the sensor values every second. The data shows that all the sensor readings are
almost equally likely and approximates a random distribution. Therefore, any
emulation-detection technique based on accelerometer reading is nullified by our
system. For the magnetometer (Fig. 3(b)), the magnetic field readings on each
axis in a three-dimensional system are represented as magX, magY and magZ
with a range between −45 to +45. As shown in the Fig. 3(b), the distribution
is random, thus it does not allow an emulation-detection scheme using magne-
tometer data to succeed in detecting the underlying emulation platform.
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Another source of emulation-detection is performed by reading GPS data.
Unlike accelerometer and magnetometer, GPS data cannot be a random value.
Depending on the location of the system, the GPS data should be provided with
very slight variations in latitude and longitude. As shown in Fig. 4, STDNeut
anti-emulation-detection measure can provide valid latitude and longitude val-
ues along with the associated BTS. In Fig. 4, GPS denotes the path trajectory
generated using path patching Algorithm 2 whereas Vodafone cell and Airtel cell
denotes the BTS location in the network of Vodafone and Airtel, respectively.

Table 3. Unique device information provided by STDNeut to three different AVDs
executing simultaneously.

Queried Information Information retrieved

AVD1 AVD2 AVD3

PhoneNumber 9876543210 9856543410 9876573213

IMSI 405541385237906 405521385237806 405511385238906

IMEI 359470010002931 359470010302943 359470010002949

5.2 Non-detectability Through Device Information

Device information is useful in differentiating between an emulated device and a
real smartphone. In emulator platforms, device information such as IMEI, IMSI,
phone number etc. are either absent or static values are present. To demonstrate
the effectiveness of STDNeut’s anti-emulation-detection measures, we have used
an App called SIMCardInfo [15], which extracts the information related to tele-
phony services. We created three instances of this App in three different AVDs
and executed all the instances simultaneously for one minute with and without
STDNeut. The output of the App queries related to the device information is
logged for all instances. We analyzed the log to extract information like IMEI
and IMSI. Table 3 shows the captured device information with STDNeut. We are
not showing the results other than the proposed system as the device readings
were the same for all the instances. As shown in Table 3, STDNeut is capable of
providing a unique device identity in a multi-instance setup. This is particularly
useful to avoid detection when analyzing potential malware running in separate
devices designed to operate in a collaborative manner as all malware see the
same device identity. However, the values of PhoneNumber, IMEI, and IMSI
are generated manually in the experiment which can be configured through the
STDNeut’s configuration file without any modification in the Qemu.

5.3 Evading Distributed Emulation-Detection

To show the effectiveness of the STDNeut against emulation-detection using
multiple clients along with a central server, we used Dendroid [28], a real Android



STDNeut 103

botnet. We integrated EmuDetLib into the Dendroid malware. We modified
the Dendroid control server [28] not to send further instructions to the clients
that seem to be running on emulated platforms by observing identical device
information like IMEI from multiple clients (see Algorithm 2 at https://skmtr1.
github.io/EmuDetLib.html#al2). Apart from hosting the control server, we also
designed a victim site where the malware-infected devices perform a denial of
service attack in a distributed manner when instructed from the control server.
We created two instances for each of the CuckooDroid and STDNeut, and then
executed Dendroid malware with integrated emulation-detection library. The
control server instructs the infected devices to perform an HTTP flood on the
victim site mentioned above only if the control server does not detect emulation.
In our evaluation, we found that the control server is sending instructions only
to the STDNeut system instances and not to the CuckooDroid instances. This
was primarily because, the phone number, IMEI, etc. provided to the control
server by the CuckooDroid were identical for both the instances, which was not
the case with STDNeut. Therefore, we can conclude that the proposed STDNeut
system can prevent emulation-detection orchestrated in a distributed setup.

5.4 Discussion and Limitations

Even though STDNeut provides a strong defense against all the malware sam-
ples, it falls short in the presence of malware that uses Qemu specific file and
system properties for emulation-detection. To overcome this limitation, we have
utilized the Xposed framework. The Xposed framework itself is susceptible of
detection from App. For example, the Snapchat App uses the native code to
detect Xposed [2]. It is possible because Xposed capability is limited to the
framework level API only, and here detection is performed through the native
code. A more suitable defense is to use kernel-level modification that remains
undetected even when the attack is performed from any layer above the kernel.
However, our malware set does not contain any samples that detect the existence
of Xposed.

Additionally, the first eight digits of IMEI are called TAC (Type Allocation
code), which indicate the device type. Malware can also use TAC to detect an
emulated environment by observing TAC’s mismatch with the Android device
name. To our knowledge, we have not observed the existence of such malware.
However, STDNeut is a generic solution that requires analyst intervention to
configure it with appropriate information like selecting device type and corre-
sponding TAC value in IMEI and other such information.

Furthermore, some Android devices like tablets may lack cellular capabilities
or do not have some sensors like GPS. In STDNeut, cellular, GPS, and other
sensors fall under the sensor category. An analyst may configure STDNeut with-
out these sensors information to create a realistic emulated device where such
sensors are not present.

Evaluation Summary: In a nutshell, the proposed STDNeut can effectively
execute a malware without being detected as an emulated environment.

https://skmtr1.github.io/EmuDetLib.html#al2
https://skmtr1.github.io/EmuDetLib.html#al2
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6 Conclusion

This paper proposed a flexible and configurable emulation-detection library
(EmuDetLib) that provides extensive emulation-detection methods. We have
used EmuDetLib to show that anti-emulation-detection measures of the existing
dynamic analysis frameworks are not sufficient. Moreover, beyond basic defense
against emulation-detection, all the analysis frameworks fail to hide the under-
lying emulation layer. To design a robust analysis framework on emulated plat-
forms, we proposed STDNeut, a configurable anti-emulation-detection system.
STDNeut hides the emulated platform effectively by handling the data from sen-
sors, telephony system, and device attributes in a realistic manner. We performed
experiments to demonstrate the effectiveness of STDNeut against the primary
and extended detection methods. We believe STDNeut provides efficient and
secure anti-emulation-detection measures that are difficult to be bypassed even
by sophisticated malware.
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Abstract. Google disabled years ago the possibility to freely mod-
ify some internal configuration parameters, so options like silently
(un)install browser extensions, changing the home page or the search
engine were banned. This capability was as simple as adding/removing
some lines from a plain text file called Secure Preferences file automat-
ically created by Chromium the first time it was launched. Concretely,
Google introduced a security mechanism based on a cryptographic algo-
rithm named Hash-based Message Authentication Code (HMAC) to
avoid users and applications other than the browser modifying the Secure
Preferences file. This paper demonstrates that it is possible to perform
browser hijacking, browser extension fingerprinting, and remote code
execution attacks as well as silent browser extensions (un)installation
by coding a platform-independent proof-of-concept changeware that
exploits the HMAC, allowing for free modification of the Secure Pref-
erences file. Last but not least, we analyze the security of the four most
important Chromium-based browsers: Brave, Chrome, Microsoft Edge,
and Opera, concluding that all of them suffer from the same security
pitfall.

Keywords: HMAC · Changeware · Chromium · Web security

1 Introduction

Chrome is as of today the most used web browser in the world [42]. Chrome,
as well as many other browser vendors like Opera, Brave and Vivaldi are based
on Chromium, an open-sourced web browser developed by Google. Recently,
Microsoft moved to adopt Chromium as the basis for the new Microsoft Edge
browser [27]. Given its widespread use, around 75% of the desktop users on
Internet [38], the security of Chromium is paramount.

To allow easy customization of the web browser to fit the needs of the users,
many configuration parameters may be modified. Setting the homepage to a
custom webpage a user frequently visits, changing the default search engine,
“pinning” some URLs to tabs and browser extensions management, are just a
few examples of the huge list of actions that can be performed to make the user
c© Springer Nature Switzerland AG 2020
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experience more pleasant. One of the most promising tools for enriching the
browser experience of the user is browser extensions. Extensions are installed
from the Chrome Web Store, which is a central repository managed by Google.

As recently claimed [18], approximately 10% of the browser extensions stored
between 2012 and 2015 in the Web Store were classified as malware and deleted
from the repository. Despite many attempts done to improve the security and
privacy of extensions [18,19,34,36], vulnerabilities still abound [2,3,35], being
PUPs one popular and challenging example because they are not usually marked
as malware by antivirus vendors [21,40].

PUPs are installation executable files that, apart from installing the applica-
tion the user wants, they also execute other software that might not be related
to the legitimate one. Adware and changeware are two types of PUPs that add
advertisement to the webpages the user visits and changes the configuration
properties of the browser silently, respectively. Recently, a cybersecurity firm
discussed the thin line between espionage-level malware and PUPs and detected
more than 111 browser extensions considered to be PUP whose goal was to
spy users [4]. In this paper, we consider PUPs and pay special attention to
how changeware works, providing a concrete example of how the installation of
uTorrent application modifies the configuration of the browser (see Sect. 3).

In the particular case of Chromium-based browsers, each user obtains a cou-
ple of configuration files for storing information such as bookmarks, history,
homepage and other preferences. One of these files is the Secure Preference file
which is automatically loaded when the browser is launched and it is updated
each time the browser is closed. In 2012 Google improved its browser’s security
to protect users from silently installing extensions since these were causing more
and more problems. Before that, it was possible to silently install extensions into
Chrome by directly modifying the Secure Preferences file or by using the Win-
dows registry mechanism. Extensions that were installed by third party-programs
through external extension deployment options were disabled by default and only
extensions installed from Google Web Store are now allowed.

Concretely, from its version 25 Chromium implemented a security mecha-
nism to ensure that no external applications apart from the browser can modify
the Secure Preferences file. This mechanism is a custom Hash-based Message
Authentication Code (HMAC) algorithm [22] which produces a SHA-256 hash
given both a seed and a message. However, as the original authors claimed, the
security of HMAC relies on the seed generation, thus being secure as long as the
seed is.

Our findings reveal that the seed needed to generate the HMAC, stored in a
public file named resources.pak, is not randomly generated. Moreover, for each
Chromium-based browser, the seed is the same for all the OSs. Nevertheless, if
the seed were randomly generated the problem of where to securely store either
the seed or the key used to encrypt the seed, still persists. In previous work,
it has been proposed to use WhiteBox-Cryptography [10] to secure this seed
on Chromium [6]. However, this solution is platform-dependent, and only works
under certain circumstances and on a concrete OS. As we show in this paper
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the problem remains unsolved. Once a malicious party gets such a seed, it may
impersonate the browser and modify any parameter of the Secure Preferences
file.

To the best of our knowledge, the attack against the Secure Preferences
file has never been published with the exception of a partial description in (at
least) one Internet forum—whose moderator claimed that this attack no longer
works [17]. To confirm this, we downloaded and installed multiple versions of
Chromium in computers with Windows 10 and MacOS. We implemented the
attack described in that forum and confirmed that it did stop working from
Chromium versions up to 58.0.2999.0. In this paper, we present a proof-of-
concept PUP that modifies the Secure Preferences file of any Chromium version
from 58.0.2999.0 until the latest one at the time of writing (85.0.4172.0). Addi-
tionally, if used together with the attack presented in that forum, any Chromium
version can be easily editable (see Table 1).

Table 1. Chromium versions exploitable via HMAC.

Chromium Version Released SPF

(prior to) 25.0.1313.0 2012 Free modification

25.0.1313.0 2012 Attack [17]

58.0.2988.0 2017-01 Attack [17]

58.0.2999.0 2017-02 This paper

85.0.4172.0 (latest) 2020 This paper

This poses serious security and privacy issues. For instance, it is possible
to perform browser hijacking attacks [31,43], fingerprinting attacks [2,23,34],
remote code execution [35], as well as silent browser extensions (un)installation
(something Google has in principle banned years ago [11]). In many cases, the
way of proceeding is the same: changing the browser search provider to generate
advertising revenue by using well-known search providers like Yahoo Search or
Softonic Web Search among others [1,25]; retrieving information about that
uniquely identifies the user, and; exploiting other extensions to gain privileges
or to remotely execute source code.

Contributions. This paper analyzes how four of the most important Chromium-
based browsers [15]—Chrome (70% of market share), Microsoft Edge (5% of mar-
ket share), Opera (2.4%), and Brave1—manage the security and privacy of the
users through a configuration file named Secure Preferences file. We discover
that all of them use fixed seeds to generate the HMACs to secure the Secure
Preferences file. These HMACs are used to guarantee that the content of the
users’ privacy settings has not been altered by any other party different than the
browser (Sect. 2.2). We implement a changeware that impersonates the browser
1 Brave uses Chrome user-agent (desktop and Android) and Firefox user-agent (iOS).
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and (un)install extensions, perform phishing attacks, hijack the user’s browser,
fingerprint users through the extensions the browser has, among other things
(Sect. 3).

Section 2 presents background information concerning the Secure Preferences
file and how Chromium uses it. Section 4 exposes some countermeasures to avoid
the attack as well as a brief discussion about how this vulnerability can be used
by the research community for analyzing browser extensions. Finally, Sect. 5
presents the related work and Sect. 6 concludes the paper.

2 Background

In this section, we explain the role of the Secure Preferences file and how the
HMAC is generated in Chromium-based browsers.

2.1 Chromium Preferences

To manage and enforce configurable settings, Chromium implements a mecha-
nism called preferences to modify the settings of the browser per user instead of
doing this centrally. Using preferences it is possible to configure, for instance, the
homepage, which extensions are enabled/disabled and the default search engine.

We show how Secure Preferences file works via an example. Let Alice be a
user who wants to manually modify any of the preferences stored in the Secure
Preferences file. She accesses her profile’s folder, opens the JSON file—all the
preferences are stored in plain text so anyone can access that file—and manually
alters the preferences she wants to. Once she has modified the file, she saves it and
launches her Chromium instance to check whether the changes have been applied
or not. When Chromium loads, it automatically checks the integrity of the Secure
Preferences file, warning Alice that the file has been externally modified and the
browser marks the file as corrupted. Chromium then automatically restores the
Secure Preferences file to either a default or to a previous safe state.

Alice, who is an advanced user, tries to cheat Chromium by launching the web
browser and manually modifying the Secure Preferences file when the browser is
running expecting her changes to take effect. That, however, will not work since
Chromium loads the Secure Preferences file when it is launched the first time
and overrides the whole Secure Preferences file when Alice closes the browser.

The rationale behind Chromium’s behavior is to avoid external modifications
to the Secure Preferences file for privacy reasons. In particular, what makes
the Secure Preferences file secure is that Google added a Hash-based Message
Authentication Code (HMAC) signature of every entry (settings/preference) in
the file. In addition to this, the file also has a global-HMAC called super mac to
check the integrity of all the other HMACs.

HMAC [22] is a particular case of (MAC) which involves a hash function in
combination with a shared secret key—also known as seed in these schemes. This
algorithm was created in the 90’s and is usually used for both data verification
and message authentication. As stated in the original proposal, the security of
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the HMAC protocols rely on the security of the underlying hash function, as
well as both the size and quality of the seed.

Finally, if all the HMACs of the Secure Preferences file are correct, the
browser will set up the settings according to what is stated in that file. In the
case the validation procedure fails, the browser will use the default values for
those where the HMAC validation failed. This recovery process is the same for
all the Chromium-based browser but Brave. In this particular browser, instead
of restoring the file to a previous state, it keeps a copy in the file system of the
“corrupted” preferences file (using .old extension) and creates a new one.

2.2 HMAC in Chromium

From version 25.0.1212.0 released in 2012, Google decided to not allow other
parties different than the browser to modify the user’s settings by including an
HMAC per setting stored in the Secure Preferences file. When the user closes the
browser, it computes the HMAC whereas when the user opens it, the browser
recomputes all the HMACs and checks whether they were created by the browser.
In particular, to modify the Secure Preferences file, the browser needs to: a)
acquire the seed, and b) obtain the message. Once the browser has these data it
computes both the HMACs of the settings, and a final HMAC called super mac.

Acquiring the Seed. The seed is stored in the resource.pak file. We explain
in what follows how we get the seeds of the latest versions as of June 2020 of
the four browsers being considered.

Table 2. Seed calculation on dif-
ferent OS
OS #PC Same seed

Linux 48 �
Windows 44 �
MacOS 8 �

Chrome. The seed that Chrome uses to
compute the HMAC is a 64-long charac-
ter hexadecimal string that can be found in
the resource.pak file. Concretely, the first
resource that has a length of 256 binary
bits in the resource.pak file is the seed
Chromium uses. Roughly speaking, we obtain
this resource by loading the file and seeking
for the first line (resource) with 64 characters.

We executed the script on 100 different computers with different OSs (48
Linux, 44 Windows and 8 MacOS) and the results can be seen in Table 2. Con-
cluding that the seed is not randomly computed as claimed. Concretely, the
seed is: b’\xe7H\xf36\xd8^\xa5\xf9\xdc\xdf%\xd8\xf3G\xa6[L\xdffv\x00\
xf0-\xf6rJ*\xf1\x8a!-&\xb7\x88\xa2P\x86\x91\x0c\xf3\xa9\x03\x13ihq
\xf3\xdc\x05\x8270\xc9\x1d\xf8\xba\O\xd9\xc8\x84\xb5\x05\xa8’. We
run this experiment on Chrome version 85.0.4172.0.
Brave, Microsoft Edge and Opera. We executed the same script as for
Chrome to extract the seed on Brave, Edge and Opera but we could not change
the user’s settings. We had then to perform a brute force attack to extract the
seed because the file was different than in Chrome. We got an alarming result con-
cerning these four vendors: the seed is the blank string, i.e., seed = b’’ in both
Windows and MacOS. The version of Microsoft Edge we used was 85.0.564.51,
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for Brave we used version 1.14.81 (based on Chromium: 85.0.4183.102) whereas
for Opera we used version 71.0.3770.148.

Obtaining the Message. To correctly generate the HMAC, a message should
be passed as input. This message is composed of a MachineIdStatus and a string
message. Such a variable is platform-dependent, i.e., the MachineIdStatus is a
different value in Windows, Linux and MacOS. That said, all four browsers have
similar procedures to create the message used to generate the HMAC. In what
follows we detail how the three different platforms obtain that MachineIdStatus
value.

S-1-1-11-111111111-11111111-111111111-1111

Literal

Authority

Sub-Authority ID

Three Sub-Authorities for Uniqueness

Relative
ID

Fig. 1. Security IDentifier (SID)

Windows. Users are provided with a unique identifier named SID. This identi-
fier is usually used to control the access to resources like files, registry keys and
network shares, among others. An example of the SID can be seen in Figure 1
and it might be easily retrieved by executing either the wmic or the whoami
commands on Windows. After retrieving the SID, the last characters (Relative
ID in Figure 1) are deleted for the final usage.

MacOS. Instead of using the SID, MacOS uses the hardware (UUID) which
is a 128-bits number obtained by using the command system profiler
SPHardwareDataType. It outputs an hexadecimal number split in five groups
by a “-”, e.g., 1098AB78-6BF1-517E-905A-F018AABC4B26. In particular, in
the device id mac.cc we can find how Chromium retrieves that UUID which
is used afterwards as part of the message.

Linux. Both Windows and MacOS have their own files under chromium/src/
services/preferences/tracked/ directory but there is no references about
Linux. We corroborate that by checking the device is unittest.cc file where
we found an if-then-else statement to differentiate how the SID should be com-
puted depending whether the OS is either Windows or Mac OS but there are no
rules for Linux. Consequently, when the browser is running on Linux, the else
statement is executed where there is a MachineIdStatus::NOT IMPLEMENTED;.
As a consequence, the MachineIdStatus variable has an empty string.
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By manually analyzing the message in Chromium, we realized that it
is composed of key of the Secure Preferences file value it wants to modify
together with either the SID (or the UUID) of the current user (or computer).
More concretely, Chromium implements a function named GetMessage in the
pref hash calculator.cc file, whose purpose is to concatenate three parame-
ters given as inputs: Device ID, path and value.

Device ID corresponds to the MachineIdStatus, i.e., UUID on MacOS or the
SID of the user without the relative ID information on Windows or the empty
string on Linux. In other words, Device ID is the identifier of the machine where
Chromium is installed. Since every machine has its own unique SID no two
HMACs will be the same when computed on different machines. However, on
MacOS, since that the UUID is linked to the machine instead of being associated
to the user, different profiles in the same machine will have the same UUID value.

Path is where the Secure Preferences file is in the computer. It has a con-
crete format that uses dots (“.”) as delimiters. For example, the preference that
handles if the home button is visible or not is show home button, being the path
browser.show home button and it contains a Boolean value.

The final HMAC is a string where all empty arrays and objects are removed
and the character “!” is replaced by its Unicode representation (“\u003C”). In
the example, the value of the home button would be "show home button":true.

HMAC

Seed

Message

resources.apk

SecurePreferences.json

SID

Fig. 2. HMAC protocol in Chromium based browsers

HMAC Reproduction. The function GetDigestString, located in
pref hash calculator.cc file, is the one that generates an HMAC given a
message and a key as inputs. The key and the message are as described above.
We can impersonate the browser and generate HMACs to change any of the
values of the Secure Preferences file as if we were the browser. An illustrative
summary of the HMAC protocol in Chromium-based browsers can be seen in
Fig. 2. Once the HMACs are computed (one per modified value in the Secure
Preferences file) they are then combined to create a new message that is used
as input of the hash algorithm to calculate the final HMAC called super mac.
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The Secure Preferences file is then updated with the result of these calculations
together with the modified preference values.

Chromium has a validation mechanism to check the integrity of
the HMACs which is also calculated in the Validate function of the
pref hash calculator.cc file. Such a function takes three parameters as
input: a path of the JSON file, a value of the JSON file and a digest string
which is the current HMAC of that value. Inside that function, another func-
tion called VerifyDigestString (which is also located in the same file, i.e.,
pref hash calculator.cc) takes as inputs a key (a string), a message (gener-
ated from the function GetMessage on pref hash calculator.cc), and a digest
string (the HMAC). After being verified by the function Verify located on
hmac.cc, a SHA256 string is returned.

3 Security Analysis

In what follows, we introduce the attacker model and provide some examples
that exploit the HMAC detailed in the previous section to modify the Secure
Preferences file. We present a proof-of-concept whose source code we released for
future research on the field2. Finally, we analyze the main differences between the
installed-by-default extensions in Brave, Chrome and Edge and Opera browsers,
and demonstrate how an external server can execute some parts of the code of
the installed-by-default extensions creating a big security threat.

3.1 Attacker Model

Our attacker model is composed of any software application that specifically
alters the Secure Preferences file of Chromium. This attacker model is known
in the literature as PUPs which are executable files that apart from the desired
program installation also install other software that might not be related to
the legitimate one, typically adware [21,40]. What makes PUPs different from
malware is that users are tricked to approve the installation of this third party
application. Typically, during the installation process the PUPs shows a message
that the user has to (un)check before the process continues.

More specifically, there is a subset of PUPs called changeware whose aim is to
modify the settings of the browser [6], usually for malicious purposes as confused
deputy. Let us give an illustrative example. Years ago, Oracle used to include
in the Java installation file one selected-by-default checkbox by which a Yahoo
toolbar was automatically installed unless the user did not manually uncheck
it during the installation process [39]. Similar cases were seen with WinYahoo
which was installed as part of the Adobe Photoshop Album Starter Edition
software [26]. In all the aforementioned cases, the attackers are the binaries that
modify the Secure Preferences file. In both cases, unwanted browser extensions
are installed in the user’s browser. Note that browser extensions can usually have
access to any website (sensitive or not) that the user visits.
2 https://github.com/Pica4x6/SecurePreferencesFile.

https://github.com/Pica4x6/SecurePreferencesFile
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Fig. 3. uTorrent installation process.

Even though the issue made apparent in the examples above was identified
and marked as PUPs some time after its detection, there still are many up-to-
date examples of applications where browser extensions are piggyback programs.
One such example is uTorrent Web binary installation. Concretely, during the
installation process, the user has to accept or decline the installation of McAfee
WebAdvisor software (see Fig. 3). If the user accepts, that “extra” software is
installed together with a browser extension which is automatically installed in
Chrome (see Fig. reffig:McAfeeExtension). However, when the user manually
uninstalls the McAfee WebAdvisor application, the extension might also be unin-
stalled from Chrome. This clearly indicates that there still are applications that
can install browser extensions without requiring the user to use Google WebStore
as it is claimed.

3.2 Changeware Proof-of-Concept

The challenging part of PUPs is that they are not usually marked by antivirus
vendors as malicious software [21,40]. Windows claimed to stop PUPs and they
even added such an option as part of the recently released Microsoft Edge [12].
We created a changeware and confirmed that it is not classified as malware by
the Microsoft detection mechanism [12,29]. Additionally, we run a set of popu-
lar online antivirus tests like Virustotal3, MetaDefender4 and VirScan5 and our
changeware passed all the security checks. As a conclusion, we can effectivelly
alter the Secure Preferences file with no restrictions at all. All files to repro-
duce the attacks above are publicly available in https://github.com/Pica4x6/
SecurePreferencesFile.
3 https://www.virustotal.com.
4 https://metadefender.opswat.com.
5 https://www.virscan.org.

https://github.com/Pica4x6/SecurePreferencesFile
https://github.com/Pica4x6/SecurePreferencesFile
https://www.virustotal.com
https://metadefender.opswat.com
https://www.virscan.org
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3.3 Practical Attacks

We analyze now the main attacks a changeware can exploit. In particular, we
classify the attacks into browser hijacking and browser extensions. Most of these
attacks are interconnected since the goal of the attacks is to get the private
information of the user. Some years ago Kotzias et al. [21] analyzed almost 4
million hosts and conclude that half of them have some kind of PUPs installed.
More recently, Urban et al. [40] analyzed the communication carried out by 16k
PUPs and 5.5k Firefox extensions and got that almost 40% and 45% include
personal information of the user respectively.

Browser Hijacking. The goal of this attack is to increase the advertising revenue
by forcing the user to access concrete webpages. To redirect users to such sites,
changeware may modify up to five main values of the Secure Preferences file,
namely: [i)] homepage; [ii)] pinned tabs; [iii)] import bookmarks from file; [iv)]
search engine, and; [v)] sessions keys. Antivirus vendors usually identify this
attack by parsing the Secure Preferences file and analyzing the URLs defined in
it. If they belong to a blacklist the antivirus constantly keeps updated, then an
unwanted change might be detected and the antivirus analyzes the disk looking
for malicious software. However, this method can be bypassed by modifying the
import bookmarks from file. This is a special option in the manifest which
states the path where Chrome silently and automatically imports bookmarks
from the HTML stated in the path of such key.

Phishing The goal of this type of attack is to steal user’s private information.
This is done by loading a fake webpage that looks similar to the legitimate one.
If not aware of the URL, the user will interact with the site as usual. To trick
users, browser extensions can implement some strategies to redirect them to fake
pages and perform phishing attacks [41], analyze the most visited web pages and
generate bookmarks, change the pinned tabs they already have or even generate
new ones.

Browser Extensions: Execution Order, Paths and Fingerprinting Recently,
Picazo-Sanchez et al. demonstrated that the order in which browser extensions
are executed may alter the content of the DOM and the behavior of the browser
in general [30]. The attack was implemented corroborating that the change-
ware could modify the installation time of extensions altering the execution
order. Moreover, it can also modify any of the paths the extensions define in
the manifest, being possible to include new paths in the user’s file system load-
ing different extension files. Different techniques have been proposed so far to
fingerprint browser extensions, i.e., using WARs [34], using behavioral-based
enumeration [36,37] or because inter or extra communication messages [20,35].
Any of these methods can be easily exploited by the changeware. This could be
done for instance by defining and including new resources as WARs, including
JavaScripts into the extensions files that automatically inserts content into the
DOM, deleting the externally connectable key of the extensions so that other
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webpages can send messages to the background pages of the extensions (we
show an example of this attack in Sect. 3.4 by analyzing the installed-by-default
extensions) or a combination of them.

Browser Extensions: Permissions Chromium offers a set of APIs that extensions
can use, being some of them accessible by defining the corresponding permission
in the manifest of the extensions. Once installed, the manifest is parsed and
stored as part of the Secure Preferences file under the extension id key, therefore
the original manifest is no longer checked. This poses serious security issues since
any changeware might alter the permissions the user agreed upon and either pro-
vide it with more or fewer permissions than initially. Let us give a concrete exam-
ple, the browser extension whose id is mgpdmkkhjffhfkbpeigghejkngiaaike
and more than 400,000 downloads, includes in the background.js file return

chrome.webRequest.onCompleted but it does not include the webRequest permis-
sion needed to execute such statement. The changeware can easily add such
permission into the Secure Preferences file giving access to that API to the
extensions and thus, executing that line without any errors.

Fig. 4. McAfee browser extension.

Browser Extensions: Silent Installa-
tion Even though Google banned
silent browser installations in 2012, we
managed to successfully install, delete,
activate and deactivate browser exten-
sions. See Fig. 4 for a real example
used today by software that includes a
browser extension in the browser with-
out using the official WebStore. In this particular case, the extension can be seen
and manually removed by the user, but this might not always be the case. In
the worst-case scenario, the changeware could have the source of the extension
to be installed inside the binary file.

Note that is then possible to install new browser extensions without the user
being notified similarly to how installed-by-default extensions work (see Tables 5
to 6). Concretely, enabling and disabling extensions is determined by the state
key of the extension in the Secure Preferences file being straightforward to modify
them. Also, remark that to uninstall an extension, the changeware can simply
delete the whole entry of the preferences file and computing the super mac of
the Secure Preferences file.

3.4 Installed-by-Default Extensions

In the following, we analyze the extensions that are installed by default with the
browser, for all four browser under consideration.

Brave. This browser has ten installed-by-default apps where none of them
are extensions and they cannot be removed by the user (see Table 3). Brave,
renames some of the default extensions despite being exactly the same as the
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one provided by Chromium, e.g., Chromium PDF viewer. However, what makes
Brave different from the other browsers is that it allows the user to disable (not
to uninstall) some installed-by-default apps, e.g., WebTorrent, Google Hangsout
and Crypto Wallet.

Chrome. We confirmed that the number of default extensions is sixteen
(between browser extensions and apps) in the three OSs. In addition to that,
only a subset of them might be uninstalled by the user in the usual way, i.e.,
going either to chrome://extensions or chrome://apps and manually remov-
ing them. We show a detailed list of the installed-by-default extensions in Table 5.

Regarding the platform, our initial hypothesis was that Linux was the most
privacy compliant of the evaluated OSs. After running the first part of the exper-
iments we confirmed that indeed Chrome does not install any single browser
extension by default in Linux (contrarily to what happens in other OSs), and
the file is totally empty except for the super mac key. We realized that Linux
does not modify such a file but Preferences file, so we had to adapt our tests
to use that Preferences file instead.

Microsoft Edge. Unlike Chrome, Microsoft Edge has ten installed-by-default
applications and only one extension (see Table 4). Most, if not all, browser
extensions developed for one particular Chromium-based browser can be eas-
ily exported to other Chromium-based browsers. There are cases where ven-
dors can modify some parameters like the name of the extensions, e.g.,
mhjfbmdgcfjbbpaeojofohoefgiehjai is named here Microsoft Edge PDF
Viewer and Chrome PDF Viewer on Chrome. We tested Edge on Windows
and MacOS without noticing differences when the Secure Preferences file is gen-
erated for the first time. It is also interesting to mention that there is no way
for the user to get rid of any default extensions on Edge.

Opera. This browser is the one that has more information by default in the
Secure Preferences file when it is installed for the first time. Concretely, there
are more than 300 extensions hardcoded whose purpose is to ban them to be
installed by the user— a disallowed list. Other than that, there are 21 extensions
installed by default and none of them can actually be uninstalled nor disabled
by the user. Table 6 shows a list of the installed-by-default extensions in Opera.

3.5 Google Hangsout Use Case

There is an unexplored set of extensions that are typically overlooked by the
research community: installed-by-default extensions. We manually analyzed all
of them and realized that Google Docs Offline, Chrome Media Router, Cryp-
toTokenExtension and Google Hangouts, implement external message listeners
and have the externally connectable key defined in their manifest files. Given
that only the Google Docs Offline extension can be deleted by the user, if a
changeware modifies such key in the Secure Preferences file any website can
send messages to these extensions as if they were legitimate websites.

Concretely, Google Hangsout is one of these installed-by-default extensions
present in all the Chromium-based browsers. It cannot be uninstalled by the
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user with the only exception of Brave which can be disabled. In the following, we
analyze it to demonstrate the information that an attacker can get by exploiting
the Secure Preferences file.

A recent study performed by Somé demonstrates how browser extensions
allow web applications to bypass the Same Origin Policy and have access to sen-
sitive information of the user [35]. Concretely, extensions that listen for exter-
nal messages should be defined in advance in the manifest similar to what the
externally connectable does. If, for instance, such a key is not defined in the
manifest file and extensions implement any of the external message listeners (i.e.,
onMessageExternal and onConnectExternal), they will listen and execute the code
defined in any of these functions. Moreover, if any dangerous function like eval

() is defined in these listeners, the consequences might be catastrophic since the
attacker can take control of the extension and run arbitrary code on it.

var ed i t o rExtens i on Id=”nkeimhogjdpnpccoofpliimaahmaaome” ;
var por t a = chrome . runtime . connect ( ed i to rExtens ionId ,{name : ”

processCpu” }) ;
var port b = chrome . runtime . connect ( ed i to rExtens ionId ,{name : ”

chooseDesktopMedia” }) ;
port b . postMessage ({

method : ’ chooseDesktopMedia ’ ,
// source s : [ ’ s c r e en ’ , ’ window ’ , ’ tab ’ , ’ audio ’ ]
s ou r c e s : [ ”window” ]

}) ;

por t a . onMessage . addLis tener (
func t i on (msg) { con so l e . l og (msg) }) ;

port b . onMessage . addLis tener (
func t i on (msg) { con so l e . l og (msg) }) ;

Fig. 5. Script that the attacker injects to extract information from the user.

Google Hangsout defines the pattern https://*.google.com/* as trusted
webpages, making thus possible for any (sub)domain of google.com send mes-
sages to the extension. We created a dummy server (http://www.attacker.com)
and added it to the externally connectable list by using the attack described
in Sect. 3. We manually analyzed such extension and realized that the attacker
can obtain information like {"browserCpuUsage":2.2,"gpuCpuUsage":3.0,"tabCpu
Usage":0.0,"tabJsMemoryAllocated":3133440,"tabJsMemoryUsed":1743032,"tab

NetworkUsage":0} by using a port named “processCpu” (line 3 of Fig. 5).



120 P. Picazo-Sanchez et al.

Apart from that, by setting the right parameters (lines 4 and 5 of Fig. 5) the
attacker may execute the chrome.desktopCapture.chooseDesktopMedia(array of

DesktopCaptureSourceType sources, tabs.Tab targetTab, function callback)

function where the array of sources can be either “screen”, “window”, “tab”,
or “audio” according to the official documentation provided by Google. The
attacker can then get a screenshot of: 1) the current screen of the user’s com-
puter; 2) any software the user is running; 3) the tab of the browser, and; 4) the
audio of user.

Finally, with our changeware we can remove the entire externally connectable

entry of the Hangsout extension from the Secure Preferences file. In fact,
any browser extension can execute those functions and retrieve such informa-
tion. In addition, by including a list of allowed sites in the matches list of the
externally connectable key, any website can also execute and get these data.

4 Discussion

Here we discuss countermeasures and proposals to prevent the Secure Preferences
file attack as well as the potential benefits that our attacks have for future
analysis of the extensions.

Coordinated Disclosure. We contacted the four vendors: Brave, Google,
Microsoft and Opera to report our findings. Brave is in progress of fixing the
problem. Google acknowledged that “defeating the HMAC is a signal that the
software is in violation of the Unwanted Software Policy”. Both Microsoft and
Opera deferred to the Chromium project.

Preventing the SPF Attack. In our approach, we first generate a nonce—
a random values of 64-character long string—from a uniform distribution, and
use it to replace the seed already stored in the resources.pak file. When we
launched Chromium for the first time after that change, it showed an alert pop-
up saying that something went wrong and the configurations were to be restored.
After that, we did not notice any difference when working with Chromium while
surfing the web, installing/uninstalling browser extensions, adding plugins, mod-
ifying the homepage, adding bookmarks or adding/deleting pinned tabs.

However, even if we generate random seeds to mitigate the attack, the prob-
lem remains if the nonce is still stored in the file system. We thus implement a
script to generate the random seed each time Chromium is about to open. The
problem with this solution is that Chromium became impractical since it was
always trying to restore the file from external changes (remember that the Secure
Preferences file is analyzed and loaded each time Chromium is launched). If the
seed is changed, the HMAC protection mechanism implemented by the Secure
Preferences file should also be updated, generating thus new values for all the
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macs as well as for the super mac. The conclusion is that the seed generation
is not secure as long as it is stored somewhere in the file system of the user:
performing a reverse engineering process is enough to reveal where the seed is
stored, being therefore easy to get it.

Briefly, either the seed generation, the Secure Preferences file or the seed
storage have to be protected from unauthorized parties. To achieve that we
propose a solution based on (TPM), in which case the seed should automatically
be generated and stored in a secure memory so only the browser can access it
(as Windows 10 currently does [28]). A limitation of the usage of TPMs, despite
being widely extended, is that not all computers have one.

Alternative solutions to TPM, e.g., Intel SGX, ARM Trusted Zone or MAC
secure enclave, could be considered. In such cases, the browser can either par-
tially or totally run the seed generation procedure in the enclave and securely
store the generated seed. Moreover, the browser could also store the Secure
Preferences file in the enclave so no other parties different than the browser can
access it.

Potential Benefits. Creating a controlled environment to execute browser
extensions and analyze them is difficult. Honey pages have been widely used in
the literature to fire the execution of browser extensions [9,19,36]. Our released
source code can easily be used to modify extensions in such a way that the
main functionality is not modified. Therefore, applying techniques like fuzzing,
improving static analysis strategies or making dynamic analysis less demanding
are some of the examples where our changeware can be helpful.

5 Related Work

Many researchers have analyzed browser extensions from the security and privacy
point of view (e.g., [5,8,13,16,19,24,32,35,36,44]) but very little research has
been conducted about how browser preferences and the Secure Preferences file
can be used by malicious software to attack user’s privacy or security.

The first attack against the Secure Preferences file, on Chrome for Windows,
was described in one Internet forum in 2015, where it was shown how this file
could be silently modified [17]. We confirmed this and developed a new attack
based on that one that combined can be used to modify the Secure Prefer-
ences file of any version of any Chromium-based browser. Indeed, we turned a
less known narrowly-targeted attack (that only worked for Chrome and only on
Windows) into a powerful platform-independent attack that exploits the most
important Chromium-based browsers. Furthermore, we presented a systematic
study of this class of attack and investigated its hefty consequences for browser
hijacking and browser extensions.
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In the same year, Banescu et al. [6] assumed the existence of a type of malware
called changeware with no root privileges. This malware is typically installed by
Internet toolbars, banners or the execution of executable files like installers whose
goal is to change user’s configuration files. In this paper, Banescu et al. proposed
a solution based on White-Box Cryptography. As this type of cryptographic
tool is insecure [7,33], they include software diversity [14] to mitigate attacks
against this cryptographic scheme [6]. Since the attackers are not aware of the
used obfuscation transformation, they need to explore all the possible generated
binaries to run cryptanalysis. Despite being a promising technique, the proposed
solution is only deployable in Windows since they do not modify the kernel of
the operating system. A modification of the kernel would be mandatory in Linux
and Mac. In comparison to our paper, we focused on how to perform the attack
against the Secure Preferences file and the consequences for the user.

In most, if not all, the referenced papers try to find security solutions for
browser extensions without being concerned about the entry point of these pref-
erences in the browser. Active extensions, web accessible resources, permissions
they have, silent (un)installations or the path of installation where all the files
and extra files are located in the OS are a few examples of topics covered in
the literature. We went one step forward and described an attack to the Secure
Preferences file where all the preferences of the user are stored. We can actually
modify any of these settings and thus bypassing most of the proposed solutions
in the literature, originating new security and privacy issues.

6 Conclusions

We have revisited the security and privacy of Chromium’s mechanism to access
the Secure Preferences file. Google introduced a security mechanism based on
a cryptographic algorithm named HMAC to avoid users and applications other
than the browser modifying the Secure Preferences file. We found that the seed
used for the HMAC is fixed, making Chromium vulnerable to PUP. Our analysis
was carried out on Brave, Chrome, Edge and Opera.

We have also demonstrated that it is possible to perform browser hijack-
ing, browser extension fingerprinting and remote code execution attacks as well
as silent browser extensions (un)installation. We did so by coding a platform-
independent proof-of-concept changeware that exploits the HMAC, freely mod-
ifying the Secure Preferences file. Our changeware, in combination with the one
proposed in [17], can be used to modify such a preferences file of any Chromium
version later than v.25 (including the latest one, v.85.0).
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A Installed-by-Default Extensions

Table 3. Brave installed-by-default extensions.

ExensionID Name Uninstallable

ahfgeienlihckogmohjhadlkjgocpleb Web Store ✗

jidkidbbcafjabdphckchenhfomhnfma Brave Rewards ✗

kmendfapggjehodndflmmgagdbamhnfd CryptoTokenExtension ✗

lgjmpdmojkpocjcopdikifhejkkjglho Brave Webtorrent can be disabled

mfehgcgbbipciphmccgaenjidiccnmng Cloud Print ✗

mhjfbmdgcfjbbpaeojofohoefgiehjai Chromium PDF Viewer ✗

mnojpmjdmbbfmejpflffifhffcmidifd Brave ✗

nkeimhogjdpnpccoofpliimaahmaaome Google Hangouts can be disabled

odbfpeeihdkbihmopkbjmoonfanlbfcl Crypto Wallets can be disabled

oemmndcbldboiebfnladdacbdfmadadm PDF Viewer ✗

Table 4. Microsoft Edge installed-by-default extensions.

ExensionID Name Uninstallable

dgiklkfkllikcanfonkcabmbdfmgleag Edge Clipboard ✗

fikbjbembnmfhppjfnmfkahdhfohhjmg Media Internals Services Extension ✗

fogppepbgmgkpdkinbojbibkhoffpief Edge Collections ✗

iglcjdemknebjbklcgkfaebgojjphkec Microsoft Store ✗

ihmafllikibpmigkcoadcmckbfhibefp Edge Feedback ✗

jdiccldimpdaibmpdkjnbmckianbfold Microsoft Voices ✗

kmendfapggjehodndflmmgagdbamhnfd CryptoToken ✗

mhjfbmdgcfjbbpaeojofohoefgiehjai Microsoft Edge PDF Viewer ✗

ncbjelpjchkpbikbpkcchkhkblodoama WebRTC Internals Extension ✗

nkeimhogjdpnpccoofpliimaahmaaome Google Hangouts ✗

pkedcjkdefgpdelpbcmbmeomcjbeemfm Chrome Media Router ✗
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Table 5. Chrome installed-by-default extensions.

ExensionID Name Uninstallable

aapocclcgogkmnckokdopfmhonfmgoek Slides ✓

ahfgeienlihckogmohjhadlkjgocpleb Web Store ✗

aohghmighlieiainnegkcijnfilokake Docs ✓

apdfllckaahabafndbhieahigkjlhalf Google Drive ✓

blpcfgokakmgnkcojhhkbfbldkacnbeo Youtube ✓

felcaaldnbdncclmgdcncolpebgiejap Sheets ✓

gfdkimpbcpahaombhbimeihdjnejgicl Feedback ✗

ghbmnnjooekpmoecnnnilnnbdlolhkhi Google Docs Offline ✓

kmendfapggjehodndflmmgagdbamhnfd CryptoTokenExtension ✗

mfehgcgbbipciphmccgaenjidiccnmng Cloud Print ✗

mhjfbmdgcfjbbpaeojofohoefgiehjai Chrome PDF Viewer ✗

neajdppkdcdipfabeoofebfddakdcjhd Google Network Speech ✗

nkeimhogjdpnpccoofpliimaahmaaome Google Hangouts ✗

nmmhkkegccagdldgiimedpiccmgmieda Google Wallet ✗

pjkljhegncpnkpknbcohdijeoejaedia Gmail ✓

pkedcjkdefgpdelpbcmbmeomcjbeemfm Chrome Media Router ✗

Table 6. Opera installed-by-default extensions.

ExensionID Name Uninstallable

apkgpnbdglipaagpckkbdbigfmmomobn Onboarding popup ✗

bcibcaaakpeekhbnddgnajbmjdcemfkf Opera Addons Portal can be disabled

bennllbledkboeijomefbhpidmhfkoih News feeds popup ✗

cgloclgndbkhmjcaddholfcgghcgmmig Opera Welcome Page ✗

eeiccfifdclpgnnaagpkjfpkaabgcbne SD suggestions list ✗

efpeldimhbhjejgcdcbhmjllaafhjmge VKontakte Notifications ✗

enmlgamfkfdemjmlfjeeipglcfpomikn News feed handler ✗

gfobfmjpcnapngbghpcbodncehngmdln Opera Crypto Wallet ✗

hhckidpbkbmoeejbddojbdgidalionif Video handler ✗

ibgcfekaaejggoajjnmknjcoieffdnod Google Drive/Docs

clipboard and

notifications support

✗

ionkhgehfolinkdpgdbinmgbfaonpcnk Amazon promotion ✗

jaocpokicpmlhbchlodlkiochdkmophj Aliexpress observer ✗

kmendfapggjehodndflmmgagdbamhnfd CryptoTokenExtension ✗

knohfebhibeknbfioecpdmdkjkjdnjnl Bookmarks ✗

mfglbjdihkhhnimlecioccjbjiepicip Opera Sync Auth Flow ✗

mhjfbmdgcfjbbpaeojofohoefgiehjai Chromium PDF Viewer ✗

midfadfpkkakgcmbgpngfnfekghligek Rate Opera ✗

nkeimhogjdpnpccoofpliimaahmaaome Google Hangouts ✗

obhaigpnhcioanniiaepcgkdilopflbb Background worker ✗

odndjkngipngdmdlfodecoelobjbidna Opera In-App

Notification Portal

✗

onigllbobbpllnfcjanphobocbkcdghh Discord Notifications ✗
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Abstract. Domain Generation Algorithm (DGA) is a popular tech-
nique used by many malware developers in recent times. Nowadays,
DGA is an evasive technique used by many of the Advanced Persis-
tent Threat (APT) groups and Botnets to bypass host and network-level
detection mechanisms. Legacy malware developers used to hard code the
IP address of control and command server in malware payload. But, this
led to identifying malicious IP address by reverse engineering the mal-
ware payload. Drawbacks in this hardcoding IP mechanism led to the
idea of character-based Domain Generation Algorithms, where attackers
generate a list of domain names using traditional cryptographic principles
of pseudo-random number generators (PRNGs). Recent advances in mal-
ware research, machine learning address this problem to a large extent.
Lately, malware developers came up with a new variant of DGA called
word-list based DGA. In this approach, the malware uses a set of words
from the dictionary to construct meaningful substrings that resembles
real domain names. In this paper, we propose a new method for detect-
ing Word-list based DGA domain names using ensemble approaches with
15 features (both lexical and network-level). Added to this, we gener-
ated syntactic data using CTGAN (GAN-based data synthesizer that
can generate synthetic data) to measure the robustness of our model. In
our experiment, C5.0 stands out as the best with prediction accuracy
of 0.9503 and out of 30000 synthetically generated malicious domains
names, 1351 classified as benign.

Keywords: DGA · APT · Malware · GAN · Diffusion map · PCA

1 Introduction

Modern-day malware are intelligent enough to hide their presence by applying
various advanced evasive techniques [1]. One such popular technique is Domain
Generation Algorithms. As the process of embedding this technique into mal-
ware code is easy and effective, we can notice the implementation of the same
in many advanced malwares such as APT’s and Ransomware [2]. The impor-
tant aspect of any malware is to stay undetected for the longest possible period.
This part can be accomplished at various levels of malware implementations.
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Obfuscating code is the most common technique at the code level. But in the
communication part, most of the malware families are vulnerable to detection
at the firewall level as it tries to communicate to a static IP address or a domain
name throughout its lifetime. It’s very obvious that hitting the same IP/domain
name frequently by a process can be treated as abnormal behavior and a sin-
gle line of firewall rule can be effective in blocking such network traffic. So, for
less conspicuous communication between a malware and its C&C (control and
command server); DGA (Domain Generation Algorithms) came into existence
[3]. Domain Generation Algorithms can be treated as an enhancement function-
ality written inside the malware piece of code which generates a dynamic list of
domain names that changes over time. In other words, a DGA present inside a
malware generates a list of domain names which the attacker registers with DNS
registry for a fixed period. This way of generating domain names makes the job
difficult for the firewall to detect suspicious communication.

In the initial step, attacker tries to inject the malware into a vulnerable
host system via Phishing, Spam mail content, host based code injection etc
[4]. After getting settled inside the host system, malware starts communicating
with its C&C server. At this point, DGA comes into the picture. Typically, the
DGA work-flow starts from the attacker’s side by running the algorithm with a
seed value (timestamp, currency exchange rate between two countries, trending
hashtag in twitter, etc) and generates a list of domain names. As the attacker
knows that the same set is generated by the malware at the end-user level,
attacker registers a few of those domain names and use them as C&C servers.
In this process important aspect lies in activating the DGA domain names for a
short period with a constant seed value change.

Character-Based DGA is one of the basic implementations where pseudoran-
dom strings are generated and a legitimate top level domain (TLD) is concate-
nated to make it look like an actual domain name (eg: wxfuyhpdfkzsh.com) [5].
Here, the process of generating the pseudorandom string is dependent on the
seed value. Kraken was the first infamous malware to be found at the beginning
of 2008 [6]. Later, a malware named Conficker affected more than 11 million
devices world wide by installing scareware content in windows machines [7]. In
2009, another DGA malware named Zeus had impacted 70,000 bank and busi-
ness accounts including the NASA [8]. Pykspa was another significant DGA
malware that used Skype to damage the victim’s computer [9]. Most of these
character-based DGA domain name families are a bit easy to detect as their out-
put domain names look quite different from the normal ones. There are various
attributes like n-gram statistics, vowel-consonant pairing, unique words etc helps
in classifying these character based DGA domain names with a decent accuracy
[10].

More recently, the malware writers moved to a word-list based DGA, where
two or three words from different word-lists are selected and concatenated in ran-
dom. Finally, a TLD is added at the end that resembles a normal domain name
(eg: crossmentioncare.com) [11]. Rovnix is one such legacy DGA family which
generates command and control (C&C) domains using words from the United
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States Declaration of Independence, the GNU Lesser General Public License
and other documents [12]. According to security researchers, evolutionary DGA
families like Matsnu employs a clever technique to evade conventional detection
mechanisms [13]. Matsnu DGA generates 16–24 character domain names based
on a blend of names and verbs (noun-verb-noun-verb). The words used by the
malware can be entered by the attacker or taken from a predefined list con-
taining 878 nouns and 444 verbs. This Matsnu DGA is configurable, so that it
allows cyber criminals to set the number of domains they want to create reg-
ularly [13]. In this, the DGA malware writer is given a choice to specify the
number of days after which the previously generated domain name is ready for
re-use. The Matsnu DGA family has been actively used by several new malware
variants since June 2014. The highest number of infections has been detected
in Germany (89%), however, some of the infected devices are located in Austria
and Poland as well [14]. Recently, one Security firm has sinkholed one of the
servers used by Matsnu and found roughly 9,000 bots communicate with it each
day.

Although many traditional and hybrid methods are available in the detection
of character-based DGA, usage of Word list based DGA in malware attacks
is rapidly increasing globally. Attackers created evolutionary word list based
DGA families like Matsnu, Gozi and suppobox which are resistant to traditional
detection techniques because of their proximity to real world domain names.
To address this serious security concern, we propose a detection method for
word list based DGA domain names (Matsnu, Gozi and Suppobox) using the
Ensemble Learning Algorithms and evaluate the efficiency of these algorithms. In
our experiments, we applied both linear and non-linear dimensionality reduction
techniques to analyse underlying structure of our data. In addition, we generated
synthetic tabular data using CTGAN to measure the robustness of our model.

This paper is organized as follows. Section 1 details about overview of DGA
and its types followed by the challenges that corporate networks encounter
with new generation DGA domain names. Section 2 explains Related work and
problems involved in current methodologies in detecting word list based DGA.
Section 3 briefs on Proposed approach for extracting features and building classi-
fiers to detect DGA domain names. Section 4 demonstrates Implementation and
results for various experiments. Section 5 details Conclusion and future work.

2 Related Work

As Domain Generation Algorithms became a common evasion technique for
attackers in recent years, DGA detection became significantly important in mod-
ern corporate networks. Traditional Domain Generation Algorithms uses pseudo-
random number generators to generate a list of domains. But this area of research
is widely explored by many researchers and got benchmarking results in detect-
ing PRNG based DGA domain names. Yadav proposed a method to detect DGA
domain names using temporal correlation. They have mainly considered the IP-
domain bipartite graph and information entropy of bigrams [15]. Similarly, da
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Luz et al. built a model from passive DNS data by considering lexical and net-
work features [16]. In 2019, Jose proposed a masked n-gram model in which they
considered n-grams for second-level domain name values [17]. Recent advances
in machine learning algorithms improved detection rates of PRNG based DGA
domain names. Especially, ensemble models like C5.0 and Random Forests per-
forms the best in detecting these with very high accuracy and less false-positive
rates.

On the other hand, word-based Domain Generation Algorithms detection
seems challenging to most of the security experts and researchers. In 2016, Daniel
Plohmann et al. did a comprehensive survey on Domain Generative Malware [18].
Their work clearly explains the complexity of word-list based domain generation
algorithm families like Matsnu, Suppobox and Gozi. Curtin et al. proposed a
model for detecting DGA domain names with recurrent neural networks [19].
In their model, they used a concept called smashword score (which measures
how much a DGA family is close to the English words) to train recurrent neural
network and generalized likelihood ratio test (GLRT) LSTM to detect malicious
word list based domain names. But their accuracy is not up to the mark for
Matsnu, Suppobox and Gozi families. Because of this reason, it is not adaptable
for a large scale sensitive corporate networks.

Similarly, Luhui Yahg et al. proposed a method for detecting word-list based
DGA by considering word feature, part-of-speech feature and word correlation
feature [20]. Their work mainly concentrated on Front-Word-Correlation (FWC)
and Back-Word-Correlation (BWC) in the word correlation analysis. Although
they used ensemble models like J48 from weka3.8, their accuracy (0.83) remains
poor with high false positives. So, this model is not feasible for current indus-
trial standards. In 2016, Woodbridge et al. proposed a model to predict Domain
Generation Algorithms using LSTM neural networks [21]. Although their app-
roach needs no manual feature extraction and less classification time, their model
have class imbalance that limits its ability to detect families like Suppobox and
Matsu.

Choi et al. proposed the BotGAD framework which captures all the DNS
traffic passing at the network level and creates a matrix of timeslots and IP
address requested [22]. BotGAD main focus is on Time To Live of DNS record
which is not self-sufficient to detect sophisticated Botnet or APT evasion tech-
niques. In a similar way, Jasper has proposed the DGA detection method based
on the popularity of the domain name [23]. In this approach, a sudden increase
and decrease of traffic flow to a particular domain is monitored over a period
of time and based on that, the popularity of a domain name is calculated. This
approach will take a minimum of 1 day to observe the changes in a network pat-
tern which is infeasible for real-time detection. Luhui et al. proposed a model to
detect word-based DGA using semantic analysis [20]. In this work, they mainly
considered word embeddings of parts of speech, inter-word correlation, and inter-
domain correlation for constructing a machine learning model. Although their
work analyzed frequency distributions of words and parts of speech of Domains
names, the major drawback with this model is a large number of features that
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are interdependent of each other and not even a single DNS based feature is
considered. These are the reasons behind the accuracy drop for this model even
after using ensemble classifiers.

3 Proposed Methodology

We collect our word list based DGA samples from DGArchive (database for
domain names that are dynamically created by malware using Domain Gen-
eration Algorithms). Similarly, we take data of legitimate domain names from
Alexa one million domain names list dataset. In our experiments, we mainly
concentrated on Gozi, Matsnu and Suppobox DGA families (which are difficult
to detect by many state of the art DGA detection mechanisms). We extract 15
features (lexical and network features) for both legitimate and malicious domain
names (specified in Table 1). In this feature extraction process, we have used
the wordninja library for splitting words to extract lexical features [24]. Word-
ninja is based on probabilistically split concatenated words using NLP on English
Wikipedia unigram frequencies. Similarly, we used the whois (importable Python
module which will produce parsed WHOIS data for a given domain) library for
extracting network-level features [25]. This library helps us to extract data for
popular TLD’s by sending a direct query to a WHOIS server instead of going
through an intermediate web service.

3.1 Building Classifiers

After preparing a dataset of 15 features for randomly selected domain names
from the Matsnu, Gozi, Suppobox and Alexa domains, the next phase is to build
a low false positive classifier. Initially, we build Naive Bayesian. But this Naive
Bayesian model misclassified most of Gozi and Suppobox families as legitimate
domain names which resulted in poor accuracy and high false positive rate. Later,
we build KNN classifier (distance functions based approach) to detect word-list
DGA families. KNN model performed well in classifiying DGA domain names,
but this classifier raised false alarms by misclassifiying legitimate domains as
DGA families. As the process of word-list DGA domains detection requires near
real time detection with less misclassification errors, we use ensemble approach
to construct classifiers. The idea of an ensemble approach is to build a strong
learner by combining several weak learners. Basically, ensemble approaches are
classified as Boosting, Bagging and Stacking respectively. Boosting works in an
iterative way where more weights are assigned to the misclassified learners, and
in the next iteration errors are minimised. We use GBM (stochastic gradient
boosting), J48 (C4.5), C5.0 as boosting models and CART, Random Forest
as bagging models. Boosting ensemble construct trees sequentially to minimize
the errors of the previous trees. Unlike boosting ensemble models, in bagging
ensemble models trees are built in parallel and final model is built by aggregating
predictions from all models. So, Boosting ensemble models gave better results in
detecting word-list based DGA domain detection. In order to achieve a higher
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accuracy value, C5.0 uses Information gain for the selection of attributes to
construct a decision tree and Binomial Confidence Limit as a pruning technique.
Similarly, C4.5 generates decision trees from a collection of training data like
ID3, using the knowledge entropy principle. In C4.5, all errors are regarded
as equivalent, although some classification errors are more severe than others
in practical applications. C5.0 requires a different cost to be defined for each
predicted/actual class pair; C5.0 constructs the classifiers to reduce the expected
misclassification costs rather than the error rate. On the other hand in GBM,
new basic learners are created which can be correlated with the overall negative
gradient of the loss function.

Table 1. Features considered for sample MATSNU domain name

S.NO Feature Example (crossmentioncare.com)

1 Domain Name crossmentioncare.com

2 Word Count 3

3 Length 16

4 Syllable Count 4

5 Vowel Count 6

6 Consonant Count 10

7 Created Since (in days) 2192

8 Updated Since (in days) 2189

9 Registrar (Binary) 1

10 TTL (in seconds) 86400

11 IANA (Binary) 1

12 Unique Letters 10

13 Hyphen (Binary) 0

14 Underscore (Binary) 0

15 Family Type MATSNU

We use CARET package in R programming language to build models in all
our experiments except Naive Bayes. Since we have both categorical and con-
tinuous data in our dataset, for building a Naive Bayes classifier we use Mixed
Naive Bayes python library [26]. We use repeated cross-validation with 10 resam-
pling iterations as the train control method and this step is repeated 3 times for
each classifier. As Figs. 1 and 2 show, our model provides substantial accuracy
improvements as compared to previous approaches in detecting word-list based
DGA domain names. In Fig. 1. (Accuracy comparison graph), Accuracy values
taken along X-axis and various classifiers are taken along Y-axis. Similarly in
Fig. 2 (Kappa comparison graph), Kappa values taken along X-axis and various
classifiers are taken along Y-axis respectively. Building blocks for our model are
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Fig. 1. Accuacy comparision graph Fig. 2. Kappa comparision graph

the features listed in Table 1. Figure 3 displays the Receiver Operating Charac-
teristic (ROC) curves generated by various classifiers. ROC graph depicts the
relation between True Positive Rate and the False Positive Rate. All the ensem-
ble classifiers have a fairly equal Area under Curve (AUC) value and for the
C5.0 classifier, the maximum accuracy of 0.9808 is achieved.

Fig. 3. ROC curve for various Classifiers

4 Results and Discussion

After data engineering and basic model construction part, we carry out exper-
iments to reduce the feature set and improve the accuracy. In our paper, we
implement feature correlation analysis to identify the highly correlated feature
set which helps in the feature reduction part. In addition, we implemented both
linear and nonlinear dimensionality reduction methods like PCA (Principal Com-
ponent Analysis) for linear feature reduction and Diffusion map to discovering
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the underlying manifold of the dataset [27,28]. The following subsections describe
these experiments.

4.1 Experiment-1

Initially, we consider all 15 features for model training. In this experiment, we
consider 40,000 domain samples (10,000 random samples from each type i.e Mat-
snu, Gozi, Suppobox, Benign). These 40,000 sample data set is divided into 60:40
for training and testing phases. Then we applied various ensemble models on this
dataset and according to our observation, most of the ensemble models are well
suited for near real-time predictions for these word list based DGA domains
prediction. Among these ensemble models, C5.0 stands out to be the best one
with low training time and high accuracy. In Table 2, Benign(B), Matsnu(M),
Gozi(G), Suppobox(S) are respective DGA family types in sensitivity and Speci-
ficity columns. Kappa statistic is a measure of how closely the instances classified
by the machine learning classifier match the data labeled as ground truth and
Sensitivity is a metric that evaluates the ability of the model to predict the true
positive of each DGA family category. Similary, Specificity deals with true nega-
tive values of each DGA family. In our observation, C5.0 is best among all other
classifiers with low False Positive Rate (FPR) and a low False Negative Rate
(FNR) for 15 features dataset.

Table 2. Results obtained after applying various classifier models on 15 feature dataset

Algorithm Accuracy Kappa Sensitivity Specificity

Naive Bayesian 0.7758 0.7011 0.9130(B), 0.9960(M),

0.8060(G), 0.3975(S)

0.9742(B), 0.7717(M),

0.9646(G), 0.9914(S)

KNN 0.9650 0.9532 0.8718(B), 0.9960(M),

0.9965(G), 0.9968(S)

0.9988(B), 0.9591(M),

0.9974(G). 0.9972(S)

CART 0.8230 0.7640 0.8790(B), 0.9200(M),

0.7580(G), 0.9300(S)

0.9997(B), 0.9138(M),

0.9426(G), 0.9131(S)

GBM 0.9789 0.9719 0.9197(B), 0.9998(M),

0.9960(G), 1.00(S)

1.00(B), 0.9780(M),

0.9953(G), 1.00(S)

Random Forest 0.9802 0.9737 0.9277(B), 0.998(M),

0.9950(G), 1.00(S)

0.9999(B), 0.9758(M),

0.9977(G), 1.00(S)

C 5.0 0.9808 0.9744 0.9745(B), 1.00(M),

0.9980(G), 1.00(S)

1.00(B), 0.9808(M),

0.9943(G), 1.00(S)

J48 0.9756 0.9675 0.9110(B), 0.997(M),

0.993(G), 1.00(S)

0.9998(B), 0.9763(M),

0.9920(G), 1.00(S)

When we do a feature correlation analysis by constructing a feature correla-
tion plot for our 15 feature dataset, (inspired by Tian Zheng, Matthew Salganik
and Andrew Gelman’s work on estimation of social structure in the network by
using overdispersion count [29]) we get a correlation plot as shown in Fig. 4.
We understand how one feature in our dataset is correlated to all other features
with an index ranging from −1 to 1. +1 indicates a strong correlation (colored as
dark red) and −1 indicates a strong negative correlation (colored as dark blue).
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Fig. 4. Feature correlation analysis for 15 features dataset (Color figure online)

Fig. 5. Feature importance graph for 15 features
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Along with feature correlation analysis, we construct a feature importance graph
for our dataset to understand the significant features. This feature correlation
plot is constructed based on recursive feature elimination method [30]. In this
method, variable importance is computed using the ranking method for fea-
ture selection. For the final subset of features, importance across all resamples
are averaged to compute an overall importance value for the features. For our
dataset of 15 features, the feature importance graph is illustrated in Fig. 5. In
this feature importance graph, feature importance value (lies between 0 and 1)
is taken along X-axis and Feature list is taken along Y-axis respectively.

4.2 Experiment-2

Based on these two results, we consider top 8 features (4 lexical and 4 network
based) and train a new model. For this experiment, we also consider 40,000 domain
samples (10,000 random samples from each type i.e Matsnu, Gozi, Suppobox,
Benign) divided in 60:40 ratio for training and testing respectively. We apply vari-
ous ensemblemodels on the data,Random forest tops in terms of high accuracy and
low FPR, FNR rates. We achieve almost similar accuracy (2% drop) by reducing
half of the features as shown in Table 3. Although Random forest tops in terms of
accuracy, its training time and model size is double than the C5.0. If we are looking
for real time DGA domain name detection for a sensitive corporate network’s that
needs a daily or weekly retraining, C5.0 is the best choice with less model size and
training time as well. After constructing models with 8 features we did a similar
feature importance analysis for this 8 features as illustrated in Fig. 6. In this fea-

Fig. 6. Feature importance graph for 8 features
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ture importance graph (8 features), feature importance value (lies between 0 and
1) is taken along X-axis and Feature list is taken along Y-axis respectively.

4.3 Experiment-3

In this experiment, we apply one of the linear dimensionality reduction tech-
nique called as Principle Component Analysis (PCA) on our 15 feature dataset.
Basic idea of PCA is to maximize the variance of first K components and mini-
mize the variance of remaining P-K components by projecting the data from P-
dimensional space to K-dimensional sub space. Initially, we plot a graph between
Principle Components (along X-axis) and cumulative sum of variance (along Y-
axis) to understand top K significant principle components as shown in Fig. 7.

Fig. 7. Principle components vs variance plot

In our observation, by considering the first 8 Principle components we got
maximum proportion of variance. We train a model by considering the first 8
principle components in the projected space for 40,000 domain samples (10,000
random samples from each type i.e Matsnu, Gozi, Suppobox, Benign). According
to our observations there is a 4% drop in the accuracy by considering top 8
principle components as shown in Table 4. In our observation, C5.0 is best among
all other classifiers with low False Positive Rate (FPR) and False Negative Rate
(FNR) for this PCA dataset. We found a large number of domains from Gozi,
Matsnu and Suppobox families are misclassified as Benign i.e less significant
principle components are impacting the decision stumps of ensemble models for
a perfect classification. Number of decision stumps increases in this case as we
run classification on projected data. So, models sizes are drastically increased
(almost doubled) in this case when compared with standard 15 feature model.
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Table 3. Results obtained after applying various classifier models on 8 feature dataset

Algorithm Accuracy Kappa Sensitivity Specificity

Naive Bayesian 0.8142 0.7522 0.8718(B), 0.8682(M),

0.9958(G), 0.5210(S)

0.9962(B), 0.9619(M),

0.8138(G), 0.9802(S)

KNN 0.9656 0.9541 0.8720(B), 0.9968(M),

0.9962(G), 0.9972(S)

0.9992(B), 0.9970(M),

0.9595(G), 0.9983(S)

CART 0.8230 0.7640 0.6790(B), 0.7588(M)

0.9200(G), 0.9343(S)

0.9997(B) 0.9414(M)

0.9137(G), 0.9092(S)

GBM 0.9788 0.9717 0.9187(B), 0.9965(M),

0.9998(G), 1.00(S)

1.00(B) 0.9932(M),

0.9786(G), 0.9999(S)

Random Forest 0.9796 0.9728 0.9255(B), 0.9948(M),

0.9982(G), 1.00(S)

0.9999(B), 0.9971(M),

0.9758(G), 1.00(S)

C 5.0 0.9777 0.9702 0.9117(B), 0.9990(M),

1.00(G), 1.00(S)

0.9999(B), 0.9892(M),

0.9812(G), 1.00(S)

J48 0.9758 0.9677 0.9110(B) 0.9930(M),

0.9990(G), 1.0000(S)

0.9998(B) 0.9920(M),

0.9761(G), 0.9998(S)

Table 4. Results obtained for various classifier models after PCA

Algorithm Accuracy Kappa Sensitivity Specificity

Naive Bayesian 0.8155 0.7540 0.8640(B), 0.7896(M),

0.8358(G), 0.7726(S)

0.9405(B), 0.9288(M),

0.9471(G), 0.9376(S)

KNN 0.7269 0.6359 0.6324(B), 0.6882(M),

0.8182(G), 0.7688(S)

0.9147(B), 0.8951(M),

0.9190(G), 0.9071(S)

CART 0.7231 0.6308 0.9402(B), 0.8612(M),

0.6774(G), 0.4136(S)

0.9053(B), 0.7927(M),

0.9666(G) 0.9661(S)

GBM 0.9156 0.8874 0.9408(B), 0.8784(M),

0.9686(G), 0.8744(S)

0.9880(B), 0.9569(M),

0.9863(G), 0.9561(S)

Random Forest 0.9365 0.9153 0.9550(B), 0.9152(M),

0.9816(G), 0.8942(S)

0.9922(B), 0.9630(M),

0.9893(G), 0.9709(S)

C 5.0 0.9376 0.9168 0.9594(B), 0.9316(M),

0.9784(G), 0.8810(S)

0.9903(B), 0.9594(M),

0.9907(G), 0.9764(S)

J48 0.9122 0.8829 0.9382(B), 0.8634(M),

0.9700(G), 0.8770(S)

0.9884(B), 0.9559(M),

0.9845(G), 0.9541(S)

4.4 Experiment-4

We apply one of the nonlinear dimensionality reduction technique called the
Diffusion Map. This technique helps to understand the underlying geometric
structure of high dimensional data as well as reduce dimensions by methodically
capturing non-linear relations between the original dimensions [31]. We consider
4800 domain samples (random 1200 samples from each type i.e Matsnu, Gozi,
Suppobox, Benign with 15 features). We apply Diffusion Map on these 4800
samples data set with different alpha values. In addition, we applied K-means
(unsupervised clustering technique) at both normal space and diffusion space as
shown in Table 5. We consider very low alpha to touch all the points. Based on
these results, it is evident that there is no underlying structure for this dataset
as illustrated in Figs. 8. and 9 respectively.
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Fig. 8. Diffusion map plot with alpha = 0.005

Fig. 9. K-means on diffusion map data (alpha = 0.005)
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Table 5. Results obtained for various experiments with diffusion map

S. No. Case Dimenssion Alpha Benign Matsnu Gozi Suppobox Cluster-1 Cluster-2 Cluster-3 Cluster-4

1 K-Means

in original

Space

13 NA 1200 1200 1200 1200 956 337 1763 1744

2 K-Means

in

Diffusion

Space

13 0.01 1200 1200 1200 1200 382 3782 371 265

3 K-Means

in

Diffusion

Space

3 0.01 1200 1200 1200 1200 3765 352 340 343

4 K-Means

in

Diffusion

Space

3 0.005 1200 1200 1200 1200 669 665 2811 655

5 K-Means

in

Diffusion

Space

3 0.001 1200 1200 1200 1200 984 932 830 2054

6 K-Means

in

Diffusion

Space

13 0.001 1200 1200 1200 1200 709 763 2572 756

4.5 Experiment-5

In this experiment, we test the robustness of our model. We used CTGAN,
which is a GAN based synthesizer to generate data with high precision [32].
Basically, CTGAN is an evolved version of TGAN (open source project of Data
to AI lab from MIT) and it can effectively work by generating synthetic data
from numerical, categorical columns as well. We choose CTGAN over TGAN to
generate synthetic data because of these reasons:

– CTGAN uses more advanced Variational Gaussian Mixture Model to detect
continuous column modes.

– TGAN uses LSTM to generate synthetic column data. CTGAN uses more
efficient, fully-connected networks.

– In CTGAN, we have a conditional generator to resample training data in
order to prevent the model from collapsing into discreet columns.

We generate 30000 synthetic data samples (10000 samples from each DGA
family) from the original 15 feature dataset. We combine these 30,000 synthetic
domain name samples with 4000 legitimate domain names samples to build a
new test dataset. We test the robustness of our previously built C5.0 model by
passing this new test dataset as shown in Fig. 10. Our model did a decent work
by classifying malware and benign domain samples with 0.9503 accuracy. In our
experiment, out of 30000 synthetically generated malicious domain names, 1351
are classified as benign.
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Fig. 10. Generating synthetic data for DGA families using CTGAN

5 Conclusion and Future Scope

In today’s modern cybersecurity era, constant change in the IP addresses and
the continuous generation of thousands of DGA is a serious concern for many
security researchers and malware investigators. Especially, these word-list based
DGA are so agile and configurable in nature that has become a popular practice
for many APT groups across the globe. In this paper, we addressed this problem
of detecting word-list based DGA domain names (Matsnu, Gozi and Suppobox)
using ensemble models with near real-time detection by considering both lexi-
cal and network level features. We also applied different linear and non-linear
dimensionality reduction techniques to understand the underlying structure of
our data. In addition, we used CTGAN to generate synthetic data (test data) to
measure the robustness of our model. Although we considered significant families
of word list based DGA, still we need to cover many emerging DGA families.
So, possible future work is to extend this approach for next generation DGA
families and building an AI component for word-based DGA detection that can
be incorporated with traditional detection mechanisms. Similarly, we can also
use GAN to generate synthetic data for future DGA families and that data can
be used for training next generation robust malware/botnet detection models.
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Abstract. Distance-bounding anonymous credentials could be used for
any location proofs that do not need to identify the prover and thus could
make even notoriously invasive mechanisms such as location-based ser-
vices privacy-preserving. There is, however, no secure distance-bounding
protocol for general attribute-based anonymous credentials. Brands and
Chaum’s (EUROCRYPT’93) protocol combining distance-bounding and
Schnorr identification comes close, but does not fulfill the requirements of
modern distance-bounding protocols. For that, we need a secure distance-
bounding zero-knowledge proof-of-knowledge resisting mafia fraud, dis-
tance fraud, distance hijacking and terrorist fraud.

Our approach is another attempt toward combining distance bound-
ing and Schnorr to construct a distance-bounding zero-knowledge proof-
of-knowledge. We construct such a protocol and prove it secure in the
(extended) DFKO model for distance bounding. We also performed a
symbolic verification of security properties needed for resisting these
attacks, implemented in Tamarin.

Encouraged by results from Singh et al. (NDSS’19), we take advan-
tage of lessened constraints on how much can be sent in the fast phase
of the distance-bounding protocol and achieve a more efficient protocol.
We also provide a version that does not rely on being able to send more
than one bit at a time which yields the same properties except for (full)
terrorist fraud resistance.
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1 Introduction

Distance Bounding Protocols. Distance bounding (DB) [1] protocols were first
suggested by [1] to prevent relay attacks in contactless communications in
which the adversary forwards a communication between a prover and a pos-
sibly far-away verifier to authenticate. These attacks cannot be prevented by
cryptographic means as they are independent of the semantics of the mes-
sages exchanged. DB protocols precisely enable the verifier to estimate an upper
bound on his distance to the prover by measuring the time-of-flight of challenge-
response messages (or rounds) exchanged during time-critical phases. Time crit-
ical phases are complemented by slow phases during which the time is not taken
into account. At the end of a DB protocol, the verifier should be able to deter-
mine whether the prover is legitimate and in his vicinity. In this sense, DB
protocols combine the classical properties of authentication protocols with the
possibility of verifying the physical proximity.

There are four adversaries for DB protocols proposed in the literature, each
of which tries to commit a type of fraud. These can be summarized as follows:

– Distance fraud (DF) [1]: a legitimate but malicious prover wants to fool the
verifier on the distance between them.

– Mafia fraud (MF) [2]: the adversary illegitimately authenticates using a, pos-
sibly honest, prover who is far away from the verifier. (Also known as relaying
attack or man-in-the-middle attack.)

– Terrorist fraud (TF) [3]: a legitimate, but malicious, prover helps an accom-
plice, who is close to the verifier, to authenticate. TF resistance is a very
strong property; it implies that if the accomplice succeeds (with non-negligible
probability) he will learn the prover’s secret key1.

– Distance hijacking (DH) [4]: similar to DF, the malicious prover is far away
but uses an unsuspecting honest prover close to the verifier to pass as being
close. (This is different from MF in that the honest prover actually tries to
authenticate to the verifier, but the malicious prover hijacks the channel at
some point(s) during the protocol.)

The majority of existing DB protocols are symmetric and thus require an
honest verifier. In this context, it does not make sense to protect against the
verifier as he can easily impersonate the prover since he has knowledge of their
shared secret key. This works for scenarios like key-less entry protocols for cars,
where the car and keyfob can share a key. It does, however, not work for ubiqui-
tous DB authentication where the prover and verifier may not have met before.
We are interested in that latter scenario and will work in the public-key set-
ting; with a malicious verifier who will potentially try to impersonate the prover
after successful verification. Unfortunately, there has been less work done in the
domain of asymmetric (or public-key) DB protocols.

1 This means that even things like functional encryption will not help.
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This Paper. Our work is in the area of DB public-key protocols and presents the
first DB zero-knowledge proofs of knowledge (ZKPKs) for discrete logarithms.
The public-key setting allows anyone to act as a verifier, unlike in the shared-key
scenario where the verifier must be trusted. The zero-knowledge (ZK) property
also enables a variety of privacy properties, such as anonymity. With our con-
tribution, Alice can now prove more complex statements to Bob, e.g.: that she
simultaneously is close to a specific car, has a valid driver’s license, is older than
18 (without revealing her actual age), has the relevant car-sharing subscription
which is not “double spent” by someone else at the same time [e.g., 5], and Bob
can be sure that Alice is not just relaying messages from her older sister Carol
or MF relaying the subscription from some unsuspecting stranger also waiting
in the parking lot.

Related Work. Brands and Chaum [1] were the first to adapt the Schnorr protocol
to achieve distance-bounding. Unfortunately, their approach was shown to be
vulnerable [4,6] to DH. Furthermore, it is also vulnerable to TF. (However,
these frauds were defined many years after their paper.)

The Bussard-Bagga [7] protocol aims to overcome these vulnerabilities and also
uses Schnorr, but slightly differently. They generate a session key and encrypt the
private key with this session key. Then the prover commits to each bit of the session
key and each bit of the ciphertext. During the fast phase, the verifier requests some
bits from the session key and some from the ciphertext. Terrorist fraud is based on
that knowing both session key and ciphertext one can compute the private key. The
prover then opens the commits, the verifier verifies them. The prover and verifier
run a proof of knowledge (PK) that ties the commits to the private key. However, a
malicious prover can reduce all the N challenges in the fast phase to 1. This allows
both distance and terrorist fraud [8].

There exists one protocol in the literature that provides proofs of prox-
imity of knowledge with most of the desired properties described previ-
ously, ProProx [9]2. ProProx is secure against a malicious verifier, but it
provides a PPK protocol for quadratic residues (i.e., protocols of the form
PPK

{
(α) : a = α2

}
), while in our context, we need a PPK protocol for discrete

logarithms (i.e., PPK{(α) : a = gα})—as many schemes for attribute-based cre-
dentials relies on discrete logarithms.

Contributions. We make three contributions. First, we provide a version of the
Schnorr protocol [10] that is MF, TF, DH and DF resistant in the Dürholz-
Fischlin-Kasper-Onete model (DFKO model) [11–13] 3. This version is based on
the assumption that we can transmit all bits at once, not bit-by-bit as normally
done for DB. This assumption is motivated by the results of Singh, Leu, and
Capkun [14], who show that it is possible to do secure DB while sending more
than one bit at once (with some restrictions).

For the assumption about sending all bits at once to hold, Singh, Leu, and
Capkun [14] requires that two devices share a symmetric key k. Our second
2 Note that [9] uses the abbreviation PoPoK, we prefer PPK for shorter notation.
3 One of the two competing formal models for DB protocols.
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contribution removes that requirement via a public-key infrastructure (PKI)
and authenticated key-exchange (AKE) [15] scheme. The PKI and AKE allows
any device in the PKI to convince a verifier that the prover is indeed a device
that is part of the PKI. This replaces a static key k shared with everyone by a
unique key for each signed by a certificate authority (CA) of the PKI. (This also
allows for revocation.) This solution relies on our first contribution.

Our last contribution is a classic version of the protocol, one which uses
bit-by-bit transmissions as traditionally done with DB protocols. We achieve all
properties except for (full) TF resistance. Though our earlier contributions are
more efficient, we provide this solution in case the solution of Singh, Leu, and
Capkun [14] is not available.

We also formally verified both the all-bits-at-once and the bit-by-bit proto-
cols. The detailed discussion and proofs can be found in the full version of the
paper.

The first (and second) contribution enables us to do distance-bounding
privacy-preserving attribute-based credentials based on discrete logarithms,
e.g., [16] and [17]. We can do this by simply replacing their use of the Schnorr
protocol for ZKPKs with our protocol in this paper. To our knowledge, no other
distance-bounding protocol achieves this. The third contribution (bit-by-bit ver-
sion) also enables us to do the same, just without (full) TF resistance.

Outline. The paper is organized as follows. Section 2 introduces the preliminaries
of ZKPK and DB. Section 3 introduces the first version, where we assume that
we can send all bits at the same time. Section 4 introduces the PKI and AKE to
use the first version of the protocol in practice. Section 5 describes the bit-by-bit
version of the protocol. In Sect. 6, we discuss the performance implications of
making the ZKPK of the Schnorr identification scheme [10] distance bounding.
Section 7 concludes the paper.

2 Preliminaries

In this section we introduce some notation and the formal models that we will
use.

2.1 Zero-Knowledge Proofs of Knowledge

We will use the notation introduced by Camenisch and Stadler [18]:

PK{(α, β, γ) : y = gαhβ ∧ y′ = ĝγ}, (1)

is a PK protocol where the prover proves knowledge of the discrete logarithms
α, β, γ ensuring that y, y′ are of the form y = gαhβ and y′ = ĝγ , respectively.
Greek letters are secret, known only to the prover, and all other letters are public.
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Instantiations of the ZKPK Protocols. For the convenience of the reader, we
summarize (from [16]) how to instantiate general ZKPKs for discrete logarithms
based on the Schnorr identification scheme [10], which, in its original form, can
be written as PK{(α) : A = gα}. The generalized form would be

PK

{

(α1, . . . , αn) : A =
n∏

i=1

gαi
i

}

.

This could equivalently be written as

〈PK.Prove({gi}i, q, A, {αi}i);PK.Verify({gi}i, q, A)〉,
where PK.Prove is run by the prover and PK.Verify is run by the verifier. PK.Verify
outputs accept (�) or reject (⊥). We give an instance of PK.Prove and PK.Verify
in Fig. 1. We also note that

PK{(α, β) : A = gα ∧ B = gβ} = PK{(α) : A = gα} ∧ PK{(β) : B = gβ},

where the challenge c must be the same in both sub-protocols.

Fig. 1. PK{(α1, . . . , αn) : A =
∏n

i=1 gαi
i } using the Schnorr identification scheme [16].

The Schnorr protocol in itself only provides honest-verifier zero-knowledge.
To achieve malicious-verifier zero-knowledge, we have to choose k (size of the
challenge, see Fig. 1) logarithmic in the security parameter λ and repeat the
protocol sufficiently many times (also logarithmic in the security parameter)
[16].

2.2 Distance Bounding Security Definitions

There are two lines of attempts at formalizing the above properties: one by
Boureanu, Mitrokotsa, and Vaudenay [19] and another by Dürholz, Fischlin,
Kasper, and Onete [11]. We will use the latter one (the DFKO model) with
extensions by Fischlin and Onete [12] and Avoine, Bultel, Gambs, et al. [13]
(definitions in Sect. 2.2).

As summarized in by Avoine, Bultel, Gambs, et al. [13], there are three types
of sessions for an adversary:
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Prover–Verifier. The adversary observes an honest execution.
Prover–Adversary. The adversary runs the protocol as a verifier with an

honest prover.
Adversary–Verifier. The adversary runs the protocol as a, potentially mali-

cious, prover with an honest verifier.

Each session is associated with a unique identifier sid. Each adversary is defined
in terms of computational resources, time t; number of prover–verifier sessions
observed, qobs; number of prover–adversary sessions initiated, qP, and number
of adversary–verifier sessions initiated, qV.

The DFKO model uses an abstract clock marker which is strictly increasing
and orders everyone’s actions. We let Πsid [i, . . . , j] denote the sequence of mes-
sages (mi, . . . , mj) exchanged during the session sid. We let marker(sid, i) return
the “time" for when the ith message was sent in the session sid.

A session consists of three phases: a setup phase, a time-critical phase and a
verification phase. Both setup and verification can be run slowly, but the time-
critical phase must be run as fast as possible.

Mafia Fraud. We will now define the conditions for MF and DBMF resistance.
A tainted session is a session in which the adversary lost because the verifier
detected the attempt at cheating, e.g., the timing is too long because the adver-
sary is out of range. The following definition captures a pure relay and a verifier
is assumed to detect such a relay.

Definition 1 (Tainted session, MF [11]). A time-critical round

Πsid [k, k + 1] = (mk,mk+1)

of an adversary–verifier session sid, where mk is sent by the verifier, is tainted
by the round

Πsid′ [k′, k′ + 1] = (mk′ ,mk′+1)

of a prover–adversary session sid′ if

(mk,mk+1) = (mk′ ,mk′+1)
marker(sid, k) < marker(sid′, k′)

marker(sid, k + 1) > marker(sid′, k′ + 1).

We will now define what it means for a protocol to be MF resistant.

Definition 2 (MF resistance [13]). For a DB authentication scheme DB, a
(t, qobs, qP, qV)-MF adversary A wins against DB if the verifier accepts A in one
of the qV adversary–verifier sessions sid, which does not have any critical phase
tainted by a prover–adversary session sid′. The protocol DB is MF resistant if
the probability AdvMF

DB (A) that A wins is negligible in the security parameter.
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Terrorist Fraud. Terrorist fraud is similar to MF, the difference is that during
TF the prover cooperates with the adversary to make the verifier accept. This
means that we must disallow relay scheduling : with Definition 1, the prover and
adversary could relay a function of every answer, then the adversary could just
apply the inverse function before sending the answer to the verifier.

Definition 3 (Tainted session, TF (strSimTF) [12]). A time-critical round

Πsid [k, . . . , k + 2l − 1] = (mk, . . . , mk+2l−1),

for l ≥ 1, of an adversary–verifier session sid, where mk is sent by the verifier,
is tainted by the round

Πsid′ [k, . . . , k + 2l − 1] = (m′
k, . . . , m′

k+2l−1)

of a prover–adversary session sid′ if

marker(sid, k + 2i) < marker(sid′, k + 2i)
marker(sid, k + 2i + 1) > marker(sid′, k + 2i + 1).

Then we have the following definition of security.

Definition 4 (SimTF security [11]). Let DB be an authentication scheme
for parameters (tmax, Tmax, Emax, Nc). Let A be a (t, qV, qF )-SimTF adversary,
S an algorithm with runtime tS and F an algorithm with runtime tF . Let

AdvTF
DB (A,S,F) = pA − pS ,

where pA is the probability that the verifier V accepts in one of the qV adversary–
verifier sessions sid such that at Tmax time-critical phases of sid are tainted and
pS is the probability that, given the state of A, S authenticates to the verifier V
in one of qV subsequent executions.

Distance Hijacking and Distance Fraud. The final properties are DH and DF.
The following definition of DH also captures DF attacks [13]. We first define
what the adversary can and cannot do by defining a tainted session for DH.

The intuition is that an adversary (malicious, far-away prover) must commit
to an action: either respond with an own message, which is determined before
seeing the challenge, or to prompt a nearby prover to respond (with a message
chosen by the adversary). Technically, this adversary can do more than a DH
adversary normally can. Avoine, Bultel, Gambs, et al. [13] captured this by two
dummy sessions sidCommit and sidPrompt. The adverary commits to his action
by “sending" (sid, k + 1,m′

k+1) in dummy session sidCommit before receiving the
challenge in message k in session sid (making message k + 1 in sid his response
to the challenge). If m′

k+1 = Prompt, then he must also “send" a message in
dummy session sidPrompt, which is the message the nearby prover will send.
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Definition 5 (Tainted session, DH [13]). A time-critical round Πsid [k, ]
k + 1 = (mk,mk+1), for some k ≥ 1 and mk send by the verifier, of an
adversary–verifier session sid is tainted if one of the following conditions holds.

– The maximal j with ΠsidCommit
[j] = (sid, k+1,m′

k+1) for m′
k+1 �= Prompt and

marker(sid, k) > marker(sidCommit, j) satisfies m′
k+1 �= mk+1 (or no such j

exists).
– The maximal j with ΠsidCommit

[j] = (sid, k + 1,m′
k+1) for m′

k+1 = Prompt

satisfies mk+1 �= mPrompt
k+1 , in which mPrompt

k+1 denotes the message mk+1 in
sidPrompt.

To win, the adversary must convince a verifier that he is close when he
actually is not and without tainting any of the sessions.

Definition 6 (DH resistance [13]). For a DB authentication scheme DB
with DB threshold tmax, a (t, qP, qV, qobs)-DH adversary A wins against DB if
the verifier accepts A in one of the qV adversary–verifier sessions without any
critical round being tainted. Thus, DH resistance is defined as the probability
AdvDH

DB (A) that A wins the game.

3 Distance-Bounding ZKPK for Discrete Logarithms

We will now introduce a DB protocol which is a ZKPK for discrete logarithms.
Our protocol is an adaptation of the Schnorr identification scheme [10], albeit
different from that of Brands and Chaum [1] in the original DB paper and that
of Bussard and Bagga [7]. We propose another way to turn the Schnorr protocol
into a public-key DB protocol which is a ZKPK that is secure against MF,
DF, DH and TF. This yields strong privacy properties and protection against a
malicious, impersonating verifier.

We will provide three versions of the protocol. In the first one (Sect. 3.1),
we will assume that the prover and verifier can send as many bits in parallel
as they like. This is a reasonable assumption thanks to the results of Singh,
Leu, and Capkun [14]. Let us briefly explain why. An MF adversary can listen
in on the communications. Each symbol of the communication is encoded using
signal pulses. However, such an encoded symbol can usually be inferred before
all pulses are received4. Prior to the contribution of Singh, Leu, and Capkun,
the only countermeasure to this attack was to make the symbols short, i.e., to
send one bit at a time. Singh, Leu, and Capkun [14] use a symmetric key, shared
between prover and verifier, to scramble the pulses and hence the symbols. This
way, the MF adversary cannot infer an incoming symbol in advance, and thus
cannot start relaying the symbol in advance either. The prover and verifier, on
the other hand, can do this since they have the symmetric key. Consequently,
they must have mutual trust; so, by definition, DF cannot happen.

Next (Sect. 4), we will provide a PKI construction to make the shared-key
requirement of Singh, Leu, and Capkun [14] more practical. This would allow
4 This is due to redundancy for the purpose of error correction.
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any two devices to run our protocol as long as they are both part of the PKI.
We use the first version of our protocol to ensure correctness of the PKI. This
version also deals with DH and DF.

Finally (Sect. 5), we provide a classical bit-by-bit version of our protocol.

3.1 Reattempting a Distance-Bounding Schnorr Protocol

In this version, we assume that we can simply send as many bits in parallel as
we like. This allows us to keep the Schnorr protocol almost as is.

We present the protocol in Fig. 2. The (cyclic) group with generator g and
order q are system parameters. The private key α with public key A = gα are
generated once by the prover in the setup phase.

Fig. 2. One-round protocol instance of the DBS.Prove ↔ DBS.Verify protocol instan-
tiating PK{(α) : A = gα}. The protocol should be repeated n times to achieve the
desired soundness and distance-bounding errors.

During one round, in the setup phase, the prover commits to a ran-

dom nonce: more precisely he chooses uniformly at random, computes
R ← gρ and sends R to the verifier. The verifier generates m challenges

{0, 1}l (bit strings of length l) and sends them to the
prover. The prover computes one response per challenge, s1 ← ρ−c1α, . . . , sm ←
ρ − cmα. This step is the main difference to the original Schnorr protocol: the
verifier selects several challenges and the prover computes several responses—but
still only use one nonce, ρ. This is needed for TF resistance. This is also differ-
ent from the original Brands-Chaum protocol, in which the prover and verifier
jointly construct one challenge with one response.
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In the DB phase, the prover notifies the verifier that he has computed
s1, . . . , sm. The verifier chooses one of the challenges, i, uniformly at random
and sends it as a challenge to the prover and starts measuring the time of flight.
The prover replies with si. The verifier stops the measurement and verifies that
R = gsiAci and that the time of flight was within tmax (determined from the
allowed distance).

This protocol must be repeated n times.

3.2 Zero-Knowledge and Proof of Knowledge

The main difference between this protocol and the Schnorr protocol is that we
have the prover compute responses for m different challenges, c1, . . . , cm. How-
ever, in the authentication step, the verifier chooses only one of those chal-
lenges. From the simulator’s (and extractor’s) perspective, there is no difference
whether the verifier first chooses m and then chooses one of those m challenges,
or if the verifier chooses the one challenge directly; the distribution is the same,
m
n × 1

m = 1
n . Therefore the standard proof [e.g., 20] for Schnorr as a malicious-

verifier ZKPK protocol with soundness error 2−ln still holds. (We note that l,
which is also the length of the challenge bit string, must be logarithmic in the
security parameter, λ, for a malicious verifier.)

3.3 MF, TF and DH Resistance

The intuition behind the protocol security is as follows. The prover must know
the responses for all challenges to be sure to pass the DB phase. The reason for
having several challenges but only one random nonce is that knowing at least
two responses means learning the secret α. This gives us the incentives that
prevent TF. (We also need it for MF and DF.) Bundling the authentication into
the distance-bounding phase (difference from Brands-Chaum) prevents DH.

The proofs of Theorems 1 to 3 can be found in the full version of the paper.

Mafia Fraud. By Definition 1, any relaying will be detected by the verifier. This
means that the adversary must use a different strategy. But we show that there
is no such better strategy.

Theorem 1 (MF resistance). Let A be a (t, qobs, qP, qV)-MF adversary, then
AdvMF

DBS(A) = 1
mn , where m is as in Sect. 3.1.

Terrorist Fraud. The protocol is TF resistant. Indeed, if the malicious prover
gives more than one response to the accomplice, the accomplice can compute
the secret key and, thus, impersonate forever. And we show that any useful help
will also allow the accomplice to impersonate forever.

Theorem 2 (TF resistance). Let A be a (t, qV)-strSimTF adversary (aided
by the prover), S an algorithm with runtime tS . If the verifier’s challenges are
uniformly drawn, then AdvTF

DB = pA − pS <
(

2
m

)n.
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Distance Hijacking. The protocol is also secure against distance hijacking due to
the fact that the authenticating bit string is used during the DB phase. (Brands-
Chaum used the challenge bit string, something that made their protocol vul-
nerable.) DH requires that the adversary finds a collision between his response
and that of the honest prover. Thus the probability of success is equivalent to a
collision for the responses for the chosen challenge—in each round.

Theorem 3 (DH/DF resistance). Let A be a (t, qobs, qP, qV)-DH adversary,
then AdvDH

DBS(A) = 1
mn .

4 From Mutual Trust to PKI

All distance bounding protocols require hardware implementations [21]. We will
use a trusted hardware implementation to overcome the limitation of Singh,
Leu, and Capkun [14], i.e., that the prover and verifier must share a key. We will
provide a PKI for the verifier to verify the trusted hardware. We will leverage
this PKI to overcome the shared-key requirement to allow any two devices in
this PKI to perform distance bounding. With a PKI based on discrete logarithms
we will be able to perform a DB ZKPK which simultaneously proves (1) that
the protocol is run by trusted hardware, (2) that trusted hardware is within
proximity, (3) that some ZKPK statement about some discrete logarithms holds,
and (4) that knowledge is within proximity.

We will now introduce an extended protocol, DBSHW, which represents the
secure hardware implementation. Figure 3 presents an overview of our protocol.
For simplicity of exposition, we present a PKI based on plain CL04 [17] signa-
tures. However, this also works for CL02 [22], which is the base for the Direct
Anonymous Attestation (DAA) [23] protocol used for Trusted Platform Module
(TPM), so our protocol can be modified into a distance bounding DAA protocol.

In summary, the difference is as follows. DBS performs PK{(α) : A = gα}
with a distance bound on the user’s behalf. DBSHW first runs a Diffie-Hellman
key-exchange (DHKE) [24] to establish a shared key k = ḡx̄ȳ from X̄ = ḡx̄, Ȳ =
ḡȳ, then performs

also with a distance bound and A = gα on behalf of the user; where skP is the
prover’s private key, VRF is the verifiable random function (VRF) of Dodis and
Yampolskiy [25], σ is a signature issued with signing key sk and Blind reblinds
a signature. Proving knowledge of X̄ = ḡx̄ and ˆ̄X = X̄sk prevents any man-in-
themiddle (MITM) attack against the DHKE. Proving knowledge of a signature
σ by a CA on the private key skP ensures that the prover is a device in the PKI
of the CA.

Figure 3 provides an overview. For simplicity of the exposition, we present a
version of DBSHW that allows the user to run PK{(α) : A = gα} (the Schnorr
identification scheme) with a distance bound. This can, of course, be generalized
to any ZKPK for discrete logarithms, for instance, CL04 [17].
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Fig. 3. One round of the DBSHW protocol instantiating PK{(α) : A = gα}. Every
transmission uses UWBPR (except in the pre-setup phase). The protocol (setup,
distance-bounding and verification phases) should be repeated n times to achieve the
desired soundness and distance-bounding errors.
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One-Time Initialization The prover’s DBSHW device must be initialized with a
(static) private key skP and a signature σ on that key by some CA with public
key pk and signing key sk. These are computed as follows [cf. [17], Sect. 4.2].

We have public parameters q̂, ĝ ∈ Ĝ, ĝ ∈ ĜT , e; where e : Ĝ × Ĝ → ĜT is
a bilinear map, ĝ ∈ Ĝ and ĝ ∈ ĜT are generators of prime order q̂ (hence
e(ĝ, ĝ) = ĝ).

We let the CA’s signing key be

be the corresponding public key, where

X̂ = ĝx̂, Ŷ = ĝŷ, Ẑ = ĝẑ.

The prover chooses and computes a commitment M = ĝskP Zr,

where . Now the prover convinces the CA that he knows the key by
running the following ZKPK protocol: PK{(skP , r) : M = ĝskP Zr}.

Now the CA computes the signature σ = (a,A, b,B, c), where

and gives to the prover.

Pre-Setup Key-Agreement. The pre-setup phase consists of a key agreement, the
prover and verifier must agree on a shared key k to use for the UWBPR protocol
on the physical layer.

To establish k, we use the DHKE. The prover chooses , the verifier

chooses and they exchange X̄ = ḡx̄, Ȳ = ḡȳ and both compute k = ḡx̄ȳ,
for some generator ḡ in a Diffie-Hellman (DH) [24] group of prime order q̄. The
prover also computes and sends to the verifier.
They use the agreed upon key k = ḡx̄ȳ as the key for UWBPR, instead of a static
k.

Signature Reblinding The prover blinds the signature σ: Choose and
compute σ̃ = (ã, Ã, b̃, B̃, c̃), where

ã = ar1 , Ã = Ar1 , b̃ = br1 , B̃ = Br1 , c̃ = (cr1)r2 .

The prover sends σ̃ to the verifier. Now, the prover and verifier each compute

vx ← e(X̂, ã), vxy ← e(X̂, b̃), Vxy ← e(X̂, B̃), vs ← e(ĝ, c̃).

This blinding procedure can be done once, there is no point in presenting the
verifier with several different blindings of the same signature.

Setup. Now we prepare for the actual distance bounding. The prover chooses
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computes

R ← gρ, R̄ ← ḡρ̄, ˆ̄R ← VRFsk(X̄)ρ̂sk , R̂ ← vρ̂r′
s vρ̂sk

xy V ρ̂r
xy

and sends R, R̄, R̂ to the verifier.
The verifier chooses m challenges of length l,

and sends these to the prover. The prover computes responses

si ← ρ − ciα, s̄i ← ρ̄ − cix̄,

ŝ
(r′)
i ← ρ̂r′ + cir

′, ŝ
(sk)
i ← ρ̂sk − cisk, ŝ

(r)
i ← ρ̂r − cir

for i ∈ {1, . . . , m}, where r′ = r−1
2 .

Distance Bounding. The verifier decides which of the m challenges to use,
{1, . . . , m}, sends its decision i to the prover and starts its clock. The prover
instantly replies with the pre-computed si, s̄i, ŝ

(r′)
i , ŝ

(sk)
i , ŝ

(r′)
i . Note that these

values must be sent as a concatenation in one UWBPR reply. The verifier stops
the clock and records the round-trip time Δt.

Verification. The verifier checks that

R = Acigsi , R̄ = X̄cigs̄i , ˆ̄R =
(
ĝ ˆ̄XX̄

)c ˆ̄X ŝ
(sk)
i , vci

x R̂ = vsr′
s v

sskP
xy V sr

xy

and that the round-trip time Δt < tmax does not exceed the time-limit tmax

(corresponding to the desired distance bound). Finally, the verifier checks the
validity of σ̃:

e(ã, Ẑ) = e(ĝ, Ã), e(ã, Ŷ ) = e(ĝ, b̃), e(Ã, Ŷ ) = e(ĝ, B̃).

The setup, distance bounding and verification phases are repeated n times.

4.1 Security Analysis

There are two questions we must answer about this protocol:

(1) Can the adversary perform a MITM attack against the DHKE?
(2) Does ˆ̄X break anonymity?

To justify the first question, we use a plain DHKE to agree on k, start using k
for DB and during the DB do the authentication. To justify the second question,
we use CL04 anonymous credentials [17]. These provide anonymity. However,
revealing ˆ̄X = VRFsk(X̄) is not part of CL04. So we must show that ˆ̄X maintains
anonymity.

To answer the first question, by Camenisch [16], the above protocol is a
ZKPK. In the case of a MITM, the prover will run the protocol using X̄ and sk,
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while the verifier will use X̄ ′, possibly modified by the adversary. The adversary’s
goal is to pass as knowing sk and its signature (to impersonate real hardware).
The sk must be the same sk throughout the subprotocols [16]. In one subproto-
col, the prover will prove knowledge of VRFsk(X̄). If X̄ ′ �= X̄ used by the verifier
is wrong, then by soundness the proof will fail.

To answer the second question, ˆ̄X = VRFsk(X̄) is the output of the VRF of
Dodis and Yampolskiy [25] keyed by sk. This is a pseudo-random function (PRF)
with a proof of correctness. If an adversary can use ˆ̄X to tell one device from
another, then the adversary can distinguish VRF from a random function [25].

5 Bit-by-Bit Distance-Bounding Schnorr Protocol

We will now continue with a more traditional (in DB terms) version of the
protocol, one that uses bit-by-bit communication.

We present the protocol in Fig. 4. We will present the protocol as a DB
version of the Schnorr identification scheme (PK{(α) : A = gα}), this is for the
sake of exposition. It can be generalized to e.g., CL04 [17].

The (cyclic) group with generator g with prime order q is a system parameter.
The private key α, with public key A = gα, is generated once by the prover in
the setup phase. The verifier has a copy of the public key A and wants to verify
that the private key α is within a certain distance-bound.

Fig. 4. One-round protocol instance of the DBS.Prove ↔ DBS.Verify DB Schnorr proto-
col for PK{(α) : A = gα}. The protocol should be repeated n times to achieve the desired
soundness and distance-bounding errors. We let sbi [n] denote the nth bit of sbi .
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During one round, the prover commits to a random nonce: more precisely

he chooses uniformly at random, computes R ← gρ and sends R to
the verifier. The verifier generates two challenges and
sends them to the prover. The prover computes s0 ← ρ − c0α, s1 ← ρ − c1α.
This step is the main difference to the version in Sect. 4: since we use bit-sized
challenges, we can only choose between two challenges (instead of m).

We let |q| denote the length of q in bits, so any element z ∈ Zq can be
represented by |q| bits. The verifier will request all |q| response-bits from one
challenge (say sb) and only 0 < l ≤ |q| from the other (s1−b). Then the verifier
can authenticate the prover by checking if R = gsbAcb .

This must be repeated for n rounds.

5.1 Security Analysis

We can prove this protocol secure against MF, DH and DF; but not against TF.
Those proofs are available in the full version of the paper. Here, we will discuss
only the most crucial differences.

The l-bit Problem. We can show that the system of linear equations created
by the protocol and consisting of leaked bits from the second reply is under-
determined. However, we cannot get information theoretic security, that would
require leaking no bits, but we leak some bits. The only lead an adversary get
to those remaining unknown bits are the commitments. The adversary has a
commitment to the randomness ri in the form of Ri = gri and a commitment
to α in the form of A = gα. This means that

R = A−c′
gs′

= A−c′
gs′[0]20+···+s′[m−1]2m−1

= A−c′
gs′

knowngs′
unknown .

We will now show how the hardness of finding s′
unknown relates to the hardness

of finding discrete logarithms.

Definition 7 (Discrete Logarithm Problem). Let g be a generator for a
group of prime order q. Given g, q, A = gα, compute α.

Definition 8 (DB-Schnorr Problem). Let g be a generator for a group of
prime order q. Give g, q, R = gρA = gα to the adversary. Let the adversary
choose c and additionally give him ŝ such that ŝ are the l least significant bits
of s = ρ + cα (mod q). The adversary wins if he returns ŝ′ such that ŝ + ŝ′ = s
(mod q).

Lemma 1. Given an algorithm ADBS that solves the DB-Schnorr Problem (Def-
inition 8) with probability ε, we can construct an algorithm ADL that solves the
Discrete Logarithm Problem (DLP) (Definition 7) with probability ε2−(l+k).

The proof of this lemma can be found in the full version of the paper.
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Zero-Knowledge and Proof of Knowledge. The main difference between this pro-
tocol and the Schnorr protocol is that we have the prover compute responses for
two different challenges, c0, c1. In the authentication step, the verifier chooses
only one of those challenges. However, the verifier requests all |q| bits of sb and
l bits of s1−b.

This is a proof of knowledge: Completeness and soundness follows from the
Schnorr protocol. The knowledge extractor works exactly the same. It does not
matter that the verifier first chooses two challenges and later reveals which one
to use and the prover sends the response bit-by-bit.

The change is with the zero-knowledge property. This is computational zero-
knowledge: The simulator chooses

Then it can set
R0 ← gs0Ac0 , R1 ← gs1Ac1 .

Now the simulator must come up with those l bits. By Lemma 1 and some lemmas
in the full version of the paper, we can see that distinguishing these bits from
random is comparable to solving the DLP. So, the simulator can simply choose
the l bits uniformly at random.

The simulator outputs Rb, c0, c1, sb, L.

Why Not TF? The problem is that asymptotically, l and l + 1 are rather close.
So the colluding parties can exchange l + 1 bits instead of just l. This way they
can create a buffer of responses. However, this means that they can stretch the
distance bound; at some point, l+ ε will be too large and make α easy enough to
guess. So the incentive changes from the legitimate party not wanting to cheat,
into the legitimate party not wanting to cheat “too much”. However, we have
not formally treated this part more than concluding that we cannot prove TF
resistance in terms of Definitions 3 and 4.

6 Performance

We will now review the performance of the proposed protocols. Since the con-
struction is designed as a drop-in replacement for the Schnorr identification-
scheme [10] as a ZKPK protocol, we will focus on how much we must “pay” for
the DB property. We summarize the results in Table 1.

Mutual Trust. We start with the mutual-trust version of the protocol from
Sect. 3.1 (see Fig. 2).

In one round of the protocol, the cost for the verifier is that of generating m
number of l-bit strings, instead of only one. This costs the verifier a factor m of
randomness. The cost for the prover is that of computing m number of replies
(s ← ρ − cα mod q), instead of only one.

To achieve security, the protocol must be repeated n times. We have the
l-parameter which controls the soundness of the ZKPK and the m-parameter
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Table 1. A summary of how costly distance bounding is in terms of randomness,
arithmetic operations (addition, multiplication), exponentiations, and pairing opera-
tions. m, l ∈ O(log λ) and we must repeat the protocol n times to achieve desired
soundness.

Protocol Rand. (bit) Arith. (+, ×) Exp. Pairings

Schnorr (λ + l)n 3n 3n 0
DB, mutual trust (λ + ml)n 3mn 3n 0
DB, PKI (total) 4λ + (5λ + ml)n (10m + 8)n 9 + 16n 14

—DHKE 2λ 0 4 0
—CL04 blind 2λ 0 5 8
—DB 5λ + ml 10m + 2 6 0
—Verification 0 6 10 6

controls the soundness of the distance bounding. If we want to achieve 80 bits of
security, we can let l = m = 6 (remember, l must be logarithmic in the security
parameter) and n = 14. This makes distance bounding a factor 6 more expensive
over the malicious-verifier secure Schnorr protocol.

PKI. The PKI version of the protocol (Sect. 4 and Fig. 3) performs one signature
verification and four additional proofs in parallel. The cost for the verifier is one
signature verification (CL04 [17]) in addition to the factor m of randomness used.
On the prover side, we have the computations for the signature verification and
four additional proofs in parallel, this changes the cost to a factor of 5m for the
prover: the prover must compute si = ρ− cjαi for i ∈ {1, . . . , 5}, j ∈ {1, . . . , m}.

The cost of the signature is the same as for Anon-Pass [5], which implements
a public transport pass using this signature scheme. This signature verification
introduces more additions, multiplications, exponentiations and pairing oper-
ations. However, the signature will only be blinded and verified once, so this
represents a constant factor. It is sufficient to verify it once and reuse the same
blinding for all n repetitions of the protocol. (The same is true for the DHKE.)
Thus it is only the proof of knowledge that must be rerun n times.

Bit-by-Bit The traditional bit-by-bit version of the protocol (Sect. 5, Fig. 4) is
not as efficient. That is due to m = 2 being fixed in this case (there are only two
responses to choose from), and consequently, we must have a larger value for n
to achieve the desired security.

7 Conclusion

In this paper, we have adapted the Schnorr identification scheme [10] to work
as DB ZKPK for discrete logarithms. It allows us to construct DB, general
attribute-based authentication; with more general attributes than provided by
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previous DB protocols. We constructed, proved, and formally verified three ver-
sions of the protocol: one that is more efficient and resistant to the attacks
leveled at DB protocols, but that assumes that more than one bit at a time can
be sent in the fast phase (as demonstrated by Singh, Leu, and Capkun [14]). For
another, we developed a PKI scheme to generalize [14] to work for scenarios such
as ours, where the prover and verifier do not trust, or even know, each other.
The third version is a classic bit-by-bit protocol that is not fully TF resistant,
but otherwise fulfills all requirements.
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Abstract. The average user has between 90–130 online accounts [17],
and around 3 × 1011 passwords are in use this year [10]. Most people are
terrible at remembering “random” passwords, so they reuse or create
similar passwords using a combination of predictable words, numbers,
and symbols [16]. Previous password-generation or management proto-
cols have imposed so large a cognitive load that users have abandoned
them in favor of insecure yet simpler methods (e.g., writing them down
or reusing minor variants).

We describe a range of candidate human-computable “hash” functions
suitable for use as password generators - as long as the human (with min-
imal education assumptions) keeps a single, easily-memorizable ‘master’
secret - and rate them by various metrics, including effective security.
These functions hash master-secrets with user accounts to produce sub-
secrets that can be used as passwords; FR(s, w) −→ y, which takes a web-
site w and produces a password y, parameterized by the master secret s,
which may or may not be a string.

We exploit the unique configuration R of each user’s associative and
implicit memory (detailed in Sect. 2) to ensure that sources of random-
ness unique to each user are present in each F . An adversary cannot
compute or verify FR efficiently since R is unique to each individual; in
that sense, our hash function is similar to a physically unclonable func-
tion [37]. For the algorithms we propose, the user need only complete
primitive operations such as addition, spatial navigation or searching.
Critically, most of our methods are also accessible to neurodiverse, or
cognitively or physically differently-abled persons.

Given the nature of these functions, it is not possible to directly use
traditional cryptographic methods for analysis; so, we use an array of
approaches, mainly related to entropy, to illustrate and analyze the same.
We draw on cognitive, neuroscientific, and cryptographic research to use
these functions as improved password management and creation sys-
tems, and present results from a survey (n = 134 individuals, with each
candidate performing 2 schemes) investigating real-world usage of these
methods and how people currently come up with their passwords. We
also survey 400 websites to collate current password advice.
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1 Introduction

Your password must be between 8–16 characters long, with at least one uppercase
character, one lowercase character, one number, and one special character (such
as !,@,#,etc.), must not include your username, and be changed every 90 days.

Memorizing myriad passwords, with (often questionable) constraints imposed
to make each password as “random” as possible, and little guidance on how to
manage this information, is a herculean task. This has resulted in people using
easily guessable and common passwords [30]. Surveys last year indicated that
individuals reuse over half of all passwords for multiple accounts, with many
others being easily attacked with a dictionary of common passwords [16].

Anecdotally, users prioritize convenience over privacy when accessing
newsletters, spam mails, or magazine subscriptions. They assign important
accounts with less conveniently memorable passwords. This trade-off in memora-
bility results in compromised security when passwords are written and stored at
home. [34] Weak passwords are a serious threat when they guard sensitive data
or systems, and may lead to identity theft, insurance fraud, public humiliation,
etc. [43].

Common approaches to handling this rely on instructing users to create
‘strong’ passwords with suggestions such as: ‘don’t use your name or birth-date’,
‘include symbols’ and ‘don’t capitalize only the first letter’. However, users rou-
tinely ignore or circumvent these suggestions because of their cognitive load.

The current standard for password management and security is a password
manager. Unfortunately, several sources report serious flaws (including zero-
day attacks) consistently found in the most popular password managers every
year [3,15]. Some managers are also vulnerable because of their tendency to store
the passwords to the password manager in plaintext.1

Digital and physical copies of passwords will always have vulnerabilities, but
remembering several passwords imposes a cognitive load that users are unwilling
or unable to manage. Past research has proposed several password generation
methods [4–6] but those that consider real-world usage have not been tested
beyond a dozen people [4], or have placed too large a cognitive load on users.

We propose a family of public derivation functions F such that, if we start
with a master secret, s (which the human memorizes), we can derive a sub-
secret yi for each website wi. Broadly, our requirements for such F would be:
(1) Given (yi, wi), where yi = FR(s, wi), it should be computationally hard to
find s; (2) Given (y1, w1), (y2, w2), . . . , (yk, wk) and wk+1, it should be computa-
tionally hard to find yk+1 (secure as in Unforgeability under Random Challenge
Attack [6]). This minimizes cognitive load by requiring only the memorization
1 Preventing this, in most password managers, requires users to terminate the man-

ager each time after use. Users may be unaware of this or disregard it because of
inconvenience, which once again lowers its security [25].
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of s, with any yi being derived using public wi and F . Critically, s, unlike yi,
need not be a string ! (We discuss visual and cue-based s in Sect. 2.)

F must be easily human-computable. F must also not require too much aid, to
minimize cognitive load. Further, for individuals to reproduce the same password
each time, F should be deterministic with respect to each individual. One way
to satisfy most of these requirements is through a cryptographically secure hash.

Predefined cryptographic hash functions such as SHA-3 (with preset size
parameters, and conversion to appropriate characters) could be used in place of
F , calculating y = F (s · w), concatenating s and w where s is a string. Unfor-
tunately, most humans cannot easily compute SHA-3 in their heads. We need
something that includes some features of a cryptographically-secure hash func-
tion without requiring the mathematical heavy-lifting common to such schemes.
In the rest of this document, we describe a number of approaches to finding the
same, and the results of our survey on the subject. (Assumptions made by cryp-
tographers on what laypersons would find “easy to compute” may be incorrect;
we must empirically observe the methods people are willing and able to use.)

1.1 Paper Outline and Contributions

To optimize our hash functions for human use, we discuss visual cues, and
implicit and associative methods suggested by cognitive and neuro-scientific
research in Sect. 2. Previous literature on human-computable passwords requires
rehearsal schedules, online aid, etc. with various caveats and problems [4–6].

These issues are obviated by using an easily-memorized key with human-
computable algorithms designed for password generation and management.
Section 4.1 presents a range of such hashing algorithms. An adversary cannot
compute or verify these hashes efficiently, since these are unique to each indi-
vidual; in that sense, our hash function is similar to a physically unclonable
function [37]

In this context, we discuss effective security in Sect. 5.2 which weighs crypto-
graphically evaluated security against human usability. E.g., generating random
passwords without associative memory techniques or computational tools and
writing materials may impose large cognitive loads, reducing usability2

We also define graceful degradation - our algorithms retain a significant
amount of their effective security even if access to writing materials, computers,
or the internet is unavailable. We test the algorithms presented in this paper as
well as Cue Pin Select [4] on a survey population of 134 individuals (with each
person assigned to two, randomly-chosen schemes), averaging 56 responses per
algorithm from people between the ages of 18 to 25. We analyse the results in
Sect. 5.1 and also use an LSTM to test character predictability in Sect. 5.4.

We cannot use standard cryptographic techniques to evaluate our schemes, as
they are explicitly optimized for representation in human brains but difficult to

2 In general, as a human-computable hash function grows in difficulty, a human is
more likely to abandon it [16,30] and revert to weak password practices. So, one can
have very high theoretical security but, in practice, be totally insecure.
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represent or simulate on computers (thus contributing to their security). So, we
introduce metrics to assess the security of human-computable schemes, measure
ease of use, rememberability, unforgeability under Random Challenge Attack [6],
and more, in Appendix A. We also classify algorithms based on their paradigms,
limiting factors, and success of password recall in Sect. 5.2.

Section 3 discusses common password hygiene errors and current password
advice; we survey 400 websites and applications for such advice (Table 1). We
also provide insight into real-world methods individuals currently use to come up
with passwords in Sect. 6. Finally, Sect. 5 uses our survey results to understand
the determinism or stability of our schemes during real-world usage.

2 Cognitive and Neuro-Scientific Perspectives

During WW1, before the advent of powerful computers, soldiers used “trench
codes” to communicate across trenches. These had to designed to be computable
by soldiers under pressure without assuming high education levels – this involved
coming up with clever codebooks/manuals3. Such trench codes had their own
problems, of course, but these issues were obviated by the time WW2 came
around; ever since then, we have optimized our cryptographic functions (encryp-
tion, hashing, etc.) for increasingly-powerful computers, not humans. To design
human-computable functions while maintaining security, we must first discuss
how to optimize functions for the human brain.

Broadly, the brain manages memory in two categories [5]: persistent (e.g.,
notepads) and associative (human memory). The latter is clearly more secure
for password storage and recollection, as elaborated in the Introduction. Pass-
word recollection depends on the conscious retrieval of detailed memory, which
imposes a large cognitive load (so users create workarounds to ease this load).
Relying on visual, implicit and associative memory can ease this cognitive load.

Visual memory is capable of long-term storage of large amounts of detailed
information. Implicit, associative memory aids in lasting rapid recall. However
memorizing large amounts of new visual information requires constant rehearsal
to become embedded in memory, which is tedious. Fortunately, humans already
accumulate a vast amount of long-term information throughout their lives. Sub-
conscious rehearsal repeated over time does not feel tedious: drawing on implicit
memory - such as repeatedly navigating a house - requires less effort.

Visually cued recollection is easier than explicit recollection [2]. This is also
a more accessible method, as neurologically damaged or disabled patients can
succeed at implicit memory tasks, even when they cannot succeed on explicit
memory tasks [31]. We thus contend that password retention relying on implicit
memory retrieval has the potential to be stable, long-lasting, and equitable.

Some functions proposed in Sect. 4.1 are based on this capacity for detailed
storage and fast retrieval in visual memory. The Memory Palace method uses
3 Beyond careful design, these also included side-channel defenses e.g., the paper mate-

rial was designed to degrade within a few weeks, ensuring that obsolete codes would
not be used, and “lost” manuals would lose value quickly.
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visually-cued subkey recollection. This can be further improved by using phys-
ical copies of partial visual images for cues, eliminating the cognitive load of
remembering visual cues themselves. (See Sect. 4 for details of these protocols.)

Fig. 1. Complete and partially complete line drawings for visually-cued subkey priming
based on user subkeys from the Memory Palace.

We now briefly explore the act of using partial images as visual cues (Fig. 1)
for password-subkey retrieval. We define pi as the probability with which a ran-
dom user correctly identifies a partial image such as above, when they are primed
on the original completed image i. ni is the probability that they identify the
partial image if they are not primed on the original image.

The priming effect4 is α, with α > 0 and pi ≥ ni + α i.e. the probability of
correctly identifying partial images with priming is greater than the probability
of correct identification without priming [11]. Users may choose to use cues for
all of their accounts, which would have required 130 cue-subkey associations for
the average user last year. [17] However, this is unlikely and most users may
deploy hash functions and cues for only the most sensitive data.

What remains then, is to evaluate the success of an adversarial (without
cue-subkey associations) attack. Fortunately, this is well-established in neurosci-
entific literature; we paraphrase [11]: Assuming an adversary knows pi, ni, and
the correct label for that image, an optimal adversarial strategy is to maximize
the probability of recovery of those images without knowledge of the set U on
which the user was primed (since this set U exists uniquely in the mind of each
user). The best strategy is to label each image correctly at random. However sup-
posing an adversary is allowed to recover a user’s [password] with probability at
most 0.5% (false positive rate). For valid recovery to succeed at least 97.5% of

4 All images have demonstrably high priming “strength” [31] i.e. our images are
already embedded in the user’s mind (familiar places that they can navigate men-
tally).
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the time (false negative rate of 2.5%), a user would need to correctly label 135
images without prior knowledge to recover a word.5

Users surveyed during a 2004 survey on Password Memorability and Secu-
rity [42] were observed to use their own password generation methods, which
were usually weak, yet met the security requirements demanded by websites.
We thus propose that exploiting users’ unique configurations of memory as a
source of randomness enables compelling, secure password generation.

3 Password Security Advice

There are three common password-hygiene errors [40] – choosing simple pass-
words (123456, iloveyou, qwerty, etc.), insecure storage, and password reuse.
Attacks6 include guessing (common passwords), brute force, and dictionary
attacks. The passwords mentioned above have 28, 40, and 32 bits of entropy
respectively, which require around half a million attempts [12] to crack. (In real-
ity, a hacker would guess common passwords first, and thus break these easily.)
With the aid of GPU supported tools like Hashcat, Rainbow Crack etc., a 9-
character password can be cracked in an alarmingly short time [41] – around
18 min to check salted hashes for every 9-character password, assuming ideal
conditions7.

Given these issues, many websites/applications suggest strategies users
should follow to create secure passwords. To better understand such password
advice, we surveyed 400 highly visited platforms, compiled manually and through
public lists [1,19,36,39]. Of these, 54 offered password advice; see Table 1 for a
summary.

Table 1. Advice from 400 highly-visited websites and apps (54 provided advice).

Summary of Password Advice

Parameters Suggested % of platforms

Length (<6 characters) 20%

Length (≥6 characters) 20%

Length (≥8 characters) 41%

Length (≥10 characters) 19%

Numerals 83%

Uppercase 65%

Special Characters 63%

Password Managers 9%

5 See [11] for a detailed proof.
6 Cracking means an adversary with access to password hashes, has found a collision.
7 In practice, the time taken to find a password’s hash depends on the alphabet used,

degree of parallelization, hardware specifications such as processor flops, etc. [8].
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Websites suggest tactics such as intentionally misspelling words, replacing
letters (‘@’ for ‘a’, ‘$’ for ‘s’, etc., so that ‘its raining cats and dogs’ become
‘1tsrAIn1NGcts&DGS!’). However, there exist various dictionaries of special
characters, common misspellings, and symbol substitutions. Hence, such tricks
are ineffective against modern hackers [32]. An attack on with these dictionaries
exposed hash collisions such as “Apr!l221973,” and “Qbesancon321”.

What, then, is a secure password? The RSA challenge by RSA Labora-
tories [38] issued random keys from 40 upto 128 bits with ciphertexts. Dis-
tributed.net has been working on the 72 bit key for over 6400 days as of July,
2020 [35]; at this pace, it takes around 200,000 days to search the entire keyspace.
Currently, 72 bits of entropy provide sufficient security; 80 bits of entropy are
recommended for long-term security [38].

4 Human-Computable Hashing Algorithms

The functions proposed here draw upon the ideas discussed in Sect. 2 to balance
security and ease of use. We describe all algorithms and provide examples for
cases that might otherwise be confusing. Algorithms were primarily designed to
determine which approaches (subkey-generation, visualization, addition, implicit
association etc.) produce the most effective and secure passwords. For this rea-
son, they vary widely and cover a range of password generation tactics.

We perform a naive entropy calculation (assuming letter entropy values are
independent) for the purposes of comparing hashing algorithms. These numbers
should not be taken seriously as proxies for security in and of themselves, but
may be useful for comparison. Difficult-to-use schemes might push users to sim-
ply write the password down (or ignore the scheme). A “good” function produces
high entropy passwords that are easy to compute.

Typically, hash function security is judged by pre-image resistance, collision
resistance, randomness, etc. [14]. That is not easily done for our functions – we
cannot generate billions (or even millions) of hashes, as the process of generation
relies on individuals’ unique memory representations and sources of randomness
(discussed below and in Appendix A). We discuss some metrics we can use in
Sect. 5 and cryptographic details in Appendix A.

4.1 Description of the Schemes

We describe the following human-computable hash functions: Memory Palace,
Scrambled Box, Song Password, Internal Sentence. w is the website name, s is
the single secret user key, and h is the candidate for F . F and h are functions of
R, the unique configuration of each user’s memory. Each source of randomness is
indicated by R and specified at the end of each algorithm. Sources are elaborated
on in Appendix A. Common sources of randomness across all algorithms: unique
memory associations; choosing between symbols, numerals or letters on the same
key.
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Memory Palace. s: A locationR very familiar to the user. hR(s, w):

Step 1 subkey generation Mentally navigate the location using each letter in
w. For vowels turn left and walk straightR, else turn right and walk
straight. After reaching the end of the website name, think of a word
(or words) that describe what the user faces. (If w = gmail, visualizing
a familiar location, mentally move right and straight twice then left and
straight twice, then right and straight twice. s = a description of what
you face.)

Step 2 group sum Divide the word(s) into groups of 2 letters (pairs). Sum each
group using letter values to create a new letter. (Letters map to {a =
1, . . . , z = 26}, if sum overflows, subtract 26 from the sum.) If s can’t be
evenly split add a favorite letterR to the end. (If s = white birds, split
into wh, it, eb, ir, ds. Sum into w +h = e, i+ t = c, e+ b = g, i+ r = a,
d + s = w)

Step 3 group character If the first letter of a pair is a vowel, write the sym-
bol/letter above and to its immediate diagonalR left on the keyboard
after the letter from the group sum. Else, the symbol/letter above to its
immediate diagonal right on the keyboard. (Described and illustrated
visually during the survey.) password: Alternate group sum and group
character. (Alternating group sum letters with corresponding diagonal
symbols, password = e3cfgya1w3.)

Randomness: Spatial characteristics of direction, number of steps to take when
walking. Letter preference when appending letters to make the length of s even.
Interpretation of diagonal angle, choosing the ith symbol along the diagonal.

Scrambled Box. global: A 10 × 10 table of symbols, numbers and letters
(repetitions allowed). Movements associated with each story element (can be
changed): Sad = up; Memorable characters (Animals, Villains etc.) = diagonal
to the right and down; Events that move the story forward = horizontal to the
right; Happy = move to the opposite corner of the table (Fig. 2).

Fig. 2. Example 10 × 10 box and S-box, with scrambling highlighted

s: A well-known easily remembered storyR name. hR(s, w):
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Step 1 S-box generation. Find 4 elements (e.g., emotions, events, memorable
characters) in the story’s plot and write them down in order. For the xth

element of the story, choose a x × x square and move it by x squares,
using the associated direction. Swap it with the square it replaces.

Step 2 S-box-website mapping. Connect the story to the website to come up
with a word/wordsR. Convert letter values (mapping a = 0, z = 25) in
the word(s) to integers, add a 0 to the number if it is a single-digit
integer. Treat integers as (x,y) coordinates and find the corresponding
characters in the table. Save this sequence of characters as the password.
(For example: Connecting Tarzan to Amazon may result in the word
“shirt” which maps to letter values “19 8 9 18 20”. Adding 0s to single
digits, “19 80 90 18 20”, and mapping to the S-box results in coordinates
(1,9), (8,0) etc. The password: v’tu )

Song Password. This method relies on two sources of randomness – songs and
a 4 digit key. s: A 4-digit pin. hR(s, w):

Step 1 Reduce w to a 4 letter mnemonic. (Flipkart becomes f p k t)
Step 2 Choose a 4 digit keyR. (3 8 1 9)
Step 3 Choose 4 songsR starting from each letter of the mnemonic. These should

be songs (not necessarily in English!) that have significance or are easy
to remember. (Fade, Panama, King of Mars and Teddy Boy.)

Step 4 Choose wordsR from each song, corresponding to each digit of the key,
and concatenate to form a Song String, Sx. (3rd word from Fade, 8th

word from Panama, 1st word from King of Mars and 9th word from
Teddy Boy.)

Step 5 After every vowel in Sx, insert a special character closestR to the vowel
on the keyboard. If there is more than 1 special character equidistant
from the vowel, chooseR one and remember it. (For o, ‘(‘ or ’)’, for e ‘$’
or ‘#’.)

Step 6 Choose three charactersR (letters or symbols) and move them to the
end of the password. Repeat with another group of three. Then remove
every alternate character (starting with the first). password: resultant
string.

Sources of randomness: Interpretations of linguistic fillers as words, choice of
special character and characters to move.

Internal Sentence. s: A rarely used wordR from any language. hR(s, w): Create
a sentence connecting the website to the word. password: Sentence created.

5 Analysis of Hash Functions

This section analyzes the security and real-world effectiveness of our hash func-
tions via several metrics, including a user study: 134 individuals aged 18–25
were surveyed, with each user generating passwords using 2 different randomly-
assigned algorithms. Each algorithm had an average of 56 responses. We also
include Cue-Pin-Select [4] in our survey.
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5.1 Generation and Retention

Previous attempts have suggested “intolerably slow” methods [11]. Our protocols
can be executed by the average user within 5 min for generation, and recollec-
tion time decreases significantly with repetition. The key human-computability
properties of FR are: (1) Reliance on cognitive and visual cues for stable, rapid
recall8 (2) Minimal effort, and limited access to education or writing resources.

Some of our methods retain significant security without access to any external
materials for generation. The Memory Palace and Internal protocols need only
a keyboard (or pictures of standard keyboards; no writing materials or internet,
though access to these would decrease cognitive load).

The ability to recall or regenerate a password is essential to its effective
security; lower memorability leads to frequent passwords resets and frustration
that may lead to users abandoning the algorithm. Users were surveyed over a
week to test password retention. See Fig. 3 and Table 2. Methods with less
successful recall (Cue-Pin-Select, Song password and Scrambled box) seem to
require more explicit memorization. Associative techniques can exponentially
increase ease of password recollection (Memory Palace, Internal Sentence), and
provably improve system security [9]. Therefore we recommend the use of partial
visual cues for subkey association whenever possible.

Table 2. R: Recall/regeneration of passwords. Attempts: Number of people who
attempted R. Total R: exact recall/regeneration of 1 or more passwords created.

Hashing algorithm Attempts Password Memorability

Complete R Partial R

Internal Sentence 42 21 (50%) 7 (17%)

Memory Palace 45 19 (43%) 6 (14%)

Song words 42 10 (24%) 11 (27%)

Cue Pin Select 47 11 (24%) 5 (11%)

Scrambled box 29 6 (21%) 4 (14%)

Fig. 3. Password recollection visualized (based on Table 2)

8 Some of which are proven to last in memory 17 years without repeated rehearsal [11].
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The rightmost area of Fig. 4 indicates perfectly recalled passwords, with
larger bubbles indicating a more significant percentage of users with perfect
recollection. Ideal functions are large bubbles at the rightmost end of the graph
with an average password length above 10 characters (see Sect. 3).

Fig. 4. Bubble chart of the rate of password recollection for hash functions. Each
function is represented by a color; the frequency of each rate of recall (recall measured
by: S(pi, pr) where S corresponds to the Gestalt Pattern Matching (Ratcliff/Obershelp
string similarity algorithm [26,28]) corresponds to the size of each bubble, pi is the
initial password and pr is the remembered password; the axes measure password length
and the frequency of each length.(Color figure online)

Each time a password is recalled using a key, a user-familiar memory (object,
space, color etc.) is associated with the key. This key-memory association is
repeated until thinking of one automatically brings the other to mind [23]. We
emphasize that, as in all reasonable systems, the generation method is public,
and the only secret that needs to be remembered is this key.

The advantage of involving the methods proposed in this paper (such as
visual, associative, implicit memory) is that they can be adapted to existing
password generation methods. E.g., Cue-Pin-Select can be modified to choose
random words with visual or associative cues drawing on implicit memory.

5.2 Effective Security

We propose the concept of effective security. A password generation scheme
may be incredibly secure, but is useless9 if it is so hard that most users just

9 Assuming an appropriate threat actor – imagining an adversarial ‘evil’ sibling with
occasional read-only access to your living space is a useful rule of thumb.
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Fig. 5. Mapping effective security (password security and user comfort with algorithms)
and ease of use (user perception on a scale of requiring no resources, to requiring
computers). Axes are exaggerated subjectively for illustration.

write down their passwords. (See Fig. 5.) The effective security of a function
FR is the actual difficulty of breaking one of its assumptions in real-world use
by laypersons. The ideal human-computable hash function is easy enough (and
grows easier through repeated use) to encourage humans to use it, while retaining
the necessary entropy to ensure security by resisting attacks.

Traditional cryptographic evaluations are built to evaluate functions designed
for computers. We present a range of strategies for security evaluation in
Appendix A. These strategies are not indicative of security by themselves, but
taken in combination provide a good measure of the relative security of each
function; further work is required to understand the security of such methods.

5.3 User Study and Improvements

We perform a survey comprising n = 134 individuals, with an average of 56 users
suggesting improvements for each algorithm. We present baseline entropy evalu-
ations for each function10, measure passwords from each function against current
security standards and suggest improvements based on user feedback.

Our human computable hash functions average a password entropy of 78.07
bits, significantly higher than the average entropy of 40.54 bits per password as
estimated by Microsoft [13]. These functions also encourage higher entropy by
increasing use and distribution of symbols and capitalization. Memory Palace,
Song Password, and Scrambled Box increase the number of symbols per aver-
age password to 3.188 symbols, compared to a baseline of 0.2 symbols. Capital
letters decrease to 0.412, lower than 1.1 without hash functions. However, as
evident in Fig. 7, capitalization is more distributed across location, rather than
concentrated towards the first character of the password [20].
10 Assuming character entropies are independent. We do not consider dictionary

attacks, character frequencies etc. as these would require a large number of pass-
words to be statistically valid, and due to unique user memory configurations R we
cannot computationally generate large numbers of passwords.
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Fig. 6. Each point represents the mean entropy of passwords with some user perceived
difficulty (std. dev. error bars). Memory Palace Step 1 was presented as “method 1”
to users; 2 included all steps described in Sect. 4.1. X-axis: User Perceived Difficulty;
Y-axis: Password Entropy.

Our results are reasonably representative of the general population of pass-
word users [24]. Our choice of sample size is based on [21] and [24]. Our sample
is drawn from students in a medium-sized university in India and may be appli-
cable to similar demographic profiles. In addition, the sample represents a range
of language, educational and income backgrounds. However, the proportions of
these demographics are not the same as the general population. Beyond the
obvious age bias (college-aged individuals), the sample is biased towards indi-
viduals willing to participate in the survey in exchange for food and money
(both standardized), and all data is self-reported. In addition, Cochran’s for-
mula [22] recommends a sample size of 100 individuals based on the proportion
of internet users in the world (53.6% of the global population in 2019 [7]), a
95% confidence interval and a 10% error margin. Compared to previous human
computable password research [4], we use a significantly larger sample size with
a more representative demographic of password users. Thus, our results, extrap-
olated prudently, can apply to the broader population.

Scrambled Box and Song require writing (the latter requires access to a
music repository) and are harder than the first two methods for users. Song and

Table 3. Graceful degradation, mean entropies, and their standard deviations.

Function Mean entropy (bits) Graceful degradation and Entropy

Standard Deviation Graceful Degradation

Internal Method 153.95 97.14 0.66

Memory Palace 51.08 25.84 0.38

Song Words 74.57 44.12 0.49

Cue Pin Select 61.96 17.62 1.06

Scrambled Box 45.15 33.15 0.84
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Cue-Pin-Select also require greater intermediate key generation – choosing and
explicitly recalling random unique words/songs and a pin/word. Comparatively,
Internal Sentence and Memory Palace use associations already familiar to users.

Graceful degradation in Table 3 measures increase in difficulty with decrease
in education levels. Larger graceful degradation corresponds to functions that
require higher education levels.

Fig. 7. Heatmap of the incidence of capital letters at different indexes. Passwords >25
characters are omitted

Memory Palace. With the aid of partial visual cues, memorizing hundreds of
cues for subkey generation (objects, areas, memories etc.) [17] is unnecessary
and the user can focus on subkey-cue associations. Most keys were in 4% of the
100 most common words in English, including references to common household
objects and local languages. After hashing subkeys with each website, no English
words were identifiable (excluding users who misinterpreted instructions).

Users were satisfied with the security but suggested clearer navigational guid-
ance. A common struggle was navigating dead-ends with visually unremarkable
cues. A significant proportion of users struggled with Step 2 and favored Step 1
and 3. Some users stated they would adapt Step 1 for future password generation.

Scrambled Box. The key is the ‘box’ of pseudo-randomly scrambled symbols.
This can be written down or shared, but must be unique to each user, who
only needs to remember website-subkey associations. Users found rearranging
symbols hard and preferred fewer instructions, but liked the lack of memorization
(Table 4).

Song Password. This scheme amplifies randomness in the input. For example,
using songs: Fade, Panama, King of Mars, Teddy Boy with user one’s PIN1

= 3819 and user 2’s PIN2 = 7144, passwords generated are mse$i(o)* and
tsto)mhS (a similarity of 0.33% [26,28]).

Users struggled with pins and associating different songs. Some users pre-
ferred not to remove or shift alternate characters, while others remarked they
would adapt this method for future password generation.
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Table 4. Security refers to the %age of passwords with ≥1 Number or Symbol. Length
and difficulty are averages. Difficulty was assessed by users.

password length Survey Results

security difficulty (1–7)

Internal Sentence 25.91 9.90 2.52

Memory Palace 8.42 86.06 5.38

Song Words 11.50 92.16 5.41

Cue Pin Select 12.29 3.21 4.44

Scrambled Box 6.71 94.11 5.68

Internal Sentence. Users preferred this method for ease of use but struggled
with remembering word order, verb and adjective choice, etc. or found passwords
generated too long to recall. Users felt this method was insecure as it did not
generate special characters or capitalization. The entropy for this method is
misleading, as passwords often contain words susceptible to dictionary attacks.

Cue-Pin-Select. Word and pin recollection were challenging, users preferred
associating words with cues over random cues, and suggested reducing the num-
ber of random words from 6 to 4. In general users requested stronger associative
and implicit memory modifications to the method. Across all passwords and
algorithms mentioned in 4.1, average password entropy is 78.07 bits and average
password length is 11.83 characters (i.e. numbers, symbols and letters) (Fig. 8).

Fig. 8. Symbol occurrence by method. Y-axis: log scale. X-axis based on symbol rank
(most to least probable). SHA3-256 hashes were converted to latin-1 encoding to get
typable character frequencies [29]. Memory Palace as in Fig. 6.
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5.4 Machine-Learning Based Analysis Using LSTMs

A simple machine learning system was used to predict the kth character given the
previous k−1 characters of the password to further evaluate randomness. This is
based on a long line of research starting from Shannon’s entropy experiment [18].
We used all characters except the last for training (see Table 5).

Table 5. We used a Long Short Term Memory Network [33] to learn dependencies.
The 50-cell LSTM was tested with two trials of 100 and 200 epochs.

Scheme 100 epochs Testing Accuracy (in %)

200 epochs

Internal Method 53.13 58.41

Memory Palace 18.42 19.91

Song Words 21.71 23.37

Cue Pin Select 47.56 46.76

Scrambled Box 29.31 28.44

6 Real-World Password Generation Methods

How do people currently generate (and remember) passwords? Our survey sug-
gests that people use a combination of words, followed by digits and symbols
(in that order), indicating construction in order of ease of recollection. Common
associations: names of relatives, fictional characters, nicknames, etc.; digits or
symbols—birth dates, reversed phone numbers, even credit card numbers!

Some used inventive techniques to balance security with memorability:
account expiry dates, rhymes, snacks and manufacturing dates, and slang words.
Several users reused passwords with the awareness of compromised security, cit-
ing a lack of convenient options. A small population added random words from
different languages. (Full database of results omitted for brevity.)

We observed that users designed passwords with human adversaries in mind
and thus mistakenly believed that using animals or objects they disliked, using
common character substitutions for letters (“leetspeak”), or misspelling words
created a secure password. Based on previous work [44] and our survey, we rec-
ommend all platforms with password requirements brief users on current strate-
gies used by computationally-equipped adversaries, such as dictionary attacks,
frequency analysis etc. to reduce the usage of insecure passwords.

7 Conclusion

We propose a range of human-computable hashing algorithms with string and
non-string inputs, designed for password generation and management. We exploit
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users’ unique memory configurations to drive our design, drawing upon existing
neuroscientific research. We also collate current password advice across hundreds
of popular websites and applications, and survey users on their current password
generation methods, highlighting major issues and discussing mitigation.

Our functions are validated and tested using a survey (n = 134) to under-
stand real-world usability. We note that larger surveys across a range of age
groups are required to better classify the security and usability implications. Fur-
ther work also needs to be done to explore the kinds of atomic human-computed
operations that produce stable output useful for cryptography.

A Cryptographic Security

Given the limitations imposed by the very nature of algorithms opti-
mized for humans (which are intentionally difficult to represent on
a computer) these methods cannot be used directly; we use approx-
imate, illustrative calculations to indicate the likelihood of a given
scheme satisfying some property.

When an adversary attempts to guess a user’s password for random accounts
after seeing m/λ other random (account, password) pairs for the same user, a
hash function hR is considered UF-RCA (Unforgeability Under Random Chal-
lenge Attack) secure if a poly-time adversary can guess a new (account, pass-
word) pair with negligible success probability. [6]

For any hash function hR(s, wi) −→ yi the adversary attempts to either
guess s, or guess yj for some wj , based on knowledge of C = {(y1, w1), (y2, w2),
. . . , (yn, wn)} where (yj , wj) �∈ C. The probability of correctly guessing the out-
put (hash) for website wj without knowing s, i.e., P ((yj , wj)|yj = hR(s, wj) ∧
(yj , wj) �∈ C) ≤ ε for any probabilistic polynomial time adversary.

A.1 Pre-image Resistance

Given only hR (public hash function) and hR(w, sk) (a password), pre-image
resistance requires that it must be computationally hard to deduce sk, the sub-
key, and s, the master secret. Note that R is unclonable in our setup.

Memory Palace: Given the hash, every alternate letter is either (Sect. 4.1):

– l = S(x, y) where S: sum and x, y are two letters
– a diagonal mapping of l on the keyboard

Every letter l in the subkey depends on two other letters x, y such that11:

L

{
x + y for x + y < 26
x + y − 26 for x + y ≥ 26

11 Assuming the alphabet is indexed from 0.
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The probability of guessing x and y given l is P (x, y|l) ≤ 1
13 (0.0769) or

1
14 (0.0714) based on 13–14 pairs of s(x, y) for every l. This reveals nothing about
the permutation, e.g., ai + bi = bi + ai = ci, where ai is the index of the
letter a. In this case both ab and ba are candidate permutations for c, as are 13
other letter-pairs such as cz, no etc. So, every character of the hash depends on
several possible letter-pairs in the previous text (confusion). Taking into account
letter-pair permutations, the probability space increases such that: P (x, y|l) ≤
1
26 (0.0385) or 1

28 (0.0357). The adversary now guesses the underlying letters with
≤ 4% probability. If all (x,y) and their permutations are discovered, the user’s
subkey is discovered. However this does not reveal other subkeys due to sources
of randomness within the function, as elaborated in Appendix A.

Song Password: Passwords generated by this method had no identifiable words
from the English language, or local languages. The title word of the song for the
examples used in Step 3 in the description of Song Password formed a maximum
of 10% of the song lyrics. An adversary has to undo several layers of confusion
based on R, such as shifting characters to different positions, removing charac-
ters etc., which leave no identifiable words from the English language, or local
languages in the final password, to deduce s from the hash. It is also computa-
tionally hard to predict characters that may have been removed due to character
shifts before deletion that do not preserve letter frequencies or word patterns.

Scrambled Box This method is strongly resistant to pre-image attacks
(a public S-box degrades gracefully). Given the S-box and the password, each
character c in the S-box corresponds to a unique coordinate set (x, y) which in
turn is the index xy of an alphabet. If the letter maps to a single-digit index, y
may be a digit from the index of the next alphabet. Due to the vast number of
possibilities for each character mapping in the password, we propose that finding
s given the user’s S-box, w and h(s, w), is computationally infeasible.

Internal Sentence: Here, sk = s is a “unique” word, and hR(s, w) is a sentence
including s and w. A frequency analysis of words will suggest a candidate s, and
w is publicly known. Passwords resulting from this hashing method carried high
entropy, but most passwords (138/202) with 4–17 words, included between 1–
12 words from the 3000 most frequently used English words [27] and thus are
not UF-RCA secure, as with n (account, password) pairs for the same user,
a “unique” s can be deduced with word frequency analysis. Combined with
word permutations a large number of candidate passwords can be produced with
negligible computational effort. However this method is still weakly collision-
free - long sentences without specified one-way mappings of (subkey −→ word
combinations) result in a low incidence of hR(m′) = hR(m).

A.2 Collision Resistance and Randomness

An adversary cannot even compute or verify hR efficiently, since R is unique
to each user. In that sense, our hash function is similar to a physically unclon-
able function [37]. Our analysis suggests that given a password y, guessing m,
P (hR(m) = y) ≤ ε = 2−78 in the average case (length 11.83), as analysed at the
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end of Sect. 5.3. (Most of our functions are also strongly collision free; details
omitted for brevity.) We refer readers to [4] for the security of Cue-Pin-Select.

We observe a variety of sources of randomness for each R. Understanding
and manipulating this randomness is an interesting problem for future research.
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Abstract. One of the most used authentication methods is based on
short secrets like password, where usually the hash of the secrets are
stored in a central database. In case of server compromise the secrets
are vulnerable to theft. A possible solution to this problem to apply dis-
tributed systems. We propose a mutual authentication protocol with key
agreement, where identity verification is carried out by multiple servers
applying secret sharing technology on server side. The protocol results
in a session key which provides the confidentiality of the later messages
between the participants. In our solution we also achieve robustness and
scalability as well. To show that the proposed protocol is provably secure,
we apply the threshold hybrid corruption model. We assume that among
the randomly chosen k servers, there is always at least one uncorrupted
and the authentication server reveals at most the long-lived keys. We
prove that the protocol is secure in the random oracle model, if Message
Authentication Code (MAC) is universally unforgeable under an adap-
tive chosen-message attack, the symmetric encryption scheme is indistin-
guishable under chosen plaintext attack, moreover Elliptic Curve Com-
putational Diffie-Hellman assumption holds in the elliptic curve group.
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1 Introduction

1.1 Motivation and Related Work

A distributed system consists of multiple, autonomous computers that com-
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distributed system is to solve a single problem by breaking it down into several
tasks where each task is computed by a computer of the system. Distributed sys-
tems can run in a cloud infrastructure as well. Secure user authentication is an
important issue of cloud services. If it is breached, confidentiality and integrity
of the data or services may be compromised. In the case of Software as a Service
model, the cloud service provider takes responsibility for securing all the data
from unauthorized access.

In practice, OpenStack [30] is one of the most popular cloud computing
softwares. OpenStack Identity service supports multiple methods of authentica-
tion, including user name and password, Lightweight Directory Access Protocol
(LDAP), and external authentication methods (i.e. Kerberos). There are fears
about these systems due to their centralized structure. Services storing pass-
word information for a large number of enterprises in a central database are
primary targets for hackers (e.g. Golden Ticket Attack [24,28], OneLogin attack
[29]). The recent hack of OneLogin, an Identity and Access Management (IAM)
provider proves that the credentials may not be as safe as we are led to believe.
The weakest point of Kerberos authentication model is the key distribution cen-
ter (KDC). The entire authentication system depends on the trustability of the
KDC, so anyone who can compromise system security on a KDC system can
theoretically compromise the authentication of all users of systems depending
on the KDC. On the other hand, Kerberos requires the continuous availability
of the KDC server, if the server is not available, no one can log in.

In scientific literatures, usually centralized, one-factor [17,23] or two-factor
identity verification protocols [12,13] are proposed. Xavier Boyen presented a
Hidden Credential Retrieval protocol [9], where the protocol applies one server
solution and a blind signature technique with a user password. However, the
concept of distributing authentication to multiple servers enhance the security
level. The advantage of a distributed system is that external attackers have to
attack multiple servers simultaneously, which increases the attack cost.

Several protocols are proposed for a multi-server environment. Sood, Sarje
and Singh [33] and Brainard et al. [11] suggested authentication protocols in a
two-server environment, where two servers together decided on the correctness
of the password submitted for authentication. Katz et al. [21] demonstrated
the first provably-secure two-server protocol for the important password-only
setting (in which the user needs to remember only a password, and not the
servers’ public keys), and was the first two-server protocol (in any setting) with
a proof of security in the standard model. Acar et al. constructed a solution
[1] in which securely store the corresponding secret key and blinded by some
function of user password at storage provider(s) different from the login server.
In this proposition [16] a multiple-server authentication protocol is designed,
where one-time passwords are shared among the cloud servers. A Merkle tree or
a hash tree [26] is applied for verifying the correctness of the one-time password.
Most of the cases after successful authentication an encrypted communication
channel is established. Our goal is also to establish a symmetric encryption key.
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Passwords are often used as authentication information in key exchange pro-
tocols. In case of a password-authenticated key exchange (PAKE) after user
registration a user and a server establish a session key for a secure channel
[6,8,10,22,25]. In a multiple-server environment usually threshold password-
authenticated key exchange protocols are designed. Devriş Işler and Alptekin
Küpçü introduced a scheme [19] where the protocol ensures that multiple stor-
age providers can be employed, and the adversary must corrupt the login server
and threshold-many storage providers to be able to mount an offline dictionary
attack. Afterward, they proposed a new framework [20] for distributed single
password protocols (DiSPP). In their protocol, the user stores the secret among
storage providers (e.g. personal devices, online storage providers) and accesses it
by using his/her password. There are n login servers and n storage providers, and
to be able to mount an offline dictionary attack successfully, an adversary must
corrupt t login servers in addition to t storage providers. Mario Di Raimondo
and Rosario Gennaro recommended two threshold password authenticated key
exchanges [31] where the protocols require n > 3t servers to work. They enforce
a transparency property: from the point of view of the client the protocol should
look exactly like a centralized protocol of Katz, Ostrovsky, and Yung (KOY
protocol). They proved that their protocol is provably secure if n > 3t and the
Decisional Diffie-Hellman Assumption holds. Password-Protected Secret Sharing
(PPSS) scheme with parameters (t, n) was formalized by Bagherzandi et al. [2].
Jarecki et al. [18] present the first round-optimal PPSS scheme, requiring just
one message from user to server and from server to user, and prove its security
in the challenging password-only setting where users do not have access to an
authenticated public key. The scheme uses an Oblivious Pseudorandom Func-
tion (OPRF) and builds the first single-round password-only Threshold-PAKE
protocol in the Common Reference String (CRS) and random oracle models
(ROM).

We propose a multi-server password-based authenticated key exchange
scheme. It is similar to the (k, n) threshold PAKE systems, however we don’t
apply the secret-sharing algorithms. In contrast to other threshold password-
based protocols applying secret-sharing algorithms [2,6,8,10,18,20,22,25,31],
although we share the password information among the servers, it is not recon-
structed from the shares to verify it. Ford et al. [14] proposed a protocol that
securely generates a strong secret from a weak secret (password), based on com-
munications exchanges with two or more independent servers. We demonstrate
a new way of generating a strong secret (e.g. long-lived key) from a password, it
is also suitable for scalability. Comparing to other schemes we also consider the
scalability property that is one of the main requirements for clouds. In the Inter-
net of Things (IoT) environment an authenticated key exchange (AKE) protocol
is presented [32] on wireless sensor networks and they focus on the key shares
and establish the authenticated key between Wireless sensor networks (WSNs)
and the cloud server, which performs a centralization authentication. Another
variant of AKE is demonstrated [34] which includes a permanent Control Server
and cloud servers on 5G network. Our solution differs from these papers [32,34]
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since we can scale the generating long-lived keys on the user’s and the provider’s
sides as well. Unlike [10,14] we also provide a detailed security analysis based
on the Bellare and Rogaway model.

1.2 Our Contribution

In this section, we give the details and the novelty of our solution, compared to
the previous propositions. The main goal of key exchange protocols is to set up
a shared secret key between two or more entities. In case of key agreement, both
entities contribute to the joint secret key by providing information from which
the key is derived. In mutual authentication parties who engage in a conversa-
tion in which each gains confidence that it is the other with whom he speaks. In
protocols providing implicit key authentication, each participant is assured that
no one other than the intended parties can learn the value of the session key.
A key agreement protocol that provides mutual implicit key authentication is
called an authenticated key agreement protocol (or AK protocol). A key agree-
ment protocol provides key confirmation (of B to A) if A makes sure that B
possesses the secret key. A protocol that provides mutual key authentication as
well as mutual key confirmation is called an authenticated key agreement with
key confirmation protocol (or an AKC protocol) [3].

Our main goal is to design an AKC protocol which takes advantage of dis-
tributed systems. Our protocol would fit into these systems and takes advantage
of the capabilities of these systems like robustness, scalability and greater avail-
ability. We assume there are thousands of servers in a cloud system therefore we
reject the single-server authentication (e.g. Kerberos) and instead we propose
the multi-server authentication. It is important to note that a single point of
failure occurs typically in single-server solutions. If the server is unavailable, the
provider usually needs to ensure replication to tackle the failure of their servers.
Our scheme consists of n servers and the user randomly selects k ≤ n ones
for each authentication. Besides the randomly chosen k servers a server called
authentication server is also chosen randomly in our solution. In the authentica-
tion phase, the k servers use their long-lived keys and the user’s authentication
is verified by the chosen server via the correct MAC values. Even if one or more
servers fail out of the n servers, the client can still choose k servers randomly. So
if one or more servers break down or become corrupt, the service provider will
be able to service and authenticate the users securely.

During authentication, instead of securely constructing the secret password
from its shares, a random challenge generated by the client is constructed and
verified by the authentication server. The randomly chosen participating servers
are able to compute their challenge shares with the help of the password-based
long-lived key set during registration and send them to the authentication server.
In this way, the confidentiality of the password is assured. We focused heavily on
making the protocol effective and we achieved promising efficiency results. The
related protocols in the literature in several cases employ asymmetric crypto-
graphic primitives which are considered slow compared to symmetric solutions
and hash functions. The results of our protocol can be led back to the facts
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that the session key is generated by ECDH key exchange, moreover MAC, xor
operations and symmetric encryption are applied.

Finally, we also provide the security proof of the protocol and we demon-
strate that the protocol is provably secure. For our protocol, we extended the
Bellare and Rogaway security model in [7] to prove that our multi-device scheme
is secure and we introduced the threshold hybrid corruption model. We assume
that among the randomly chosen k servers, there is always at least one uncor-
rupted and the authentication server reveals at most the long-lived keys. We
prove that the proposed protocol is a secure AKC protocol in the random oracle
model, assuming the ECCDH assumption holds in the elliptic curve group, if
MAC is universally unforgeable under an adaptive chosen-message attack and
the symmetric encryption scheme is indistinguishable under chosen plaintext
attack.

1.3 Outline of Article

In Sect. 2, we describe the necessary preliminaries. In Sect. 3, we give the steps
of the protocol. A security analysis is detailed, which includes the security model
with the security requirements are given in Sect. 4. We formalize the adversarial
model, and give the security proof and practical issues. In Sect. 5, our conclusion
is given.

2 Preliminaries

Before we detail the protocol and the related security properties, the necessary
security assumptions for the basic primitives are given.

Definition 1. A message authentication code (or MAC) is a tuple of
polynomial-time algorithms (KeyM ,Mac, V er) such that:

1. The key-generation algorithm KeyM takes as input the security parameter 1κ

and outputs a key K with |K| ≥ κ. KeyM is probabilistic.
2. The tag-generation algorithm Mac takes as input a key K and a message

m ∈ {0, 1}∗, and outputs a tag t. We write this as t := MacK(m). We
assume that Mac is deterministic.

3. The verification algorithm V er takes as input a key K, a message m, and a
tag t. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid.
We assume without loss of generality that V er is deterministic, and so write
this as b := V er(m, t).

Consider the experiment for a message authentication code (KeyM ,
Mac, V er), an adversary A, and security parameter κ, as follows. The message
authentication experiment Expeforge

Mac (A):

1. A random key K is generated by running KeyM (1κ).
2. The adversary A is given input 1κ and oracle access to MacK(.). The adver-

sary eventually outputs a pair (m, t).
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3. The output of the experiment is defined to be 1 if and only if V erK(m, t) = 1
and m was never asked from the oracle MacK(.) before.

Definition 2. A message authentication code (KeyM ,Mac, V er) is existen-
tially unforgeable under an adaptive chosen-message attack, if for all proba-
bilistic polynomial-time adversaries A, Pr[Expeforge

Mac (A) = 1] is negligible.

We apply elliptic curve cryptography to make our protocol suitable for
resource constrained environment as well.

Definition 3. Consider an elliptic curve E defined over a finite field Fq, a
point G ∈ E(Fq) of order n. The Elliptic Curve Computational Diffie-Hellman
(ECCDH) function ECCDH(., .) takes as input a pair of elements (X,Y ) ∈
<G>2 and returns dlog(X)dlog(Y )G. We say that <G> satisfies the ECCDH
assumption if for all probabilistic polynomial-time algorithm S, the probability
that for a random element (X,Y ) ∈ <G>2, S correctly returns ECCDH(X,Y )
is negligible.

Servers should be able to use a secret channel to exchange data in an
encrypted manner.

Definition 4. A symmetric encryption scheme is a tuple of probabilistic
polynomial-time algorithms (KeyE , Enc,Dec).

1. The key-generation algorithm KeyE takes as input the security parameter 1κ

and outputs a random key K ∈ {0, 1}κ.
2. Enc is an encryption algorithm that takes inputs key K and plaintext m ∈

{0, 1}∗, and outputs a ciphertext c.
3. Dec is a deterministic decryption algorithm that takes inputs key K and

ciphertext c, and outputs the plaintext m.

To define secure encryption, let A be an adversary and consider the experi-
ment Expind−cpa

Enc (A) as follows.

1. A random key K is generated by running KeyE(1κ).
2. The adversary A is given input 1κ and oracle access to EncK(.), and A

outputs m0,m1 ∈ {0, 1}∗ with |m0| = |m1|.
3. A random bit b is chosen and a ciphertext EncK(mb) is computed and given

to A.
4. A continues to have oracle access to EncK(.), and outputs a bit b′.
5. We define A’s advantage to be Advind−cpa

Enc (A) = |Pr[b′ = b] − 1/2|.

Definition 5. We say that a symmetric encryption scheme is indistinguishable
under chosen plaintext attack if Advind−cpa

Enc (A) is negligible in κ for any efficient
adversary A.



194 A. Huszti and N. Oláh

3 The Proposed Scheme

In this section we propose a multi-server authenticated key agreement proto-
col with key confirmation. We assume that a secret symmetric, long-lived key
is exchanged between each client and server during client registration. In the
authentication phase, a client chooses several servers randomly to participate.
The client verifies the identity of each server and one of the randomly chosen
servers, the authentication server, proceeds the steps of the client authentication.
Mutual authentication of the participants is based on the correctness of a cal-
culation, where the secret, long-lived symmetric key is used. Besides the mutual
authentication of the participants a secret, session key is exchanged between the
client and the authentication server.

During registration, the client sets password-based long-lived keys with all the
n servers. In such a system, in addition to the aspect of robustness, the property
of scalability is also important. To achieve this, we propose a simple solution in
which the client accesses the long-lived keys by using a password. We assume
that a client software is running on the client device (e.g. smartcard, mobile
phone etc.) that requires a password from the user to initiate the authentication
process. After the client gives the password the client software generates the
long-lived keys and the execution of authentication begins. The correctness of
the password is verified by the servers not the client software, hence a client
device does not store any information about the password.

During authentication a server only with the knowledge of the symmetric,
long-lived key Ki, where i ∈ {1, . . . , k} generated from the client password, is
able to calculate the challenge value given by the client. The authentication
server authenticates the client by verifying the correctness of all the k challenge
values received from the participating servers.

In the proposed protocol servers communicate on secure channels to each
other. We prefer one server chosen randomly that communicates to the client,
hence the client does not need to communicate to all the k servers in parallel
and build secure channels.

During the design of the protocol, the efficiency of authentication is ensured
by MAC and other fast cryptographic algorithms (hash, xor operation, symmet-
ric encryption). The protocol is provably secure and the necessary model and
the formal proof are given. We apply distributed authentication, thus we extend
the model with the concept of threshold hybrid corruption.

3.1 Setup

In the setup phase the system parameters are generated and the registration
is executed between the client and the servers. We differentiate two partici-
pants: A client (I) asks for services and the servers (J1, . . . , Jn). We denote
by {0, 1}∗ the set of all binary strings of finite length. If x, y are strings, then
x||y denotes the concatenation of x and y. Let ⊕ denote an exclusive or cal-
culation. During setup all system parameters and keys are generated. Let E
denote an elliptic curve defined over a finite field Fq and G ∈ E(Fq) a point of
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order n. Elliptic curve parameters are chosen in a way that the system resists
all known attacks on the elliptic curve discrete logarithm problem in <G>. Let
σ denote the length of an elliptic curve point binary representation. We also
represent Ji, i ∈ {1, . . . , n} as a bitstring with length σ. System parameters
par are given by par = (E, q,n, G,H,H0,Mac), where H : {0, 1}∗ → {0, 1}ν ,
H0 : {0, 1}∗ → {0, 1}ι are cryptographic hash functions and ν, ι are not
necessarily different, ι is the size of the secret session key being exchanged.
Mac : {0, 1}∗ → {0, 1}ν is a MAC function. System parameters are publicly
known. Long-lived secret, password-based symmetric keys (K1, . . . ,Kn) between
the client and each server are exchanged securely. To provide message confiden-
tiality between the servers each server possesses n − 1 symmetric encryption
keys (K1, . . . ,Kn−1) for secure communication. These keys are short-term and
exchanged securely.

3.2 Scalability

In this section, we present an algorithm providing scalability of our protocol. Let
KKDF denote a Keyed Key Derivation Function that for a message m and a
key generates a secret key K, i.e. K = KKDFkey(m). Let the message be the
password psw and the key = H(salt||psw), and c be the number of iteration.
Value KKDFkey(psw), and secret shares

KKDF c
key(psw),KKDF c+1

key(psw), . . . , KKDF c+n−2
key(psw)

are calculated for the n − 1 servers. Finally let

Kn = KKDFkey(psw) ⊕ KKDF c
key(psw) ⊕ . . . ⊕ KKDF c+n−2

key(psw)

for the nth server. If the number of servers are increased in the cloud, we take the
secret part of one of the servers and divide it into as many parts as the number of
new servers we want to add to the system. In general, for increasing n servers with
k new ones, a KKDF l

key(psw) is chosen to be scaled and KKDF t
key(psw),

where t = c+n, . . . , c+n+ k − 1 are calculated. The secret share for the chosen
server is modified to

Knew = KKDF l
key(psw) ⊕ KKDF c+n

key(psw) ⊕ . . . ⊕ KKDF c+n+k−1
key(psw).

The device stores for each server a list of numbers of iteration. The list has
either one element, or if it is scaled by k new ones, than k + 1 elements. If we
decrease the number of servers, we take the iteration numbers of the deleted
servers and add them to the stored list of a remaining server. Observe, that
to calculate a secret share from another share the key of the KKDF, the salt
and the password are needed. Hence even if we scale a corrupted share, the new
shares cannot be calculated. The salt is stored only on the client device and the
password is known only by the client.
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3.3 Authentication Phase

In the authentication phase, we utilize the benefits of the distributed system
to perform multiple server authentication. In this phase, mutual authentica-
tion between a client and the randomly chosen servers is processed with a key
agreement. Client I randomly chooses k servers out of the n. Server Ji, where
i = 1, . . . , k verifies whether I possesses the long-lived symmetric key Ki. At the
end of the authentication, a secret session key ssk is exchanged. Figure 1 shows
the process of authentication.

Fig. 1. Authentication
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As the first step of the authentication, I selects k servers that are involved in
the authentication. A random value v ∈ {1, . . . , k} is generated by a time-based
pseudorandom number generator. Let Jv denote the authentication server, which
performs the authentication on server side. Jv communicates with the client and
the other k − 1 servers. After entering the correct password, the client software
calculates the long-lived keys from the password and the salt that is stored on
the device. I generates random bitstrings t1, . . . , tk and calculates hash values
w1 = H(t1), . . . , wk = H(tk) and w, such that w = H(w1||w2|| . . . ||wk). Random
values ri ∈ {0, 1}σ, where i = 1, . . . , k are generated, too. Subsequently, I creates
the first message M1, which is sent to the chosen authentication server Jv. I com-
putes m0 = H(w) and mv = (MacKv

(rv ⊕ xG ⊕ Jv) ⊕ wv)||rv||xG, where MAC
is calculated with the long-lived symmetric key Kv. Moreover, mv comprises xG,
which is an elliptic curve point represented by a bitstring that is necessary for
the key agreement, it is the client message of the elliptic curve Diffie-Hellman
key exchange. The first message also consists of mi = (MacKi

(ri ⊕ Ji) ⊕ wi)||ri.
Authentication of the participants is based on the correct calculation of the MAC
values.

Jv receives message M1 and forwards each mi together with I to server Ji.
Each server receives I||mi, where mi = p||q. Server Ji calculates MacKi

(q ⊕ Ji),
where Ki is the long-lived key exchanged between the client and the server. Each
server calculates w′

i = p ⊕ MacKi
(q ⊕ Ji). Therefore, a server is able to calculate

a valid w′
i only with the knowledge of Ki, the secret, long-lived key exchanged

with I before. Value w′
i is sent back to Jv encrypted. Jv calculates w′ from all

w′
i received, and checks whether H(w) = H(w′) holds. If they are equal, then Jv

makes sure about the authenticity of the client.
Thereafter Jv generates a random value y ∈ Z

∗
n and computes the secret

session key ssk = H0(yxG). Jv calculates response M2 = h||yG, where h =
H(ssk||yG||xG||w) and yG is the server message of the EC Diffie-Hellman key
exchange.

I receives M2 = h||yG and calculates the secret session key ssk = H0(yxG)
and h′ = H(ssk||yG||xG||w). If h = h′, then I is confirmed that server Jv knows
the secret session key, and the randomly chosen servers know the secret long-lived
keys, hence their identity is verified.

As a last step M3 = H(ssk||yG||xG) is computed and sent to Jv. Jv verifies
the message received from the client and if it is correct, Jv confirms that I knows
the secret session key.

In the authentication phase, the random value w can be calculated on server
side only if the servers know the long-lived symmetric keys, hence the client is
able to verify the identity of multiple servers by checking h. On the other hand
after calculating w on server side involving keys Ki, m0 is checked. Correct m0

proves that the client possesses Ki, hence identity of the client is verified as
well. Value ri ensures that the MAC value mi is fresh for every authentication
in order to avoid replay attack. Basically, the secret session key is created via
an authenticated key agreement protocol based on random values (x, y) gener-
ated by the client and the selected server. These values are sent securely so the
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attackers cannot gain any information about them. Considering the time com-
plexity, the authentication phase is very efficient, since there is only one scalar
multiplication on both sides besides the hash, MAC and xor operations.

4 Security Analysis

In this section after defining the security model, we provide a formal security
proof of the proposed protocol. Basic requirements of the proposed protocol are
mutual authentication of the participants, key secrecy, key freshness and key
confirmation. Secure mutual authentication of participants prevents imperson-
ation attack, the new key should be kept secret, and an old key shouldn’t be
exchanged successfully. At the end parties should confirm that the other party
is able to use the new session key.

Known-key security and forward secrecy are also considered. If known-key
security holds, disclosure of a session key does not jeopardize the security of
other session keys. Forward secrecy holds if long-term secrets of one or more
entities are compromised and the secrecy of previous session keys is not affected.

4.1 Security Model

We have extended the indistinguishability-based model proposed by M. Bellare
and P. Rogaway in 1993 (see [3–5,7]). The goal of applying multiple servers is
to take into account the situation when the verifier server is corrupted, i.e. the
long-lived keys and other login information stored in the server database are
hacked. Multiple servers together provide secure user authentication, if at least
one of the verifier servers is uncorrupted. We generalize the security model as
follows.

If κ ∈ N, then 1κ denotes the string consisting of κ consecutive 1 bits. Let
κ denote the security parameter. We fix a nonempty set ID of participants. ID
is the union of the finite, disjoint, nonempty sets Client = {1, 2, . . . , T1(κ)} and
Server = {1, 2, . . . , n = T2(κ)}, where Ti(κ), i ∈ 1, 2 is a polynomial bound on
the number of participants in κ for some polynomial function Ti. Each partici-
pant is modelled by an oracle

∏l
I,Jv

, which simulates a participant I executing
a protocol session in the belief that it is communicating with another partici-
pant Jv for the lth time, where l ∈ {1, . . . , T3(κ)} for some polynomial function
T3. For each protocol run k servers are chosen. We assume that at least one
of the k servers is not corrupted. Participant Jv chosen randomly out of the
k servers conducts the protocol on server side, Jv communicates with I and
the other k − 1 servers. Oracles keep transcripts, which contain all messages
they have sent and received and the queries they have answered. Each partic-
ipant I ∈ Client holds long-lived symmetric keys exchanged with each server
Ji ∈ Server, i ∈ {1, 2, . . . , n} during registration.
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4.2 Adversarial Model

The adversary A is neither a client nor a server. A is a probabilistic polynomial
time Turing Machine with a query tape where oracle queries and their answers
are written. A is able to relay, modify, delay or delete messages. We assume that
A is allowed to make the following queries.

Send(
∏i

I,J ,M): This oracle query models an active attack, allows A to send
the message M to oracle

∏i
I,J , and the oracle returns a message (m) that

the user instance sends in response to the message M .
∏i

I,J following the
protocol steps also provides information whether the oracle is in state (δ)
Accepted, Rejected or ∗. The query enables A to initiate a protocol run
between participants I and J by query Send(

∏i
I,J , λ). The oracle replies:

m, δ.
Reveal(

∏i
I,J): This models an insecure usage of a session key. If oracle

∏i
I,J is

in state accepted, holding a secret session key ssk, then this query returns
ssk to A. The oracle replies: ssk.

Corrupt(
∏

I,J ,K ′
I,J ): This oracle query models the corruption of a participant.

Replying to this oracle query a participant oracle
∏

I,J replies long-lived keys
KI,J and I’s state, i.e. all the values stored by the participant I, moreover
A is allowed to replace the stored long-lived keys with any valid keys of A’s
choice K ′

I,J . The oracle replies: KI,J , stateI .
Test(

∏i
I,J ): This oracle query models the semantic security of the secret session

key. It is allowed to be asked only once in a protocol run. If participant I
has accepted holding a secret session key ssk, then a coin b is flipped. If
b = 1, then ssk is returned to the adversary, if b = 0, then a random value
from the distribution of the session keys is returned.
We define A’s advantage, the probability that A can distinguish the session
key held by the queried oracle from a random string, as follows:

AdvA(κ) = |Pr[guess correct] − 1/2|.

Participants’ oracle instances are terminated when they finish a protocol run.
They are in state accepted, if they decide to accept holding a secret session key
denoted by ssk, after receipt of properly formulated messages. An oracle can be
in state accepted before it is terminated. An oracle is opened or corrupted, if
it has answered a query Reveal(

∏i
I,J ) or Corrupt(

∏
I,J ,K ′

I,J ), respectively.
Moreover adversary A is given access to Mac(.) and Enc(.) oracles as well.

The Threshold Hybrid Corruption Model. A model is a strong corruption
model ([3]), if long-lived keys KI,J and all the values stored (e.g. randomly chosen
secret values) by the participant I during the protocol run are transferred to A.
In case of the weak corruption model only the long-lived keys KI,J are transferred
or replaced, the adversary does not completely compromise the machine. Other
values generated and stored during the protocol run are not revealed.
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Definition 6. We call a model threshold hybrid corruption model, if we assume
that the client is uncorrupted and there are at least n−k+1 uncorrupted servers
out of the n servers, if k servers are chosen randomly for AKC. Moreover, the
server chosen to communicate with the client is

1. uncorrupted, or
2. corrupted weakly and among the remaining servers there is at least one uncor-

rupted.

During the attack an experiment of running the protocol with an adversary
A is examined. After generating the keys and system parameters, A initializes
all participant oracles and asks polynomially number of oracle queries including
Send(

∏i
I,J ,M), Reveal(

∏i
I,J ), Corrupt(

∏
I,J ,K ′

I,J ) to the participant oracles.
Finally A asks a Test(

∏i
I,J) query.

In order to give the definition of a secure AKC protocol, we need to review
the definition of conversation and matching conversation from [7]. They were
also formalized in [4].

Definition 7. Consider an adversary A and a participant oracle
∏s

I,J . We
define the conversation Cs

I,J of
∏s

I,J as a sequence of

Cs
I,J = (τ1, α1, β1), (τ2, α2, β2), . . . , (τm, αm, βm),

where τi denotes the time when oracle query αi and oracle reply βi are given
(i = 1, . . . ,m).

Naturally τi > τj , iff i > j. A terminates after receiving the reply βm, i.e. does
not ask more oracle queries. During a conversation the initiator and responder
oracles are differentiated.

∏s
I,J is an initiator oracle if α1 = λ, otherwise it is a

responder. Consider the definition for matching conversation when the number
of protocol flows is odd.

Definition 8. Running protocol P in the presence of A, we assume that the
number of flows is R = 2ρ − 1,

∏s
I,J is an initiator and

∏t
J,I is a responder

oracle that engage in conversations C and C ′, respectively.
C ′ is a matching conversation to C, if there exist τ0 < τ1 < · · · < τR−1 and
α1, β1, . . . , βρ−1, αρ such that C is prefixed by:

(τ0, λ, α1), (τ2, β1, α2), . . . , (τ2ρ−2, βρ−1, αρ),

and C ′ is prefixed by:

(τ1, α1, β1), (τ3, α2, β2), . . . , (τ2ρ−3, αρ−1, βρ−1).

C is a matching conversation to C ′, if there exist τ0 < τ1 < · · · < τR and
α1, β1, . . . , βρ−1, αρ such that C ′ is prefixed by:

(τ1, α1, β1), (τ3, α2, β2), . . . , (τ2ρ−3, αρ−1, βρ−1), (τ2ρ−1, αρ, ∗),

and C is prefixed by:
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(τ0, λ, α1), (τ2, β1, α2), . . . , (τ2ρ−2, βρ−1, αρ).

If C is a matching conversation to C ′ and C ′ is a matching conversation to C,
then

∏s
I,J and

∏s
J,I are said to have had matching conversation.

Matching conversation formalizes real-time communication between entities
I and J , it is necessary to define authentication property of an AKC protocol.
We give the definition of the event No-MatchingA(κ) that is a modified version
of the definition given in [7]. We leave out the requirement that J ∈ Server is
uncorrupted. In our multi-server setting each client communicates with a server
that can be corrupted weakly, if there is at least one uncorrupted server from
the k servers.

Definition 9. No-MatchingA(κ) denotes an event when in a protocol P in the
presence of an adversary A assuming a threshold hybrid corruption model, there
exist

1. a client oracle
∏s

I,J which is accepted, but there is no server oracle
∏t

J,I

having a matching conversation with
∏s

I,J , or
2. a server oracle

∏s
I,J which is uncorrupted and accepted, but there is no client

oracle
∏t

J,I having a matching conversation with
∏s

I,J , or
3. a server oracle

∏s
I,J which is corrupted weakly and accepted, but there is no

client or no uncorrupted server oracle having a matching conversation with∏s
I,J .

In order to give the definition of a secure AKC, it is essential to define the
notion of freshness and benign adversary.

Definition 10. A k +1-tuple of oracles containing one client and k server ora-
cles is fresh, if in the threshold hybrid corruption model the client oracle and the
server oracle with which it has had a matching conversation are unopened. We
call an oracle fresh,if it is an element of a fresh k + 1-tuple.

Definition 11. An adversary is called benign if it is deterministic, and restricts
its action to choosing a k + 1 tuple of oracles containing one client and k server
oracles, and then faithfully conveying each flow from one oracle to the other,
with the client oracle beginning first.

Definition 12. A protocol is a secure AKC protocol if,

1. In the presence of the benign adversary the client and the server oracle com-
municating with the client always accept holding the same session key ssk,
and this key is distributed uniformly at random on {0, 1}κ.

and if for every adversary A
2. If in a threshold hybrid corruption model there is a server oracle

∏i
I,J having

matching conversations with a client oracle and if
∏i

I,J is weakly corrupted,
∏i

I,J has matching conversation with an uncorrupted server oracle, then the
client oracle and oracle

∏i
I,J both accept and hold the same session key ssk.
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3. The probability of No-MatchingA(κ) is negligible.
4. If the tested oracle is fresh, then AdvA(κ) is negligible.

Theorem 1. The proposed protocol is a secure AKC protocol in the random ora-
cle model, assuming MAC is universally unforgeable under an adaptive chosen-
message attack and symmetric encryption scheme is indistinguishable under cho-
sen plaintext attack, moreover ECCDH assumption holds in the elliptic curve
group.

Proof. The conditions 1 and 2 hold, since the steps of the protocol are followed
and with the assumption that the MAC and the encryption scheme provides
correct verification and decryption, respectively. Moreover the hash function is
a random oracle.

Let’s look at condition 3. Consider an adversary A and suppose that
Pr[No-MatchingA(κ)] is non-negligible. There are two cases: either the server,
or the client oracle is accepted.

– Case 1.
Let A succeeds denote the event that in A’s experiment there is a server
oracle

∏t
Jv,I that is accepted, but there is no client oracle

∏
I,Jv

having match-
ing conversation to

∏t
Jv,I .

We assume that
Pr[A succeeds] = nS(κ),

where nS(κ) is non-negligible.
We construct a polynomial time adversary F that is able to proceed an exis-
tential forgery against MAC under an adaptive chosen message attack. F ’s
task is to generate a valid (m, t) message-tag pair, where m was never asked
from the oracle MacK(.) for a security parameter κ. F simulates the key
generation Γ and answers A’ oracle queries.
F randomly picks I ∈ Client and J1, . . . , Jk ∈ Server, moreover randomly
chooses Jv ∈ {J1, . . . , Jk} and Ju ∈ {J1, . . . , Jk}. Let Δ = {I, J1, . . . , Jk}
denote identities of protocol participants.

∏
Jv,I denotes the server oracle that

communicates to the client I,
∏

Ju,Jv
oracle denotes the uncorrupted server

oracle that is in connection with server Jv. If u = v, then the server commu-
nicating with the client is uncorrupted. F also chooses randomly a particular
session l ∈ {1, . . . , T3(κ)}. Given security parameter κ, adversary F randomly
chooses values K1, . . . ,Kk as long-lived keys exchanged between client I and
servers J1, . . . , Jk, and K1, . . . ,Kk−1 as encryption keys exchanged between
Jv and J1, . . . , Jk−1. F runs A and answers A’s queries as follows.
1. F answers H0,H hash oracle queries at random (like a real random oracle

would).
2. F answers Corrupt queries according to Π, reveals long-lived keys Ki,

internal states and encryption keys Ki for corrupted servers. Queries to
the uncorrupted server and the client oracles are refused. If u �= v, then
Jv is corrupted weakly, hence to the corrupt query F answers only Ki

and Ki.
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3. F answers Reveal queries as specified in Π. This query is refused if it is
asked from

∏
I,Jv

or
∏

Jv,I .
4. F answers Send queries according to Π with the knowledge of the keys,

if they are not sent to
∏

Jv,I and
∏

Ju,Jv
. F answers queries to

∏
Ju,Jv

by choosing Ku randomly. If A does not involve
∏

Jv,I as a server oracle
which communicates to the client oracle

∏
I,Jv

and other server oracles∏
I,Ji

, then F gives up. If A involves
∏

Jv,I as an initiator oracle, then F
gives up. Otherwise A asks query Send(

∏
Jv,I ,M1), where

M1 = I||J1|| . . . ||Jk||m0|| . . . ||mk,

where mj = (MacKj
(rj ⊕ Jj) ⊕ wj)||rj for corrupted servers, rj ∈ {0, 1}σ

are chosen randomly, mv = (MacKv
(rv ⊕ xG⊕Jv) ⊕ wv)||rv||xG for ran-

dom x ∈ Z
∗
n and mu for uncorrupted Ju.

A asks hash oracle queries H(.) to get wi, F answers these queries. If
there is a Jt, t = 1..k in M1 such that Jt /∈ Δ, then F gives up. A
asks MAC oracle queries to calculate mu, F answers these queries using
his/her oracle MacK(.). Eventually A creates a valid mu. F calculates
the valid (m, t) MAC forgery, where t = MACK(m), as follows. If u = v,
then mu = p||q||f , t = p ⊕ wu and m = q ⊕ f ⊕ Ju, where wu is
generated via oracle H(.). If u �= v, then mu = p||q, t = p ⊕ wu,
m = q ⊕ Ju. If m was asked to oracle MacK(.) before, then F gives
up. F answers query Send(

∏
Jv,I ,M1) with H(H0(yxG)||yG||xG||w)||yG,

where y ∈ Z
∗
n randomly chosen and w is calculated from wi values

of the corrupt servers and wu. If some later time A does not asks
Send(

∏
Jv,I ,H(H0(xyG)||yG||xG)), then F gives up, otherwise

∏
Jv,I gets

accepted.
F answers query Send(

∏
I,Jv

,M2), as follows. If
M2 �= H(H0(yxG)||yG||xG||w)||yG, then F gives up, otherwise replies
H(H0(yxG)||yG||xG).
Finally, F responses (m, t) to the challenger. If A succeeds with non-
negligible probability, then F outputs a valid forgery (m, t), where m was
never asked to oracle MacK(.) before.

Assume that A is successful, event A succeeds happens with nS(κ) non-
negligible probability. Hence following the algorithm above F calculates a
valid (m, t) pair. We show that F wins its experiment with non-negligible
probability. The probability that F chooses correct participants Δ, session l
and succeeds is

ξ1(κ) =
nS(κ)

T1(κ)T2(κ)
(
T2(κ)−1

k−1

)
T3(κ)

− λ(κ), (1)

where λ(κ) denotes the probability that F previously calculated the flow.
Since nS(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is polynomial in κ and λ(κ)
is negligible and

ξ1(κ) ≥ nS(κ)
T1(κ)T2(κ)T2(κ)k−1T3(κ)

− λ(κ),
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thus ξ1(κ) is non-negligible. That contradicts the security assumption of
MAC, hence nS(κ) must be negligible.

Further details of the proof can be found in AppendixA.

The proposed AKC scheme possesses known-key and forward secrecy. Key
parameters xG and yG for each run are chosen independently and randomly,
hence session keys are also independent and random. The adversary is able to
calculate the session key from xG and yG only if he or she computes ECCDH
function.

If the adversary asks Reveal(
∏i

I,J) and receives a session key, the session keys
of the subsequent runs are independent from the revealed session key, hence the
scheme is known-key secure with the ECCDH assumption.

In the proposed AKC values x, y are not transmitted for key parameters xG
and yG, hence if long-term secret keys are compromised, the adversary faces
ECCDH assumption for the previous session keys.

4.3 Practical Issues

Efficiency was an important aspect during the design of our protocol. In the pro-
tocol, the session key is generated by ECDH key exchange, and the other oper-
ations are hash and xor operations, which are extremely fast. After the security
analysis, a java application was created to simulate the protocol in a real envi-
ronment. The system is divided into two applications, the first one is the client,
and the other one is the application for implementing the servers. Both applica-
tions were run in a microsoft azure cloud environment for authentic simulation.
We worked with constant parameters in the simulation, because the difference
in user names and passwords was negligible in terms of performance. Clients
and the selected server communicate on the public channel. The communication
between the servers occurs through a encrypted channel. In connection with
their operation, it should be noted that the server programs monitor the incom-
ing authentication requests in the background. Furthermore, when running the
client program, the user selects the servers that will perform the authentication.
After calculating the first message, the user sends it to the server that com-
municates with the service provider and communicates with the other servers.
During the connection, the steps described in the protocol are implemented. If
the connection fails, the server rejects the connection request and keeps track of
the channel.

Java Simulation Result. Java simulation was tested with six servers, one of
which received the client authentication request and the remaining five servers
were required for authentication. Time means the time interval from the first step
of the protocol to the successful connection. The average connection time was
then calculated based on the received time results. For the cloud environment,
we tested the standard package and the p3v2 package. The Standard Package
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contains 100 Azure compute units [27] and the p3v2 package includes 840 Azure
compute units. The concept of the Azure Compute Unit (ACU) provides a way
of comparing compute (CPU) performance across Azure Stock Keeping Units
(SKUs). This will help you to identify easily the SKU which is the most likely
to satisfy your performance needs. ACU is currently standardized on a Small
(Standard A1) VM being 100 and all other SKUs then represent approximately
how much faster that SKU can run a standard benchmark.

The results are the following: The average connection time is 0,1092 s per
connection when we use the p3v2 package. In the standard package the result of
average connection time is 0,1537 s per connection. This time contains the mutual
authentication including the authentication of selected servers and generating a
session key (Fig. 2).

Fig. 2. Average connection times of the successful authentications between the client
and the servers.

It is an important issue in our protocol that the user gives his/her password
and after that the long-lived keys are available. The static password is comfort-
able for the user and the long-lived keys provide the appropriate security level.
Since in each authentication the values are random and fresh, the key freshness
holds and the protocol execution could not be successfully finished with old,
already used values and keys.

5 Conclusion

Instead of the centralized authentication we have designed an Authenticated Key
Agreement with Key Confirmation protocol for a distributed environment. Our
system is robust against server breakdown and applies multiple-server identity
verification. We introduce the threshold hybrid corruption model and we model
when the different servers become corrupt on the protocol. We give a detailed
security analysis, and we prove that our proposed protocol is a secure AKC
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protocol in the random oracle model, assuming MAC is universally unforgeable
under an adaptive chosen-message attack and symmetric encryption scheme is
indistinguishable under chosen plaintext attack, moreover ECCDH assumption
holds in the elliptic curve group. It is also important to note that during the
authentication phase fast ECDH key exchange, MAC, xor operations and sym-
metric encryption are used, hence we achieve good results in computational time.

Acknowledgement. We thank the reviewers for their valuable comments which
helped to improve the proposed protocol.

Appendix A

Proof. – Case 2.
Let A succeeds denote the event that in A’s experiment there is a client ora-
cle

∏s
I,Jv

that is accepted, but there is no server oracle
∏

Jv,I having matching
conversation to

∏s
I,Jv

. We assume that

Pr[A succeeds] = nC(κ),

where nC(κ) is non-negligible.
We can construct a polynomial time adversary that is able to distinguish two
plaintexts under chosen plaintext attack against the symmetric encryption
scheme.
Challenger generates a key K and flips a bit b. F is given an oracle access to
EncK(.). F ’s task is to output a bit b′ on inputs m0,m1 chosen by F and
mb. F picks the protocol participants and a session l ∈ {1, . . . , T3(κ)}, let
Δ = {I, J1, . . . , Jk} denote the identities. Similarly to Case 1,

∏
I,Jv

denotes
the client,

∏
Jv,I the communicating server and

∏
Ju,Jv

the uncorrupted server
oracle. If u = v, then the server communicating with the client is uncorrupted.
F simulates the key generation Γ in the same way as in Case 1. F generates
long-lived keys Ki and symmetric encryption keys Ki for corrupted servers
for the security parameter κ. F answers A’s oracle queries as follows.
F answers queries to oracles H(.),H0(.), Corrupt, Reveal in the same way
as in Case 1. F answers Send queries according to Π with the knowledge of
the keys of corrupted servers, if they are not sent to

∏
I,Jv

,
∏

Jv,I or
∏

Ju,Jv
.

If A does not involve
∏

Jv,I as a server oracle which communicates to the
client oracle

∏
I,Jv

and other server oracles
∏

I,Ji
, then F gives up. We con-

sider the case when
∏

Jv,I is weakly corrupted (u �= v). If A does not invoke∏
I,Jv

as an initiator oracle, then F gives up, otherwise A asks oracle query
Send(

∏s
I,Jv

, λ). F responses M1 = I||J1|| . . . ||Jk||m0|| . . . ||mk, with mj =
(MacKj

(rj ⊕ Jj) ⊕ wj)||rj and mv = (MacKv
(rv ⊕ xG⊕Jv) ⊕ wv)||rv||xG,

where ri ∈ {0, 1}σ, x ∈ Z
∗
n, wi and the MAC key Ku for the uncorrupted

server are randomly chosen by F . Some time later A asks oracle queries to
Enc(.) and eventually asks query Send(

∏
Ju,Jv

, I||mu).
F answers with EncK(mb). F perfectly simulates uncorrupted server

∏
Ju,Jv

to A, since without the knowledge of the MAC key A cannot verify correctness
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of mu. A some time later asks xyG to oracle H0(.) and H0(xyG)||yG||xG||w
to oracle H(.) and asks query Send(

∏
I,Jv

, H(H0(xyG)||yG||xG||w)||yG).
F answers queries, replies H(H0(xyG)||yG||xG), gets accepted and checks
whether w = H(w1|| . . . ||m0|| . . . ||wk−1), where w1, . . . , wk−1 denote the ran-
dom values generated for corrupted servers. If the equality holds, then F
outputs bit b′ = 0, otherwise b′ = 1.
Assume that A is successful, event A succeeds happens with nC(κ) non-
negligible probability. F outputs the correct b′. We show that F wins its
experiment with non-negligible probability. For the analysis the probability
that F chooses the correct participants Δ, session l and succeeds is calculated:

ξ2(κ) =
nC(κ)

T1(κ)T2(κ)
(
T2(κ)−1

k−1

)
T3(κ)

− λ(κ), (2)

where λ(κ) denotes the probability that F previously calculated the flow,
including the case of uncorrupted

∏
Jv,I , when F calculates correct MAC

message-tag pair for
∏

Jv,I . Similarly to Case 1. ξ2(κ) is non-negligible, if
nC(κ) is non-negligible, Ti(κ) (i = 1,. . . ,3) is polynomial in κ and λ(κ) is neg-
ligible. That contradicts the security assumption of the symmetric encryption,
hence nC(κ) must be negligible.

We turn to condition 4. Consider an adversary A and suppose that AdvA(κ)
is non-negligible.

– Case 3.
Let A succeeds against

∏s
I,J denote the event that A asks Test(

∏s
I,J ) query

and outputs the correct bit. Hence

Pr[A succeeds] =
1
2

+ n(κ),

where n(κ) is non-negligible.
Let Aκ denote the event that A picks either a server or a client oracle

∏s
I,J and

asks its Test query such that oracle
∏s

I,J has had a matching conversation
to

∏t
J,I .

Pr[A succeeds] = Pr[A succeeds|Aκ]Pr[Aκ]+

Pr[A succeeds|Aκ]Pr[Aκ]

According to the previous section Pr[Aκ] = μ(κ), where μ(κ) ∈
{nC(κ), nS(κ)} and Pr[Aκ] = 1 − μ(κ), where μ(κ) is negligible, hence

1
2

+ n(κ) ≤ Pr[A succeeds|Aκ]Pr[Aκ] + μ(κ)

and we get
1
2

+ n1(κ) = Pr[A succeeds|Aκ],
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for a non-negligible n1(κ). Let Bκ denote the event that for given aG, bG
adversary A or any other oracle besides

∏s
I,J or

∏t
J,I asks abG to ora-

cle H0(.). Pr[A succeeds|Aκ] = Pr[A succeeds|Aκ ∧ Bκ]Pr[Bκ|Aκ] +
Pr[A succeeds|Aκ ∧ Bκ]Pr[Bκ|Aκ]. Since Pr[A succeeds|Aκ ∧ Bκ] = 1

2 ,

1
2

+ n1(κ) ≤ Pr[A succeeds|Aκ ∧ Bκ]Pr[Bκ|Aκ] +
1
2
, (3)

hence Pr[Bκ|Aκ] is non-negligible.
We construct a polynomial time adversary F that for given aG, bG cal-
culates ECCDH(aG, bG) = abG. F picks the protocol participants, Δ =
{I, J1, . . . , Jk} denotes the identities. Similarly to Case 1,

∏
I,Jv

denotes the
client,

∏
Jv,I the communicating server and

∏
Ju,Jv

the uncorrupted server
oracle. If u = v, then the server communicating with the client is uncorrupted.
F sets par = (E, q,n, G,H,H0,Mac) public parameters, where G ∈ E(Fq)
is a generator of order n. F also simulates the key generation Γ in the same
way as in Case 1.
F answers queries to oracles H(.),H0(.), Corrupt, Reveal in the same way as
in Case 1. Let T4(κ) denote the polynomial bound on the number of queries
allowed to ask to oracle H0(.). F randomly picks j ∈ {1, . . . , T4(κ)}, assuming
that jth query will be on abG. F answers Send queries according to Π except
for queries to

∏s
I,Jv

and
∏t

Jv,I . F generates messages to
∏s

I,Jv
and

∏t
Jv,I in

a way that instead of choosing x, y randomly inserts aG, bG as inputs. The
MAC computations of message M1 are calculated by the randomly chosen
keys Ki and aG or bG is inserted. M2 sent to

∏s
I,Jv

is constructed as a con-
catenation of h and bG or aG, respectively, where h is a freshly generated
random value. If A does not ask j queries to H0(.), then F gives up. After
the jth query F stops and outputs the jth query. If

∏s
I,Jv

and
∏t

Jv,I do not
have matching conversation, then F gives up.
The probability that F succeeds is at least

ξ3(κ) =
n1(κ)

T1(κ)T2(κ)
(
T2(κ)−1

k−1

)
T3(κ)2T4(κ)

− μ(κ),

that is non-negligible. This contradicts to the ECCDH assumption, hence
n1(κ) and AdvA(κ) must be negligible.
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1. Acar, T., Belenkiy, M., Küpçü, A.: Single password authentication. Comput. Netw.
57(13), 2597–2614 (2013)

2. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: ACM Conference on Computer and Communications Security (2011)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11


Provably Secure Scalable Distributed Authentication for Clouds 209

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

5. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, pp. 57–66 (1995)

6. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: Proceedings of the 1992 IEEE Computer
Society Symposium on Research in Security and Privacy. IEEE (1992)

7. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

8. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

9. Boyen, X.: Hidden credential retrieval from a reusable password. In: Proceedings
of the 4th International Symposium on Information, pp. 228–238. ACM (2009)

10. Boyen, X.: HPAKE: password authentication secure against cross-site user imper-
sonation. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol.
5888, pp. 279–298. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10433-6 19

11. Brainard, J., Juels, A., Kaliski, B., Szydlo, M.: A new two-server approach for
authentication with short secrets. In: Proceeding SSYM 2003, Proceedings of the
12th Conference on USENIX Security Symposium, vol. 12, pp. 1–14 (2003)

12. Chen, N., Jiang, R.: Security analysis and improvement of user authentication
framework for cloud computing. J. Netw. 9(1), 198–203 (2014)

13. Choudhury, A.J., Kumar, P., Sain, M.: A strong user authentication framework
for cloud computing. In: Proceedings of IEEE Asia-Pacific Services Computing
Conference, pp. 110–115 (2011)

14. Ford, W., Kaliski, B.S.: Server-assisted generation of a strong secret from a
password. In: Enabling Technologies: Infrastructure for Collaborative Enterprises,
WET ICE 2000. IEEE (2000)
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Abstract. Modern cryptographic protocols, such as TLS 1.3 and QUIC,
can send cryptographically protected data in “zero round-trip times (0-
RTT)”, that is, without the need for a prior interactive handshake. Such
protocols meet the demand for communication with minimal latency, but
those currently deployed in practice achieve only rather weak security
properties, as they may not achieve forward security for the first trans-
mitted payload message and require additional countermeasures against
replay attacks.

Recently, 0-RTT protocols with full forward security and replay
resilience have been proposed in the academic literature. These are based
on puncturable encryption, which uses rather heavy building blocks, such
as cryptographic pairings. Some constructions were claimed to have prac-
tical efficiency, but it is unclear how they compare concretely to protocols
deployed in practice, and we currently do not have any benchmark results
that new protocols can be compared with.

We provide the first concrete performance analysis of a modern 0-
RTT protocol with full forward security, by integrating the Bloom Fil-
ter Encryption scheme of Derler et al. (EUROCRYPT 2018) in the
Chromium QUIC implementation and comparing it to Google’s origi-
nal QUIC protocol. We find that for reasonable deployment parameters,
the server CPU load increases approximately by a factor of eight and
the memory consumption on the server increases significantly, but stays
below 400 MB even for medium-scale deployments that handle up to 50K
connections per day. The difference of the size of handshake messages is
small enough that transmission time on the network is identical, and
therefore not significant.

We conclude that while current 0-RTT protocols with full forward
security come with significant computational overhead, their use in prac-
tice is feasible, and may be used in applications where the increased CPU
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and memory load can be tolerated in exchange for full forward security
and replay resilience on the cryptographic protocol level. Our results
serve as a first benchmark that can be used to assess the efficiency of
0-RTT protocols potentially developed in the future.

1 Introduction

0-RTT Protocols. Considerable effort has gone into reducing latency at the
various networking layers, with the aim of reducing end-to-end latencies. This
includes HTTP/2 [5] based on Google’s SPDY protocol [6], TCP Fast Open [12]
and μTP [28], as well as the move towards decentralized content delivery net-
works or peer-to-peer communication. Still, classical cryptographic key agree-
ment protocols, such as TLS 1.2, require at least one round-trip time (RTT)
to establish a key, plus an additional RTT to establish the underlying TCP
session. In order to overcome this, 0-RTT protocols have been developed and
incorporated in transport layer standards. This is motivated by improved user
experience, which degrades with increased latency between user actions (such as
requesting a web page) and the result (the web page being displayed), as well as
the demand for fast session establishment in applications with extreme latency
requirements, such as real-time control of industrial systems over 5G networks,
for instance. Studies showed that for large Internet companies, such as Google
or Amazon, additional delays have tangible impact on revenue [9,23]. Google
has approached this latency issue with their QUIC protocol [11], which includes
a 0-RTT key exchange protocol.

Security of 0-RTT Protocols. Fundamentally, a key exchange mechanism is
designed to establish a common authenticated secret key between communi-
cation partners. One classical security requirement is replay resilience, which
essentially means that an adversary should not be able to replay cryptograph-
ically protected messages in a way that tricks the receiver into processing the
replayed message again, which in turn may cause a duplicated execution of a
command, for example.

Another fundamental requirement is forward security, which is a standard
security property expected from modern cryptographic protocols. Consider a
case where a server is compromised and secret key material is leaked. Forward
security essentially means that an adversary that has recorded previous sessions
is not able to retroactively decrypt the data exchanged earlier. Hence, forward
security ensures that the disclosure of a secret key does not compromise the
confidentiality of earlier communication.

Both replay resilience and forward security are difficult to achieve with 0-RTT
key exchange protocols. The fundamental challenge is the missing interactivity
between the client and the server, as the client needs to be able to encrypt
data without getting any new information (e.g., a Diffie–Hellman share with
fresh randomness) from the server. For a comprehensive discussion on forward
security in non-interactive settings, we refer the reader to [8].
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The QUIC Protocol. When considering latency in the networking stack, it is
apparent that the minimization of the overall number of necessary round-trips
must consider multiple layers. Google has introduced SPDY, which has been
standardized as HTTP/2 since, to address the application layer on the world
wide web. It remains to consider the transport layer connection establishment
and the cryptographic handshake. Traditionally, each of these would take at
least 1 RTT for the handshake process. The QUIC protocol was developed by
Google to address both at once. In order to avoid the latency incurred by a
TCP handshake, QUIC is based on the lighter UDP protocol. This makes it
necessary for QUIC to define additional protocol operations on top of UDP
to retain some of the guarantees needed for reliable operation of higher layers,
such as improved congestion control, multiplexing without head-of-line blocking,
forward error correction and connection migration [27].

QUIC implements a custom cryptographic protocol, based on the Diffie-
Hellman key exchange, see Sect. 2.1 for a detailed protocol description. Essen-
tially, the very first connection of a client to a server over QUIC still requires a
1-RTT cryptographic handshake. During this handshake, a Server Configu-
ration message is sent from the server to the client. This message contains a
medium-lived (typically two days) Diffie-Hellman share gs of the server, which is
digitally signed with the server’s long-term signature key, as well as information
about supported cryptographic algorithms and their parameters.

On subsequent connections the Server Configuration data can then be
used to perform a 0-RTT key exchange. To this end, the client selects supported
parameters and a Diffie-Hellman share gx, which yields an initial session key gxs

that can then be used immediately to encrypt the payload data m sent from
the client to the server as c = Enc(gxs,m). Note that the server re-uses the
same ephemeral randomness gs for all sessions within the lifetime of the Server
Configuration message. Hence, an attacker that obtains s is able to compute
the key of all sessions within this time period. Therefore only a weak form of
forward security is achieved, which holds only after the corresponding Server
Configuration message has expired [24].

Furthermore, it is well-known that neither Google’s QUIC [11], nor the pro-
tocol version standardized by the IETF [21], protect against replay attacks. An
attacker can replay a 0-RTT message (gx,Enc(gxs,m)) to the server over and
over again. Without additional application-layer countermeasures, this would
trick the server into repeatedly processing the payload message m.

Puncturable Key Encapsulation. 0-RTT protocols with full forward security and
replay resilience therefore follow a different approach than TLS 1.3 and QUIC,
by using puncturable key encapsulation. This approach was introduced in [20],
following [19], and is also used in the more efficient Bloom Filter key encapsula-
tion schemes from [14,15] considered in this paper. A 0-RTT protocol essentially
consists of a puncturable key encapsulation mechanism (KEM), which is used to
transport a random session key from the client to the server. After the server
receives the ciphertext C encapsulating the session key, it decrypts the ciphertext
with the corresponding secret key, and then immediately “punctures” the secret
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key. A punctured key cannot be used to decrypt C. Even given the punctured key,
the key encapsulated in C is indistinguishable from random. It is furthermore
possible to repeatedly puncture a secret key with respect to different ciphertexts,
which makes the 0-RTT protocol usable for multiple sessions.

Our Contributions. We implemented the Bloom Filter key encapsulation mech-
anism based on identity-based broadcast encryption (IBBE) introduced in [15],
instantiated with the IBBE scheme by Delerablée [13]. We optimized the imple-
mentation with regard to speed, utilizing parallelization and pre-computations
where possible, and integrated the scheme into the QUIC protocol implementa-
tion of Chromium [2]. Our repository can be found at https://gitlab.com/buw-
itsc/fs0rtt.

We analyzed the computational performance of the new protocol, comparing
it to Google’s implementation of the QUIC key exchange in Chromium. Specifi-
cally, we measured server and client memory consumption, handshake duration,
size of the exchanged messages, maximum server throughput and server CPU
load. This yields the first benchmark result for recent 0-RTT protocols with full
forward security and replay resilience.

Results. We find that for reasonable deployment parameters (and despite the
use of computationally heavy building blocks, such as pairings), the server CPU
load increases approximately by a factor of eight, while the number of hand-
shakes the server is able to process per second is reduced by the same factor.
The memory consumption on the server increases significantly, but stays below
400 MB even for medium-scale deployments that handle up to 50K connections
per day. The size of the first 1-RTT handshake increases by 18% and the follow-
ing 0-RTT handshakes decreases by 13% when compared to the QUIC protocol.
The increase of the first message is small enough that transmission time on the
network is identical, and therefore not significant. As to handshake duration,
the 0-RTT (resp. 1-RTT) handshake takes approximately eight times (resp. 1.6
times) longer in comparison to the respective QUIC handshakes.

The increased computation time of the 0-RTT handshake is still lower than
that of a full 1-RTT handshake in the QUIC protocol. This means that even
when the improvements provided by the reduced number of round trips, which
will vary depending on network speed and latency, is not taken into account,
the forward-secure 0-RTT mode is still preferable over 1-RTT from a latency
perspective.

Our Choice of Protocols. The only current real-world implementations of 0-RTT
protocols are QUIC, implemented in the Chromium browser and the web server
implementations of LiteSpeed and Nginx1 as well as the 0-RTT mode of TLS
1.3. QUIC runs on top of the UDP transport layer protocol, which does not
require a handshake and therefore truly achieves 0-RTT session establishment.
However, UDP provides only an unreliable best-effort channel, therefore QUIC

1 See https://w3techs.com/technologies/segmentation/ce-quic/web server.

https://gitlab.com/buw-itsc/fs0rtt
https://gitlab.com/buw-itsc/fs0rtt
https://w3techs.com/technologies/segmentation/ce-quic/web_server
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additionally implements transport-layer algorithms that deal with package loss,
perform package re-transmission, and implement congestion control. In contrast,
TLS 1.3 runs on top of the TCP protocol, which provides a reliable channel and
congestion control, but requires an initial handshake and therefore adds another
RTT latency.

Our objective is to provide the first benchmark of the real-world perfor-
mance of a forward-secure 0-RTT protocol. Therefore it makes sense to consider
a protocol implementation that runs on top of UDP, as otherwise the latency
incurred by the TCP handshake would blur the measurements and yield less clear
results. Furthermore, we want to consider a real-world setting where algorithms
to deal with packet loss in UDP are implemented, but we want to avoid that
the particular choice of these algorithms or the performance of their implemen-
tation impacts our measurements. Hence, in order to obtain an as-meaningful-
as-possible comparison, our new implementation should use exactly the same
transport layer protocol stack and additional transport layer algorithms as the
protocol we compare with.

Therefore we chose to base our implementation on QUIC, where we replace
only the cryptographic core with a forward-secure 0-RTT protocol, but re-use
all other functionality without any modification. This provides the most clear
results and the most objective comparison of the performance impact of the
modified cryptographic core of the protocol.

Furthermore, we chose to use a Bloom Filter KEM as the basis, as it allows
for significantly more efficient puncturing (by several orders of magnitude) than
the tree-based constructions from [19,20]. While one could ask for a comparison
to other Bloom Filter KEMs, we claim that these will yield less efficient pro-
tocols and thus are out of scope of our work. Our objective is not to compare
the performance of different (theoretical) 0-RTT protocol instantiations, but to
assess how a modern forward-secure 0-RTT protocol compares to the protocols
currently used in practice.

Related Work. To our best knowledge, this is the first work that experimentally
assesses the computational performance and resource requirements of 0-RTT
protocols with full forward security. The QUIC protocol was introduced in [27]
and formally analyzed by Lychev et al. [24]. The idea of puncturable encryption
was introduced in [19], the idea of using it to construct fully forward-secure
0-RTT protocols in [20]. Bloom Filter Encryption was introduced as a more
efficient variant in [14,15]. Lauer et al. [22] used Bloom filter encryption to
construct a single-pass circuit construction protocol with full forward security,
which resembles a multi-hop 0-RTT protocol. However, it was not implemented
and, to the best of our knowledge, no experimental performance assessments of
0-RTT-like protocols with full forward security have been made so far. Aviram
et al. [4] have developed techniques to overcome the lack of forward security
and replay resilience in 0-RTT session resumption protocols, such as the 0-RTT
mode in TLS 1.3. Their techniques allow an efficient solution to this problem
by utilizing only private-key primitives. These techniques, however, consider a
different setting, which is based on a shared symmetric key between a client
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and a server, and requires secure storage on the client. In contrast, we consider
“real” 0-RTT protocols where only public information (the server’s public key)
is stored on the client.

We remark that, similar to our approach, the UDP-based transport layer of
QUIC is currently in the process of being standardized with TLS 1.3 as crypto-
graphic core [29] (replacing the original QUIC key exchange protocol). However,
note that TLS 1.3 only deploys a 0-RTT session resumption protocol that relies
on key material, which has been established in a previous session. This 0-RTT
mode is therefore incomparable to our 0-RTT key exchange where we only rely
on publicly available information.

2 Protocol Design

In the following, we summarize the basic functionality of the handshake proto-
col in QUIC and explain why it does not provide forward security and replay
resilience for 0-RTT data. Then we introduce Bloom filter encryption and discuss
our parameter choice. Finally, we outline the handshake we implemented.

2.1 QUIC Handhsake Protocol

The QUIC protocol uses symmetric encryption to ensure the confidentiality of
the data exchanged between client and server. The necessary session key is
derived using a modified Diffie–Hellman (DH) key exchange. Figure 1 shows
the message flow for this key exchange.

Upon the start of a server, a Server Configuration is generated. This
Server Configuration contains a DH share gs with a freshly sampled expo-
nent s and an expiration date. A fresh Server Configuration is generated
periodically, typically every two days.

Initially, a client does not possess any information about the Server Con-
figuration. Therefore, it initiates a 1-RTT connection using an Inchoate
Client Hello. The server responds with its Server Configuration and a
signature on the Server Configuration in a Rejection. The client stores the
Server Configuration for upcoming 0-RTT connections if the signature is
valid. Note that the same Server Configuration of a server is shared among
all clients during its lifetime. In case the client uses an out-of-date Server Con-
figuration, it reinitiates a 1-RTT connection by sending an Inchoate Client
Hello to receive a new one.

If the client is in possession of a Server Configuration, it initiates a
0-RTT connection. To this end, the client establishes an initial key gsx using
the DH share gs contained in the Server Configuration and its own freshly
sampled exponent x. The initial key is used to encrypt and send 0-RTT data
alongside with the client’s DH share gx to the server in a Client Hello. When
the server extracts the client’s DH share from the Client Hello, it can also
compute the initial key to decrypt the encrypted 0-RTT data.
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INCHOATE CLIENT HELLO
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gs, σ gs

)

REJECTION

initial key := (gs)x
gx

CLIENT HELLO
initial key := (gx)s

[m]initial key

0-RTT Data

final key := (gy)x
[gy]initial key

SERVER HELLO
final key := (gx)y

[m′]final key
Data

Fig. 1. Simplified QUIC handshake protocol. σ(·) denotes a signature, computed with
the server’s long-lived signing key. If the server’s gs is known, only the part below the
horizontal divider is executed.

Because of the semi-static nature of the Server Configuration, the initial
key derived from it is not forward-secure. To address this issue, a final key gxy

is derived from a DH share gy with a freshly generated server exponent y. The
server’s new DH share is embedded in a Server Hello directed to the client.
The client can derive the final key from the server’s new DH share and use it for
all further communication. Note that the final key does provide forward security.

2.2 Bloom Filter Key Encapsulation Mechanisms

In this section we give a brief intuition on the main building block of our pro-
tocol. The implemented protocol is based on a puncturable key encapsulation
mechanism (PKEM). A PKEM is closely related to a standard key encapsulation
mechanism. In addition to the standard KeyGen, Encap and Decap algorithms
for key generation, encapsulation and decapsulation, respectively, there is a Punc
algorithm for puncturing in a PKEM. Given a secret key sk and a ciphertext
C this algorithm outputs a modified secret key sk′. This modified secret key
sk′ has the property that it cannot be used to decapsulate C again. Therefore,
by repeatedly calling the Punc algorithm, the set of ciphertexts which cannot
be decapsulated, can be extended successively. Due to the practical inefficiency
of known PKEM constructions, we base our protocol on a special variant called
Bloom filter key encapsulation mechanism (BFKEM) [15]. A BFKEM introduces
a correctness error in order to achieve highly efficient puncturing when compared
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to other known PKEM constructions. However, this error can be made arbitrar-
ily small.

Definition 1 (BFKEM). A Bloom filter key encapsulation scheme BFKEM
with key space K is a tuple BFKEM = (KeyGen,Encap,Punc,Decap) of PPT
algorithms:

BFKEM.KeyGen
(
1λ, n, p

)
. On input of a security parameter λ, a number of

expected punctures n and a bound p on the failure probability of decapsulate
outputs a secret key and a public key (sk, pk) (where K is implicitly defined
by pk).

BFKEM.Encap (pk). On input of a public key pk outputs a ciphertext C and a
symmetric key K.

BFKEM.Punc (sk,C). On input of a secret key sk and ciphertext C outputs a
modified secret key sk′.

BFKEM.Decap (sk,C). On input of a secret key sk and ciphertext C outputs a
symmetric key K or ⊥ if decapsulation fails.

For the formal correctness and security definitions, we refer the reader to
[15].

Previous works [15,20] showed that a puncturable KEM can be used to con-
struct 0-RTT protocols with full forward security, by using the Punc algorithm.
A client sends a KEM ciphertext to the server. The server receives the ciphertext,
decrypts it, and then calls Punc. After puncturing, it is impossible to decapsu-
late that ciphertext again, even given the punctured secret key. Thus, even if the
server is compromised at some point in time, a previous KEM ciphertext can
not be decrypted by the adversary.

Parametrization of BFKEM. A BFKEM needs two parameters for instantiation.
By choosing these parameters according to the application at hand, the secret
key size as well as the failure probability of Decap can be controlled. The first
parameter is the expected number of invocations of the Punc algorithm n over
the lifetime of the public key. The second parameter is the desired bound p on
the failure probability of decapsulate which holds while fewer than n punctures
have been executed.

A secret key of a BFKEM typically consists of a large array of subkeys. The
optimal size m for this array can be derived from the parameters n and p. More
precisely, it is given by m = −n ln p/(ln 2)2 [15]. Thus, apart from choosing the
lifetime according to the application, instantiation of a BFKEM is essentially a
trade-off between the failure probability and the secret key size.

2.3 The Implemented Handshake Protocol

The implemented handshake protocol is based on the generic 0-RTT protocol
of Günther et al. [20]. In the following, we describe a simplified version of this
protocol using the aforementioned BFKEM. A visualization of this protocol is
shown in Fig. 2.
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(sk, pk) $← KeyGen(1λ, n, p)

Request pk

verify signature pk, σ(pk)

(C, key) $← Encap(pk) C key := Decap(sk,C)

sk := Punc(sk,C)

[m]key

0-RTT Data

[m′]key
Data

Fig. 2. Simplified version of the implemented handshake protocol. σ(·) denotes a sig-
nature, computed with the server’s long-lived signing key. If the server’s pk is known,
only the part below the horizontal divider is executed

Upon a server’s initialization, it uses the KeyGen algorithm to generate a
BFKEM key pair (sk, pk). Since the client initially does not possess any infor-
mation about the server’s key material, it needs to initiate a 1-RTT connection.
When a client connects for the first time, the server transmits its BFKEM public
key as well as a signature of the public key to the client. Once the client receives
this message, it verifies the signature of the server’s public key and stores it for
further processing if the signature is valid. The client can reuse the previously
stored public key in subsequent connections to the same server. If the server’s
public key has been replaced, the client needs to repeat the above steps.

The client proceeds with a 0-RTT connection. First, the client invokes the
encapsulation algorithm to generate both a session key and a ciphertext. The
session key is used to encrypt the 0-RTT data. Afterwards, the ciphertext and the
encrypted 0-RTT data are sent to the server. Upon receiving the ciphertext, the
server invokes the decapsulation algorithm to retrieve the session key. The server
executes the puncturing algorithm to puncture its secret key before decrypting
the encrypted 0-RTT data with the session key. Henceforth, the session key can
be used for further communication.

2.4 Instantiation of the BFKEM

In [14] four different BFKEM constructions were presented. We have decided to
use the one based on identity-based broadcast encryption (IBBE). In contrast to
the other three, this one is able to achieve constant size ciphertexts while keeping
public and secret keys reasonably small. As suggested in [14] we instantiated the
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IBBE scheme with the construction presented by Delerablée [13]. The cipher-
texts in her scheme are constant size and thus the BFKEM achieves constant
size ciphertexts as well. Additionally, the delegated secret keys in the scheme
by Delerablée consist only of a single group element. As the secret key in the
construction of BFKEM based on IBBE consists of a large array of secret keys
from the IBBE scheme, the secret key of the BFKEM benefits from the small
secret keys from Delerablée’s scheme.

2.5 Failure Probability and Key Exhaustion of BFKEMs

In contrast to classical key encapsulation schemes, in a BFKEM the decapsulate
algorithm has a probability of failure. A failure is intended for ciphertexts on
which the secret key was already punctured, as this is the tool to achieve forward
security. However, decapsulate may also fail on input of a ciphertext on which
the secret key was not yet previously punctured.

In Fig. 3 we simulated a BFKEM for different values of the desired failure
probability p while fixing the number of expected punctures n over the lifetime
of the public key. For each simulation, we consecutively generate a fresh cipher-
text, decapsulate this ciphertext, and then puncture the secret key on that same
ciphertext. We do this until we are well above the threshold n. Each decapsula-
tion failure is indicated by a vertical black line in the figure. For this simulation
we fixed n to an exemplary value of 1500, however different values for n will
result in a similar behaviour. It can be observed that after n punctures the
bound p on the failure probability does not hold any more. Thus, exceeding the
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Fig. 3. Trend of decapsulation failures over number of executed punctures. Consecutive
decapsulations of fresh ciphertexts and punctures of the secret key were simulated in
a BFKEM for different values of the bound p on the failure probability valid until n
punctures have been executed. Expected number of punctures over public key lifetime
is fixed to n = 1500, which is indicated in the figure by the dotted line. A decapsulation
failure is marked by a vertical black line.
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expected number of punctures invalidates the guarantee on the failure probabil-
ity of decapsulate. However, the bound p can be made arbitrarily small, and n
can be made large by a suitable choice of Bloom filter parameters. We explain
our choice of parameters below.

3 Security

A security model to formally analyze a 0-RTT key exchange was introduced by
Günther et al. [20, Def. 11]. The authors additionally give a generic construc-
tion based on PKEM to build a 0-RTT key exchange with replay resilience and
server-only authentication [20, Def. 12]. To account for the non-negligible cor-
rectness error of BFKEM the correctness property of that model was slightly
adjusted in [15], however the authors argue that the generic construction can be
instantiated with BFKEM without any changes.

The protocol we implemented as described in Sect. 2.3 resembles the generic
0-RTT protocol of Günther et al. [20] instantiated with a BFKEM as suggested
in [15] and the maximum number of timesteps fixed to τmax = 1. The only
difference is that the protocol from [20] assumes that a client knows the server’s
public key before starting a session. However, in practice this is not the case
when a client connects to a server for the first time. For that reason, we assume
the existence of a public key infrastructure which is used to transmit the server’s
public key to the client in an authenticated manner.

Günther et al. prove their generic 0-RTT protocol secure in their aforemen-
tioned security model under the assumption that the underlying BFKEM pro-
vides IND-CCA security [20, Thm. 2]. Derler et al. prove that their construction
of BFKEM based on IBBE is IND-CCA-secure (resp. IND-CPA) if the under-
lying IBBE scheme is IND-sID-CCA-secure (resp. IND-sID-CPA) [14, Thm. 5].
Delerablée proves her construction of an IBBE scheme to be IND-sID-CPA-
secure [13, Thm. 1], however, this is not sufficient for the protocol from [20].
Therefore, in order to achieve IND-CCA security for the BFKEM, Derler
et al. [14] suggest to apply the Fujisaki-Okamoto transformation [16] to the
BFKEM if the underlying IBBE scheme only provides IND-sID-CPA security.
This transformation requires to encapsulate again within the decapsulate algo-
rithm and thus adds significant computational overhead to decapsulation. In
order to improve efficiency, we instead applied the transformation by Canetti,
Halevi and Katz [10] (CHK transformation) to achieve IND-sID-CCA for the
scheme by Delerablée as suggested in [13]. For a formal security proof of this
modified CHK transformation, we refer the reader to [17].

During encapsulation, this requires the client to generate a fresh key pair of a
sEUF-1-CMA-secure one-time signature scheme as well as to sign the ciphertext.
The server then additionally has to verify this signature during decapsulation.
Hence, the overhead added by this transformation depends on the used signature
scheme. We instantiate it with the Boneh-Lynn-Shacham signature scheme [7]
which is known to be EUF-CMA-secure and provides short signatures. Since
there is exactly one valid signature for every public key and message pair this
also guarantees sEUF-CMA (and thus sEUF-1-CMA) security.
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4 Implementation

Our implementation is based on QUIC version 43. To be precise, we used the
most up-to-date revision present on the Chromium Projects master branch [2]
when we began implementing our changes, which was commit 2d376507075d on
31st of May 2018. We verified that our modifications are still applicable in the
current version of QUIC as all changes since then have been of cosmetic nature
only and did not change how the handshake is executed.

Goal of our Implementation. Our goal is to implement the protocol described in
Sect. 2.3 into a real-world application. As our major design decision we agreed
on implementing this protocol without removing the possibility to perform the
QUIC handshake. As a consequence, benchmarking results are better to compare.

Modifying the QUIC Protocol. In the following, we traverse the message flow of
the QUIC protocol while pointing out which parts we have modified.

– Initially, the server has to set up its keys for key exchange with the clients. In
QUIC, the server generates the Server Configuration with the public DH
share. In our implementation, the server instead uses the KeyGen algorithm to
generate a BFKEM key pair (sk, pk). Note that the Bloom filter key material
is (similar to QUIC’s Server Configuration) medium-lived2.

– Upon a client’s first connection to a server, both parties agree on a common
protocol version consisting of the handshake protocol and the transport pro-
tocol version. To negotiate on the newly implemented protocol, we added an
entry to the supported handshake protocols in the QUIC implementation.

– If a server receives an Inchoate Client Hello, it responds with a Rejec-
tion. Instead of a DH share included in the Server Configuration, now
the server’s BFKEM public key is embedded within this message. We removed
the Server Configuration, since we do not use a DH key exchange for our
implementation.

– Additionally, QUIC offers two algorithms to sign and verify a Server Con-
figuration: ECDSA-SHA256 and RSA-PSS-SHA256. We reused this func-
tionality to sign the server’s public key instead of the Server Configura-
tion. Note that the signing keys of the server are long-lived.

– Once a client receives a server’s public key it verifies its signature. Then a
key as well as a ciphertext are computed by using the Encap algorithm. This
key is used as a premaster secret, which is given to QUIC’s key derivation
function. A freshly generated client nonce is included as salt. The derivation
function uses HMAC with SHA-256 to generate two pairs of session keys
and initialization vectors. Consequently, we do not need to manually set any
session key or initialization vector. Analogous to the server, the client does
not send an additional DH share in its Client Hello. Instead of the DH

2 The server may choose any lifetime for the Bloom filter key material by parametrizing
the Bloom filter accordingly. We provide a concrete paramtrization for our anaylsis
in Sect. 5.1.
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share, the ciphertext is included in the Client Hello. The client nonce is
also added to the Client Hello such that both parties use the same salt.

– When a server receives a Client Hello, the Decap and Punc algorithms
are executed using the received ciphertext. The key computed by the Decap
algorithm is passed to QUIC’s key derivation as a premaster secret and the
received client nonce is added as salt. In contrast to the QUIC protocol, the
server does not send an additional DH share in the Server Hello to estab-
lish a forward-secure key. This step can be omitted since the key exchanged
by the proposed protocol already provides forward security.

– By default, QUIC provides two authenticated encryption with associated data
algorithms: Galois Counter Mode with AES128 and Poly1305 with ChaCha20.
Since we did not alter the key derivation function, but only changed its input,
both of these algorithms can be chosen.

Handshake Protocol Errors. There are cases in which the normal flow of the
handshake can be interrupted. For instance, a client may initiate a 0-RTT con-
nection using an out-of-date server public key or the Decap algorithm may fail,
leaving the server unable to extract the received key. In any of the above events,
the server responds by sending a Rejection containing an appropriate rejec-
tion reason to the client. These failures replace corresponding errors occurring
with QUIC’s DH key exchange. Any other errors or rejection reasons remain
untouched. The client restarts the 0-RTT connection based on an up-to-date
server public key.

Cryptographic Primitives. We implemented the IBBE scheme by Delerablée in
the C programming language using the RELIC toolkit [3] for arithmetic opera-
tions in bilinear groups including pairings. Building upon that, we implemented
the BFKEM described in Section 2.4 in C++. We optimized both implementa-
tions for speed, using multi-threading and precomputation tables where applica-
ble. Additionally, our implementation offers optional point compression for the
IBBE secret keys where we only store one coordinate of an elliptic curve point.
This cuts memory requirements for each IBBE secret key in half while slowing
down the decapsulation algorithm as the discarded coordinate must be recom-
puted. To reduce the size of transmitted data, we apply point compression to
both public key and ciphertext as well.

5 Analysis

In this section, we analyze the efficiency of our implementation. To do so, we
first describe a measurement setup as well as metrics and methodologies used
to conduct performance tests. Building upon that, we evaluate the efficiency of
our implementation by comparing its performance to QUIC.
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5.1 Measurement Setup

Scenario. We consider the following scenario in our analysis: Several clients con-
nect to a single web server several times. All of them are running the modified
QUIC implementation using the BFKEM described in Sect. 4. For the key gen-
eration on server side we need to parametrize the BFKEM. We parametrized the
BFKEM such that over a public key lifetime of two days one request per second
can be served while guaranteeing a bound on the failure probability for decap-
sulate of p = 0.001. The two days were chosen as this is the lifetime currently
used for the Server Configuration of Google’s QUIC servers. Additionally,
we disabled point compression for the secret key3.

Testbed. We execute all performance tests on a networked client-server environ-
ment consisting of three desktop machines, connected via Gigabit Ethernet on
a single switch, without additional latency emulation between machines4. One
machine is used as a server, the other ones as clients. For a large part of our
measurements we perform stress testing on the server side, i.e. we need to be
able to exhaust the computational resources of the server. To exhaust the server,
several clients need to send their requests to the server simultaneously, whereby
the exact number of required clients depends on the performance of both the
server and the client machines.

In the resulting setup, we use an Intel Core 2 Duo E6600 @ 2.40 GHz with
4 GB RAM as a server and two Intel Core i5-6600 CPU @ 3.30 GHz with
16 GB RAM to host several client instances in parallel. Since we noticed high
fluctuations in results when running a large number of distributed dedicated
client machines simultaneously, we purposely decided to run the server on a
low-performance machine, while the clients are running on high-performance
machines. This makes it possible to reduce the number of clients that are required
to exhaust the server, resulting in much less coordination needed between clients
and less fluctuations in results. All machines run Debian 9.8 (stretch). We uti-
lize the QUIC test server and test client applications included in the Chromium
sources. Because their native capabilities did not meet our requirements for test-
ing, we extended the test client by the following features:

1. The client is able to perform multiple sequential requests within one and the
same execution of the performance test. This allows us to perform 1-RTT
handshakes as well as 0-RTT handshakes. Further, we eliminated any addi-
tional overhead that comes with starting and terminating the client applica-
tion over and over again.

3 Enabling point compression leads to a decrease of 19% in memory consumption on
server side while increasing the computational load per decapsulation by roughly
6%.

4 All machines are located within the same room. Hence, the resulting network latency
is significantly lower compared to real-world latencies between clients and servers,
especially compared to the required computation time of the implemented protocol.
Overall, the network latency does not influence our results and is thus neglected in
the following sections.



Forward-Secure 0-RTT Goes Live 225

2. The client is able to wait a given amount of time between sequential requests.
The waiting time starts as soon as the previous request has completed.

3. The client is able to run for a given amount of time. Within this time span,
requests are performed. When the timer expires, any ongoing request is fin-
ished and the client terminates. The number of requests that could be com-
pleted within the time span is counted at client termination.

5.2 Metrics and Methodology

For a performance comparison between our implementation and QUIC we con-
duct measurements on throughput, computational cost and memory consump-
tion. We further analyze different handshake properties in more detail.

– Throughput. Throughput is measured in requests per second. We run two
clients in parallel on each machine, i.e. in total four clients are used to generate
the requests. All clients perform requests over a runtime of 30 s. After 30 s,
we inspect how many requests could be completed within this time span and
reduce the result to one second. In order to obtain server-sided throughput
limits, we vary the client-generated load by altering the waiting time between
requests. Thus we are able to achieve different levels of offered load without
changing the number of clients. We alter the waiting time in the range of 0 ms
(no wait between requests) to 1000 ms (one second wait after each completed
request). Note that since we are using four clients in parallel, within the frame
of one waiting time a total amount of four requests is sent to the server.

– Computational cost. Computational costs are quantified in two ways.
Firstly, we re-enact our throughput experiment, but additionally measure
the server CPU utilization. To obtain measurement data on CPU utiliza-
tion, we use the Linux performance monitoring tool pidstat [18]. We attach
pidstat to the server process as soon as the clients start making requests
and stop monitoring once all clients have finished. Secondly, we measure the
CPU instructions per request. To measure the instruction count we utilize
the Linux performance analyzing tool perf [1]. More precisely, we use the
perf stat subcommand, which gives detailed information about the process
that has been executed under perf’s supervision. Instructions per request are
calculated as an average over 1000 requests.

– Memory consumption. We measure server-sided memory consumption.
Again, we utilize pidstat to sample current memory consumption at a rate
of one hertz. We track memory from server startup until it reaches a steady
state, i.e. the server’s memory does not increase any further and the server
is ready to receive requests. From all samples we pick the maximum memory
consumption.

In addition to the aforementioned metrics, we furthermore analyze the handshake
regarding duration and size.

– Handshake time. We measure the time that is needed to complete a hand-
shake. Time measurement begins when the client starts building the Client
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Hello and ends when the Server Hello is fully processed. We use QUIC
logging functions to obtain the corresponding timestamps. The QUIC logs
provide timestamps in the precision of one microsecond. We measure both
1-RTT and 0-RTT handshake times.

– Handshake size. We measure the bytes per handshake. The size of the
handshake is calculated as the sum of all handshake message sizes. Values for
message sizes are obtained from debug logs of the client and server application.
Again, we measure both 1-RTT and 0-RTT handshake sizes.

In order to minimize any additional transmission and computational costs, we
only transmit a small file of 100 bytes size with each request. To mitigate any
bias resulting from transient noise either on network or on operating system
level, all experiment results are averaged over ten repetitions.

5.3 Performance Comparison with QUIC

We compare our implementation with the original QUIC implementation. A
summary of this is available in Table 1.

Table 1. High-level comparison of Google’s QUIC implementation and our modified
version utilizing the implemented BFKEM (failure probability p = 0.001, expected
number of punctures n = 602 · 24 · 2 = 172800).

Handshake QUIC Our implementation in QUIC

Forward Security After 2 days Always

Replay Resilience No Yes

Bytes per Handshake 1-RTT: 4027 0-RTT: 1358 1-RTT: 4755 0-RTT: 1188

Server CPU instructions per Request 13.57M 104.82M

Server memory usage 17.16 MB 658.28 MB

Handshake duration 1-RTT: 74.22 ms 0-RTT: 4.32 ms 1-RTT: 116.71 ms 0-RTT: 36.59 ms

Throughput. A throughput comparison between our implementation and QUIC
is shown in Fig. 4. In our test setup, we achieve a maximum throughput of 34
requests per second for our implementation and 261 requests per second for
QUIC. When only a small amount of requests is sent by the clients, achievable
throughput between our implementation and QUIC behaves similarly. In this
phase, the server can process all requests directly without delay. Only one request
has to be processed at any time.

The higher the client-generated load, the more requests have to be handled in
parallel. This has two effects: First, the processing time for each request increases,
thus the achieved throughput on the server side diverges from the offered load of
the clients. Second, when the server is computationally exhausted, the achieved
throughput reaches a stable state. At this point, any additional requests sent by
the clients do not lead to an increase in throughput on the server side. Since our
implementation is considerably more computationally heavy, the server reaches
its exhaustion level about eight times earlier compared to QUIC, resulting in an
eight times lower throughput limit.
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Computational Cost. In Fig. 4, CPU utilization of our implementation and QUIC
is shown in comparison. We plot the CPU utilization as a function of the server
throughput in the interval of 0 to 35 requests per second. In general, the CPU
utilization increases linearly with the server throughput.

1 ms10 ms100 ms1 s
Client waiting time between requests

10

34

100

261

Se
rv
er
th
ro
ug
hp
ut
,r
eq
ue
st
sp

er
se
co
nd QUIC

Our Implementation

0 5 10 15 20 25 30 35
Server throughput, requests per second

0%

10%

20%

30%

40%

50%

60%

70%

80%

Se
rv
er
C
PU

ut
ili
za
tio
n

QUIC

Our Implementation

Fig. 4. The left figure shows the achievable server throughput for a given client-
generated load. The measurement of our implementation is compared with the original
QUIC implementation. The right figure shows the server CPU utilization for a given
throughput. The measurement of our implementation is compared with the original
QUIC implementation. Note that we plot in the range from 0 to 35 requests per sec-
ond, which encloses the throughput limit of our implementation.

As expected from the increase in computations in our implementation, we
experience a much higher CPU utilization for a given throughput in comparison
to QUIC. For the lowest throughput of four requests per second we notice a
CPU utilization of approximately ten percent for our implementation and less
than one percent for QUIC. At the upper bound, we achieve a maximum of
approximately 80% for our implementation and 50% for QUIC. Note that we
run the server on a dual core machine in our experiments. Due to our multi-
threading optimized implementation of the cryptographic primitives, we gain
a higher CPU utilization at the server’s exhaustion limit. However, an ideal
utilization of 100% is not achieved.

Having a look at the definite server CPU instructions executed per request,
we can confirm a correlation between throughput limit and computational
demands. As stated above, in our implementation we approximately achieve an
eighth of the maximal throughput of QUIC. The same relation holds for the exe-
cuted CPU instructions per request, i.e. for our implementation, approximately
eight times more instructions have to be executed for each request. Measure-
ments on executed instructions are given in Table 1.

Memory Consumption. In our test scenario, the server’s memory consumption
reaches its maximum at 658 MB, resulting in almost 40 times higher memory
requirements as compared to QUIC. In our implementation, server side memory
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consumption is heavily influenced by the secret key size, which in turn depends
on the choice of the BFKEM parameters.

Figure 5 shows the server’s memory consumption for a different number of
expected punctures n over the lifetime of the public key and a fixed bound on the
failure probability p = 0.001. The memory consumption then scales linearly with
n as a larger secret key array size m is required to guarantee the chosen bound
on the failure probability. Note that the measurements have been done with the
implementation described in Sect. 4, i.e. we are using the BFKEM based on the
IBBE scheme by Delerablée [13]. Therefore, the concrete measured values may
differ when using another scheme than the one by Delerablée for instantiation.
However, the scaling is independent from the scheme used for instantiation and
is always linear.
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Fig. 5. Server memory consumption for different expected number n of punctures over
the lifetime of the public key and fixed bound on the failure probability p = 0.001 with
point compression disabled. The linear increase of memory consumption in n is due to
the larger secret key array size m required to guarantee the chosen bound on the failure
probability. The memory consumption of the QUIC server is shown for reference.

Handshake Analysis. We compare size and duration of 1-RTT and 0-RTT hand-
shakes. In general, we notice an increase of 18% in size for 1-RTT handshakes and
a decrease of 13% in size for 0-RTT handshakes when comparing our implementa-
tion to QUIC. Differences in handshake sizes are emerging from two handshake
messages: the Rejection and the Server Hello. The Rejection message
increased by 898 bytes, primarily caused by replacing the Server Configura-
tion with the server’s BFKEM public key. At the same time, the Server Hello
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in our implementation is reduced by 170 bytes due to removed information such
as the DH share.

Measurements of the handshake duration correlate with the results of com-
putational costs as described above. Due to the large increase in computational
demands, both 1-RTT and 0-RTT handshakes require more time to be com-
pleted. Most notably in 0-RTT handshakes, added computations for encapsu-
lation and decapsulation have remarkable impact on the resulting handshake
duration. As a consequence, a 0-RTT handshake in our implementation takes
approximately eight times longer as compared to QUIC. For a 1-RTT handshake,
a large proportion of the overall duration is expended on signature verification.
The duration of a 1-RTT handshake of our implementation therefore only differs
by a factor of 1.6 in relation to QUIC.

Definite measurements on handshake size and duration are given in Table 1.

6 Conclusion

We have compared the 0-RTT key exchange implemented in QUIC with our
implementation of a fully forward-secure 0-RTT key exchange. Despite the use
of computationally heavy building blocks, such as pairings, the server CPU load
increased only approximately 8 times, with a corresponding reduction in the
achievable number of handshakes per second. The sizes of the handshake mes-
sages differ only by a few hundred bytes. These differences are not observable5 on
the wire, which means that transmission times on the network are not affected
by our changes. While the size of the secret key on the server side is significant,
as it may grow to hundreds of megabytes and more, depending on the desired
lifetime of the key and the acceptable failure probability of the key exchange, we
think this is tolerable for modern server deployments with moderate resources.

The takeaways for protocol design depend on the design goal. Replay
resilience and forward security may be considered worth the reduction in perfor-
mance. Most importantly, the increased computation time of the 0-RTT hand-
shake is still lower than that of a full 1-RTT handshake in the QUIC protocol.
This means that even when the improvements by the reduced number of round
trips, which will vary depending on network speed and latency, are not taken
into account, the forward-secure 0-RTT mode is still preferable over 1-RTT from
a latency perspective, as it reduces latency by roughly 50%.

Our analysis has shown that with currently available mechanisms, forward-
secure 0-RTT handshake protocols can be considered practical. The performance
of such a key exchange in real-world applications is worse than that of non-
forward-secure 0-RTT protocols, but despite the measured increased compu-
tation times and computation load, it remains a viable alternative. Certainly,
further improvements will be necessary if such protocols are supposed to gain
widespread adoption.

5 Inspection in Wireshark revealed that messages are padded to occupy the full MTU
size, canceling out small size differences.
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Since puncturable encryption is a relatively novel area of research, we hope
to see further constructions that might mitigate some drawbacks. Our work
provides a benchmark that new constructions can be compared with. A possible
approach may be to construct more efficient puncturable encryption schemes,
which immediately yield a more efficient 0-RTT key exchange.
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Abstract. We define semi-commutative invertible masking structures
which aim to capture the methodology of exponentiation-only protocol
design (such as discrete logarithm and isogeny-based cryptography). We
give an instantiation based on the semi-commutative action of isogenies
of supersingular elliptic curves, in the style of the SIDH key-exchange
protocol. We then construct an oblivious transfer protocol using this new
structure and prove that it UC-securely realises the oblivious transfer
functionality in the random-oracle-hybrid model against passive adver-
saries with static corruptions. Moreover, we show that it satisfies the
security properties required by the compiler of Döttling et al. (Euro-
crypt 2020), achieving the first fully UC-secure two-round OT protocol
based on supersingular isogenies.

1 Introduction

Since its beginnings, isogeny-based cryptography has progressed in several direc-
tions. First, that of protocol design, where primitives such as key-exchange and
identification protocols [17,20,27] or signature schemes [24], have already been
constructed. Secondly, in the understanding of the concrete security of the com-
putational assumptions [23]. Finally, in the implementation methods for such
protocols [3,15,19].

Whilst development of discrete-logarithm-based protocols has been rich, in
terms of number of primitives, in the context of isogeny-based systems there
has been less success. One reason is that the subtleties of isogeny-based prim-
itives can be counter-intuitive (and even dangerous when misunderstood [22]).
In particular, as noted in [17,27], isogeny-based systems lack the commutative
property which is often exploited in discrete-logarithm-based cryptography. Fur-
thermore, the space of computational problems and their precise formulation is
still shifting.
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Supersingular isogeny-based protocols have attracted increasing attention
mainly for their potential for post-quantum cryptography. In this direction some
recent works [4,7,38] have proposed oblivious transfer (OT) protocols based on
the hardness of supersingular isogeny problems. OT, originally introduced by
Rabin in 1982 [34], is a fundamental primitive that has been proved complete
for both two-party and multi-party computation, and has been used as building
block in many efficient protocols [28,31,39]. Due to earlier interest in lattice-
based and code-based cryptography, there have already been post-quantum OT
protocols [5,6,32] based on the LWE, LPN and McEliece assumptions.

As well as underlying security assumptions, when we consider the state-
of-the art in post-quantum OT protocols we also need to take into account
different factors, such as the security model and round complexity. Indeed, one
of the most desiderable properties, is having OT protocols with high security
guarantees and only two rounds of communication. However, this is very hard to
achieve and especially in the malicious setting, when one of the parties involved
in the computation can arbitrarily deviate from the protocol. Indeed two-round
OT with simulation based security is impossible in the plain model [26], and
we need to rely on setup assumptions such as a common reference string or a
random oracle.

Our Contribution. We consider a new approach for studying isogeny-based
constructions by defining a new general framework for exponentiation-only pro-
tocols. We then apply this new structure and describe a simple oblivious transfer
protocol with high security guarantees and minimal round complexity.

Semi-commutative Masking. We define new structures called semi-commutative
invertible masking schemes to capture the exponentiation-only restriction of
isogeny-based protocols and help draw out parallels with discrete-logarithm-
based protocols. These also capture the absence of full commutativity in super-
singular isogenies within a framework that is notationally simpler. In the full
version, we show that these structures can also be realised in the discrete
logarithm-based setting and in the setting of class group actions on endomor-
phism rings [12]. Moreover, we define generic computational problems for our
structure and show that these correspond closely to the existing problems in the
literature. The combination of our new structure together with instantiation-
independent computational problems enables a clearer protocol design method-
ology. Furthermore, we believe that the hardness assumptions that we present
can be extended to ones where more elements are given as a challenge (for exam-
ple as used in pairing-based crypto). Such extended assumptions may enable the
generic construction of schemes and protocols with richer functionalities as they
have in the discrete-logarithm setting.

Isogeny-Based Oblivious Transfer. We illustrate the advantage of our framework
describing a new two-round OT protocol constructed from our masking schemes.
It achieves universal composability (UC) security against passive adversaries
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with static corruptions in the random oracle model (ROM). In the full version
we also show a second construction which is an adaptation of the key-exchange
based protocol of Chou and Orlandi [14] to the “exponentiation-only” setting.
Notably, our new structure allows us to provide a single proof of security for each
protocol which is then valid for different instantiations of the masking scheme.

UC-Secure Isogeny-Based Two-Round OT. This only provides a two-round pas-
sively secure protocol, however we also show how to obtain a two-round mali-
ciously secure protocol. The known methods for maliciously-secure OT are either
based on zero-knowledge proofs or on “lossy” encryption schemes [32], which we
don’t know how to instantiate using isogeny-based constructions and/or without
increasing the round complexity. In [18], Döttling et al. introduced a general com-
piler to transform a rather weak and simple two-round elementary-OT (eOT),
to a fully UC-secure two-round OT, providing also two instantiations: one based
on the Computational Diffie-Hellman (CDH) problem and one on the Learning
Parity with Noise (LPN) problem. We show (in Appendix 6) that our protocol
satisfies the security requirements of this compiler, establishing the feasibility of
two-round UC-secure OT based on semi-commutative masking, and more in par-
ticular on supersingular isogenies assumptions. In fact, we achieve the stronger
notion of search-OT (sOT) security which means that Döttling et al.’s expensive
transformation from eOT to sOT is not required for our protocol. To do so, we
introduce a new problem for our masking scheme, called ParallelDouble (Defi-
nition 13), that is comparable to the one-more static CDH problem (where the
adversary has access to both a challenger and a helper oracle and has to solve
one more challenge than it was helped on).

Related Work. Since De Feo and Jao’s work [17,27], others have explored dif-
ferent directions of supersingular isogenies [2,3,12,15,19–21,23,24,30,35]. How-
ever, to the best of our knowledge, our work is the first to present a framework
for “exponentiation-based” protocols which unifies supersingular isogenies with
previous constructions and also provides a separation between protocol design
and analysis of computational assumptions. While we only present an OT proto-
col is this work, we believe that most of the works stated above can be formulated
within our framework.

Recent works, concurrent and posterior to ours, have also proposed OT pro-
tocols based on supersingular isogenies [4,8,38]. The first describes an instan-
tiation which is comparable to ours, especially regarding the computation of
inverses and the question of the Weil pairing. It also proposes two protocols
inspired by the same exponentiation-based approach and constructed from the
same key-exchange and key-transport mechanisms. However, thanks to our new
structure, our protocols better refine and separate the required computations.
The OT protocol that we describe in this current paper fixes the two elements
it requires for all instances, thus reducing the exchange to two flows – the best
that can be hoped for, and the maximum allowed for Döttling et al.’s trans-
formation to achieve UC security – instead of three, and it shifts the burden
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Functionality FOT

Parameter: n length of the bit-strings

– Upon receiving (PS , sid,m0,m1) from PS , check if a (sid, c) was previously
stored. If yes, send mc to PR; if not, store (sid,m0,m1) and continue to run.

– Upon receiving (PR, sid, c) from PR, check if a (sid,m0,m1) was previously
stored. If yes, send mc to PR; if not, store (sid, c) and continue to run.

Fig. 1. Oblivious transfer functionality

Functionality FRO

The functionality is parametrized by a domain D and range R. It keeps a list L of
pairs of values, which is initially empty and proceeds as follows:

– Upon receiving a value (sid, m), m ∈ D, if there is a pair (m, ĥ), ĥ ∈ R, in the
list L, set h = ĥ. Otherwise choose h

$←− R and store the pair (m, h) in L.
– Reply to the activating machine with (sid, h).

Fig. 2. Random oracle functionality

of computing the inverse to the Receiver. This reduces communication further
and allows for only one inverse computation to be required. Using our masking
structure, we also give another OT protocol, described in the full version, which
separates the transmission of key material and choice material from the Sender
to the Receiver. This permits the Sender to contribute to the final encryption
key which is closer in spirit to the original key-exchange protocol. Vitse [38] also
proposes an instantiation of her protocols from Kummer varieties; we leave it
to further work to establish whether this could yield a new instantiation of our
masking structure. Note, the works [4,38] only prove security in the stand-alone
and game-based models respectively, as opposed to our proofs in the UC model
and there is no extension to malicious security.

Following the blueprint of previous works [5,10], Branco et al. [8] achieve
active security for OT at the cost of three additional rounds of communication.
However, this requires the addition of a new mechanism which diverges from the
“exponentiation-only” methodology. Furthermore, the security of their isogeny-
based mechanism relies on assumptions that were only recently proposed [4] and
have not yet been studied at length.

2 Preliminaries

We denote by λ the computational security parameter. We say that a function
f : N → N is negligible, respectively noticeable (or non-negligible), if for every
positive polynomial p(·) and all sufficiently large n it holds that f(n) < 1

p(n) ,
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respectively f(n) ≥ 1
p(n) . We denote by a

$←− A the uniform sampling of a

from a set A, and computational and statistical indistinguishability by
c≈ and

s≈
respectively. We let [n] denote the set {1, . . . , n}.

Symmetric Encryption. By E = {(KGenE ,Enc,Dec), (KE ,ME , CE)} we denote
a symmetric encryption scheme, where KE ,ME , CE are the key-space, message-
space and ciphertext-space, respectively. We make use of the usual definition of
IND-CPA security.

UC Security of Oblivious Transfer. We prove security of our protocols in the
universal composition (UC) framework of Canetti [11], and assume familiarity
with this. In particular, we prove in the full version that our protocol UC-realize
the OT functionality FOT in the FRO-hybrid model, where FOT and FRO are
presented in Figs. 1 and 2.

3 Semi-commutative Invertible Masking Structures

We first formally define our new masking structures and discuss some compu-
tational problems that arise in this setting. To help fix ideas we illustrate our
masking structures with the case of discrete logarithms in a finite field Fp, where
q = (p − 1)/2 is prime and g ∈ Fp is an element of order q.

3.1 Masking Structure

A masking structure M is defined over a set X. Each element x ∈ X may
have multiple representations, and we define Rx to be the set of representations
of an element x ∈ X. (We require that it be efficient to recover x from any
representation in Rx.) We denote the set of all such sets by RX = {Rx}x∈X .
The sets of representatives are assumed to be disjoint, i.e. ∀x, x′ ∈ X s.t. x �=
x′, Rx ∩Rx′ = ∅, and we define R = ∪x∈XRx to be the set of all representatives.
For example, if we take X = 〈g〉 ⊂ F∗

p, then the usual choice for R is to let
Rx = {x} for every x ∈ X; but one could also take a redundant representation
with two elements letting Rx = {x, x + p}.

A mask is a function μ : R −→ R, and a masking set M is a set of such
functions. In the discrete logarithm case, a natural candidate for M is a set
indexed by elements in Z∗

q which each give an explicit exponentiation algorithm
on the set of representatives of the group elements X. A masking function μ ∈ M
is said to be invertible if

∀x ∈ X, ∀r ∈ Rx, ∃μ−1 ∈ M : μ−1(μ(r)) ∈ Rx. (1)

Note, we only require that μ−1 outputs a representative in the same set Rx. If all
elements μ ∈ M are invertible, then we say that the masking set M is invertible.
In the discrete logarithm case, if μ corresponds to the map g �→ ga, then μ−1

corresponds to the map g �→ g1/a.



240 C. D. de Saint Guilhem et al.

Data: M = {X, RX , [Mi]ni=1}, λ ∈ N

Result: win ∈ {0, 1}
1 r, μ0, μ1, i, st ← A(1λ) such that r ∈ R, i ∈ [n], μ0, μ1 ∈ Mj , j �= i;
2 r0 ← μ0(r), r1 ← μ1(r);

3 b $←− {0, 1};
4 μ

$←− Mi;
5 r̃ ← μ(rb);
6 b̃ ← A(1λ, st, r̃);

7 if b̃ = b, then return win = 1 else return win $←− {0, 1};

Fig. 3. The IND-MaskA,M security experiment

An invertible masking structure M for a set X is then a collection of sets
of representative RX , along with a collection of invertible masking sets [Mi]ni=1,
and we write M = {X,RX , [Mi]ni=1}. Such an invertible masking structure is
said to be semi-commutative if

∀i �= j, ∀μ ∈ Mi, ∀μ′ ∈ Mj , ∀r ∈ R, μ(μ′(r)) ∈ Rx ⇐⇒ μ′(μ(r)) ∈ Rx. (2)

In the discrete logarithm case, with M a set of exponentiation functions, M =
{X,RX , [M,M ]} is straightforwardly semi-commutative.

3.2 Problems and Properties

We now present a distinguishing experiment and computational problems for
masking structures. The precise security level of these depends from concrete
instantiations and reductions to specific computational problems.

Definition 1 (IND-Mask security). We define the IND-MaskA,M experiment
in Fig. 3 for a masking structure M = {X,RX , [Mi]ni=1}, and an arbitrary adver-
sary A. We say that M is IND-Mask-secure if for all PPT adversaries A, it holds
that

∣
∣
∣
∣
Pr [IND-MaskA,M(λ) = 1] − 1

2

∣
∣
∣
∣
≤ negl(λ).

In the discrete logarithm setting, when Rx = {x}, the map g �→ ga for random
a ∈ Z∗

q induces a random permutation of the group elements. Therefore for a
secret a and two group elements g0, g1, the distribution of ga

b is perfectly uniform,
independently of b. This shows that such an M is perfectly IND-Mask-secure.

Note 1. In some settings (but not in the discrete logarithm one), it may be
possible to distinguish the action of two masks that belong to separate masking
sets. It is also possible that this difference is preserved under the action of a mask
from a third masking set. Therefore, if an adversary was able to submit arbitrary
r0 and r1 to the IND-Mask experiment, it could ensure that the difference between
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them is preserved by the action of the randomly sampled μ and hence win the
experiment with certainty. By forcing A to submit a single r ∈ R and two maps
μ0, μ1 belonging to the same masking set Mj , the experiment prevents that
strategy.

We also define to the following hard problems for semi-commutative invertible
masking structures:

Definition 2. Given a masking structure M = {X,RX , [Mi]ni=1}, we define the
following computational problems:

1. Demask: Given (i, r, rx) with the promise that rx = μx(r) for a uniformly
random μx

$←− Mi, return μx.
2. Parallel: Given (i, j, r, rx, ry) with the promise that i �= j and that rx = μx(r)

and ry = μy(r) for uniformly random μx
$←− Mi, μy

$←− Mj, return z ∈ X such
that μx(ry) ∈ Rz.

3. ParallelInv: Given (i, j, r, rx, ry) with the promise that i �= j and that rx =
μx(r) and ry = μy(r) for uniformly random μx

$←− Mi, μy
$←− Mj, return

z ∈ X such that μ−1
x (ry) ∈ Rz.

4. ParallelEither: Given (i, j, r, rx, ry) with the promise that i �= j and that rx =
μx(r) and ry = μy(r) for uniformly random μx

$←− Mi, μy
$←− Mj, return

z ∈ X such that either μx(ry) ∈ Rz or μ−1
x (ry) ∈ Rz.

5. ParallelBoth: Given (i, j, r, rx0 , rx1 , ry) with the promise that i �= j and that
rxb

= μb(r), b ∈ {0, 1} and ry = μy(r) for uniformly random μb
$←− Mi, μy

$←−
Mj, return z ∈ X such that either μ−1

1−b(μb(ry)) ∈ Rz or μ−1
b (μ1−b(ry)) ∈ Rz.

To make explicit the given structure M to which the (say) Demask problem
refers, we write DemaskM. The name “Parallel” is inspired by a similar problem
defined by Couveignes [16].

We motivate these problems in the context of the discrete logarithm setting,
where we take our masking structure as before to have Rx = {x} and to have
each Mi to be identical to the set of exponentiation maps indexed by Z∗

q . We
give a graphical intuition of these problems in Fig. 4.

– The Demask problem is, given (g, h) with the promise that h = ga for a
random a, to return a. This is the discrete logarithm problem (DLP).

– Similarly, the Parallel problem is, given (g, ga, gb) for random a, b, to return
ga·b which is the computational Diffie-Hellman (CDH) problem.

– In the discrete logarithm setting, the ParallelInv problem is to compute gb/a

given (g, ga, gb). In the full version we show that this is equivalent to the
Parallel problem. We note that this does not immediately hold in the abstract
case, due to the absence of relation between r and μ−1(μ(r)), but it can
nonetheless be shown to hold for different instantiations.

– The ParallelEither problem is an instance where both the solutions to the
Parallel and to the ParallelInv problems, for the same challenge, are accepted.
Whilst it is immediate that the ParallelEither problem is at most as hard
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g

ga

gb

(gb)a

(a) The Parallel problem.

g

ga

gb

(gb)1/a

(b) The ParallelInv problem.

g

ga0ga1

gb (gb)a0/a1(gb)a1/a0

(c) The ParallelBoth problem.

Fig. 4. Representations of computational problems.

as any of the other two, a formal reduction to show the reverse implication
does not appear to be as trivial. We conjecture that in most settings, and in
the discrete logarithm setting in particular, allowing for two possible answers
which are both hard to compute on their own does not significantly decrease
the hardness of the ParallelEither problem.

– The solution of the ParallelBoth problem can be seen as a combination of both
Parallel and ParallelInv solutions together with the choice of the ParallelEither
problem as is shown in Fig. 4c.
Indeed, one can first use a Parallel oracle to compute μb(ry) for either b ∈
{0, 1} and then use a ParallelInv oracle to compute μ−1

1−b(μb(ry)) which shows
that ParallelBoth is at most as hard as those two problems. Similarly to the
ParallelEither problem, we conjecture that in most settings the ParallelBoth
will not be significantly easier as it requires solutions which are both hard to
compute.
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4 Instantiation from Supersingular Isogenies

To avoid a sub-exponential quantum attack vector [13], De Feo, Jao and Plût [17]
consider the use of supersingular elliptic curves over the extension field Fp2 whose
full endomorphism ring is an order in a quaternion algebra and therefore non-
commutative. In this section we summarize this approach succinctly, construct a
semi-commutative masking structure from this setting and discuss the hardness
of the induced problems.

4.1 Supersingular Isogenies over the Extension Field

Preliminaries. Let E1 and E2 be elliptic curves defined over a finite field Fq.
An isogeny φ : E1 → E2 over Fq is a non-constant rational map over Fq which
is also a group homomorphism from E1(Fq) to E2(Fq). For the isogenies that
we consider, we identify their degrees with the size of their kernels. Two curves
E1, E2 are said to be isogenous over Fq if there exists an isogeny φ : E1 → E2

over Fq; this holds if and only if #E1(Fq) = #E2(Fq). A set of elliptic curves
over Fq that are all isogenous to one another is called an isogeny class.

An endomorphism over Fq of an elliptic curve E is a particular isogeny E → E
over Fqm for some m. The set of endomorphisms of E together with the zero
map, denoted End(E), forms a ring under the addition, φ⊕ϕ : P �→ φ(P )+ϕ(P ),
and multiplication, φ ⊗ ϕ : P �→ φ(ϕ(P )), operations. The full ring End(E) is
isomorphic to either an order in a quaternion algebra, in which case we say that
E is supersingular, or to an order in an imaginary quadratic field, in which case
we say that E is ordinary. Curves that are in the same isogeny class are either
all supersingular or all ordinary. Here we focus on the supersingular case. All
supersingular curves can be defined over the field Fp2 for a prime p and for every
prime � � p there exist �+1 isogenies, up to isomorphism, of degree � originating
from any given supersingular curve.

Given a curve E and a subgroup K of E there is, up to isomorphism, a
unique isogeny φ : E → E′ having kernel K and we therefore identify E′ with
the notation E/φ. Particularly, we will work with subgroups of the torsion group
E[m] for m ∈ N which is the group of points of E whose order divides m. When
we also have that m2 divides #E(Fp2), we can always represent cyclic kernels
by generators defined over Fp2 .

Semi-commutativity. We introduce the notion of semi-commutativity present
in this setting; the same notion is behind the SIDH key-exchange protocol [17]
and we generalise it here. We discuss the case where Fq is fixed to be Fp2 where
p is a prime of the form �e1

1 �e2
2 · · · �en

n · f ± 1 for n small primes �1, . . . , �n and
a small cofactor f . By construction, in each isomorphism class there is a curve
E/Fp2 such that the torsion group E[�ei

i ] contains �ei−1
i (�i + 1) cyclic subgroups

of order �ei
i (which each define a different isogeny).

To compute and publish a curve resulting from a secret isogeny, a party
generates a secret key by selecting a random point Ki of order �ei

i on a curve E
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and computes a public curve by computing the unique isogeny with kernel 〈Ki〉
and publishing the domain curve E/〈Ki〉. The issue here is that the structure of
End(E) no longer allows for arbitrary isogenies to commute and an analogue of
the (ga)b = (gb)a equality is not immediate. However, with isogenies of co-prime
degrees some commutative structure remains.

To solve this, in addition to the curve E, the parties agree on bases
{Pi, Qi} for each of the torsion groups E[�ei

i ]. The semi-commutative struc-
ture then emerges since applying an isogeny of degree �ei

i preserves the tor-
sion groups E[�ej

j ] for j �= i. Therefore, alongside publishing E/〈Ki〉 for their
secret isogeny φi, parties also publish {{φi(Pj), φi(Qj)}j �=i}, the images under
φi of the bases for the other torsion groups. By expressing their secret kernel as
Kj = [αj ]Pj + [βj ]Qj and applying αj , βj to {φi(Pj), φi(Qj)}, the other party
can then compute an isogeny ϕj : E/〈Ki〉 → E/〈Ki,Kj〉 which is “parallel” to
the isogeny φj : E → E/〈Kj〉 in the sense of Fig. 4a.

Whilst the two resulting curves E/〈Ki,Kj〉 and E/〈Kj ,Ki〉 may not be
identical, they will be isomorphic, and the parties can then take the j-invariants
of their respective curves as an identical shared value.

The Weil Pairing. We recall here the notion of the Weil pairing. For any
integer m ∈ N, we let ζm = {u | um = 1} ⊂ F∗

p2 . For any curve E/Fp2 , the
Weil pairing is a map em : E[m]×E[m] −→ ζm, that satisfies em(φ(P ), φ(Q)) =
em(P,Q)deg(φ), where φ : E → E′ is any isogeny.

4.2 Masking Structure

To define a semi-commutative masking structure, we fix p = �e1
1 �e2

2 · · · �en
n · f ± 1

as above. In this setting, there are five supersingular isogeny classes and we let X
denote one of the two classes with curves E/Fp2 with trace t = p2+1−#E(Fp2) ∈
{−2p, 2p}; these two classes are the largest of the five [1].

Representatives. For each j-invariant x ∈ X, there is a canonical choice of
curve Ex [36]. For each Ex we take the appropriate twist of the curve such that
they belong to the same isogeny class. We define the set Rx of representatives
as the set of tuples (Ex, {{Pi, Qi}i∈[n]}) where {Pi, Qi} is a basis of the torsion
group Ex[�ei

i ] as above.
For a given curve and torsion order, there exists a deterministic and efficient

algorithm Basis(E, i) which outputs a basis {Pi, Qi} ⊂ Ex[�ei
i ] [3, Section 3.2];

for each torsion order, we fix a generator qi ∈ ζ�
ei
i

such that for any curve E,
em(Pi, Qi) = qi for {Pi, Qi} ← Basis(E, i). This will be used to derive new
torsion points when required, but these are still free to be modified under the
action of isogenies. Hence for each x, there will be a unique choice of Ex but
many choices of bases of torsion groups that originate from the deterministic
one.
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Masking Sets. We first observe that for any Ki = [αi]Pi + [βi]Qi on E, the
point [m]Ki, for m ∈ (Z/�ei

i Z)∗, generates the same subgroup of E[�ei
i ]. By

defining the equivalence relation ∼R by

(α, β) ∼R (α′, β′) ⇐⇒ ∃m ∈ (Z/�ei
i Z)∗ s.t. (α′, β′) = (mα,mβ),

we can then identify any such Ki with the equivalence class of (αi, βi) which
we denote [αi : βi]. We recall that the projective line P1(Z/�ei

i Z) is the set of
equivalence classes [αi : βi] such that gcd(αi, βi) = 1.

Since Ki has exact order �ei
i , at least one of αi and βi must not be divisible

by �i and hence the ideal of the ring Z/�ei
i Z generated by αi, βi is always the

unit ideal, i.e. the whole of Z/�ei
i Z. This implies that all the possible choices for

Ki can be exactly identified with the points on the projective line P1(Z/�ei
i Z).

We therefore define n masking sets [Mi]i∈[n] where each Mi is the projective line
Pi := P1(Z/�ei

i Z).

Masking Action. Computing the result of a mask μ(r) ∈ Ry on a representa-
tive r ∈ Rx then consists in computing one of its representatives Ki in Ex[�ei

i ] and
the isogeny φi : Ex → Ex/〈Ki〉. Note that the curve Ex/〈Ki〉 with j-invariant
y ∈ X may not be the same curve as the canonical choice Ey. However they will
be isomorphic over Fp2 , due to the appropriate choice of twist in the definition
of our set Ry, and the isomorphism χ : Ex/〈Ki〉 −→ Ey will be easy to compute.

To be able to compose isogenies in a semi-commutative way, computing μ(r)
also requires computing the images of {{Pj , Qj}} for j �= i first under φi and
then under the isomorphism χ to obtain bases of the torsion groups of Ey. It
also requires generating a new basis for Ey[�ei

i ] using the Basis(Ey, i) algorithm.
The output of the computation of the mask μ(r) is therefore the curve Ey

χ�
Ex/〈Ki〉 together with the basis points {{χ ◦ φi(Pj), χ ◦ φi(Qj)}} for j �= i and
the output of Basis(Ey, i).

Inverting the Mask. Since our masking sets Mi do not derive from a group
structure, we do not have an immediate instantiation of an inverse operation.
However, for every isogeny φ : E → E′ of degree �, there is a unique dual isogeny
φ̂ : E′ → E also of degree � such that the composition is the multiplication-by-�
map: φ̂ ◦ φ = [�] : E → E. Whilst not a perfect inverse operation, in this setting
the multiplication-by-�ei

i map preserves the structure of the �
ej

j -torsion groups
for all j �= i and that is all we require for semi-commutativity to hold.

Hence, given a kernel generator Ki ∈ E[�ei
i ] for some curve E, one can

compute a generator of the image φi(E[�ei
i ]) ⊂ E′[�ei

i ] of the �ei
i -torsion group

under the isogeny φ̃i defined by Ki and an appropriate isomorphism, to obtain
K̂i ∈ E/〈Ki〉 which is a generator of the kernel of the unique dual isogeny φ̂i.

Given a mask μ ∈ Mi = Pi and elements r and r′ = μ(r) with r′ =
(E′, {{Pj , Qj}j∈[n]}), computing the inverse μ−1 amounts to computing a point
K̂i as above and expressing it as (α̂i, β̂i) in the deterministically generated basis
for E′[�ei

i ] which can be done efficiently as is shown in [3]. This then allows us to
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define μ−1 uniquely as [α̂i : β̂i] ∈ Pi, given μ and r. We note that the dependency
of μ−1 on μ and r is consistent with the definition of the inverse of a mask as
stated in Sect. 3.

Masking Structure. We formally define a masking structure in this setting.

Definition 3 (Masking structure from supersingular isogenies). Let p
be a prime defining the finite field Fp2 as above, we define the masking structure
Mp = {X,RX , [Mi]i∈[n]} where the individual components are defined as above.

Lemma 1. The masking structure Mp of Definition 3 is semi-commutative.

Proof. First we see that the elements of Mp together with the action of any
μ ∈ Mi on any r are well-defined. Then, since the composition of any isogeny
with its dual results in an endomorphism of the starting curve, our method of
inverting a given mask yields the same j-invariant regardless of the starting r or
masking index i. Also, the semi-commutative property of our structure follows
from the semi-commutative property of isogenies of co-prime degrees. Finally,
the required efficiency of the computations for Mp follows from the comments
above regarding the computation of isogenies of smooth degrees and expression
of points in arbitrary torsion bases. Equality in X and Mi and membership in
X are immediate to check. ��

4.3 Computational Problems

The problem landscape of the SIDH setting is still currently undergoing intense
study from the community. Urbanik and Jao [37] have proposed a detailed pre-
sentation and study of the analogues of the discrete logarithm and CDH problems
that arise from the SIDH key-exchange of De Feo, Jao and Plût [17]. Galbraith
and Vercauteren also have written a survey of these problems [25], with a stronger
focus on the mathematics of isogenies of elliptic curves.

Here we frame Urbanik and Jao’s discussion of these problems in [37,
Section 4] in our setting that uses n distinct small primes �i. Whilst we give
a very general presentation, in practice the OT scheme presented in this paper
will only require n = 2, as in the case of the SIDH key-exchange. Our second
OT protocol (described in the full version) will require n = 3, which constitutes
only a small extension of the original setting.

The Isogeny Problem. In its simplest form, the intuition behind the security
of isogeny-based cryptography is that it is hard to compute a hidden isogeny,
up to isomorphism, when given only the initial and final j-invariants. The general
isogeny problem can be stated as follows.

Definition 4 (General isogeny problem [25, Definition 1]). Given j-
invariants j, j′ ∈ Fp2 , return an isogeny φ : E −→ E′ (if it exists), where
j(E) = j and j(E′) = j′.
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Given that the elements of X in the masking structure Mp are the super-
singular j-invariants of Fp2 and that the elements of the masking sets Mi can
be uniquely identified with isogenies between isomorphism classes, it would first
seem that the Demask problem for Mp can be instantiated as the general isogeny
problem of Definition 4. To recover some commutative structure, however, we
have to reveal the images of the bases of the torsion points. This constitutes sig-
nificantly more information and therefore is conjectured to be an easier problem
to solve [24,25,29,33].

Additional Information. This has led to the definition in the literature of a
specific SIDH problem. Here we merge the definitions of [25] and [37] for the
case of n = 2 small primes in the composition of p.

Definition 5 (2-i-isogeny problem [25, Def. 2][37, Prob. 4.1]). Let i ∈
{1, 2} and let (E,P1, Q1, P2, Q2) be such that E/Fp2 is a supersingular curve and
Pj , Qj is a basis for E[�ej

j ] for j ∈ {1, 2}. Let E′ be such that there is an isogeny
φ : E −→ E′ of degree �ei

i . Let P ′
j , Q

′
j be the images under φ of Pj , Qj for j �= i.

The 2-i-isogeny problem, is, given (E,P1, Q1, P2, Q2, E
′, P ′

j , Q
′
j), to determine

an isogeny φ̃ : E −→ E′ of degree �ei
i such that P ′

j = φ̃(Pj) and Q′
j = φ̃(Qj).

This definition leads to the following natural generalisation which we show cor-
responds exactly to the computational problem that we need.

Definition 6 (n-i-isogeny problem). Let n be an integer, i ∈ {1, . . . , n} and
let (E, {Pj , Qj}n

j=1) be a tuple such that E/Fp2 is a supersingular curve and
Pj , Qj is a basis for E[�ej

j ] for j ∈ [n]. Let E′ be such that there is an isogeny φ :
E −→ E′ of degree �ei

i . Let {P ′
j , Q

′
j} be the images under φ of {Pj , Qj} for j �= i.

The n-i-isogeny problem, for i ∈ [n], is, given (E, {Pj , Qj}n
j=1, E

′, {P ′
j , Q

′
j}j �=i),

to determine an isogeny φ̃ : E −→ E′ of degree �ei
i such that P ′

j = φ̃(Pj) and
Q′

j = φ̃(Qj) for all j �= i.

Lemma 2. Let p = �e1
1 �e2

2 · · · �en
n · f ± 1 be a prime and let Mp be a masking

structure as defined in Definition 3. Then the Demask problem for Mp is an
instance of the n-i-isogeny problem.

Proof. The specification of i in (i, r, rx) together with the random mask μx sat-
isfies the promise of existence of an isogeny φ of degree �ei

i . Also, By definition of
Rx for each x ∈ X for Mp, the representative rx contains exactly the informa-
tion of the curve E′ together with the images of the appropriate torsion points.
We note that rx does not contain additional information as the basis points of
E′[�ei

i ] are derived deterministically from E′. ��

Computational SIDH. The isogeny problems defined above can be viewed
as the analogues of the discrete logarithm problem of computing an unknown
exponent in the general case and in the specific SIDH setting. This naturally
leads to an analogue of the CDH problem which is defined as follows in the case
of n = 2.
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Definition 7 (2-computational SIDH problem [37, Problem 4.3]). Let
E,EA, EB be supersingular curves such that there exist isogenies φA : E −→ EA

and φB : E −→ EB with kernels KA and KB and degrees �e1
1 and �e2

2 respectively.
Let P1, Q1 and P2, Q2 be bases of E[�e1

1 ] and E[�e2
2 ] respectively, and let P ′

1 =
φB(P1), Q′

1 = φB(Q1) and P ′
2 = φA(P2), Q′

2 = φA(Q2) be the images of the
bases under the isogeny of coprime degree. The 2-computational SIDH problem
is, given (E,P1, Q1, P2, Q2, EA, P ′

2, Q
′
2, EB , P ′

1, Q
′
1), to identify the isomorphism

class of the curve E/〈KA,KB〉.
This problem can also be generalised in a natural way to the following which

then yields the appropriate instantiation for our structure.

Definition 8 (n-i, j-computational SIDH problem). Let E,EA, EB be
supersingular curves such that there exist isogenies φA : E −→ EA and
φB : E −→ EB with kernels KA and KB and degrees �ei

i and �
ej

j respectively with
i �= j. Let {Pk, Qk} be bases of E[�ek

k ], for k ∈ [n], and let PA
k = φA(Pk), QA

k =
φA(Qk), for k �= i, and PB

k = φB(Pk), QB
k = φB(Qk), for k �= j be the images

of the bases under the isogeny of coprime degree. The n-i, j-computational SIDH
problem, for i, j ∈ [n], is, given (E, {Pk, Qk}k∈[n], EA, {PA

k , QA
k }k �=i, EB , {PB

k ,
QB

k }k �=j), to identify the isomorphism class of the curve E/〈KA,KB〉.
Lemma 3. Let p = �e1

1 �e2
2 · · · �en

n · f ± 1 be a prime and let Mp be a masking
structure as defined in Definition 3. Then the Parallel problem for Mp is an
instance of the n-i, j-CSIDH problem.

Proof. As for Lemma 2, the specification (i, j, r, rx, ry) of the Parallel problem for
Mp satisfies the promise of existence of the two isogenies of coprime degrees and
contains all the required information on the images of the torsion bases. Also,
the goals of the problems agree since the solution to the Parallel problem for Mp

requires z ∈ X which is exactly the j-invariant which identifies the isomorphism
class uniquely. Again, rx and ry do not contain additional information since the
bases for the ith and jth torsion groups are computed deterministically. ��
Regarding the ParallelInv problem for Mp, we do not have an immediate reduc-
tion to the Parallel problem. We discuss this in comparison to the instantiation
from hard homogeneous spaces and also an interesting subtlety in the definitions
of the CDH problem in the full version of this work. We nonetheless conjecture
that, as they are very similar, the hardness of the ParallelInv problem is close to
that of the Parallel problem. We similarly conjecture that the hardness of the
ParallelEither and ParallelBoth problems is comparable to that of the Parallel and
ParallelInv problems as no additional information is revealed and only similarly
hard-to-compute solutions are required.

Decisional SIDH. Galbraith and Vercauteren also formalise a decisional vari-
ant of the SIDH problem in the case of n = 2.
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Definition 9 (2-i-decisional SIDH problem [25, Definition 3]).
Let (E,P1, Q1, P2, Q2) be such that E/Fp2 is a supersingular curve and Pj , Qj

is a basis for E[�ej

j ] for j ∈ {1, 2}. Let E′ be an elliptic curve and let P ′
j , Q

′
j ∈

E′[�ej

j ] for j �= i. Let 0 < d < ei. The 2-i-decisional SIDH problem is, given
(E,P1, Q1, P2, Q2, E

′, P ′
j , Q

′
j , d) for j �= i, to determine if there exists an isogeny

φ : E → E′ of degree �d
i such that φ(Pj) = P ′

j and φ(Qj) = Q′
j.

As for the computational problems, we can generalise the above problem to our
setting.

Definition 10 (n-i-decisional SIDH problem). Let (E, {Pj , Qj}j∈[n]) be
such that E/Fp2 is a supersingular curve and Pj , Qj is a basis for E[�ej

j ] for j ∈
[n]. Let E′ be an elliptic curve and let P ′

j , Q
′
j ∈ E′[�ej

j ] for j �= i. Let 0 < d < ei.
The n-i-decisional SIDH problem is, given (E, {Pj , Qj}j∈[n], E

′, {P ′
j , Q

′
j}j �=i, d),

to determine if there exists an isogeny φ : E → E′ of degree �d
i such that

φ(Pj) = P ′
j and φ(Qj) = Q′

j for j �= i.

Whilst we do not have an equivalence between the IND-Mask experiment and
the n-i-DSIDH as presented above, we see that an oracle for the latter with
d = ei is sufficient to obtain a noticeable advantage against the former. Also, it
would seem that our IND-Mask experiment corresponds to a worst case of the
n-i-DSIDH as it uses a maximal degree of d = ei. Given the state of the art in
cryptanalysis for these problems, we conjecture that the IND-Mask problem for
Mp is not significantly easier than the n-i-DISDH for the same parameters.

As hinted at in Note 1, the Weil pairing is in fact a useful tool against the
IND-Mask experiment. Indeed, if the adversary had free control over the values r0
and r1 of the experiment, it could give two representatives whose basis points of
the same torsion group evaluated to different values under the Weil pairing. This
difference would be preserved under the secret masking action of the experiment
and this would enable it to win trivially. Restricting the adversary’s input to be
a single representative r and two masks that determine r0 and r1 and preserve
the values of Weil pairing on the points of r thus prevents this strategy.

Security Analysis. As mentioned above, one of the main advantage of the
SIDH approach as opposed to the hard homogeneous space approach (includ-
ing CSIDH) is that no sub-exponential attack is known on the SIDH protocol,
even using a quantum computer. On the other hand in the SIDH protocol, the
action of the secret isogeny on a large torsion subgroup is revealed. A paper
by Petit [33] and a recent follow-up work by Kutas et al. [29] show how to
exploit this additional information to break variants of the SIDH protocol with
unbalanced parameters or weak starting curves.

More precisely, let N1 ≈ pα be the degree of the isogeny to compute, and let
N2 ≈ pβ be the order of torsion points images revealed in the protocol. The orig-
inal SIDH protocol uses α ≈ β ≈ 1

2 , but [33] and [29] describe a generalization to
any coprime, power-smooth values N1, N2. Under some parameter restrictions



250 C. D. de Saint Guilhem et al.

and heuristic assumptions, the best attack in [29] computes the isogeny in classi-
cal polynomial time assuming β > 2α > 2 or β > 3α > 3/2. Furthermore, Kutas
et al. show an attack requiring only β > 2α (with no lower bound on α) when
the protocol uses a weak starting curve.

In our instantiation above, for any i one can fix α = ei log �i and β =
∑

j �=i ej log �j . We also have α+β ≤ 1 so the first attack in [33] and its improve-
ment in [29] does not apply if the starting curve is not weak. The second attack
of [33], however, applies whenever the number n of factors �i is larger than
O(ei log �i) for some i. The second one from [29] applies if any starting curve is
weak. The notion of weak however depends on p, α, β and the chosen curve so
choosing correct parameters (as those chosen in SIDH are) prevents this from
happening.

Alice (g0, [g1], a) Bob ([c], b)

(g0)a, [(g1)a]
ga
0 , [ga

1 ]

(ga
[c])

b
gab
[c]

(gab
[c] )

1/a
gb
[c]

(gb
[c])

1/b

(a) The Shamir three-pass protocol and its
OT variant

Alice (g0, g1; a) Bob (g0, g1; c; b)

(gc)b
gb
c

ga
0 , ga

1 , gba
c

gab
c

(gab
c )1/b

(b) Sketch of final OT protocol flows

Fig. 5. Sketch of the Shamir three-pass OT protocol and the final variant

One may fear that these attacks will get improved over time, leading to
further restrictions on n. We note that n = 3 is sufficient to instantiate our
OT protocols. Moreover, the protocol we describe in this paper could be even
instantiated with n = 2. We note also that n = 2 in our construction corresponds
to the SIDH protocol parameters, so our semi-commutative masking construction
with n = 2 will remain secure as long as SIDH remains secure.

5 Oblivious Transfer Protocol from Masking Structures

In this section we construct an OT protocol from a semi-commutative mask-
ing structure M. We prove its UC security for passive adversaries with static
corruptions in the FRO-hybrid model assuming that M is IND-Mask-secure and
that the ParallelEitherM problem is hard.

Motivation. Our OT protocol is inspired by the two-party Shamir three-pass
protocol for secure message transmission shown in Fig. 5a (ignoring the elements
in square brackets), also known as the Massey-Omura encryption scheme. Here,
Alice’s input is a message g together with a secret mask a and Bob’s input is
another secret mask b. To transmit g, Alice first sends ga to Bob who replies by
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masking it as gab. Now Alice removes her mask and replies with gab/a = gb to
Bob who then inverts b and recovers g. This protocol can be modified to yield
an OT protocol by including the elements in square brackets; this was proposed
by Wu et al. [40].

Alice, acting as Sender, now has two inputs g0 and g1 and masks both with a
to send ga

0 , ga
1 to Bob, the Receiver. In addition to his mask b, Bob now also has

a choice bit c ∈ {0, 1} and he replies to Alice with (ga
c )b. They then continue as

before until Bob recovers gc. The intuition for security is that the mask a cannot
be deduced from either ga

0 or ga
1 and therefore the first message hides both of

Alice’s inputs from Bob. Also when Bob applies his own mask to one of the two
messages, this hides his input bit c from Alice who does not know b.

Protocol Π1
OT

Parameter: length n of the PS ’s input strings.
Sender’s Input: m0,m1 ∈ ME .
Receiver’s Input: c ∈ {0, 1}.
Common inputs: Arbitrary x0 �= x1 ∈ X together with r0 ∈ Rx0 , r1 ∈ Rx1 are
shared and re-used for every instance of the protocol; an instance of the random
oracle ideal functionality FRO : {0, 1}λ → KE .

OT1 (Receiver 1)

– Sample β
$←− MB uniformly at random.

– Compute rβ
c := β(rc) and β−1 ∈ MB .

– Send rβ
c to PS .

OT2 (Sender 1)

– Sample α
$←− MA and compute rα

b := α(rb) ∈ Rxα
b
, b ∈ {0, 1}

– For b ∈ {0, 1}, call FRO twice on input xα
b obtaining kb, and compute

eb ← Enc(kb,mb)
– Compute rαβ

c := α(rβ
c )

– Send (rαβ
c , e0, e1) to PR.

OT3 (Receiver 2)
– Compute rα

c := β−1(rαβ
c ) and kR := FRO(xα

c ) where rα
c ∈ Rxα

c
.

– Return mc := Dec(kR, ec).

Fig. 6. The protocol Π1
OT for realizing FOT from semi-commutative masking.

We remove the need to apply the inverse mask 1/a to gab
c since Alice’s igno-

rance of c makes this impossible for general semi-commutative masking schemes
due to the definition of inverse masks. In our new (discrete logarithm based) vari-
ant, the elements g0 and g1 are common to both parties. Rather than using a to
send ga

0 , ga
1 to Bob (the Receiver), Alice (the Sender) does not go first. Instead,

Bob first communicates his masked choice gb
c , and then Alice applies her mask

a and replies with gab
c . At that moment, she also computes ga

0 , ga
1 internally. She

then uses these internal values to derive two symmetric keys k0 and k1. Those
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are used to encrypt Alice’s actual OT inputs m0 and m1 as two ciphertexts e0
and e1 which she sends alongside gab

c . This allows Bob to recover ga
c and hence

decrypt ec to recover mc. As g0 and g1 are now established once and re-used
for every instance of the protocol, this allows the flows to have only two passes
rather than three. Fig. 5b abstracts the symmetric encryption and only shows
the flows that lead to Bob receiving the value ga

c .

Construction. We now formally define our OT protocol from semi-commutative
invertible masking schemes. Let M = {X,RX , [MA,MB ,MC ]} be an SCM struc-
ture with three masking sets; let E = {(KGenE ,Enc,Dec), (KE ,ME , CE)} be a
symmetric encryption scheme and let FRO be an instance of the RO ideal func-
tionality with domain D = X and range R = KE . The protocol Π1

OT is formally
defined in Figure 6.

As described above, the idea of the protocol is that both the sender, PS ,
and receiver, PR, have as common input arbitrary elements x0 �= x1 ∈ X along
with representations r0 ∈ Rx0 , r1 ∈ Rx1 . In the first pass, PR takes a random
mask β ∈ MB and sends rβ

c = β(rc) to PS , where c is its choice bit. In the
second pass, PS samples a random mask α ∈ MA and computes rα

0 = α(r0)
and rα

1 = α(r1). These elements uniquely determine xα
b ∈ X, b ∈ {0, 1}. Thus

the sender can compute two private keys kb, b ∈ {0, 1} (by invoking twice the
random oracle functionality FRO on input xα

b ) and encrypt its input messages
m0,m1 accordingly. PS then sends the ciphertexts eb ← Enc(kb,mb), b ∈ {0, 1},
and rαβ

c = α(rβ
c ) to PR. The receiver has now all the information needed to

recover the message mc corresponding to its choice bit: it can apply the inverse
β−1 to rαβ

c using the semi-commutativity of M, so that

β−1(rαβ
c ) = β−1(α(rβ

c )) = β−1(α(β(rc))) ∈ Rxα
c
,

and recover kc = FRO(xα
c ). This easily implies correctness of the scheme. Security

is given by the following theorem. We give the proof in the full version and
provide a sketch below.

Theorem 1. The protocol Π1
OT of Fig. 6 securely UC-realizes the functionality

FOT of Fig. 1 in the FRO-hybrid model for semi-honest adversaries and static cor-
ruptions, under the assumption that E is IND-CPA-secure, that M is IND-Mask-
secure and that the ParallelEitherM problem is hard.

Proof (sketch). We proceed by cases based on the honesty of each party. When
both parties are corrupt, the simulator observes all the inputs and provides a
perfect simulation. When only the receiver is corrupt, we build a reduction from
a successful distinguishing environment first to the ParallelEither problem (by
replacing k1−c with a random one) and then to the IND-CPA security of E (by
replacing m1−c with a random one). When only the sender is corrupt we build a
reduction to the IND-Mask security of M. When no party is corrupt, we combine
the two previous reductions to simulate a protocol transcript without knowledge
of c,m0 and m1.
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6 Active Secure Two-Round OT from Masking
Structures

We now show how to compile our 2-round OT protocol Π1
OT, described in Sect. 5,

to a 2-round maliciously UC-secure protocol using the generic transformations
introduced by Döttling et al. [18].

6.1 Additional OT Security Notions

A 2-round OT protocol with public setup consists of four algorithms
(Setup,OT1,OT2,OT3) such that:

– Setup(1λ) generates a public input pin.
– OT1(pin, c), where c ∈ {0, 1} is the PR choice bit, outputs (st, ot PR)
– OT2(pin, ot PR,m0,m1), where m0,m1 are the sender’s input messages, out-

puts ot PS

– OT3(st, ot PS) outputs mc

First we need to recall some security notions [18] for the receiver PR and the
sender PS . The first definition states that PS should not learn anything about
PR’s choice bit c.

Definition 11 (Receiver’s indistinguishability security). For every PPT
adversary A:

|Pr[A(pin,OT1(pin, 0)) = 1] − Pr[A(pin,OT1(pin, 1)) = 1]| = negl(λ),

where pin is the public output of the setup phase.

The next definition concerns the security of the sender; it states that PR cannot
compute both secret values y0 and y1 used by OT2 to protect m0 and m1, but not
necessarily in the same experiment.

Definition 12 (Sender’s search security). Let A = (A1,A2) be an
adversary where A2 outputs a string y∗. Consider the following experiment
Exppin,ρ,w

sOT (A), indexed by a pin, random coins ρ ∈ {0, 1}λ and a bit w ∈ {0, 1}.
1. Run (ot PR, st) ← A1(1λ, pin; ρ).
2. Compute (ot PS , y0, y1)

$←− OT2(pin, ot PR).
3. Run y∗ ← A2(st, ot PS , w) and output 1 iff y∗ = yw.

We say that A breaks a scheme’s Sender’s search (sOT) security if there exists
a non-negligible function ε such that

Pr
pin,ρ

[Pr[Exppin,ρ,0
sOT (A) = 1] > ε and Pr[Exppin,ρ,1

sOT (A) = 1] > ε] > ε,

where pin
$←− Setup and ρ

$←− {0, 1}λ.
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6.2 Two Rounds OT with Active UC-Security

We provide an intermediary result which enables us to use the general compiler
from [18] to get an actively secure 2-round OT protocol starting from Π1

OT. First
we introduce and discuss a new security assumption derived from the Parallel
problem but more suited to active adversaries. Then we show that our protocol
satisfies the security notions of Definitions 11 and 12. Finally, by applying the
general transformations from sOT to UC OT described in [18], we obtain a fully
UC-secure two-round OT protocol. We note that we are able to remove the
random oracle from our protocol to achieve sOT security; therefore the resulting
OT protocol requires only the CRS. We define our new computational problem
as follows.

Definition 13 (ParallelDouble). Given (i, j, r, rx0 , rx1 , ry) with the promise that
i �= j and that rxb

= μxb
(r), b ∈ {0, 1} and ry = μy(r) for random μxb

$←− Mi

and μy
$←− Mj, and given a one-time access to an oracle Oy which, when given

r ∈ R returns μy(r), compute z0, z1 ∈ X such that both μxb
(ry) ∈ Rzb

.

The instantiation of this problem in the discrete logarithm case is, when given
(g, ga, gb, gc) and a one-time access to an exponentiation-by-c oracle, to return
both gac and gbc. For practical efficiency, it is also desirable that ga and gb remain
constant across multiple instances of the ParallelDouble problem, with only gc

being randomly sampled in each instance. This version of the problem is similar
to the one-more static CDH problem where an adversary has to successfully
compute one more CDH challenge than it was able to ask from a helper oracle [9].

Security of the Π1
OT protocol. We then prove that protocol Π1

OT achieves
Receiver’s indistinguishability and Sender’s search security.

Proposition 1. The protocol Π1
OT in Fig. 6 satisfies computational receiver’s

indistinguishability security and sender’s sOT security under the assumption that
M is IND-Mask-secure and that the ParallelDoubleM problem is hard.

Proof. Receiver’s indistinguishability follows from the IND-Mask-security
assumption. By setting the public inputs r0 and r1 in Π1

OT as they are com-
puted in the IND-Mask experiment, the random mask μ is distributed in the
same way as the mask β in OT1. Therefore if an adversary breaks the receiver’s
indistinguishability for Π1

OT, this can be reduced to a solution to the IND-Mask
problem.

Sender’s Search Security. To prove sOT security for Π1
OT we assume the existence

of an adversary A = (A1,A2) and a non-negligible ε such that

Pr
pin,ρ

[Pr[Exppin,ρ,0
sOT (A) = 1] > ε and Pr[Exppin,ρ,1

sOT (A) = 1] > ε] > ε,

and we build a reduction B that is given a ParallelDouble challenge (i, j, r, rx0 ,
rx1 , ry) with access to an oracle Oy (Definition 13). Instead of running Setup to
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generate r0 and r1, B sets r0 ← rx0 and r1 ← rx1 ; also B samples ρ
$←− {0, 1}λ. As

this ensures that pin is distributed identically to the output of Setup, pin and ρ are
good for A with probability at least ε.

After B runs A1, which outputs (ot PR, st), it queries the oracle to obtain
ot PS,0 ← Oy(ot PR). It also computes ot PS,1 ← μ(ot PS,0) for a random
μ ∈ Mk with i �= k �= j; it also computes μ−1. Then, for w ∈ {0, 1}, B runs
y∗
w ← A2(st, ot PS,w, w) and updates y∗

1 ← μ−1(y∗
1). Finally B returns y∗

0 and
the updated y∗

1 as the ParallelDouble answer.
Since Pr[Exppin,ρ,0

sOT (A) = 1] > ε and Pr[Exppin,ρ,1
sOT (A) = 1] > ε, with prob-

ability ε2, A2 is successful for both inputs (st, ot PS,0, 0) and (st, ot PS,1, 1) as
the two messages are made independent by B’s addition of μ. If this happens,
then y∗

0 is exactly one of the answers, and the update of y∗
1 by B removes the

extra mask μ and means that y∗
1 is then the other answer to the ParallelDouble

problem. Hence B is successful with probability at least ε3.

Theorem 2. Under the assumption that M is IND-Mask-secure and that the
ParallelDoubleM problem is hard, there exists a 2-round UC-secure OT protocol
constructed from Π1

OT.

Proof. This follows from the transformations and results of [18, Theorems 8, 9,
11, 12, 14, 19 and 21].

Corollary 1. By instantiating the semi-commutative masking scheme, there
exists an actively secure 2-round OT protocol based on supersingular isogenies.

We note that the isogeny-based OT protocols proposed by Vitse [38] requires
three rounds of communication; this implies that they cannot be transformed to
achieve two-round OT with fully UC-security using this transformation.
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Abstract. A zero-knowledge proof is a method by which one can prove
knowledge of general non-deterministic polynomial (NP) statements.
SNARKs are in addition non-interactive, short and cheap to verify. This
property makes them suitable for recursive proof composition, that is
proofs attesting to the validity of other proofs. To achieve this, one moves
the arithmetic operations to the exponents. Recursive proof composition
has been empirically demonstrated for pairing-based SNARKs via tai-
lored constructions of expensive pairing-friendly elliptic curves namely a
pair of 753-bit MNT curves, so that one curve’s order is the other curve’s
base field order and vice-versa. The ZEXE construction restricts to one
layer proof composition and uses a pair of curves, BLS12-377 and CP6-
782, which improve significantly the arithmetic on the first curve. In this
work we construct a new pairing-friendly elliptic curve to be used with
BLS12-377, which is STNFS-secure and fully optimized for one layer com-
position. We propose to name the new curve BW6-761. This work shows
that it is at least five times faster to verify a composed SNARK proof
on this curve compared to the previous state-of-the-art, and proposes an
optimized Rust implementation that is almost thirty times faster than
the one available in ZEXE library.

1 Introduction

Proofs of knowledge are a powerful tool introduced in [19] and studied both
in theoretical and applied cryptography. Since then, cryptographers designed
and improved short, non-interactive and cheap to verify proofs, resulting in Suc-
cinct Non-interactive ARguments of Knowledge (SNARKs). Zero-knowledge (zk)
SNARKs allow a prover to convince a verifier that they know a witness to an
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instance, which is a member of a language in NP, whilst revealing no informa-
tion about this witness. The verification of the proof should be fast. The discrete
logarithm problem: given a finite cyclic group G, a generator g, and h ∈ G, find
x = logg h such that h = gx, is at the heart of many proofs of knowledge. Making
a scheme non-interactive leads to a signature scheme, such as Schnorr protocol
and signature.

A cryptographic bilinear pairing is a map e : G1 × G2 → GT where G1 and
G2 are distinct subgroups of an elliptic curve defined over a finite field Fq, and
GT is an extension field Fqk . Pairings allow to multiply hidden values in the
exponents: with a multiplicative notation for the three groups, and generators
g1, g2 for G1, G2, one has e(ga

1 , gb
2) = e(g1, g2)ab: a pairing can multiply two

discrete logarithms without revealing them. As of 2020, the most efficient proof-
of-knowledge scheme due to Groth [20] is a pre-processing zk-SNARK made
of bilinear pairings. Hence, constructions of pairing-friendly elliptic curves are
required.

Besides efficiency, SNARKs’ succinctness makes them good candidates for
recursive proof composition. Such proofs could themselves verify the correctness
of (a batch of) other proofs. This would allow a single proof to inductively attest
to the correctness of many former proofs. However, once a first proof is generated,
it is highly impractical to use the same elliptic curve to generate a second proof
verifying the first one. A practical approach requires two different curves that
are closely tied together. Therefore, we need tailored pairing-friendly curves that
are usually expensive to construct and to use.

1.1 Previous Work

Ben-Sasson et al. [4] presented the first practical setting of recursive proof com-
position with a cycle of two MNT pairing-friendly elliptic curves [16, Sec. 5].
Proofs generated from one curve can feasibly reason about proofs generated
from the other curve. To achieve this, one curve’s order is the other curve’s base
field order and vice-versa. But, both are quite expensive at the 128-bit security
level. The two curves have low embedding degrees (4 and 6) resulting in large
base fields to achieve a standard security level. For example, the Coda proto-
col [26] implements curves of 753 bits. Moreover, Chiesa et al. [12] established
some limitations on finding other suitable cycles of curves.

On the other hand, Bowe et al. proposed the Zexe system [7]. They use a
relatively relaxed approach to find a suitable pair of curves that forms a chain
rather than a cycle. The authors constructed a BLS12 curve to generate the inner
proofs while allowing the construction of a second curve via the Cocks–Pinch
method [16, Sec. 4.1] to generate the outer proof. It is to note that while the
inner curve is efficient at 128-bit security level, the outer curve is quite expensive.

1.2 Our Contributions

We present a new secure and optimized pairing-friendly elliptic curve suitable for
one-layer proof composition and much faster than the previous state-of-the-art.



Optimized and Secure Pairing-Friendly Elliptic Curves 261

To achieve this, we moved from the Cocks–Pinch to the Brezing–Weng method to
generate curves. Our curve can substitute for Zexe’s outer curve while enjoying
a very efficient implementation. The curve is defined over a 761-bit prime field
instead of 782 bits, saving one machine-word of 64 bits. The curve has CM
discriminant −D = −3, allowing fast GLV scalar multiplication on G1 and G2.
The curve has embedding degree 6 and a twist of degree 6, and G2 has coordinates
in the same prime field as G1 (factor 6 compression). The curve also has fast
subgroup checking and fast cofactor multiplication. Finally, we obtain a very
efficient optimal ate pairing on this curve.

In particular, we show it is at least five times faster to verify a Groth proof,
compared to Zexe. We provide an optimized Rust implementation that achieves
a speedup factor of almost 30.

1.3 Applications

We briefly mention some applications from the blockchain community projects
that can benefit from this work:

Zexe The authors introduced the notion of Decentralized Private Computation
(DPC) that uses one layer proof composition [7]. As an application, they
described user-defined assets, decentralized exchanges and policy-enforcing
stablecoins in [7, § V].

Celo The project aims to develop a mobile-first oriented blockchain platform.
Celo verifies BLS signatures by generating a single SNARK proof that verifies
many signatures [9].

EY Blockchain The firm released its Nightfall tool [14] into the public domain,
a smart-contract based solution leveraging zkSNARKs for private trans-
actions of fungible and non-fungible tokens on the Ethereum blockchain.
Recently, EY unveiled its latest Nightfall upgrade allowing for transaction
batching. This work can be used to aggregate many Nightfall proofs into one,
thus reducing the overall gas cost.

Filecoin The protocol [27] describes a decentralized storage blockchain. Proto-
col Labs introduced Proof-of-Replication that can be used to prove that some
data has been replicated to its own uniquely dedicated physical storage. This
proof is then compressed using a SNARK proof but this results in a massive
arithmetic circuit. Filecoin is considering splitting the circuit into 20 smaller
ones and generating small proofs that can be aggregated into one using one
layer proof composition.

Organization of the Paper. In Sect. 2, we provide preliminaries on pairing-
friendly elliptic curves and recursive proof composition. In Sect. 3, we introduce
our curve, discuss the optimizations and compare it to Zexe’s outer curve. We
estimate in Sect. 4 the security of Zexe’s inner curve and our curve, taking into
account the Special Tower NFS algorithm, and Cheon’s attack. We conclude in
Sect. 5.
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2 Preliminaries

We present the background on pairing-friendly elliptic curves and recursive com-
position of zk-SNARKs proofs that is needed to understand our curve’s construc-
tion.

2.1 Pairing-Friendly Elliptic Curves

Background on Pairings. We briefly recall elementary definitions on pairings
and present the computation of two pairings used in practice, the Tate and ate
pairings. All elliptic curves discussed below are ordinary (i.e. non-supersingular).

Let E be an elliptic curve defined over a field Fq, where q is a prime power. Let
πq be the Frobenius endomorphism: (x, y) �→ (xq, yq). Its minimal polynomial is
X2 − tX + q where t is called the trace. Let r be a prime divisor of the curve
order #E(Fq) = q + 1 − t. The r-torsion subgroup of E is denoted E[r] :=
{P ∈ E(Fq), [r]P = O} and has two subgroups of order r (eigenspaces of φq in
E[r]) that are useful for pairing applications. We define the two groups G1 =
E[r]∩ker(πq − [1]) with a generator denoted by G1, and G2 = E[r]∩ker(πq − [q])
with a generator G2. The group G2 is defined over Fqk , where the embedding
degree k is the smallest integer k ∈ N∗ such that r | qk − 1.

We recall the Tate and ate pairing definitions, based on the same two steps:
evaluating a function fs,Q at a point P , the Miller loop step, and then raising
it to the power (qk − 1)/r, the final exponentiation step. The function fs,Q has
divisor div(fs,Q) = s(Q) − ([s]Q) − (s − 1)(O) and satisfies, for integers i and j,

fi+j,Q = fi,Qfj,Q

�[i]Q,[j]Q

v[i+j]Q
,

where �[i]Q,[j]Q and v[i+j]Q are the two lines needed to compute [i+j]Q from [i]Q
and [j]Q (� intersecting the two points and v the vertical). We compute fs,Q(P )
with the Miller loop presented in Algorithm 1.

Algorithm 1: MillerLoop(s, P,Q)
Output: m = fs,Q(P )

1 m ← 1; S ← Q;
2 for b from the second most significant bit of s to the least do
3 � ← �S,S(P ); S ← [2]S ; DoubleLine
4 v ← v[2]S(P ) ; VerticalLine
5 m ← m2 · �/v; Update1
6 if b = 1 then
7 � ← �S,Q(P ); S ← S + Q ; AddLine
8 v ← vS+Q(P ) ; VerticalLine
9 m ← m · �/v ; Update2

10 return m;
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Algorithm 2: Cocks–Pinch method
Input: A positive integer k and a positive square-free integer D
Output: E/Fq with an order-r subgroup and embedding degree k

1 Fix k and D and choose a prime r such that k divides r − 1 and −D is a square
modulo r;

2 Compute t = 1 + x(r−1)/k for x a generator of (Z/rZ)×;

3 Compute y = (t − 2)/
√−D mod r;

4 Lift t and y in Z;
5 Compute q = (t2 + Dy2)/4 in Q;
6 if q is a prime integer then
7 Use CM method (D < 1012) to construct E/Fq with order-r subgroup;
8 else
9 Go back to 1;

10 return E/Fq with an order-r subgroup and embedding degree k

The Tate and ate pairings are defined by

Tate(P,Q) := fr,P (Q)(q
k−1)/r

ate(P,Q) := ft−1,Q(P )(q
k−1)/r

where P ∈ G1 ⊂ E[r](Fq) and Q ∈ G2 ⊂ E[r](Fqk). The values Tate(P,Q) and
ate(P,Q) are in the target group GT of r-th roots of unity in Fqk . In this paper,
when abstraction is needed, we denote a pairing as follows e : G1 × G2 → GT .

It is also important to recall some results with respect to the complex mul-
tiplication (CM) discriminant −D. When D = 3 (resp. D = 4), the curve has
CM by Q(

√−3) (resp. Q(
√−1)) so that twists of degrees 3 and 6 exist (resp.

4). When E has d-th order twists for some d | k, then G2 is isomorphic to
E′[r](Fqk/d) for some twist E′. Otherwise, in the general case, E admits a single
twist (up to isomorphism) and it is of degree 2.

Some Pairing-Friendly Constructions. Here, we recall some methods from
the literature for constructing pairing-friendly ordinary elliptic curves that will
be of interest in the following sections. We focus on the Cocks–Pinch [16, Sec. 4.1],
Barreto–Lynn–Scott [16, Sec. 6.1] and Brezing–Weng [16, Sec. 6.1] methods, but
also mention the Miyaji–Nakabayashi-Takano (MNT) curves [16, Sec. 5.1].

Cocks–Pinch is the most flexible of the above methods and can be used
to construct curves with arbitrary embedding degrees but with ratio ρ =
log2 q/ log2 r ≈ 2. It works by fixing the subgroup order r and the CM dis-
criminant D and then computing the trace t and the prime q such that the CM
equation 4q = t2 + Dy2 (for some y ∈ Z) is satisfied (cf. Algorithm 2).

Brezing and Weng [16, Sec. 6.1], and independently, Barreto, Lynn and Scott
[16, Sec. 6.1] generalized the Cocks–Pinch method by parametrizing t, r and q as
polynomials. This led to curves with ratio ρ < 2. Below, we sketch the idea of the
algorithm in its generality for both BLS and BW constructions (cf. Algorithm 3).
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Algorithm 3: Idea of BLS and BW methods
Input: A positive integer k and a positive square-free integer D
Output: E/Fq(x) with an order-r(x) subgroup and embedding degree k

1 Fix k and D and choose an irreducible polynomial r(x) ∈ Z[x] with positive

leading coefficient1 such that
√−D and the primitive k-th root of unity ζk are in

K = Q[x]/(r(x));
2 Choose t(x) ∈ Q[x] be a polynomial representing ζk + 1 in K;

3 Set y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/
√−D in K;

4 Compute q(x) = (t2(x) + Dy2(x))/4 in Q[x];
5 return E/Fq(x) with an order-r(x) subgroup and embedding degree k

1so that r(x) satisfies Bunyakovsky conjecture, which states that such a polynomial
produces infinitely many primes for infinitely many integers.

Table 1. Polynomial parameters of BLS12 curve family.

BLS12, k = 12, D = 3, x = 1 mod 3

qBLS12(x) = (x6 − 2x5 + 2x3 + x + 1)/3, x = 1 mod 3

rBLS12(x) = x4 − x2 + 1

tBLS12(x) = x + 1

A particular choice of polynomials for k = 12 yields a family of curves with a
good security/performance tradeoff, denoted BLS12. The parameters are given in
Table 1. MNT curves, however, have a fixed embedding degree k ∈ {3, 4, 6} and
variable discriminant D. For k = 6, one has p6(x) = 4x2+1, r6(x) = 4x2−2x+1,
and for k = 4, p4(x) = x2 + x + 1, r4(x) = x2 + 1. One has p6(x) = r4(−2x) and
r6(x) = p4(−2x). If p6, r6, p4, r4 are prime, this makes a cycle of pairing-friendly
curves.

Pairing-Friendly Chains and Cycles. Two elliptic curves defined over finite
fields form a chain if the characteristic of the field of definition of one curve equals
the number of points on the next. If this property is cyclic, then it is called a
cycle. These concepts are generalized to m curves by the following definitions.

Definition 1. An m-chain of elliptic curves is a list of distinct curves

E1/Fq1 , . . . , Em/Fqm

where q1, . . . , qm are large primes and

#E2(Fq2) = q1, . . . , #Ei(Fqi) = qi−1, . . . , #Em(Fqm) = qm−1 . (1)

Definition 2. An m-cycle of elliptic curves is an m-chain, with

#E1(Fq1) = qm . (2)
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In the literature, a 2-cycle of ordinary curves is called an amicable pair. Follow-
ing the same logic, we call a 2-chain of pairing-friendly ordinary elliptic curves
pairing-friendly amicable chain. In this paper, we are interested in constructing
a pairing-friendly amicable chain of curves with efficient arithmetic.

2.2 Recursive Proof Composition

To date the most efficient zkSNARK is due to Groth [20]. Here, we briefly sketch
its construction and refer the reader to the original paper. The construction con-
sists of a trapdoored setup and a proof made of 3 group elements. The verification
is one equation of a pairing product (Eq. 3), for a pairing e : G1 × G2 → GT

where G1, G2, GT are groups of prime order r defined over a field Fq. Given an
instance Φ = (a0, . . . , al) ∈ Fl

r, a proof π = (A,C,B) ∈ G2
1 × G2 and a verifica-

tion key vk = (vkα,β , {vkπi
}l

i=0, vkγ , vkδ) ∈ GT × Gl+1
1 × G2

2, the verifier must
check that

e(A,B) = vkα,β · e(vkx, vkγ) · e(C, vkδ), (3)

where vkx =
∑l

i=0 [ai]vkπi
depends only on the instance Φ and vkα,β =

e(vkα, vkβ) can be precomputed in the trusted setup for (vkα, vkβ) ∈ G1 × G2.
Note that, for an efficient implementation, the subgroup order r is chosen

to allow efficient FFT-based polynomial multiplications, as proposed in [3]. To
achieve this, we require high 2-adicity : r−1 should be divisible by a large enough
power of 2.

To allow recursive proof composition, one needs to write the verification
Eq. (3) as an instance in the prover language. In pairing-based SNARKs such as
[20], the verification arithmetic (computing the scalar multiplications and the
pairings of (3)) is in an extension of Fq up to a degree k while the proving
arithmetic is in Fr. That means we need another pairing e′ : G′

1 × G′
2 → G′

T

where the groups G′
i are of prime order q (instead of r) to prove the arithmetic

operations over Fq. Since a pairing-friendly curve with q = r doesn’t exist1,
one would need to simulate Fq operations via Fr operations which results in a
computational blowup of order log q compared to native arithmetic.

A practical alternative was suggested in [4] using a pairing-friendly amica-
ble pair. The authors proposed a cycle of two MNT curves [16, Sec.5], E4 and
E6, with embedding degrees 4 and 6 and primes q and r of 298 bits. One has
#E4(Fr) = q and #E6(Fq) = r. While this solves our problem, the security level
of the curves is low. To remediate this, the Coda protocol [26] uses a larger MNT-
based amicable pair proposed by [4] that targets 128-bit security with primes
q, r of 753 bits, but at the cost of expensive computations (cf. Fig. 1).

While an amicable pair allows an infinite recursion loop, an amicable chain
allows a bounded recursion. In some applications, such as those we mentioned,
a one-layer composition is sufficient. To this end, Zexe’s authors proposed an
amicable chain consisting of an inner BLS12 curve called BLS12-377 and an

1 r needs to divide qk − 1 for k ∈N∗ �1, 20�, thus r = 1 is the only solution.
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outer Cocks–Pinch curve called CP6-782 (for Cocks–Pinch method, embedding
degree 6 and field size of 782 bits). BLS12-377 was constructed to have both
r − 1 and q − 1 highly 2-adic while enjoying all the efficient implementation
properties of the BLS12 family. With the inner curve constructed, the authors
looked for a pairing-friendly curve with pre-determined subgroup order r equal
to the field size q of BLS12-377. The only construction from the literature to
allow such flexibility is Cocks–Pinch, but it unfortunately results in a curve on
which operations are at least two times more costly (in time and space) than
BLS12-377. Furthermore, this outer curve CP6-782 doesn’t allow efficient pairing
computation and efficient scalar multiplication via endomorphisms.

In the following sections, we refer to BLS12-377 as EBLS12(FqBLS12) with a
subgroup of order rBLS12, CP6-782 as ECP6(FqCP6) with a subgroup of order
rCP6 and our curve as Ẽ(Fq̃) with a subgroup of order r̃ (cf. Fig. 1).

MNT4

MNT6

rMNT6

= qMNT4

rMNT4

= qMNT6

MNT4-753

MNT6-753

rMNT6−753

= qMNT4−753

rMNT4−753

= qMNT6−753

CP6-782

BLS12-377

rCP6 = qBLS12

BW6-761

BLS12-377

r̃ = qBLS12

Fig. 1. Examples of pairing-friendly amicable cycles and chains. The arrow signifies
that the field arithmetic of the starting curve can be expressed natively in the exponents
on the second curve.

3 The Proposed Elliptic Curve: BW6-761

The parameters of the two curves proposed in [7] for one-layer proof-composition,
BLS12-377 and CP6-782, are given in Table 2. Note that because the Cocks–
Pinch method has a ratio ρ ≈ 2, the CP6-782 curve characteristic qCP6 is 782-bit
long (832 bits in the Montgomery domain). Since qCP6 is already very large, an
embedding degree k = 6 is sufficient for the security of Fk

qCP6
. Moreover, because

D = 339, ECP6 has only a quadratic twist E′ and thus G2 ⊂ E(Fq6
CP6

)[rCP6]
is isomorphic to E′(Fq3

CP6
)[rCP6], and G2 elements can be compressed to only

3 × 832 = 2496 bits.
Since we are stuck with ρ ≈ 2, we searched for a Cocks–Pinch curve Ẽ with

k = 6 and the smallest suitable q̃ less or equal to 768 bits. We restricted our
search to curves with CM discriminant D = 3 to allow optimal G2 compression
(a sextic twist Ẽ′/Fq̃ of Ẽ such that G2 is isomorphic to Ẽ′(Fq̃)[r] of 768 bits)
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Table 2. Parameters of BLS12-377 and CP6-782 curves

name curve type k D r q
compressed
G1 in bits

compressed
G2 in bits

EBLS12 BLS12 12 3 rBLS12 qBLS12 384 768

ECP6 short Weierstrass 6 339 rCP6 = qBLS12 qCP6 832 2496

prime value x
size

in bits
2-adicity
of x − 1

rBLS12 0x12ab655e9a2ca55660b44d1e5c37b00159aa76fed0000001

0a11800000000001

253 47

qBLS12

= rCP6

0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1

ef3622fba094800170b5d44300000008508c00000000001

377 46

qCP6 0x3848c4d2263babf8941fe959283d8f526663bc5d176b746a

f0266a7223ee72023d07830c728d80f9d78bab3596c8617c57

9252a3fb77c79c13201ad533049cfe6a399c2f764a12c4024b

ee135c065f4d26b7545d85c16dfd424adace79b57b942ae9

782 3

Table 3. Parameters of our curve

name curve type k D r q
compressed
G1 in bits

compressed
G2 in bits

Ẽ short Weierstrass 6 3 r̃ = qBLS12 q̃ 768 768

prime value x
size

in bits
2-adicity
of x − 1

r̃ =
qBLS12

0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef

3622fba094800170b5d44300000008508c00000000001

377 46

q̃ 0x122e824fb83ce0ad187c94004faff3eb926186a81d14688528

275ef8087be41707ba638e584e91903cebaff25b423048689c8e

d12f9fd9071dcd3dc73ebff2e98a116c25667a8f8160cf8aeeaf

0a437e6913e6870000082f49d00000000008b

761 1

and GLV fast scalar multiplication [18] on G1 and G2. Then, following the work
of [21], we computed the polynomial form of q̃, which allowed us to compute
the coefficients of an optimal lattice-based final exponentiation as in [17] and
perform faster subgroup checks. Finally, the constructed curve has a 2-torsion
point allowing fast and secure Elligator 2 hashing-to-point [5]. We also investigate
Wahby and Boneh’s work [30] as an alternative hashing method.

The short Weierstrass forms of the curve Ẽ and its sextic twist Ẽ′ are

Ẽ/Fq̃ : y2 = x3 − 1 (4)

Ẽ′/Fq̃ : y2 = x3 + 4 (5)

and the parameters are given in Table 3.
Given that qBLS12 is parameterized by a polynomial q(u) with

u = 0x8508c00000000001, (6)

we can apply the Brezing–Weng method (cf. Algorithm 3) with k = 6, D = 3
and r̃(x) = (x6 − 2x5 + 2x3 + x + 1)/3. There are two primitive 6-th roots of
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unity in Q[x]/r̃(x), and two sets of solutions
{

t̃0(x) = x5 − 3x4 + 3x3 − x + 3
ỹ0(x) = (x5 − 3x4 + 3x3 − x + 3)/3 or

{
t̃1(x) = −x5 + 3x4 − 3x3 + x
ỹ1(x) = (x5 − 3x4 + 3x3 − x)/3

Unfortunately neither (t̃0(x) + 3ỹ0(x))/4 nor (t̃1(x) + 3ỹ1(x))/4 are irreducible
polynomials, and we cannot construct a polynomial family of amicable 2-chain
elliptic curves. But following [21], with well-chosen lifting cofactors ht and hy, we
can obtain valid parameters t̃ = r̃×ht + t̃i(u) and respectively ỹ = r̃×hy + ỹi(u)
for i ∈ {0, 1}. We found these parameters to be i = 0, ht = 13, hy = 9. The
polynomial form of the parameters are summarized in Table 4. We propose to
name our curve BW6-761 as it is a Brezing–Weng curve of embedding degree 6
over a 761-bit prime field.

Table 4. Polynomial parameters of BW6-761.

BW6-761, k = 6, D = 3, r̃ = qBLS12

r̃(x) = (x6 − 2x5 + 2x3 + x + 1)/3

t̃(x) = x5 − 3x4 + 3x3 − x + 3 + htr̃(x)

ỹ(x) = (x5 − 3x4 + 3x3 − x + 3)/3 + hy r̃(x)

q̃(x) = (t̃2 + 3ỹ2)/4

q̃ht=13,hy=9(x) = (103x12 − 379x11 + 250x10 + 691x9 − 911x8

−79x7 + 623x6 − 640x5 + 274x4 + 763x3 + 73x2 + 254x + 229)/9

3.1 Optimizations in G1

We present some optimizations for widely used operations in cryptography: scalar
multiplication, hashing-to-point and subgroup check in G1.

GLV Scalar Multiplication. We have q̃ ≡ 1 (mod 3) and Ẽ(Fq̃) has j-invariant 0.
Let ω be an element of order 3 in Fq̃. Then the endomorphism φ : Ẽ → Ẽ defined
by (x, y) �→ (ωx, y) (and O �→ O) acts on a point P ∈ Ẽ(Fq̃)[r̃] as φ(P ) = [λ]P
where λ is an integer satisfying λ2 +λ+1 ≡ 0 mod r̃. Since we expressed q̃ and
r̃ as polynomials, we find ω(x) and λ(x) such that

ω(x)2 + ω(x) + 1 ≡ 0 (mod q̃(x)) (cube root of unity)

λ(x)2 + λ(x) + 1 ≡ 0 (mod r̃(x))

where λ1(x) = x5−3x4+3x3−x+1, λ2(x) = −λ1−1, ω1(x) = (103x11−482x10+
732x9 +62x8 −1249x7 +1041x6 +214x5 −761x4 +576x3 +11x2 −265x+66)/21,
ω2(x) = −ω1(x) − 1. Evaluating the polynomials at u (6), we find that for
P (x, y) ∈ Ẽ(Fq̃) of order r̃,

[λ1]P = (ω1x, y) , [−λ1 − 1]P = ((−ω1 − 1)x, y) , where (7)
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Algorithm 4: Elligator 2
Input: Θ an octet string to be hashed, A = 3, B = 3 coefficients of the curve M̃

and N a constant non-square in Fq̃

Output: A point (x, y) in M̃(Fq̃)
1 Define g(x) = x(x2 + Ax + B);
2 u = hash2base(Θ);
3 v = −A/(1 + Nu2);
4 e = Legendre(g(v), q̃);
5 if u �= 0 then
6 x = ev − (1 − e)A/2;

7 y = −e
√

g(x);

8 else
9 x = 0 and y = 0;

10 return (x, y);

λ1 = 0x9b3af05dd14f6ec619aaf7d34594aabc5ed1347970dec00452217cc9000

00008508c00000000001

ω1 = 0x531dc16c6ecd27aa846c61024e4cca6c1f31e53bd9603c2d17be416c5e4

426ee4a737f73b6f952ab5e57926fa701848e0a235a0a398300c65759fc4518315

1f2f082d4dcb5e37cb6290012d96f8819c547ba8a4000002f962140000000002a

Hashing-to-Point. Elligator 2 [5] is an injective map to any elliptic curve of the
form y2 = x3 + Ax2 + Bx with AB(A2 − 4B) 
= 0 over any finite field of odd
characteristic. Since the point (1, 0) ∈ Ẽ(Fq̃) is of order 2, we can map Ẽ to
a curve of Montgomery form, precisely M̃(Fq̃) : y2 = x3 + 3x2 + 3x (cf. Algo-
rithm 4). In Algorithm 4, hash2base(.) is a cryptographic hash function to Fq̃,
and Legendre(a, q̃) is the Legendre symbol of an integer a modulo q̃ which is of
value 1,−1, 0 for when the input is a quadratic residue, non-quadratic-residue,
or zero respectively. Elligator 2 is parametrized by a non-square N , for which
finding a candidate is an easy computation in general since about half of the
elements of Fq̃ are non-squares. For efficiency it is desirable to choose N to be
small, or otherwise in a way to speed up multiplications by N . In our case, we
can choose N = −1 because q̃ ≡ 3 (mod 4).

Wahby and Boneh introduced in [30] an indirect map for the BLS12-381
curve [6] based on the simplified SWU map [8], which works by mapping to
an isogenous curve with nonzero j-invariant, then evaluating the isogeny map.
We hence check if Ẽ has a low-degree rational isogeny. Since 2 × 11 divides ỹ
(CM equation 4q̃ = t̃2 + Dỹ2), there should be isogenies of degree 2 and 11.
Observing that the point (1, 0) is a 2-torsion point, we obtain the rational 2-
isogeny (x, y) �→ ((x2 − x + 3)/(x − 1), y(x2 − 2x − 2)/(x − 1)2) to the curve
y2 = x3−15x−22 of j-invariant 54000. A 2-torsion point on this curve is (−2, 0)
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and the dual isogeny to work with Wahby–Boneh hash function is (x′, y′) �→
((x′2 + 2x′ − 3)/(x′ + 2), y(x′2 + 4x′ + 7)/(x′2 + 2)2).

Clearing Cofactor. Another important step is clearing the cofactor. Our curve
has a large 384-bit long cofactor due to the Cocks–Pinch method. The cofactor
has a polynomial form in the seed u like the other parameters, c̃(x) = (103x6 −
173x5−96x4+293x3+21x2+52x+172)/3 and c̃(x)r̃(x) = q̃(x)+1−t̃(x). Because
the curve has j-invariant 0, it has a fast endomorphism φ : (x, y) �→ (ω1x, y) such
that φ2+φ+1 is the identity map. We apply the same technique as in [17]. First
we compute the eigenvalue λ(x) of the endomorphism modulo the cofactor. We
obtain λ(x) = (−385941x5 + 1285183x4 − 1641034x3 − 121163x2 + 1392389x −
1692082)/1250420 mod c̃(x). Then we reduce with LLL the lattice spanned by
the rows of the matrix M and obtain a reduced matrix B:

M =
[

c̃(x) 0
λ(x) mod c̃(x) 1

]

, B =
1

103

[
103x3 − 83x2 − 40x + 136 7x2 + 89x + 130

−7x2 − 89x − 130 103x3 − 90x2 − 129x + 6

]

.

We check that bi0(x) + λ(x)bi1(x) = 0 mod c̃(x) and gcd(bi0(x) + λ(x)bi1(x),
r̃(x)) = 1. Now x = u and for clearing the cofactor, we first precompute
uP, u2P, u3P which costs three scalar multiplications by u (6), then we com-
pute R = 103(u3P ) − 83(u2P ) − 40(uP ) + 136P + φ(7(u2P ) + 89(uP ) + 130P ),
and R has order r̃. This formula is compatible with ω1 to compute φ.

Subgroup Check. The subgroup check can benefit from the same technique. We
need to check if a point P ∈ Ẽ(Fq̃) has order r̃, that is, r̃P = O. Instead of
multiplying by r̃ of 377 bits, we can use the endomorphism φ as above. This time
we need λ1(x) = x5−3x4+3x3−x+1 modulo r̃(x). We reduce the matrix M and
obtain a short basis B and check that (x+1)+λ1(x)(x3 −x2 +1) = 0 mod r̃(x).

M =
[

r̃(x) 0
−λ1(x) mod r̃(x) 1

]

B =
[

x + 1 x3 − x2 + 1
x3 − x2 − x −x − 1

]

For a faster subgroup check of a point P , one can precompute uP, u2P, u3P with
three scalar multiplications by u, and check that uP + P + φ(u3P − u2P + P ) is
the point at infinity.

3.2 Optimizations in G2

We present some optimizations for widely used operations on curves: scalar mul-
tiplication, hashing-to-point and subgroup check in G2.

Compression of G2 Elements. Since the CM discriminant of Ẽ/Fq̃ is D = 3,
the curve has a twist of degree d = 6. Additionally, because the embedding
degree is k = 6, the r̃-torsion of G2 ⊂ Ẽ[r̃](Fq̃6) is isomorphic to Ẽ′[r̃](Fq̃k/d) =
Ẽ′[r̃](Fq̃). Thus, elements in G2 can be compressed from 4608 bits to 768 bits.
We choose the irreducible polynomial x6 + 4 in Fq̃[x] and construct the M-twist
curve Ẽ′/Fq̃ : y2 = x3 + 4. To map a point Q(x, y) ∈ Ẽ(Fq̃6) to a point on the
M-twist curve we use ξ : (x, y) �→ (x/ν2, y/ν3) where ν6 = −4.
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GLV Scalar Multiplication. Since the group G2 is isomorphic to the r̃-torsion
in Ẽ′(Fq̃) (Eq. (5)), we can apply almost the same GLV decomposition as in
equation (7). Given that the order of E′ is q̃ + 1 − (3ỹ + t)/2, we find that
[λ1]P = (ω2x, y) and [λ2]P = (ω1x, y) for any P (x, y) ∈ E′[r̃].

Hashing-to-Point. The curve Ẽ′(Fq̃) : y2 = x3 + 4 doesn’t have a point of order
2 so Elligator 2 doesn’t apply. Furthermore, we didn’t find a low-degree rational
isogeny and thus Wahby–Boneh method is not efficiently applicable. However,
we can apply the more generic Shallue–Woestijn algorithm [28] that works for
any elliptic curve over a finite field Fq of odd characteristic with #Fq > 5. It
runs deterministically in time O(log4 q) or in time O(log3 q) if q ≡ 3 mod 4 (a
square root costs an exponentiation). Fouque and Tibouchi [15] adapted this
algorithm to BN curves (j = 0) assuming that q ≡ 7 mod 12 and that the point
(1, y) 
= (1, 0) lies on the curve. Noting that Ẽ′ : y2 = f(x) = x3 + 4 satisfies
these assumptions, we propose using Fouque–Tibouchi map for BW6-761:

g : F∗
q̃ → Ẽ′(Fq̃)

z �→
(
xi(z), Legendre(z, q̃) ×

√
f(xi(z))

)

i∈{1,2,3}

where

x1(z) = −1+
√−3
2 −

√−3·z2

5+z2 ; x2(z) = −1−√−3
2 +

√−3·z2

5+z2 ; x3(z) = 1 − (5+z2)2

3z2

Because of the Skalba identity y2 = f(x1) · f(x2) · f(x3), at least one of the xi

above is an abscissa of a point on Ẽ′—we choose the smallest index i such that
f(xi) is a square in Fq̃.

Clearing Cofactor. Given a point P ′ ∈ Ẽ′(Fq̃), we precompute uP ′, u2P ′ and
u3P ′ with three scalar multiplications, then the point R′ has order r̃, with

R′ = (103u3P ′ − 83u2P ′ − 143uP ′ + 27P ′) + φ(7u2P ′ − 117uP ′ − 109P ′) .

Subgroup Check. The formula compatible with ω1 for φ is

−uP ′ − P ′ + φ(u3P ′ − u2P ′ − uP ′) = 0 ⇐⇒ r̃P ′ = O .

3.3 Pairing Computation

The verification equation of proof composition (3) requires three pairing com-
putations. When an even-degree twist is available, the denominators v[2]S(P ),
vS+Q(P ) in Algorithm 1 are in a proper subgroup of Fqk and can be removed
as they resolve to one after the final exponentiation. This is the case for BLS12,
CP6-782 and BW6-761. We estimate, in terms of multiplications in the base
fields Fq̃, an optimal ate pairing on BW6-761. We follow the estimate in [21]. We
model the cost of arithmetic in a degree 6, resp. degree 12 extension in the usual
way, where multiplications and squarings in quadratic and cubic extensions are
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obtained recursively with Karatsuba and Chung–Hasan formulas, summarized
in Table 5. We denote by mk, sk, ik and fk the costs of multiplication, squar-
ing, inversion, and q-th power Frobenius in an extension Fqk , and by m = m1

the multiplication in a base field Fq. We neglect additions and multiplications
by small constants. Below, we compute the formulae of an ate pairing and an
optimized final exponentiation for BW6-761. We also provide timings of these
formulae based on a Rust implementation and compare them to CP6-782 timings
(Table 6).

Table 5. Cost from [21, Table 6] of mk, sk and ik for finite field extensions involved.

k 1 2 3 6 12

mk m 3m 6m 18m 54m

sk m 2m 5m 12m 36m

fk 0 0 2m 4m 10m

scyclok 6m 18m

ik − i1 0 4m 12m 34m 94m

ik, with i1 = 25m 25m 29m 37m 59m 119m

Table 6. Miller loop cost in Weierstrass model from [1,13], homogeneous coordinates.

k D curve DoubleLine and
AddLine

Update1 and
Update2

ref

6 | k −3 y2 = x3 + b
sextic twist

2mk/6 +7sk/6 +(k/3)m
10mk/6+2sk/6+(k/3)m

sk + 13mk/6

13mk/6

[13, §5]

6 | k −3 y2 = x3 + b
sextic twist

3mk/6 +6sk/6 +(k/3)m
11mk/6+2sk/6+(k/3)m

sk + 13mk/6

13mk/6

[1, §4,6]

Miller Loop for BW6-761. For BW6-761, the Tate pairing has Miller loop length
r̃(x) = (x6 − 2x5 + 2x3 + x + 1)/3, and the ate pairing has Miller loop length
t̃(x) − 1 = (13x6 − 23x5 − 9x4 + 35x3 + 10x + 19)/3, hence the ate pairing will
be slightly slower. Recall that thanks to a degree 6 twist, the two points P ∈ G1

and Q ∈ G2 have coordinates in Fq̃, hence swapping the two points for the ate
pairing does not slow down the Miller loop in itself. We now apply Vercauteren’s
method [29] to obtain an optimal ate pairing of minimal Miller loop. Define
the lattice spanned by the rows of the matrix M , and reduce it with LLL. One
obtains the short basis B made of linear combinations of M :

M =
[

r̃(x) 0
−q̃(x) mod r̃(x) 1

]

B =
[

x + 1 x3 − x2 − x
x3 − x2 + 1 −x − 1

]

.
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Algorithm 5: Miller Loop for BW6-761
1 m ← 1; S ← Q;
2 for b from the second most significant bit of u to the least do
3 � ← �S,S(P ); S ← [2]S ; DoubleLine
4 m ← m2 · �; Update1
5 if b = 1 then
6 � ← �S,Q(P ); S ← S + Q ; AddLine
7 m ← m · � ; Update2

8 Qu ← AffineCoordinates(S) ; Homogeneous (H) : i + 2m; Jacobian
(J ) : i + s + 3m

9 m−u ← 1/mu; S ← Qu; mu ← m ; i6
10 � ← �Qu,Q(P ); Qu+1 ← Qu + Q ; AddLine
11 mu+1 ← mu · � ; Update2
12 for b from the second most significant bit of (u2 − u − 1) to the least do
13 � ← �S,S(P ); S ← [2]S ; DoubleLine
14 m ← m2 · �; Update1
15 if b = 1 then
16 � ← �S,Qu(P ); S ← S + Qu ; AddLine
17 m ← m · mu · � ; m6+Update2

18 else if b = −1 then
19 � ← �S,−Qu(P ); S ← S − Qu ; AddLine
20 m ← m · m−u · � ; m6+Update2

21 return mu+1 · mq̃ ; f6 + m6

One can check that (x + 1) + (x3 − x2 − x)q̃(x) ≡ 0 mod r̃(x). The optimal ate
pairing on our curve is

ateopt(P,Q) = (fu+1,Q(P )f q̃
u3−u2−u,Q(P )�[u3−u2−u]π(Q),[u+1]Q(P ))(q̃

6−1)/r̃

and since (u+1)+q̃(u3−u2−u) = 0 mod r̃, we have [u+1]Q+πq̃([u3−u2−u]Q) =
O. The line �[u3−u2−u]π(Q),[u+1]Q is vertical and can be removed. Finally,

ateopt(P,Q) = (fu+1,Q(P )f q̃
u3−u2−u,Q(P ))(q̃

6−1)/r̃. (8)

Now we share the computation of fu,Q(P ) to optimize further the Miller loop,
noting that fu+1,Q(P ) equals fu,Q(P ) · �[u]Q,Q(P ). We can re-use fu,Q(P ) to
compute the second part fu(u2−u−1),Q since fuv,Q = fv

u,Qfv,[u]Q. This results in
Algorithm 5. We write u2 − u − 1 in 2-non-adjacent-form (2-NAF) to minimize
the addition steps in the Miller loop, and replace Q by −Q in the algorithm when
the bit bi is −1. The scalar u2 − u − 1 is 127-bit long and has HW2-NAF = 19.

CostMillerLoop = (nbits(u) − 1)CostDoubleLine + (nbits(u) − 2)CostUpdate1

+ (HW(u) − 1)(CostAddLine + CostUpdate2)

+ (nbits(u2 − u − 1) − 1)(CostDoubleLine + CostUpdate1)

+ (HW2-NAF(u2 − u − 1) − 1)(CostAddLine + CostUpdate2 + m6)
+ i + 2m + i6 + f6 + m6



274 Y. El Housni and A. Guillevic

We plug in the values of our curve and obtain (64−1)(3m+6s+2m)+(64−2)(s6+
13m)+(7−1)(11m+2s+2m+13m)+(127−1)(3m+6s+2m+13m+s6)+(19−
1)(11m+2s+2m+13m+m6)+i+2m+i6+13m+f6+m6 = 7861m+2i ≈ 7911m
with m = s and i ≈ 25m. We note that since q̃(x) ≡ t̃(x)−1 ≡ λ(x)+1 mod r̃(x),
the formulas are similar as for the subgroup check in G1 in Sect. 3.1, where we
found that (x + 1) + λ(x)(x3 − x2 + 1) = 0 mod r̃(x).

Final Exponentiation for BW6-761. Given that q̃ has a polynomial form, we can
compute the coefficients of a fast final exponentiation as in [17]. The easy part
is raising to (q̃3 − 1)(q̃ + 1) and costs 99m. For the hard part σ = (q̃2 − q̃ + 1)/r̃,
we raise to a multiple σ′(u) of σ with r̃ � σ. Following [17], we find that σ′(x) =
R0(x) + q̃ × R1(x) with

R0(x) = −103x7 + 70x6 + 269x5 − 197x4 − 314x3 − 73x2 − 263x − 220

R1(x) = 103x9−276x8+77x7+492x6−445x5−65x4+452x3−181x2+34x+229

and a polynomial cofactor 3(x3−x2+1) to σ(x). The exponentiation is dominated
by exponentiations to u, u2, . . . , u9. Raising to u costs expu = 4(nbits(u)−1)m+
(6HW(u)−3)m+(HW(u)−1)m6+3(HW(u)−1)s+i = 4·63m+39m+6m6+18s+
i = 417+i = 442m; and nine such u-powers cost 3978m. Eight Frobenius powers
f6 = 4m occur, as do some exponentiations to the small coefficients of R0, R1.
They do not seem suited for the short addition chain so a multi-exponentiation
in 2-NAF technique can reduce the cost to 9scyclo6 + 51m6 = 972m. The total
count is (99 + 3978 + 32 + 972)m = 5081m.

Table 7. Pairing cost estimation in terms of base field multiplications mb, where b is
the bitsize in Montgomery domain on a 64-bit platform.

Curve Prime Pairing Miller loop Exponentiation Total

BLS12-377 377-bit qBLS12 ate 6705m384 7063m384 13768m384

CP6-782 782-bit qCP6 Tate 21510m832 10521m832 32031m832

ate 47298m832 10521m832 57819m832

opt. ate 21074m832 10521m832 31595m832

BW6-761 761-bit q̃ opt. ate 7911m768 5081m768 12992m768

Finally, according to Table 7, BW6-761 is much faster than CP6-782. We
obtain a pairing whose cost in terms of base field multiplications is two times
cheaper compared to the Tate pairing on CP6-782 and four times cheaper than
the ate pairing available in Zexe Rust implementation [24], and moreover the
multiplications take place in a smaller field by one 64-bit machine word. Partic-
ularly, it is at least five times cheaper to compute on BW6-761 the product of
pairings needed to verify a Groth proof (Eq. (3)). The verification would be even
cheaper if we included the GLV-based multi-scalar multiplication in G1 needed
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for vkx and subgroup checks in G1 and G2 needed for the proof and the verifica-
tion keys. Finally, We note that proof generation is also faster on the new curve
but we chose to base the comparison on the verification equation for two reasons:
The cost of proof generation depends on the NP-statement being proven while
the verification cost is constant for a given curve, and in blockchain applications,
only the verification is performed on the blockchain, costing execution fees.

Implementation. We provide a Sagemath script and a Magma script to check
the formulas and algorithms of this section. The source code is available under
MIT license at https://gitlab.inria.fr/zk-curves/bw6-761. We also provide, based
on libzexe [24], a Rust implementation of the curve arithmetic for Ẽ and Ẽ′,
along with the optimal ate pairing described in Algorithm 5 and the fast final
exponentiation in the full version of the paper. The source code was merged into
libzexe [24] in the pull request 210 and is available under dual MIT/Apache
public license at: https://github.com/scipr-lab/zexe/pull/210.

For benchmarking, we choose to compare the timings of a pairing computa-
tion, and an evaluation of Eq. (3) whose costs are dominated by 3 Miller loops
and 1 final exponentiation (cf. Table 8). It is of note that the ZEXE CP6-782
code implements an ate pairing with affine coordinates as those should lead, in
the case of that curve, to a faster Miller loop than with projective coordinates,
as suggested in [25]. The Rust implementation was tested on a 2.2 GHz Intel
Core i7 x86 64 processor with 16 Go 2400 MHz DDR4 memory running macOS
Mojave 10.14.6 and compiled with Cargo 1.43.0.

Table 8. Rust implementation timings of ate pairing computation on CP6-782 and
optimal ate pairing on BW6-761.

Curve Pairing Miller loop Exponentiation Total Eq. 3

CP6-782 ate (affine) 76.1 ms 8.1 ms 84.2 ms 309.4 ms

BW6-761 opt. ate 2.5 ms 3 ms 5.5 ms 10.5 ms

We conclude that using this work, a pairing computation is 15.3 times faster
and the verification of a Groth16 proof is 29.5 times faster, compared to the CP6-
782 ZEXE implementation. This huge gap between theory and practice is mainly
due to the choice of affine coordinates in the Miller loop without implementing
optimized inversion in Fq3 as advised in [25]. Finally, one should also include the
cost to check that the proof and the verification key elements are in the right
subgroups G1 and G2, which should also be faster on BW6-761 as described in
Sect. 3.1, Sect. 3.2.

4 Security Estimate of the Curves

We estimate the security in GT against a discrete logarithm computation for
BLS12-377, CP6-782, and BW6-761. BLS12-377 has a security of about 2125 in

https://gitlab.inria.fr/zk-curves/bw6-761
https://github.com/scipr-lab/zexe/pull/210
https://github.com/scipr-lab/zexe/pull/210
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Fq12
BLS

, CP6-782 has security about 2138 in Fq6
CP6

and BW6-761 has a security
of about 2126 in Fq̃6 , taking the Special Tower NFS algorithm into account and
the model of estimation in [22]. For CP6-782, the characteristic qCP6 does not
have a special form and we consider the TNFS algorithm with the same set of
parameters as for a MNT curve of embedding degree 6. The security on the curve
BLS12-377 (G1 and G2) is 126 bits because rBLS12 is 253-bit long. The security
in G1 and G2 for CP6-782 and BW6-761 is 188 bits as rCP6 = r̃ is 377-bit long.

The curve parameters are given in Tables 1 and 2 for BLS12-377 and CP6-782,
and Tables 4, 3 for BW6-761. In [22, Table 5], the BLS12-381 curve has a security
in GT estimated about 2126. We obtain a very similar result for BLS12-377: 2125,
indeed the curves are almost the same size. Very luckily, we also obtained a
security of 2126 in Fq̃6 . The full version of the paper contains the numerical
data.

4.1 A Note on Cheon’s Attack

Cheon [11] showed that given G, [τ ]G and [τT]G, with G a point in a subgroup
G of order r with T|r−1, it is possible to recover τ in 2(√(r − 1)/T�+√T�)×
(Exp

G
(r) + log r × Comp

G
) where Exp

G
(r) stands for the cost of one exponentia-

tion in G by a positive integer less than r and Comp
G

for the cost to determine if
two elements are equal in G. According to [11, Theorem 2], if T ≤ r1/3, then the
complexity of the attack is about O(

√
r/T) exponentiation by using O(

√
r/T)

storage.
In zkSNARK settings such as in [20], the preprocessing phase includes ele-

ments [τ i]Ti=0G1 ∈ G1 and [τ i]Ti=0G2 ∈ G2, where T ∈ N∗ is the size of the
arithmetic circuit related to the NP-statement being proven, and τ is a secret
trapdoor. The property T | r − 1 also holds since we need r to be highly 2-adic
(we have 247 | r − 1 and 246 | r̃ − 1). So, given these auxiliary inputs, an attacker
could recover the secret using Cheon’s algorithm in time O(

√
r/T), hence break-

ing the zkSNARK soundness. We estimate the security of the curves BLS12-377
and BW6-761 with the applications we mentioned, precisely the Nightfall fungi-
ble tokens transfer circuit (TG1 = 222 − 1,TG2 = 221) and the Filecoin circuit
(TG1 = 228 − 1,TG2 = 227), which is the biggest circuit of public interest in the
blockchain community.

We recall that our curve is designed for proof composition and that the verifier
circuit of a Groth’s proof can be expressed in T̃ = 40000 constraints. Hence, the
complexity of Cheon’s attack on BW6-761, in the case of composing Groth’s

proofs, would be O
(√

r̃/T̃
)

≈ 2181. However, for completeness, we state that
the curve still has at least 126 bits of security as previously stated, for circuits
of size up to 2124 which is, to the authors’ knowledge, “large enough” for all the
published applications.

For the BLS12-377 curve, because the subgroup order is 253-bit long, the
estimated security for Nightfall setup is about 116 bits in G1 and for Filecoin,
about 113 bits in G1. While this curve has a standard security of 128 bits under
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generic attacks (without auxiliary inputs), one should use it with small SNARK
circuits or look for alternative inner curves, which we set as a future work.

5 Conclusion

In this work, we construct a new pairing-friendly elliptic curve on top of Zexe’s
inner curve which is suitable for one layer proof composition. We discuss its secu-
rity and the optimizations it allows. We conclude that it is at least five times
faster for verifying Groth’s proof compared to the previous state-of-the-art, and
validate our results with an open-source Rust implementation. We mentioned
several projects in the blockchain community that need one layer proof compo-
sition and therefore can benefit from this work. Applications such as Zexe, EY
Nightfall, Celo or Filecoin can consequently reduce their operation cost.
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Abstract. Pairings are a powerful tool to build advanced cryptographic
schemes. The most efficient way to instantiate a pairing scheme is
through Pairing-Friendly Elliptic Curves.

Because a randomly picked elliptic curve will not support an efficient
pairing (the embedding degree will usually be too large to make any
computation practical), a pairing-friendly curve has to be carefully con-
structed. This has led to famous curves, e.g. Barreto-Naehrig curves.

However, the computation of the Discrete Logarithm Problem on the
finite-field side has received much interest and its complexity has recently
decreased. Hence the need to propose new curves has emerged.

In this work, we give one new curve that is specifically tailored to be
fast over the first pairing-group, which is well suited for several crypto-
graphic schemes, such as group signatures, and their variants, or accu-
mulators.

1 Introduction

Pairings and cryptography have a long common history. Initially used as a way
to shift the discrete logarithm problem from elliptic curves to finite fields [35], it
has first been used for constructive purpose by Joux [30] in 2000. Following this
seminal result, pairings have been massively used in cryptography. This is due in
large part to the nice features of this mathematical tool but also to its apparent
simplicity. Indeed, the features of pairings can easily be abstracted so as to be
used even by non-specialists. Actually, almost all pairing-based cryptographic
papers (e.g. [6,10,37]) consider so-called “bilinear groups” as some kind of black
box given by a set of three groups G1, G2 and GT (usually of prime order �)
along with an efficiently-computable non-degenerate bilinear map between them

e : G1 × G2 −→ GT .

This way, cryptographers can design their protocols without being bothered
by the technicalities of the concrete implementations of pairings. The only sub-
tlety considered in cryptographic papers is the existence of efficiently computable
morphisms between G1 and G2, which has led to so called type-i pairings, for
i ∈ {1, 2, 3}, according to the classification by Galbraith et al. [23]. However,
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type-3 pairings are now preponderant in cryptography because they are the most
efficient ones [23] and because they are compatible with cryptographic assump-
tions, such as Decisional Diffie-Hellman in both G1 and G2, that do not hold
with the other types. Actually, some recent results [1,16] cast some doubts on
the real interest of type-1 and type-2 pairings for cryptography. For all these
reasons, we only consider type-3 pairings in this paper.

In all cases, at some point, it becomes necessary to instantiate these bilinear
groups. To date, the only secure instantiations are (to our knowledge) based on
elliptic curves as the constructions based on lattices [19,25] have been proved
insecure [17,18]. More specifically, on one hand, G1 and G2 are usually defined
as cyclic groups of prime order � of some elliptic curve E over a finite field Fq.
On the other hand, GT is the group of �-th roots of unity in Fqk , where k is the
order of q in Z/�Z, called the embedding degree of q.

It is thus important to understand that, despite being considered as similar
objects by the cryptographic abstraction of bilinear groups, the groups G1, G2

and GT are extremely different in practice. The main difficulty when it comes to
instantiate these groups is to carefully select the different parameters (essentially
�, q and k) in order to ensure that security holds in each group while retaining
the best efficiency. Here, by “security” we mean the hardness of the Discrete
Logarithm Problem (DLP) although cryptographic schemes usually rely on easier
problems.

Actually, for a long time, the problem of selecting these parameters was
thought to be rather easy. It was indeed thought that the hardness of the DLP
problem in Fqk only depended on the bitlength of this field (namely k log2(q))
and not on k and q themselves. Using this assumption, it was quite simple to
derive concrete bounds on �, q and k to achieve some specific security level λ.
For example, in the standard case λ = 128, a simple look at [42, Table 4.6]
reveals that we must have log2(�) � 256 (and so log2(q) � 256 because of the
Hasse’s bound) and k log2(q) � 3072. In this case, parameters q ∼ � ∼ 2256 and
k = 12 are optimal. Moreover the choice of an even k leads to very efficient
implementations of pairings and of the arithmetic in Fqk . This largely explains
the success of the so-called Barretto-Naehrig curves (BN) [8] (that perfectly
match these parameters) which have become de facto the standard pairing curves
in the literature.

Unfortunately, two recent papers [32,33] have shown that the assumption
regarding Fqk was wrong. We will discuss the details later but intuitively these
results imply that the bitlength of the elements of Fqk is no longer the good
metric to estimate security in this group as it now depends on the shape of both
integers q and k. We now face a somewhat chaotic situation where a 3000-bit
finite field Fqk may offer the same security level as a 5000-bit one provided that k
and q have some specific properties. And GT is not the only group concerned by
these considerations as the parameter q has a direct impact on G1 and G2. Con-
cretely, it is now sometimes necessary to significantly increase the parameter q
(that becomes much larger than the advised minimal bound 2256) to remain com-
patible with some values of k that enables efficient pairing computations. This
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is illustrated by the BLS12 curves promoted by Barbulescu and Duquesne’s [4]
for the standard 128-bits level of security. These curves lead to a 450-bit prime
integer q, i.e. 75% higher than old BN curves.

These examples are representative of the current strategy to select pairing
parameters [4]. The goal is indeed to find a nice compromise between the com-
plexity of the different groups/operations. More specifically, it aims at provid-
ing parameters that would not significantly penalize one particular operation.
This strategy thus makes the implicit assumption that cryptographic protocols
present some kind of symmetry, between the groups G1, G2 and GT , but also
between the entities that will perform the operations in these groups. This may
be true in some specific scenarios but there are many others were this assumption
is false.

As an example, let us consider the case of Enhanced Privacy ID (EPID)
scheme introduced by Brickell and Li [14] and now massively used to secure Intel
SGX enclave [2]. EPID is a variant of Direct Anonymous Attestation (DAA) [12]
with enhanced revocation capabilities, meaning that it is possible to revoke a
secret key sk by simply adding a signature generated using sk to a revocation
list. The next signatures will then have to contain a proof that they were issued
using a different secret key. This is a nice feature but it implies to perform a
high number of exponentiations in G1 [13], linear in the number n of revoked
signatures, as illustrated in Table 1. Actually, this table shows a clear imbalance
between the different groups as soon as the revocation list contains dozens of
elements, a threshold that should be quickly reached in most scenarios. In those
cases, we note that trying to stick to the minimal bound for q (thus decreasing
the complexity of operations in G1), even if it significantly deteriorates the com-
putational cost of a pairing, is a worthwhile goal as there is only one pairing to
compute against roughly 6n exponentiations to generate or to verify the signa-
ture. This is all the more true since this pairing is only computed by the verifier,
an entity that is assumed, in the context of DAA, to be much more powerful
than the signer (usually a constrained device). To put it differently, we here need
a curve that will optimize operations in G1 even if it is at the cost of a much
more expensive pairing.

This scenario illustrates the limits of the global strategy for selecting param-
eters. The mainstream curves do not seem suitable here and we can hope for
dramatic performance improvements by using a tailored curve. And this is not
an isolated case as we explain in Sect. 3.

Our Contribution. The contribution of our paper is twofold. First, we investi-
gate a different approach for selecting curve parameters. We indeed believe that
standard families of curves, like BLS12, do not fit all cryptographic protocols
and in particular impose a tradeoff (between the complexities of the different
groups and operations) that is irrelevant in many contexts. Realizing that the
era of optimality using Barreto-Naehrig curves is over, we choose to focus on
the family of cryptographic protocols whose practicality depends on the imple-
mentation of the group G1. This family is quite large because cryptographers
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usually try to avoid as much as possible the other groups (G2 and GT ) as the lat-
ter are much less efficient and even incompatible with some constrained devices
(see e.g. [6]). We then look for curves with minimal G1 scalar multiplication
complexity, which leads us to the case of prime embedding degree k, a setting
that has been overlooked for a long time despite being immune to Kim’s and
Barbulescu’s attacks [32,33] mentioned above. We provide a security assessment,
some benchmarks and a complexity evaluation of some curves from this setting
that we compare to the most known alternatives. Our results show that the
computational complexity of the operations on the first pairing group is 65%
higher for the standard curves (with composite embedding degrees) comparing
to our proposal (with prime embedding degrees), while yielding elements in G1

that are 20% larger. Of course, those composite-embedding-degree curves come
at the cost of a less expensive pairing but our analysis shows that this overhead
is acceptable in the context we consider.

Based on these results we investigate new curves that would match our need.
We find a new one that goes one step further in the quest for optimizing the
performance of G1. We call this new curve, which constitutes our second con-
tribution, BW19-P286 as it was generated using the Brezing-Weng strategy [11],
has embedding degree 19 and is defined over a 286-bit field Fq. The use of such
a small q, which is close to the optimal bound 2256, is particularly interesting for
constrained devices (more specifically those with 32 -or less- bits of architecture)
as it reduces the number of machine-words compared to the state-of-the-art.

In the end, our results show that Kim’s and Barbulescu’s attacks do not
necessarily imply a large increase of the complexity of pairing-based protocols
that would in particular rule out the latter for constrained devices. On the
contrary, we prove that we can retain the original efficiency for some parties.
Of course, this is done to the detriment of the other parties but we argue that
there are few use-cases where all entities are equally powerful. We nevertheless
do not claim that our curves fit all contexts and in particular we do believe
that standard curves still remain relevant, in particular when a large number of
pairings is to be computed.

Roadmap. In Sect. 3 we describe some examples that justify our strategy for
selecting curves. In Sect. 4 we outline the strategy to assess the cost of the Dis-
crete Logarithm Problem and the security of our curves and provide two tailored
curves in Sect. 5. Finally, we compared an implementation of the proposed curves
with other curves in Sect. 6.

2 Preliminaries

Let q > 3 be a prime number. The field having q elements is noted Fq and,
for any n > 1, the extension field having qn elements is noted Fqn . When we
compute discrete logarithms in Fqn , we mean solving the Discrete Logarithm
Problem in the group (Fqn\{0},×).
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2.1 Elliptic Curves

An elliptic curve E/Fq is the set of points (x, y) satisfying y2 = x3 + ax + b,
where a, b ∈ Fq and 4a3 + 27b2 �= 0, enlarged with another point ∞, called point
at infinity. This equation is called the Short Weierstrass Model of the curve. For
integer n � 1, the set of point (x, y) ∈ (Fqn)2 on E is noted E(Fqn). The set
E(Fqn) can be equipped with a commutative internal law, with ∞ as identity
element. We follow the convention of cryptographic literature and denote this
group multiplicatively. For an integer � coprime to q, we note E(Fqn)[�] the sub-
group of E(Fqn) formed by points of order dividing �, i.e. all points g such that
g� = ∞. The group E(Fqn)[�] is called the �-torsion over Fqn . When we com-
pute discrete logarithms in E(Fqn)[�], we mean solving the Discrete Logarithm
Problem in the group (E(Fqn)[�], ·), i.e. if h is a power of g, find x such that
h = gx. There is a minimal k � 1 such that E(Fqk)[�] is isomorphic to (Z/�Z)2,
this integer is called the embedding degree of q (with respect to �), it is the order
of q (mod �).

The Frobenius endomorphism is defined as (x, y) �→ (xq, yq) ∈ End(E). Its
minimal polynomial is X2 − tX + q, where t is aptly called the trace of the
Frobenius, and the number of Fq-rational points is q − t + 1. The discriminant
Δ of that polynomial is Δ = t2 − 4q. We can always write Δ = Df2, where
D < 0 is square-free. D is called the Complex Multiplication discriminant.

When the CM discriminant is small enough, there exist an endomorphism φ
easily computable and an integer λ > 0 such that φ(g) = gλ for all g ∈ E(Fq)[�].
The main advantage of using the endomorphism φ is to roughly halve the com-
putational cost of an exponentiation in E(Fq)[�] as evaluating φ is much more
efficient than directly raising to the power λ. This is called the GLV method [24].
Suppose we want to compute ga for a point g ∈ E(Fq)[�] and a scalar a (mod �).
We proceed as follow: compute a0 and a1 such that a = a0 + a1λ (e.g. the
Euclidean division of a by λ) and compute ga0 · φ(g)a1 . The result is ga:

ga0 · φ(g)a1 = ga0 · ga1λ = ga0+a1λ = ga.

The size of a0 and a1 is expected to be half the size of � as λ is a root of a degree
2 polynomial. The point φ(P ) can be precomputed (if needed) and ga0 · φ(g)a1

can be computed with any multi-exponentiation algorithm.

2.2 Bilinear Groups

Pairing-based cryptographic protocols consider a setting defined by three cyclic
groups, G1, G2, and GT , of prime order � (with respective identity element 1G1 ,
1G2 and 1GT

), along with a bilinear map e : G1 × G2 → GT with the following
properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Z/�Z, e(ga, g̃b) = e(g, g̃)a·b;
2. for any g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
3. the map e is efficiently computable.
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As all these groups are of the same prime order, we know that there exist non-
trivial homomorphisms ϕ1 : G1 → G2 and ϕ2 : G2 → G1. However, the latter
may not be efficiently computable, which has a strong impact on cryptographic
protocols and more specifically on the underlying computational assumptions.
Following Galbraith, Paterson and Smart [23], this has led cryptographers to
distinguish types of pairings: type-1, where both ϕ1 and ϕ2 are efficiently com-
putable; type-2, where only ϕ2 is efficiently computable; and type-3, where no
efficiently computable homomorphism exists between G1 and G2, in either direc-
tion. All these types can be instantiated with elliptic curves but type-3 pairings
are preferred in practice both for their efficiency and their ability to support
some useful cryptographic assumptions, e.g. decisional Diffie-Hellman in groups
G1 and G2.

We also note that it is possible to consider bilinear groups of composite
order. However, prime order bilinear groups are much more efficient [26] and can
actually emulate most features of their composite-order counterparts [21].

Usually, when bilinear groups are instantiated over an elliptic curve, the curve
is ordinary (i.e. t �≡ 0 (mod q)), the number of Fq-rational points q − t + 1 is
a multiple of � but not of �2 and pairing groups are taken as G1 = E(Fq)[�],
G2 ⊂ E(Fqk)[�]\G1 and GT ⊂ Fqk , where k is the order of q (mod �).

That will be our case here.

3 Schemes with Numerous Computations in G1

Before providing details on the way we select elliptic curve parameters, we elabo-
rate on the motivation of our work, namely the benefits of selecting such param-
eters based on the characteristics of the cryptographic protocols. We are more
specifically interested in the family of cryptographic protocols whose complexity
essentially depends on the efficiency of G1. This family may include protocols
requiring to perform many exponentiations in G1, as is the case with the EPID
scheme we discuss in the introduction, but also schemes where the most con-
strained entity only has to compute operations in G1, as in Direct Anonymous
Attestation. These two primitives are today massively used in industrial prod-
ucts [2,43] and are thus meaningful examples of this family of cryptographic
protocols. To illustrate that the latter is not restricted to authentication algo-
rithms we will also consider the case of two cryptographic accumulators that
would benefit from the tailored curves we propose in our paper.

Table 1 highlights the specific need of two different anonymous authentica-
tion schemes [6,13] that are, to our knowledge, the most efficient of their kind.
For [13], we use the proof of non-revocation described by the same authors
in [14]. We note that most alternatives and variants (e.g. [37] for group sig-
nature) present similar features so our conclusions also apply to them. Table 1
shows that the size of the signature only depends on the one of G1 elements (and
on �) and that the signer only has to perform operations in G1. There are few
pairings and operations in G2 to compute and only on the verifier side, which
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is usually considered as more powerful than the signer in those contexts. Cryp-
tographic protocols with such features are thus a good incentive for designing
curves with efficient computations/elements in G1.

Table 1. Complexity of some anonymous authentication schemes. ei refers to an expo-
nentiation in Gi and P to a pairing computation, n is the number of revoked signatures.

Primitive Ref. Signature
elements

Operation counts

Sign Verify

DAA [6] 5G1 + 2Z/�Z 6e1 4e1 + 3P

EPID [13] 3G1 + 6Z/�Z
+ n(3G1 + Z/�Z)

3e1 + 4eT

+ 6ne1

4e1 + 2e2 + 4eT

+ 1P + 6ne1

In Table 2, we consider two pairing-based accumulator schemes [15,22]. We
recall that the point of an accumulator system is to project a large number
of elements into a single short value, called the accumulator. Additionally, for
each of these elements, it is possible to generate a short evidence, called witness,
that the element has indeed been accumulated. In practice, there are essentially
two kinds of entities, the one that needs to prove that an element has been
accumulated (by computing the corresponding witness) and the one that checks
this proof. We will then divide the public parameters of such systems between the
ones (pk) necessary for the proof and the ones (vk) necessary for the verification.
Here again, Table 2 shows a clear asymmetry between the prover and the verifier.
The former is only impacted by the performance of G1 and so would clearly
benefit from a curve tailored to optimize this group. This is all the more true that
in the applications considered in [15] and [22], the prover is usually a user’s device
whereas the verifier is some service provider that can reasonably be considered
as more powerful.

Table 2. Complexity of some accumulators schemes. The latter are called set com-
mitment schemes in [22]. Here m1 refers to a group operation in G1, n is a bound
on the number of values to be accumulated and j is the number of values currently
accumulated. The other notations are those from the previous table.

Ref. Public parameters Operation counts

pk vk Sign Verify

[15] 2nG1 nG2 jm1 2P

[22] nG1 nG2 (j − 1)e1 1e2 + 2P
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4 Attacks Solving the DLP

Most cryptographic schemes using bilinear groups rely on problems that are
easier than the Discrete Logarithm Problem (DLP). Unfortunately, the concrete
hardness of these problems is not known so the common approach to generate
bilinear groups is to select parameters that yield three groups G1, G2 and GT

where the DLP is believed to be hard. The latter problem has indeed been
extensively studied over the last 40 years and several algorithms were proposed
to solve it.

The DLP on elliptic curves is called ECDLP (EC stands for Elliptic Curve)
and is considered the hardest discrete logarithm problem to solve as only generic
algorithms [41] are known and used, such as Baby-Step-Giant-Step [40] or
Pollard-rho [38]. Moreover, the Pohlig-Hellman method [36] reduces an instance
of the DLP in a cyclic group of composite order n to several easier instances of
the DLP in cyclic groups of order strictly dividing n. Hence, for efficiency and
security reasons, the groups G1 and G2 must be of prime order, i.e. � is a prime
number. And since the best variant of Pollard-rho [9] compute a discrete loga-
rithm in at most

√
π�/4 ≈ 0.886

√
� steps, � of 2λ bits is enough for a security

of λ bits.
A well-known value, called ρ-value, is used to describe the efficiency of the

representation of elements of G1. It is computed as ρ = log(q)/ log(�) or as
ρ = deg(q)/deg(�) when q and � are polynomial in Q[X]. When ρ = 1, the curve
is of prime order �, this is the best case for the arithmetic efficiency on the curve
(and so for G1).

While determining the size of G1 and G2 over the elliptic curve is pretty
straightforward, doing the same for GT over the finite field Fqk is much harder!
Indeed, discrete logarithms in Fqk are computed in sub-exponential time (and
sometimes even in quasi-polynomial time) by Number Field Sieve (NFS) algo-
rithms. In the general case, it is difficult to evaluate the complexity of the NFS
algorithm, and of its variants (see [29] for more details). To give an idea of the
time-complexity of NFS algorithms, we need to introduce the L-notation, which
is defined by:

Lqk [α, c] = exp
(
(c + o(1))(ln qk)α(ln ln qk)1−α

)

with α ∈ [0, 1] and c > 0. Intuitively, if α = 1 then Lqk [α, c] is exponential
in log2(qk) whereas it is polynomial in log2(qk) if α = 0. NFS-type algorithms
(of our concern) all have time-complexity Lqk [1/3, c] for c ranging from 3

√
32/9

to 3
√

96/9. The constant c plays an important role in the concrete (i.e. not
asymptotic) world, as between 20 and 30 bits of security can be lost for the
same size of Fqk depending on the choices of q and k [4]. Two criteria determine
which NFS-variant to use: whether q is special, i.e. if q is computed as the image
of a polynomial of degree at least 3, and whether k is composite. This is summed
up in Table 3.

Until recently, only curves with special q and composite k were consider
as they offer the best performance for pairing computations. Barbulescu and
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Table 3. How to choose the right NFS-variant.

q not special q special

k prime NFS [39] (9c3 ∈ [64, 96]) SNFS [5] (9c3 ∈ [32, 64])

k composite exTNFS [32] (9c3 ∈ [48, 64]) SexTNFS [32] (9c3 = 32)

Duquesne updated key size estimations in [4]. For a 128-bit security level, they
urge to use a finite field of size at least k log2(q) = 2930 (respectively 3618, 5004)
if NFS (respectively exTNFS, SexTNFS) is the best algorithm for computing
discrete logarithms in Fqk (the common practice was k log2(q) = 3072 [42]).
To access curves’ security, we will use the algorithm provided by Guillevic at
https://gitlab.inria.fr/tnfs-alpha/alpha.

The only known methods for constructing curves with ρ close to 1 give the
characteristic of the finite field as a polynomial (thus q is special), like Brezing-
Weng constructions [11]; other general methods having ρ close to 2, like Cocks-
Pinch constructions (see [28]). In this context, we will consider the recent bounds
[3072, 5376] on the finite field size provided by Guillevic [27] to achieve 128 bits
of security.

If we have log2(�) = 256 to satisfy 128 bits of security on the curve side, we
then know that log2(q) = 256ρ and the finite field Fqk has size 256ρk. Guillevic’s
bounds then give us:

3072 � 256ρk � 5376,

which, together with the inequalities 1 � ρ � 2, allows us to derive the set of
potential values for k: 6 � k � 21. Concretely, this means that there is no point
in considering values k < 6 as they are incompatible with the targeted 128-bit
security level (for the range of ρ-values we consider) and selecting a value k > 21
would be an overkill.

So far, we have just managed to derive some bounds on the different param-
eters of the curves. Unfortunately, as we explain above, there is no simple choice
within these bounds as security and efficiency of the resulting bilinear groups
may significantly differ from one set of parameters to another. In particular,
there is no linearity in the security evaluation as, for instance, the security of
Fqk is significantly higher in the “prime” cases k ∈ {11, 13} than in the case
k = 12. This means that we can select smaller q values (which improves perfor-
mance of G1) in the former case. Unfortunately, a similar issue arises regarding
efficiency of Fqk , but with opposite conclusions, as non-prime k (especially even
ones) yield more efficient pairings and group operations. It is thus necessary to
make a choice between these different parameters, in particular in the case of
cryptographic protocols with unbalanced complexities, such as the ones we con-
sider in Sect. 3. As the latter would benefit of fast G1 computations and short
representations of its elements, we dedicate the next section to the selection of
parameters that will optimize the performance of this group.

https://gitlab.inria.fr/tnfs-alpha/alpha


Curves with Fast Computations in the First Pairing Group 289

5 Curves Optimizing Operation in G1

The first group of the pairing G1 is defined as E(Fq)[�]. We have an incentive to
reduce the size of q as computations in G1 would be faster. To ensure security
on the elliptic curve, we need log2(q) � log2(�) � 256. Thus q is at least a 5-
machine-word on a 64-bit computer. Indeed, q has more than 257 bits, because
a 256-bit field would imply ρ = 1 and, the biggest known k ∈ [6, 21] for that
ρ-value is 12, which does not ensure a 128-bit security in GT [4].

We would like to be able to use the GLV method [24], that is, our curves
should have a small Complex Multiplication discriminant. When curves are cho-
sen either in the form y2 = x3 + ax with a primitive fourth root of unity in Fq

and CM discriminant −1, or in the form y2 = x3 + b with a primitive third root
of unity in Fq and CM discriminant −3, the GLV-endomorphism is easy to write
down and relatively cheap to compute.

As explained above, we cannot hope for better than 5 machine-words for q
on 64-bit architecture. A 5-machine-word q means that 1 < ρ � 1.25. Searching
in the Taxonomy by Freeman, Scott and Teske [20], the curve we are looking for
has embedding degree k ∈ {8, 11, 13, 16, 17, 19}.

The embedding degree 8 does not provide a secure finite field Fqk , as it is of
at most 8 × 1.25 × 256 = 2560 bits, and so is discarded. The embedding degree
16 corresponds to the well-known KSS family of pairing-friendly curves [31].
Barbulescu and Duquesne [4] state that q must be at least a 330-bit prime, i.e.
a 6-machine-word prime, and they give such primes.

Thus we focus our search for curves from the taxonomy [20] having embed-
ding degree k ∈ {11, 13, 17, 19}. All those curves correspond to Freeman, Scott
and Teske Construction 6.6, which is a generalization of the Brezing and Weng
construction [11]. It defines the prime q, the Frobenius trace t and the order �
as polynomials in Q[X], where �(X) is a cyclotomic polynomial dividing both
q(X) − t(X) + 1 and q(X)k − 1.

5.1 Curves Over a Five-64-Bit-Machine-Word Prime Field

Construction 6.6 from [20] is different given the residue k (mod 6). Since we
have 13 ≡ 19 ≡ 1 (mod 6) and 11 ≡ 17 ≡ 5 (mod 6), we only give the relevant
cases of Construction 6.6.

In the case k ≡ 1 (mod 6), the prime q(X), the Frobenius trace t(X) and
the order �(X) are given as:

q(X) =
1
3
(X + 1)2(X2k − Xk + 1) − X2k+1,

t(X) = −Xk+1 + X + 1 and
�(X) = Φ6k(X),
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and in the case k ≡ 5 (mod 6), they are given as:

q(X) =
1
3
(X2 − X + 1)(X2k − Xk + 1) + Xk+1,

t(X) = Xk+1 + 1 and
�(X) = Φ6k(X).

Plugging in the different values of k gives Table 4. Note that to find a curve,
we need to find a x0 ∈ Z such that �(x0) and q(x0) are prime integers. We choose
x0 satisfying x0 ≡ 2 (mod 3) so q(x0) is an integer. The last column of Table
4 is the search range of log2(|x0|) in [256/deg(�), 320/deg(q)[ so that q(x0) is
a 5-machine-word integer and �(x0) is at least a 256-bit integer (for readability,
the interval is given with rounded integer values).

Table 4. Parameters and search range for curves with k ∈ {11, 13, 17, 19}

k deg(q) deg(�) ρ log2(|x0|)
11 24 20 1.20 [12, 14[

13 28 24 1.167 [10, 12[

17 36 32 1.125 [8, 9[

19 40 36 1.111 [7, 8[

After a computer search, we have found no solution for k ∈ {11, 17}. For
k = 13, we found x0 = −2224 and for k = 19, we found x0 = −145. Inferring the
naming convention used in relic-toolkit [3], the first curve is named BW13-P310
and the second one BW19-P286. As Construction 6.6 curves have CM discriminant
−3, both curves are of the form y2 = x3 + b.

Curve BW13-P310. Setting k = 13 into Construction 6.6 [20] gives:

q(X) =
1
3
(X + 1)2(X26 − X13 + 1) − X27,

t(X) = −X14 + X + 1 and
�(X) = Φ78(X).

Plugging in x0 = −2224 yields a q(x0) of 310 bits and a �(x0) of 267 bits, thus
ρ = 1.161. The corresponding Fq13 is a 4027-bit finite field.

To look for a b, we increase the value of |b|, check that the number of points
on the curve y2 = x3 + b is equal to q(x0) − t(x0) + 1. We found b = −17. So we
defined the curve BW13-P310 by the equation y2 = x3 − 17.

We also point out that the exact same curve has been given by Aurore Guille-
vic in [27]. She made a thorough security analysis and estimated that the cost
of the DLP in the finite field Fq13 is 140 bits. Hence, the curve BW13-P310 has a
security of at least 128 bits.
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Curve BW19-P286. Setting k = 19 into Construction 6.6 [20] gives:

q(X) =
1
3
(X + 1)2(X38 − X19 + 1) − X39,

t(X) = −X20 + X + 1 and
�(X) = Φ114(X).

Plugging in x0 = −145 yields a q(x0) of 286 bits and a �(x0) of 259 bits, thus
ρ = 1.105. The corresponding Fq19 is a 5427-bit finite field.

To look for a b, we do the same as before. The smallest |b| is b = 31. So we
defined the curve BW19-P286 by the equation y2 = x3 + 31. To our knowledge,
this curve has never been proposed in the literature.

To evaluate the cost of the DLP in Fq19 , we follow the work of Guillevic [27],
the same she did for the previous curve BW13-P310. To find the curve BW19-P286
using Guillevic’s Algorithm 3.1 [27], we plugged in the parameters k = 19, D = 3,
e0 = 13 and use the substitution of indeterminate X �→ −X.

Before running the estimating program on our parameters, we applied Vari-
ant 4 [27] to the polynomial q(−X), yielding a polynomial Q(X) such that
Q(u3) = 3q(−u), for u = −x0 = 145 and

Q(X) = (u + 1)X13 + u2X12 + X7 + u(1 − 2u)X6 + u2 − 2u + 1.

Then we obtain that the cost of the DLP in Fq19 is 160 bits, thus providing
BW19-P286 with a security of at least 128 bits.

5.2 GLV Endomorphism on BW13-P310 and BW19-P286

As stated in the preliminaries, the discriminant of the minimal polynomial of
the Frobenius endomorphism can be written as Df2 = t2 − 4q, where D < 0
is the CM discriminant and t is the trace of the Frobenius. The endomorphism
φ : (x, y) �→ (ωx, y), with ω a primitive third root of unity, corresponds to an
exponentiation (ωx, y) = (x, y)λ in G1 = E(Fq)[�] for q and � distinct primes.

For both our curves, the CM discriminant is D = −3, as a consequence we
have 4q = t2 + 3f2. Since ω ∈ Fq is a primitive third root of unity, ω satisfies
ω2 + ω + 1 = 0. We can take ω = (

√−3 − 1)/2, where
√−3 ≡ t/f (mod q).

Thus
ω ≡ t − f

2f
(mod q).

Similarly, since φ3 = idE in End(E), we know that λ ∈ Z/�Z satisfies the
equation λ2 + λ + 1 = 0, i.e. it can also be taken as (

√−3 − 1)/2. However,
here,

√−3 ≡ (t − 2)/f (mod �). Indeed, � divides the number of points on the
curve, so q ≡ t − 1 (mod �) and 4(t − 1) ≡ t2 + 3f2 (mod �). Thus

λ ≡ t − f − 2
2f

(mod �).
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Note that in practice, adjustments may be needed as (ωx, y) = (x, y)±λ or
(ω2x, y) = (x, y)±λ. In the case of BW13-P310, λ has bit-length 146, whereas it
is only 137 in the case of BW19-P286.

Comments on BW13-P310 and BW19-286. We provide in the next section sev-
eral benchmarks to compare our new curve with BW13-P310 but also with other
curves from popular families. However, we can already note that BW13-P310 and
BW19-P286 clearly match our strategy of optimizing the group G1 to the detri-
ment of the other groups. In this respect, our new curve BW19-P286 goes one step
further than BW13-P310 by reducing the size of q by roughly 25 bits. This differ-
ence is significantly amplified in the context of constrained devices as it results
in less machine words. Indeed, even for 32-bit architecture, BW19-P286 yields
a prime q with one less machine-word than BW13-P310, which clearly impacts
performance, as illustrated below.

6 Implementation and Comparison

We implemented the G1 arithmetic of both curves using relic-toolkit [3], and
made some comparison with other curves already implemented in relic-toolkit
and aiming the 128-bit security.

The curves selected from the framework are BN-P446, a Barreto-Naehrig
curve [8] over a 446-bit prime field; K16-P339, a Kachisa-Schaefer-Scott curve [31]
of embedding degree 16 over a 339-bit field; B12-P446, a Barreto-Lynn-Scott
curve [7] of embedding degree 12 over a 446-bit field; and CP8-P544, a Cocks-
Pinch curve [28] of embedding degree 8 over a 544 prime field. We chose the
last curve as it is coming from recent works [27,28] that promote them for the
128-bit security level. We included a BN, BLS and KSS curves in our table as
those families of curves are well-known and were updated by Barbulescu and
Duquesne [4]. Also note that, setting aside our curves, only the curve K16-P339
was implemented by us in the framework.

All curves enjoy GLV-endomorphisms which were already implemented or
have been implemented.

6.1 Operation in G1

In Table 5 we compare the cost of one exponentiation in the group G1 by com-
piling the relic-toolkit either for x64 architecture or for x86 architecture with a
word size of 32 bits. Times are given in microseconds (the number of iterations
was 106) and computations were done on a laptop equipped with a Intel Core
i7-6600u CPU at 2.60 GHz.

This table shows a clear relation, almost quadratic, between complexity and
the number of words necessary to represent q. It also highlights the downside
of Barreto-Naehrig curves that generate elliptic curves of prime order � ∼ q.
Indeed, what was considered as an advantage (prime order curves make group
membership tests trivial) turns out to be a strong limitation as it forces � to grow
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Table 5. Benchmark for one exponentiation in G1. For both architectures, row “words”
indicates the number of machine words used to store the prime q, row “time” indicates
the obtained computation time of one exponentiation in G1 rounded to the nearest
microsecond (1 μs = 10−6 s), and row “time ratio” indicates the time ratio between
the curve in the column and the curve BW19-P286.

Curve BW19-P286 BW13-P310 K16-P339 B12-P446 BN-P446 CP8-P544

64-bit words 5 5 6 7 7 9

time (µs) 293 304 482 611 855 1058

time ratio 1 1.04 1.65 2.09 2.92 3.61

32-bit words 9 10 11 14 14 17

time (µs) 1010 1220 1664 2510 3600 4180

time ratio 1 1.21 1.65 2.49 3.56 4.14

unnecessarily. This negatively impacts both exponentiation (as the exponents are
roughly 75% greater than those of the other curves) and the size of scalars.

In all cases, this table shows that our curve BW19-P286 offers the best per-
formance for G1, in particular for architecture smaller than 64 bits. It at least
halves the complexity of exponentiations in G1 compared to mainstream curves
such as B12-P446 and also significantly decreases the size of group elements,
which clearly fits the needs of some cryptographic protocols such as the ones we
presented in Sect. 3.

6.2 Operation in G2

The operations in G2 are unfortunately the ones that are the most impacted
by our choice of prime embedding degree. Indeed, BW13-P310 and BW19-P286
have G2 defined over Fq13 and Fq19 respectively, whereas B12-P446, BN-P446
and CP8-P544 all have G2 defined over Fq2 thanks to quartic or sextic twists,
and K16-P339 has G2 defined over Fq4 thanks to a quartic twist. As all curves are
usually expressed with the same model using the same system of coordinates,
only the cost of the multiplication in the extension impacts the cost of the
operations in G2. Using a Karatsuba-like implementation, the multiplication in
Fqk is roughly klog3 2 times as expensive as the one in Fq.

6.3 Pairing Computation

The computation of the pairing is usually split between two parts: the evaluation
of the Miller loop and the final exponentiation. Here we give computation for a
multiple of the Optimal Ate Pairing [44], since we picked the final exponentiation
from Kim, Kim and Cheon [34]. The values in Table 6 are from [27,28], completed
with the ones from below.

Let mk, sk, ik, fk respectively denote a multiplication, a square, an inversion,
a Frobenius map (i.e. the q-th power map) over Fqk . We drop the index when
the operation is over Fq (e.g. m = m1). As k ∈ {13, 19} is prime, we estimate
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mk = sk = klog2 3m with a Karatsuba-like implementation and fk = (k − 1)m
as in [28].

Miller Loop. Using Equation (7) from [27], Guillevic gives a lower bound on
the cost of the Miller loop. For both BW13-P310 and BW19-P286, the optimal ate
Miller loop has length u2 + up + p2, as it is a multiple of � [44].

For BW13-P310, the Miller loop has length u2 + up + p2, where u = 2224
is a 12-bit integer with Hamming weight 4 and p is a 310-bit prime. From her
Equation (7) [27], Guillevic obtains 949m + 313m13 + 177s13 + 5f13 + 2i13.
Substituting m13 = s13 = 59m and f13 = 12m in that formula yields a lower
bound on the cost of the optimal ate Miller loop, i.e. 29919m + 2i13.

For BW19-P286, the length of the Miller loop is u2+up+p2, where u = 145 is
a 8-bit integer with Hamming weight 3 and p is a 286-bit prime. From the same
equation as Guillevic [27], we obtain 912m + 212m19 + 115s19 + 5f19 + 2i19.
Substituting m19 = s19 = 107m and f19 = 18m in that formula yields a lower
bound on the cost of the optimal ate Miller loop, i.e. 35991m + 2i19.

Final Exponentiation. As usual, the final exponentiation (qk − 1)/� of the
Optimal Ate Pairing is split between an easy part (qk − 1)/Φk(q) and a hard
part Φk(q)/�. Since k ∈ {13, 19} is prime, the easy part is simply q − 1, costing
fk + ik. For the hard part, Kim, Kim and Cheon [34] noticed that Φk(q)/� can
be decompose in base q to make use of the Frobenius and the coefficients can be
reduced by looking for a short vector in a specifically designed lattice. However,
instead of raising to the power Φk(q)/�, this method [34] raises to a multiple
power mΦk(q)/�.

More precisely, they write

m
Φk(q)

�
=

k−2∑

i=0

aiq
i

and find the k − 1 coefficients (ai)0�i�k−2 as the shortest vector in the dim-
(k − 1) lattice spanned by the lines of the following matrix:

⎡

⎢
⎢⎢⎢⎢
⎣

Φk(q)
� 0 0 · · · 0

−q 1 0 · · · 0
−q2 0 1 · · · 0

...
...

−qk−2 0 · · · 0 1

⎤

⎥
⎥⎥⎥⎥
⎦

.

Then, they compute the Frobenius of the element they want to exponent, up to
the (k − 1)-th q-power, costing (k − 2)fk.

If the exponents ai’s were longer, we would have needed (2k−1 − k)mk to
compute all combinations of (k − 1) Frobenius powers. However, we do not use all
of these combinations, only roughly O(log2 q) of them. Finally the length of the
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multi-exponent is maxi{�log2 ai}, resulting in an average final exponentiation
costing

(k − 1)fk + (O(log2 q) + max
i

{�log2 ai})mk + max
i

{�log2 ai}sk + ik,

omitting some inversion due to the sign of some ai’s.
For BW13-P310, the value of maxi{�log2 ai} is 287 and 8 of the 12 ai’s are

negative. Only 191 different combinations of Frobenius powers are used and
it costs 341m13 to compute them. Also, there are 5 positions (in the binary
expansion) where all the ai’s have their bit set to 0, resulting in no mul-
tiplication at those positions for the multi-exponentiation, that thus requires
282m13 + 287s13. Combining everything yields an final exponentiation cost of
12f13 + 623m13 + 287s13 + 9i13, i.e. 53 834m + 9i13.

For BW19-P286, the value of maxi{�log2 ai} is 271 and 12 of the 18 ai’s
are negative. Only 222 different combinations of Frobenius powers are used
and it costs 1028m19 to compute them. The multi-exponentiation requires
271(m19 + s19). Combining everything yields an final exponentiation cost of
18f19 + 1299m19 + 271s19 + 13i19, i.e. 160 824m + 13i19.

Table 6. Operation count for Miller loop (M.), final exponentiation (E.) and total
pairing (T.). Inversions over odd-degree extension field are displayed as they are more
costly than over an even-degree one (those usually cost one conjugaison over a quadratic
subfield).

BW19-P286 BW13-P310 K16-P339 B12-P446 BN-P446 CP8-P544

M. 35991m + 2i19 29919m + 2i13 7691m 7805m 11620m 4502m

E. 160824m + 13i19 53834m + 9i13 18235m 7723m 5349m 7056m

T. 196815m + 15i19 83753m + 11i13 25926m 15528m 16969m 11558m

From Table 6, the cost of the pairing for BW19-P286 is roughly 12 times
higher than the one for B12-P446. However, doing the benchmark on both finite
field gives a multiplication twice faster on the 286-bit finite field (90 ns) than
the 446-bit one (190 ns). Hence, we estimate that the pairing over BW19-P286 is
6 times slower than the pairing over B12-P446.

7 Conclusion

In this paper, we have given an incentive to change the way pairing-friendly
elliptic curve are constructed by shifting the optimization away from the balance
between all operations (group exponentiation and pairing) towards only some
operations (that might be used by constrained entities involved in cryptographic
protocols).
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Thus, we focused on elliptic curves with a fast exponentiation in the first pair-
ing group upon noticing that the instantiation of some cryptographic protocols,
e.g. Group Signature-like schemes, would benefit from such curves.

Along the way, we have described a new curve that is particularly relevant
for cryptographic protocols extensively using exponentiation in the first pairing
group. That curve is twice faster in that group and its pairing computation is
reasonably six times slower compared to a BLS curve over a 446-bit field.

We leave to future work to investigate other protocol-curve dependencies.

Acknowledgements. The authors are grateful for the support of the ANR through
projects ANR-19-CE39-0011-04 PRESTO and ANR-18-CE-39-0019-02 MobiS5.
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28. Guillevic, A., Masson, S., Thomé, E.: Cocks-pinch curves of embedding degrees
five to eight and optimal ate pairing computation. Des. Codes Cryptogr. 88(6),
1–35 (2020)

29. Guillevic, A., Morain, F.: Discrete Logarithms. In: Guide to Pairing-Based Cryp-
tography. CRC Press - Taylor and Francis Group (2016)

30. Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol. 17, 263–
276 (2004)

31. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85538-5 9

32. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20

33. Kim, T., Jeong, J.: Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10174, pp. 388–408. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 16

34. Kim, T., Kim, S., Cheon, J.H.: On the final exponentiation in Tate pairing com-
putations. IEEE Trans. Inf. Theory 59(6), 4033–4041 (2013)

35. Menezes, A., Vanstone, S.A., Okamoto, T.: Reducing elliptic curve logarithms to
logarithms in a finite field. In: ACM STOC (1991)

36. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance (Corresp.). IEEE Trans. Inf. Theory 24,
106–110 (1978)

37. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

38. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32, 918–924 (1978)

39. Sarkar, P., Singh, S.: New complexity trade-offs for the (multiple) number field sieve
algorithm in non-prime fields. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 429–458. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 17

40. Shanks, D.: Class number, a theory of factorization, and genera. In: 1969 Number
Theory Institute, pp. 415–440. American Mathematical Society (1971)

41. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

42. Smart, N.P.: Algorithms, key size and protocols report, ECRYPT - CSA (2018).
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

43. TCG (2015). https://trustedcomputinggroup.org/authentication/
44. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56, 455–461 (2010)

https://doi.org/10.1007/978-3-540-85538-5_9
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-54365-8_16
https://doi.org/10.1007/978-3-662-54365-8_16
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-662-49890-3_17
https://doi.org/10.1007/978-3-662-49890-3_17
https://doi.org/10.1007/3-540-69053-0_18
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://trustedcomputinggroup.org/authentication/


Revisiting ECM on GPUs

Jonas Wloka1(B), Jan Richter-Brockmann2, Colin Stahlke3,
Thorsten Kleinjung4, Christine Priplata3, and Tim Güneysu1,2

1 DFKI GmbH, Cyber-Physical Systems, Bremen, Germany
jonas.wloka@dfki.de
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Abstract. Modern public-key cryptography is a crucial part of our
contemporary life where a secure communication channel with another
party is needed. With the advance of more powerful computing archi-
tectures – especially Graphics Processing Units (GPUs) – traditional
approaches like RSA and Diffie-Hellman schemes are more and more in
danger of being broken.

We present a highly optimized implementation of Lenstra’s ECM algo-
rithm customized for GPUs. Our implementation uses state-of-the-art
elliptic curve arithmetic and optimized integer arithmetic while provid-
ing the possibility of arbitrarily scaling ECM’s parameters allowing an
application even for larger discrete logarithm problems. Furthermore, the
proposed software is not limited to any specific GPU generation and is to
the best of our knowledge the first implementation supporting multiple
device computation. To this end, for a bound of B1 = 8192 and a modu-
lus size of 192 bit, we achieve a throughput of 214 thousand ECM trials
per second on a modern RTX 2080 Ti GPU considering only the first
stage of ECM. To solve the Discrete Logarithm Problem for larger bit
sizes, our software can easily support larger parameter sets such that a
throughput of 2 781 ECM trials per second is achieved using B1 = 50 000,
B2 = 5000 000, and a modulus size of 448 bit.

Keywords: ECM · Cryptanalysis · Prime factorization · GPU

1 Introduction

Public-Key Cryptography (PKC) is a neccessary part of any large-scale crypto-
graphic infrastructure in which communicating partners are unable to exchange
keys over a secure channel.

PKC systems use a keypair of public and private key, designed such that to
retrieve the secret counterpart of a public key, a potential attacker would have to
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solve a mathematically hard problem. Traditionally – most prominently in RSA
and Diffie-Hellman schemes – factorization of integers or computing a discrete
logarithm are the hard problems at the core of the scheme. For reasonable key
sizes, both these problems are considered to be computationally infeasible for
classical computers.

If built, large-scale quantum computers, are able to compute both factoriza-
tion and discrete logarithms in polynomial time. However, common problem sizes
are not only under threat by quantum computers: With Moore’s Law still mostly
accurate, classical computing power becomes more readily available at a cheaper
price. Additionally, in the last decade more diverse computing architectures are
available. Graphics Processing Units (GPUs) have been used in multiple scien-
tific applications – including cryptanalysis – for their massive amount of parallel
computing cores. As the problem of factorization and computing a discrete log-
arithm can (in part) be parallelized, GPU architectures fit these tasks well.

Nowadays the NIST recommends to use 2048- and 3072-bit keys for RSA [3].
Factoring keys of this size is out of reach for current publicly known algorithms
on classical computers. However, in [35], the authors found that still tens of
thousands of 512-bit keys are used in the wild, which could be factored for
around $70 within only a few hours.

To find the prime factorization of large numbers, the currently best perform-
ing algorithm is the General Number Field Sieve (GNFS). During a run of the
GNFS algorithm, many numbers smaller than the main target need to be fac-
tored which is commonly done by Lenstra’s Elliptic-Curve Factorization Method
(ECM) and is inherently parallel.

Related Work. ECM has been implemented on graphic cards before and several
approaches at optimizing the routines used in ECM on the different levels have
already been published.

A general overview of factoring, solving the Discrete Logarithm Problem
(DLP) and the role of ECM in such efforts is given in [26,27]. The most recent
result in factorization and solving a DLP was announced in December 2019
with the factorization of RSA-240 and with solving the DLP for a 795-bit prime
[13]. Previous records for the factorization of a 768-bit RSA modulus and the
computation of a 768-bit DLP are reported in [21,22] and [23], respectively. A
general overview of factorization methods, and the use of ECM on GPUs within
the GNFS is given in [30].

The original publication of ECM by Lenstra in [28] has since received much
attention, especially the choice of curves [5,7] and parameters [17] was found to
have a major impact on the algorithm’s performance. Optimizing curve arith-
metic for parallel architectures – mostly GPUs – has been a topic of many
scientific works as well [1,2,19,25,29]. A detailed description of a parallel imple-
mentation for GPUs is given in [11].

To this end, the implementation of ECM on GPUs has attracted a lot of
attention in the years around 2010, as General Purpose Computing on GPU
(GPGPU) became readily available to the scientific community. The beginning
of the usage of GPUs for cryptanalytic purposes is marked by [34], including
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elliptic curve cryptography, an early implementation of ECM on graphics cards
was published in [4,8]. A discussion of the performance of ECM on available
GPUs around 2010 is given in [12,32]. With the application of ECM in the
cofactorization step of the GNFS, the discussion of an implementation for GPUs
that includes ECM’s second stage on the GPU was published in [31].

Existing Implementations. Although many authors have already worked on
implementing ECM on GPUs, only a few implementations are openly avail-
able. GMP-ECM1, which features support for computing the first stage of ECM on
graphic cards using Montgomery curves, was introduced by Zimmermann et al.

Bernstein et al. published GPU-ECM in [8] and an improved version CUDA-ECM
in [4]. In the following years, Bernstein et al. [5] released GMP-EECM – a variant of
GMP-ECM using Edwards curves –, and subsequently EECM-MPFQ, which is available
online at https://eecm.cr.yp.to/. Both latter, however, do not support GPUs.

To the authors’ knowledge, the most recent implementation, including ECM’s
second stage by Miele et al. in [31] has not been made publicly available. Addi-
tionally, almost all previous implementations of ECM on GPUs only consider a
fixed set of parameters for the bit length and ECM bounds. As we will show in
Section 2, these restrictions do not meet real world assumptions and scalability
seems to be significant even for larger moduli.

Contribution. We propose a complete and scalable implementation of ECM suit-
able for NVIDIA GPUs, that includes:

1. State-of-the-art Fast Curve Arithmetic All elliptic curve computations
are performed using a = -1 Twisted Edwards curves with the fastest known
arithmetical operations.

2. Scalability to Arbitrary ECM Parameters We show that currently used
parameters for ECM in related work do not meet assumptions in realistic
scenarios as most implementations are optimized for a set of small and fixed
problem sizes. Hence, we propose an implementation which can be easily
scaled to any arbitrary ECM parameter and bit length.

3. State-of-the-art Integer Arithmetic We demonstrate that the com-
monly used CIOS implementation strategy can be outperformed by the less
widespread FIOS and FIPS approaches on modern GPUs.

4. No Limitation to any Specific GPU Generation Our implementation
uses GPU-generation independent low level code based upon the PTX-level
abstraction.

The corresponding software is released under an open source license and is avail-
able at https://github.com/Chair-for-Security-Engineering/ecmongpu.

Outline. The remainder of this paper is organized as follows: Sect. 2 briefly
summarizes the DLP and the background of ECM. In Sect. 3 we describe our

1 Available at http://ecm.gforge.inria.fr/.

https://eecm.cr.yp.to/
https://github.com/Chair-for-Security-Engineering/ecmongpu
http://ecm.gforge.inria.fr/
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optimizations for stage one and stage two on the algorithmic level. This is fol-
lowed by Sect. 4 introducing our implementation strategies for GPUs. Before
concluding this work in Sect. 6, we evaluate and compare our implementation in
terms of throughput in Sect. 5.

2 Preliminaries

This section provides the mathematical background of ECM and introduces
cofactorization as part of GNFS.

2.1 Elliptic Curve Method

ECM introduced by H. W. Lenstra in [28] is a general purpose factoring algo-
rithm which works on random elliptic curves defined modulo the composite num-
ber to be factored. Thus, ECM operates in the group of points on the curve.
Whether ECM is able to find a factor of the composite depends on the smooth-
ness of the order of the curve. Choosing a different random curve most likely
results in a different group order. To increase the probability of finding a factor,
ECM can be run multiple times (in parallel) on the same composite number.
ECM consists of a first stage and an optional second stage.

Stage 1. In the first stage, one chooses a random curve E over Zn with n the
composite to factor, with p being one of its factors, and a random point P on
the curve. With s a large scalar, one computes the scalar multiplication sP and
hopes that sP = O (the identity element) on the curve modulo p, but not modulo
n. As p is unknown, all computations are done on the curve defined over Zn.

This can be regarded as working on all curves defined over Zp for all factors
p simultaneously. If p was known, reducing the coordinates of a point computed
over Zn modulo p yields the point on the curve over Zp.

If s is a multiple of the group order, i.e., the number of points on the curve
over Fp, sP is equal to the point at infinity O = (0 : 1 : 0) modulo p, e.g., on
Weierstrass curves, but not n. Thus, the x- and z-coordinates are a multiple of
p, and so gcd(x, n) (or gcd(z, n)) should reveal a factor of n.

One chooses s to be the product of all small powers of prime numbers pi
up to a specific bound B1, i.e., s = lcm(1, 2, 3, . . . , B1). If the number of points
on the chosen curve #E modulo p divides s, a factor will be found by ECM.
This is equivalent to stating that the factorization of #E consists only of primes
≤ B1, thus is B1-smooth.

Stage 2. Stage two of ECM relaxes the constraint that the group order on E
has to be a product of primes smaller than B1 and allows one additional prime
factor larger than B1 but smaller than a second bound B2.

Thus, for Q = sP the result from stage one, for each prime pi with B1 <
p1 < p2 < · · · ≤ B2, one computes piQ = pisP and hopes that pis is a multiple
of the group order. If so, piQ – as in stage one – is equivalent to the identity
element modulo p, the x- and z-coordinates equal 0 modulo p but not modulo
n, hence the gcd of the coordinates and n reveals a factor of n.



Revisiting ECM on GPUs 303

Curve Selection and Construction. As ECM’s compute intensive part is essen-
tially scalar multiplication, we chose a = -1 Twisted Edwards curves [6] with
extended projective coordinates [19] as these offer the lowest operation costs
for point additions and doublings. Each point P = (X : Y : T : Z) is thus
represented by four coordinates, each of the size of the number to factor.

As ECM works on arbitrarily selected elliptic curves modulo the number to
factor, multiple parameterized curve constructions have been proposed (see [37]
for an overview). Our implementation constructs random curves according to
the proposal by Gélin et al. in [17].

2.2 Discrete Logarithm Problem

In 2016 the DLP was solved for a 768-bit prime p [23]. The computation of a
database containing discrete logarithms for small prime ideals took about 4000
CPU core years. Using this database, an individual discrete logarithm modulo p
could be computed within about two core days. Using more than one CPU core,
the latency could be decreased, but the parallelization is not trivial. Recently,
Boudot et al. announced a new record, solving the DLP for a 795-bit prime [13].

The computation of an individual logarithm of a number z consists of two
computationally intensive steps: the initial split and the descent. During the
initial split the main task is to find two smooth integers that are norms of certain
principal ideals, such that their quotient modulo p equals z. The prime factors of
these two integers correspond to prime ideals with not too large norms. During
the descent step, each of these prime ideals can be replaced by smaller ideals
using relations found by sieving realized in the same way as during the sieving
step in the first step of the GNFS. Eventually, all prime ideals are so small,
that their discrete logarithms can all be found in the database. These discrete
logarithms can easily be assembled to the discrete logarithm of the number z.

The initial split is done by first performing some sieving in some lattice.
The dimension of this lattice can be two or eight for example, depending on the
number fields. This produces a lot of pairs of integers. There are many lattices
that can be used for sieving, which offer obvious opportunities for parallelization
and lead to even more pairs of integers. It is enough to find just one pair such
that both integers are smooth enough. Smoothness of integers can be tested by
a combination of several factorization algorithms. The most popular are trial
division, Pollard-(p − 1) and ECM.

One goal of our work was to reduce the latency of two CPU core days for the
computation of individual 786-bit discrete logarithms using 25 CPUs with 4 cores
each (Intel Core i7-4790K CPU @ 4.00GHz). In the initial split it is important
to find good parameters for the factorization algorithms. For our purpose we
found that

B1 ≈ 7 · exp(n/9)
B2 ≈ 600 · exp(0,113 · n)

are good choices for ECM to detect an n-bit factor (n ∈ {44, 45, . . . , 80}) using
our CPUs. This is close to the widely used B2 ≈ 100 · B1. The sieving of the
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descent step was parallelized with Open MPI and the sieving strategy was care-
fully chosen and balanced with the factorization strategies used in the initial
split. Finally, we managed to compute individual discrete logarithms on 25 CPUs
(i.e., 100 cores) within three minutes.

The implementation of ECM on GPUs provides several opportunities to
speed up the computation of discrete logarithms. First, it can be used for smooth-
ness testing in the sieving step in the first step of the GNFS in order to reduce
the 4000 core years by supporting the CPUs with GPUs. Second, in the same
way it can speed up the sieving in the descent step. Third, it can be used for
speeding up the smoothness tests in the initial split.

In our experiment we utilized two GeForce RTX 2080 TI GPUs filtering
the pairs of integers in the initial split between the sieving and the smoothness
tests. The parameters of the sieving in the initial split were relaxed, such that
the sieving was faster, producing more pairs (and reducing their quality). This
leaves us with a huge amount of pairs of integers, most of them not smooth
enough. These integers were reduced to a size of 340 bit at most by trial division
(or otherwise dropped). The surviving integer pairs were sent to the two GPUs in
order to find factors with ECM using two curves, B1 = 5000, and B2 = 20 000. A
pair survived this step, if ECM found a factor in both integers and after division
by this factor the integers were still composite. The remaining survivors were
sent to the GPUs in order to find factors with ECM using 50 curves, B1 = 5000,
and B2 = 30000. The final survivors were sent to a factorization engine on
CPUs. Eventually, the use of GPUs reduced the latency of the computation of
individual logarithms from three minutes to two minutes.

To this end, the aforementioned experiments demonstrate that our ECM
implementation on GPUs can support the GNFS substantially, speeding up the
computation of discrete logarithms and possibly also the factorization of RSA
moduli with the GNFS.

After building a database for a prime p, individual discrete logarithms can
be computed rather easily. We estimate the cost for building such a database
within a year using CPUs to roughly 106 US$ for 768 bit, to 109 US$ for 1024 bit
and to at least 1014 US$s for 1536 bit. In our experiments we could compute
individual logarithms for 1024 bit within an hour on 100 CPU cores (up to the
point of looking up in a database which we did not have). This is an upper
bound since we did not focus on optimizations on polynomial selection and on
choosing good parameters and a good balance between initial split and descent.
The initial split produced 448-bit integers after trial division and the parameters
for ECM went up to B1 = 50 000 and B2 = 5000 000. Due to the opportunity to
scale our ECM implementation to any arbitrary parameter set, these numbers
can be processed on GPUs which should considerably reduce the latency of one
hour for 1024-bit individual logarithms.
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3 Algorithmic Optimizations

With the general algorithm and background of ECM discussed in Sect. 2.1, this
section introduces optimizations to both stages of the algorithm suitable for
efficient GPU implementations.

3.1 Stage 1 Optimizations

As introduced in Sect. 2.1, during stage one of ECM a random point P on an
elliptic curve is multiplied by a large scalar s = lcm(1, 2, . . . ,B1 − 1,B1), e.g.,
for a B1 = 50 000 s is 72115 bit. To this end, stage one of ECM is essentially a
scalar multiplication of a point on an elliptic curve. This section will deal with
the possible optimizations, leading to a faster computation of s · P for large s.
This section introduces methods for reducing that effort.

Non-Adjacent Form. In general, our implementation uses a w-NAF (Nonad-
jacent form) representation for the scalar s =

∑t−1
i=0 si2i, where si ∈ C =

{−2w−1 +1,−2w−1 +3, ..,−1, 0, 1, ..., 2w−1 − 1}. While the necessary point dou-
blings roughly stay the same, the number of point additions is reduced at the
cost of needing to precompute and store a small multiple of the base point for
each positive coefficient from C. For example, choosing w = 4 reduces the num-
ber of point additions to 14 455 for a B1 = 50 000 at the cost of storage for three
additional points (3P, 5P, 7P ).

The w-NAF representation of any scalar can be computed on-the-fly during
program startup. For all upcoming experiments we decided to set w = 4 allowing
a fair comparison and removing one degree of freedom.

Different Scalar Representations. For fixed values of B1 used repeatedly, other
representations of the scalar can be found with significantly more precomputa-
tion. Addition chains have been proposed by Bos et al. in [12], however finding
(optimal) addition chains with low operation cost for large scalars is still an
open question. In [15] Dixon et al. also proposed so-called batching for split-
ting the scalar s into batches of primes in order to lower the overall number of
required point operations. In [9] Bernstein et al. introduced fast tripling formulas
for points on Edwards curves and presented an algorithm finding the optimal
chain for a target scalar s with the lowest amount of modular multiplications.
Bouvier et al. also used tripling formulas and employed double-base chains and
double-base expansions in combination with batches to generate multiple chains
to compute scalars for somewhat larger bounds in [14]. Recently Yu et al. pro-
vided a more efficient algorithm to compute optimal double-base chains in [36].

However, these approaches are limited to small bounds B1 (i.e., for B1 ≤
8 192) and therefore do not match our requirements of an arbitrary value for B1.
Nevertheless, we generated double-base chains for small values of B1 with the
algorithm from [9] choosing S = ±{1, 3, 5, 7} and benchmarked them.

The two approaches – batching and addition chains – can be combined by
generating multiple addition chains, one for each batch [12,14]. We also included
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Table 1. Comparison of different strategies optimizing the ECM throughput for stage
one setting B1 = 8 192 and the modulus size to 192 bit. To count modular multiplica-
tions, we assume 1M = 1S.

B1 Optimal Chains [9] 4-NAF Random Batching Adapted from [14]

Mb Ic trials
second Mb Ic trials

second Mb Ic trials
second Mb Ic Trials

second

4 096 48 442 4 311 032 49 777 4 354 422 48 307 20 294 466 N/A

8 192 N/Aa 99 328 4 215 495 95 756 64 163 751 90503 0 138565

50 000 N/Aa 605 983 4 37 476 585 509 432 25 718 N/A
a The calculation of an optimal chain is too computation-intensive b Modular multiplications
c Modular inversions (during computation of small multiples and/or point optimization)

results for a slightly modified version of the chains from [14]. We used their
batching but generated only optimal double-base chains using the code from
[9] with S = ±1 (no precomputation), whereas the authors use 22 double-base
expansions and switch to Montgomery coordinates for 4 batches out of a total
of 222 batches. As a result, our variant needs to perform 931 additional modular
multiplications. We disabled our optimized point representation (see Sect. 4.2)
due to the high number of chains resulting in many costly inversions.

While in general the best batching strategy for larger B1 is unclear, we were
able to generate multiple addition chains for a B1 = 50 000 by randomly selecting
subsets of primes smaller than B1 and using the algorithm from [9]. Keeping only
the best generated chains, we continued generating new batching variants for
the rest of the primes still to cover until the overall cost of the chains stabilized.
This strategy will be called Random Batching in the following. We supply all
generated batched double-base addition chain for our B1 with the software.

Table 1 compares the ECM stage one’s throughputs for B1 ∈ {
4 096,

8 192, 50 000
}

using the naive 4-NAF approach, our random batching, the results
from [9] and our adaptation of [14] on an NVIDIA RTX 2080Ti. Although the
batching based approaches require less modular operations (also compared to an
optimal chain for B1 = 4096), the absolute throughput is drastically lowered.
We found that in practice the cost of using multiple chains quickly remedied
the benefit of requiring less point operations: For each chain one needs to com-
pute small multiples of the (new) base point when using a larger window size.
Our implementation stores precomputed points in a variant of affine coordinates
to reduce the cost of this point’s addition, each requiring one inversion during
precomputation (cf. Sect. 4.2). This approach is not well suited if precomputed
points are only used for relatively few additions on a single chain.

In addition, for each digit in double-base chains the software has to check
whether it has to perform a doubling or tripling. Even if using only the base
point and disabling the optimization of its coordinates, the overhead introduced
by the interruption of the GPU program flow between chains slows down the
computation, even though the full set of batches are processed on the GPU with
one kernel launch.
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In our experiments, we found that using our optimized coordinates for point
addition with w-NAF scalar representation is more beneficial to the overall
throughput than using multiple addition chains without the optimization of pre-
computed points. Hence, our NAF approach achieves better results as only dou-
blings are executed, the program flow is uninterrupted and no switching between
operations is needed.

3.2 ECM Stage 2 Optimizations

As introduced above, in the second stage of ECM one hopes that the number
of points on E is B1-powersmooth, except for one additional prime factor. For
stage two, a second bound B2 is set, and each multiple of the result of stage one
pk+iQ for each prime B1 < pk+1 < pk+2 < · · · < pk+l ≤ B2 is computed.

Reducing Point Operations. The number of point operations can be reduced by
employing a baby-step giant-step approach as in [30]. Each prime pk+i is written
as pk+i = vg ± u, with g a giant-step size and u the number of baby-steps. To
cover all the primes between B1 and B2, set

u ∈ U =
{

u ∈ Z

∣
∣
∣ 1 ≤ u ≤ g

2
, gcd(u, g) = 1

}

v ∈ V =
{

v ∈ Z

∣
∣
∣
∣

⌈
B1

g
− 1

2

⌉

≤ v ≤
⌊

B2

g
+

1
2

⌋}

.

As in stage two, one tries to find a prime pk+i = vg±u such that (vg±u)Q =
O on the curve modulo a factor p. This is equivalent to finding a pair of vg and u,
such that vgQ = ±uQ mod p. If this is the case, then the (affine) y-coordinates
of vgQ and uQ are also equal and

yvgQ
zvgQ

− yuQ
zuQ

= 0 mod p.

Since yP

zP
= y(−P )

z(−P )
on Twisted Edwards curves, one only needs to check for

yvgQzuQ−yuQzvgQ, if either vg+u or vg−u is a prime, thus saving computation
on roughly half the prime numbers. Our implementation uses a bitfield to mark
those combinations that are prime.

The result of the difference for all l primes of y-coordinates can be collected,
so that stage two only outputs a single value m with

m =
∏

v∈V

∏

u∈U

yvgQzuQ − yuQzvgQ.

If any of the differences yvgQzuQ − yuQzvgQ equals zero modulo p, gcd(m,n)
is divisible by p and usually not n thus a non-trivial factor of n is found.

When for all u ∈ U points the point uQ is precomputed together with the
giant-step stride of gQ, this approach only needs |V | + |U | + 1 point additions,
plus 3|V ||U | modular multiplications for the computation of m.



308 J. Wloka et al.

Reducing Multiplications. Our approach is to normalize all points vgQ and uQ
to the same projective z-coordinates instead of affine coordinates. This way
the computation of m only requires y-coordinates, because – as introduced
above – the goal is to find equal points modulo p. Given a ≥ 2 points P1, . . . , Pa

– in this case all giant-step points vgQ and baby-step points uQ – the following
approach sets all zPi

to
∏

1≤i≤a zPi
: To do so, each zPi

needs to be multiplied
by

∏
1≤i≤a,i �=k zPi

. An efficient method to compute each
∏

1≤i≤a,i�=k zPi
is given

in [24, p. 31].
Normalizing all points to the same z-coordinate costs 4(|V |+ |U |) multiplica-

tions during precomputation and the cost of computing m drops down to |V ||U |
modular multiplications, as m =

∏
v∈V

∏
u∈U yvgQ − yuQ.

However, for this normalization all baby- and giant-step points need to be
precomputed which needs quite a lot of memory to store z- and y-coordinates
of all |V | + |U | baby-step and giant-step points, as well as the storage of the
batch cross multiplication algorithm from [24, p. 31] with |V ||U | entries. If less
memory is available, the giant-step points can be processed in batches. In this
case, the normalization has to be computed again for each batch.

4 Implementation Strategies

The following sections discuss in more detail the implementation of multi-
precision arithmetic and elliptic curve operations tuned to our requirements and
those of GPUs.

4.1 Large Integer Representation on GPUs

Our implementation follows the straight-forward approach of, e.g., [29,31] and
uses 32-bit integer limbs to store multi-precision values. The number of limbs
for any number is set at compile time to the size of the largest number to fac-
tor. Thus, all operations iterating over limbs of multi-precision numbers, can be
completely unrolled during compilation, yielding long sequences of straight-line
machine code. To avoid inversions during multi-precision arithmetic, all compu-
tation on the GPU is carried out in the Montgomery domain. All multi-precision
arithmetic routines use inline Parallel Thread Execution (PTX) assembly to
make use of carry-flags and multiply-and-add instructions. Note that PTX code,
while having an assembly-like syntax, is code for a virtual machine that is com-
piled to the actual architecture specific instructions set. PTX has the advantage
of being hardware independent and ensures our proposed implementation is exe-
cutable on a variety of NVIDIA hardware.

To enable fast parallel transfer of multi-precision values from global device
memory to registers and shared memory of the GPU cores, multi-precision values
in global memory are stored strided: Consecutive 32-bit integers in memory are
arranged such that they are retrieved by different GPU threads, thus coalescing
memory accesses to the same limb of different values by multiple threads into
one memory transaction.
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GPU-Optimized Montgomery Multiplication. As the modular multiplication is
at the core of elliptic curve point operations, the speed of the implementation
is most influenced by the speed of the modular multiplication routine. As in
the implemented software architecture, a single thread performs the full multi-
plication to avoid any synchronization overhead between threads, reducing the
amount of registers per multiplication is of high importance.
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Fig. 1. Million modular multiplication per second for different Montgomery implemen-
tation strategies and architectures.

Different strategies to implement multi-precision Montgomery multiplication
and reduction have been surveyed in [20]. These differ in two aspects: The tight-
ness of interleaving of multiplication and reduction, and the access to operands’
limbs. In [32], Neves et al. claimed that the Coarsely Integrated Operand Scan-
ning (CIOS), Finely Integrated Operand Scanning (FIOS) and Finely Integrated
Product Scanning (FIPS) strategies are the most promising, and CIOS is most
widely used, e.g., in [34]. All three methods need 2l2 + l multiplications of limbs
for l-limb operands (see [20, Table 1] for a complete cost overview). Using PTX,
each of these multiplications requires two instructions to retrieve the lower and
upper half of the 2l product. PTX offers multiply-and-add instructions with
carry-in and -out to almost entirely eliminate additional add instructions.

Our implementation of FIOS follows [18] in accumulating carries in an addi-
tional register to prevent excessive memory accesses and carry propagation loops.
Our FIPS implementation follows [32, Algorithm 4].

Comparing FIPS, FIOS and CIOS on current GPUs, our benchmarks show
varying results for newer architectures. Figure 1 shows the runtime of different
strategies on different hardware architectures. For each of these benchmarks,
32 768 threads are started in 256 blocks, with 128 threads in each block. Each
thread reads its input data from strided arrays in global memory and performs
one million multiplications (reusing the result as operand for the next iteration)
and writes the final product in strided form back to global memory.

For the most recent Volta and Turing architectures featuring integer arith-
metic units, the FIPS strategy is the most efficient especially for larger moduli.
On the older Pascal architecture, the difference between the implementation
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strategies’ efficiency is much smaller. However, on the Tesla P100 CIOS slightly
outperformed both finely integrated methods.

GPU-Optimized Montgomery Inversion. While modular inversions are costly
compared to multiplications and are not used during any hot arithmetic, pre-
computed points are transformed needing one modular inversion per point.
Montgomery Inversion, given a modulus n and a number Ã = AR to invert in
Montgomery representation, computes its inverse Ã−1 = A−1R mod n, again
in Montgomery representation.

The algorithm implemented in this work is based on the Binary Extended
Euclidean Algorithm as in [33, Algorithm 3]. Divisions by two within the algo-
rithm are accomplished by using PTX funnel shifts to the right. The PTX
instruction shf.r.clamp takes two 32-bit numbers, concatenates them and shifts
the 64-bit value to the right, returning the lower 32 bit. Thus, each division by
two can be achieved with l instructions for an l-word number. However, the
inversion algorithm needs four branches depending on the number to invert and
thus produces inner warp thread divergence.

4.2 Elliptic Curve Arithmetic on GPUs

Based on the modular arithmetic of the last section, the elliptic curve arithmetic
can be implemented. With offering the lowest operation count (in terms of mul-
tiplications/squarings) of all proposed elliptic curves, our GPU implementation
uses a = -1 twisted Edwards curves, with coordinates represented in extended
projective format.

Point Arithmetic. The implementation of point addition and subtraction is
a straight-forward application of the addition and doubling formulas from [19]
using the multi-precision arithmetic detailed in the previous section.

Point Addition. Addition of an arbitrary point with Z �= 1 is only needed
seldom: During precomputation of small multiples of the base point for the
w-NAF multiplication and during computation of the giant-steps for stage two.
General point addition is implemented by a straight-forward application of the
formulas from [10,19] as given in Algorithm 1.

Algorithm 1: Point addition on a = -1 twisted Edwards curves [10, 19].
Data: Points P = (xP , yP , zP , tP ) and Q = (xQ, yQ, zQ, tQ) in extended projective

coordinates, curve parameter k = 2d
Result: Point R = P + Q = (xR, yR, zR, tR)

1 a ← (yP − xP ) · (yQ − xQ)
2 b ← (yP + xP ) · (yQ + xQ)
3 c ← tP · k · tQ
4 d ← zP · zQ
5 d ← d + d

6 e ← b − a
7 f ← d − c
8 g ← d + c
9 h ← b + a

10 xR ← e · f

11 yR ← g · h
12 zR ← f · g
13 tR ← e · h
14 return

(xR, yR, zR, tR)
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Table 2. Modular operation cost of the implemented point arithmetic.

projective� extended�

M S ADD M S ADD

Doubling† 3 4 8 4 4 8

Tripling† 9 3 10 11 3 10

Addition∗ 8 9 9 9

Precomputed addition‡ 6 7 7 7
� result coordinate format † operand in projective
coordinates ∗ operand in extended coordinates ‡ one
operand in our modified coordinates

If one of the points of the addition is precomputed and used in many addi-
tions, further optimization is beneficial. As in the w-NAF point multiplication,
precomputed points are only used for addition, all operations that solely depend
on values of the point itself are done once during precomputation. These are
addition and subtraction of x- and y-coordinates, as well as the multiplication of
the t-coordinate with the curve constant k = 2d. To further save one multiplica-
tion per point addition, the precomputed point can be normalized such that its
z-coordinate equals one at the cost of one inversion and three multiplications.
Applying these optimizations yields the modified format of a precomputed point
P̃ from the general point representation P , such that

xP̃ = yP − xP yP̃ = yP + xP zP̃ = 1 tP̃ = 2 · dcurve · tP

Using this representation, point additions require seven multiplications only.
Computing the inverse of a point −P = (−xP , yP , zP ,−tP ) in its modified rep-
resentation is achieved by switching the x- and y-coordinates, and computing
−tP̃ = n − tP̃ mod n, i.e., −P̃ = (yP̃ , xP̃ , 1, n − tP̃ ).

Point Doubling and Tripling. Point doubling is used for each digit of the scalar
in scalar multiplication, tripling also on double-base chains. As all intermediate
values do not fulfill the condition of Z = 1, no further optimized doubling
formulas can be applied in this case. The implemented doubling and tripling
routines follow [10,19] and [9].

Mixed Representation. Using extended projective coordinates, the point dou-
bling formula does not use the t-coordinate of the input point. When using the
w-NAF scalar multiplication, the number of non-zero digits is approximately

l
w−1 for an l-bit scalar. Thus, there are long runs of zero bits in the w-NAF,
resulting in many successive doublings without intermediate addition.

Thus, to further reduce multiplications during scalar multiplication com-
puting the t-coordinate can be omitted if the scalar’s next digit is zero, as no
addition follows in this case. Furthermore, as each point addition is followed by
a point doubling, which does not rely on the correct extended coordinate, again,
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the multiplication computing tR can be omitted from all point additions within
the scalar multiplication. The same applies to tripling. The resulting operation
counts as implemented are listed in Table 2.

Scalar Multiplication. To compute the scalar multiple of any point P , as in
the first stage of ECM, w-NAF multiplication is used. The first stage’s scalar
s = lcm(1, . . . , B1) is computed on the host and transformed into w-NAF rep-
resentation, with w a configurable compile time constant defaulting to w = 4.
Thus, each digit of sw-NAF is odd or zero and in the range of −2w−1 to 2w−1.

Our precomputation generates 2P by point doubling and the small odd multi-
ples of P , i.e., {3P, . . . , (2w−1−1)P} with repeated addition of 2P . Precomputed
points are stored with strided coordinates along with other batch data in global
memory, as registers and shared memory are not sufficiently available.

All threads read their corresponding precomputed point’s coordinates from
global memory to registers with coalesced memory accesses. In case the current
digit of the NAF is negative, the precomputed point is inverted before addition.
Again, as all threads are working on the same limb, this does not create any
divergence.

5 Evaluation

Three different GPU platforms were available during this work, a Tesla P100
belonging to the Pascal family, a Tesla V100 manufactured in the Volta archi-
tecture, and a RTX 2080 Ti with a Turing architecture.

As the actual curves in use for ECM are not within the scope of this paper, the
yield, i.e., the numbers for which a factor is found, is not part of this evaluation.
Of interest is, however, the throughput of the implementation: How many ECM
trials can be performed per second on moduli of a given bit length. Therefore, each
benchmark in this work is conducted on 32 768 randomly generated numbers
n = pq, with

√
n ≈ p ≈ q and p and q prime.

Benchmarks for different problem sizes are carried out in two standard con-
figurations, with the first being a somewhat standard throughout the literature
to enable a comparison with previous works. As most previously reported GPU
implementations only support the first stage of ECM on the GPU, this first case
only executes stage one of the implementation with a bound of B1 = 8192. The
second benchmark parameter set is aimed at much larger ECM bounds and does
include the second stage, with bounds B1 = 50 000 and B2 = 5000 000.

5.1 Stage One Bound

Firstly, we evaluate the impact of the bound B1. Figure 2 gives the number of
ECM trials per second for moduli of 192 bit and 320 bit for growing values of B1.
Note that the size of the scalar s = lcm(1, . . . , B1) grows very fast with B1. Using
w-NAF multiplication, the runtime of ECM mainly depends on the number of
digits in s, resulting in the values seen in Fig. 2. Note that each single trial (per
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second) on the y-axis is equivalent to log2 lcm(1, . . . , B1) operations (double and
possibly add) per second and thus changes for each value of B1, e.g., 1 trial is
equivalent to 14 447 ops for B1 = 10 000 and 28 821 ops for B1 = 20 000.

5.2 Stage Two Bound

For a given bound B2, the number of primes less than or equal to B2 are the key
factor in determining the runtime of stage two. Via the prime number theorem,
with a fixed negligible value for B1, this value is approximately π(B2) ≈ B2

lnB2
.

See Fig. 3 for the achieved ECM trials per second for different values of B2.
While for small values of B2, the RTX 2080 Ti outperforms the Tesla V100, as
soon as B2 grows larger than 1 000 000, the Tesla V100 performs slightly better.
As described in Sect. 3.2 for larger values of B2 not all baby-step and giant-step
points can fit into GPU memory, but have to be processed in batches. Our Tesla
V100 setup features 16 GB of GPU memory while the RTX 2080 Ti only has
11 GB available. Again, note that the plot shows trials

second where with growing B2

the number of operations per trial increases with B2.
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Fig. 2. ECM first stage trials per second for varying size of B1.
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Fig. 3. ECM first and second stage trials per second for varying size of B2, with
B1 = 256, and a stage two window size of w = 2310 (cf. Sect. 3.2).
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5.3 ECM Throughput

With these benchmarks giving the runtime dependency on different parameters,
this section gives absolute throughput numbers for the two exemplary cases of
first stage only ECM with B1 = 8192, and both stages with more ambitious
B1 = 50 000 and B2 = 5000 000.

Stage 1. The absolute throughput for the first case for different moduli sizes
is given in Table 3. Interestingly, when comparing the throughput for 192-bit
moduli between the high-performance GPU Tesla V100 with the consumer GPU
RTX 2080 Ti, the consumer card processes more ECM trials per second by a
factor of 1.44.

Table 3. Absolute throughput of ECM trials for stage one (in thousands per second)
on different platforms with B1 = 8192 and varying moduli sizes.

128 160 192 224 256 288 320 352 384 416 448

Tesla P100 103.9 66.6 46.8 33.5 19.0 14.3 9.9 8.3 7.0 6.0 5.2

Tesla V100 228.9 188.8 149.1 141.3 117.6 73.4 61.9 52.4 35.4 29.4 24.7

RTX 2080 Ti 450.6 310.0 214.1 152.5 124.2 98.9 77.1 58.8 37.2 29.7 24.7

2×RTX 2080 Ti 542.6 481.3 377.1 285.5 232.9 191.4 150.2 113.6 73.0 58.3 48.2

Table 4. Absolute throughput of ECM trials for stage one and stage two (in thousands
per seconds) on different platforms with B1 = 50 000, B2 = 5 000 000 and varying
moduli sizes.

128 160 192 224 256 288 320 352 384 416 448

Tesla P100 10.79 7.15 4.97 3.52 1.91 1.42 1.11 0.91 0.77 0.65 0.55

Tesla V100 46.88 30.74 22.85 17.12 13.58 7.99 7.12 5.78 4.60 3.49 2.78

RTX 2080 Ti 40.86 27.39 20.21 14.77 11.62 9.34 6.85 6.30 4.11 3.32 2.78

2×RTX 2080 Ti 80.46 53.79 39.42 28.61 22.51 17.91 13.50 9.72 7.89 6.46 5.39

Stage 1 and Stage 2 Eventually, Table 4 states the absolute throughput of the
entire ECM setting the bounds to B1 = 50 000 and B2 = 5000 000. For the
exemplary application with a modulus size of 448 bit mentioned in Sect. 2.2,
only one RTX 2080 Ti is capable of processing 2 781 ECM trials per second.

Multiple Devices Our implementation is designed to use multiple GPUs to
increase throughput. Table 3 and Table 4 show that the throughput is almost
doubled when utilizing two RTX 2080 Ti, and more so for larger moduli and
larger ECM parameters, as the ratio of host side to GPU computation shifts
towards more work on the GPU.
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Table 5. Comparison of scaled throughput for Montgomery multiplication from the
literature and this work. Throughput values are given in multiplications

core×cycle
× 10−3.

GPU [25] [31] [16]d this work

GTX 480 GTX 580 GTX 980 Tia Tesla P100b Tesla V100c RTX 2080 Tic

Cores 480 512 2816 3584 5120 4352

Clock∗ 1401 1544 1000 1316 1530 1665

Modulus†

128 3.54063 7.34319 4.03125 2.65388 9.01974 8.65915

160 2.85956 4.75631 1.74424 6.40737 6.01596

192 2.32423 3.32816 1.24673 4.65732 4.62363

224 1.90638 2.45785 0.91325 3.61875 3.46953

256 1.53313 1.88861 1.32813 0.70659 2.92659 2.80919

320 1.04687 1.21691 0.44531 1.97959 1.88013

384 0.75839 0.84880 0.64063 0.30303 1.41461 1.36107
∗ in MHz † in bits a two-pass approach b CIOS c FIPS
d Values have been scaled from throughput per Streaming Multiprocessor per clock cycle

5.4 Comparison to Previous Work

Multiple factors make it hard to compare our results to previous work: Espe-
cially the fast changing GPU architectures make a comparison very difficult, but
also no comparable set of parameters for B1 and B2 has been established. In
lack of a better computation power estimate, we adopt the approach of [31] to
scale the results accomplished on different GPU hardware by scoring results per
cuda cores × clock rate.

Montgomery Multiplication. Comparing the most influential building block, the
Montgomery multiplication algorithm to previous publications is a first step.
Table 5 lists relevant work, the hardware in use and a score for the throughput
scaled by the number of Compute Unified Device Architecture (CUDA) cores and
their clock rate. The implementation of this work is the fastest of all implemen-
tations under comparison on the RTX 2080 Ti and more so for larger moduli,
however comes in last place for the Pascal architecture platforms. Using our
implementation and a modern GPU manufactured in the Turing architecture,
clearly outperforms the previous results.

ECM Throughput. Comparing the achieved throughput of the developed soft-
ware with previously published results suffers from various problems: different
hardware, varying modulus sizes and varying settings for both first and second
stage bounds across different publications.

Especially, as to the authors’ knowledge, apart from Miele et al. in [31], no
other publication of ECM on GPUs implemented the second stage. Additionally,
in [31] only very small bounds of B1 = 256 and B2 = 16 384 were chosen. Note
that the implemented w-NAF approach in stage one in this work benefits from
larger B1 as precomputation costs amortize.
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Table 6. Comparison of this implementation with [12] and their parameter sets for
192-bit moduli. Values are given in ECM trials

core×cycle
× 10−5.

Bos et al. [12] this work

no-storage windowing

GPU GTX 580 Tesla P100 Tesla V100 RTX 2080 Ti

cores/clock∗ 512/1544 3584/1316 5120/1530 4352/1665

B1 = 960 2.1692 1.0014 0.64070 0.20936 0.49398

B1 = 8 192 0.2513 0.1151 0.09917 0.20134 0.29373

B1 = 50 000 N/A N/A .01650 0.04609 0.05168
∗ in MHz

For bounds this small our implementation is actually significantly slower, as
host-side and precomputation overhead dominate the runtime.

Albeit already published in 2012, the comparison with [12] is the most inter-
esting for the stage one implementation, as they also use a somewhat larger
bound of B1 = 8192, but do not implement stage two. However, the comparison
lacks modulus sizes other than 192 bit, as [12] only published these results. The
comparison to our implementation is shown in Table 6 and perfectly shows the
advantage of our approach for larger bounds. Considering B1 = 8192, our imple-
mentation slightly outperforms the no-storage approach by Bos et al. although
we do not use highly optimized addition chains.

Even less recent, published in 2009, is the implementation by Bernstein et al.
[8]. A comparison is somewhat unfair, as Bernstein developed a = -1 Edwards
curves after this paper was published. However, their GPU implementation uses
the bound B1 = 8192, and in comparison the proposed implementation is sig-
nificantly faster. However, this comparison is unfair as multiple generations of
hardware architectures aimed at GPGPU have been released within the last ten
years, and the authors of [8] decided to use a floating point representation.

6 Conclusion

In this work we present a highly optimized and scalable implementation of the
entire ECM algorithm for modern GPUs. On algorithmic level, we demonstrated
that a w-NAF representation seems to be the most promising optimization tech-
nique realizing the scalar multiplication in the first stage. For the second stage
we rely on an optimized baby-step giant-step approach. For the underlying
Montgomery multiplication, we implemented three difference strategies where
against our expectations FIPS performs best. Eventually, we demonstrate that
the throughput of previous literature is achieved – and actually exceeded – on
the most recent Turing architecture. We hope that the scalability, flexibility and
free availability of our ECM implementation will support other researchers in
achieving new factorization and DL records, reducing costs and reassessing the
security of some algorithms used in PKC.
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Abstract. This work presents Arcula, a new design for hierarchi-
cal deterministic wallets that brings identity-based public keys to the
blockchain. Arcula is built on top of provably secure cryptographic prim-
itives. It generates all its cryptographic secrets from a user-provided seed
and enables the derivation of new public keys based on the identities of
users, without requiring any secret information. Unlike other wallets, it
achieves all these properties while being secure against privilege escala-
tion. We formalize the security model of hierarchical deterministic wallets
and prove that an attacker compromising an arbitrary number of users
within an Arcula wallet cannot escalate his privileges and compromise
users higher in the access hierarchy. Our design works out-of-the-box
with any blockchain that enables the verification of signatures on arbi-
trary messages. We evaluate its usage in a real-world scenario on the
Bitcoin Cash network.

Keywords: Hierarchical deterministic wallet · Hierarchical key
assignment · Bitcoin · Blockchain

1 Introduction

In recent years, the widespread adoption of distributed financial systems
attracted the interest of millions of users, who have exchanged assets and coins
in a decentralized and democratic way. Blockchain-based systems like Bitcoin,
Ethereum, and Ripple achieve these goals—their users exchange coins by rely-
ing on distributed consensus, cryptographic keys, and without depending on any
central authority. At the same time, however, the blockchain also attracted the
interests of malicious parties that aimed at either compromising the distributed
consensus or the cryptographic keys of users. In both cases, their goal is to steal
crypto-coins.

This work focuses on this issue and, in particular, on the cryptographic wal-
lets in which users store the cryptographic keys associated with their coins.
Similarly to how we store bills and credit cards in our physical wallet, a cryp-
tographic wallet contains the digital keys that allow us to spend crypto-coins
on the blockchain (e.g., the Bitcoins that we receive on an address we control).
c© Springer Nature Switzerland AG 2020
S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 323–343, 2020.
https://doi.org/10.1007/978-3-030-65411-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65411-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-65411-5_16


324 A. Di Luzio et al.

A good wallet should be secure to external threats – i.e., a physical or remote
attacker should not be able to extract keys without the users’ consent – and
also resilient to failures and disasters – the users should be able to recover their
keys even in case of loss, hardware failure, or natural disaster. We focus, in
particular, on a family of cryptographic wallets called hierarchical deterministic
wallets (HDWs) that achieve these goals while providing innovative properties.
For instance, HDWs allow users to distribute their cryptographic keys according
to a hierarchy (reflecting, for example, their different blockchain addresses or the
internal organization of a company). In addition, they deterministically generate
all their secrets by starting from a user-provided seed. As long as users produce
the seed, they will be able to recover all their keys. Finally, HDWs allow auditors
(external to the wallet and unaware of any of its secrets) to verify the hierarchi-
cal relationships between the users and the corresponding keys that they control
within the wallet. As we shall see, this last property enables an entirely new set
of use cases on the blockchain and in the context of decentralized finance (DeFi).

Currently, HDWs are widely used both by individuals and financial enter-
prises. Nonetheless, many implementations of HDW are either broken from a
security perspective, do not respect the fundamental properties of an HDW, or
are exclusively tied to specific blockchains. In this work, we aim at solving this
problem. We present Arcula,1 a new design of HDW that is significantly dif-
ferent from the state of the art. First, Arcula is independent of any particular
blockchain: It supports any crypto-system that enables the verification of sig-
natures on arbitrary messages, and we test its implementation in Bitcoin Cash
(a fork of the original Bitcoin). Next, we provide a formal proof of its security
while respecting all the fundamental properties that an HDW should guarantee.
Arcula brings for the first time identity-based addresses to the blockchain: By
combining well-tested hierarchical key assignment schemes and certificates based
on digital signatures, Arcula enables blockchain users to transmit coins by sim-
ply addressing receivers through their usernames or emails. All this while being
formally secure against privilege escalation threats and with minimal overhead
in the transaction costs. Furthermore, our design of Arcula also enables new
capabilities for HDW: For instance, the possibility of dynamically modifying its
hierarchy e.g., by adding or removing users, and the possibility of constrain-
ing the distribution of the digital keys according to some temporal capabilities
(e.g., by distributing keys that will expire at the end of a specified period).
Together, Arcula and all these properties unlock new use cases on the blockchain,
in decentralized finance, and even for distributed or web-based financial institu-
tions: Making it possible to register distributed loans, distributed promises or
futures, and also to handle incoming payments on an entirely untrusted web-
server securely.

1 Arcula is the Latin word to define the small casket where ancient Romans used to
store their jewels.
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1.1 Our Contributions

We summarize our contributions below.

Syntax and Security model of HDW. We put forward the security definition of
HDWs. Intuitively, an HDW should satisfy three properties: First, it determinis-
tically generates its cryptographic keys (associated with users’ coins) by starting
from an initial seed provided by the user. As long as the user presents the same
seed, she will be able to recover her keys, even in case of wallet loss. Second, an
HDW also organizes the keys under an access hierarchy that combines groups
of users with signing keys. The privileges of users depend on their level in the
hierarchy. Users with higher privileges (i.e., higher in the hierarchy), must be
able to derive the keys of users on lower levels and, in turn, to sign messages
(i.e., transactions) on their behalf. Users on lower levels, however, should not
be able to escalate their privileges along the hierarchy, not even when colluding
with others. Third, an HDW should permit to generate every public key deter-
ministically (i.e., the address on which coins are transferred) of the wallet by
starting from a master public key, without requiring any secret information in
the process. As we shall see, this requirement enables a set of creative use cases
for HDW (e.g., public auditing of blockchain assets, and generation of new keys
in untrusted environments). In more detail, let ski be the secret signing key of a
user vi of a hierarchy and let pki be the corresponding public key. Let skj and pkj

be, respectively, the secret and public keys associated with a descendant vj of
vi (i.e., a user with lower privileges in the hierarchy). We informally summarize
the properties as follows:

Property 1 (Deterministic secret derivation). For each descendant vj of vi, the
secret keys skj is deterministically generated by using the secret information of
vi. If vj has the highest privileges in the hierarchy, then her secret information
is generated from a user-provided seed.

Property 2 (Security against privilege escalation). For any set of colluding
descendants of vi, it is computationally infeasible to recover the secret key ski

of vi.

Property 3 (Public-key/Address derivation). The public key (address) pkj of
each descendant vj of vi is deterministically generated only using public infor-
mation; the generation process does not require the secret key ski or any other
secret information.

Arcula from Hierarchical Key Assignment. At its core, Arcula derives the keys
of the users by relying on a deterministic version of hierarchical key assignment
schemes (HKA): A provably secure process that takes as input a hierarchy of
users and assigns a secret key to every user so that users with higher privileges
can derive the keys of those below in the hierarchy. To the best of our knowledge,
hierarchical key assignment schemes have never been used before to implement
an HDW. One of our contributions is to connect these seemingly unrelated fields



326 A. Di Luzio et al.

of research. Hierarchical key assignment schemes provide several advantages:
They are highly efficient and have been extensively studied in the past; they
enable Arcula to implement arbitrarily complex hierarchies, integrate temporal
capabilities into the wallet, and support the dynamic addition or removal of
users to the hierarchy.

Implementation and Evaluation. We implemented Arcula, and we demonstrate
that it can be used in the real world by showing how to send and receive funds
on the Bitcoin Cash blockchain. Thanks to its design, Arcula is compatible with
any blockchains whose scripting language permits the verification of a signature
on an arbitrary message (e.g., Ethereum). This is because users must prove own-
ership of identity-based addresses before spending coins by showing a certificate
produced by the wallet’s administrator2.

1.2 Applications

HDWs enable different use cases, inspired by both well established and innova-
tive financial applications that specifically tackle the needs of enterprises, gov-
ernments, and financial institutions.

Enterprises: In enterprises (e.g., financial institutions, or exchanges), the hier-
archy of a deterministic wallet might reflect the underlying chain of command
or the subdivision in regions, departments, and teams. It allows managers to
distribute funds among different branches and ensure fiscal responsibility. In
particular, each branch can manage its funds but cannot spend those of other
units. The deterministic generation of keys simplifies the management of secrets
and guarantees a reliable recovery of the wallet, even in case of catastrophic
loss. Cryptocurrency exchanges that manage the keys of hundreds of thousands
of users might find this feature particularly useful: Through the HDW, they
generate pairs of keys that take into account the hierarchy of users and then
rely on the master seed to handle their recovery. Finally, the property of public-
key/address derivation enables enterprises to comply with financial laws and reg-
ulations without jeopardizing the security of their infrastructure: E.g. it allows
a (possibly untrusted) auditor to inspect the funds that they hold by deriving
all the public keys in the wallet without knowing any secret information.

e-Commerce: An HDW is distinctly beneficial to an e-commerce marketplace.
Marketplaces, such as Amazon, typically advertise and sell products to buyers.
They also allow third-party vendors to do the same. Cryptocurrencies could help
manage the payment flow to these vendors. When selling an item to a buyer,
the marketplace generates a fresh payment address for each crypto-coin that
it supports. As soon as the buyer transfers the required coins to one of the
addresses and the blockchain confirms the transaction, the item gets shipped.
The generation of fresh payment addresses leverages the properties of public-key

2 In general, the administrator of the wallet is the highest privileged user in the hier-
archy.
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derivation: Since it does not require any private information, it can take place
in an untrusted environment (e.g., a web server exposed to the internet) and
allows the e-commerce owner to derive the corresponding secret keys only when
spending the funds (e.g., by deriving them offline starting from an intermediate
key of the wallet). Even if an attacker compromises the webserver, he will not
discover any secret keys, and thus funds received before the attack remain safe
and intact. Besides, public-key derivation allows buyers or auditors to check the
authenticity of the payment addresses since anyone can generate them from the
public key of the marketplace.

Decentralized Finance (DeFi): Decentralized Finance has recently started
replacing many of the existing traditional financial tools (e.g., loans, and futures)
with open-source alternatives based on the blockchain and its smart contracts.
With DeFi, HDW can unleash their full potential: The execution of smart con-
tracts, indeed, cannot rely on any secret information as both the source code
and the processing inputs are stored in the clear on the public blockchain. By
combining HDW and public derivation, a DeFi smart contract can autonomously
derive the public key of the recipient of a transaction (e.g., a user that will receive
interests on a loan, or the employee of a company that will receive a percent-
age of its shares). The process could take place on the blockchain and does not
require manual interactions. In turn, HDW and DeFi lay the foundations of a
modern, democratic, and decentralized financial world.

1.3 Our Technique

To provide a high-level description of Arcula, we begin by informally describ-
ing the security levels in which HDWs operate, ordered by the increasing trust
requirements.

Untrusted Environment: This level is entirely untrusted. It refers, for exam-
ple, to the executing environment of a payee that relies on public-key/address
derivation (Property 3) to generate fresh addresses to deliver payments, or to
an auditor that, generates the public address of a user (e.g., a department of a
company), to inspect the coins held by it.

Hot Environment: This level is semi-trusted. At this stage, the users can
access their secret keys and derive those of their descendants. An attacker that
compromises a user of the hot environment will compromise, in turn, only her
descendants in the hierarchy (Property 2).

Cold Storage: This is the most trusted level of the security model, holding
the seed used to generate every key within the wallet deterministically (Property
1). It typically corresponds to an offline location (e.g., a hardware token used
to instantiate the wallet) that is physically secured (e.g., in a safe). An attacker
that compromises the cold storage has full access to the wallet and every asset
it holds.

Figure 1 provides an overview of the design of Arcula, our hierarchical deter-
ministic wallet. Arcula starts from the seed to deterministically generate a master
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Fig. 1. A glance at the deterministic generation of secrets and identity-based pub-
lic derivation within Arcula. The users l1 to l5 at the bottom of the figure create a
hierarchy, encoded as a directed acyclic graph.

pair of secret and public keys (msk,mpk) (Property 1). After the initial instantia-
tion, the seed and the master secret key can be safely moved to cold storage. The
master public key uniquely identifies the wallet and will be used in the public
key derivation process. In more detail, Arcula generates the public-key/address
of i-th user of the hierarchy by concatenating the master public key mpk and her
identity li (e.g., a numerical index or a bit string). As a result, Arcula achieves the
public-key/address derivation (Property 3), and it can be executed, by design,
in an untrusted environment. The master secret key msk allows, instead, to
deterministically generate the secret keys ski corresponding to the users of the
hierarchy. As previously mentioned, Arcula (hierarchically) generates the secret
keys by leveraging a deterministic hierarchical key assignment. Such primitive
assigns a derivation key to every user of the hierarchy, that, in turn, they will
use to derive their own secret key ski and those of their descendants (Property
2). Note that in complex hierarchies (e.g., directed acyclic graphs), a user can
have two (or multiple) parents (see l4 and its two parents l3 and l2 of Fig. 1).
The deterministic hierarchical key assignment allows each parent to compute the
secret key of its child without knowing any of the secrets of the other parent. The
private key generation should be executed in the context of the hot environment,
as compromising a single user will lead to compromising every descendant.

While we have the hierarchical derivation on both the private and public side,
the identity-based address and the secret key are completely unrelated. Because
of that, Arcula explicitly associates secret keys to their corresponding identity-
based addresses through a certificate certi signed by the master secret key msk,
that links the identity li (top of Fig. 1) to the secret key ski generated by the
deterministic key assignment scheme (bottom of Fig. 1). This is done by setting
certi = Signmsk(pki||li) where pki is the real valid public-key of the secret key ski.
Such a certificate must be revealed whenever a user wants to spend her coins to
prove that it is the owner of a particular identity-based address (note that it can
be verified just knowing mpk, the master public key of the wallet). Due to these
certificates, Arcula can be used only with blockchains whose language permits
the verification of signatures (in this case certi) on arbitrary messages (the pair
pki||li).
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Table 1. Comparison between Arcula and the existing state-of-the-art wallets.

Security to
Privilege
Escalation
(Property 2)

Public Key
Derivation
(Property 3)

Deterministic
Generation
(Property 1)

Hierarchy

BIP32 [17] No Yes Yes Tree

Hardened BIP32 [17] Yes No Yes Tree

Gutoski and Stebila [13] No Bounded Yes Tree

Fan et al. [10] No Yes Yes Tree

Poulami et al. [6] − − − No

Goldfeder et al. [12] − − − No

Gennaro et al. [11] − − − No

Dikshit and Singh [9] − − − No

Arcula (Section 5) Yes Yes Bounded DAG

The identity-based approach that we realized with Arcula provides several
advantages: First, it solves the problem of distributing a public key for each user
of the hierarchy. Also, it allows for generating an unbounded number of addresses
for receiving transactions. On the other hand, Arcula relies on certificates signed
by the master secret key to associate the secret key of a user with their identity,
to which the transaction was addressed. Users only require these certificates
when they sign a transaction for the first time: This means that their creation
can be delayed until that moment and that it can occur entirely offline (dashed
links sk5 and cert5 of user 5 in Fig. 1).

2 Related Work

Bitcoin Improvement Proposal 32 (BIP32) defines the state of the art implemen-
tation of hierarchical deterministic wallets [17]. In short, let g be the generator
point of an Elliptic Curve. A private key ski is associated with its public key
pki = gski . Let H be a hash function; the descendants’ private keys skj and public
keys pkjare defined as:

skj = H(pki‖j) + ski, pkj = gskj = gH(pki‖j)+ski = gH(pki‖j) · pki (1)

Equation (1) satisfies the properties of deterministic generation and public
derivation (Properties 1 and 3). However, there is a privilege escalation vul-
nerability because, by using the descendant private key skj and the parent pub-
lic key pki, it is possible to recover the parent private key ski by computing
ski = skj − H(pki‖j) mod q. In other words, compromising any node leads
to compromising the entire wallet. Such attack has been discussed extensively
in [4,5,13,17].
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BIP32 addresses this issue by designing a hardened key derivation method
that generates a descendant private key skh

j as follows: skh
j = H(ski‖i) + ski

mod q. The hardened derivation solves the privilege escalation vulnerability but
looses the public key derivation (i.e., trades Property 3 for Property 2). Gen-
erating a hardened public key pkh

j now requires the parent secret key ski (i.e.,

pkh
j = gsk

h
j = gH(ski‖j)+ski = gH(ski‖j) · pki).

In Table 1 we compare Arcula, our hierarchical deterministic wallet, with
(hardened) BIP32 and the wallets present in the literature. BIP32 does not sat-
isfy the security to privilege escalation property. The hardened version of BIP32,
instead, fails in deriving public keys without requiring additional secrets. Gutoski
and Stebila [13] propose an HDW strengthens the security of BIP32. Their design
splits each secret key into n shares, distributed to the descendants of the user;
reconstructing the secret key requires at least m shares. This solution provides
weaker security than Property 2, because m colluding descendants of a user can
recover the original secret key (as opposed to preventing any set of colluding
descendants from escalating their privileges). In addition, they support Prop-
erty 3 by publishing the public keys of all the users in the wallet. They do not
allow the generation of fresh public keys, and their derivation is bounded to the
number of published keys. Fan et al. [10] develop an HDW based on Schnorr
signatures and trapdoor hash functions that enables the users to sign new trans-
actions without accessing their private keys. A generic user can sign transactions
on behalf of its descendants only after authorization by the root of the hierarchy
that needs to reveal her the master private trapdoor key. As a result, any autho-
rized user can sign new transactions on behalf of its descendants and all the
users of the hierarchy. Compromising a single authorized user leads to revealing
every secret stored in the wallet—the cold storage and hot environment of our
threat model overlap, and the scheme is not secure against privilege escalation.
Poulami et al. [6] provide a formal definition of non-hierarchical determinis-
tic wallets and show a set of modifications that make ECDSA-based determin-
istic wallets provably secure. Goldfeder et al. [12] and subsequently Gennaro
et al. [11] propose a non-hierarchical deterministic wallet where the secret key is
shared among n parties, and at least t of them are required to sign a transaction.
Dikshit and Singh [9] extend the threshold-based ECDSA signatures to assign
different weights to the participants of the protocol. These works deal with non-
hierarchical deterministic wallets, and they do not aim at achieving Properties
2 and 3 (depending on the hierarchical structure of the wallet).

Arcula, on the other hand, is the only solution secure against privilege escala-
tion that, at the same time, supports a complex access hierarchy (e.g., a directed
acyclic graph (DAG)) and enables unbound public-key/address derivation. How-
ever, spending the coins addressed to one of the users requires creating a cer-
tificate that associates their identities to their keys. For this reason, Property 1
and, more precisely, spending coins within Arcula, is bound to the generation of
a certificate, signed by the master secret key, that authorizes the users.
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3 Preliminaries

Notation. Uppercase boldface letters (such as X) are used to denote random
variables, lowercase letters (such as x) to denote concrete values, calligraphic
letters (such as X ) to denote sets, and sans serif letters (such as A) to denote
algorithms. Algorithms are modeled as (possibly interactive) Turing machines; if
algorithm A has access to some oracle O, we often write QO for the set of queries
asked by A to O. For a string x ∈ {0, 1}∗, we let |x| be its length; |X | represents
the cardinality of the set X . When x is chosen randomly in X , we write x ←$ X .
We write y = A(x) to denote a run of the algorithm A on input x and output
y; if A is randomized, y is a random variable and A(x; r) denotes a run of A
on input x and (uniform) randomness r. We write y ←$A(x) to denote a run
of the randomized algorithm A over the input x and uniform randomness. An
algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for
any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial
number of steps (in the input size). Throughout the paper, we denote by λ ∈ N

the security parameter and we implicitly assume that every algorithm takes as
input the security parameter. A function ν : N → [0, 1] is called negligible in the
security parameter λ if it vanishes faster than the inverse of any polynomial in
λ, i.e., ν(λ) ∈ O (1/p(λ)) for all positive polynomials p(λ). We write negl(λ) to
denote an unspecified negligible function in the security parameter.

3.1 Signature Scheme

A signature scheme with message space M is made of the following polynomial-
time algorithms.

KGen(1λ): The randomized key generation algorithm takes the security parame-
ter and outputs a secret and a public key (sk, pk).

Sign(sk,m): The randomized signing algorithm takes as input the secret key sk
and a message m ∈ M, and produces a signature σ.

Vrfy(pk,m, σ): The deterministic verification algorithm takes as input the public
key pk, a message m, and a signature σ, and it returns a decision bit.

A signature scheme is correct if honestly generated signatures always verify
correctly.

Definition 1 (Correctness of signatures). A signature scheme Π = (KGen,
Sign,Vrfy) with message space M is correct if ∀λ ∈ N and ∀m ∈ M, we have
Pr[Vrfy(pk,m,Sign(sk,m))] = 1, where (sk, pk) ←$KGen(1λ).

For security, we are interested in existential unforgeability, i.e, it must be
infeasible to forge a valid signature on a new fresh message.

Definition 2 (Unforgeability of signatures). A signature scheme Π =
(KGen,Sign,Vrfy) is existentially unforgeable under chosen-message attacks if
for all PPT adversaries A:

Pr
[
Geuf

Π,A(λ) = 1
] ≤ negl(λ) ,
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where Geuf
Π,A(λ) is the following experiment:

Setup: The challenger runs (sk, pk) ←$KGen(1λ) and gives pk to A.
Query: The adversary has access to a signing oracle OSign(·). On input m, the

challenger computes and returns σ ←$Sign(sk,m). Let QSign denote the the
messages queried to the signing oracle.

Forgery: The adversary outputs (m,σ). If m �∈ QSign, and Vrfy(pk,m, σ) = 1,
output 1, else output 0.

3.2 (Deterministic) Hierarchical Key Assignment Scheme

A hierarchical key assignment scheme [2] assigns a set of cryptographic keys to
a set of users in a hierarchy. The hierarchy, encoded as a directed acyclic graph
G = (V,E), represents the access rights of users. A path from a node vi to a node
vj implies that the user vi has higher privileges than vj and can assume the same
access rights of vj . We define the set of descendants Desc(vi) = {vj | vi �w vj }
of node vj to be the set of nodes vj such that there exists a direct path w from vi

to vj in G. An efficient hierarchical key assignment scheme (HKA) enforces the
access hierarchy while minimizing the number of keys distributed to the users.

Typically, HKA schemes assign the cryptographic secrets that they assign at
random. Our goal, however, is to leverage an HKA at the core of our wallet, where
each secret is deterministically derived from a seed provided by the user. When
the hierarchy is static (as in the scope of this paper), fixing the randomness of an
HKA algorithm ensures a deterministic generation of keys (the same randomness
implies the same key to each node). Within Arcula, we fix the randomness of
the HKA developed by Atallah et al. [2] to achieve this goal. Besides, in the
full version of this work [8], we show how to extend Arcula to handle dynamic
hierarchies. In a dynamic context, fixing the randomness does not help since
there is no a priori knowledge about the relative position of one node to each
other, and, in particular, one cannot make assumptions on the order through
which they are added to (or removed from) the hierarchy. For this reason, we
propose a modification of the HKA [2] that achieves deterministic generation
even with dynamic hierarchies.

A Deterministic Hierarchical Key Assignment (DHKA) scheme with seed
space S is composed of the following polynomial-time algorithms:

Set(1λ, G, S): The deterministic setup algorithm takes as input the security
parameter, a DAG G = (V,E), and an initial seed S ∈ S, and outputs
two mappings: 1) a public mapping Pub : V ∪ E → {0, 1}∗, associating a
public label li to each node vi in G and a public information yij to each edge
(vi, vj) ∈ E; 2) a secret mapping Sec : V → {0, 1}λ × {0, 1}λ, associating a
secret information Si and a cryptographic key xi to each node vi in G. (No
secret information is associated to the edges).

Derive(G,Pub, vi, vj , Si): The deterministic derivation algorithm takes as input
the access graph G, the public information Pub, a source node vi, a target
node vj , and the secret information Si of node vi. It outputs the cryptographic
key xj associated to node vj if vj ∈ Desc(vi).
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The correctness of a DHKA scheme requires that any user vi should be able
to derive, correctly, the secret key xj of any user vj ∈ Desc(vj) lower in the
hierarchy.

Definition 3 (Correctness of DHKA). A DHKA Π = (Set,Derive) with
seed space S is correct if for every DAG G = (V,E), ∀λ ∈ N, ∀vi ∈ V ,
∀vj ∈ Desc(vi), ∀S ∈ S, we have Pr[xj = Derive(G,Pub, vi, vj , Si)] = 1, where
(Pub,Sec) = Set(1λ, G, S), (Si, xi) = Sec(vi), and (Sj , xj) = Sec(vj).

Instead, the security of DHKA requires that even if an attacker corrupts an
arbitrary number of descendants of a node, he cannot distinguish its secret key
from a uniformly random string. We adapt the definition originally defined by
Atallah et al. [2] to account for the determinism in our scheme. We define the
set of ancestors Anc(vi) = {vj | vj �w vi} of a node vi to be the set of nodes vj

such that there exists a path w from vj to vi in G.

Definition 4 (Key Indistinguishability of DHKA). A DHKA Π = (Set,
Derive) with seed space S is key indistinguishable if for every PPT adversary A
and every DAG G = (V,E):

∣
∣
∣
∣Pr

[
Gsk−ind

Π,A (λ,G) = 1
]

− 1
2

∣
∣
∣
∣ ≤ negl(λ) ,

where Gsk−ind
Π,A (λ,G) is defined in the following way:

Setup: The challenger receives a challenge node v∗ ∈ V from the adversary A.
The challenger samples S ←$ S, then runs Set(1λ, G, S), and gives the result-
ing public information Pub and G to A. The challenger samples a random bit
b∗ ←$ {0, 1}: If b∗ = 0, it returns to A the cryptographic key xv∗ associated to
node v∗; otherwise, it returns a random key x̄v∗ of the corresponding length.

Query: The adversary has access to a corrupt oracle OCorr(·). On input vi /∈
Anc(v∗), the challenger retrieves (Si, xi) = Sec(vi) and sends Si to A.

Guess: The adversary outputs a bit b ∈ {0, 1}. If b = b∗ return 1; otherwise
return 0.

4 Hierarchical Deterministic Wallet

A hierarchical deterministic wallet is composed of 5 algorithms (Set,DPub,DPriv,
Sign,Vrfy): 1) Set deterministically instantiates the wallet by generating the
public parameters pp and a set of the derivation key di, one for user node vi

of the hierarchy. 2) DPriv and DPub are responsible of the derivation of sign-
ing and public keys (Properties 1 and 3). DPriv derives the signing key skj of
a node vj , descendent of vi, by using the derivation key di associated to vi;
DPub derives the corresponding public key pkj by using the only the public
parameters pp. 3) Sign and Vrfy take inspiration from the standard signing and
verification algorithms of a digital signature scheme. A hierarchical determin-
istic wallet Π = (Set,DPub,DPriv,Sign,Vrfy), defined over a seed space S and
message space M is defined in the following way:
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Set(1λ, G, S): The deterministic setup algorithm takes as input a security param-
eter, an access graph G = (V,E), and an initial seed S ∈ S, and outputs the
public parameters pp and a set of derivation keys {di}vi∈V .

DPub(pp, vi): The deterministic public derivation algorithm takes as input the
public parameters pp, a target node vi, and outputs the public key pki asso-
ciated to node vi.

DPriv(pp, di, vi, vj): The deterministic private derivation algorithm takes as input
the public parameters pp, the derivation key di of node vi, and a target node
vj ∈ Desc(vi), and outputs the secret key skj associated to node vj .

Sign(ski,m): The randomized signing algorithm takes as input a message m ∈ M,
and a secret key ski, and outputs a signature σ.

Vrfy(pki,m, σ): The deterministic verification algorithm takes as input a public
key pki, a message m, and a signature σ, and outputs a decisional bit b.

A hierarchical deterministic wallet is correct if any user can derive the private
and public key of its descendants and create a valid signature on behalf of them.
This means that any node vi can derive the signing key skj of any node vj ∈
Desc(vi) and produce, in turn, a valid signature σ on behalf of vj (i.e., that
passes the verification process against the public key pkj obtained through public
key derivation).

Definition 5 (Correctness of HDW). A hierarchical deterministic wallet
Π = (Set,DPub,DPriv,Sign,Vrfy), with seed space S and message space M, is
correct if for every DAG G = (V,E), ∀vi, vj ∈ V, ∀vj ∈ Desc(vi),∀S ∈ S,∀m ∈
M the following condition holds:

Pr
[
Vrfy(pkj ,m,Sign(skj ,m)) = 1

] ≥ 1 − negl(λ) ,

where (pp, {di}vi∈V ) = Set(1λ, G, S), skj = DPriv(pp, di, vi, vj), and pkj =
DPub(pp, vj).

The security of a hierarchical deterministic wallet draws inspiration from exis-
tentially unforgeable signatures. We allow an attacker to corrupt an arbitrary
number of users in the hierarchy—by corrupting a user; the attacker implicitly
corrupts also all her descendants. In addition, the attacker also has access to
a signing oracle that returns signatures on arbitrary messages from any uncor-
rupted node. We challenge the attacker to forge a signature for a new message
on behalf of an uncorrupted node.

Definition 6 (Hierarchical existential unforgeability of HDW). A hier-
archical deterministic wallet is hierarchically existentially unforgeable under
chosen-message attacks if for every DAG G = (V,E) and PPT adversary A
the following condition holds:

Pr
[
Gheuf

Π,A(λ,G) = 1
] ≤ negl(λ) ,

where experiment Gheuf
Π,A(λ,G) is defined in the following way:

Setup: The challenger samples a random S ←$ S and executes (pp, {di}vi∈V ) =
Set(1λ, G, S). It gives the public parameters pp to A.
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Query: The adversary A has access to the following oracles:
OCorr(·): On input vi ∈ V , the challenger answers by giving di to A. Let QCorr

denote the set of nodes vi that A corrupted, including their descendants
Desc(vi).

OSign(·, ·): On input (m, vi) ∈ M×V , the challenger returns σ ←$Signski(m)
where ski = DPriv(pp, d0, v0, vi). Let QSign denote the pairs (m, vi) for
which A queried the oracle OSign.

Forgery: A outputs a forgery (vi,m, σ). If Vrfypki(m,σ) = 1 where pki =
DPub(pp, vi) and vi /∈ QCorr, (m, vi) /∈ QSign, return 1; otherwise return 0.

5 Constructing Arcula from DHKA and Signatures

This section details our construction based on deterministic hierarchical key
assignment schemes (DHKA) and digital signatures.

Construction 1 Let Γ = (SetΓ ,DeriveΓ ) and Σ = (KGenΣ ,SignΣ ,VrfyΣ) be
respectively a DHKA and a signatures signature scheme. We build Arcula in the
following way:

Set(1λ, G, S): On input the security parameter, a DAG G = (V,E), and a seed
S ∈ S the algorithm proceeds as follows:
1. Compute (Pub,Sec) = SetΓ (1λ, G, S).
2. For each node vi ∈ V :

(a) Let (Si, xi) = Sec(vi) and set di = Si.
(b) (ski, pki) = KGenΣ(1λ;xi).

3. Output pp = (G,Pub, {certi}vi∈V , pk0) and {di}vi∈V where
certi ←$SignΣ(sk0, (pki, li)) for vi ∈ V , and li = Pub(vi).3

DPub(pp, vj): On input the public parameters pp = (G,Pub,{certi}vi∈V , pk0)
and a node vj ∈ V , the algorithm returns pkj = (pk0, lj) where lj = Pub(vj).

DPriv(pp, di, vi, vj): On
input the public parameters pp = (G,Pub,{certi}vi∈V , pk0), the derivation
key di = Si, and two nodes vi, vj ∈ V such that vj ∈ Desc(vi), the algorithm
runs xj = DeriveΓ (G,Pub, vi, vj , Si) and (skj , pkj) = KGenΣ(1λ;xj). Finally,
it returns skj = (skj , pkj , certj).

Sign(ski,m): On input a signing key ski = (ski, pki, certi) and a message m, the
algorithms returns σ = (pki, σ

′, certi) where σ′ ←$SignΣ(ski,m).
Vrfy(pki,m, σ): On input a public key pki = (pk0, li), a message m, and a signa-

ture σ = (pki, σ
′, certi), the algorithms returns 1 if VrfyΣ(pk0, (pki, li), certi) =

1 and VrfyΣ(pki,m, σ′) = 1; otherwise it returns 0.

The correctness of the scheme comes directly from the correctness of the
underlying primitives. As for security, we establish the following result, whose
proof appears in the full version [8]
3 The value li is the public label (binary string) associated by the DHKA to the node
vi. Without loss of generality we can assume that li = vi (the public label li is just
the node number vi).
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Theorem 1. Let Γ = (SetΓ ,DeriveΓ ) and Σ = (KGenΣ ,SignΣ ,VrfyΣ) be respec-
tively a deterministic hierarchical key assignment and a signature scheme. If Γ
is key indistinguishable (Definition 4) and Σ is existentially unforgeable (Defi-
nition 2), then the HDW Π from Construction 1 is hierarchically existentially
unforgeable (Definition 6).

Security level of Arcula. Arcula’s public and secrets values must be correctly
administered with respect to the HDW architecture model that we defined in Sect.
1.3 (see Fig. 1 for a graphical overview). As mentioned, the Cold Storage is where,
besides the seed, the master secret key msk must be stored. In Arcula such mas-
ter secret key correspond to the derivation key d0 (and the related signing key sk0)
of the root (i.e., msk = d0). Indeed, an attacker that compromises d0 can derive
the signing key ski of every node, or generates fake certificates that would allow
him to spend coins of any identity-based address of the wallet. On the other hand,
the Untrusted Enviroment contains any public information that does not put in
danger the security of the wallet. Naturally, as depicted in Fig. 1, the master pub-
lic key mpk lies in this environment since it allows any third party to derive the
public-keys/addresses of the hierarchy. Arcula’s master public key is simply the
public signing key pk0 of the root (i.e., mpk = pk0). Indeed, the public derivation
requires just the concatenation of pk0 and the identifier li of node vi. All the values
{(ski, di)} of any node vi lie in the Hot Environment. Compromising the secrets of
node vi leads to compromising all the secrets of its descendants, but none of the
other nodes. Lastly, we mention that the certificates {certi} they can be published
(or even stored onan external server).Even if an adversary knows all the certificates
{certi} of the wallet, it can not spend the coins of a target user without knowing
its secret key ski.

Extensions. By building Arcula on top of deterministic HKA schemes, our design
also inherits some of their more interesting properties. As an example, in the full
version of the paper [8], we show: 1) How it is possible to extend Arcula to handle
dynamic hierarchies by leveraging the dynamic version of the HKA developed
by Atallah et al. [2, Section 6] (note that some of the procedures to modify the
hierarchy of the HKA proposed in [2, Section 6] are randomized. In order to
work with Arcula, we make these procedures deterministic by leveraging a PRF.
Intuitively we generate the randomness required by executing the PRF) and, 2)
how to incorporate temporal capabilities (e.g., possibility to use cryptographic
keys during a given period only) into Arcula by relying on the work of De Santis
et al. [7].

6 Arcula in the Real World

In this section, we present how Arcula performs in the real world, and we show
how to use it to send and receive funds on the Bitcoin Cash blockchain. We
stress that Arcula can be used in any blockchain system that enables the veri-
fication of signatures of an arbitrary message (e.g., Ethereum) since it requires
the verification of a certificate certi.
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6.1 Technical Implementation

Our open-source implementation of Arcula is available online.4 We instanti-
ate the underlying DHKA leveraged by Arcula with the pseudorandom function
Fk(x) = H(k‖x) (where H(x) is the hash function SHA3-256(x)) and the authen-
ticated AES256 with Galois/Counter Mode (GCM) as the symmetric encryption
scheme. We generate a hierarchal deterministic wallet based on the tree defined
in BIP43 and BIP44 [14,15], where the keys to different crypto-coins correspond
to different subtrees, and each branch of the subtrees is a chain associated with
a single account that contains multiple receiving addresses. We obtain an initial
seed S of 512 bits by following the specification of BIP39 [16] that generates a
seed from a random mnemonic sequence. We generate the wallet that we use in
our tests by fixing the randomness of the mnemonic generation process to the
result of the operation H(correct horse battery staple).

6.2 Arcula in Bitcoin Cash

Transactions in Bitcoin Cash. A Bitcoin (Cash) transaction is a cryptographi-
cally signed statement that transfers some coins from a sender to a receiver. The
sender of the coins signs the transaction through her secret key to spending, in
turn, the coins destined to the corresponding public key. Every transaction spec-
ifies a locking and an unlocking script. These scripts respectively state the nec-
essary conditions to spend, in a future transaction, the coins being transferred
(i.e., their locking condition) and provide the information required to redeem
them (i.e., to unlock them as a result of a past transaction). Both scripts are
written through a stack-based language that allows simple mathematical oper-
ations, stack manipulations and enables simple cryptographic primitives (i.e.
computing the result of a hash function and verifying a signature).

A typical Bitcoin locking script specifies the address of the receiver (usually
through the hash of its public key) and requires him to provide a valid signature
to redeem the coins being transferred. More in detail, the locking and unlock-
ing scripts of a standard Bitcoin transaction are defined as follows. Uppercase
monospace words indicate operations of the Bitcoin scripting language, while
angular brackets enclose variable inputs.

Locking: OP DUP OP HASH160 <H(pk)> OP EQUALVERIFY OP CHECKSIG
Unlocking: <σ> <pk>

Together, these scripts ensure that the public key pk provided in the unlocking
script is the pre-image of the hash H(pk) (the Bitcoin address) contained in the
locking script; then, verify the validity of the transaction signature σ under the
public key pk.

Every transaction devolves a small amount of fees to the system to incentivize
its inclusion in the next block of the chain. Fees are usually measured in coins per
byte, and, for this reason, the size of a transaction on the Bitcoin wire protocol

4 Available at https://github.com/aldur/Arcula.

https://github.com/aldur/Arcula
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is directly related to the amount of fees that it should pay to be included in
the blockchain. In particular, the length of the locking and unlocking scripts
influences directly the final transaction cost. Because of this, BIP16 [1] proposes
the pay to script hash mechanism (P2SH), that aims at minimizing the size of
the locking script, such that the sender of the transaction will pay its associated
fees5. The intuition is that instead of specifying the full locking script, the users
can constrain the coins of a transaction by locking them to the hash of the
original script; then, in the unlocking script, they can provide both the pre-
image of the hash, i.e., the full locking script, and its required inputs. Hence,
the P2SH locking script is constant (i.e., hash verification) while the unlocking
one is the concatenation of the standard locking and unlocking scripts while the
locking is constant.

Arcula’s Transactions. In Arcula, we identify the nodes of our wallet vi according
to the master public key mpk = pk0 and to their public label li. For this reason,
an Arcula address is simply the concatenation of the byte representations of
these values that we encode in the locking script. The unlocking script, on the
other hand, contains the certificate certi ←$SignΣ(sk0, (pki, li)) and associating
the signing public key pki to the node vi with label li, and a signature σ of
the transaction verifiable through the public signing key pki. With Arcula, the
locking and the unlocking scripts respectively become:

Locking: OP DUP OP TOALTSTACK <li> OP CAT <mpk> OP CHECKDATASIGVERIFY
OP FROMALTSTACK OP CHECKSIG

Unlocking: <σ> <certi> <pki>

The two scripts: 1) Verify that the certificate certi is a valid signature of the
message (pki, li) under the master public key mpk; 2) verify the validity of
the transaction signature σ under the signing public key pki. In particular, the
locking script checks the validity of the certificate certi through the operation
OP CHECKDATASIGVERIFY, which allows the stack-based scripting language to
validate a signature of an arbitrary message (the concatenation of mpk and li
obtained through the operation OP CAT). To test Arcula, we focus, as an exam-
ple, on Bitcoin Cash (the original Bitcoin implementation does not support such
operation). We first create a transaction that locks 0.5 BCH (the Bitcoin Cash
crypto-coin) to a node of our wallet of Sect. 6.1, identified through the master
public key mpk (also in the locking script) and the integer label 3. Next, we
redeem the coins through a second transaction that provides the transaction
signature σ computed using the signing key ski, an appropriate certificate certi
signed by the master secret key, and the public signing key pki

6. We create both
the signature and the certificate through the ECDSA signatures scheme on the
secp256k1 elliptic curve used in Bitcoin, and we encode the integer label li of
the node vi with 4 bytes.
5 Another advantage of P2SH is that it hides the details of the locking script until the

users redeem the coins sent by the transaction.
6 The transcripts of the transactions are available, respectively, at https://bit.ly/

2UI62tt and https://bit.ly/2UoQNGI.

https://bit.ly/2UI62tt
https://bit.ly/2UI62tt
https://bit.ly/2UoQNGI
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Table 2. The script bytes sizes of a transaction to a standard Bitcoin address and to
an Arcula address. Between brackets the sizes when pay to script hash (P2SH) is in
place [1].

Address type Locking Script Unlocking Script Total

Standard (with P2SH) 24 (22) 106 (130) 130 (152)

Arcula (with P2SH) 43 (22) 179 (222) 222 (244)

Transaction Costs. Table 2 reports the sizes, in bytes, of the locking and unlock-
ing scripts of standard Bitcoin transactions and to addresses of our wallet. Every
operation of the stack-based scripting language is encoded with a single byte; a
standard Bitcoin address is the result of a hash function that outputs 20 bytes;
the ECDSA signature and the public key in the unlocking script require, respec-
tively, 73 and 33 bytes. By summing these values up, we find that the locking
script of a transaction (without P2SH) to a standard Bitcoin address is 24 bytes
long (4 script operations plus the receiver address). In contrast, the unlocking
scripts take 106 bytes (the ECDSA signature and its associated public key). In
Arcula, on the other hand, the locking script encodes 6 operations, the identifier
of a node (that we encode with 4 bytes), and the cold storage public key (33
bytes, as opposed to its 20 bytes hash), for a total of 43 bytes. The unlocking
script, instead, contains two ECDSA signatures (one for the transaction and one
for the certificate) and the signing public key; as a result, it is 179 bytes long.
Overall, the size of the locking and unlocking scripts for a transaction to an
Arcula address is 222 bytes, 70% longer than the standard address counterparts.
On the other hand, when P2HS is used, the Arcula’s size overhead drops to 60%.

In many cases, the benefits that arise with Arcula justify the increase in
the transaction cost. An e-commerce marketplace, as an example, can leverage
Arcula’s public key derivation to dynamically derive new addresses (e.g., one
for each product of her catalog) in an entirely untrusted environment (e.g., an
online web-server) while keeping every signing keys at rest in trusted storage.
As a result, the provider obtains the flexibility of handling incoming payments
on dynamic addresses and minimizes the risk of losing the coins associated with
them. When compared with the financial costs associated with this risk, the
additional fees required by the Arcula transactions are negligible. The public
key derivation also brings other significant benefits. Many financial regulations
require, indeed, companies to be accountable for all the payments that they
receive. With Arcula, an auditor can reach this goal by merely inspecting the
blockchain while looking for any address that contains the master public key
mpk that identifies the company. Finally, many enterprises leverage m-of-n sig-
natures, where redeeming a transaction requires m valid signatures among n
authorized public keys. Their goal is to enforce the company’s internal structure
(e.g., so that either managers or employees can sign transactions) or divide the
responsibility of spending coins evenly. The unlocking scripts of m-of-n trans-
actions have considerable size: They contain m signatures and n public keys.
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By leveraging Arcula and enforcing an appropriate hierarchy that reflects their
internal structure, these companies could reduce the size of the unlocking scripts
to only two signatures (the transaction signature and the certificate) and two
public keys (the master and signing public keys).

6.3 Optimizations and Compatibility with Bitcoin

The current implementation of Arcula does not require any modification to the
underlying protocols and blockchains whose scripting languages allow the veri-
fication of signatures of arbitrary messages. Nevertheless, we also propose a set
of optimizations that, through minimal modifications to these protocols, reduce
both the cost of transactions to Arcula addresses and the amount of storage
required on the blockchain. We begin by noting that any authorization certifi-
cate certi can be used more than once. For this reason, the first optimization
that we propose is to cache the certificate certi as soon as it appears for the
first time in an unlocking script. Then, any subsequent transaction signed by ski

could specify a pointer to the certificate (e.g., with a shorter hash) instead of
the certificate itself and, in turn, reduce the size of the unlocking script. As an
example, by pointing to the certificate with a 20 bytes hash, we would reduce
the size of the Arcula locking and unlocking scripts to be roughly 20 bytes longer
than their traditional counterparts. Implementing this optimization requires a
new operation in the scripting language to retrieve and verify the certificate.

On the other hand, if we allow for more complex modifications, we can change
the signature scheme of the underlying protocols to reduce these space require-
ments to their optimal value further—a single signature per transaction. Arcula
can be implemented with a single signature by leveraging a sanitizable signature
scheme [3], i.e. a scheme where an authorized party can modify a fraction of
the message signed without interacting with the original signer. The intuition
is to combine the certificates with the signatures that authorize transactions:
Now, the certificate of user vi that associates her to the signing public key pki

also includes an additional modifiable portion that will be filled with the trans-
action details. To spend their coins, the users leverage their sanitizable key to
replace the blank transaction with the details they intend to sign.7 In their work,
Ateniese et al. [3] show how to construct a sanitizable signature scheme by com-
bining any signature scheme with a chameleon hash function. This construction
would allow Arcula to be used with the traditional Bitcoin blockchain by imple-
menting the sanitizable signatures on top of the ECDSA signature scheme that
it already uses. In addition, it would not change the expressiveness of the Bitcoin
scripting language: Instead of enabling the verification of signatures on arbitrary
messages, it would simply extend the signature verification protocol to account
for the certificate embedded in the sanitized signatures.

7 The sanitizable keys can be hierarchically deployed by leveraging a second instance
of DHKA.
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6.4 Unlinkability of Transactions

Individual users of hierarchal deterministic wallets are typically not interested
in public key derivation. Unlike enterprises and e-commerce marketplaces, for
instance, they simply rely on HDW to recover their keys in case of hardware
failure or catastrophic loss. On the other hand, they are often interested in
achieving the unlinkability of their transactions, i.e. in making sure that multiple
transactions sent to their wallet can not be correlated together by an observer
that passively monitors the blockchain. However, an HDW that satisfies the
public derivation property (Property 3), inevitably reveals the relation between
the public keys of the wallet, making it impossible to achieve any privacy notion.

Arcula allows users to trade the public the derivation of public keys
in an untrusted setting for the ability to receive payments on uncorrelated
pseudonyms. In more detail, these users can ignore the identity-based public
derivation that Arcula provides and identify the nodes of the wallet by only
their public key pki. On the blockchain, they can receive standard transactions
(costing standard transaction fees) on the public key pki and then sign new
transactions to redeem the coins through the corresponding private key ski.
Each key pair (ski, pki) is generated through the underlying DHKA scheme that
is secure under key indistinguishability. As a consequence, every two distinct pair
(ski, pki) and (skj , pkj) looks random and independent. As a result, Arcula pro-
vides a provably secure alternative to the hardened mode of BIP32: Individual
users can generate as many pseudonyms as they need by branching or deepening
the DAG that encodes their hierarchy and then leverage the DHKA to generate
keys and reliably recover them in case of loss. Note that this modified version of
Arcula does not require validation of signatures of arbitrary messages, enabling
its usage with any blockchain system, including Bitcoin.

7 Conclusions

In this work, we presented Arcula, a new hierarchical deterministic wallet (HDW)
that brings identity-based addresses to the blockchain and is secure against
privilege escalation. We leveraged a deterministic hierarchical key assignment
(DHKA) scheme to generate the set of cryptographic keys at the core of our
wallet. As a result, an attacker that compromises an arbitrary number of users
in the hierarchy can not escalate his privileges and compromise other users higher
in the hierarchy. Our wallet allows us to dynamically derive new addresses for
receiving payments in an entirely untrusted environment, recover every crypto-
graphic key from an initial seed provided by the user, and spend coins on behalf
of users lower in the hierarchy. Our design of Arcula considers the legacy and
future requirements of modern blockchains. In particular, Arcula is independent
of the underlying signature scheme, and it works on top of any protocol that
allows the verification of signatures on an arbitrary message (e.g., Bitcoin Cash
or Ethereum). For these reasons, we hope that the outcomes of this work will be
twofold: To provide the secure and efficient hierarchical deterministic wallet that
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we need today and to propose a future-proof design that supports the financial
applications and tools of enterprises and companies at scale.
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2 ETH Zürich, Zürich, Switzerland
{spiazzetta,gilain}@student.ethz.ch

3 University of Padua, Padua, Italy
conti@math.unipd.it

Abstract. Cybercriminals have been exploiting cryptocurrencies to
commit various unique financial frauds. Covert cryptomining - which
is defined as an unauthorized harnessing of victims’ computational
resources to mine cryptocurrencies - is one of the prevalent ways nowa-
days used by cybercriminals to earn financial benefits. Such exploitation
of resources causes financial losses to the victims.

In this paper, we present our efficient approach to detect covert crypto-
mining on users’ machine. Our solution is a generic solution that, unlike
currently available solutions to detect covert cryptomining, is not tai-
lored to a specific cryptocurrency or a particular form of cryptomining. In
particular, we focus on the core mining algorithms and utilize Hardware
Performance Counters (HPC) to create clean signatures that grasp the
execution pattern of these algorithms on a processor. We built a complete
implementation of our solution employing advanced machine learning
techniques. We evaluated our methodology on two different processors
through an exhaustive set of experiments. In our experiments, we con-
sidered all the cryptocurrencies mined by the top-10 mining pools, which
collectively represent the largest share of the cryptomining market. Our
results show that our classifier can achieve a near-perfect classification
with samples of length as low as five seconds. Due to its robust and prac-
tical design, our solution can even adapt to zero-day cryptocurrencies.
Finally, we believe our solution is scalable and can be deployed to tackle
the uprising problem of covert cryptomining.

Keywords: Cryptocurrency · Machine learning · Mining · Profiling

1 Introduction

Cryptomining, or simply mining, is a process of validating and adding new trans-
action in the blockchain digital ledger for various cryptocurrency. It is an essen-
tial process to keep most of the cryptocurrencies running. Typically, mining is a
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resource-intensive process that continuously performs heavy computations. Upon
successful mining, miners receive newly generated cryptocoins as their remu-
neration. Usually, newer cryptocurrencies tend to pay a higher reward. Some
cryptocurrencies, such as Monero, make mining feasible on the web-browsers
that enable even layman users to participate in mining.

After the success of Bitcoin [40], many alternative cryptocurrencies (altcoins)
have been introduced to the market. At the time of writing, there are over 2000
active cryptocurrencies [2]. The massive number of cryptocurrencies raises an
enormous demand for mining. This demand continues to remain huge because
mining, as mentioned before, is an inevitable operation to keep these virtual cur-
rency systems running. Such an immense demand for mining has attracted cyber-
criminals [7,18] to earn financial gains, who have already been exploiting crypto-
currencies to perform several types of financial crimes, e.g., ransomware [29].

Motivation: A genuine miner has to make an investment in hardware and bear
the significant cost of electricity to run the mining hardware as well as cool-
ing facilities [14]. Nevertheless, mining is not beneficial on personal expenditure
(mainly, on electricity) unless mining is performed with specialized hardware [16].
However, mining can be very profitable if it is performed with “stolen” resources,
e.g., through covert cryptomining, or simply cryptojacking. Cryptojacking is
defined as an unauthorized use of the computing resources on a computer, tablet,
mobile phone, or connected home device to mine cryptocurrencies.

Cybercriminals have made several ingenious attempts to spread cryptojackers
in the form of malware [20], malicious browser extensions [12], etc.. by exploiting
vulnerability [17], compromising third-party plug-ins [19], maneuvering miscon-
figurations [11], taking advantage of web-based hosting service [13], and so on.
To evade intrinsic detection techniques (e.g., processor’s usage), some crypto-
jackers suspend their execution when the victim is using the computer [31], use
“pop-under” windows to keep mining for a comparatively longer duration [8],
and utilize legitimate processes of the operating system to mine [28]. Moreover,
merely monitoring CPU load, etc.. is an ineffective strategy because of both false
positives and false negatives [37].

To further aggravate the situation, cryptocurrency mining service (e.g., Coin-
hive [1], Crypto-Loot [3]) easily integrate into websites to monetize the compu-
tational power of their visitors. In fact, cryptojacking attacks exceeded ran-
somware attacks in 2018 and affected five times more systems as compared to
ransomware [25]. According to Symantec’s report [10], almost double cryptomin-
ers were detected on consumer machines as compared to enterprise machines
between October 2017 and February 2018 while the same volume of cryptomin-
ers was detected on consumer and enterprise machines between March 2018 and
July 2018. Kaspersky’s report [15] shows that the total number of internet users
who encountered cryptominers rose from 1.9 million in 2016–2017 to 2.7 million
in 2017–2018. IBM X-Force Threat Intelligence Index 2019 [23] estimates that
cryptojacking attacks increased by more than 4-times (∼450%) from Q1 2018 to
Q4 2018. SonicWall researchers [24] reported that cryptojacking attackers made
52.7 million cryptojacking hits during the first half of 2019. Such exploitation of
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the computational resources causes financial damage - primarily in the form of
increased1 electricity bills - to the victims, who often discover the misuse when
the damage has already been done.

On another side, the current state of cryptomining has been consuming a
vast amount of energy. As a representative example, Bitcoin Energy Consump-
tion Index was created to provide insight into this amount with respect to Bit-
coin, Bitcoin network consumes electricity close to the total demand by Iraq,
and a single Bitcoin transaction requires nearly 2.7 times the electrical energy
consumed by 100,000 transactions on the VISA network [9]. Moreover, a recent
study [39] has suggested that “Bitcoin usage could alone produce enough CO2

emissions to push warming above 2 ◦C within less than three decades.” The
current situation would further worsen with illegal/unauthorized/covert crypto-
mining. Finally, the abundance of the active cryptocurrencies raises the demand
for a generic solution to detect covert cryptomining that does not focus on a
particular cryptocurrency.

Contribution: In this paper, we focus on detecting covert cryptomining on users’
machine. The major contributions of this paper are as follows:

1. We propose an efficient approach to detect covert cryptomining. In particular,
our approach uses HPC to profile the core of the mining process, i.e., the
mining algorithms, on a given processor to accurately identify cryptomining
in real-time. We designed our solution to be a generic one, i.e., it is not
tailored to a particular cryptocurrency or a specific form of cryptomining.

2. We exhaustively assess the quality of our proposed approach. To this end,
we designed six different experiments: (1) binary classification; (2) currency
classification; (3) nested classification; (4) sample length; (5) feature relevance;
and (6) unseen miner programs. For a thorough evaluation, we considered
eleven distinct cryptocurrencies in our experiments. Our results show that
our classifier can accurately classify cryptomining activities.

3. In the spirit of reproducible research, we make our collected datasets and the
code publicly available2.

Organization: The remainder of this paper is organized as follows. Section 2
presents a summary of the related works. We explain our system’s architecture
in Sect. 3 and discuss its evaluation in Sect. 4. Section 5 addresses the potential
limitations of our solution. Finally, Sect. 6 concludes the paper.

2 Related Works

HPC are special-purpose registers in modern microprocessors that count and
store hardware-related activities. These activities are commonly referred to as

1 A machine consistently performs heavy computations while it does cryptomining,
which, in turn, continuously draws electricity.

2 spritz.math.unipd.it/projects/cryptojackers/.

https://spritz.math.unipd.it/projects/cryptojackers/
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hardware events3. HPC are often used to conduct low-level performance analysis
and tuning. HPC-based monitoring has very low-performance overhead, which
makes it suitable even for latency-sensitive systems. Several works have shown
the effectiveness of using HPC to detect generic malware [32,46,48], kernel-
level rootkits [47], side-channel attacks [27], unauthorized firmware modifica-
tions [45], etc.

A general-purpose process classification may distinguish a browser applica-
tion from a media player or one browser application from another browser appli-
cation. In the former case, the nature of the applications is different while both
the applications in the latter case have the same nature and perform the same
operation of rendering pages. Cryptominers have the same nature (of mining),
but they essentially perform very different underlying operations due to differ-
ent proof-of-works, and they also require different compute resources (e.g., BTC4

mining is processor-oriented while XMR mining is memory-oriented). Hence, a
comparison of our work with the general-purpose process classification methods
falls out of the scope of this paper.

On another side, there are limited number of works on detecting crypto-
mining. Bonneau et al. [26] discuss open research challenges of various crypto-
currencies and their mining. Huang et al. [36] present a systematic study of
Bitcoin mining malware and have shown that modern botnets tend to do illegal
cryptomining. Gangwal et al. [33] use magnetic side-channel to detect crypto-
mining. Other works [37,38,41,42,44] focus particularly on browser-based min-
ing. However, only a limited number of cryptocurrencies can be mined in the
web-browsers. MineGuard [43] focuses on detecting cryptomining operations in
the cloud infrastructure.

Our work is different from the state-of-the-art on the following dimensions:
(1) our proposed solution is a generic solution that is not tailored to a particular
cryptocurrency or a specific form (e.g., browser-based) of cryptomining on com-
puters; and (2) we tested our solution against all the cryptocurrencies mined by
the top-10 mining pools, which collectively represent the largest portion of the
cryptomining business.

3 System Architecture

We elucidate the key concept behind our approach in Sect. 3.1, our data col-
lection phase in Sect. 3.2, selection of cryptocurrencies in Sect. 3.3, and our
classifier’s design in Sect. 3.4.

3.1 Fundamental Intuition of Our Approach

The task of cryptomining requires a miner to run the core Proof-of-Work (PoW5)
algorithm repetitively to solve the cryptographic puzzle. At a coarse-grained
3 An event is defined as a countable activity, action, or occurrence on a device.
4 To refer to different cryptocurrencies, we use their standard ticker symbol. See

Table 3 for acronyms and their corresponding cryptocurrencies.
5 We use the term “PoW” to represent different consensus algorithms.
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level, some PoW algorithms are processor-oriented (e.g., BTC) while some are
memory-oriented (e.g., XMR) due to their underlying design. At a fine-grained
level, each PoW algorithm has its own unique mathematical/logical computa-
tions (or, in other words, the sequence of operations). Thus, each algorithm
upon execution affects some specific events more as compared to other events
on the processor. Consequently, when an algorithm is executed several times
repetitively, the “more” affected events outnumber the other - relatively under
affected - events. It means that a discernible signature can be built using the rele-
vant events for a PoW algorithm. As a representative example, Fig. 1 depicts the
variation in events while mining different cryptocurrencies and performing some
common user-tasks. LTC, for instance, shows a more erratic pattern in cache-
misses as compared to the other events that are affected during LTC mining.
On the other hand, a Skype video call has more disparity in context-switches.

Fig. 1. A representative example of variation in events while mining different crypto-
currencies and performing some common user-tasks. HPC were polled every 100 ms.
The line-points in the graphs do not represent data points and are merely used to make
lines distinguishable.
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In practice, there is a finite number of PoW algorithms upon which crypto-
currencies are established. So, we concentrate on the mining algorithms instead
of individual currency in our solution. To this end, we use supervised machine
learning (cf. Sect. 3.4) to construct signatures and build our classifier.

On another side, an adversary may attempt to circumvent such signature-
based detection in the following ways: (1) by controlling/limiting the mining;
or (2) by neutralizing the signatures. Limiting the mining would reduce the
hashing rate, which would indeed make the mining less profitable. Whereas, to
neutralize the signatures, the adversary has to succeed in two main hurdles.
First, the adversary must have to find those computation(s) that only changes
those events that are unrelated to the PoW algorithm. Second, the adversary
must have to run these computation(s) in parallel to the PoW algorithm, which
would again hamper the hashing rate, and thus the profit. In this work, we make
a practical assumption that the attacker wants to maximize the profit and does
not want to lose the computation cycles (hashing rate).

3.2 Data Collection

To better explain our work, we first describe what data we collect and how we
collect it. We used the perf [5] tool to profile the processor’s events using HPC. In
particular, we focus on hardware6 events (e.g., branch-misses), software7 events
(e.g., page-faults), and hardware cache8 events (e.g., cache-misses) on CPU as
the mining processes - depending on their design - require different type of
resources. We profiled each program of both positive (mining) and negative (non-
mining) class individually and collected a total 50 samples per program. Each
sample consists of recordings of 28 events (described in Table 1) for 30 s with
a sampling rate 10 Hz, which means that each sample comprises 300 readings
of 28 events, i.e., 8400 readings. To obtain clean signatures: (1) we profiled
each program in its stable stage, i.e., omitting the bootstrapping phase; and (2)
restarted the system to remove any trace of the previous sample.

For the positive class, we profiled a total of 11 cryptocurrencies discussed
in Sect. 3.3. As the representatives of negative class, we chose: 3D rendering;
7z archive extraction of tar.gz files; H.264 video encoding of raw video; solving
mqueens problem; Nanoscale Molecular Dynamics (NAMD) simulation; Netflix
movie playback; execution of Random Forest (RF) machine learning algorithm;
Skype video calls; stress-ng [6] stress test with CPU, memory, I/O, and disk
workers together; playing Team Fortress 2 game; and Visual Molecular Dynam-
ics (VMD) modeling and visualization. It is worth mentioning that these user-
tasks represent medium to high resource-intensive tasks.

We used two different systems to build our dataset for the experiments. The
configuration of these systems are as follows: (1) S1, a laptop with an Intel
Core i7-7500U @ 2.70 GHz (1 socket × 2 cores × 2 threads = 4 logical compute

6 Basic events, measured by Performance Monitoring Units (PMU).
7 Measurable by kernel counters.
8 Data- and instruction-cache hardware events.
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Table 1. The events that we monitor using HPC. Here, HW = hardware, SW =
software, and HC = hardware cache event.

Event Type Description Event Type Description

branch-instructions HW N. of retired branch instructions. iTLB-load-misses HC
N. of instruction fetches that

missed instruction TLB.

branch-load-misses HW N. of Branch load misses. iTLB-loads HC
N. of instruction fetches that

queried instruction TLB.

branch-loads HW N. of Branch load accesses. L1-dcache-load-misses HC
N. of load misses at L1 data

cache.

branch-misses HW
N. of mispredicted branch

instructions.
L1-dcache-loads HC N. of loads at L1 data cache.

bus-cycles HW
N. of bus cycles, which can be

different from total cycles.
L1-dcache-stores HC N. of stores at L1 data cache.

cache-misses HC N. of cache misses. LLC-load-misses HC
N. of load misses at the last

level cache.

cache-references HC N. of cache accesses. LLC-loads HC
N. of loads at the last level

cache.

context-switches SW N. of context switches. LLC-store-misses HC
N. of store misses at the last

level cache.

cpu-migrations SW
N. of times the process has

migrated.
LLC-stores HC

N. of stores at the last level

cache.

dTLB-load-misses HC N. of load misses at data TLB. mem-loads HC N. of memory loads.

dTLB-loads HC N. of load hits at data TLB. mem-stores HC N. of memory stores.

dTLB-store-misses HC N. of store misses at data TLB. page-faults SW N. of page faults.

dTLB-stores HC N. of store hits at data TLB. ref-cycles HW
N. of total cycles; not affected by

CPU frequency scaling.

instructions HW N. of retired instructions. task-clock SW
The clock count specific to the

task that is running.

resources) processor, 8 GB memory, 512 GB SSD storage, NVIDIA GeForce
940MX 2 GB dedicated graphic card, Linux kernel 4.14 and (2) S2, a laptop
with an Intel Core i7-8550U @ 1.80 GHz (1 socket × 2 cores × 4 threads =
8 logical compute resources) processor, 16 GB memory, 512 GB SSD storage,
Linux kernel 4.14.

All miner programs and the perf tool were launched in user -mode. Even
though we did not use any system-level privileges, we believe that using root
permissions for defense against cryptojacking is reasonable. The perf tool allows
us to create per-process profile using PID. It is worth emphasizing that even
though the dataset has been accumulated in a controlled setup, our experiments
(discussed in Sect. 4) well simulate real-world scenario, where samples are col-
lected in the real-time.

3.3 Cryptocurrencies and Miners

The probability of solving the cryptographic puzzle during mining is directly
proportional to the miner’s computational power/resources. Consequently, the
miners pool their resources to combine their hashing power with an aim to con-
sistently earn a portion of the block reward by solving blocks quickly. Typically,
the mining pools are characterized by their hashing power. Table 2 shows the
top-10 mining pools [21] and the cryptocurrencies mined by them. These ten
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mining pools collectively constitutes the biggest share (84% during Q1 2019) of
the cryptomining business.

Table 2. Cryptocurrencies mined by the top-10 mining pools

N. Mining pool
Cryptocurrency

BCD BCH BTC BTM DASH DCR ETC ETH LTC SBTC SC UBTC XMC XMR XZC ZEC

1 BTC.com ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

2 AntPool ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

3 ViaBTC ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

4 SlushPool ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

5 F2Pool ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

6 BTC.top ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

7 Bitclub.network ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

8 BTCC ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

9 BitFury ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

10 BW.com ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

We considered all the cryptocurrencies mentioned in the Table 2 in our exper-
iments. We used open-source miner programs to mine these cryptocurrencies.
Each miner program was configured to mine with public mining pools and to
utilize all available the CPUs present on the system. At the time of our exper-
iments, the miner program for SC was not able to mine using only the CPU.
Hence, we excluded SC from our experiments. To compensate SC, we included
QRK whose mining algorithm - in contrast to other cryptocurrencies - uses
multiple hashing algorithms. Table 3 shows the mining algorithm of different
cryptocurrencies and the CPU miners that we used.

Table 3. Mining algorithm and CPU miner for different cryptocurrencies

Cryptocurrency Mining algorithm CPU miner

Bitcoin Diamond (BCD) X13 cpuminer-opt 3.8.8.1

Bitcoin Cash (BCH), Bitcoin

(BTC), SuperBitcoin

(SBTC), UnitedBitcoin

(UBTC)

SHA-256 cpuminer-multi 1.3.4

Bytom (BTM) Tensority bytom-wallet-desktop 1.0.2

Dash (DASH) X11 cpuminer-multi 1.3.4

Decred (DCR) Blake256-r14 cpuminer-multi 1.3.4

Ethereum Classic (ETC),

Ethereum (ETH)

Ethash (Modified

Dagger-Hashimoto)

geth 1.7.3

Litecoin (LTC) scrypt cpuminer-multi 1.3.4

Quark (QRK) BLAKE + Grφstl + Blue

Midnight Wish + JH +

Keccak (SHA-3) + Skein

cpuminer-multi 1.3.4

Siacoin (SC) BLAKE2b gominer 0.6

Monero-Classic (XMC),

Monero (XMR)

CryptoNight cpuminer-multi 1.3.4

Zcoin (XZC) Lyra2z cpuminer-opt 3.8.8.1

Zcash (ZEC) Equihash Nicehash nheqminer 0.3a
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Since our approach focuses on the underlying core PoW algorithm, we consid-
ered one currency for every mining algorithm mentioned in Table 3 and excluded
BCH, SBTC, UBTC, ETC, and XMC in our study. As the proof-of-concept
implementation, we considered only CPU-based miner programs because each
computer has at least one CPU, which cryptojackers can harness to mine.

3.4 Classifier Design

In this section, we elucidate the design of our classification methodology. Algo-
rithm 1 describes the pipeline of our classifier. Our supervised classification
algorithm begins with splitting the base-dataset of 1100 samples (2 classes ×
11 instances × 50 samples) into 90–10% stratified train-test sets, denoted as
raw train set and raw test set. Then, these subsets are processed as follows:

Algorithm 1. Pseudo code for our supervised classification.
1: for each run i from 1 to 10 do
2: Create raw train set and raw test set by 90–10% stratified partitioning.
3: Data preprocessing

• Replace NaN values from raw train set and raw test set with arithmetic mean
of the considered event.

4: Feature engineering
• train set := Extract feature(raw train set)
• test set := Extract feature(raw test set)

5: Feature scaling
• scaler := StandardScaler()
• scaler.fit(train set) �Fit scaler on train set
• scaler.transform(train set)
• scaler.transform(test set)

6: Feature selection
• Compute features’ importance with forests of trees on train set and select the
most relevant features.

7: Training
• Learn the model parameters for the given classifier (RF/SVM) on the training
set using grid search with 5-fold stratified CV.

8: Predict/classify the test set.
9: end for

1. Data preprocessing: The first step of any machine learning-based classification
is to process the raw datasets to fix any missing value. Since each event we
monitor returns a numerical value, we replace the missing values, if any, with
the arithmetic mean of the respective event.

2. Feature engineering: In this step, we obtain features that can be used to train
a machine learning model for our prediction problem. Here, we compute 12
statistical functions (listed in Table 4) for every event. This step converts each
sample consisting of 300 readings (rows) × 28 events (columns) to a single



Detecting Covert Cryptomining Using HPC 353

row of 336 (28 events × 12 features) data-points. The features extracted in
this phase, hereinafter referred to as train set and test set, are used for the
subsequent stages.

Table 4. The statistical functions that we used for our feature engineering phase

0.2, 0.4, 0.6, and 0.8 quantile 1, 2, and 3 sigma Skewness

Arithmetic and geometric mean Kurtosis Variance

3. Feature scaling: It is an essential step to eliminate the influence of large-valued
features because features with larger magnitude can dominate the objective
function, and thus, deterring an estimator to learn from other features cor-
rectly. Hence, we standardize features using standard scaler, which removes
the mean and scale the features to unit variance.

4. Feature selection: In machine learning, feature selection or dimensionality
reduction is the process of selecting a subset of relevant features that are
used in model construction. It aims to improve estimators’ accuracy as well
as to boost their performance on high-dimensional datasets. To do so, we
calculate the importance of features using forests of trees [22] and select the
most relevant features.

5. Training: The training phase consists of learning the model parameters for
the given classifier on the training set, i.e., train set. Given the nature of
the problem, we resort to supervised machine learning procedures. In par-
ticular, we employed two of the most successful machine learning meth-
ods for classification, namely Random Forest (RF) [34] and Support Vector
Machine (SVM) [30].
For model selection, we use grid search with 5-fold Cross Validation (CV).
The validated hyper-parameters for RF and SVM are shown in Table 10 and
Table 11, respectively in Appendix A. We chose standard range of values for
the hyper-parameters [35].

6. Prediction: Finally, prediction is made on test set.

The process is repeated ten times for a given experiment and the final results
are computed over these ten runs.

4 Evaluation

We throughly evaluated our approach by performing an exhaustive set of exper-
iments. We performed the following six different experiments: (1) binary classi-
fication (Sect. 4.1); (2) currency classification (Sect. 4.2); (3) nested classifica-
tion (Sect. 4.3); (4) sample length (Sect. 4.4); (5) feature relevance (Sect. 4.5);
and (6) unseen miner programs (Sect. 4.6). Table 5 describes the sample dis-
tribution in our base-dataset for each system, i.e., S1 and S2. Here, sub-classes
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of the mining task refer to the cryptocurrencies (discussed in Sect. 3.3) while
sub-classes of the non-mining task refer to the actual user-tasks that belong
to the negative class (mentioned in Sect. 3.2). We use the entire base-dataset
(1100 samples per system) for each experiment, unless otherwise stated in an
experiment.

Table 5. Dataset: name of the task, sub-classes per task, samples per sub-class, and
total samples per task for each system

Task Sub-classes per task Samples per sub-class Total samples per task

Mining 11 50 550

Non-mining 11 50 550

We evaluated our classifier using standard classification metrics: Accuracy,
Precision, Recall, and F1 score. To increase the confidence in our results, we
report the mean and the margin of error for the results with 95% confidence
interval from ten runs of each experiment for each of the evaluation metric.
We use (·) to indicate the best result for the metric and report the results as
mean ± margin of error.

4.1 Binary Classification

Our main goal is to identify whether a given instance represents the mining task
or not. Hence, in this experiment, the label of each sample was defined as the
positive or negative class, accordingly. Table 6 presents the results of the binary
classification using both RF and SVM.

Table 6. Results for binary classification

System Method Accuracy Precision Recall F1

S1 RF 1.000 ± 0.000· 1.000 ± 0.000· 1.000 ± 0.000· 1.000 ± 0.000·
SVM 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

S2 RF 0.999 ± 0.002· 0.999 ± 0.002· 0.999 ± 0.002· 0.999 ± 0.002·
SVM 0.990 ± 0.018 0.991 ± 0.016 0.990 ± 0.018 0.990 ± 0.018

Both the RF and SVM yielded superior performance. However, RF performed
better than SVM on both the systems; the possible reason for the difference in
classifiers’ performance is their underlying designs - RF and SVM characterize
their decision boundaries differently and also handle the outliers present in the
dataset differently. On another side, the minute variations in the performance
of a given classifiers across S1 and S2 are natural and expected; mainly due to
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distinct dataset and data stratification. For the sake of brevity, we report the
results only for RF for the subsequent experiments. We also present the details
of parameters selected by grid search in Appendix B.

4.2 Currency Classification

The aim of this experiment is to understand the difficulty level of classification
among various cryptocurrencies. Therefore, the input dataset for this experiment
contained instances only of the cryptocurrencies. Table 7 lists the results of the
currency classification.

Table 7. Results for currency classification

System Accuracy Precision Recall F1

S1 0.987 ± 0.017 0.992 ± 0.011 0.988 ± 0.016 0.985 ± 0.020

S2 0.986 ± 0.018 0.981 ± 0.027 0.985 ± 0.018 0.982 ± 0.024

Figure 2 depicts the confusion matrices for the classification among various
cryptocurrencies to provide a better perception of the results. Here, Fig. 2(a)
and Fig. 2(b) correspond to S1 and S2, respectively. The confusion matrices are
drawn using the aggregate results from all the ten runs. Currency classification is
a multi-class classification problem, and some cryptocurrencies were misclassified
among each other (see Fig. 2). Hence, the results are slightly lower than that of
the binary classification.

Fig. 2. Confusion matrix for classification among various cryptocurrencies
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4.3 Nested Classification

This experiment represents a simulation of a real-world scenario. Here, we first
classify whether a given instance belongs to the positive class. If so, we identify
the cryptocurrency it belongs to. Essentially, nested classification is equivalent
to performing currency classification on the instances classified as positive in the
binary classification.

Table 8 shows the results of the nested classification. In the worst case, we
expect the outcome of this experiment to be lower than that of the binary clas-
sification and currency classification together because a crucial aspect of such
staged classification is that an error made in the prediction during the primary
stage influences the subsequent stage; the results for S1 shows this phenomenon.
However, in a common scenario, the expected outcome of this experiment would
be between the results for the binary classification and currency classification;
the results for S2 shows this effect.

Table 8. Results for nested classification

System Accuracy Precision Recall F1

S1 0.973 ± 0.020 0.972 ± 0.026 0.972 ± 0.020 0.967 ± 0.026

S2 0.996 ± 0.007 0.997 ± 0.006 0.996 ± 0.008 0.996 ± 0.008

4.4 Sample Length

The objective of this experiment is to understand the effect of length of the
samples. For deployment in the real-world scenario, any solution - apart from
being accurate - must be able to detect cryptojackers rapidly. To this end, we
performed the binary classification of samples of a length of 5, 10, 15, 20, 25, and
30 s, each in separate experiments. It is worth mentioning that we used samples
of identical length for both the training and testing. Figure 3 shows the F1 score
when using samples of different length.

Fig. 3. F1 score for different sample lengths (whiskers represent margin of error)
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As explained in Sect. 3.1, the task of mining is to repeatedly execute the core
PoW algorithm. Hence, even samples of shorter length can grasp the signature.
As shown in Fig. 3, our system can achieve high performance with samples of
5 s. The dip in the curve for S1 corresponds to the thousandths digit of the
F1 score. For the sake of brevity, we omitted the results for sample shorter than
five seconds and only focus on the required minimum sample length to attain
high performance with our solution.

4.5 Feature Relevance

Next, we focus on our feature selection process (mentioned in Sect. 3.4). After
calculating the importance of features, we sorted them in ascending order of their
importance and selected the first-Ψ% features to do the binary classification.
The key idea here is to identify the lower-limit of (even less important) features
required to obtain the best performance. Figure 4 depicts the F1 score when
using first-Ψ% features.

Fig. 4. F1 score for first-Ψ% features (whiskers represent margin of error)

Since the features are sorted in the ascending order of their importance, we
begin with the feature with lowest significance. Intuitively, including important
features further improves the classification process. As shown in the Fig. 4, our
classifier attains high performance on both the systems using only the first-
40% (less relevant) features, which verifies/approves our feature engineering and
selection process.

4.6 Unseen Miner Programs

There can be several different miner-programs available to mine a given crypto-
currency. These programs come from different developers/sources. Consequently,
there can be some variations in the behavior of the miner-program itself,
e.g., in the code section before/after the PoW function or handling (on the
programming-side) a correct nonce found while mining. The reason is that they
are developed by different developers, which intuitively will cause variations.
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Training the model for each program may not be feasible for a variety of rea-
sons. Hence, to investigate the effectiveness of our approach in such a situation,
we set up this experiment. Here, we selected the binary classification as the tar-
get where the samples from all the mining and non-mining tasks were labeled
as the positive or negative class, respectively. However, we chose two additional
miner programs for BTC, namely, BFGMiner 5.5 and cgminer 4.10. We col-
lected additional 50 samples each for BFGMiner 5.5 and cgminer 4.10 on both
S1 and S2 separately. In the training phase, we used samples from one of the
three miner programs for BTC. On the contrary, we used samples from one of the
other two miner programs for BTC during the testing phase. Table 9 presents
the results of classifying samples from the miner programs that were unseen in
the training phase.

Table 9. Results for unseen miner programs

System Task Accuracy Precision Recall F1

S1 αβ 0.997 ± 0.006 0.997 ± 0.006 0.997 ± 0.006 0.997 ± 0.006

αγ 0.998 ± 0.005 1.000 ± 0.000 0.997 ± 0.006 0.998 ± 0.004

βα 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

βγ 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

γα 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

γβ 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

S2 αβ 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

αγ 0.998 ± 0.002 0.997 ± 0.003 0.997 ± 0.003 0.997 ± 0.003

βα 0.999 ± 0.002 0.998 ± 0.003 0.998 ± 0.003 0.998 ± 0.003

βγ 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

γα 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

γβ 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.999 ± 0.002

The notation XY means that the training was done with the samples
from X while the testing was done with the sample from Y for BTC. Here,
α = cpuminer-multi 1.3.4, β = BFGMiner 5.5, γ = cgminer 4.10. It
is important to mention that these results are for the classification of all the
mining and non-mining tasks with BTC being trained and tested upon samples
from different programs. As discussed in Sect. 3.1, the miners have to execute
the same core PoW algorithm for a given cryptocurrency. Hence, samples from
different miner programs for a cryptocurrency retain the same signatures, which
is reflected in our results.



Detecting Covert Cryptomining Using HPC 359

Cross-Platform Classification: Next, we evaluate the transferability of the pro-
files built by our approach. We perform binary classification with additional
samples from S1’ (a system with the same processor as S1 ) and S2’ (a system
with the same processor as S2 ), and found that: (1) the profile of an algorithm
on a given processor can be used with the help of machine learning technique
to classify samples from another system with the same processor and (2) on the
contrary, the profile of an algorithm on one processor is not useful to perform
classification of samples from another processor.

5 Limitations

In this section, we address the potential limitation of our proposed approach.

5.1 Zero-Day Cryptocurrencies

A zero-day cryptocurrency would be a currency that uses a completely new
or custom PoW algorithm that was never seen before. As a matter of fact,
for a cryptocurrency to obtain market value: (1) its core-network should be
supported by miners/pools; and (2) its PoW algorithm must be accepted by the
crypto-community and tested mathematically for its robustness. Therefore, the
PoW algorithm for a new cryptocurrency would become public by the time it
gets ready for mining, which would give us sufficient time to capture this new
cryptocurrency’s signature and to train our model.

Importantly, miners prefer to mine cryptocurrencies that are more profitable
and avoid hashing the less rewarding ones. As it happens to be, more profitable
cryptocurrencies are indeed popular and their PoW algorithms are certainly
known to the public. In our experiments, we considered all the popular crypto-
currencies, and our results (presented in Sect. 4) demonstrate the high quality
of our proposed approach along various dimensions.

5.2 Scalability

The key concept of our approach is to profile the behavior of a processor’s events
for mining algorithms. Since there are only a finite number of CPUs/GPUs,
procuring their signature is only a matter of data collection. It might appear as
a ponderous job and may be seen as a limitation of our work. But, once it is
accomplished for the available CPUs/GPUs, maintaining it is relatively simpler
as merely a limited number of CPUs/GPUs are released over a period of time.

5.3 Process Selection

As mentioned in Sect. 3.2, our system requires per program/process-based
recording of HPC for different events as the input to the classifier. In prac-
tice, several processes run in the system. Hence, monitoring each process may
consume time and can be seen as a limitation of our work. However, as shown
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in Fig. 3, our system can achieve high performance even with samples of 5 s.
On another side, the miner programs attempt to use all the available resources.
Therefore, an initial sorting/filtering of processes based on their resource usage
can help to boost the detection process in real-time.

5.4 Restricted Mining

A mining strategy to evade detection from our proposed methodology can be
restricted mining that aims to change the footprint of the mining process. The
essence here is that the miner program/process can be modified to perform arbi-
trary operations during mining. But, such maneuvers would directly affect the
hashing rate and consequently the profits of mining; making the task of mining
less appealing. Nevertheless, like any signature-based detection technique, it may
be seen as a limitation of our work.

6 Conclusion and Future Works

Cybercriminals have developed several proficient ways to exploit crypto-
currencies with an aim to commit many unconventional financial frauds. Covert
cryptomining is one of the most recent means to monetize the computational
power of the victims. In this paper, we present our efficient methodology to iden-
tify covert cryptomining on users’ machine. Our solution has a broader scope
- compared to the solution that are tailored to a particular cryptocurrency or
a specific form (e.g., browser-based) of cryptomining on computers - as it tar-
gets the core PoW algorithms and uses the low-performance overhead HPC that
are present in modern processors to create discernible signatures. We tested our
generic approach against a set of rigorous experiments that include eleven dis-
tinct cryptocurrencies. We found that our classifier attains high performance
even with short samples of five seconds.

We believe that our approach is valid to distinguish GPU-based miners
because dedicated profiling tools, such as the nvprof [4] tool for NVIDIA GPUs,
allow us to monitor GPU events. Apart from most of the standard events found
on CPUs, GPUs have several dedicated events that can assist in creating unique
signatures for GPUs. Nevertheless, we keep such investigation as part of our
future work. We will also perform our experiments with a larger set of sys-
tems (CPUs) to observe the generalization of our approach. We also hope to
release a desktop application for run-time identification of covert cryptomining.

Appendix A Validated Hyper-parameters

The validated hyper-parameters for RF and SVM are shown in Table 10 and
Table 11, respectively.
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Table 10. Hyper-parameters vali-
dated for RF classifier

Parameter Validated values Effect on the model

n estimators {10, 25, 50, 75,

100, 125, 150}
Number of trees use

in the ensemble

max depth [2, ∞) Maximum depth of

the trees

max features ‘auto’, ‘log2’ Number of features

to consider when

looking for the best

split

split criteriongini, entropy Criterion used to

split a node in a

decision tree

bootstrap true, false Bootstrap

Aggregation (a.k.a.

bagging) is a

technique that

reduces model

variances

(overfitting) and

improves the

outcome of learning

on limited sample or

unstable datasets

random state 10 The seed used by

the random number

generator

Table 11. Hyper-parameters validated
for SVM classifier

Parameter Validated values Effect on the model

kernel ‘rbf’, ‘poly’,

‘sigmoid’

Specifies the kernel

type to be used in the

algorithm

C [10−3, 105] Regularization

parameter that controls

the trade-off between

the achieving a low

training error and a low

testing error that is the

ability to generalize

your classifier to unseen

data

γ ‘auto’, [10−7,

103]

Shape parameter of the

RBF kernel which

defines how an example

influence in the final

classification

degree default=3 Degree of the

polynomial kernel

function (‘poly’).

Ignored by all other

kernels

random state10 The seed of the pseudo

random number

generator used when

shuffling the data for

probability estimates

Appendix B Parameters selected by grid search

Here, we list the frequency of parameter-values selected by grid search over ten-
runs of different experiments. Table 12 corresponds to binary classification exper-
iment with SVM while Table 13 corresponds to binary, currency, and full clas-
sification experiments with RF for both S1 and S2.

Table 12. Binary classification with SVM

Parameter Value N. of times

selected on

S1

N. of times

selected on

S2

kernel ‘rbf’ 7 6

‘poly’ 1 0

‘sigmoid’ 2 4

C 0.01 1 0

0.1 0 4

1 1 1

10 3 2

100 2 2

1000 3 1

γ 0.0001 2 1

0.001 1 4

0.01 2 1

0.1 2 0

‘auto’ 3 4
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Table 13. Different classifications with RF

Binary classification Currency classification Full classification
Parameter Value N. of times

selected on
S1

N. of times
selected on
S2

N. of times
selected on
S1

N. of times
selected on
S2

N. of times
selected on
S1

N. of times
selected on
S2

bootstrap true 10 10 10 10 10 10
false 0 0 0 0 0 0

max features ‘log2’ 3 4 5 3 5 1
‘auto’ 7 6 5 7 5 9

max depth 2 0 0 4 1 0 0
3 5 5 5 5 5 1
4 2 1 0 3 4 7
5 2 2 1 1 1 2
6 1 0 0 0 0 0
7 0 2 0 0 0 0

split criterion gini 9 9 10 6 10 10
entropy 1 1 0 4 0 0

n estimators 10 2 3 0 5 0 0
25 5 1 1 2 1 0
50 2 1 4 1 0 1
75 0 0 2 2 0 0
100 0 0 2 0 5 5
125 1 4 0 0 3 1
150 0 1 1 0 1 3
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Abstract. Blockchain systems have severe scalability limitations e.g.,
long confirmation delays. Layer-2 protocols are designed to address such
limitations. The most prominent class of such protocols are payment
channel networks e.g., the Lightning Network for Bitcoin where pairs
of participants create channels that can be concatenated into networks.
These allow payments across the network without interaction with the
blockchain. A drawback is that all intermediary nodes within a pay-
ment path must be online. Virtual Channels, as recently proposed by
Dziembowski et al. (CCS’18), allow payments without this limitation.
However, these can only be implemented on blockchains with smart con-
tract capability therefore limiting its applicability. Our work proposes
the notion of –Lightweight– Virtual Payment Channels, i.e. only requir-
ing timelocks and multisignatures, enabling Virtual Channels on a larger
range of blockchain systems of which a prime example is Bitcoin. More
concretely, other contributions of this work are (1) to introduce a fully-
fledged formalization of our construction, and (2) to present a simulation
based proof of security in Canetti’s UC Framework.

Keywords: Blockchain · Payment channels · Cryptocurrency

1 Introduction

Blockchains implement decentralized ledgers via consensus protocols run by
mutually distrustful parties. Despite the novelty of such design, it has inher-
ent limitations, for example, effectively all transactions committed to the ledger
have to be validated by all parties. Croman et al. [6] showed that this severely
limits a blockchain’s throughput. Moreover, there is a minimal delay between
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submission of a transaction and verification thereof that is intrinsic to the sys-
tem’s security, e.g. one hour in the case of Bitcoin.

Layer-2 protocols, such as payment channel networks, allow confirmation of
transactions outside the consensus protocol while using it as fallback. These
protocols are referred to as “off-chain” protocols in contrast to processing trans-
actions via the consensus protocol “on-chain”. An elementary protocol realizes
channels and commonly works as follows: Two (or more) parties put together
their funds and lock them on-chain by requiring a 2-out-of-2 (n-out-of-n) mul-
tisignature to claim them. Then these funds are spent by another transaction
or a tree of transactions. These transactions represent the distribution of funds
between both parties and are not committed to the blockchain except when par-
ties enforce the fund distribution on-chain and unlock the funds. The parties
can perform a payment, i.e. update the balance distribution within the channel,
by recomputing that tree of transactions while invalidating previous transaction
trees. Payments between parties are processed immediately and only involve
interaction between the two parties. Channels can be extended to form chan-
nel networks by using Hashed Time Lock Contracts (HTLC) [7,15]. Payments
are performed by finding a path from payer to payee within the network and
atomically replicating the payment on each channel along that path. A draw-
back of HTLCs is that a payment requires interaction with all intermediary
nodes within a path. Virtual State Channels as proposed by Dziembowski et al.
[8,9] devise a technique for creation of channels that allow execution of state
machines instead of being limited to payments, and use an off-chain protocol
that expands the network with new channels. The latter reduces the network’s
diameter yielding shorter payment paths, and allowing parties to perform pay-
ments without interacting with any intermediary nodes if they are adjacent in
the now extended network. However, this construction requires blockchain with
smart-contract capability, therefore not applicable to Bitcoin. Later we will see
that this work addresses this limitation with a novel construction.

Use cases for virtual channels are manifold. A virtual payment channel pro-
vides the same benefits to the two parties sharing one as pairwise payment chan-
nels without the need to set it up by committing transactions to the ledger that
can incur expensive fees. Payments can be executed offchain, without interaction
with a third party and without incurring any fees, e.g. for routing an HTLC,
making rapid micro-payments viable. This could enable new services such as a
service-gateway. Such a gateway would consist of a node that sets up payment
channels with different service provider that operate using micro-transactions,
e.g. Video on Demand (VoD) services that bill by watch-time. A user could then
create one payment channel with the gateway node and with the use of virtual
channels created ad-hoc connections to the different (VoD) services instead of
having to set up individual payment channels with each service they want to use.
A more general use case is that virtual channels allow payment hubs, that have a
high degree within a payment channel network, to interconnect their individual
partners in exchange for a fee.
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Related Work. HTLCs allow atomic payments across multiple hops. This is
done by performing a conditional payment in each channel along a path from
payer to payee. Executing a payment requires revealing a secret x ∈ N such
that H(x) = y where H is a cryptographic hash function. After setup, starting
from the payee each node within the payment path reveals x to its predecessor.
This proofs that the payment can be enforced on-chain which allows parties to
resolve the payment by performing it off-chain. A timelock is used to cancel
the transaction after a preset amount of time which unlocks the funds from the
conditional payment. Although our construction can be used to enable payments
across a payment channel network by creating a virtual channel between payer
and payee, we argue that our work is orthogonal to HTLCs and both techniques
can be used in tandem. First our construction is used to expand the underlying
payment channel network with additional virtual channels and then HTLCs can
be used to perform payments across this expanded infrastructure.

Dziembowski et al. introduced Virtual State Channels [8] and State Channel
Networks [9]. A state channel depends on a smart contract previously committed
to the blockchain. It contains (1) application specific code, and (2) code for state
channel management. More specifically parties can send messages to the smart
contract changing its state according to (1), or compute a state-transition mes-
sage where the resulting state is computed by the parties and summarized in the
state-transition message for (2). The state-transition message can be kept off-
chain, and only committed to the blockchain in case of parties’ dispute. A virtual
state channel can be built on top of two channels that were previously created
in this manner. Similar to our work, virtual channels cannot be open indefi-
nitely but have a fixed lifetime that is decided upon construction. In contrast
to our work this technique requires a blockchain with smart-contract capability.
Chakravarty et al. proposed Enhanced Unspent Transaction Outputs (EUTxO)
[4] and constructed the Hydra Protocol [5]. EUTxO enables running constraint
emitting state machines on top of a ledger which is used to setup a Hydra
heads among a set of parties. This allows them to take their funds off-chain
and confirm transactions with these funds among the participants of the Hydra
head. Although parties can interact with each other using arbitrary transac-
tions as they would on-chain, no new participants can be added to the Hydra
head which is in contrast to payment channel networks. Moreover implementing
Hydra requires blockchains with EUTxO capability limiting its applicability.

Our Contributions. This work proposes a new variant of Virtual Channels,
we name it Lightweight Virtual Payment Channels, that is based on UTXO
and requires only multisignatures and timelocks, that is, it does not require
smart-contracts, yielding the first virtual channel construction implementable
on blockchains such as Bitcoin, which currently has the highest market capital-
ization of all cryptocurrencies1 and still is the most widely used, and blockchains
operating with the recently introduced EUTxO [4] effectively improving the state
of the art in both cases.

1 https://coinmarketcap.com.

https://coinmarketcap.com
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In a nutshell, our Layer-2 protocol for Virtual Payment Channels takes two
payment channels between three parties as input, and opens three payment
channels, i.e. one for each pair of parties. Our protocol can be applied itera-
tively allowing for virtual payment channels across multiple hops of the under-
lying payment channel network. Our construction (1) can be used to expand a
payment channel network with virtual payment channels, (2) allows payments
without interaction with intermediary nodes if payer and payee share a virtual
payment channel, (3) can be used in tandem with HTLCs and (4) can be used
with different payment channel implementations as Duplex Payment Channel [7],
Lightning [15], Eltoo [14]. We formalize our work in Canetti’s Universal Compos-
ability (UC) Framework [1] by introducing a functionality for lightweight virtual
payment channels FLVPC,FPWCH

. Although formalizations for ledgers, including
Bitcoin, within the UC framework exist [8,9] we present the first global func-
tionality GUTXO−Ledger for an Unspent Transaction Output (UTXO) based ledger.
Moreover we present an auxilliary functionality FScript modeling a scripting lan-
guage modelling access to timelocks and multisignatures. Our construction makes
use of GCLOCK by Katz et al. [10], modified by Kiayias et al. [11,12] and FSIG by
Canetti et al. [2]. We present pseudo-code protocols Open VC, Close VC and
Enforce VC.

Structure of This Work. We briefly introduce notation and the model used
in this work in Sect. 2. Next we formalize a UTXO based ledger and their com-
ponents in Sect. 3. Afterwards we give a high-level description and analysis of
our approach in Sect. 4 before presenting protocols in Sect. 5. We formalize our
approach in the UC Framework in Sect. 6. Lastly we discuss directions for future
work in Sect. 7.

2 Preliminaries

Let negl(n) denote the negligible function. Furthermore consider the standard
definition for computational indistinguishability X ≈c Y, i.e., there is no PPT
algorithm D such that D can distinguish between two ensembles of probabilistic
distributions X = {Xn}n∈N and Y = {Yn}n∈N, in other words Pr[D(Xn, 1n) =
1] − Pr[D(Yn, 1n) = 1]| ≤ negl(n). Moreover let ∪, ∩ and \ denote set union,
intersection, subtraction, and ∅ be the empty set. We make frequent use of
tuples to structure data. Assume a tuple of type A is defined as (a0, a1, . . . , an)
and A is an instantiation of such a tuple. For simplicity we denote the entry
labeled ai of A as A.ai.

The Adversarial and Computational Model. We model the execution of
our protocol π via the Universal Composability (UC) Framework with Global
Setup by Canetti et al. [3] where all the entities are PPT Interactive Turing
Machines (ITM), and the global setup is given by the global functionality G,
and the execution is controlled by the environment Z. In this simulation based
model, all parties from π have access to the auxiliary functionality Faux, i.e.,
πFaux , in the hybrid world execution HYBRIDπFaux ,A,Z in the presence of the
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adversary A which can see and delay the messages within a communication
round. Whereas the ideal execution, i.e., IDEALF,S,Z , is composed by the func-
tionality F in the presence of the simulator S. In both executions, the environ-
ment Z access the global functionality G. We assume static corruption by a mali-
cious adversary. Given the randomness r and input z, the environment Z drives
both executions IDEALF,S,Z and HYBRIDπFaux ,A,Z , and output either 1 or 0.
Therefore, let IDEALF,S,Z and HYBRIDπFaux ,A,Z be respectively the ensembles
{IDEALF,S,Z(n, z, r)}n∈N,z∈{0,1}∗ and {HYBRIDπFaux ,A,Z(n, z, r)}n∈N,z∈{0,1}∗ of
the outputs of Z for both executions. Thus, we say that πFaux realizes F in the
Faux-Hybrid model when, there exist a PPT simulator S, such that for all PPT
Z, we have IDEALF,S,Z ≈c HYBRIDπFaux ,A,Z .

Communication Model. We assume synchronous communication where time
is split into communication rounds. If any party sends a message to a receiving
party within a round, the message reaches the receiving party at the beginning
of the following communication round.

3 The UTXO Model

In the following we review the notion of Unspent Transaction Outputs (UTXO),
UTXO based ledger and transactions. Thereafter we briefly review payment
channel.

Overview. A UTXO wraps an amount of currency and comes with a script.
To claim an UTXO, a witness needs to be provided s.t. if provided as input
into the script, it evaluates to true. A UTXO based ledger’s state is a set of all
UTXO that are in circulation. The state can be altered using transactions that
contain a set of inputs and a list of outputs. Each input references a UTXO and
contains its witness. Each output is a newly defined UTXO. Submitting such a
transaction to the ledger alters its state by removing the UTXO referenced in the
inputs and adding the UTXO defined in the outputs. Moreover, a transaction
might contain a point in time t ∈ N called timelock s.t. it is not possible to
submit the transaction to the ledger before time t. Note that in this work we
only make use of scripts that verify multisignatures. More formally, we have the
following.

The UTXO Tuples. The UTXO are tuples (b, Party), where b ∈ N is the
amount of coins and Party is a set of parties. We denote a reference to a UTXO
out by ref(out). Note UTXO are uniquely identifiable, e.g. in Bitcoin UTXOs
are identifiable by the hash of the transaction in which they were defined, and
their index within the transaction’s outputs.

Funding UTXO Pattern. A Funding UTXO F UTXO(x,P0,P1) is of the form
(x, {P0,P1}) where x ∈ N and P0,P1 are parties.

Transactions. A transaction is a tuple (t, In, Out) where t ∈ N is a point in
time specifying a timelock, Out is a list of UTXO and In is a set of inputs. An
input is of the form (ref, Σ) where ref is a reference to an UTXO and Σ is a set
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of signatures. A transaction is valid and can be committed to the ledger after
time t, if all UTXO in Tr.Ref are unique, each input contains a correct witness
and it holds that

∑
ref(i)∈Tr.Ref i.b ≥ ∑

o∈Tr.Out o.b, i.e. it spends at most as many
funds as it claims.

UTXO Ledger. A UTXO ledger’s state is represented by a set of UTXO U .
Parties may read the ledger’s state and change it by submitting a valid transac-
tion. All UTXO referenced by the inputs are removed from U and all UTXO in
the outputs are added to the ledger. As conventionally done in the literature, in
the remainder of this work we assume that any such transaction will be processed
on the ledger within duration Δ ∈ N.

Transactions as Graphs. Transactions submitted to alter a ledger’s state form
a tree where transactions themselves form nodes, the UTXO specified in their
outputs form outgoing edges and UTXO referenced in their inputs form incoming
edges. Note that transactions within a tree can only be committed to the ledger
if its root is committed to the ledger.

Partial Mappings. We abstract away from transactions and represent them
as partial mappings of UTXO of the form (In, Out) where In,Out are UTXO
that represent the transaction’s inputs and outputs respectively. We assume
there is a function φ that takes a mapping (In, Out) and time t and outputs a
respective transaction with timelock t. Analogously φ−1 is a function that takes
a transaction and outputs a mapping and timelock.

Pairwise Payment Channel. A pairwise payment channel allows two parties
to exchange funds without committing a transaction to the ledger for the indi-
vidual payments. Such a channel is setup by having parties commit a transaction
on the ledger that collects some of each party’s UTXO and spends all of it within
a Funding UTXO. Committing this transaction on the ledger locks these funds.
The Funding UTXO is spent by a transaction subtree representing the channel’s
state where committing it to the ledger unlocks and returns all of the parties’
funds, however, instead, the parties hold off committing them. When execut-
ing a payment, they update the transaction subtree to represent the new state
while invalidating the previous subtree. Invalidation can be done by spending
the Funding UTXO with a transaction that has a timelock of at least Δ less
than the previous subtree. We remark that alternative invalidation methods do
exist [7,14,15]. The channel is closed by committing the transaction subtree or
a transaction summarizing it onto the ledger.

4 Overview of the Construction

The construction consists of three protocols, Open VC (Fig. 3), Close VC (Fig. 4)
and Enforce VC (Fig. 5) used for setup, tear-down and dispute of virtual channels
respectively. We remark that the executions of Open VC and Close VC require
consent between all involved parties, and Enforce VC can be executed by a party
unilaterally.
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Fig. 1. Illustrations of transactions used through out this work represented as nodes
of a transaction graph. A transaction’s inputs are listed on the left-hand-side whereas
a transaction’s outputs are on the right-hand-side. The value on top represents the
transaction’s timelock.

Types of Transactions. We use three types of transactions, they are are Split,
Merge and Punish transactions as illustrated in Fig. 1. A Split transaction spends
a Funding UTXO and creates two new Funding UTXO between the same pair
of parties. A Merge transaction takes two Funding UTXO between three parties
and equal balance as input, and creates two UTXO with the same amount of
funds as the inputs each. One is a Funding UTXO between the two parties that
do not share a Funding UTXO within the inputs, and one is a UTXO that gives
funds to the third party. Lastly the Punish transaction takes a Funding UTXO
as input and creates an UTXO that gives it all to one of the parties.

Assumptions. Timelocks are used to invalidate transactions. That is, a trans-
action invalidates another one if it spends the same UTXO within its inputs, but
has a timelock that is lower by at least Δ. We assume that the original payment
channel between Alice and Bob has a timelock of at least t0 + Δ, and the one
between Bob and Charlie has a timelock of at least t1 + Δ. After tear-down
of our construction the timelocks of both channels will be t0 − Δ and t1 − Δ
respectively. We note that this does not make the construction incompatible
with pairwise payment channel constructions that do not rely on timelocks for
transaction invalidation, such as lightning network style channels. Such channels
can perform a state updates using their invalidation method that introduce a
timelock before construction, and remove the timelock after tear-down.

Malicious Behavior. Parties abort protocols Open VC and Close VC when
they observe another party deviating from the protocol, or if a party delays exe-
cution until expiration of the virtual channel, i.e. t0 −Δ and t1 −Δ respectively.

Open VC takes an amount of coins δ ∈ N and two pairwise payment channel
between three parties as input and creates three new pairwise payment channels,
one between each pair of parties. In the following we assume the parties are Alice,
Bob and Charlie with payment channels between Alice and Bob, and between
Bob and Charlie. Our construction creates a set of transactions as illustrated
in Fig. 2. In a nutshell, the purpose of the construction is to allow parties to
enforce payout of all of their funds distributed among the offchain channels, while
providing fall-back security of their funds in case all other parties misbehave.

First, two Split transactions are created, each spending one of the Funding
UTXO that are spent by the original pairwise payment channels. Their timelocks
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are t0 and t1 respectively s.t. they invalidate the original payment channels. One
of the UTXO of each Split transaction contains δ coins and is used as input
into a Merge transaction. The other UTXO of each Split transaction is used as
Funding UTXO to re-create the original payment channels, albeit each party
has δ/2 coins less in these channels. The Merge transaction takes the UTXO
with δ coins as input, creates a Funding UTXO for a channel between Alice
and Charlie where each possess initially δ/2 coins, and another UTXO gives δ
coins to only Bob which represents his collateral. Lastly, two Punish transactions
spend the same UTXO as the Merge transaction but give all coins to Alice and
Charlie respectively. They have a timelock of max(t0, t1) + 2Δ such that they
are invalidated by the Merge transaction (Fig. 3).

Close VC takes a virtual channel construction as input and closes them while
setting up the original pairwise payment channel but with a balance distribu-
tion reflecting the balances in the three payment channel built on-top of the
construction. Effectively Alice pays Bob the funds she owes Charlie while Bob
forwards these funds to Charlie - and vice versa. The channels have timelocks
t0 − Δ and t1 − Δ respectively to invalidate the Split transactions. Note that
a virtual channel construction can only be closed until time min(t0, t1) − Δ as
otherwise the newly constructed payment channels cannot invalidate the Split
transactions. Note that having Bob take out δ/2 coins out of both of his original
channels within the construction ensures that no party has a negative balance
within a pairwise payment channel upon tear-down (Fig. 4).

Enforce VC lets a party enforce the current state by having it commit a trans-
action to the blockchain as soon as its timelock expires (Fig. 5).

Atomic Construction. We require that all transactions within our construc-
tion are created and respectively invalidated atomically. This is enforced by the
order in which transactions are signed. First, parties have to exchange signa-
tures for all transactions except of those spending the original Funding UTXO,
i.e. the Split transactions in Open VC and the root of the pairwise payment
channel sub-trees in Close VC. Afterwards, Alice and Charlie sign these remain-
ing transactions and send the signatures to Bob. Lastly Bob signs them and
sends his signatures to Alice and Charlie. Only if a party holds all signatures for
all transactions it is involved in, it will consent in performing payments. This
ensures security as we will discuss in the following.

Only Alice is Honest. (1) As Bob is the last one to sign, he might interrupt the
protocol beforeAlice receives a signature for the Split transaction. In this caseAlice
will not consent to any payments and the construction does not change her total
balance. Alice can receive her funds by waiting for expiration of her original pay-
ment channel’s timelock or commitment of the Split transaction by Bob. (2) Bob
and Charlie can collude and spend the Funding UTXO that is referenced by their
Split transaction. As such the whole transaction sub-tree with the Split transac-
tion as root cannot be committed to the ledger, including the Merge transaction.
In that case Alice can commit the Split transaction, and subsequently the Punish
transaction. Alice will receive δ coins which is the maximum amount of coins she
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Fig. 2. Overview of the virtual channel construction as a transaction tree. On the left-
hand side are Funding UTXO either on the ledger or within previous virtual channels.
Boxes with round corners represent the transactions of our construction while the boxes
on the right-hand side abbreviate pairwise payment channel’s transaction sub-trees. We
omit stating inputs explicitly as they are clear from context.

can receive within her pairwise payment channel with Charlie, as such she does not
lose coins. Note that Alice’s channel with Bob is unaffected as it is not within the
sub-tree that Bob and Charlie invalidated.

Only Bob is Honest. (1) As Bob is the last to sign transactions, he can assure
either both Split transactions are fully signed and they can be committed to the
ledger, or none. Moreover he can assure that either both Split transactions will be
invalidated upon lockdown or none. (2) Spending the Funding UTXO referenced
by the Split transactions always requireBob’s consent by requiring a signature such
that Alice and Charlie cannot invalidate any part of the construction’s transaction
sub-tree, making Bob to pay out his collateral via a Punish transaction.

Iterative Construction. The pairwise payment channels used as input can
either have a Funding UTXO located on a ledger, or a Funding UTXO created
by a previous virtual channel construction. In that case timelocks have to be
chosen such that within its transaction sub-tree any transaction has a timelock
larger than its predecessor’s timelock by at least Δ in order to ensure there is
sufficient time to commit them to the ledger. Moreover virtual channel construc-
tions have to be torn-down in reverse order in which they were setup. Iterative
constructions requires further analysis of security. The key part to make itera-
tive construction work is the design of the Punish transactions as they secure a
party’s funds, including potential collateral payments, while not over-punishing
a potentially honest intermediary party: The punishment amount cannot exceed
a party’s collateral. Assume the channel between Bob and Charlie is created
using a virtual channel construction with channels between Bob and Ingrid and



374 M. Jourenko et al.

between Ingrid and Charlie. In that case Ingrid and Charlie can collude by
spending their Funding UTXO invalidating the Split transaction between Bob
and Charlie making Bob have to pay coins within the Punish transaction between
him and Alice. However, these funds as well as the funds Bob has in his channel
between him and Charlie are covered by a Punish transaction he has between
him and Charlie. Indeed this is the reason why the same amount of coins δ has
to be paid into the Merge transaction from both of its Funding UTXO and only
those coins are covered by the Punish transaction. This ensures that all funds
are covered while not over-punishing the intermediary party in case of iterative
virtual channel construction.

Mitigating Wormhole Attacks. Malavolta et al. [13] showed an attack in
which two colluding parties skip intermediary parties within a HTLC payment
within a payment channel network (1) withholding fees that would have been
paid to the intermediary parties and (2) obtaining the fees themselves instead. A
variant of this attack could be applied to our construction as we do not require
parties to verify that all pairwise payment channel but the ones they partici-
pate in were validly constructed. We discuss how to mitigate possible attacks.
Although detailed discussion about payout of fees is beyond the scope of this
work, we suggest that fees are paid to the intermediary party as compensation for
locking up collateral. We note that due to this attacker cannot obtain more fees
than they are owed (2). However, attackers could still collude to withhold fees of
intermediary parties (1). A mitigation to this attack is that parties would need to
proof that such a payment channel was previously constructed, but showing the
Funding UTXO that were used and are located on the ledger as well as the whole
transaction subtree originating those. A party that receives this information can
do a sanity check and store the sub-tree in case they have to do the same proof.
This poof serves to show that fees have been paid to the intermediate parties,
however, we note that the information might be out-of-date as malicious parties
can close their pairwise channel effectively invalidating the whole subtrees.

5 Our Protocols

Here we introduce the constructions for Open VC (Fig. 3), Close VC (Fig. 4) and
Enforce VC (Fig. 5) for setup, tear-down and dispute protocols of virtual chan-
nels. Due to space constraints these protocols are heavily simplified but derived
from the formal protocol LVPCPWCH that implements Functionality FLVPC,FPWCH

from Sect. 6. Moreover the complete descriptions can be found in the full version
of the work.

In the following protocols we assume that: When executing any protocol all
involved honest parties check that execution with the given parameters is per-
missible, i.e. it will not result in transactions with negative balances, timelocks
in the past and that the pairwise payment channel in Open VC or the virtual
channel in Close VC are not currently in use with another virtual channel con-
struction. Moreover, for protocols Open VC and Close VC they check that all
parties consent execution. Lastly, they abort execution if they observe a party
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deviating from the protocol including when their signatures fail verification or
when execution times-out. For details we refer to Functionality FLVPC,FPWCH

.
Before introducing the protocols, first we define the individual types of trans-

actions used in our construction as well as pairwise payment channel and virtual
payment channel.

Fig. 3. Creation of a virtual channel. Takes two pairwise payment channel γ0 and γ1,
and an amount of coins δ as input, and outputs a virtual channel γv.

Punish. A Punish transaction takes a Funding UTXO as input but gives all
funds to one party. It is parametrized with (ref, P, tp) where ref is a reference to
a Funding UTXO f out, P ∈ f out.Party is a party and tp ∈ N is a round number.

Fig. 4. Closing of a virtual channel γv by recreating the original channels γ0 and γ1.
The constructions Split transactions are invalidated by having the roots of the pairwise
payment channels have timelocks of at most γv.t.
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It is of form (tp, {ref}, {out}, Σ) where out = (f out.b,P). In the following we
denote a Punish transaction with these parameter by PUNISH TR(f out, P, tp),
and an analogous mapping by PUNISH MAP(f out, P).

Split. A Split transaction takes a Funding UTXO as input and splits funds across
two funding UTXO. It is parametrized with (ref, δ, tS) where ref is a reference
to a Funding UTXO f out, δ ∈ N, δ ≤ f out.b is a balance and tS ∈ N is a
point in time. It is of form (tS , {ref}, {outch, outδ}, Σ) where outch = (f out.b −
δ, f out.Party) and outδ = (δ, f out.Party). In the following we denote a Split
transaction with these parameter by SPLIT TR(f out, δ, tS) and an analogous
mapping by SPLIT MAP(f out, δ). The macros OUT CH and OUT DELTA take
either a Split transaction or analogous mapping as input and return outch and
outδ respectively.

Merge. A Merge transaction takes two funding UTXO by three parties and
creates a new Funding UTXO. It is parametrized with (tM , f outA, f outB , b)
where tM ∈ N is a round number, f outA, f outB are two Funding UTXO and
b ∈ N, b = f outA.b = f outA.b is an amount of coins. Moreover for the involved
parties PA,PB ,PC holds PA,PB ∈ f outA.Party,PB ,PC ∈ f outB .Party. Given,
outch = (b, {PA,PC}) and outB = (b, {PB}), then a Merge transaction is of
the form (tM , {ref(f outA), ref(f outB)}, {outch, outB}, Σ). We denote a Merge
transaction with these parameter by MERGE TR(f outA, f outB , b, tM ) and an
analogous mapping by MERGE MAP(f outA, f outB , b). The macro OUT CH
takes a Merge transaction or analogous mapping as input and returns outch.

Fig. 5. Parties enforce the state presented by the virtual payment channel construc-
tion by committing transactions to the ledger whenever possible, i.e. as soon as their
timelocks expire and UTXO referenced in their inputs are present on the ledger.

Function open virtual(f,P,P ′, b, b′, t) is used to open a pairwise payment
channel with the provided, Funding UTXO f , between the two parties P,P ′,
respective balance distribution b, b′ and optional timelock t. See the full version
of this paper for details.
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Definition 1. A pairwise payment channel γ is a tuple of form γ= (id, f , PA,
PB, bA, bB, t, t0) where id ∈ N is a unique identifier, f is a funding UTXO,
PA,PB are parties, bA, bB ∈ N are balances of PA,PB respectively.

Definition 2. A lightweight virtual payment channel γv is a tuple of form (id,
γ0, γ1, γA,B, γB,C , γA,C , PA, PB, PC , δ, t) where PA,PB ,PC are three parties,
γ0, γ1 are pairwise payment channel between PA,PB and PB,PC respectively
provided as inputs, γA,B, γB,C , γA,C are pairwise payment channel created by
the construction between each pair of parties, δ is the capacity of channel γA,C

between PA,PC and t ∈ N is a point in time until which the channel can be
closed.

For simplicity we omit stating id explicitly when using pairwise or lightweight
virtual payment channels.

6 The Ideal Functionality

In the following we present formal treatment of our protocol in the UC frame-
work by introducing a functionality for lightweight virtual payment channel
FLVPC,FPWCH

, associated with functionality FPWCH. For this we make use of auxil-
iary functionality FScript, global UTXO ledger functionality GUTXO−Ledger, global
clock functionality GCLOCK, and functionality FSIG. These functionalities are
defined in Appendix A.

Fig. 6. Overview of our setup within the UC framework.
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Overview. Figure 6 depicts an overview of our construction. The setting is split
up in a Ideal world and a (GCLOCK, GUTXO−Ledger, FSIG, FScript) - Hybrid World.
The global functionality GUTXO−Ledger is associated with the global GCLOCK func-
tionality and accessible from either world. The lightweight virtual channel func-
tionality FLVPC is associated with the pairwise payment channel functionality
FPWCH receiving access to its internal state and helper functions. FPWCH includes
and replicates the interfaces and behavior of FSIG, FScript.

The Ideal Virtual Channel Functionality. The lightweight virtual payment
channel functionality FLVPC,FPWCH

is used to create and close virtual payment
channel between three parties. It provides access to functions VC-Open, VC-
Close and VC-Enforce. Function VC-Open takes two pairwise payment channel
between three parties as input, disables state updates on those, and creates three
new pairwise payment channel, one between each pair of parties. To be able to
enforce these channels it creates and stores mappings that represent Split, Merge
and Punish transactions together with the time at which they become valid.
Function VC-Close takes a virtual channel as input. First it checks whether no
virtual channel have been created using the pairwise payment channel created
with it. If positive it disables state updates on these channels, re-enables state
updates for the original channels, updates their balance to reflect the latest
balance distribution among the three channels and sets the channel’s timelocks
to be lower than the one of the Split mappings by Δ. Function Enforce is used to
commit any mapping representing Split, Merge or Punish transactions if their
timelocks have expired. This disables closure of the virtual channel because the
funding UTXO of the original pairwise payment channels are removed from the
ledger.

General Behavior. Below we describe FLVPC,FPWCH
non function-specific behav-

ior first before detailing its interface.

Update time: At beginning of each round in which functionality is activated send
message (clock-read, sid) to GCLOCK and receive the reply (clock-read, sid, τ ′).
Set internal variable τ = τ ′.

Interactions with simulator: Whenever the functionality receives a message msg
from any party or from GUTXO−Ledger it leaks the message to the simulator and
appends sender and receiver.

Synchronization with the simulation: Interactions with the ledger are used to
read its state as well as trigger a state change. The state on the ledger as well as
whether a state change is permissible depends on the moment they are done as
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transactions that change the set of UTXO on the ledger can be sent by a party at
any time. Therefore we need to ensure that the functionality’s interaction with
the ledger are at the same time as they happen in the simulation to achieve the
same results and receive the same replies. Whenever the functionality sends a
message msg to the ledger it waits for the simulator to leak a similar message by
a honest party. Note that a TRANSACTION tagged message from the simulator
is processed by the FScript functionality first. Then the functionality sends the
message only once and forwards any replies to the simulator.

Handling corrupted parties: We assume static corruption by a malicious adver-
sary. At the beginning of execution the functionality asks the simulator which
parties are controlled by the adversary and stores this information in set COR.
The functionality ignores requests from any party in the ideal world of which
counterpart in the simulation is corrupted by the adversary. The functional-
ity needs to learn whether a party corrupted by the adversary misbehaved or
delayed execution of a protocol beyond a channel’s lifetime. For this matter
as soon as the simulator leaks that any simulated honest party P ′

h sends mes-
sage (failure, sid,msg) to Z the functionality aborts execution of the function
triggered by receiving msg and sends (failure, sid,msg) to P ′

h’s dummy-party
counterpart Ph in the ideal world.
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Definition 3. Balance Security: The sum of a honest party’s funds only changes
with its consent.

Definition 4. Liveness: Eventually all of a party’s funds are unlocked and com-
mitted to the ledger within UTXO that are spendable by the party alone.

Security of Funds and Liveness. In the following we briefly argue that func-
tionality FLVPC,FPWCH

fulfills these two properties for honest parties by design. We
expect a honest party to call sub-function VC-Enforce as soon as they would lead
to submission of a mapping to the ledger, i.e. at times γv.γ0.t − Δ, γv.γ1.t − Δ,
max(γv.γ0.t, γ

v.γ1.t) and in case a punish transaction has to be committed at
time max(γv.γ0.t, γ

v.γ1.t) + Δ. Eventually all funds that a honest party holds
will be accessible over UTXOs on the ledger such that liveness holds. Balance
Security holds since only FPWCH’s channel update function, which requires the
party’s consent, changes a honest parties’ balance.

Theorem 1. Protocol LVPCPWCH realizes FLVPC,FPWCH
in the (GCLOCK,

GUTXO−Ledger, FSIG, FScript) - Hybrid World.

Proof : Due to space constraints we refer to the paper’s full version.

7 Future Work

We use timelocks to create an order in which transactions in our constructions
are valid. However, different techniques for invalidating transactions or replac-
ing transactions offchain might be used instead to have less restrictions on the
lifetime of a virtual channel. For this we can adapt techniques as introduced for
the Lightning Network [15] or eltoo [14].

Lastly we argue that our construction provides incentive for research into
route discovery protocols that yield multiple paths.
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A Additional Functionalities and Protocols

The Global Functionality GUTXO−Ledger models a UTXO based ledger maintaining
a publicly readable set of UTXO. The differences between GUTXO−Ledger and
the ledger functionality by Kiayias et al. [12] are twofold. For one instead of
using a verification predicate to check the validity of transactions, we move this
verification into a second functionality FScript representing required parts of a
blockchains scripting language similar to the separation of ledger and smart
contract functionalities in the work of Dziembowski et al. [8,9]. For another we
explicitly make use of UTXO which is required for our construction.
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Abstract. A multi-identity pure fully homomorphic encryption (MIFHE)
enables a server to perform arbitrary computation on the ciphertexts that
are encrypted under different identities. In case of multi-attribute pure
FHE (MAFHE), the ciphertexts are associated with different attributes.
Clear and McGoldrick (CANS 2014) gave the first chosen-plaintext attack
secure MIFHE and MAFHE based on indistinguishability obfuscation. In
this study, we focus on buildingMIFHE andMAFHEwhich are secure under
type 1 of chosen-ciphertext attack (CCA1) security model. In particular,
using witness pseudorandom functions (Zhandry, TCC 2016) and multi-
key pure FHE or MFHE (Mukherjee and Wichs, EUROCRYPT 2016) we
propose the following constructions:

– CCA secure identity-based encryption (IBE) that enjoys an optimal
size ciphertexts, which we extend to a CCA1 secure MIFHE scheme.

– CCA secure attribute-based encryption (ABE) having an optimal size
ciphertexts, which we transform into a CCA1 secure MAFHE scheme.

By optimal size, we mean that the bit-length of a ciphertext is the bit-
length of the message plus a security parameter multiplied with a con-
stant. Known constructions of multi-identity(attribute) FHEs are either
leveled, that is, support only bounded depth circuit evaluations or secure
in a weaker CPA security model. With our new approach, we achieve
both CCA1 security and evaluation on arbitrary depth circuits for multi-
identity(attribute) FHE schemes.

Keywords: Witness pseudorandom function · Identity-based
encryption · Attribute-based encryption · Fully homomorphic
encryption

1 Introduction

Gentry settled the open problem of computing on encrypted data by proposing
the first fully homomorphic encryption (FHE) [17] scheme based on ideal lat-
tices. Afterwards, many researchers developed improved variants of Gentry’s FHE
[6,7,31]. These are all leveled FHE where a bounded depth circuit can be evalu-
ated on encrypted data. While the error in an evaluated ciphertext may blow up
with increasing depth, Gentry’s bootstrapping technique [17] can be applied to
c© Springer Nature Switzerland AG 2020
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convert any leveled FHE into a pure FHE which handles arbitrary depth circuits.
The bootstrapping relies on circular security means that the scheme is secure
even when the adversary is given an encryption of the secret-key.

Identity-based encryption (IBE) [3] gives us the freedom to encrypt data
using any arbitrary string (treated as identity) instead of a specified public-key.
Constructing identity-based FHE (IBFHE) remained difficult due to the presence
of evaluation key until Gentry, Sahai and Waters [18] built a leveled FHE based
on learning with errors (LWE) where the public parameters serve the role of
the evaluation key. Compiling existing LWE-based identity-based encryption or
LWE-based attribute-based encryption (ABE) with their FHE, [18] came up with
efficient IBFHE and attribute-based FHE (ABFHE). Clear et al. [12] extends the
IBFHE of [18] to multi-identity setting where evaluation can be performed with
multiple users data and decryption requires a collaboration of their secret-keys.
However, Gentry’s bootstrapping theorem can not be applied to convert a leveled
IBFHE (or ABFHE) into a pure IBFHE (or pure ABFHE). Since evaluation requires
encryption of the secret-keys under the respective identities, the transformed
IBFHE becomes interactive which is noted as weak [7].

To build a pure IBFHE, Clear and McGoldrick [11] used indistinguishabil-
ity obfuscation (iO) [30] and a pure FHE scheme. Specifically, they utilized the
punctured technique of [30] to create a unique public-secret FHE key pair corre-
sponding to an identity. The IBFHE can be extended to multi-identity pure FHE
(MIFHE) when we use a multi-key pure FHE (MFHE) [27] in place of the normal
FHE. The work [11] also described a multi-attribute pure FHE (MAFHE) using
iO. MAFHE enables us to encrypt messages under different attributes instead of
users identities. A generic construction of (almost pure) MAFHE with a bounded
number of parties was given in [10] which employs a MFHE and a leveled multi-
attribute FHE.

All existing constructions of MIFHE or MAFHE [8,11] are either CPA secure
or based on a powerful primitive iO. In case of leveled variants of those primi-
tives [5,12,18], known constructions have started from LWE-based IBE or ABE
which mostly provide security in CPA model, hence the corresponding FHEs are
inherently CPA secure. It is trivial to observe that CCA security can not be real-
ized for FHE like primitives as evaluation is a public algorithm. But, we can
still consider CCA1 security where the adversary is given access to the decryp-
tion oracle up-until it receives the challenge ciphertext. Canetti et al. [8] gave
a generic construction of CCA1 secure MFHE from a CPA secure MIFHE and
instantiated their (pure) MIFHE based on sub-exponential iO. So we ask: Can
we build CCA1 secure MIFHE or MAFHE? Can we construct these primitives
without using obfuscation?

In this paper, we find out affirmative answers to those questions. Recently,
Zhandry introduced a different type of pseudorandom function (PRF), called wit-
ness PRF (WPRF) [33], which can produce a pseudorandom value y = F(fk, x)
corresponding to an NP statement x using a secret function key fk and anyone
holding a valid witness of x can recompute y using a public evaluation key ek.
If a statement x does not belong to the NP language then y becomes indis-



Chosen-Ciphertext Secure Multi-identity and Multi-attribute Pure FHE 389

tinguishable from random. The primitive finds many applications in building
cryptographic tools such as non-interactive multiparty key exchange, witness
encryption (WE), poly-many hardcore bits for one-way functions (OWFs) [33]
that are previously possible only from iO. We aim to construct CCA1 secure
MIFHE and MAFHE schemes using WPRF.

Zhandry [33] built WPRF from multilinear subset-sum Diffie-Hellman
assumption which is a target-group assumption and hence most of the exist-
ing (source-group based) attacks on multilinear maps may not be a threat to
the WPRF. On the other side, WPRF construction of [28] based on sublinear
compact randomized encoding and puncturable PRF indicates that it belongs
to obfustopia. However, WPRF is not known to imply iO and seems to be a
much weaker assumption than iO [33]. Few primitives like smooth projective
hash functions [13], functional PRFs [4] and publicly evaluable PRFs [9] that are
close to the notion of WPRF have already been realized from standard assump-
tions. Therefore, it is more likely to realize WPRF from standard assumptions
much before the community arrive at a practical construction of iO.

Contribution. This work investigates applications of WPRF in identity-based
and attribute-based cryptography.

1. Multi-identity Pure FHE: In the era of cloud computing, it is highly desirable
to run arbitrarily complex programs over any type of encrypted data. To compute
on the ciphertexts of an IBE scheme, we build the first CCA1 secure MIFHE using
WPRF and MFHE. The stepping-stone of our MIFHE is a CCA secure IBE that
we construct from WPRF and a special signature scheme.

Our goal is to use OWFs along with WPRF to get a CCA secure IBE with
short secret-keys and optimal size ciphertexts. In particular, we take a pseu-
dorandom generator (PRG) and a secure signature scheme both of which can
be efficiently realized from OWFs [29]. First we generate a pair of WPRF keys
(fk, ek) for an NP language L = {(id, v, vk) : (∃u such that PRG(id ⊕ u) =
v) or (∃σ such that Vrfy(vk, id, σ) = 1)} with a relation R where id is an identity
and vk is a verification key of the signature scheme. The public-key of the IBE
is a tuple (ek, vk) and the master secret-key is the signing key sk. A secret-key
for an identity id is as short as a signature σ of id. At the time of encryption,
we use ek to generate a pseudorandom value y corresponding to a statement
(id, v, vk) with a witness u such that PRG(id⊕u) = v. The ciphertext is a tuple
(cs, v) where cs is a symmetric-key encryption (SKE) of a message m using y.
Interestingly, the size of the ciphertext becomes optimal, that is |m|+ cλ where
λ is a security parameter and c is a constant.

We need extractibility property of WPRF [33] to prove the security of IBE.
However, we show (in Sect. 3) that the strong extractibility assumption can be
avoided by replacing the normal signature scheme with a primitive called all-
but-one signature (ABOS) [20]. We note that ABOS can be constructed from
a verifiable random function (VRF) [26] and a perfectly-binding commitment
scheme. Existing constructions [16,25] of CCA secure IBE achieve (almost) opti-
mal ciphertexts based on bilinear maps. Our result shows that assuming VRF
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and a normal WPRF we can achieve a CCA secure IBE with optimal size cipher-
texts. However, optimal ciphertext for IBE is not a primary contribution of this
paper, rather we utilize our IBE to achieve more advanced primitive.

To convert the IBE into a MIFHE scheme (Sect. 3.1), we replace the SKE by
a multi-key pure FHE which has been constructed using LWE assumption along
with circular security [27]. In the pure MIFHE of [11] (based on obfuscation), the
public-key of the underlying MFHE is unique for each identity, whereas there may
be exponentially many MFHE public-keys associated to a single identity in our
MIFHE and we have to include the MFHE public-key into a ciphertext so that
evaluation runs smoothly. Therefore, MFHE is necessary for our construction
even when messages are encrypted under the same identity.

2. Multi-attribute Pure FHE: To achieve a CCA1 secure MAFHE, we first realize
a CCA secure attribute-based encryption (ABE) [32] using WPRF. Recall that
a (key-policy) ABE enables us to encrypt messages under a set of attributes
mapped to a bit-string x and a receiver holding a secret-key skf correspond-
ing to a boolean function f should succeed in decrypting the ciphertext when
x satisfies f . If we consider a WPRF for the language L = {(x, v, vk) :
(∃u such that PRG(x ⊕ u) = v) or (∃σ such that Vrfy(vk, f, σ) = 1 ∧ f(x) = 1)}
similar to our basic IBE construction, then we can achieve a CCA secure ABE from
OWFs. Here also we need to rely on extractability property of WPRF. To avoid
this strong assumption, we start with the WE-based ABE of Garg et al. [15].
Specifically, the signature scheme is replaced with a witness-indistinguishable
non-interactive zap [22]. The main difference from [15] is that to embed an
attribute into a ciphertext we imitate the technique of embedding an identity
from our IBE construction.

Goyal et al. [21] gave the first CCA secure ABE using bilinear maps. They
used the generic technique of [2] to establish a bridge from CPA to CCA security
for ABE. However, their transformation works in an environment where the CPA
secure ABE has to support delegatability [21]. Another generic transformation
was proposed in [32] which needs verifiability of a ciphertext encrypted under
two different attributes. Our approach (in Sect. 4) defines a way to achieve a
CCA secure ABE which is the first to enjoy an optimal ciphertext size (to the
best of our knowledge).

We transform our ABE to a CCA1 secure MAFHE scheme (in Sect. 4.1) fol-
lowing the similar technique employed in the conversion of our MIFHE from the
IBE. The MIFHEs and MAFHEs of [10,11] are secure under the chosen-plaintext
model which is often insufficient in many practical scenarios. Our approach leads
to the first CCA1 secure MIFHE and CCA1 secure MAFHE without assuming iO.

Other Related Works. Garg et al. [15] proposed constructions of IBE and ABE
from witness encryption (WE) (introduced in the same work). Their selectively
secure IBE is based on a dual encryption methodology and unique signature
scheme. Replacing WE by WPRF does not immediately produce an optimal size
ciphertext for the IBE. Using non-interactive zap and commitment schemes they
built adaptively secure IBE and selectively secure ABE schemes. However, secu-
rity holds in the CPA model and extension to MIFHE or MAFHE may require
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additional primitive like obfuscation. Goldwasser et al. [19] built an ABE for
Turing machines from WE and succinct argument of knowledge. But, their ABE
is only CPA secure and based on strong extractibility assumptions.

2 Preliminaries

Notations. For any set S, the notation x ← S denotes the process of sampling
x uniformly at random from S. Let E be a probabilistic polynomial time (PPT)
algorithm. Then y ← E(x) denotes the execution of E with an input x using fresh
randomness and assign the output to y. If the randomness, say r, is provided
externally then we denote this execution by y ← E(x; r). If x ∈ {0, 1}∗ then we
denote by |x| the size of x. We say f : N → R is a negligible function of n if it is
O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n.

2.1 Pseudorandom Generator [1]

Definition 1. A pseudorandom generator (PRG) is a deterministic polynomial
time algorithm PRG that on input a seed s ∈ {0, 1}λ outputs a string of length
�(λ) such that the following holds:

– expansion: For every λ it holds that �(λ) > λ.
– pseudorandomness: For all PPT adversary A and s ← {0, 1}λ, r ← {0, 1}�(λ),

there exists a negligible function negl such that

AdvPRGA (λ) = |Pr[A(1λ,PRG(s)) = 1] − Pr[A(1λ, r) = 1]| < negl(λ).

2.2 Symmetric Key Encryption [23,24]

Definition 2. A symmetric key encryption (SKE) scheme is a tuple of PPT
algorithms (Gen, Enc, Dec) defined as follows:

• K ← Gen(1λ) : on input a security parameter λ, returns a key K.
• c ← Enc(K,m) : a randomized algorithm that returns c, an encryption of

the message m ∈ M.
• Dec(K, c) ∈ M∪{⊥} : a deterministic algorithm that decrypts the ciphertext

c and returns a message m ∈ M, or ⊥ if it fails.

The SKE is said to be correct if the following holds:

– correctness: For all m ∈ M and K ← Gen(1λ), we require that

Pr[Dec(K,Enc(K,m)) = m] = 1

We consider chosen ciphertext attack (CCA) security for SKE and define an
experiment ExptSKEA,CCA(1λ) in Fig. 1.
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Fig. 1. ExptSKEA,CCA(1λ) Fig. 2. ExptABOS
A (1λ) Fig. 3. ExptWPRF,R

A (1λ)

Definition 3. A symmetric key encryption SKE is said to satisfy chosen cipher-
text attack (CCA) security if, for all PPT adversary A, there exists a negligible
function negl such that

AdvSKEA,CCA(λ) = |Pr[ExptSKEA,CCA(1λ) = 1] − 1
2
| < negl(λ)

Remark 1. We take a length preserving SKE means |Enc(K,m)| = |m|. In such
a scheme, A is not allowed to query m0 and m1 to the encryption oracle. The
CMC mode [23] and ECM mode [24], proposed by Halevi and Rogaway, is length
preserving and CCA secure if the underlying block cipher is a strong pseudoran-
dom permutation such as AES [14]. In fact, we need much weaker notion of CCA
security where A is not given the access of Enc(K, ·). We term this notion as
length preserving CCA (LP-CCA) secure SKE which is sufficient for our applica-
tions.

2.3 All-but-one Signature Scheme [20]

Definition 4. An all-but-one signature (ABOS) scheme is a tuple of PPT algo-
rithms (Setup, PuncSetup, Sig, Vrfy) defined as follows:

• (sk, vk) ← Setup(1λ) : on input a security parameter λ, outputs a signing
key sk and a verification key vk.

• (sk, vk) ← PuncSetup(1λ,m∗) : on input a security parameter λ and a mes-
sage m∗ ∈ M, outputs a signing key sk and a verification key vk.

• σ ← Sig(sk,m) : returns σ ∈ Σ, a signature of the message m ∈ M.
• Vrfy(vk,m, σ) ∈ {0, 1} : a deterministic algorithm that on input a verification

key vk, a message m and a signature σ, and outputs either 0 or 1.

The signature scheme ABOS is said to be correct if the following holds:

– correctness of Setup: For all m ∈ M and (sk, vk) ← Setup(1λ), we require

Pr[Vrfy(vk,m,Sig(sk,m)) = 1] = 1

– correctness of PuncSetup: For any m∗ ∈ M, (sk, vk) ← PuncSetup(1λ,m∗)
and any σ ∈ Σ, we have Vrfy(vk,m∗, σ) = 0.
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Fig. 4. ExptIBEA,CCA(1λ)

We consider VK indistinguishability experiment ExptABOS
A (1λ) in Fig. 2.

Definition 5. An all-but-one signature ABOS scheme is said to satisfy VK indis-
tinguishability (VK-IND) security if for all PPT adversary A, there exists a neg-
ligible function negl such that

AdvABOS
A (λ) = |Pr[ExptABOS

A (1λ) = 1] − 1
2
| < negl(λ)

2.4 Witness Pseudorandom Function [33]

Definition 6. A witness pseudorandom function (WPRF) for an NP language L
with a relation R is a tuple of PPT algorithms (Gen, F, Eval) defined as follows:

• (fk, ek) ← Gen(1λ, R) : on input a security parameter λ and a relation circuit
R : X × W → {0, 1}, returns a secret function key fk and a public evaluation
key ek.

• y ← F(fk, x) : returns a pseudorandom value y ∈ Y for x ∈ X .
• Eval(ek, x, w) ∈ Y ∪ {⊥} : on input an evaluation key ek, an element x ∈ X

and a witness w ∈ W, returns an element y ∈ Y, or ⊥ if it fails.

We note that, each of the above algorithms except Gen is a deterministic algo-
rithm. The WPRF is said to be correct if the following holds:

– correctness of Eval: For all x ∈ X , w ∈ W and (fk, ek) ← Gen(1λ, R), we
require that

Eval(ek, x, w) =
{
F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

The security experiment ExptWPRF,R
A (1λ) for the WPRF is defined in Fig. 3.

We consider a selective model which is sufficient for our applications.

Definition 7. A witness pseudorandom function WPRF for an NP language L
with a relation R is said to be selectively secure if, for all PPT adversary A,
there exists a negligible function negl such that

AdvWPRF,R
A (λ) = |Pr[ExptWPRF,R

A (1λ) = 1] − 1
2
| < negl(λ)



394 T. Pal and R. Dutta

3 CCA1 Secure MIFHE from WPRF and MFHE

The main building block of our MIFHE is a CCA secure IBE. Firstly, we use WPRF
and ABOS to achieve a CCA secure IBE having an optimal size ciphertext. Then
we extend it to a CCA1 secure MIFHE with the help of existing MFHE schemes.
We begin with the definition of an IBE system.

Definition 8. [3] An identity-based encryption (IBE) scheme is a tuple of PPT
algorithms (Setup, KeyGen, Enc, Dec) defined as follows:

• (pp,msk) ← Setup(1λ) : on input a security parameter λ, produces a public
parameter pp and a master secret-key msk.

• skid ← KeyGen(msk, id) : returns a secret-key skid corresponding to the identity
id ∈ ID using a master secret-key msk.

• c ← Enc(pp, id,m) : returns c, an encryption of a message m ∈ M under an
identity id.

• Dec(pp, skid, c) ∈ M∪{⊥} : a deterministic algorithm that decrypts a cipher-
text c using a secret-key skid and outputs either a message m ∈ M or ⊥ if it
fails.

The IBE is said to be correct if the following holds:

– correctness: For all id ∈ ID, m ∈ M, (pp,msk) ← Setup(1λ) and skid ←
KeyGen(msk, id), we require that

Pr[Dec(pp, skid,Enc(pp, id,m)) = m] = 1

For security of IBE, we consider CCA security with selective-identity experi-
ment ExptIBEA,CCA(1λ) described in Fig. 4.

Definition 9. An identity-based encryption IBE is said to be selective-identity
CCA secure if, for all PPT adversary A, there exists a negligible function negl
such that

AdvIBEA,CCA(λ) = |Pr[ExptIBEA,CCA(1λ) = 1] − 1
2
| < negl(λ)

Construction. We construct an identity-based encryption scheme IBE = (Setup,
KeyGen, Enc, Dec) for an identity space ID = {0, 1}λ. The following primitives
are utilized:

– A pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
– A LP-CCA secure symmetric key encryption SKE = (Gen, Enc, Dec).
– A VK-IND secure all-but-one signature scheme ABOS = (Setup, PuncSetup,
Sig, Vrfy) with the message space as ID and signature space Σ.

– A WPRF = (Gen, F, Eval) for the NP language L = {(id, v, vk) : (∃u ∈
{0, 1}λ such that PRG(id ⊕ u) = v) or (∃σ such that ABOS.Vrfy(vk, id, σ) =
1)} with a relation R : X ×W → {0, 1}. So, R((id, v, vk), ω) = 1 if (PRG(id⊕ω)
= v)∨(Vrfy(vk, id, ω) = 1), 0 otherwise. Note that, we can always fix the input
size of R by adding some dummy bits.
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Fig. 5. Construction of IBE with optimal ciphertexts

We describe our IBE in Fig. 5. For correctness, we have to make sure that a
same pseudorandom value y is generated in both the algorithms Enc and Dec.
In Enc, we compute y using a witness u for PRG and in Dec, we compute y using
a witness which is now a signature σ for id. More importantly, the statement
(id, v, vk) remains unchanged in both cases. Thus, correctness of Eval ensures
y = WPRF.F(fk, (id, v, vk)) is the same in Enc and Dec. Finally, Dec returns the
message m using the decryption of SKE.

Efficiency: The ciphertext size of our IBE is compact in the sense that it has
only |cs| + |v| many bits. Since cs is a ciphertext of a length preserving SKE, we
have |cs| = |m|, where |m| denotes the bit length of message. Therefore, the size
of c is |m| + 2λ which is optimal for any IBE scheme. The underlying relation R
is also simple as it either checks a PRG or verify a message-signature pair. This
means the size of public parameter is proportional to the size of PRG plus the
size of Vrfy, hence is some fixed polynomial in λ.

Theorem 1. The IBE = (Setup, KeyGen, Enc, Dec) described above is a
selective-identity CCA secure identity based encryption if PRG is a secure pseu-
dorandom generator, WPRF is a selectively secure witness pseudorandom func-
tion, ABOS is a VK-IND secure all-but-one signature scheme and SKE is a LP-
CCA secure symmetric key encryption.

Proof. We prove the security of IBE using the following sequence of games. As
usual, we start with Game 0 which is the standard experiment ExptIBEA (λ) as
defined in Fig. 4. For Game i, let Gi be the event b = b′. We assume that A
submits two messages of equal length in each game.

Game 0: This is the standard experiment as described in Definition 9. In par-
ticular, A begins by committing to a challenge identity id∗. The challenger
computes (pp, msk) ← Setup(1λ) and transfers pp to A. The adversary,
given access to the oracles Osk(·), OD(·), submits a pair of challenge mes-
sages (m0,m1). Next, the challenger chooses a random bit b and sends the
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Fig. 6. Game 1 Fig. 7. Game 2

challenge ciphertext as c∗ ← Enc(pp, id∗,mb). Finally, A, given access to the
same oracles, guesses the challenge bit b. Note that, A cannot make a query
id∗ to Osk(·) and a query (id∗, c∗) to OD(·).

Game 1: It is same as Game 0 except that the challenger generates the random-
ness as y ← WPRF.F(fk, (id∗, v, vk)) instead of using Eval with the witness u.
Game 1 is described in Fig. 6. It can be observed by the correctness of Eval

WPRF.Eval(ek, (id∗, v, vk), u) = WPRF.F(fk, (id∗, v, vk))

as R((id∗, v, vk), u) = 1. Therefore, the ciphertext distributions in games 0
and 1 are identical. This implies Pr[G0] = Pr[G1].

Game 2: It is exactly same as Game 1 except that the challenger picks v uniformly
at random from {0, 1}2λ instead of computing v ← PRG(id∗ ⊕ u). Game 2
is described in Fig. 7. Since u is chosen uniformly at random from {0, 1}λ,
the distribution of id∗ ⊕ u is also uniform over {0, 1}λ. The security of PRG
(Definition 1) ensures that A’s advantage in distinguishing between Game
1 and Game 2 is |Pr[G1] − Pr[G2]| = AdvPRGB1

(λ) = negl(λ) where B1 is a
PRG-adversary.

Game 3: It is similar to Game 2 except that the challenger computes (sk∗, vk∗) ←
ABOS.PuncSetup(1λ, id∗) in the setup and replaces the key generation and
decryption oracles with Osk∗(·) and OD,vk∗,K(·) respectively, defined in Fig. 8.
Therefore, A gets a public parameter of the form pp = (ek, vk∗). In Lemma 1,
we show that Game 2 and Game 3 are indistinguishable from A’s view.

Game 4: It is identical to Game 3 except that the challenger selects y uniformly
at random from Y which is the co-domain of WPRF.F(fk, ·) and replaces the
decryption oracle OD,vk∗,K(·) by OD∗,vk∗,K(·), defined in Fig. 9. In Lemma 2,
we show that Game 3 and Game 4 are indistinguishable from A’s view.

Finally, we note that the encryption key in Game 4 is computed as K ←
SKE.Gen(1λ; y) where y is a fresh randomness which is independent of the chal-
lenge identity id∗. Hence, by the LP-CCA security of SKE (Remark 1) we have
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|Pr[G4] − 1
2 | = AdvSKEB2,LP-CCA(λ) which is negligible in λ by our assumption. We

are left to prove the following lemmas to conclude the security of our IBE.

Lemma 1. Assuming ABOS is a VK-IND secure all-but-one signature scheme,
we have |Pr[G2] − Pr[G3]| = negl(λ).

Proof. We show that if A can distinguish between the games 2 and 3, then there
exists anadversaryB3 whichwill break theVK-IND securityof ABOS (Definition5).
Let id∗ be the challenge message for B3 which simulates A as follows:
B3(1λ, id∗):

1. send id∗ to its challenger
2. ABOS-challenger does the following:
(a) (sk0, vk0) ← ABOS.Setup(1λ)
(b) (sk1, vk1) ← ABOS.PuncSetup(1λ,m∗)
(c) b̃ ← {0, 1}
(d) return vkb̃ to B3

3. generate (fk, ek) ← WPRF.Gen(1λ, R)
4. pick v ← {0, 1}2λ

5. set y ← WPRF.F(fk, (id∗, v, vkb̃))
6. compute K ← SKE.Gen(1λ; y)
7. set pp = (ek, vkb̃) and send it to A
8. A can ask the following queries for polynomial number of times:
(a) key query for id: B3 uses it’s signing oracle ABOS.Sig(skb̃, ·) to get a

signature σ of id and return skid = (id, σ) if id �= id∗, else return ⊥
(b) ciphertext query for (id, c): B3 uses the function OD,vkb̃,K(·) defined in

Fig. 8 for ciphertext query of A
9. A submits the challenge messages (m0,m1)

10. pick b ← {0, 1} and computes c∗
s ← SKE.Enc(K,mb)

11. set c∗ = (c∗
s, v) and send it to A

12. A may repeat the step 8 and returns a guess b′ for b
13. return 1 if b = b′ and |m0| = |m1|

It is easy to see that if b̃ = 0 then B3 simulates the KeyGen oracle Osk(·) of
Game 2 and if b̃ = 1 then B3 simulates the KeyGen oracle Osk∗(·) of Game 3.
Next, we show that OD,vk0,K(·) works like the oracle OD(·) as in Game 2. For any
arbitrary query (id, c = (c̄s, v̄)), let us consider the following cases.

Case 1 (id, c) = (id∗, c∗): Both the oracles return ⊥ as it is not a valid query.

Case 2 (id, v̄) = (id∗, v) ∧ (c̄s �= c∗
s): Let, z0 = (id∗, v, vk0). The oracle OD(·) gen-

erates a signature σ ← ABOS.Sign(sk0, id∗) (where (sk0, vk0) ← ABOS.Setup(1λ)
as in Game 2, Fig. 7) and uses y ← WPRF.Eval(ek, z0, σ) to generate the decryp-
tion key. On the other hand, OD,vk0,K(·) uses y∗ ← WPRF.F(fk, z0) to generate
the decryption key. By the correctness of Eval, y∗ = y as R(z0, σ) = 1.

Case 3 (id, v̄) �= (id∗, v): Let z = (id, v̄, vk0). The oracle OD(·) generates a sig-
nature σ ← ABOS.Sig(sk0, id) (as in Game 2) and uses y ← WPRF.Eval(ek, z, σ)
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Fig. 8. Game 3

to generate the decryption key. OD,vk0,K(·) uses y ← WPRF.F(fk, z) to generate
the decryption key. By the similar argument as in case 2, we conclude that both
the oracles compute the same decryption key.
Thus, B3 perfectly simulates Game 2 when b̃ = 0. On the other hand, when
the ABOS challenger picks b̃ = 1, it perfectly simulates Game 3. Therefore, the
advantage of A in distinguishing between the games 2 and 3 is the same as win-
ing advantage of B3 in VK-IND security experiment and we write it as |Pr[G2] −
Pr[G3]| = AdvABOS

B3
(λ) which is negligible in λ by our assumption.

Lemma 2. Assuming WPRF is a selectively secure witness pseudorandom func-
tion, we have |Pr[G3] − Pr[G4]| = negl(λ).

Proof. We show that if A can distinguish between the games 3 and 4, then
there exists an adversary B4 which will break the selective security of WPRF
(Definition 7). The challenge statement for B4 is z∗ = (id∗, v, vk∗) where v ←
{0, 1}2λ and (sk∗, vk∗) ← ABOS.PuncSetup(1λ, id∗). Note that, v ← {0, 1}2λ

implies that there exits u ∈ {0, 1}λ satisfying PRG(id∗ ⊕ u) = v holds with
a negligible probability of (at most) 2−λ. Furthermore, by the correctness of
PuncSetup (Definition 4), we have ABOS.Vrfy(vk∗, id∗, σ) = 0 for all σ ∈ Σ.
Hence, R(z∗, w) = 0 holds with overwhelming probability for any w ∈ W and
z∗ is a valid challenge statement for B4. Below we describe how B4 simulates A
using z∗.
B4(1λ, z∗):

1. send z∗ to its challenger
2. WPRF-challenger does the following:
(a) generate (fk, ek) ← WPRF.Gen(1λ, R)
(b) set y0 ← WPRF.F(fk, z∗) and y1 ← Y
(c) pick b̃ ← {0, 1}
(d) return (ek, yb̃) to B4

3. compute K ← SKE.Gen(1λ; yb̃)
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4. set pp = (ek, vk∗) and send it to A
5. A can query the following oracles for polynomial number of times:
(a) key query for id: B4 uses the oracle Osk∗(·) as described in Fig. 9 to com-

pute the secret-key for id
(b) ciphertext query for (id, c): B4 uses the decryption oracle OD∗,vk∗,K(·) as

defined in Fig. 9 to compute the message for the query (id, c)
6. A submits the challenge messages (m0,m1)
7. pick b ← {0, 1} and computes c∗

s ← SKE.Enc(K,mb)
8. set c∗ = (c∗

s, v) and send it to A
9. A may repeat the step 5 and returns a guess b′ for b

10. return 1 if b = b′ and |m0| = |m1|

Fig. 9. Game 4

First, we note that the oracle Osk∗(·) remains the same as in Game 3. Next,
we observe that if b̃ = 0 then the decryption oracles OD,vk∗,K(·) of Game 3
and OD∗,vk∗,K(·) of Game 4 are functionally equivalent. More precisely, for any
arbitrary query (id, c = (c̄s, v̄)) we consider the following cases.

Case 1 (id, c) = (id∗, c∗): Both the oracles return ⊥ as it is not a valid query.

Case 2 (id, v̄) = (id∗, v) ∧ (c̄s �= c∗
s): Both the oracles OD,vk∗,K(·) and OD∗,vk∗,K(·)

utilize y0 ← WPRF.F(fk, z∗) to generate the decryption key.

Case 3 (id, v̄) �= (id∗, v): Let z = (id, v̄, vk∗) �= z∗. Then, OD,vk∗,K(·) com-
putes y ← WPRF.F(fk, z) to generate the decryption key. On the other hand,
OD∗,vk∗,K(·) uses y ← Ofk(z) to generate the decryption key. Note that Ofk(z) =
WPRF.F(fk, z) as z �= z∗. Hence, both oracles compute the same decryption key.
Therefore, if the WPRF challenger picks the bit b̃ = 0, then yb̃ =
WPRF.F(fk, (id∗, v, vk∗)) and hence B4 simulates Game 3. If b̃ = 1 then y is cho-
sen uniformly at random from Y and hence B4 simulates Game 4. This implies
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that the advantage of A in distinguishing between the games 3 and 4 is the same
as the advantage of B4 in the WPRF security experiment. Therefore, |Pr[G3] −
Pr[G4]| = AdvWPRF,R

B4
(λ) which is negligible in λ by our assumption.

3.1 From IBE to CCA1 Secure MIFHE

In this section, we describe our transformation from the above IBE to MIFHE.
At first, we recall the definition of MFHE given by Mukherjee and Wichs [27]
where they built a (pure) MFHE based on LWE along with circular security.

Definition 10. [27] A multi-key (pure) fully homomorphic encryption (MFHE)
scheme is a tuple of PPT algorithms (Setup, KeyGen, Enc, Expand, Eval, Dec)
defined as follows:

• params ← Setup(1λ) : on input a security parameter λ, produces a system
parameter params (which implicitly available to all other algorithms).

• (pk, sk) ← KeyGen(params) : on input a system parameter params, outputs a
secret-key sk and a public-key pk.

• c ← Enc(pk,m) : returns c, a fresh ciphertext for a message m ∈ {0, 1}.
• ĉ ← Expand((pk1, . . . , pkN ), i, c) : a deterministic algorithm that on input a

sequence of N public-keys (pk1, . . . , pkN ) and a fresh ciphertext c encrypted
under the ith key pki, returns an expanded ciphertext ĉ.

• ĉ ← Eval(params,C , (ĉ1, . . . , ĉ�)) : a deterministic algorithm that on input a
polynomial-size boolean circuit C and a sequence of � expanded ciphertexts
(ĉ1, . . . , ĉ�), outputs an evaluated ciphertext ĉ.

• Dec(params, (sk1, . . . , skN ), c) ∈ {0, 1} ∪ {⊥} : a deterministic algorithm that
on input N secret-keys sk1, . . . , skN and a ciphertext c, returns either a mes-
sage m ∈ {0, 1} or ⊥ if it fails.

The MFHE is said to be correct and compact if the following holds:
For params ← Setup(1λ), {(pki, ski) ← KeyGen(params)}i∈[N ] and any �-tuple
message (m1, . . . ,m�) ∈ {0, 1}�, any sequence of indices (I1, . . . , I�) ∈ [N ]�, {ci ←
Enc(pkIi

,mi)}i∈[�], {ĉi ← Expand((pk1, . . . , pkN ), Ii, ci)}i∈[�] and a polynomial-
size boolean circuit C , we have

– correctness of Expand: Dec(params, (sk1, . . . , skN ), ĉi) = mi for all i ∈ [�].
– correctness of Eval: Dec(params, (sk1, . . . , skN ), ĉ) = C (m1, . . . ,m�) where

ĉ ← Eval(params,C , (ĉ1, . . . , ĉ�)).
– compactness : The size of an evaluated ciphertext |ĉ| is bounded by a fixed

polynomial p(λ,N) independent of the circuit C .

Definition 11. A MFHE scheme is said to be semantically secure if, for all PPT
adversary A and params ← Setup(1λ), (pk, sk) ← KeyGen(params), any pair of
messages (m0,m1) ∈ {0, 1}2, there exists a negligible function negl such that

AdvMFHE
A (λ) = |Pr[A(params, pk,Enc(pk,m0)) = 1] −

Pr[A(params, pk,Enc(pk,m1)) = 1] | < negl(λ)
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Definition 12. [8] A multi-identity (pure) fully homomorphic encryption
(MIFHE) scheme is a tuple ofPPTalgorithms (Setup,KeyGen,Enc,Eval,Dec)where
Setup, KeyGen and Enc are the same as in a normal IBE scheme (Definition 8) and
the remaining two algorithms work as follows:

• ĉ ← Eval(pp,C , (c1, . . . , c�)) : a deterministic algorithm that on input a
public parameter pp, a polynomial-size boolean circuit C and ciphertexts
c1, . . . , c� (each of which encrypts a bit using Enc), outputs an evaluated
ciphertext ĉ.

• Dec(pp, (skid1 , . . . , skid�
), c) ∈ {0, 1} ∪ {⊥} : a deterministic algorithm that

on input a public parameter pp, � secret-keys skid1 , . . . , skid�
corresponding to

the identities id1, . . . , id� and a ciphertext c encrypted under the identities
id1, . . . , id�, outputs either a message m ∈ {0, 1} or ⊥ if it fails.

The MIFHE is said to be correct and compact if the following hold:

– correctness: For (pp,msk) ← Setup(1λ), {skidi ← KeyGen(msk, idi)}i∈[�]

and any �-tuple message (m1, . . . ,m�) ∈ {0, 1}� such that {ci ←
Enc(pp, idi,mi)}i∈[�] and a polynomial-size boolean circuit C , we have

Pr[Dec(pp, (skid1 , . . . , skid�
),Eval(pp,C , (c1, . . . , c�))) = C (m1, . . . ,m�)] = 1

– compactness : The size of an evaluated ciphertext |ĉ| is bounded by a fixed
polynomial p(λ,N) independent of the circuit C .

We consider CCA1 security for MIFHE where the adversary has an access to the
decryption oracle before it receives the challenge ciphertext. We skip the formal
description of the security as it is almost similar to Definition 9.

Construction. We construct a multi-identity pure FHE scheme MIFHE =
(Setup, KeyGen, Enc, Eval, Dec) for an identity space ID = {0, 1}λ, a mes-
sage space {0, 1} and a class of polynomial sized circuits {Cλ}. We consider the
same set of primitives that are employed in the basic IBE of Sect. 3 except SKE
is replaced by a pure MFHE scheme. Our MIFHE is described in Fig. 10. The
correctness is followed by a similar argument as in our IBE scheme and using the
correctness of MFHE scheme. We state the security in the following theorem.

Theorem 2. The MIFHE = (Setup, KeyGen, Enc, Eval, Dec) described in
Fig. 10 is a selective-identity CCA1 secure multi-identity pure fully homomorphic
encryption if PRG is a secure pseudorandom generator, WPRF is a selectively
secure puncturable witness pseudorandom function, ABOS is a VK-IND secure
all-but-one signature scheme and MFHE is a semantically secure multi-key pure
fully homomorphic encryption.

Proof. The proof is similar to the Theorem 1 with few changes. Firstly, we
replace SKE with MFHE. Secondly, observe that the semantic security of MFHE
is sufficient as we consider CCA1 security for which A is not allowed to query
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Fig. 10. Construction of multi-identity pure FHE

the decryption oracle after the challenge query. More specifically, the secret-
key skv, associated with the public-key pkv which encrypts the challenge mes-
sage, is no longer needed for any decryption oracle used in the proof. This is
due to the fact that after Game 2 the component v of the challenge ciphertext
(cv, v, pkv) is chosen uniformly from {0, 1}2λ and hence for all the decryption
queries {(id, (c̄v, v̄, p̄kv))} of A we have v �= v̄ with overwhelming probability.
Thus, we omit the lines 5 and 6 from both the oracles OD,vk∗,K and OD∗,vk∗,K,
and rename them by OD,vk∗ and OD∗,vk∗ respectively. Finally, at the end of Game
4 we generate the key pair (pkv, skv) ← MFHE.KeyGen(params; yv) using a fresh
randomness yv which is independent of the challenge identity id∗. Therefore,
the semantic security of MFHE guarantees that (MFHE.Enc(pkv, 0), v, pkv) is
indistinguishable from (MFHE.Enc(pkv, 1), v, pkv) which completes the proof.

4 CCA1 Secure MAFHE from WPRF and MFHE

In this section, we present a construction of a CCA1 secure multi-attribute pure
FHE (MAFHE) using WPRF and MFHE. The heart of our MAFHE is a CCA secure
(key-policy) ABE. We start with the definition of ABE.

Definition 13. [32] An attribute-based encryption (ABE) scheme for a class of
functions {Fλ} is a tuple of PPT algorithms (Setup, KeyGen, Enc, Dec) defined
as follows:

• (pp,msk) ← Setup(1λ) : on input a security parameter λ, produces a public
parameter pp and a master secret-key msk.

• skf ← KeyGen(pp,msk, f) : returns a secret-key skf corresponding to the
function f ∈ Fλ.
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• c ← Enc(pp, x,m) : returns c, an encryption of a message m ∈ M under an
attribute x ∈ X .

• Dec(pp, skf , c) ∈ M∪{⊥} : a deterministic algorithm that decrypts a cipher-
text c using skf and outputs either a message m ∈ M or ⊥ if it fails.

The ABE is said to be correct if the following holds:

– correctness: For all f ∈ Fλ, x ∈ X , m ∈ M, (pp,msk) ← Setup(1λ) and
skf ← KeyGen(msk, id), we require that

Pr[Dec(pp, skf ,Enc(pp, x,m) = m : f(x) = 1] = 1

We consider selective-attribute CCA security for ABE and define the security
experiment ExptABEA,CCA(1λ) in Fig. 11.

Fig. 11. ExptABEA,CCA(1λ)

Definition 14. An attribute-based encryption ABE is said to be selective-
attribute CCA secure if, for all PPT adversary A, there exists a negligible func-
tion negl such that

AdvABEA,CCA(λ) = |Pr[ExptABEA,CCA(1λ) = 1] − 1
2
| < negl(λ)

Construction. We construct a selective-attribute CCA secure ABE based on the
ABE of [15] which was built using witness encryption. The following ingredients
are utilized:

– A pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
– A LP-CCA secure symmetric key encryption SKE = (Gen, Enc, Dec).
– A perfectly binding and computationally hiding commitment scheme Com(·).
– A non-interactive zap = (Prv, Vrfy) for the NP language L′ = {(η1, η2, f) :

(∃w1 such that η1 = Com(0;w1)) or (∃(w2, x) such that η2 = Com(0n;w2) ∧
f(x) = 0)}.

– A WPRF = (Gen, F, Eval) for the NP language L = {(x, v) : (∃ u ∈ {0, 1}λ

such that PRG(x ⊕ u) = v) or (∃(η1, η2, f, π) such that Vrfy((η1, η2, f), π) =
1 ∧ f(x) = 1)} with a relation R : X × W → {0, 1}.
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Fig. 12. Construction of ABE with optimal ciphertexts

We describe our construction in Fig. 12. For correctness, we notice that whenever
f(x) = 1 holds (η1, η2, f, π) becomes a valid witness of the statement (x, v)
corresponding to the relation R of WPRF where π ← zap.Prv((η1, η2, f), r). In
other words, zap.Vrfy((η1, η2, f), π) = 1 and we have

WPRF.F(fk, (x, v)) = WPRF.Eval(ek, (x, v), (η1, η2, f, π)) [Decyption]
= WPRF.Eval(ek, (x, v), u) [Encryption]

Therefore, the same randomness is used to obtain the SKE key during encryption
and decryption if f(x) = 1 and the original message can be recovered from ĉ.
The key efficiency factor is that the size of ciphertext (excluding the size of the
attribute) is |c| = |cx| + |v| = |m| + 2λ which is optimal for any ABE scheme.
Note that, plaintext and ciphertext sizes are the same for the SKE encryption.

Theorem 3. The ABE = (Setup, KeyGen, Enc, Dec) described in Fig. 12 is
a selective-attribute CCA secure attribute-based encryption if PRG is a secure
pseudorandom generator, Com is a perfectly binding and computationally hid-
ing commitment scheme, zap is a non-interactive zap, WPRF is a selectively
secure puncturable witness pseudorandom function and SKE is a LP-CCA secure
symmetric key encryption. (The proof is available in the full version.)

4.1 From ABE to CCA1 Secure MAFHE

This section is devoted to present a CCA1 secure multi-attribute pure FHE
(MAFHE) using the technique involved in our ABE and a multi-key pure FHE.
At first, we state a formal definition of MAFHE.

Definition 15. A multi-attribute (pure) fully homomorphic encryption
(MAFHE) scheme for a function class {Fλ} and an attribute space X is a tuple
of PPT algorithms (Setup, KeyGen, Enc, Eval, Dec) where Setup, KeyGen and
Enc are the same as in a normal ABE scheme (Definition 13). The remaining two
algorithms work as follows:
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• ĉ ← Eval(pp,C , (c1, . . . , c�)) : a deterministic algorithm that on input a
public parameter pp, a boolean circuit C of polynomial size and ciphertexts
c1, . . . , c� (each of which encrypts a bit using Enc), outputs an evaluated
ciphertext ĉ.

• Dec(pp, (skf1 , . . . , skf�
), c) ∈ {0, 1} ∪ {⊥} : a deterministic algorithm that

on input a public parameter pp, a sequence of secret-keys (skf1 , . . . , skf�
)

corresponding to the functions f1, . . . , f� ∈ Fλ and a ciphertext c encrypted
under the attributes x1, . . . , x� ∈ X , outputs either a message m ∈ {0, 1} or
⊥ if it fails.

The MAFHE is said to be correct and compact if the following hold:

– correctness: For (pp,msk) ← Setup(1λ), {skfi
← KeyGen(pp,msk, fi)}i∈[�]

and any �-tuple messages (m1, . . . ,m�) ∈ {0, 1}� such that {ci ←
Enc(pp, xi,mi)}i∈[�] satisfying fi(xi) = 1 ∀i ∈ [�] and a boolean circuit C
of polynomial size, we have

Pr[Dec(pp, (skf1 , . . . , skf�
),Eval(pp,C , (c1, . . . , c�))) = C (m1, . . . ,m�)] = 1

– compactness : There exists a fixed polynomial p(·) such that the size of an
evaluated ciphertext is bounded by p(λ). This means |ĉ| does not depend on
the circuit C .

We consider CCA1 security for MAFHE where the adversary is given access to
the decryption oracle until it receives the challenge ciphertext. We skip the for-
mal description of the security as it is almost similar to Definition 14 where the
decryption oracle is not provided after generating the challenge ciphertext.

Construction. We are all set to describe a MAFHE scheme based on our ABE.
The idea is similar to how we built the MIFHE from our IBE. Consequently, we
need the same set of primitives as required in the ABE of Sect. 4 except the SKE
is replaced by a semantically secure pure MFHE. The MAFHE for a function
class {Fλ} and message space {0, 1} is described in Fig. 13. Note that, the setup
algorithm does not take into account any predefined depth of supported circuits
as we assume circular security of the underlying MFHE. The correctness can be
similarly argued as in our ABE scheme along with the correctness of MFHE. The
CCA1 security of our MAFHE is followed from the proof of Theorem 3.

Theorem 4. The MAFHE = (Setup, KeyGen, Enc, Eval, Dec) described in
Fig. 13 is a selective-attribute CCA1 secure multi-attribute pure fully homomor-
phic encryption if PRG is a secure pseudorandom generator, Com is a perfectly
binding and computationally hiding commitment scheme, zap is a non-interactive
zap, WPRF is a selectively secure puncturable witness pseudorandom function
and MFHE is a semantically secure multi-key pure fully homomorphic encryp-
tion. (The proof is discussed in the full version.)
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Fig. 13. Construction of multi-attribute pure FHE

5 Conclusion

We propose two generic approaches to construct IBE and ABE from WPRF, both
of which are CCA secure and achieve a ciphertext of size |m| + 2λ. Existing
schemes do not satisfy such optimal ciphertext size along with CCA security.
Additionally, with the help of a pure MFHE, we convert our IBE and ABE into
CCA1 secure MIFHE and MAFHE schemes respectively. Existing MIFHE and
MAFHE [11] are CPA secure and rely on (possibly stronger assumption of) iO.
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Abstract. In this paper, we propose a new private set intersection (PSI)
protocol with bi-oblivious data transfer that computes the following func-
tionality. The two parties (P1 and P2) input two sets of items (X and Y ,
respectively) and one of the parties (P2) outputs fi(bi) for each yi ∈ Y ,

where bi is 0 or 1 depending on the truth value of yi

?∈ X and fi is
defined by the other party (P1) as taking 1-bit input and outputting
the party’s (P1’s) data to be transferred. This functionality is generally
required when the PSI protocol is used as a part of a larger secure two-
party secure computation such as threshold PSI or any function of the
whole intersecting set in general. Pinkas et al. presented a PSI protocol at
Eurocrypt 2019 for this functionality, which has linear complexity only in
communication. While there are PSI protocols with linear computation
and communication complexities in the classical PSI setting where the
intersection itself is revealed to one party, to the best of our knowledge,
there is no PSI protocol, which outputs a function of the membership
results and satisfies linear complexity in both communication and com-
putation. We present the first PSI protocol that outputs only a function
of the membership results with linear communication and computation
complexities. While creating the protocol, as a side contribution, we pro-
vide a one-time batch oblivious programmable pseudo-random function
based on garbled Bloom filters. We also implemented our protocol and
provide performance results.

Keywords: Private set intersection · Two-party computation · Bloom
filters · Oblivious transfer · Cuckoo hashing

1 Introduction

Private set intersection (PSI) protocols are one of the commonly used two party
secure communication primitives where two parties, P1 and P2, have their own
respective private sets, X and Y , and at least one of the parties learn the inter-
section X ∩ Y but nothing more. In the last decade, considerable amount of
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S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 409–429, 2020.
https://doi.org/10.1007/978-3-030-65411-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65411-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-65411-5_20


410 F. Karakoç and A. Küpçü

custom PSI protocols have been proposed in the literature. However, most of
the proposed solutions reveal the intersection to at least one of the parties,
which makes the protocols not usable as a building block in a larger secure
computation protocol, because in that larger protocol, intermediate information
would leak due to the nature of the employed PSI protocol. In this work, we
focus on designing a PSI protocol in the semi-honest security model that out-
puts {fi(bi) | bi = 1 if yi ∈ X, bi = 0 otherwise} where fi, defined by P1, takes
1-bit input and outputs P1’s data to be transferred to P2. When each fi is an
identity function (fi(0) = 0 and fi(1) = 1), we obtain regular PSI. When fi

maps to a set of two strings, we obtain PSI with data transfer [7,32]. While fi

appears to be general, it fails to cover general computation over (X ∩ Y ), e.g.,
cardinality [6] or threshold PSI [32,33], because each fi(bi) is leaked individually
to P2 but not the computation over (X ∩ Y ). Luckily, we can compose PSI with
bi-oblivious data transfer with another layer of secure two-party computation
protocol. For example, consider fi as additively-homomorphic encryption of the
identity function (fi(0) = Ek(0) and fi(1) = Ek(1) for key k picked by P1),
and that our protocol is followed by additively-homomorphic evaluation of the
obtained values by P2, and then P1 decrypts the result. This corresponds to PSI
cardinality. Alternatively, fi output values can be secret shares of the result for
each item or labels for the corresponding input wires for circuit-based secure
computation protocols. For example, the output of fi can be a wire label for
wire zero if yi �∈ X and wire label for wire one if yi ∈ X. This means that all
wire labels are output for the larger protocol that employs our set intersection.
This larger protocol can be, for example, computing a threshold over the inter-
section cardinality, or any other secure two-party computation protocol whose
input should be the intersection.

The name PSI with bi-oblivious data transfer comes from the fact that fi

output values can be thought as the data to be transferred from P1 to P2, but
the transfer is bi-oblivious, meaning that neither P1 nor P2 knows the input bit
bi indicating which of the two data options was transferred.

Related Work: To the best of our knowledge, protocols that output a function
of the membership results were proposed by Ciampi and Orlandi [5], Pinkas
et al. [26], and Falk et al. [11] in addition to the circuit based solutions of
[14,29]. In [5], a custom private set membership protocol (PSM) (where one of
the parties has only one item instead of a set) based on oblivious navigation of
a graph was introduced and this PSM protocol was converted to a PSI protocol
with O(n log n/ log log n) communication and computation complexities using
the hashing techniques proposed in [25,28,29], where n is the number of items
in the sets. [11] has a communication complexity of O(n log log n) when the
output can be secret shared. In [26], Pinkas et al. proposed a PSI protocol
with O(n) communication and ω(n(log log n)2) computation complexities using
the oblivious programmable pseudo-random function (OPPRF) in [20]. That
protocol uses OPPRF to check the private set membership relation in the hashed
bins, where the result is not output in clear text, and then deploys a comparison
circuit for the output of the membership result that can be given to a function as
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the input. Also in literature, there have been special purpose PSI protocols such
as [6,8,9,15,16,19,22,31,33], which output a specific function of the intersection
such as cardinality of the set, intersection-sum, or a threshold function.

In our solution, we follow the idea of Pinkas et al. [26] in that we first run a
PSM protocol for each bin in the cuckoo hash table and then execute a compar-
ison protocol. We diverge from their idea in the following ways. The first one is
that we construct a Bloom-filter (BF) based PSM protocol by modifying Dong
et al. PSI solution [10] to reduce the computation complexity. The second point
is that, instead of using a comparison circuit, we execute Ciampi-Orlandi PSM
protocol as a secure equality testing protocol such as the one used in [18], which
makes the equality testing free by using the base oblivious transfer already exe-
cuted in the BF-based PSM protocol. Following these two methods along the
idea of Pinkas et al., we are able construct the first custom PSI protocol having
linear computation and communication complexities in the number of items for
the functionality we consider (outputting not the result set, but a function of
the membership results), to the best of our knowledge. Note that there have
been PSI solutions with linear complexities such as the protocols in [7,10] and
malicious secure solutions such as the recent proposals [13,24] having linear com-
munication complexity, but in these protocols the intersection is revealed to at
least one party while in our protocol no party learns the intersection in cleart-
ext. We implemented our PSM and PSI protocols and the Ciampi-Orlandi PSM
protocol to make a fair comparison. Experimental performance results, which
validate our performance analysis, are given in Sect. 7.

2 Preliminaries and Similar Protocols

Notation: P1 and P2 are the parties who run the protocol, X and Y are the
corresponding item sets of the parties, and f is the function to be applied on
the set intersection result. P1 and P2 respectively play the sender and receiver
roles, and at the end of the PSI protocol, P2 learns fi(bi) for each yi ∈ Y where

bi takes a value from {0, 1} depending on the truth value of the relation yi

?∈ X
and fi is a function defined by P1 with single-bit input.

The remaining notation we use throughout the paper is as follows:

� : The length of the items in the sets
κ : Security parameter
η : Statistical correctness parameter
n : The number of items in the sets
m : Bloom filter size
k : Number of hash functions used in Bloom filter

Hi : Set of k hash functions used in the construction of Bloom filters for i-th
bin in the cuckoo table where Hi = {hi,1, . . . , hi,k}

β : The number of bins in cuckoo table.
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2.1 Sub-protocols

Oblivious Transfer: A 1-out-of-2 oblivious transfer (OT) [30] is a secure two-
party protocol that realizes Functionality 1. While OT is one of the commonly
used primitives in secure protocols, the main drawback of this primitive is the
need of asymmetric key operation executions. With the help of OT extension
(OTE) method proposed in [1] and practically realized with some studies such
as [17], to execute 1-out-of-2 OT for m pairs of length � (OTm

� ) it is enough to
run OTκ

κ, called as base OTs, where κ is the security parameter, which keeps
the number of heavy public key operations as a constant independent from the
number of pairs m and item lengths �.

In recent works, it was shown that the number of rounds can be 2 instead of 3
for an OT extension protocol by executing some of the computations in the offline
phase of the protocol [3,4]. In our solution, we don’t consider the preprocessing
operations and so we don’t use these constructions in our protocols.

Cuckoo hashing: [23] is a hashing primitive that allows to map items of a set to
the bins, where there is at most one item in each bin. This primitive employs two
hash functions h0 and h1 and maps n items to a table T of (1+ε)n bins. An item
xi is inserted into bin T [hb(xi)]. If this bin already accommodates a previous
item xj , then xj is relocated to bin T [h1−b(xj)]. If in that bin there is another
item, then this procedure is repeated until there is no need or a replacement
threshold is reached. If a threshold is employed, then a stash is used to store the
items that are not located into the bins.

Bloom Filter Based PSI: A Bloom filter (BF) [2] is a representation of a set
X = x1, . . . , xn of n elements using an m-bit string BF . BF is constructed with
the help of a set of k independent and uniform hash functions (H = h1, . . . , hk)
where hi : {0, 1}� → {1, 2, . . . ,m} as follows: BF is first set to 0m. Then, for
each item in X, BF [hi(xj)] is set to 1 where 1 ≤ i ≤ k and 1 ≤ j ≤ n. To check
whether an item x is in the set X, one checks BF [hi(x)] is equal to 1 or not for
each i (1 ≤ i ≤ k). If for all i (1 ≤ i ≤ k) the corresponding bit in BF is equal
to 1, then it means that the item is probably in the set. Otherwise (for some i
the corresponding bit is 0), the item is not in the set.

A Bloom filter based PSI was proposed by Dong et al. [10]. In that solution, a
variant of BF called as Garbled Bloom Filter (GBF) was used. A GBF of a set X,
GBF , is similar to BF except that while for each hash function hi in H we have
BF [hi(x)] = 1, GBF [hi(x)] is a secret share of x: that is,

⊕k
i=1 GBF [hi(x)] = x

and other cells are random values instead of simple zeros. In the first step of the
protocol, P1 and P2 construct a GBF (GBFX) using the GBF building algorithm
provided in [10] and a BF (BFY ), respectively. Then, P1 and P2 run m-pair
oblivious transfer of �-bit strings (OTm

� ) where P1’s input is (0�, GBFX [i]) and
P2’s input is BFY [i] for the i-th OT, and the output of P2 is GBFY [i]. In this
way, P2 learns GBFX [i] if BFY [i] = 1. P2 checks, for each item yj ∈ Y , whether

it is in X or not, by comparing
⊕k

i=1 GBFY [hi(yj)]
?= yj .
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Functionality 1. Oblivious Transfer

Inputs. The sender inputs a pair (x0, x1), the receiver inputs a choice bit b ∈ {0, 1}
Outputs. The functionality returns the message xb to the receiver and returns
nothing to the sender

Oblivious Pseudo-random Function Based PSM: An oblivious pseudo-
random function (OPRF), introduced in [12], is a two-party protocol where party
P1 holds a key K, party P2 holds a string x, and at the end of the protocol P1

learns nothing, while P2 learns FK(x) where F is a pseudo-random function
family that gets a κ-bit key K and an �-bit input string x and outputs an �-
bit random-looking result. An oblivious programmable pseudo-random function
(OPPRF) [20] is similar to an OPRF except that in OPPRF, the protocol out-
puts predefined values for some of the programmed inputs. In that protocol
P2 should not be able to distinguish which inputs are programmed. Note that
OPPRF is very similar to PSI with data transfer [7,32] by just setting the data
of the latter to random values. Indeed, the GBF-based construction of OPPRF
in [20] is essentially the GBF-based construction in [32]. In this paper, we extend
this GBF-based construction to batch OPPRF.

The basic idea in OPRF based PSM protocols are as follows. P1 holds a key
K to compute a pseudo-random function FK , P2 learns FK(y) for his item y
obliviously, and P1 sends FK(xi) for her items xi ∈ X to P2. P2 checks if FK(y)
is in the set {FK(xi)}. An example PSI protocol can be found in [29]. In the
OPRF solution, P2 learns whether or not his item is in the set of P1. This solution
cannot be used in our setting where nobody learns the result in cleartext and the
parties only learn a function result of the intersection. Pinkas et al. [26] converted
the OPRF solution to the setting we consider using an oblivious programmable
pseudo-random function. In that solution, P1 sends the same (random) output r
for the items in her set. Otherwise, she sends some random output to P2. Then
P1 and P2 run a circuit to check the equality of r and the outputs P1 sent to P2.
At the end of this equality check circuit, one party obtains a function based on
the result of the equality, i.e, of the membership.

Usage of Ciampi-Orlandi PSM Protocol to Test Equality of Two
Strings: The private set membership (PSM) protocol proposed by Ciampi and
Orlandi [5] works on the setting that P1 and P2’s inputs are a set of items X
and an item y, respectively, and at the end of the protocol, P2 learns a func-
tion of the membership relation and P1 learns nothing. The protocol is based on
oblivious graph tracing and uses oblivious transfer. In our construction, we use
that protocol for the case that P1’s input is just one item instead of a set, as
considered in [18]. In this case, the PSM protocol becomes a secure equality test-
ing outputting a function (we call functional equality testing - FEQT) protocol
that realizes Functionality 2. This simplification also greatly increases efficiency,
helping us achieve linear costs. Protocol 1 presents the steps of Ciampi-Orlandi
PSM protocol for the case of testing two strings as used in [18].
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2.2 Security Definitions

Since there are two parties who run the protocol, it is enough to prove that the
protocol is secure when one of the parties is corrupted. There are two possible
cases: either P1 or P2 is corrupted.

Functionality 2. Functional Secure Equality Testing

Inputs. P1 inputs x and a function f to be computed on the equality relation result,
P2 inputs y

Outputs. The functionality checks the equality of x and y and returns f(0) or f(1)

according to the truth value of x
?
= y to P2

Protocol 1. (Ciampi-Orlandi PSM Protocol to test equality of two strings.)

Parameters. Ek(.) is a symmetric encryption under the key k with a
polynomial-time verification algorithm outputting whether a given ciphertext is in
the range of Ek(.) with false positive probability being 2−η.
Inputs. P1 inputs x and a function f to be computed on the equality relation result,
P2 inputs y.

Outputs. P2 outputs f(0) or f(1) according to the truth value of x
?
= y. P1 outputs

nothing.
The protocol steps:

1. P1 prepares the message pairs (Si
0, S

i
1) for x[i] (1 < i < �) as follows: (x[i] denotes

the i-th bit of x and x[1] is the right-most bit)
– chooses random symmetric keys k� and k∗

� and sets S�
x[�] = k� and S�

1−x[�] =
k∗

�

– For i = (� − 1) to 1
• chooses random symmetric keys ki and k∗

i and sets Si
x[i] =

{Eki+1(ki), Ek∗
i+1

(k∗
i )} and Si

1−x[i] = {Eki+1(k
∗
i ), Ek∗

i+1
(k∗

i )}.

• permutes the ciphertexts in Si
x[i] and Si

1−x[i] randomly.
2. P1 sends Ek1(f(1)) and Ek∗

1
(f(0)) to P2 in random order.

3. P2 learns corresponding Si
y[i]’s by running OT from P1 for 1 < i < �.

4. P2 recovers only one of the keys k1 or k∗
1 by decrypting the ciphertexts in the

following way:
– decrypts the ciphertexts in S�−1

y[�−1] using S�
y[�] as the key where the plaintext in

the encryption domain is the key that will be used to decrypt the ciphertexts
in S�−2

y[�−2].

– decrypts the ciphertexts in Si
y[i] using the plaintext recovered from Si+1

y[i+1] as

the key to recover the key used in the next received message Si−1
y[i−1].

5. P2 decrypts the ciphertexts Ek1(f(1)) and Ek∗
1
f(0)) using the key recovered in

Step 4 where only one of the plaintexts will be in the domain and this plantext
will be equal to f(1) or f(0). P2 outputs the result.
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We follow the simulation-based security proof paradigm. Since we only con-
sider honest-but-curious adversaries, the existence of a simulation in the “ideal
world” whose protocol transcript is computationally indistinguishable from the
adversary’s view in the protocol execution in the “real world” (together with the
parties’ outputs in both worlds) proves that the protocol is secure. The basic
idea in this proof paradigm is that if it is possible for the simulator to create
a protocol transcript indistinguishable from the real execution transcript, then
the transcript doesn’t reveal any piece of information about the private input of
the honest party. This security proof paradigm was formalized in [21] as follows.
Protocol π implements the functionality F = (F1,F2) where the output of P1

and P2 are F1(x, y) and F2(x, y), respectively, and x and y are the inputs of the
parties. The view of Pi for i ∈ {1, 2} (denoted as viewπ

i (x, y)) in the execution
of the protocol π is the input of Pi, the internal random number coin tosses,
the messages received from the other party in the execution of the protocol, and
the outputs. The existence of probabilistic polynomial-time (PPT) algorithms
Si (the simulators) that takes the input of Pi and the output of Pi such that

{Si(wi,Fi(x, y))}x,y ≈ {viewπ
i (x, y)}x,y

for i ∈ {1, 2} where w1 = x and w2 = y proves that the protocol π realizes the
functionality F securely.

As for the underlying primitives, namely OT and FEQT, whose functionali-
ties were presented as Functionalities 1 and 2, respectively, there exists simulators
who can simulate the view for both parties. These simulators take the input and
output of the corresponding party as input, and produce indistinguishable views
as output. In our proofs, we make use of these simulators for the underlying
primitives.

Lastly, in our proofs, we provide the simulators for semi-honest adversaries.
Note that the simulated view (including the outputs) must be indistinguishable
from the real view. In all our proofs, this is either obvious (directly comes from
the security of the underlying primitive, or comes from the fact that the simu-
lated values are picked from the same distribution as the original ones), or were
proven by others (in which case we also cite those papers). Thus, we do not delve
deep into the indistinguishability discussions, considering also the page limits.

3 Bloom Filter Based OPPRF Construction

We present a one-time OPPRF construction based on PSI protocols proposed
in [10] and [32]. For our usage, we put secret shares of random values chosen by
the sender as the data to be transferred by the PSI protocol [32].

The OPPRF functionality we use in our PSM protocol is given in Function-
ality 3 and our construction that implements the functionality is presented in
Protocol 2. The probability of false negative is zero because when y ∈ X, P2

learns all shares required to recover the related programmed value. There may
be false positives only with probability that is negligible in k and η, where k is
the number of hash functions used in GBF construction and η is the minimum
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bit length of each cell in GBF, as shown in [10]. Note that we allow the pro-
grammed values (ti) to be correlated. Because of that, the functionality is secure
only if the receiver makes only one query. For the purposes of PSM, we notice
that one query is enough. In our PSM solution the programmed values will be
the same; that is, all the ti values will be equal.

Asymptotic Complexity. Since the number of hash functions used in the construc-
tion of Bloom filters is a constant related to the statistical correctness parameter
that is independent of the number of items, Protocol 2 requires O(n) hash func-
tion computations for the construction of garbled Bloom filter in Step 1. Also,
the size of the Bloom filters is m = O(n), which makes the total asymptotic
complexity of running oblivious transfers in Step 3 O(n). Step 2 requires O(n)
non-cryptographic computation and space. Considering the complexity of Step
4 as O(1), we conclude that the OPPRF protocol has a communication, compu-
tation, and space complexity of O(n).

Functionality 3. (One-Time) Oblivious Programmable Pseudo Random Function

Inputs. P1 inputs predefined items X = {x1, . . . , xn} and corresponding
programmed values T = {t1, . . . , tn}, P2 inputs y

Outputs. The functionality checks the membership y ∈ X and returns ti to P2 if
∃xi s.t. y = xi (1 ≤ i ≤ n); returns a random value otherwise to P2, and returns
nothing to P1

Protocol 2. Our One-Time OPPRF Protocol

Parameters. A set of hash functions H = {h1, ..., hk}
Inputs. P1 inputs a set of items X = {x1, ..., xn} and corresponding programmed
values T = {t1, ..., tn}, P2 inputs an item y.
Outputs. P1 outputs nothing and P2 outputs ti if ∃xi s.t. y = xi (1 ≤ i ≤ n),
otherwise outputs a random value.
The protocol steps:

1. P1 constructs a garbled Bloom filter GBFX having max(η, �)-bit strings in each
cell such that

k⊕

i=1

GBFX [hi(xj)] = tj

for 1 ≤ j ≤ n.
2. P2 constructs a (standard) Bloom filter BFy for the item y.
3. P1 and P2 run m oblivious transfers where P1’s input is (0, GBFX [i]) and P2’s

input is BFy[i] for the i-th oblivious transfer, and the output of P2 is 0 if BFy[i] =
0 or GBFX [i] if BFy[i] = 1. Call the output of P2 as GBFy[i].

4. P1 outputs nothing and P2 outputs
⊕k

i=1 GBFy[hi(y)].
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Theorem 1. Protocol 2 securely realizes Functionality 3 when P1 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The input set X and the programmed values T are given to the simula-
tor S. The simulator computes a garbled Bloom filter GBFX using its random
tape such that

⊕k
i GBFX [hi(xj)] = tj for 1 ≤ j ≤ n. S runs the simulator of

OT as the sender m times, where for the i-th run, the input of the simulator
is ((0, GBFX [i]),⊥). Here, (0, GBFX [i]) is the input of the sender in the OT
protocol and there in no output of the sender. Thus, the simulated view and
output of the parties, and the view of the adversary in the real execution of the
protocol and the output of the parties are indistinguishable.

Theorem 2. Protocol 2 securely realizes Functionality 3 when P2 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The input item y and the output
⊕k

i=1 GBFy[hi(y)] are given to the
simulator S. The simulator constructs the Bloom filter using y regularly, and
creates GBF ′

y by running the following steps:

1. Set random values to GBF ′
y[hi(y)] for 1 ≤ i < k.

2. Set GBF ′
y[hk(y)] =

⊕k
i=1 GBFy[hi(y)] ⊕ ⊕k−1

i=1 GBF ′
y[hi(y)].

3. Set GBF ′
y[i] = 0 if BFy[i] = 0.

Finally, S runs the OT simulator as the receiver m times, where in the i-th, run
the receiver’s input is BFy[i] and the receiver’s output is GBF ′

y[i]. The proof
concludes when we show that GBF ′

y is indistinguishable from GBFy. The cells
in both GBF ′

y and GBFy are equal to ‘0’ for the indices i where BFy[i] = 0. Now
we need to show that for the remaining k cells these GBFs are indistinguishable.
Any combination of (k−1) cells are random due to the property of secret sharing
and the xor of k cells equals to

⊕k
i=1 GBFy[hi(y)] in both GBFs, which concludes

the proof.

4 Our Private Set Membership Protocol

In this section, we propose a new PSM protocol that realizes Functionality 4.
As discussed in the introduction, our protocol does not output the membership
result, but instead outputs some function of it, so that it can be directly inte-
grated into a larger secure computation protocol. After this section, we show
how to extend our protocol to set intersection as well.

In the construction of the protocol, we use the following idea of [26]: If y ∈ X,
then both parties learn the same random value. Otherwise, they learn different
random values. Then, the parties run a comparison protocol that outputs a func-
tion of the equality instead of the equality itself (Functionality 2). Our solution
diverges from the solution of [26] in two folds. To realize the first part, [26] makes
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use of an OPPRF construction based on polynomials. We propose a new OPPRF
construction based on Bloom filters. The selection of Bloom filters enables us to
reduce the computation complexity of the protocol to a linear complexity. The
other difference is that we utilize Ciampi-Orlandi PSM protocol [5] for secure
equality testing as done in [18] for Functionality 2, instead of running a compar-
ison circuit. Thus, our overall construction is not a circuit-based construction.

Functionality 4. Private Set Membership

Inputs. P1 inputs X = {x1, . . . , xn} and a function f to be computed on the
membership relation result, P2 inputs y.

Outputs. The functionality checks the membership of y in X and returns f(1) to P2

if y ∈ X. Otherwise, returns f(0) to P2

The overall view of our PSM protocol is as follow. To achieve private set
membership, the parties first run the one-time OPPRF protocol based on garbled
Bloom filters, where P1 outputs r (a random value chosen by P1), whereas P2

learns some random value that may be r or something different. The value P2

learns is always random and indistinguishable; but, this random value is equal
to r if and only if y ∈ X. Following this part, the parties run a secure functional
equality testing protocol, where at the end of the protocol P2 learns the function
result of the equality relation, which is also the function result of the membership
relation. We make use of the PSM protocol of Ciampi-Orlandi [5] for secure
functional equality testing by reducing the number of items of the sender set to
one. We present our semi-honest secure PSM solution in Protocol 3.

Protocol 3. Our Private Set Membership Protocol

Parameters. A set of hash functions H = {h1, ..., hk}.
Inputs. P1 inputs a set of items X = {x1, ..., xn} and a function f to be computed
on the membership relation result, P2 inputs an item y.
Outputs. P2 outputs f(1) if y ∈ X. Otherwise, P2 outputs f(0). P1 outputs nothing.
The protocol steps:

1. P1 picks an η-bit random value r and sets T = {t1 = r, ..., tn = r}.
2. P1 and P2 run Protocol 2 for one-time OPPRF with the respective inputs (X,T )

and y. Denote the output of P2 as r′.
3. P1 and P2 run Protocol 1 for functional equality testing with the respective inputs

r and r′. The output of the PSM protocol is the output of Protocol 1.

Asymptotic Complexity of Our PSM Protocol. Protocol 2 requires O(n) hash
function computations as stated in the previous section. FEQT employs O(η)
operations for η oblivious transfers in the Ciampi-Orlandi PSM protocol. Thus,
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the asymptotic computation complexity of our PSM protocol becomes O(n). The
communication complexity comes from the oblivious transfers. Considering the
oblivious transfer extension communication complexity as linear in the number
of OTs, the communication complexity of Protocol 3 is also O(n).

Theorem 3. Protocol 3 securely realizes Functionality 4 when P1 is corrupted
by a semi-honest adversary A, assuming that the OPPRF and FEQT protocols
are semi-honest secure.

Proof. The simulator S is given the input set X. S picks a random value r
using its random tape and sets T = {t1 = r, . . . , tn = r}. The simulator S
runs the simulator of OPPRF protocol with the input ((X,T ),⊥). Then, S
runs the simulator of FEQT protocol with the input (r,⊥). This completes the
whole simulation, and indistinguishability is a direct result of the underlying
simulators.

Theorem 4. Protocol 3 securely realizes Functionality 4 when P2 is corrupted
by a semi-honest adversary A, assuming that the OPPRF and FEQT protocols
are semi-honest secure.

Proof. The simulator S is given the input item y and the output f(b) for

b = y
?∈ X. The simulator picks a η-bit random value r′′. S runs the simu-

lator of OPPRF with the input (y, r′′) and the simulator of FEQT with the
input (r′′, f(b)). S does not know the uniform random value r′ used in the real
execution, but it follows the same distribution as r′′, and therefore they are per-
fectly indistinguishable. The computational indistinguishability comes from the
FEQT and OPPRF simulations, which are based on OT simulations.

5 Batch One-Time OPPRF

We propose a new batch one-time OPPRF construction in Protocol 4 that imple-
ments Functionality 5, to be used in our PSI protocol. For the construction of a
batch OPPRF from Protocol 2, instead of using different garbled Bloom filters
for each programmed value set, we construct only one garbled Bloom filter, and
store the shares of programmed values in the same garbled Bloom filter. Note
that for each set Xi, a different set of hash functions (hash function set Hi for
the programmed value set Xi) is used, since there might be some items which
belong to more than one set.

Asymptotic Complexity. Since the size of the garbled Bloom filter is linear in the
number of items to be stored in it and OT extension is also linear in the number
of OT executions, the computation and communication complexities of our batch
one-time OPPRF protocol becomes linear in the total number of programmed
values in the programmed value sets.
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Functionality 5. Batch One-Time Oblivious Programmable Pseudo Random
Function

Inputs. P1 inputs a predefined set of item sets X = {X1, . . . , Xβ}, where
Xi = {xi,1, . . . , xi,n}, and corresponding programmed value sets T = {T1, . . . , Tβ},
where Ti = {ti,1, . . . , ti,n}, and P2 inputs a set of items Y = {y1, . . . , yβ}
Outputs. The functionality checks the membership relations yi ∈ Xi and returns
r′

i = ti,j if ∃xi,j s.t. yi = xi,j (1 ≤ j ≤ n); returns a random r′
i otherwise, for each i

where 1 ≤ i ≤ β

Protocol 4. Bloom Filter Based Batch One-Time OPPRF Protocol
Parameters. A set of hash function sets H = {H1, ...,Hβ} where
Hi = {hi,0, ...hi,k}
Inputs. P1 inputs a set of item sets X = {X1, ...,Xβ}, where
Xi = {xi,1, ..., xi,n}, and corresponding programmed value sets
T = {T1, ..., Tβ}, where Ti = {ti,1, ..., ti,n}, and P2 inputs a set of items
Y = {y1, ...yβ}.
Outputs. P2 outputs a set of random values R′ = {r′

1, ..., r
′
β}, where r′

i = ti,j if
∃xi,j s.t. yi = xi,j (1 ≤ j ≤ n); otherwise r′

i is a random value; for 1 ≤ i ≤ β.
The protocol steps:

1. P1 constructs a garbled Bloom filter GBFX having max(η, �)-bit strings in
each cell such that

k⊕

j=1

GBFX [hi,j(xi,l)] = ti,l

for 1 ≤ i ≤ β and 1 ≤ j ≤ k.
2. P2 constructs a Bloom filter BFY for the items in Y .
3. P1 and P2 run m oblivious transfers where P1’s input is (0, GBFX [i]) and

P2’s input is BFY [i] for the i-th oblivious transfer, and the output of P2 is
0 if BFy[i] = 0 or GBFX [i] if BFY [i] = 1. Call the OT output P2 obtains
as GBFY [i].

4. P2 outputs R′ = {r′
1, ..., r

′
β} where r′

i =
⊕k

j=1 GBFY [hi,j(yi)].

Theorem 5. Protocol 4 securely realizes Functionality 5 when P1 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The simulator S is given the input set of sets X and the programmed
values set T . The simulator computes a garbled Bloom filter using its random
tape such that

⊕k
j=1 GBFX [hi,j(xi,l)] = ti,l. S runs the simulator of the OT

protocol as the sender with the input (GBFX ,⊥). This concludes the simulation.
Indistinguishability directly comes from the garbled Bloom filter construction
following the protocol, and the OT simulator.
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Theorem 6. Protocol 4 securely realizes Functionality 5 when P2 is corrupted
by a semi-honest adversary A, assuming that the OT protocol is semi-honest
secure.

Proof. The input set Y and the output R′ are given to the simulator S. The
simulator constructs a Bloom filter for Y and a garbled Bloom filter GBF ′

Y

following the steps:

1. Constructs a BF BFY for Y .
2. Constructs a GBF GBF ′

Y such that
⊕k

j=1 GBF ′
Y [hi,j(yi)] = r′

i for 1 ≤ i ≤ β.
3. Sets GBF ′

Y [i] = 0 if BFY [i] = 0.

Then, S runs the simulator of the OT protocol as the receiver with the input
(BFY , GBF ′

Y ). Note that the garbled bloom filters GBF ′
Y and GBFY are indis-

tinguishable as discussed in the proof of Theorem2.

6 Our Private Set Intersection Protocol

Our PSM protocol can be used to build an efficient PSI protocol using the hash-
ing techniques introduced in [25,28]. In this technique, one party constructs a
cuckoo table as mentioned in Sect. 2.1 using two hash functions and the other
party maps her items into bins in a hash table using the two hash functions that
are applied on each item. Then, a private set membership protocol is applied
on each bin where the party who constructs the cuckoo table inputs the (single)
item in the i-th bin, and the other party inputs the set of items in the i-th bin
of its hash table, for the i-th execution of the PSM protocol. If one were to
directly employ our PSM construction to obtain a PSI protocol using this hash-
ing technique, the computation and communication complexities of the full PSI
protocol would be O(n log n/ log log n), since the number of items in each hash
table bin is O(log n/ log log n) and the number of bins is O(n). Note that with
this usage, for each bin, P2 and P1 run O(n) parallel OPPRF protocols and then
apply O(n) parallel FEQT protocols. Instead of following this straightforward
way, we show that it is possible to make the communication and computation
complexities linear while extending our PSM solution to a PSI solution using
our batch one-time OPPRF protocol.

Our full PSI protocol that realizes Functionality 6 is introduced in Protocol 5.
Note that in Step 4 of the protocol, the items in the bins of the hash table are
given as the programmed values in the programmed value sets to the batch one-
time OPPRF protocol. While there are many items in the bins of the hash table,
most of them are random values and the total number of non-random items in
the hash table will be the product of the number of items (n) and the number of
cuckoo hash functions (chosen as 3 in our protocol). Thus, the size of the garbled
Bloom filter constructed in the batch one-time OPPRF protocol will be O(n),
which allows our PSI protocol to have linear complexity.
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Functionality 6. Private Set Intersection

Inputs. P1 inputs X = {x1, . . . , xn} and a set of functions {f1, . . . , fn}, P2 inputs
Y = {y1, . . . , yn}
Outputs. Returns {fi(bi) | 1 ≤ i ≤ n} to P2 where bi = 1 if yi ∈ X, bi = 0 otherwise

Protocol 5. Bloom Filter Based Private Set Intersection Protocol
Parameters. A set of hash function sets H = {H1, ..., hβ} where
Hi = {hi,1, ..., hi,k} for 1 ≤ i ≤ β.
Inputs. P1 inputs a set of items X = {x1, ..., xn} and a set of functions
{f1, ..., fn}, P2 inputs a set of items Y = {y1, ..., yn}.
Outputs. P2 outputs {fi(bi) | 1 ≤ i ≤ n} where bi = 1 if yi ∈ X, bi = 0
otherwise.

The protocol steps:

1. P1 constructs a hash table for the set X.
2. P2 constructs a cuckoo table for the set Y .
3. P1 picks a set of β η-bit random values R = {r1, ..., rβ}.
4. P1 and P2 run Protocol 4 with their respective inputs: (hash table, R) and

cuckoo table. Let the output of P2 be R′ = {r′
1, ..., r

′
β}.

5. P1 and P2 run β parallel executions of Protocol 1 for functional equality
testing, where for the i-th run, the inputs of P1 and P2 are ri and r′

i. For
each item yj in Y , P2 outputs the i-th execution output of Protocol 1 where
yj is placed into i-th bin in the cuckoo table.

Note that when we use two hash functions for cuckoo hashing, then there
will be some items in Y which cannot be placed into the table and have to be
moved to a stash. For each of these items in the stash, a PSM protocol also
has to be executed. When we consider the number of these items as ω(1), then
the complexity of our PSI protocol becomes bigger than O(n). To make the
complexity linear, Pinkas et al. proposed to use dual execution or a stash-less
cuckoo hashing [26]. In dual execution, after the first run of the PSI protocol, P2

learns the membership result for its items except the ones in the stash. Then the
parties run the PSI protocol swapping their roles, that is, P1 constructs a cuckoo
table for X and P2 constructs a hash table for the items in the stash. Since there
may be some items of P1 which have not been placed in the cuckoo table and
moved to a stash, P1 and P2 should run the PSM protocol for their items in the
stashes. However, this usage does not realize the Functionality 6 that we consider,
since in the second run, P2 learns the function of the membership result between
its items in the stash and the set X, and in the final PSM protocols run for
the items in the stashes, P2 again learns the function of the membership result
between its items in the stash and P1’s items in the stash. That is, P2 learns
two different results for its items in the stash that makes the protocol diverge
from Functionality 6. Because of these two reasons, we make use of the second
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method of Pinkas et al., which is the usage of stash-less cuckoo hashing with
three hash functions.

Asymptotic Complexity. While it seems that there are O(n log n/ log log n)
items in the hash table of P1, which makes the length of the Bloom filters
O(n log n/ log log n), the actual number of items is O(3n) = O(n) since the other
items are random values padded to the bins to make the number of items in the
bins O(log n/ log log n). Thus, the complexity of Step 4 of Protocol 5 becomes
O(n). Since the number of bins is O(n) and for each bin only one equality testing
is executed in Step 5, the complexity of Step 5 will be O(n). Thus the commu-
nication and computation complexities of our PSI protocol becomes O(n).

Theorem 7. Protocol 5 securely realizes Functionality 6 when P1 is corrupted by
a semi-honest adversary A, assuming that the batch OPPRF and FEQT protocols
are semi-honest secure.

Proof. The input set X is given to the simulator S. The simulator computes
the hash table for X and picks β η-bit random values R′′ = {r′′

1 , . . . , r′′
β} using

its random tape. Then S runs the simulator of batch OPPRF protocol with
the input ((hash table, R),⊥). Finally, S runs the simulator of FEQT protocol
β times, where the input in the i-th run is (ri,⊥). Since r′′

i and ri are random
numbers from a uniform distribution, they are indistinguishable. Hence, indistin-
guishability of S follows the indistinguishability of the underlying batch OPPRF
and FEQT simulators.

Theorem 8. Protocol 5 securely realizes Functionality 6 when P2 is corrupted by
a semi-honest adversary A, assuming that the batch OPPRF and FEQT protocols
are semi-honest secure.

Proof. The simulator S is given the input set Y and the output fi(bi) for 1 ≤
i ≤ n. S computes a cuckoo table for the set Y and picks β η-bit random values
R′′ = {r′′

1 , . . . , r′′
β}. S runs the simulator of batch OPPRF protocol with the

input (cuckoo table, R′′) and the simulator of FEQT protocol β times, where
the input in the i-th run is (r′′

i , fj(bj)) where yj is assigned to the i-th bin.
Since R′ in the real execution and R′′ in the ideal world are uniformly selected
sets of random numbers, they are indistinguishable. Hence, indistinguishability
of S follows the indistinguishability of the underlying batch OPPRF and FEQT
simulators.

7 Performance Evaluation

7.1 Concrete Complexity

Parameter Choices. We take the number of hash functions used in the construc-
tion of Bloom filters as k = η and follow the choice of [10] to set the size of the
Bloom filter as taking m = 1.44kn. Note that taking k = η doesn’t reduce the
security level to statistical correctness parameter because the result of BF-based
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OPPRF protocol are random numbers which then be inputs of the equality test-
ing protocol. Following the parameters in [26], we choose the number of bins as
1.27n and the number of cuckoo hashes as 3, which makes the probability of hav-
ing at least one item in the stash 2−40, consistent with our preferred statistical
correctness parameter η.

Concrete Complexity of Our PSM Protocol. For the Bloom filters, P1 and P2

compute nk and k hash functions, respectively. For the OT-extension in the
OPPRF part, they run m oblivious transfer whose total computation complex-
ity is approximately equal to 3m symmetric key operations thanks to the obliv-
ious transfer extension [17]. Finally, the parties execute Ciampi-Orlandi PSM
protocol where the number of items in the set of P1 is one, which makes the
computation complexity 6η symmetric key operations at P1 and 5η symmetric
key operations at P2 (the reader can refer to [18] for the complexity calculation
for the FEQT protocol)1. Thus the computation complexity of the protocol at
the party where majority of workload is done is nk + 3m + 6η. Since we choose
m = 1.44kn and k = η then the complexity becomes 5.32nη+6η. For the param-
eter η = 40 the complexity will be 212.8n + 240 symmetric key operations. The
communication complexity comes from the oblivious transfers. In the OPPRF
step, the message lengths in the oblivious transfer is η bits, while for the FEQT
part, it is 2(κ + η) bits. Considering that the total number of bits transferred in
the OT extension equals to 2 times the items’ length times number of pairs, the
communication complexity of the protocol becomes 2×m×η+2×η×2×(κ+η) =
2 × (1.44 × n × η) × η + 2η × 2 × (κ + η) = 2.88nη2 + 4κη + 4η2.

Concrete Complexity of Our PSI Protocol. To construct the cuckoo hash table,
P2 and P1 perform at most 3n hash operations. Then, they construct BF per-
forming kn and 3kn hash computations, respectively. They execute 4.32nη OTs
using OT extension, which costs 3× 4.32nη hash computations. In the last step,
P1 and P2 perform 1.27n×(5η) and 1.27n×(6η) hash computations, respectively.
Thus the total computation cost on the party who has the maximum overhead
is 3n + 3nk + 3 × 4.32nη + 1.27n × (6η) = 26.58nη + 3n. The communication
cost comes from the OT executions for Bloom filter and equality test. Since for
the Bloom filter, 4.32nη η-bit message pairs are obliviously sent, the dominant
cost is 2 × 4.32nη × η = 8.64nη2. For the equality test, the length of the pairs
is 2 × (κ + η) and the number of pairs is 1.27n; hence, the dominant part is
2 × 1.27n × 2(κ + η). Thus, the total communication cost is approximately is
8.64nη2 + 5.08n(κ + η).

7.2 Experimental Verification

Setup. We implemented Ciampi-Orlandi and our PSM protocol using C pro-
gramming language and GMP library. In our experiment setup, P1 and P2 run
1 The item lengths in the GBF and so the lengths of the items to be tested for equality

are max(η, �) bits as stated in Protocol 2. In concrete complexity analysis, we take
it as η for simplicity considering that in practice generally η > �.
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on the same machine as different processes and communicate with each other
over a TCP channel. We run the protocols for different size of sets and item
lengths on a single CPU core of a computer that has 2.1 GHz 16-core Intel Xeon
CPU with 64 GB RAM. In the experiments, we chose RSA 2048 as asymmetric
encryption algorithm in base OT, the statistical correctness parameter η as 40
bits, AES as the encryption algorithm, SHA-256 with different initialization vec-
tors as the hash functions. We take the f function such that it outputs 128-bit
wire labels. We take the number of hash functions in the construction of Bloom
filters in our protocols as k = 40. The results are the averages over 10 executions
of the protocols.

PSM. Table 1 shows the total amount of data transmitted between P1 and P2

during the execution of the protocols and the run-times in LAN and WAN set-
ting. As can be seen from the table, our BF-based semi-honest PSM protocol
has linear complexity both on computation and communication, and we provide
comparable performance. Our asymptotic advantage becomes visible with larger
� values.

Table 1. Performance results of Ciampi-Orlandi and our PSM protocols. Run-time
estimates are done for LAN and WAN under the assumption that the bandwidth in
LAN (respectively in WAN) is 1 Gbps (100 Mbps) and RTT is 1 ms (100 ms).

Protocol Ciampi-Orlandi PSM Our PSM

Set size n n = 212 n = 214 n = 216 n = 212 n = 214 n = 216

Comm. [MB] � = 32 5.4 21.3 84.5 6.0 23.6 93.8

� = 48 8.1 31.8 126.5 6.5 25.4 101.0

� = 64 10.7 42.3 168.5 7.4 29.0 115.4

LAN [ms] � = 32 2045 4195 11717 2583 6508 22031

� = 48 2444 5759 18115 2655 6564 22337

� = 64 2793 7361 24396 2656 6599 22542

WAN [ms] � = 32 10207 36389 139436 11651 42118 163745

� = 48 14686 53824 209315 12419 44895 174973

� = 64 18966 71296 279050 13781 50371 196904

PSI. We also implemented our PSI protocol to validate our performance analysis
and compare the efficiency of our protocol with the existing solutions. We choose
the number of hash functions in cuckoo hashing as 3, the number of bins as 1.27n,
and the size of the BF as n×1.44×3×k where k is the number of hash functions
used in BF and 3 comes from the number of hash functions in cuckoo hashing.
We evaluated the effect of k on the performance of our PSI protocol running the
protocol for different k values which is related to the correctness of our protocol.
The results are given in Table 2.
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Table 2. Effect of number of hash functions in Bloom filter on the performance of our
PSI protocol.

Comm [MB] LAN [ms] WAN [ms]

n = 210 n = 212 n = 214 n = 210 n = 212 n = 214 n = 210 n = 212 n = 214

k = 40 9.4 36.9 147.4 2604 6804 22488 16812 62577 245277

k = 60 11.5 45.7 182.5 3018 8586 28725 20400 77660 304566

k = 80 13.8 54.5 217.6 3545 10278 35086 24403 92652 363980

We run our PSI protocol for different item bit lengths and set sizes choosing
k = 40, which satisfies enough correctness in practical applications, and obtained
the results in Table 3. The table verifies our complexity claims and shows that
our PSI protocol has linear communication and computation complexities. We
also present the linear trend in computation complexity of our protocol in Fig. 1
where the numbers are taken from Table 3 for � = 32 and LAN setting.

Table 3. Performance results of our PSI protocol.

Comm [MB] LAN [ms] WAN [ms]

� = 32 � = 48 � = 64 � = 32 � = 48 � = 64 � = 32 � = 48 � = 64

n = 28 2.4 2.8 3.5 1407 1498 1556 5034 5730 6847

n = 210 9.4 10.6 13.2 2604 2710 3024 16812 18731 22976

n = 212 36.9 42.1 52.4 6804 7323 7891 62577 70956 87091

n = 214 147.4 168.0 209.3 22488 24486 27757 245277 278412 344105

n = 216 589.0 671.5 836.6 85134 92271 106268 975384 1107216 1370755

Fig. 1. Computation complexity of our PSI protocol for different set sizes and item bit
lengths in the LAN setting.

Table 3 shows that for n = 212 and � = 32 our protocol’s communication
and computation complexity is (36.9 MB, 6804 ms in LAN) while the numbers
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for other circuit based PSI protocols of [26,27] and [25] respectively are (9 MB,
1199 ms), (51 MB, 5031 ms) and (130 MB, 7825 ms) as given in [26].

With Fig. 2, we compare concrete computation complexity of our PSI proto-
col with the complexity of no-stash PSI solution of [26] for the case that � = 32
and the setting is LAN. In practice, circuit-based solutions like [26] enjoy the
benefits of recent advances in the two-party computation techniques. Therefore,
we conclude that Bloom filter based solutions and oblivious transfer extension
techniques should be investigated further in practice.

Fig. 2. Comparison of our protocol with no-stash PSI solution of [26].

8 Conclusion

We proposed the first private set intersection (PSI) protocol achieving linear
communication and computation complexities while outputting a function of the
membership results to be used in larger secure two-party protocols to compute
other functionalities over the intersection set. To construct such a protocol, we
first used one-time oblivious programmable pseudo-random function (OPPRF)
based on existing Bloom filter based PSI solutions and then proposed a private
set membership (PSM) protocol. To reduce the complexity while converting
the PSM solution to a PSI protocol using hashing techniques, we constructed
another primitive that is called a batch one-time OPPRF. Finally, using these
new constructions, we introduced our PSI protocol with linear communication
and computation complexities. We also implemented our protocols to validate
our performance analysis and show concrete efficiency of our protocols. We leave
security against malicious adversaries, and multi-party PSI with bi-oblivious
data transfer as future work.
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Abstract. “Confidential Transactions”, integrated transactions of com-
mitments, signatures, and zero-knowledge range proofs, are favored for
their ability to hide transaction amounts. In the real world, multi-party
fund transfers are highly desirable for personal and business security.
Unfortunately, existing unproven Multi-Party Confidential Transactions
are linear in the (exact) number of co-owners; hence they are not com-
pact, very scalable, nor private (leak number of users and their public
information). In this study, we provide provably secure private, compact
Multi-Party Confidential Transactions, in both the “unanimous” N -out-
of-N and “threshold” T -out-of-N settings. Unlike other schemes, our
multi-party transactions have the size of single-owner transactions and
hide the number of participants. To the best of our knowledge, ours is
the first proven secure multi-party and threshold confidential transaction
protocol.

1 Introduction

Privacy of cash systems has been an academically interesting topic since well
before the blockchain [16]; however, it is the latter that has spurred the study
of cash privacy in a completely decentralized setting. Early cryptocurrencies like
Bitcoin and Ethereum [26], provide privacy for senders and recipients but do
not hide the transaction amount by design. This problem was solved by Gregory
Maxwell’s “Confidential Transactions” (CT) [12]. An interesting alternative app-
roach to privacy (and efficiency) was proposed in a 2016 cash system by Tom
Elvis Jedusor called Mimblewimble [10] improving the idea of CT. The distinctive
property of Mimblewimble over other privacy-preserving cryptocurrencies is that
it “compresses” the transaction history by trimming the details of all consumed
transactions without affecting the verifiability of the ledger. Mimblewimble was
quickly followed by a security overview of the same [18], and generalized to the
notion of aggregate cash systems [8] with game-based security proofs.
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At a higher level, we explain Maxwell’s CT as follows. An asset (coin bundle)
of a confidential cash system1 is a Pedersen commitment [17] Cv,k with v number
of coins and a blinding key k. The idea behind a commitment is once a commit-
ment is immutably published, the coin amount or the blinding key can not be
changed; hence, it is hard to find another coin amount or another blinding key
that gives the same commitment. Also, Pedersen commitments hide the value
leading to conceal the coin amount.

Owning coins in confidential cash systems means the owner knows the secret
key k of the published commitment. When spending, the owner hands over
the secret key to the new owner by sending a pre-transaction ptx = (v, k).
Then the new owner creates a new commitment Cv,k′ with a new secret key k′

and publishes the transaction (Cv,k, Cv,k′ , σk′−k(E, ε)) with a digital signature
σk′−k(E, ε) of signing-verification key pair (k′ − k,E) on an empty message ε.
Due to the additive homomorphic Pedersen commitments, CT can use excess
value or the difference of output coin bundles and input coin bundles as the ver-
ification key E for the signature. In the above example, E = Cv,k′ ·C−1

v,k = C0,k′−k

and verifiers check; “ Is σk′−k(E, ε) valid for (E, ε)?”. Therefore, only the actual
owner can create the transaction since only he/she knows k′ − k. However, Ped-
ersen commitments fail to generate accurate transactions for negative amounts
and cash overflows, for example, an output coin bundle (C5,k1 , C−3,k2) of input
C2,k illegally creates coins out thin air. Therefore, CTs employ zero-knowledge
range proofs πv,k to verify the range of v of commitment Cv,k such as Borromean
proofs [13,19] and Bulletproofs [6]. The complete confidential transaction of the
example discussed above is tx = (Cv,k, Cv,k′ , (πv,k′ , E, σ(E, ε))).

Assume the following example that Alice wants to send ρ coins to Bob when
she has v coins in a coin bundle Cv,k. Alice sends a transaction creating two coin
bundles (Cv−ρ,k1 , Cρ,k2) to isolate ρ coins from v coins leaving her with v − ρ
coin balance. Then she sends a pre-transaction (ρ, k2) to Bob. Bob receives
coins by changing the key of the coin bundle to k′. As Alice does not know k′,
only Bob can spend ρ coins. Therefore, the entire fund transferring process has
a pre-transaction and two transactions; the sending transaction and the
receiving transaction.

An intriguing question in online cash systems is how to handle funds belong-
ing to more than one owner, and to control or swap ownership [1]. In cryptocur-
rencies, the ledger itself should provide this functionality as it would be cumber-
some to require the parties to meet physically to sign a multi-party transaction,
and no assistance will come from a bank teller or trusted third party. On the
other hand, the ledger must provide security against an “insider” attack, where
a co-owner tries to claim jointly owned funds by creating a spending transaction
without the consent of the other co-owners.

1 Note that we do not specify how the asset details are recorded in the cash sys-
tem, meaning that the asset details may be permanent like in Bitcoin blockchain
or aggregatable in Mimblewimble variants. The confidential transaction protocol
is compatible with any secure cash system, which prevents double spending if the
unspent assets are accessible.
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Multi-party transactions have two primary use cases: to handle funds belong-
ing to businesses and to increase the accessibility, availability, and security of
personal funds with multiple wallets2,3. An organization may implement a policy
that the funds must be spent with the consent of a majority of the directors. An
individual might prefer having wallets acts as separate co-owners across different
devices where one wallet is sufficient to access the funds. Similar manner, due
to heightening threats ranging from ransomware attacks, someone may prefer to
spread their wallets over multiple devices to make sure even if one wallet is under
an attack, other wallets will grant access to the assets. A related recommenda-
tion is to secure funds with multiple secret keys stored in different locations to
make the funds harder to steal.

In this study, our goal is to build a compact, private, Multi-Party Confidential
Transactions (MCT),

– Compact MCT—MCTs are as short as regular single-owner transactions; in
other words, the multi-party commitments, signatures, and range-proofs are
indistinguishable from the single-party commitments, signatures, and range-
proofs. A surprising fact showed in [14] is compacting multi-signatures saves
∼35 GB from the Bitcoin blockchain in 2018. A similar size reduction can be
achieved with compact MCT if we apply the same statistics.

– Private MCT—the very fact that multiple parties are involved (and their
number), is hidden. The objective is to hide the number of required secret
keys and their public information from the attackers who try to steal funds
or blackmail owners with ransomware attacks.

Consider the following native approach: Alice sets a coin bundle as
C = Cv,k1+k2 and sends pre-transactions; (Cv,k1+k2 , v, k1) to Bob and
(Cv,k1+k2 , v, k2) to Charles, intending that consent from both co-owners be
required to spend the coins since neither one will know k1+k2. Bob and Charles
generate respective keys k′

1,k
′
2 at random and shares partial commitments as

CBob = Cv/2,k′
1

and CCharles = Cv/2,k′
2

aiming to create a new coin bundle C ′ as,

C ′ = CBob · CCharles = Cv,k′
1+k′

2
.

However, Bob waits for Charles’s partial transaction Cv/2,k′
2

and shares a cheat-
ing partial commitment CBob = Cv/2,k′

1
.(Cv/2,k′

2
)−1 with Charles. Now, C ′ will

be,
Rogue Commitment : C ′ = CBob · CCharles = Cv,k′

1

not Cv,k′
1+k′

2
. Now, Bob and Alice can spend coins without Charles’s permission

since they have all the keys that need to create a valid transaction. For example,
if Alice is a buyer of Bob and Charles, the product will not be shipped until
both Bob and Charles take the ownership of Alice’s coins by changing the keys.
With the attack, Charles will decide to send the product to Alice, thinking that
he is a co-owner.
2 A wallet is an application that securely stores secret keys. Generally, wallets are

password protected.
3 Multiple wallets with different keys replicate the shadow co-owners of the same

owner.
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1.1 Our Contribution

We introduce a compact, private Multi-Party Confidential Transaction protocol
that is adaptable with traditional cash systems and aggregate cash systems. We
offer two constructions: a simpler N -party unanimous transfer and a general
T/N threshold transfer.

To defeat Rogue Key attacks in our compact MCT, we use the following
commitment generation when H() is a one-way hash function. First, Bob and
Charles share PBob = C0,k′

1
,PCharles = C0,k′

2
with each other. Then both sepa-

rately compute,
S = {PBob,PCharles}

CBob = P
H(PBob,S)
Bob · Cv/2,0 = Cv/2,H(PBob,S)k′

1

CCharles = P
H(PCharles,S)
Charles · Cv/2,0 = Cv/2,H(PCharles,S)k′

2

C ′ = CBob · CCharles = Cv,[H(PBob,S)k′
1+H(PCharles,S)k′

2]
.

This method prevents Bob from executing the previous Rogue Key attack. Still,
Bob can run C ′ ·(P H(PCharles,S)

Charles )−1 on the transaction. Therefore, our confidential
transactions sign E = C ′·C−1 instead of an empty message, committing C ′ to the
transaction. With a secure signature scheme and range proof scheme, our MCT
protocol prevents Rogue Key attacks. If these schemes are compact, our MCTs
are indistinguishable from single-owner transactions. We provide the detailed
MCT protocol in Sect. 3.

We emphasize provable security as one of our contributions. Amongst
cryptocurrencies, [21] identified a denial-of-spending attack on Zerocoin, which
has the academic lineage and was heretofore believed secure. In fact, the original
Mimblewimble was similarly broken in [8]. As this and other examples show, a
thorough cryptographic investigation is required to prevent similar incidents in
MCT. Therefore, we provide the formal security model of MCT in Sect. 4.1 pre-
cisely defining the required security properties of the signature scheme and range
proof scheme. Then we propose proven secure, compact, Multi-Party Bulletproof
Range Proofs (MBP) in Sect. 4.3. Finally, to show the practicality of our MCT,
we prove the security of MCT with Schnorr signatures [14,22], BLS signatures
[3,4], and MBP in Sect. 4.

1.2 Related Work

In Table 1, we compare our MCT protocol with the existing CT protocols, includ-
ing Mimblewimble variants. While other CT protocols do not support MCTs,
one online report [25] suggests a MCT for Grin [24] with Schnorr signatures [22].
However, these MCTs are neither compact nor private, as they sign the vector
of commitments from all n co-owners, that leaks their number n and has size
Θ(n). More importantly, they do not provide any security proofs regarding how
they prevent Rogue Key attacks.
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Table 1. A Comparison of Confidential Transaction Protocols

CT Protocol Signature Range Proofs Security Proofs MCT Private MCT Compact MCT

[12] – Borr. [13] ✗ ✗ ✗ ✗

[10] – Borr. [13] ✗ ✗ ✗ ✗

[18] Sinking Sig Borr. [13] ✓ ✗ ✗ ✗

[8] Sch./BLS – ✓ ✗ ✗ ✗

Grin [24] Sch. [22] MBP [6] – ✗ ✗ ✗

[25] Sch. [22] MBP [25] ✗ ✓ ✗ ✗

Beam [2] Sch. [22] BP [6] – ✗ ✗ ✗

Ours Sch./BLS [3,14] MBP (this paper) ✓ ✓ ✓ ✓

Multi-party Bulletproofs (MBP). Older range proofs, e.g., Borromean range
proofs [13] and modified Borromean range proofs [19], were linear in size, whereas
the more recent Bulletproofs introduced in [6] which uses the Improved Inner-
Product argument (IP)[5] can be made logarithmic, which significantly reduces
the size of the entire transaction (from about 3 kB to 0.8 kB in practical imple-
mentations). MBP [7,25] are extensions over the original Bulletproofs, where
multiple owners can generate a single range proof without disclosing secret infor-
mation to each other or the combiner (dealer). Our proven secure MBP is similar
to [6,7,25] but with the following benefits.

Table 2. A Comparison of Multi-party Bulletproof Rangeproof Protocols

BP

Scheme

Multi-

party

Honest

Com-

biner

Security

Proofs

Compact/Private Communications Non-malleable

[6] ✗ – ✓ – – ✗

[7] ✓ Not

specified

✗ ✗ 3 ✓

MBP

[25]

✓ Not

specified

✗ ✓ 2 Not specified

Our

MBP

✓ No need ✓ ✓ 2 ✓

Compact Multi-Signature Schemes. Multi-signatures have been an intensely
scrutinized topic over the last decades. Many signature schemes, such as
Schnorr and BLS signatures, support direct signature aggregation due to key-
homomorphic properties. However, rogue key attacks [9,11,15,20] make secure
aggregation harder for multi-signatures, lest an attacker inserts a malicious pub-
lic key—in our case, commitment—allowing him to create a complete signature—
or proof—all by himself. The first compact multi-signature scheme to resist rogue
key attacks without a trusted setup was proposed for Schnorr signatures in [14].
Later, [3] extended the same methodology for BLS signatures. The main advan-
tages of compact multi-signatures such as those are that a multi-signature is
indistinguishable from a signature created by a single signer, preserving privacy,
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and reducing size and verification time. We adopt a similar methodology as used
in compact multi-signatures [3,14] to generate MCT commitments in our scheme
and modify both the signatures and the multi-party Bulletproofs in tandem.

2 Preliminaries

Notations. The notation used in the rest of the paper is as follows. Bold letters
such as a denote arrays and ai is the ith element of the array while a = [ai]ni=1

is an array with n elements. Also, |a| denotes the number of elements in the
array. AT of a 2 × 2 matrix A denotes the transpose matrix. The letter b is
reserved for Boolean values, which can be 0 = False or 1 = True unless stated
otherwise. Given S, a finite non-empty set, s

$←− S denotes the assignment of
s as a uniformly random element of S. ∧ and ∨ are the and and or logical
operators. ‘‖’ denotes vector concatenation, for example, {a, b}‖{c} = {a, b, c}.
For a cyclic group G = 〈g〉, g denotes a generator of the group G. We use
subscript indexing such as ai to denotes the ith element of the vector a. We use
λ for the security parameter, often omitted when clear from context. Let ε(λ) is
a negligible function such that ε(λ) = O(1/λc) for every c ∈ N.

Definition 1 (Discrete Log Problem). For a group G = 〈g〉 of prime order p,

AdvDL
G

for an adversary A is defined as, AdvDL
G,A := Pr[y ?= gx| y

$←− G, x
$←− A(y)].

DL problem is (τ, e)-hard if A(τ, e) runs it at most τ times and AdvDL
G,A ≤ e.

Definition 2 (Computational ψ-co-Diffie-Hellman Problem). Let group
G1 = 〈g1〉, G2 = 〈g2〉 of prime order p, and Oψ(·) is an oracle which returns
gα
1 ∈ G1 given gα

2 ∈ G2. Advψ−co−CDH
G1,G2

for an adversary A is defined as,

Advψ−co−CDH
G1,G2,A := Pr[y ?= gαβ

1 | (α, β) $←− Z
2
p, y

$←− A(gα
1 , gβ

1 , gβ
2 )]. ψ-co-CDH

problem is (τ, e)-hard if A(τ, e) runs it at most τ times and Advψ−co−CDH
G1,G2,A ≤ e.

2.1 Homomorphic Pedersen Commitment Scheme

Let CM be the Pedersen commitment scheme [17], defined as follows,

– CM.Set(λ) : pp = (G, g, h, p) // where G = 〈g〉 = 〈h〉 is a group of prime order
p ∈ {0, 1}λ, and the discrete logarithms of g and h relative to each other are
unknown — they are “nothing-up-my-sleeve” (NUMS) group generators.

– CM.Cmt(pp, v, k) : Cv,k = gkhv // commits value v, key k

– CM.Ver(pp,C, v, k) : C
?= gkhv // verifies commitment C

Pedersen commitments hold the following security properties.

Definition 3 (Completeness). When pp ← CM.Set(λ), v ∈ Vpp, r ∈ Zp, and
C ∈ Cpp, CM for any λ is complete if CM.Ver(pp, CM.Cmt(pp, v, r), v, r) = True.
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Definition 4 (Hiding and Binding). When pp ← CM.Set(λ), CM is hiding and
binding for any p.p.t. adversary A if, AdvHID

CM = |Pr[GameHD
CM,A(pp)]| − 1/2 ≤

ε(λ), AdvBD
CM = Pr[GameBD

G,A(pp)] ≤ ε(λ).

GameHD
CM,A(pp) : // value range is Vpp

(v0, v1)
$←− Vpp, b

$←− [0, 1],

C ← CM.Cmt(pp, vb, k
$←− Zp)

b′ ← A(pp, C), return (b′ ?
= b)

GameBD
CM,A(pp) :

(v0, k0, v1, k1) ← A(pp)

return v0
?

�= v1 ∧ CM.Cmt(pp, v0, k0)
?
=

CM.Cmt(pp, v1, k1)

Theorem 1. Pedersen commitments are complete, perfectly hiding, and com-
putationally binding (prefer [17]).

Homomorphism. The additive homomorphism of Pedersen commitments pre-
serves the arithmetic operation “addition” throughout the commitments as,
CM.Cmt(pp, v0, r0) · CM.Cmt(pp, v1, r1) = CM.Cmt(pp, v0 + v1, r0 + r1) (∈ G).

2.2 Compact Multi Signature Scheme

Here, we define a generic compact multi-signature scheme SIG (influenced by
compact Schnorr and BLS multi signatures [3,14]) suitable for MCT. Here, each
co-signer i holds the secret key ski without sharing them with any other co-
signer.

– SIG.Set(λ) : pp // generates public parameters for λ
– SIG.KG(pp, n) : [(ski,pki, P )]ni=1 // Co-signer i generates partial signing and

verification keys (ski,pki). Then cosigners combine verification keys to gener-
ate the aggregate verification key P which is identical to a normal verification
key.

– SIG.Sign(pp, [ski]ni=1,m, n) : σ // Co-signers collaboratively compute the
aggregate multi-signature on message m without revealing the signing keys.
The aggregate multi-signature is indistinguishable from a normal signature.

– SIG.Ver(pp,pk,m,σσσ) : True/False // bulk verification of |σσσ| number of
signatures when |pk| = |m| = |σσσ|. Hence the aggregate verification keys and
aggregate signatures are indistinguishable; the same verification function is
used for both signatures and aggregate multi-signatures.

The completeness and the existential unforgeability under the chosen message
attack (EUF-CMA) of the signature schemes are defined below.

Definition 5 (Completeness of Signatures). When pp ← SIG.Set(λ) for

any λ and m
$←− Mpp, SIG is complete if,[

SIG.Ver(pp, P ,m, σ)
∣∣∣ [(ski,pki, P )]ni=1 ← SIG.KG(pp, n),

σ ← SIG.Sign(pp, [ski]ni=1,m, n)]

]
= True
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Definition 6 (EUF-CMA). Assume an instance of SIGwhen pp ← SIG.Set(λ)
for any λ. SIG is EUF-CMA if, AdvEUF−CMA

SIG,n,A = Pr[GameEUF−CMA
SIG,n,A (pp)] ≤

ε(λ).

GameEUF−CMA
SIG,n,A (pp) :

[(ski, pki, P )]ni=1 ← SIG.KG(pp, n)

(m′, σ′) ← ASignsk1
(·)(pp, [ski]

n
i=2, pk1)

return (m′, σ′) �∈ Q ∧ SIG.Ver(pp, P , m′, σ′)

Oracle Signsk(m) :

σ ← SIG.Sign(pp, sk, m)
Q = Q ∪ {m, σ}, return σ

2.3 Non-interactive Zero-Knowledge Compact Multi-party Range
Proofs

Zero-knowledge range proofs prove that a hidden value in a commitment is in
the accepted range without revealing the value, ex: v is in [0, 264]. We define a
generic compact, multi-party range proof scheme suitable for CT.

Let RP is a compact range proof scheme with the following functions,

– RP.Set(λ) : pp // generates public parameters for λ
– RP.Prv(pp,Cv,

∑
k , v,k, n) : π // Co-provers collaboratively compute a com-

pact range proof for the commitment Cv,
∑

k when each co-prover i has
unshared ki.

– RP.Ver(pp,C,πππ) : True/False // bulk verification for |πππ| number of range
proofs when |C| = |πππ|.
We define the completeness, soundness, zero-knowledge, non-malleability,

and security against honest-but-curious combiners of range proofs below.

Definition 7 (Completeness). For any p.p.t. adversary A for any λ, RP is
complete if,

[
RP.Ver(pp, C, RP.Prv(pp, C, v, r , n))|r $←− Z

n
p , v

$←− Vpp, C ← CM.Cmt(pp, v,
∑

r)
]
.

The zero-knowledge property indicates that the verifier learns nothing besides
the statement being proven. Here, we consider an honest verifier who chooses
his/her challenge parameters at random and independently from the prover’s
messages, which is called the public coin argument.

Definition 8 (Honest Verifier Zero-Knowledge). RP is public coin Honest
Verifier Zero-Knowledge for R if there exists a p.p.t. simulator STR such that,
AdvZK

RP,A = ε(λ) when AdvZK
RP,A,N is,∣∣∣∣∣∣∣

Pr

[
RP.Ver(pp, C, π)

A(pp, C, π) = 1

∣∣∣∣∣ pp ← RP.Set(λ), r
$←− Z

n
p , v ← A′(pp), v ∈ Vpp

C ← CM.Cmt(pp, v,
∑

r), π ← RP.Prv(pp, C, v, r)

]
−

Pr
[
RP.Ver(pp, C, π) ∧ A(pp, C, π) = 1| pp ← RP.Set(λ), (π, C) ← STR(pp)

]
∣∣∣∣∣∣∣
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Here, A(tr) = b denotes whether A accepts the transcript or not, and
v ← A′(pp), v ∈ Vpp indicates that the adversary gets to choose the distri-
bution of the (valid) witness. Without knowing the witness or its distribution,
the simulator produces a distribution of proof transcripts (pp,C) that should be
indistinguishable from a honestly generated proof. If the verifier can not make
that distinction, he or she will have learned nothing about the witness.

The soundness of a proof system requires that it be infeasible (for arguments)
or impossible (for proofs) to create a proof of a false statement. This is shown by
exhibiting an extractor algorithm χ, which either extracts a valid witness (or, for
arguments, breaks a hardness assumption) by interacting with the prover. The
computational knowledge soundness property defines that no p.p.t. adversary
can create a valid proof without χ being able to extract a valid witness.

Definition 9 (Computational Knowledge Soundness (KS)). RP is compu-

tationallyKS if, AdvKS
RP,A = Pr

[
χE(·) ?

�∈ Vpp|pp ← RP.Set(λ), (C, θ) ← A1(pp)
]

=

ε(λ).
Oracle E(ϕ): π ← A2(C, θ, ϕ), if RP.Ver(pp,C, π) return π else abort

Confidential Transactions use homomorphic commitments to compress the
transaction history where the malleability of the commitments is used for its
advantage. However, Non-Malleability4 of range proofs is an essential property
which prevents an adversary from creating a fresh range proof using another
given range proof while creating a new commitment. (The impact of malleability
on CTs is discussed under Lemma 9).

Definition 10 (Non-malleability). When pp ← RP.Set(λ) for any λ, RP is a
non-malleable range proof system if, AdvNM

RP,A = Pr
[
GameNM

CT,A(pp)
] ≤ ε(λ). For

Pedersen commitments, CM.Mal(C, k′) := C ·gk′
.

GameNM
CT,A(pp): (C, π) ← A1(pp), (π′, k′) ← A2(pp, C, π)

C′ ← CM.Mal(C, k′), return k′ �= 0 ∧ RP.Ver(pp, C′, π′)

Since multi-party range proofs are generated with the help of a combiner, we
define the following security property against “Honest-but-Curious” combiners.
The honest-but-curious combiners generate valid proofs for valid values, but if
there is an attack that they can mimic a co-owner to steal funds, they execute
the attack.

Definition 11 (Insider Security). For any λ, RP is secure against honest-but-
curious combiners if, AdvHC

PR,A = Pr
[
GameHC

PR,A(pp)
] ≤ ε(λ).

4 This property is an additional property that is overlooked by the original Bulletproofs
range proofs [6].



Compact Multi-Party Confidential Transactions 439

GameHC
PR,A(pp) :

k
$←− Z

n
p , v

$←− Vpp

(v, C, π) ← APrvk n (pp, v, g
∑

k , k \ {kn})

return C = g
∑

k hv ∧ (C, π)
?

�∈ Π

Oracle Prvkn(pp, v, C, g
∑

k , ϕ):

if C = g
∑

k hv¬ ∨ PR.verϕ(v, C, ϕ):
return ⊥

θ
$←− PR.P rvϕ(v, kn, C, ϕ)

if RP.Ver(pp, C, θ = π): Π ∪ (C, π)
return θ

3 Compact Multi-party Confidential Transactions

In this section, we present the compact, private MCT protocol and the security
model for both N -party unanimous and T/N -threshold transactions. We start
by defining the basic protocols required for MCTs. Note that unlike Maxwell’s
CT which signs empty messages, MCT protocol signs the excess value E.

// generates public parameters
MCT.Set(λ) := ({ppCM = CM.Set(λ),
ppSIG = SIG.Set(λ), ppRP = RP.Set(λ)}

//generates single-party CT
-when input asset details are (v, k)
-and output asset details are (v′, k′).
MCT.Tx(pp, v, k, v′, k′)
if |v| �= |k| ∨ |v′| �= |k′|∨∑

v �= ∑
v′ : return ⊥

C ← MCT.Coin(pp, v, k)
C ′ ← MCT.Coin(pp, v′, k′)
E :=

∏
C ′ · (

∏
C)−1

σ ← SIG.Sign(pp,
∑

k′ − ∑
k, E, n)

πππ′ ← [RP.Prv(pp, C ′
i , v

′
i, k

′
i)]i∈[1,|v ′|]

return tx := (C , C ′, K = (πππ′, E, σ))

// combines partial transactions tx
-with final signatures and range proofs
MCT.Combine(pp, σ,πππ, tx, wv , wv ′):

C := [
∏|tx |

j=1 txj .Ci]
wv
i=1

C ′ := [
∏|tx |

j=1 txj .C
′
i ]

wv ′
i=1

return tx = (C , C ′, (πππ,
∏|tx |

j=1 txj .E, σ))

// verifies a confidential transaction tx
MCT.TxVer(pp, tx) :

(C , C ′, K = (πππ, E,σσσ)) := tx
return RP.Ver(pp, C ′,πππ)∧

(
∏

E
?
=

∏
C ′ · (

∏
C)−1)∧

SIG.Ver(pp, E, E,σσσ)

// generates a partial transaction
-without signatures and range proofs
-when input asset details are (v, k)
-and output asset details are (v′, k′).
MCT.ParTx(pp, v, k, v′, k′) :

if |v| �= |k| ∨ |v′| �= |k′|∨∑
v �= ∑

v′: return ⊥
C ← MCT.Coin(pp, v, k)
C ′ ← MCT.Coin(pp, v′, k′)
return tx := (C , C ′, K = ((),

E :=
∏

C ′ · (
∏

C)−1, ()))

// generates commitment arrays
MCT.Coin(pp, v, k) :

if |v| �= |k| ∧ v � [0, vmax] : return ⊥
return [CM.Cmt(pp, vi, ki)]

|v |
i=1
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Rogue Key Attack Resistant Commitment Generation. To defeat Rogue Com-
mitment attack, we use the key generation of [3,14], as explained below.

MCT.KG(pp, n) :

For single-party transactions if n
?= empty: return

(sk $←− Zp, pk ← gsk, P = pk)

Each co-owner j generates primary keys. (kj
$←− Zp,Pj ← gkj )

Each co-owner j shares primary public keys. // after receiving others’ Pj

Each co-owner j computes the signing keys. S = {P1, ..,Pn}
skj ← H(Pj , S) · kj ∈ Zp

Each co-owner j computes public keys. pkj ← gskj , P ← ∏n
j=1 P

H(Pj ,S)
j

All co-owners finish key generation return [(skj ,pkj , P )]nj=1

Note that H() is a hash function such that H : {0, 1}any �←→ Zp. Using
MCT.KG(), we can easily generate a secure commitment C ′ such that, C ′ = P ·
hv. Our aim is to build a MCT protocol that generates the above-mentioned
commitments and compatible multi-party compact signatures and multi-party
compact range proofs.

Generic Multi-party Fund Transferring

Our compact, private MCT protocol works as follows. The co-owners of the asset
or the coin bundle computes secret keys by themselves but shares public informa-
tion with other co-owners. Finally, each co-owner generates partial transactions,
and a co-owner (combiner) combines the partial transactions to generate the
final transaction. We explain the generic sending and receiving protocols for both
N -transactions and T/N -transactions below.

Here, (v,k,C) is the input coin bundles and ρρρ is the output coin amount
array that should be sent to |m|(= |ρρρ|) groups of receivers where each group
i consists of mi receivers. The fund sending function MCT.Send isolates coins
according ρρρ by sending the transaction tx and distributes keys as ptx for N -
fund transferring or tptx for T/N -fund transferring where ti parties out of mi

receivers must agree to spend the coin bundle i. For the sake of the function-
wise implementation, we input blinding key set k together. However, kj,i′ is the
partial secret key belongs to the jth co-owner for i′th input coin bundle, and
the partial keys are not shared with anyone else.
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MCT.Send(pp, v, k, C , ρρρ, n, m, optional = t) :

Each co-owner j, for each j ∈ [1, n] do
-verifies receivers’ details, if ¬(|ρρρ| = |m|) ∨ ¬(|C | = |v| = |kj |):

return ⊥
-verifies coin amount, and if (

∑
v <

∑
ρρρ)) : return ⊥

-generates keys for receivers. (skj , pkj , P j) := [MCT.KG(pp, mi)]i∈[1,|ρρρ′|]
// Each co-owner j share P j with others

k′
j := {(∑m 1

l=1 skj,1,l), .., (
∑m |ρρρ|

l=1 skj,|ρρρ|,l)}
If there is a balance, if (

∑
v >

∑
ρρρ):

-co-owners generate new keys. v′ := (ρρρ‖{∑
v − ∑

ρρρ})
(sk′, pk′, P ′) ← MCT.KG(pp, n)

Each co-owner j, for each j ∈ [1, n] do
-sets co-receivers’ signing keys, k′

j := k′
j‖{sk′

j}
-generates partial tx, txj := MCT.ParTx(pp, v/n, kj , v′/n, k′

j)

-shares partial tx with others, // after receiving all partial transactions txj

-computes the final E, and E :=
∏n

j=1 txj .E (∈ G)

-verifies the excess E. if E �= ∏
P · P ′ · ∏

C−1 · C∑
v ,0:

return ⊥
Co-owners create the final sig. σ ← SIG.Sign(pp, [

∑
k′

j − ∑
kj ]

n
j=1, E, n)

Co-owners create range proofs. πππ := ∀i ∈ [1, |v′|] :
RP.Prv(pp,

∏n
j=1 txj .C ′

i , v
′
i, [k

′
j,i]

n
j=1, n)

A co-owner combines the par. txs. tx := MCT.Combine(pp, σ,πππ, [txj ]
n
j=1, |v|, |v′|)

Each co-owner j shares if (t = empty) : // N key distribution
pre-tx ptx(i,l,j) or return tx, [ptx(i,l,j) =

openings tptx(i,l,j) (tx.C ′
i , ρρρi, sk(j,i,l), P (j,i))]

(m i,|ρρρ|,n)
(l,i,j)=(1,1,1)

with co-receiver l of the ith output. else: // (T/N) key distribution
[(x(j,i), K(j,i)) :=

See Figure 1 for Shamir threshold key SS.Dealer(pp, ti, mi, k(j,i))]
(|ρρρ|,n)
(i,j)=(1,1)

-distribution SS.Dealer(). return tx, [tptx(i,l,j) = (tx.C ′
i ,

ρρρi, x(j,i), K(j,i,l), P (j,i))]
(m i,|ρρρ|,n)
(l,i,j)=(1,1,1)

MCT.Receive(pp, v, k, C, P , n, m) :

Each co-receiver l, for each l ∈ [1, m] do

-generates keys, if C �= P · CM.Cmt(pp, v, 0) : return ⊥
(sk′, pk′, P ′) ← MCT.KG(pp, m)

-generates par. tx, txl := MCT.ParTx(pp, v, kl, v, sk′
l)

-shares par. txs, // after receiving partial transaction txl

-computes the final excess E, and E :=
∏m

l=1 txl.E (∈ G)

-verifies excess value. if E �= P ′ · P
(−1)

: return ⊥
Co-owners create the final signature. σ ← SIG.Sign(pp, [sk′

l − kl]
m
l=1, E, m)

Co-owners create range proofs. πππ := RP.Prv(pp,
∏m

l=1 txl.C
′, v, sk′)

A co-owner combines the partial txs tx := MCT.Combine(pp, σ,πππ, [txl]
m
l=1, 1, 1)

to generate final tx. return tx

Threshold Key Sharing. We use Shamir secret sharing (SS) scheme [23] with t
number of dealers instead of one dealer where t is the threshold. Each dealer
separately chooses a secret primary key, and the final key is the summation of
all t primary keys. With t dealers, we avoid trust issues of having one dealer and
availability issues of having n dealers to generate new keys for each transaction.
This protocol is easily modifiable with other secret sharing protocols instead of
SS if they support secure multi-dealer sharing where the final key k is recoverable
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as a summation of primary keys [kj ]tj=1 s.t. f(K) ⇒ ∑t
j=1 kj = k when K are

the distributed keys among n co-owners.

Fig. 1. Threshold key generation when f(a, x) = a1 + a2x + .. + a|a |x
|a |−1 mod p.

4 Cryptographic Investigation

In this section, we provide the security model of MCT and prove the secu-
rity of Schnorr-Bulletproofs MCTs and BLS-Bulletproof MCTs (see Sect. 4.4 for
proofs).

4.1 Security Model

The completeness of fund transferring denotes that a sender(s) can send a valid
transaction to the cash system and pre-transactions to the receiver(s). The
receiver(s) can secure the received coins by publishing another transaction with
new secret keys. We define the completeness of the whole process of multi-party
fund transferring as follows.

Definition 12 (Completeness of Multi-Party Fund Transferring). MCT is
complete if, [⊥�← NFT(pp),⊥�← TNFT(pp)] is always true when pp ← MCT.Set(λ)
for any λ.

NFT(pp): n
$←− Npp,v ∈ V∗

pp,k ∈ Z
n×|v |
p

ρρρ
$←− V∗

pp s.t.
∑

v ≥ ∑
ρρρ,m

$←− N |ρρρ|
pp , C ← MCT.Coin(v, [

∑n
j=1(kj,i)T]

|v |
i=1)

(tx,ptx) ← MCT.Send(pp,v,k,C, ρρρ, n,m)
k := {∑n

j=1 ptx(i,1,j).k, ..,
∑n

j=1 ptx(i,m i,j).k}
tx ← [MCT.Receive(pp,ρρρi,k,ptxi.C,ptxi.P , n,mi)]i∈[1,|ρρρ|
return MCT.TxVer(pp, tx) ∧ ∏

tx′∈tx MCT.TxVer(pp, tx′)

TNFT(pp): t
$←− Npp,v ∈ V∗

pp,k ∈ Z
t×|v |
p

ρρρ
$←− V∗

pp s.t.
∑

v ≥ ∑
ρρρ, m

$←− N |ρρρ|
pp , [ti

$←− [1,mi]
|ρρρ|
i=1

C ← MCT.Coin(v, [
∑t

j=1(kj,i)T]
|v |
i=1)
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(tx, tptx) ← MCT.Send(pp,v,k,C, ρρρ, t,m, t)
for (i ∈ [1, |ρρρ|]) do

T
$∈ [1,mi] s.t. |T | = ti // choosing random ti co-owners from all co-owners

[k′
(l,j) ← SS.Parkey(pp,Tl,T , tptx(i,l,j).x, tptx(i,l,j).k)](t,m i)

(j,l)=(1,1)

txi = MCT.Receive(pp,ρρρi, {
∑t

j=1 k1,j , ..,
∑t

j=1 km i,j}, tptxi.C, t, ti)
return MCT.TxVer(pp, tx) ∧ ∏

tx′∈tx MCT.TxVer(pp, tx′)

Confidential transactions are sound if there is no p.p.t adversary who can
generate valid transactions with negative coin amounts.

Definition 13 (Computational Soundness). MCT is sound for any λ if
AdvCS

MCT,ARP
= Pr

[
GameZO

MCT (pp)|pp ← MCT.Set(λ)
] ≤ ε(λ)

GameCS
MCT (pp): tx ← ARP (pp), return RP.Ver(pp, tx.C′, tx.πππ) ∧ χE(·) ?

�∈ V |πππ|
pp

We further define Zero Opening Signatures as the property that no p.p.t.
adversary can find a signing key for any two openings to values that are different.
The name, ZO, is meant to evoke that only commitment pairs, which open to
values with zero differences, can have an associated signature key.

Definition 14 (Zero Opening Signatures). MCT satisfies the zero opening
signatures property for any p.p.t. adversary A if

AdvZO
MCT = Pr

[
GameZO

MCT (pp)|pp ← MCT.Set(λ)
] ≤ ε(λ)

GameZO
MCT (pp): (x, v, k, v′, k′) ← A(pp), C ← g(k′−k)h(v′−v)

return (v
?

�= v′) ∧ C
?
= gx ∧ Sig.Ver(pp, gx, gx, SIG.Sign(pp, x, gx))

Theft Resistance, then, is the property that no p.p.t. adversary can create
a valid transaction for a given commitment C, whose opening is (v, k), using
a different key. Since MCT fulfills zero opening, so that no p.p.t. adversary can
create a signature when the input coins and output coins have different values,
which means that the commitment must be changed if it is to open to the
correct v under the different key k + k′ (for k′ �= 0). The changed commitment
can either be guessed from scratch or obtained by the alteration of an existing
one. Thus, similarly to what we saw with non-malleability of range proofs, we
capture this alteration of commitment with a function COM.Mal(C, k′), which
for Pedersen commitments must be of the form COM.Mal(C, k′) = C · gk′

. The
full definition is a bit subtle: it simultaneously considers the cases where the
stolen commitment is, either, created from scratch with key k′ �= 0 returned to
the adversary, or, obtained by malleability through the function COM.Mal(C, k′)
whose offset k′ �= 0 is returned by the adversary and whose resulting key k + k′

is most likely unknown. The adversary does not hint which type of k′ is being
returned; this is tested by the two predicates connected by the disjunction ∨.
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The theft resistance of single-party MCT is not adequate when transactions
involves multi-owners. The complete theft-resistance property of N -fund trans-
ferring defines that no p.p.t. adversary can create valid transactions for a given
commitment C and k\{kn} where the blinding factor of C is

∑n
i=1 ki. Complete

theft resistance ensures that even an adversary who controls n−1 co-owners can
not steal coins.

The complete theft resistance property of T/N -fund transferring implies that
less than t co-owners can not create a valid transaction. The worst-case scenario
of T/N -fund transferring is t − 1 dealers trying to steal the money. In that case,
they know t − 1 number of primary keys and t − 1 of Shamir secret keys of the
unknown primary key. Therefore, they can parse t2 − 1 partial keys when they
require t2 total keys.

We define complete theft resistance considering the worst case scenarios as
follows,

Definition 15 (Complete Theft-Resistance). Let pp ← MCT.Set(λ) for any
λ. MCT holds complete theft-resistance property for any p.p.t. adversary A if,

AdvCTR
MCT = Pr

[
GameCTR

MCT,n(pp) ∨ GameCTR
MCT,t,n(pp)

]
= ε(λ)

GameCTR
MCT,n(pp) :

k ← Z
n
p , v

$←− Vpp

C ← COM.Cmt(pp, v,
∑

k)
(k′, tx) ← A(pp,C, v,k \ {kn})
tx := (C,C ′, (π,E, σ))
return

(
COM.Ver(pp,C ′, v, k′)∨

C ′ ?= COM.Mal(C, k′)
) ∧ k′ �= 0

∧MCT.TxVer(pp, tx)

GameCTR
MCT,t,n(pp) :

k ← ParKey(pp, t, n), v $←− Vpp

C ← COM.Cmt(pp, v,
∑

k)
(k′, tx) ← A(pp,C, v,k \ {kt,t})
tx := (C,C ′, (π,E, σ))
return

(
COM.Ver(pp,C ′, v, k′)∨

C ′ ?= COM.Mal(C, k′)
) ∧ k′ �= 0

∧MCT.TxVer(pp, tx)

// Imitates the behavior of a real threshold fund transferring with random values
Vote(t, T , k): return {{k1,T1 , .., k1,Tt}, .., {kt,T1 , .., kt,Tt}}
KG(pp, t, n, T ) : k

$←− Z
t
p, (x, K) ← ∀(j ∈ T ) : SS.Dealer(pp, t, n, kj),

return (k, x, Vote(t, T , K))
ParKey(pp, t, n) : T ⊆ [1, n], (k, x, K) ← KG(pp, t, n, T )

return ∀j ∈ [1, t] : ∀(i ∈ [1, t]) : ki,j = SS.ParKey(pp, Ti, t, T , x, Kj,T i)

Finally, we define the indistinguishability which states that values of the
transactions are hidden and can not figure out which input paid which output
when there are multiple inputs and outputs.

Definition 16 (Transaction Indistinguishability). MCT has transaction

indistinguishability if, AdvTI
MCT,A = |Pr

[
b

?= b′|b $←− {0, 1}, b′ ← ATx(·)(pp)
]

−
1
2 | ≤ ε(λ) for a p.p.t adversary A when pp ← MCT.Set(λ) for any λ, and with
oracle,
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Oracle Txb(pp): v0, v1
$←− V∗

pp s.t.|v0| = |v1|,
v

$←− V∗
pp s.t.

∑
v =

∑
vb, r

$←− Z
|v |
p , rb

$←− Z
|vb|
p ,

txb ← MCT.Tx(pp, v, r, vb, rb), return txb, v0, v1

4.2 Security of Compact Schnorr Signatures and BLS Signatures

We build compact MCT with Compact Schnorr Signatures (SIGSCH) [14,22],
Compact BLS Signatures (SIGBLS) [3,4]. SIGSCH and SIGBLS are explained in
Appendix A.

Theorem 2 (Security of Compact Schnorr Signatures). Compact Schnorr
signatures SIGSCH hold completeness and computational EUF-CMA properties if
solving DL problem is hard in group G (prefer [14] for the complete security the-
orem).

Theorem 3 (Security of Compact BLS Signatures). Compact BLS sig-
natures SIGBLS hold completeness and computational EUF-CMA properties if
ψ-co-CDH problem is hard in group G1 and G (see [3] for the complete security
theorem).

4.3 Non-malleable, Compact, Multi-party Range Proofs
from Bulletproofs

We propose a Logarithmic-sized, Non-Malleable, Non-Interactive, Multi-Party
Bulletproof Range Proof scheme with an updated version of improved inner
product argument. The improved inner product argument [5,6] can securely
convince a verifer given (h, g, P = hl · gr , πIP) that the prover knows (l, r). The
fascinating property of IP is it compresses 2|l| elements of (l, r) to πIP which
only has two Zp components and 2 log2 |l| G components (prefer [7] for additional
details).

The proposed Non-Malleable MBP only uses strong Fiat Shamir challenges
derived from a hash function giving the commitment as an input. The strong
Fiat Shamir challenges guarantee non-malleability of RP and IP, making unique
challenges for the particular commitment. Here, ki is the partial key belong the
ith party and v is the coin amount of asset Cv,

∑
k . MBP allows n parties to

generate range proofs for coin amounts in range [0, 2l −1] without sharing their
partial keys with the combiner (prefer [6] for notations. However, we interchange
variable symbols g with h and h with g).
RP.Set(λ): return pp = (G, g,h, g, h, u, p) // when a group G = 〈g〉, 〈h〉, 〈u〉 of
prime order p ∈ {0, 1}λ and g, h, and u are DL problem hard (NUMS points).
g and h are generator vectors of G where |g| = |h| = l and Vpp = [0, 2l − 1].

RP.Prv(pp,C = Cv,
∑

k , v,k, n):
if n = empty : n := |k| // The combiner (the dealer) starts the function.
aL ∈ {0, 1}l : 〈aL,2l〉 = v, aR := aL − 1l
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sL, sR
$←− Z

l
p, (α, ρ) $←− Zp, A ← gαhaLgaR , S ← gρhsLgsR

y ← H(C,A, S), z ← H(C,A, S, y)
L(X) := (aL − z · 1l) + sL · X, R(X) := yl · (aR + z · 1l + sR · X) + z2 · 2l

t(X) := 〈L(X), R(X)〉 = t0 + t1 · X + t2 · X2

gt1 = {}, gt2 = {}
for i ∈ [1, n] do

// The combiner requests gτ1,i , gτ2,i from each co-prover i.

τ1,i, τ2,i
$←− Z

2
p // Each co-prover i shares gτ1,i , gτ2,i with the combiner j.

gt1 = gt1‖gτ1,i , gt2 = gt2‖gτ2,i // The combiner adds gτ1,i , gτ2,i to an array.
// The combiner continues the function.
T1 ← ht1

∏n
i=1 gt1,i, T2 ← ht2

∏n
i=1 gt2,i

x ← H(C,A, S, y, z, T1, T2), l := L(x) ∈ Z
l
p, r := R(x) ∈ Z

l
p, t̂ := 〈l, r〉

Tx = {} // The combiner j shares α,A, S, T1, T2 with co-prover i(i �= j) ∈
[1, n].
for i ∈ [1, n] do

if A
?

�= gαhaLgaR : return ⊥ // Each co-prover verifies the parameters.
y := H(C,A, S), z := H(C,A, S, y), x := H(C,A, S, y, z, T1, T2)
τx,i := τ2,i · x2 + τ1,i · x + z2 · ki // Each i shares τx,i with the combiner.

τx :=
∑n

i=1 τx,i, μ := α + ρ · x // The combiner adds τx,i of each i to τx.
xIP ← H(C,A, S, y, z, T1, T2, τx, μ, t̂ )
πIP := IP.Prove(pp,h, g, u, xIP, C,hlgr , t̂, l, r) // IP additionally takes C
return π := (A,S, T1, T2, τx, μ, t̂, πIP) // The combiner returns the range proof.

RP.Ver(pp,C,πππ): // Here δ(y, z) = (z − z2) · 〈1l,yl〉 − z3〈1l,2l〉 ∈ Zp

For each (C, π) ∈ C,πππ: (A,S, T1, T2, τx, μ, t̂, πIP) := π
y := H(C,A, S), z := H(C,A, S, y), x := H(C,A, S, y, z, T1, T2)
g′ := g(y−l) //g′ = {g1, g

y−1

2 , gy−2

3 , .., gy−l+1

l }
if ht̂gτx �= Cz2 · hδ(y,z) · T x

1 · T x2

2 : return False

P = A · Sx · h−z · (g′)z·y l+z2·2l

xIP ← H(C,A, S, y, z, T1, T2, τx, μ, t̂ )
if ¬IP.verify(pp,h, g′, u, xIP, C, Pg−μ, πIP) : return False // IP takes C

return True (see Appendix B for updated IP)

Theorem 4. Single-party Bulletproof range proofs [6] explained in [6] have com-
pleteness, honest verifier zero-knowledge, and computational knowledge sound-
ness when the discrete log problem is hard in group G.

Theorem 5. Multi-party Bulletproof range proofs (with strong Fiat Shamir
challenges) have completeness, honest verifier zero-knowledge, computational
knowledge soundness, mon-malleability, and secure against honest-but-curious
combiners when the discrete log problem is hard in group G and single-party
Bulletproof range proofs [6] is complete, honest verifier zero-knowledge, and com-
putationally knowledge sound.
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Lemma 1 (Completeness). MBP is complete if BP is complete.

Proof. We assign k, τ1, τ2 to following MBP values, k :=
∑n

i=1 ki, τ1 :=∑n
i=1 τ1,i, τ2 :=

∑n
i=1 τ2,i. Now we calculate the T1, T2, τx of MBP as follows,

T1 = ht1

n∏
i=1

gτ1,i = ht1gτ1 , T2 = ht2

n∏
i=1

gτ2,i = ht2gτ2

τx =
n∑

i=1

τx,i =
n∑

i=1

(τ2,ix
2 + τ1,ix+ z2ki) = x2

n∑
i=1

τ2,i +x

n∑
i=1

τ1,i + z2
n∑

i=1

x+ z2k

Here T1, T2, τx is calculated exactly same as BP [6]. Therefore, we claim that
MBP is complate if BP is complete. ��
Lemma 2 (Honest Verifier Zero-Knowledge). MBP holds honest verifier
ZK property if BP holds honest verifier zero-knowledge property.

Proof. The proof of the above lemma is directly visible as MPB does not change
BP protocol [6] expect the computation of blinding keys. ��
Lemma 3 (Computational Knowledge Soundness). MBP holds complete
computational knowledge soundness if BP is computationally knowledge sound.

Proof. Lemma 3 is a directly provable from single-party Bulletproofs [6]. ��
Informally, if BP is knowledge sound, or the extractor always extracts a valid
witness given a valid proof, then MBP is also knowledge sound.

Lemma 4 (Non-Malleability). MBP is computationally non-malleable, in
the random-oracle model, if it satisfies computational knowledge soundness.

Proof. We merely sketch the argument. Since COM.Mal(C, k′) := C · gk′ �= C
for k′ �= 0 (mod p), the honest-verifier challenge values x, y, z obtained by Fiat-
Shamir hashing in the random-oracle model will be random in the new proof,
and unrelated to those in the old proof. A careful examination of the protocol
reveals that with those new unrelated random challenges, the problem of creating
a related proof with a shown relation is as hard as that of creating an unrelated
or fresh proof, which is computationally hard per the computational knowledge
soundness property. ��
Lemma 5 (Insider Security). MBP is secure against honest-but-curious
combiners, in the random-oracle model if solving DL problem is hard in G and
BP is zero-knowledge.

Proof. To prove the insider security, we assume MBP is zero-knowledge. Let
there is an adversary A who breaks the insider security of MBP. Assume A
generates fresh range proofs for (v,k \ {kn}, g

∑
k). Then A successfully finds τx

as in RP.Prv(). In other words, A solves the discrete log problem of gkn without
kn. Therefore, we claim that Lemma 5 is true. ��

Finally, we prove that Theorem 5 is true.
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4.4 Security Proofs for Compact, Multi-party Confidential
Transactions

Now, we prove the security of compact MCT when Schnorr signatures (SIGSCH)
[14,22], BLS signatures (SIGBLS) [3,4], and MBP are used.

Theorem 6. MCT, a compact multi-party confidential transaction protocol is
complete, sound, zero-opening, completely theft resistant, and indistinguishable
if SIGBLS, SIGSCH, and RP are secure.

Lemma 6 (Completeness). MCT is complete if SIG, RP, and CM are complete.

We point to the MCT construction to prove completeness. Since MCTs sat-
isfies verification tests (refer MCT.TxVer()), we claim that MCT is complete.

Lemma 7 (Soundness). MCT is sound if RP is knowledge sound.

The validity of Lemma 7 is directly visible from the knowledge soundness of
PR.

Lemma 8 (Zero Opening Signatures). MCT has the zero opening signatures
property if COM is binding.

Proof. We show a reduction breaking the binding property of COM using an adver-
sary who breaks ZO of MCT.

Simulator SZO
MCT,A(pp) : (x, v1, k1, v2, k2) ← A(pp), y = x−k2+k1

v2−v1

(v, v′) $←− Vpp, k
$←− Zp, k′ = k − y(v′ − v), return (v, k, v′, k′)

Let there is an adversary A who breaks the zero-opening property of MCT.
Then the simulator SZO

MCT,A wins the security game of GameBD
MCT,SZO

MCT,A
using

the adversary A. Since the commitment scheme is binding for any Λ, MCT holds
zero-opening property followed by AdvBD

CM,SZO
MCT,A

= AdvZO
MCT,A = ε(λ). ��

Lemma 9 (Complete Theft Resistance). MCT is completely theft resistant
if SIG is EUF-CMA and RP is non malleable.

Simulator SCTR
MCT,n,t,A(pp, PSIG, CRP ) :

if t = empty: x = n else x = t ∗ t

mode
$←− {SIG, RP}

if mode = SIG :
k

$←− Z
x−1
p , v

$←− Vpp

CSIG ← P −1 · CM.Cmt(pp, v,
∑

k)

if mode = RP : k
$←− Z

x−1
p , v

$←− Vpp

tx ← A(Cmode, v, k)
(C, C′, (π, E, σ)) := tx

if(mode = SIG ∧ CM.Ver(pp, C′, v, k′)) :

return σ := Process(pp, k′, k, tx)

if(mode = RP ∧ k′ �= 0 ∧ C′ = C · gk′
) :

return π

Process(pp, k′, k, tx) :
if SIGBLS: return ((tx.σ) · SIG.Sign(pp,
k′ − Σk, tx.E)−1)
if SIGSCH: return (tx.σ.R, tx.σ.s −
H(tx.σ.R, tx.E) · (k′ − Σk))
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Proof. We present the following security reduction, where a simulator SCTR
MCT,x,A

uses an adversary A who breaks theft resistance of MCT to break EUF-CMA of
SIG by winning GameEUF−CMA

SIG,x,SCT R
MCT,x,A

or NM of RP by winning GameNM
RP,SCT R

MCT,x,A
.

Here, the simulator tries to mimic a challenger for n co-owners or t owners out
of n owners. Therefore, when the simulator receives a challenge, it generates
parameters for other n−1 partial keys in N -fund transferring or t∗ t−1 Shamir
partial keys for T/N -fund transferring. The simulator randomly chooses a mode,
to attempt to break either the signature scheme or the range proof scheme.
The intuition behind the mode is that the simulator does not know the strategy
that A is going to use. Since the simulator guesses the mode randomly, there
is 1/2 probability that the mode the simulator chose will be suited to exploit
a successful break from A. Therefore, we claim that Lemma 9 is true since
AdvCTR

MCT,A = 2 · [AdvEUF−CMA
SIG,SCT R

MCT,n,t,A
+ AdvNM

RP,SCT R
MCT,n,t,A

] ≤ ε(λ) when RP is non-

malleable and SIG is EUF-CMA. ��
Informally, the adversary who has |sk| − 1 number of secret keys out of

sk, tries to forge a transaction tx to generate a new asset with key k′. The
adversary has two options as tx = (C,C · gk′

, (π∑
sk+k′ , E = gk′

, σk′(E))) where
he can create the signature but not the range proof, or tx = (C, gk′

, (πk′ , E =
gk′−∑

sk , σk′−∑
sk(E))) where he can create the range proof easily but not the

signature. Note that BP [6] allows to generate πv,k+k′ given πv,k. Therefore, CT
or MCT with [6] are vulnerable to theft.

Lemma 10 (Transaction Indistinguishability). MCT has transaction indis-
tinguishability if COM is hiding and RP is zero-knowledge.

Proof. Since the coin amount is committed in the commitments and range proof,
if COM is computationally/statistically/perfectly hiding and RP is computational-
ly/statistically/perfectly zero-knowledge, then MCT has the computational/sta-
tistical/perfect transaction indistinguishability property. ��

The foregoing Lemmas 6–10 together prove Theorem 6.
Conclusion. Confidential Transaction Protocol improves the privacy of decen-
tralized cash systems by hiding the transaction amount. The existing Confi-
dential Transaction Protocols support multi-party transactions; however, the
size of the transactions is linear to the number of co-owners, and the transac-
tions do not hide the number of co-owners. In this work, we extend Confiden-
tial Transaction Protocol to generate compact, private Multi-Party Confidential
Transactions resistant to Rogue Key attacks while proving the security of the
Schnorr-Bulletproof construction and the BLS-Bulletproof construction.

A Compact Schnorr and BLS Signatures

The protocols of SIGSCH and SIGBLS are explained below.
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SIGBLS.Set(λ): return pp = (G1, G, Gt, e, g1, g, p), (G1, G, Gt) of prime order p ∈
{0, 1}λ, G1 = 〈g1〉, G = 〈g〉, an efficiently computable non-degenerating pairing e :
G1 × G → Gt, and hash function H : {0, 1}∗ → G1.

SIG.Ver(pp, pk, m,σσσ):

return e(
∏

σσσ, g2)
?
=

∏|m |
i=1 e(H(mi), pki)

SIG.Sign(pp, sk, m, n):

if n = empty : n := 1
// each j creates a partial sig.
σj ← H(m)skj

// The combiner(s) aggregates par. sig.

return (
∏n

i=1 σi)

SIGSCH.Set(λ): return pp = (G, g, p) //G of prime order p ∈ {0, 1}λ,G = 〈g〉

SIG.Ver(pp, pk, m,σσσ):

[(Ri, si) := σσσi]
|σσσ|
i=1

return ∀gsi
?
= Ri · pk

H(Ri,m i)
i

SIG.Sign(pp, sk, m, n):
if n = empty : n := 1
//shares hj ← H(Rj)
//after receiving [H(Ri)]

n
i=1,

//shares Rj with co-signers

if¬(∀(i ∈ [1, n]) : hi
?
= H(Rj)): return

⊥
// each j creates a par.sig.
R ← R1 · R2 · · · Rn

sj = rj + H(R, m) · skj

// The combiner(s) aggregates partial
sig.
return (

∏n
i=1 Rj ,

∑n
i=1 sj)

B Improved Inner Product Argument with Strong Fiat
Shamir Challenges

// Inner Product Argument - Prove
// We additionally use C here.
IP.Prove(pp, g,h, u, xIP, C, P, c,a, b)

P ′ ← P · uxIP·c

(g, h, C, c, P, a, b, l, r) := IP.Prove(pp,

h, g, C, c, P ′,a, b, {}, {})
// Here l, r ∈ G

log2 |a|

return πIP = (a, b, l, r)

// A recursive function
// a[:n] = {a1, ..,an−1}
// a[n:] = {an, ..,a|a|}
// We additionally use C here.
IP.ComputeProof(pp, g,h, C, c, P,
a, b, l, r)
if |g| �= |h| �= |a| �= |b|: return ⊥

n = |g|
if n = 1: return (g,h, C, c, P,a, b, l, r)

else:
n′ := n/2
cL ← 〈a[:n′], b[n′:]〉 ∈ Zp

cR ← 〈a[n′:], b[:n′]〉 ∈ Zp

L ← 〈ga [:n′]
[n′:] ,h

b[n′:]
[:n′] 〉 ∈ G

R ← 〈ga [n′:]
[:n′] ,h

b[:n′]
[n′:] 〉 ∈ G

// add L,R to l, r
l := l‖L, r := r‖R
x ← H(C,L,R)
// element-wise
g′ := gx−1

[:n′] � gx
[n′:] ∈ G

n′

h′ := hx
[:n′] � hx−1

[n′:] ∈ G
n′

P ′ := Lx2
PR−x2 ∈ G

a′ = a[:n′]x + a[n′:]x
−1 ∈ Z

n′
p
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b′ = b[:n′]x
−1 + b[n′:]x ∈ Z

n′
p

(g,h, C, c, P,a, b, l, r) := (g′,h′,
C, c, P ′,a′, b′, l, r)

run recursively IP.ComputeProof(pp,

g,h, C, c, P,a, b, l, r)

// Inner Product Argument - Verify

// We additionally use C here.
IP.Verify(pp, g,h, u, xIP, C, P, c, πIP)

P ← P · uxIP·c

(a, b, l, r) := πIP

if log2 |g| �= log2 |h| �= |l| �= |r|:
return ⊥
n′ = |g|
for (L,R) ∈ (l, r)

n′ := n′/2
x ← H(C,L,R)
// element-wise product �
g := gx−1

[:n′] � gx
[n′:] ∈ G

n′

h := hx
[:n′] � hx−1

[n′:] ∈ G
n′

P := Lx2
PR−x2

i ∈ G

// Note that |g| = 1 −→ g = g and
|h| = 1 −→ h = h

return P
?= gahbuxIP·a·b
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8. Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: a cryptographic
investigation of mimblewimble. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 657–689. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 22

9. Horster, P., Michels, M., Petersen, H.: Meta-multisignature schemes based on the
discrete logarithm problem. Information Security — the Next Decade. IAICT, pp.
128–142. Springer, Boston, MA (1995). https://doi.org/10.1007/978-0-387-34873-
5 11

https://doi.org/10.1007/978-3-642-32946-3_29
https://doi.org/10.1007/978-3-642-32946-3_29
https://www.beam.mw/
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-662-49896-5_12
https://doc-internal.dalek.rs/bulletproofs/range_proof_mpc/index.html
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1007/978-0-387-34873-5_11
https://doi.org/10.1007/978-0-387-34873-5_11


452 J. Alupotha et al.

10. Jedusor, T.E.: Mimblewimble (2016)
11. Langford, S.K.: Weaknesses in some threshold cryptosystems. In: Koblitz, N. (ed.)

CRYPTO 1996. LNCS, vol. 1109, pp. 74–82. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-68697-5 6

12. Maxwell, G.: Confidential transactions (2015). https://people.xiph.org/$∼$greg/
confidential values.txt. Accessed 09 May 2016

13. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015)
14. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures

with applications to bitcoin, pp. 1–26. Designs, Codes and Cryptography (2018)
15. Michels, M., Horster, P.: On the risk of disruption in several multiparty signature

schemes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163,
pp. 334–345. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034859

16. Nakamoto, S.: Bitcoin- a peer-to-peer electronic cash system (2008)
17. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

18. Poelstra, A.: Mimblewimble (2016). https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf

19. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential
assets. In: Zohar, A., et al. (eds.) Financial Cryptography and Data Security.
LNCS, vol. 10958, pp. 43–63. Springer, Heidelberg (2019). https://doi.org/10.1007/
978-3-662-58820-8 4

20. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 13

21. Ruffing, T., Thyagarajan, S., Ronge, V., Schroder, D.: (short paper) burning zero-
coins for fun and for profit - a cryptographic denial-of-spending attack on the zero-
coin protocol, pp. 116–119 (2018). https://doi.org/10.1109/CVCBT.2018.00023

22. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
24. grin tech.org: Grin. https://github.com/mimblewimble. Accessed 21 May 2020
25. tlu.tarilabs.com: Mimblewimble multiparty bulletproof UTXO. http://tlu.tarilabs.

com/protocols/mimblewimble-mp-bp-utxo/MainReport.html. Accessed 21 May
2020

26. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32 (2014)

https://doi.org/10.1007/3-540-68697-5_6
https://doi.org/10.1007/3-540-68697-5_6
https://people.xiph.org/$~$greg/confidential_values.txt
https://people.xiph.org/$~$greg/confidential_values.txt
https://doi.org/10.1007/BFb0034859
https://doi.org/10.1007/3-540-46766-1_9
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1109/CVCBT.2018.00023
https://github.com/mimblewimble
http://tlu.tarilabs.com/protocols/mimblewimble-mp-bp-utxo/MainReport.html
http://tlu.tarilabs.com/protocols/mimblewimble-mp-bp-utxo/MainReport.html


Simulation Extractable Versions
of Groth’s zk-SNARK Revisited

Karim Baghery1, Zaira Pindado2(B), and Carla Ràfols2
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Abstract. Among various NIZK arguments, zk-SNARKs are the most
efficient constructions in terms of proof size and verification which are
two critical criteria for large scale applications. Currently, Groth’s con-
struction, Groth16, from Eurocrypt’16 is the most efficient and widely
deployed one. However, it is proven to achieve only knowledge soundness,
which does not prevent attacks from the adversaries who have seen simu-
lated proofs. There has been considerable progress in modifying Groth16
to achieve simulation extractability to guarantee the non-malleability of
proofs. We revise the Simulation Extractable (SE) version of Groth16
proposed by Bowe and Gabizon that has the most efficient prover and
crs size among the candidates, although it adds Random Oracle (RO)
to the original construction. We present a new version which requires 4
parings in the verification, instead of 5. We also get rid of the RO at the
cost of a collision resistant hash function and a single new element in the
crs. Our construction is proven in the generic group model and seems to
result in the most efficient SE variant of Groth16 in most dimensions.

Keywords: zk-SNARK · Simulation extractability · Generic group
model

1 Introduction

Non-Interactive Zero-Knowledge (NIZK) proof systems are a fundamental fam-
ily of cryptographic primitives that has appeared recently in a wide range of
practical applications. A NIZK proof system allows a party to prove that for
a public statement x, she knows a witness w such that (x,w) ∈ R, for some
relation R, without leaking any information about w and without interaction
with the verifier. Due to their impressive advantages, NIZK proof systems are
used ubiquitously to build larger cryptographic protocols and systems.

Zero-knowledge Succinct Arguments of Knowledge (zk-SNARKs) are among
the most interesting NIZK proof systems in practice, as they allow to generate
very short proofs and very efficient verification for NP complete languages [6].
Zk-SNARKs have had a tremendous impact in practice and they have found
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numerous applications, including verifiable computation systems [11], privacy-
preserving cryptocurrencies [3] and smart contracts [9] and private proof-of-stake
protocols [8] are few of known applications that use zk-SNARKs to prove differ-
ent statements while guaranteeing privacy of the users. Because of their practical
importance, particularly in large-scale applications like blockchains, even min-
imal savings (in proof size or verification cost) are considered to be relevant.
In practice, the zk-SNARK is used to prove the correctness of some computa-
tions without leaking any information about the secret inputs that are used to
complete it. To do so, the computation should be encoded to one of the NP
characterizations which currently Quadratic Arithmetic Program (QAP) is the
most popular one. The basic idea is that the correctness of all the computations
of the circuit is expressed as a divisibility relation among certain polynomials
which define the program. Then the characterization can be compiled into a zk-
SNARK where the prover gives a proof of knowledge of a witness a for which the
divisibility relation holds for the polynomials which define the QAP combined
with the input a. The succinctness of the argument comes precisely from the
fact that the correctness of all the gates is aggregated into just one relation, and
that this relation of polynomials is proven in one secret point.

In 2016, Groth [6] introduced the most efficient zk-SNARK in the Generic
Group Model (GGM) for QAPs, Groth16, which is still the state-of-the-art.
Its proof is 3 group elements and its verification is dominated by 3 pairings.
The proof in Groth16 is malleable. Generating non-malleable proofs is a neces-
sary requirement in building various cryptographic schemes, including univer-
sally composable protocols [8,9], cryptocurrencies (e.g. Zcash) [3], signature-of-
knowledge schemes [7], etc.

Therefore, in practice, it is important to have a stronger notion of security,
namely, Simulation Extractability (SE). This notion guarantees that a valid
witness can be extracted from any adversary producing a proof accepted by
the verifier, even after seeing an arbitrary number of simulated queries. For this
reason, in Crypto 2017, Groth and Maller [7] proposed a SE zk-SNARK, which
is very efficient in terms of proof size but very inefficient in terms of common
reference string (crs) size and prover time. Bowe and Gabizon [4] proposed a
less efficient construction (5 group elements vs 3) based on Groth16 which adds
a Random Oracle (RO) to it but with almost no overhead in crs size or cost
for the prover. Recently, Lipmaa [10] proposed several constructions, including
the most efficient QAP-based SE zk-SNARK in terms of proof size and with the
same verification complexity as [4,7], but less efficient in terms of crs size and
prover time compared to [4]. In [1], Atapoor and Baghery used the traditional
OR technique to achieve SE in Groth16. Their variant requires 1 paring less
for verification in comparison with previous SE constructions, however it comes
with an overhead in proof generation, crs, and even larger overhead in proof size.
For a particular instantiation they add ≈52.000 constrains to the underlying
QAP instance, which adds fixed overhead to the prover and crs, that can be
considerable for mid-size circuits. They show that for a circuit with 10 × 106
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Multiplication (Mul) gates, their prover is about 10% slower, but it can be
slower for circuits with less than 10 × 106 gates [1].

1.1 Our Contributions

The core of our contribution is revisiting two SE variants of Groth16, presented
in [1,4], to get the best of both constructions. Our focus is manly on Bowe and
Gabizon’s variation [4] which has the most efficient prover and the shortest crs
among all SE zk-SNARKs [1,4,7,10], while requires a RO. To achieve simulation
extractability, their prover replaces all the original computations which depend
on some parameter δ given in the crs by some δ′ and the prover must give [δ′]2
and a NIZK PoK of DLOG of [δ′]2 w.r.t [δ]2.

We propose a new SE variant of Groth16 based on Bowe and Gabizon’s
scheme [4] without ROs. Our variant uses some sophisticated modification of
Boneh-Boyen signatures to prove knowledge of the DLOG of δ′ and relies only
on the collision-resistant properties of a hash function, apart from the GGM. In
terms of efficiency, in comparison with [4], our construction requires 1 paring less
in the verification, while retaining all the other properties of their construction.
More specifically, the most interesting features of Bowe and Gabizon’s scheme
are that the crs size and the prover complexity that are almost the same as
Groth16 (except for a few exponentiations). Our construction inherits these nice
features and avoids using ROs, in the cost of a single new element in the crs
which is negligible1). In comparison with [1], our variant does not have an over-
head in proof generation and crs size and it also comes with smaller overhead in
proof size.2

Table 1 presents a comparison of our proposed variant of Groth16 with several
related constructions for a particular instance of arithmetic circuit satisfiability.
Our construction gets rid of the RO in cost of adding one element to the crs.

2 Preliminaries

We let BGgen be a probabilistic polynomial time algorithm which on input 1λ,
where λ is the security parameter, returns the description of an asymmetric
bilinear group gk = (p,G1,G2,GT , e,P1,P2), where G1,G2 and GT are groups of
prime order p, the elements P1,P2 are generators of G1,G2 respectively, e : G1×
G2 → GT is an efficiently computable, non-degenerate bilinear map, and there is
no efficiently computable isomorphism between G1 and G2. Elements in Gγ , are
denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T} and PT = e(P1,P2). With
this notation, e([a]1, [b]2) = [ab]T . We extend this notation naturally to vectors
and matrices. We denote by negl(λ) an arbitrary negligible function in λ.
1 In the full version, we show that using a RO we can set γ = 0 and do not need to

add any new element.
2 Our changes add only one element to the crs of Groth16 and since the original

version is proven to achieve subversion ZK (ZK without trusting a third party) [5],
our variant also can be proven to achieve Sub-ZK using the technique proposed in [2].
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Table 1. A comparison of our proposed variant of Groth16 along with other SE zk-
SNARKs for arithmetic circuit satisfiability with n Mul gates (constraints) and m wires
(variables), of which l are public input wires (variables). In the case of crs size and
Prover’s computation constants are omitted. In [7], n Mul gates and m wires translate
to 2n squaring gates and 2m wires. In [1], n′ ≈ n + 52.000 and m′ ≈ m + 52.000. G1

and G2: group elements, Ei: exponentiation in group Gi, Mi: multiplication in group
Gi, P : pairings, ROM: Random Oracle Model, CRH: Collision Resistant Hash.

SNARK Security Model crs Prover Proof Verifier

Groth [6]
Knowledge

Sound
GGM

m + 2n − l G1

n G2

m + 3n − l E1

n E2

2 G1

1 G2

l E1

3 P

GM [7]
Simulation

Extractable
GGM

2m + 4n G1

2n G2

2m + 4n − l E1

2n E2

2 G1

1 G2

l E1

5 P

BG [4]
Simulation

Extractable

GGM,

ROM

m + 2n − l G1

n G2

m + 3n − l E1

n E2

3 G1

2 G2

l E1

5 P

AB [1]
Simulation

Extractable
GGM

m′ + 2n′ − l G1

n′
G2

m′ + 3n′ − l E1

n′ E2

4 G1

2 G2 + 2 λ

l E1

4 P

Lipmaa [10]
Simulation

Extractable

AGM,

Tag-based

m + 3n − l G1

n G2

m + 4n − l E1

n E2

3 G1

1 G2

l E1

5 P

This paper
Simulation

Extractable

GGM,

CRH

m + 2n − l G1

n G2

m + 3n − l E1

n E2

3 G1

2 G2

l E1

4 P

Security for zk-SNARKs. We use the definitions of NIZK arguments
from [6,7]. Our argument is perfectly complete (honest arguments will be
accepted with probability 1), perfect zero-knowledge (simulated proofs have the
same distribution as honest proofs) and SE (even after seeing v simulated proofs,
from any accepting proof output by the adversary it is possible to extract a valid
witness).

3 Simulation Extractability Without Random Oracles

In this section, we propose a variation of Groth16 inspired on its Bowe and
Gabizon [4] SE version. To achieve so, their prover replaces all the computations
which depend on δ given in the crs by some δ′ of its choice, that it must give
as part of the proof, together with a proof of knowledge of the DLOG of δ′

w.r.t to δ, which given some element [Y ]1 = H([A]1||[B]2||[C]1||[δ′]2), consists
of [π]1 such that e([Y ]1, [δ′]2) = e([π]1, [δ]2). In their analysis, H is an RO and
their proof requires 2 pairings for verification. Our contribution is to give an
alternative argument of knowledge for the DLOG, with a novel use of Boneh-
Boyen signatures along with a proof in the GGM.

Scheme Definition. In Fig. 1, we present our version of Groth16 and we explain
in the following how we avoid the use of RO.

Avoiding RO. Our proof uses the collision resistance property of the hash
function and the GGM. Very roughly, the new variable γ gives some additional
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Fig. 1. The proposed variation of Groth16 for R. H is a family of collision resistant hash
functions that map to Z

∗
p. The elements [αβ, t(x), γt(x)]T are redundant and can in

fact be computed from the rest of the elements in the crs. Differences with Groth16 are
highlighted. Alternatively, one can describe Groth16 as corresponding to ζ = 1, γ = 0
and where the proof consists only of [A, C]1, [B]2.

guarantees because to compute t(x) (γ+m)
(δ′+δm) from Dj such that mj �= m, it is

necessary to know both 1
(δ′+δm) and γ

(δ′+δm) , but this is only possible when
δ′ + δm = ζδ.
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Security. We prove security of new scheme (Fig. 1) in Theorem 1.

Theorem 1 (Completeness, ZK, SE). The variation of Groth16 described
in Fig. 1, guarantees (1) perfect completeness, 2) perfect zero-knowledge and 3)
simulation-extractability in the asymmetric Generic Group Model.

Proof. Perfect completeness and perfect zero-knowledge are obvious and the
proof is omitted. Knowledge extractability is proven by reduction (in the GGM)
to the knowledge soundness of Groth16. The reduction works in two steps (sim-
ilarly to [4], although the proof of each of these steps is different):

Step 1. Extraction of the DLOG of δ′.
Step 2. Reduction to the Knowledge Soundnesss of Groth16.

Proof of Step 1) Suppose A has made queries x1, · · · ,xv to Sim(ts, ·), and
received answers {πj = ([Aj ]1, [Bj ]2, [Cj ]1, [Dj ]1, [δj ]2)}v

j=1. Let Q′ be the union
of elements in the crs together with those from the replies of Sim(ts, ·); namely,

Q
′
:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[α, β, δ, {x
i}n−1

i=0 ,

{uj(x)β + vj(x)α + wj(x)}l
j=0,

{ uj(x)β + vj(x)α + wj(x)

δ
}m
j=l+1,

{x
i
t(x)/δ}n−2

i=0 , γt(x)/δ]1, [β, δ, {x
i}n−1

i=0 ]2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∪

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

{[
Aj , Cj :=

AjBj − icj − αβ

δj
,

Dj :=
t(x)(γ + mj)

δj + mjδ

]

1

[Bj , δj ]2, mj
}v
j=1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where icj =
∑l

i=0 aj
i (ui(x)β+vi(x)α+wi(x)), xj = (aj

1, . . . , a
j
l ), and mj ∈ Zp the

message that simulator receives from the hash function for each Aj , Bj , Cj , δj .
We assume A has produced the elements (A,B,C,D, δ′) such that A · B ≡

C · δ′ +
(∑l

j=0 aj(uj(x)β + vj(x)α + wj(x))
)

+ αβ , for m := H([A]1 ‖ [B]2 ‖
[C]1 ‖ [δ′]2), D(δ′ + δm) = t(x)(m + γ). Let Q′

1 be the elements of Q′ in G1 and
Q′

2 the elements in G2. Since the adversary is generic it has constructed these
elements as a linear combination of the elements in Q′ which are in the relevant
group (i.e. element of Q′

1 in G1 for A,C,D and Q′
2 for B, δ′) and we can extract

the coefficients of this linear combination.
First, we prove that A has knowledge of the DLOG of δ′ w.r.t. δ. From the

second verification equation we know that D = t(x) γ+m
δ′+mδ . On the other hand,

from adversary A we can recover a vector kD with the coefficients that it has
used to construct D, that is, D =

∑
q∈Q′

1
kD,q q. Equating these two expressions,

t(x)(m + γ) = (
∑

q∈Q′
1

kD,q q)(δ′ + mδ), (1)

where δ′ =
∑

q∈Q′
2
kδ′,q q for another vector of coefficients kδ′ . The terms which

include γ in both sides of the equation must be the same.
On the other hand, by assumption, in the asymmetric GGM, the term δ′ is

constructed as a linear combination of elements in Q′
2 and therefore δ′ + δm is

independent of γ. Then, keeping only the terms with γ in Eq. (1), we obtain

t(x)γ = kD
γt(x)

δ
(δ′ + mδ) +

∑v

j=1
kD,j

γt(x)
δj + mjδ

(δ′ + mδ). (2)
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Dividing both sides of the equation by t(x)γ and defining kD,0 = kD, δ0 = δ′,
m0 = 0, we obtain the following equivalent equation:

1 =
(∑v

j=0
kD,j

1
δj + mjδ

)

(δ′+mδ) =
∑v

j=0
kD,j

∏v
i=0,i �=j(δi + miδ)
∏v

i=0(δi + miδ)
(δ′+mδ)

⇔
∏v

i=0
(δi + miδ) = (δ′ + mδ)

(∑v

j=0
kD,j

∏v

i=0,i �=j
(δi + miδ)

)
. (3)

It follows that the term δ′ + mδ must divide the left side of Eq. (3). Therefore,
there exists some index j∗ and k ∈ Zp such that δ′ + mδ = k(δj∗ + mj∗δ). Now,
dividing Eq. (3) by (δj∗ + mj∗δ), we come to the following expression:

0 = (1−k ·kD,j∗)
∏v

i=0,i �=j∗(δi +miδ)−k ·
∑v

j=0,j �=j∗ kD,j

∏v

i=0,i �=j
(δi +miδ).

Since all summands are linearly independent polynomials, k = k−1
D,j∗ , and

kD,j = 0 if j �= j∗. We distinguish two cases: (1) δ′ + δm = kδ, in which case we
can extract the DLOG of δ′ as k −m as wanted, or (2) δ′ + δm = k(δj∗ +mj∗δ),
in which case, from Eq. (1) and putting everything together, we have that:

t(x)(m + γ) = kD,j∗
(γ + mj∗)

(δj∗ + mj∗δ)
(δ′ + mδ) = kD,j∗k−1(γ + mj∗)t(x) = (γ + mj∗)t(x).

This implies that m∗
j = m is a collision of H.

Proof of Step 2) We show that the elements A,B,C do not use the elements
of the simulated proofs, say V := {[Aj ]1, [Bj ]2, [Cj ]1, [Dj ]1, [δj ]2}v

j=1, and then,
with the knowledge of ζ such that δ′ = ζδ, we can reduce our proof to the
knowledge soundness proof of Groth16 [6], since [A]1, [B]2, [Cζ]1 is a valid proof
of Groth16. For this, we need to argue that A,B,C cannot have been constructed
from any of the elements of the queries. To prove that A,B,C are not constructed
from the elements [Aj ]1, [Bj ]2, [Cj ]1, [δj ]2, we follow the exact same reasoning as
Bowe and Gabizon [4] in the GGM and we omit the details. Next, we prove that
to construct A,C the prover cannot have used any of the Dj terms, which are
the new elements in our proof.

Assume A has been generated from some Dj , so the term t(x)(mj+γ)
δj+mjδ appears

in the expression of A generated from Q′
1 with the corresponding coefficient

different from 0. Observe that the verification equation contains the term αβ
that cannot be manipulated because it is fixed in the crs, and it should be
produced by the term AB because β ∈ Q′

2 and β is independent of δ′ = ζδ. In
that case, the product AB would contain a term t(x)(mj+γ)

δj+mjδ β, but this cannot be
cancelled out by any of the other terms in the equation. Indeed, this term cannot
appear in αβ, or in the sum of public values of ai. Thus, the only possibility is
that it appears in Cδ′. However, since β is independent of δ′, it should appear
in C, but t(x)(mj+γ)

δj+mjδ β cannot be computed from elements in Q′
1.
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If Dj appears in C, then the term Cδ′ includes t(x)(mj+γ)
δj+mjδ δ′. Neither the term

αβ nor the sum of public values can include it, so it can only appear in AB.
Since δ′ ∈ Q′

2, then A would contain Dj , which we ruled out previously. 	


4 Conclusion

Over the last few years, various zk-SNARKs have been proposed that achieve
simulation extractability [1,4,7,10], which is a requirement for zk-SNARKs to
generate non-malleable proofs. In this paper, we revised the SE variation of
Groth16 proposed in [4] and presented a new one. Our construction requires 4
pairings in verification, instead of 5 in [4], and also avoids ROs in exchange for
using a collision resistant hash function. It has a more efficient prover, crs size,
and proof size in comparison with [1], that has also 4 pairings in verification.
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Abstract. Oblivious Transfer (OT) is a fundamental cryptographic pro-
tocol that finds a number of applications, in particular, as an essen-
tial building block for two-party and multi-party computation. We con-
struct the first universally composable (UC) protocol for oblivious trans-
fer secure against active static adversaries based on the Computational
Diffie-Hellman (CDH) assumption. Our protocol is proven secure in the
observable Global Random Oracle model. We start by constructing a
protocol that realizes an OT functionality with a selective failure issue,
but shown to be sufficient to instantiate efficient OT extension protocols.
In terms of complexity, this protocol only requires the computation of
6 modular exponentiations and the communication of 5 group elements,
five binary strings of security parameter length, and two binary strings
of message length. Finally, we lift this weak construction to obtain a pro-
tocol that realizes the standard OT functionality (without any selective
failures) at an additional cost of computing 9 modular exponentiations
and communicating 4 group elements, four binary strings of security
parameter length and two binary strings of message length. As an inter-
mediate step before constructing our CDH based protocols, we design
generic OT protocols from any OW-CPA secure public-key encryption
scheme with certain properties, which could potentially be instantiated
from more assumptions other than CDH.

1 Introduction

Oblivious transfer (OT) [26,37] is a fundamental cryptographic primitive that
serves as a building block for a number of interesting applications, such as secure
two-party and multi-party computation. In this work, we mainly focus on 1-
out-of-2 string oblivious transfer, which is a two-party primitive. In this flavor
of OT, the sender Alice inputs two strings m0 and m1, and the receiver Bob
inputs a choice bit c, obtaining mc as the output. Bob must not be able to learn
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m1−c, while Alice must not learn c. Since oblivious transfer is normally used
within other protocols as a primitive, it is desirable to ensure that its security is
guaranteed even under arbitrary composition.

The Universal Composability (UC) framework [7] is the most widely used
methodology for analyzing protocol security under arbitrary composition. OT
protocols UC-secure against static malicious adversaries can be designed under
several computational assumptions, such as: Decisional Diffie-Hellman (DDH)
[28,36], strong RSA [28], Quadractic Residuosity (QR) [36], Decisional Lin-
ear (DLIN) [16,32], Decisional Composite Residuosity (DCR) [13,32], McEliece
Assumptions [19], low noise Learning Parity with Noise (LPN) [18] and Learning
with Errors (LWE) [36]. Furthermore, there exist constructions based on sim-
ple generic primitives such as enhanced trapdoor functions [11] and public-key
encryption plus semi-honest stand alone oblivious transfer [31], which mostly do
not achieve the same efficiency as the constructions that leverage properties of
specific computational assumptions.

It is a well-known fact that UC-secure OT protocols require a setup assump-
tion [9]. Coincidentally, most of the UC-secure OT protocols (including the afore-
mentioned ones) are based in the Common Reference String (CRS) model, where
the parties are assumed to have access to a string randomly sampled from a
given distribution before execution starts. While this setup assumption allows
for the construction of efficient UC-secure OT protocols under a number of
assumptions, questions have been raised about its practicality [10,14], since a
local CRS is not readily available for a real world implementation of a protocol.
Notice that OT can be UC-realized under a number of alternative setup assump-
tions, such as the public-key infrastructure model [15], the random oracle model
(ROM) [3,5], noisy channels [24], tamper-proof hardware [23,25,33]. However,
these models still require each instance of the protocol to access a local instance
of the setup assumption. Informally, it means that each instance of the protocol
uses an instance of the ideal functionality representing the setup assumption
that is independent from all other instances and accessible only to the parties
participating in the protocol execution but not to the environment.

Assuming that each protocol instance has local access to an independent
setup in order to obtain secure composition is far from optimal and results in
several issues that have been pointed out in previous works [4,8,10]. In particular,
assuming the existence of independent random oracles (RO) for each protocol
instance contradicts the common practice of replacing a random oracle by a
standardized hash function, which is freely accessible and used by everybody.
Such issues were first analyzed and addressed by Canetti et al. [8], who proposed
the “Generalized UC model”, where it is assumed that the instance of the trusted
setup is globally available (and therefore also accessible by the environment) and
used by all protocol instances. This formalism was subsequently extended to the
random oracle setting by Canetti et al. [10], who define a global random oracle
model, where a single instance of the random oracle FgRO is directly accessible by
all parties, the adversary and the environment. Such a model precludes the use
of proof techniques that require the simulator to “program” the random oracle’s
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answers to a given query, which are usually employed in random oracle based
constructions. UC protocols based on a local programmable CRS also suffer from
issues similar to those of local programmable ROs [10], and formally the security
guarantees for protocols based on local setups (e.g. local CRS or programmable
RO) only hold if a new fresh setup is available for each individual instance
of the protocol, which is unrealistic. It is not known how to generate even a
single CRS without heuristics, let alone a fresh one for each execution. Quoting
Canetti et al. [10] on the strength of the global random oracle model: “This
model provides significantly stronger composable security guarantees than the
traditional random oracle model of Bellare and Rogaway [3] or even the common
reference string model”. Note that more than one trusted setup instance can
be available (in our construction we use 3 instances of global RO), but they
should be globally available and not local for a protocol instance. Surprisingly,
Canetti et al. [10] showed that using FgRO as a setup assumption it is possible
to construct universally composable DLOG based commitments and DDH based
two-party computation and non-interactive secure computation secure against
static malicious adversaries. Recently, new results in the global ROM were proven
assuming certain relaxations of the model [6]. However, no efficient oblivious
transfer protocol in the global random oracle model has been proposed so far.

1.1 Our Contributions

We first propose a generic protocol for universally composable oblivious trans-
fer secure against active static adversaries in the global random oracle model
of [10]. The central building block of this construction is a One-Way Chosen
Plaintext Attack (OW-CPA) secure public-key encryption (PKE) scheme with a
number of properties. We show that such a scheme can be efficiently instantiated
under the Computational Diffie Hellman (CDH) assumption. Our results can be
summarized as follows:

– The first UC-secure OT protocol based on the CDH assumption.1

– The first UC-secure OT protocol in the Global Random Oracle model [10] that
achieves efficiency for single executions (without OT extension) comparable
to the most efficient previous work [36], which requires a programmable CRS.2

In order to obtain a protocol based on an assumption as weak as CDH, we
introduce novel simulation techniques for extracting choice bits and messages in
the simulation without resorting to programming the random oracle, which is
not possible in the global random oracle model of Canetti et al. [10]. Notice that
previous works required stronger computational assumptions (e.g. DDH [5,36])
even though they relied on stronger local setup assumptions (e.g. CRS [36] and
programmable random oracles [5]). Hence, in comparison to such previous works,
1 Döttling et al. [22] proposed an independent UC secure OT protocol in the CRS

model with other techniques that yield CDH instantiations.
2 The DDH based NISC of [10] is orders of magnitude less efficient than our approach

and the protocol [12] has been introduced recently as independent work.
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our results improve on both the computational and setup assumptions required
for UC-secure OT.

In terms of efficiency, our protocols compare favorably to previous works
based on stronger assumptions. In the setting where one wishes to execute a
large number of OTs through OT extension, the costs of each seed OT with our
CDH based protocol are only the computation of 6 modular exponentiations and
the communication of 5 group elements, 5 binary strings of security parameter
length, and 2 binary strings of message length. In the setting where few OTs
are needed, our CDH based protocol requires 15 modular exponentiations and
the communication of 9 group elements, 9 binary strings of security parameter
length, and 4 binary strings of message length. We remark that, in contrast to
previous works based on local setup assumptions, our protocols can be readily
implemented while retaining their security properties by substituting the global
random oracle by an extensively tested cryptographic hash function (e.g. SHA3).

As an intermediate step towards our CDH based construction, we first design
a generic protocol based on a public-key encryption scheme with certain prop-
erties. We start by constructing a generic protocol that realizes an OT func-
tionality that captures a selective failure issue, which is nevertheless sufficient
for instantiating efficient OT extension protocols as shown in [21]. Interestingly,
our protocol achieves high efficiency, requiring only one key generation oper-
ation, two encryption operations and one decryption operation, apart from a
few calls to the random oracle. In terms of communication, our protocol only
requires the transfer of one public-key, two ciphertexts, five binary strings of
security parameter length, and two binary strings of message length. Later on,
we obtain a generic protocol that realizes the standard OT functionality (without
any selective failure) by augmenting our original protocol with four encryptions,
one decryption, two ciphertexts, two binary strings of security parameter length
and two binary strings of message length. If hundreds of OTs are needed, our
OT with selective failures represents a new option of base OT for use with OT
extension schemes. If only tens of OTs are needed, our OT without selective
failures is a good option for usage. Besides yielding a CDH based instantiation,
these generic protocols can be potentially instantiated under other assumptions,
paving the way to post-quantum secure constructions of UC-secure OT under
lattice and coding based assumptions.

1.2 Related Works

The global random oracle model has been established by Canetti et al. in [10],
where they also build UC-secure commitments, two-party computation and non-
interactive secure computation (NISC) secure against static malicious adver-
saries. In their construction of NISC in the global ROM, they state that a natu-
ral way to construct such a protocol would be to instantiate existing approaches
based on 2-round OT with a global ROM version of the originally CRS based
UC-secure OT protocol by Peikert et al. [36]. However, they observe that there
are significant challenges in obtaining such a global ROM version of the protocol
by Peikert et al., and instead construct a one-side simulatable OT protocol that
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is only UC-secure against a malicious receiver. Their solution is not generic but
intrinsically based on DDH via non-black-box use of the OT protocol of [36], only
implying 2-round UC OT based on DDH, and with communication/computation
costs several orders of magnitude higher than ours. On the other hand, ours is the
first UC OT in the GRO built in a black-box way from a generic primitive (a PKE
that we define), yielding the first UC OT based on CDH (a weaker assumption)
while achieving much lower computation/communication costs. Even though the
global ROM was recently revisited in [6], allowing for relaxations such as pro-
gramming the random oracle in specific situations, no new results related to
oblivious transfer were proposed in this relaxed model.

The idea of constructing OT using two public-keys—the “pre-computed” one
and the “randomized” one dates back to early days of OT development [2,26].
Naor and Pinkas [35] presented an improved stand alone CDH-based protocol in
the (local) random oracle model under the same approach that is proven secure
in the half-simulation paradigm. A recent result by Friolo et al. [27] shows how
to construct 4 round fully simulatable OT from key agreement protocols with
certain properties without requiring setup assumptions, which yields a protocol
based on CDH. However, their results fundamentally fall short of UC security
(since UC-secure OT protocols necessarily require a setup assumption [9]) and
cannot be easily adapted to this setting.

We remark that the “Simplest OT” protocol [14] and the protocol by Hauck
and Loss [30] have been found to suffer from a number of issues [5,29] and are
not UC secure. The CDH based protocol of [21] only realizes an OT functionality
with a selective failure (as our first simple construction) and it is unclear how to
use it to realize the standard OT functionality (without selective failure). The
UC OT protocol of [1] can also be instantiated from a similar generic public key
encryption scheme, for which a CDH instantiation is presented (among other
assumptions). However, in order to prove the security of the construction of [1],
it is also necessary to assume that the public key encryption scheme has circular
security, which is an ad-hoc assumption not proven under CDH.

Independent and Concurrent Works: Döttling et al. [22] proposed a generic
round optimal UC-secure OT protocol in the CRS model that can be instantiated
from CDH. However, even though their protocol solves the important problem
of achieving round optimality, it has computational and communication com-
plexities orders of magnitude higher than our protocol, making it impractical.
These overheads are intrinsic to the use of generic zero-knowledge proofs and
garbled circuits in their construction. Canetti et al. [12] introduced a CDH based
OT protocol that is UC-secure in the Global Random Oracle model. Similarly
to our initial result, they focus on obtaining OT with selective failures in order
to achieve better efficiency when using their protocol as basis for OT extension.
However, differently from our final result, they do not show how to eliminate
selective failures in their protocol without using OT extension.
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1.3 Our Techniques

At a high level, we start by building a simple generic protocol that realizes a
weak version of the OT functionality, which allows for a selective failure attack.
Starting from this weak flavor of OT is useful because it allows us to showcase
our techniques more clearly while still being useful for performing OT exten-
sion, which results in an unlimited number of standard OTs (without selective
failures) at very high efficiency. We then lift our protocol with selective failures
to a generic protocol that realizes the standard OT functionality by leveraging
subtleties of the first, simpler, construction. The central building block for both
protocols is a public-key encryption (PKE) scheme satisfying a number of prop-
erties, which we construct based on the CDH assumption departing from the
ElGamal cryptosystem. In order to provide some intuition on the design of our
schemes, we informally describe properties we require from our PKE scheme and
discuss how they are used to build our protocols:

– Property 1 (informal): Let the public-key space PK form a group with
operation denoted by “�”. Then, for the public-keys (pk0, pk1), such that
pk0 � pk1 = q, where q is chosen uniformly at random from PK, one can-
not decrypt both ciphertexts encrypted using pk0 and pk1, respectively. In
particular, when a public/secret-key pair (pkc, skc) is generated, the above
relationship guarantees that pk1−c that is chosen to satisfy the constraint
pk0 � pk1 = q is “substantially random”, so that learning the messages
encrypted with pk1−c is hard.

– Property 2 (informal): pk obtained using the key generation algorithm is
indistinguishable from a random element of PK. Note that we assume in this
work that not all the elements of PK may represent valid public-keys.

– Property 3 (informal): The PKE scheme must be “committing”, meaning
that it must be impossible to generate two pairs of randomness and plain-
text messages (r0,m0) and (r1,m1) with m0 �= m1 such that encrypting m0

with randomness r0 under a uniformly random public-key pk yields the same
ciphertext as encrypting m1 with randomness r1 under the same public-key.

– Property 4 (informal): Property 3 only holds for key pairs generated accord-
ing to the key generation algorithm or picked at random, but not for arbi-
trary key pairs, which could be crafted to be “non-committing”. Intuitively,
this property says that encrypting a message under such an arbitrary “non-
committing” public key will also cause some message bits to be lost, which
will come in handy in the security proof.

– Property 5 (informal): The PKE scheme has a witness-recovering decryp-
tion algorithm that outputs the randomness used to generate the decrypted
ciphertext along with the plaintext message.

A Toy Example: Consider a very simple protocol where the receiver generates
a key pair (pkc, skc), queries a global RO with a random seed value s to obtain q,
computes pk1−c such that pk0 � pk1 = q, and sends pk0 and s to the sender. The
latter recomputes pk1 from pk0 and s with the help of the RO and uses the public-
keys to encrypt random seeds. The sender then uses these seeds to generate
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one-time pads (using the global RO) that she uses to encrypt her messages,
sending both the PKE ciphertexts containing the seeds and the one-time pad
encryptions of the actual messages to the receiver. The receiver can retrieve the
seed encrypted under pkc (since he has skc), compute the one-time pad with the
help of the global RO and retrieve the message associated with his choice bit
c. Intuitively, Property 2 now prevents the sender from learning the choice bit,
while Property 1 ensures that the receiver learns at most one of the inputs.

While this simple protocol intuitively implements a stand alone oblivious
transfer, it is hard to construct a simulator to prove it UC-secure in the global
RO model. If programming the RO was allowed, the simulator could program
the answer of the RO to a query s in such a way that it knows the secret keys
corresponding to both pk0 and pk1, allowing it to extract the messages from a
corrupted sender. In the case of a corrupted receiver, the simulator could wait
for the RO to be queried on one of the one-time pad seed (extracting the choice
bit), retrieve the message associated to that choice bit and program the answer
of this RO query in such a way that the one-time pad encryption related to that
seed decrypts to the message obtained from the OT functionality. However, the
global RO model precludes us from using any of these techniques. Instead, we
develop novel techniques for extracting both a corrupted receiver’s choice bit
and a corrupted sender’s messages solely by observing global RO queries.

OT with Selective Failures: As a starting point, we design a protocol that
UC-realizes a weaker version of the OT functionality, which captures a selec-
tive failure attack. This attack allows a malicious sender to try and “guess” the
receiver’s choice bit, only being caught if her guess is wrong. Allowing this selec-
tive failure makes it easier to implement mechanisms used by the simulator to
extract the choice bit from a malicious receiver without the need to program the
random oracle. Even though this protocol has a selective failure issue, it has been
shown in [21] that it is sufficient to instantiate efficient OT extension protocols
such as the one of [34]. Many applications require such a high number of oblivious
transfers that it makes sense to use an actual OT protocol only to seed an OT
extension, which can then be used for an unlimited number of OTs at very low
cost. In order to simulate an execution with a corrupted receiver, we augment
our simple protocol with a challenge-response mechanism inspired by [21] that
forces the receiver to query the global RO in such a way that it reveals its choice
bit to the simulator. In the real world protocol, the adversary can mount a selec-
tive failure attack where it can “guess” the receiver’s choice bit, being caught if
it guesses the wrong bit. However, a simulator who can observe the queries made
to the global RO can easily determine the receiver’s choice bit without resorting
to a selective failure attack. This mechanism works by having the sender pick
two random values p0, p1, compute a challenge ch = H(H(p0)) +H(H(p1)) where
H(·) is the random oracle and send this challenge to the receiver along with
encryptions of p0, p1. The receiver decrypts pc corresponding to its choice bit
and answers with chr = H(H(pc)) + c · ch, which will always be H(H(p0)) when
ch is computed correctly. After receiving chr, the sender provides the receiver
with H(p0) and H(p1), so that it can check that ch was correctly computed and
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that H(pc) is consistent with the value it decrypted. However, a malicious sender
can always guess the receiver’s choice bit and compute ch in such a way that it
will learn the actual choice bit but only be caught if it guesses wrong. Due to
Properties 1 and 3, the simulator can be assured that the query pc done by the
receiver corresponds to its choice bit. The case of a corrupted sender is handled
by a novel technique where the sender is forced to query the global RO in a way
that reveals both of its messages to a simulator who can observe RO queries.
The basic idea is to modify the challenge-response mechanism by having the
sender query the global RO not only with the challenge seed pi but also adding
the public-key pki, and randomness ri used to encrypt pi to the query. Using
Property 5, the receiver can complete the challenge-response mechanism since
it can recover ri used in the encryption of pi. Using Property 3, the simulator
is assured that a malicious sender could only have generated one such query for
each pair of value pi and randomness ri. Hence, the simulator can check which
pairs ri, pi in the list of queries to the global RO results in the ciphertexts sent
by the sender when used as input to an encryption under pki. After extracting
both p0, p1, the simulator detects whether the adversary is trying to guess the
choice bit (as well as the bit being guessed), which it forwards to the function-
ality. Later on, the sender uses the same pi and corresponding randomness ri to
query a different instance of the global RO and obtain a one-time pad used to
encrypt the actual messages it wants to transfer. Hence, the simulator can also
use p0, p1 to extract both messages transferred by a malicious sender.

Eliminating Selective Failures: We are also interested in solving the prob-
lem of directly UC-realizing a standard OT functionality in the observable global
random oracle model. In order to do so, we must eliminate the selective failure
issue of our first protocol. We observe that we can do so by basically running
two instances of our first protocol in parallel with the same public-keys pk0 and
pk1. Notice that these public-keys encode the choice bit, meaning that the same
choice bit is used in both instances. The first instance will be used to extract the
receiver’s choice bit while ensuring a malicious sender cannot learn it through a
selective failure attack. The other instance will be used to execute an oblivious
transfer with the previously extracted choice bit and random messages, which
can be later derandomized through standard techniques. We will run both pro-
tocol instances with a random choice bit, so that the receiver’s actual choice bit
does not leak in case the sender mounts a selective failure attack, which will
be detected causing the execution to abort. In one of these instances, we will
execute the challenge-response mechanism with the additional requirement that
the sender must reveal both p0, r0 and p1, r1, allowing the receiver to be sure
no selective failure attack occurred. With this instance we are able to extract
the receiver’s random choice bit while ensuring that in the second instance the
same bit will be used (because it is encoded in the keys pk0 and pk1, also used
in the second instance). In the second instance, we do not execute the challenge-
response mechanism but use pk0 and pk1 to encrypt a second pair of seeds p̂0, p̂1
with randomness r′0, r

′
1, which the sender queries to another instance of the global

RO to obtain one-time pads for random messages being transferred. Due to Prop-
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erty 3, the simulator can extract p̂0, p̂1 from the queries to the global RO and
retrieve these random messages. At this point we have executed a random obliv-
ious transfer, which is then derandomized to the receiver’s actual choice bit and
the sender’s actual messages using standard information theoretical techniques.

2 Preliminaries

We denote by κ the security parameter. Let y
$← F (x) denote running the

randomized algorithm F with input x and random coins, and obtaining the
output y. When the coins r are specified we use y ← F (x; r). Similarly, y ← F (x)
is used for a deterministic algorithm. For a set X , let x

$← X denote x chosen
uniformly at random from X ; and for a distribution Y, let y

$← Y denote y
sampled according to the distribution Y. We will denote by negl(κ) the set of
negligible functions of κ. We abbreviate probabilistic polynomial time as PPT.

Encryption Schemes: The main building block used in our OT protocol is
a public-key encryption scheme PKE. It has public-key PK, secret-key SK,
message M, randomness R and ciphertext C spaces that are functions of the
security parameter κ, and consists of a PPT key generation algorithm KG, a
PPT encryption algorithm Enc and a deterministic decryption algorithm Dec.
For (pk, sk) $← KG(1κ), any m ∈ M, and c

$← Enc(pk,m), it should hold that
Dec(sk, ct) = m with overwhelming probability over the used randomness.

We should emphasize that for some encryption schemes not all ˜pk ∈ PK are
“valid” in the sense of being a possible output of KG. The same holds for ˜ct ∈ C
in relation to Enc and all possible coins and messages. Our OT protocol uses as
a building block a PKE that satisfies a variant of the OW-CPA security notion:
informally, two random messages are encrypted under two different public-keys,
one of which can be chosen by the adversary (but he does not have total control
over both public-keys). His goal is then to recover both messages and this should
be difficult. Formally, this property is captured by the following definition.

Property 1 (Double OW-CPA Security). Consider the public-key encryption
scheme PKE and the security parameter κ. It is assumed that PK forms a group
with operation denoted by “�”. For every PPT two-stage adversary A = (A1,A2)
running the following experiment:

q
$← PK

(pk0, pk1, st)
$← A1(q) such that pk0, pk1 ∈ PK and pk0 � pk1 = q

mi
$← M for i = 0, 1

cti
$← Enc(pki,mi) for i = 0, 1

(m̃0, m̃1)
$← A2(ct0, ct1, st)

it holds that
Pr[(m̃0, m̃1) = (m0,m1)] ∈ negl(κ).

We also need a property about the indistinguishability of a public-key gen-
erated using KG and an element sampled uniformly at random from PK.
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Property 2 (Pseudorandomness of Public-Keys). Consider the public-key
encryption scheme PKE and the security parameter κ. Let (pk, sk) $← KG(1κ)
and pk′ $← PK. For every PPT distinguisher A, it holds that

|Pr[A(pk) = 1] − Pr[A(pk′) = 1]| ∈ negl(κ).

Moreover, we need the PKE scheme to be committing, meaning that an adver-
sary can only generate two different pairs of randomness and plaintext message
that result in the same ciphertexts when encrypted under a uniformly random
public-key with negligible probability.

Property 3 (Committing Encryption). Consider the public-key encryption
scheme PKE and the security parameter κ. For every PPT adversary A, it holds
that:

Pr

⎡

⎢

⎢

⎣

Enc(pk,m0; r0) = Enc(pk,m1; r1)

∣

∣

∣

∣

∣

∣

∣

∣

pk
$← PK,

(r0, r1,m0,m1)
$← A(pk),

r0, r1 ∈ R,m0,m1 ∈ M,
m0 �= m1

⎤

⎥

⎥

⎦

∈ negl(κ)

Note that if Properties 2 and 3 hold for some PKE, then the modified version
of Property 3 in which pk is chosen using KG also trivially holds. Moreover, we
will need a variation of the committing property stating that even if an adver-
sary is allowed to provide an arbitrary secret and public-key pair, it cannot both
decrypt a ciphertext generated under that public-key and break the standard
committing property. The rationale behind this property is that, for some com-
mitting encryption schemes, an adversary can generate an arbitrary public-key
that breaks the standard committing property. However, in most cases, such a
public-key will also cause plaintext information to be lost, making it impossible
for the adversary to recover the original message from a ciphertext encrypted
under this key with probability 1. This property is formalized in Property 4.

Property 4 (Committing Encryption with Arbitrary Keys). Consider the public-
key encryption scheme PKE and the security parameter κ. For every PPT two-
stage adversary A = (A1,A2) running the following experiment:

(pk, st) $← A1(1κ)
m

$← M, r $← R
ct ← Enc(pk,m; r)
((m′, r′), (m1, r1), . . . , (mn−1, rn−1))

$← A2(ct, st)

it holds that

Pr[m′ = m ∧ r′ = r ∧ (mi, ri) �= (m, r) ∧ ct ← Enc(pk,mi, ri) ∀ i = 1, . . . , n − 1] ≤ 1

n
+ negl(κ).

We require PKE to have a witness-recovering decryption algorithm. Infor-
mally, this property means that the decryption algorithm also recovers the ran-
domness used to generate the ciphertext it takes as input. Witness-recovering
decryption is formally defined in Property 5.
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Property 5 (Witness-Recovering Decryption). A public-key encryption scheme
PKE = (KG,Enc,Dec) has a witness-recovering decryption algorithm Dec if it
takes as input the secret-key sk ∈ SK and a ciphertext ct ∈ C and outputs
either a pair (m, r) for m ∈ M and r ∈ R or an error symbol ⊥. For any
(pk, sk) $← KG(1κ), any m ∈ M, any r

$← R and c ← Enc(pk,m; r), it should hold
that Dec(sk, ct) = (m, r) with overwhelming probability over the randomness
used by the algorithms.

In the full version [17], we prove that Properties 1, 2, 3 and 4 hold for the
ElGamal cryptosystems based on the CDH assumption, yielding an efficient
instantiation of our generic protocol. Even though the ElGamal cryptosystem
does not have a straightforward witness-recovery decryption algorithm, we show
how any OW-CPA secure public-key encryption scheme used on random mes-
sages can be augmented with such a decryption algorithm to achieve Property 5.
This can be done through the encrypt-with-hash paradigm, where the random-
ness used for encryption is obtained by hashing the message being encrypted,
which can be proven secure in the non-programmable random oracle model.

Fig. 1. Functionality FgRO.

Universal Composability in the Global Random Oracle Model: We
analyze our protocol in the UC model with global random oracles as presented
in [10]. We refer interested readers to the original work for more details on the
UC framework [7]. In the UC model with global random oracles, the parties are
assumed to have access to a global random oracle functionality FgRO (see Fig. 1
for details) and interfaces that leak the list of illegitimate queries Q|s to the
adversary. Differently from the basic UC model, the global random oracle model
allows all parties (including the environment) to access a single instance of FgRO.
The FgRO functionality functions as a regular random oracle but is augmented
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with a mechanism for leaking queries performed by parties that are not part
of a given execution. In the UC model parties are identified by a unique pair
of program id (PID) and session id (SID). Queries that are no prepended with
the same SID as the one identifying the party P = (pid, sid) making the query
are added to a list of illegitimate queries that can be requested by instances
of functionalities whose session id match the one in the query. This mechanism
allows the simulator to learn queries made by the environment or adversary but
keeps the queries made by honest parties secret (as honest parties will follow
the protocol and prepend their queries with the correct SID). Moreover, the
functionalities in the global random oracle model take into consideration the
existence of this list of illegitimate queries, requesting it from FgRO and handing
it to the adversary, if requested by the adversary. Our construction will actually
use three instances of FgRO: FgRO1 with range PK, FgRO2 with range {0, 1}λ

and FgRO3 with range {0, 1}κ.
We consider a static malicious adversary. I.e., it can deviate from the pre-

scribed protocol in an arbitrary way, but has to corrupt the parties before the
execution starts.

Fig. 2. Functionality Fλ
SFOT in the global random oracle model.

Oblivious Transfer: The functionality Fλ,�
OT that provides � instances of the

1-out-of-2 string (of length λ) oblivious transfer in the FgRO-hybrid model is
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presented in the full version [17]. This work focus on obtaining a weaker form
of oblivious transfer that allows selective failure attacks, aiming for the same
type of weaker OT as in Doerner et al. [21]. The ideal functionality Fλ

SFOT for 1-
out-of-2 string oblivious transfer with selective failure in the FgRO-hybrid model
is described in Fig. 2. Essentially, the sender is given the option of trying to
guess the choice bit of the receiver. If she makes a wrong guess, the cheating
is detected and the execution aborts. If she makes a right guess, she learns the
choice bit and nothing is detected by the receiver. As proved by Doerner et al.
in the full version of their work [20], Fλ

SFOT can be used as the base OTs in the
OT extension protocol of Keller et al. [34] to UC-realize Fλ,�

OT.

Lemma 1. The OT extension protocol of Keller et al. [34] UC-realizes Fλ,�
OT in

the Fλ
SFOT,FgRO-hybrid model.

Proof. This follows directly from Lemma D.3 of [20], which proves that the first
part of the OT extension protocol UC-realizes the correlated OT with errors
functionality FCOTe in the Fλ

SFOT,FgRO-hybrid model, and the reduction from
Fλ,�

OT to FCOTe using the remaining steps of the OT extension protocol [34].

3 The Generic Protocol

Our protocol uses as a building block a public-key encryption scheme that sat-
isfies Properties 1, 2, 3, 4 and 5 (defined in Sect. 2). The basic high-level idea is
that Bob picks two public-keys pk0, pk1 such that he only knows the secret-key
corresponding to pkc (where c is his choice bit) and hands them to Alice. She
then uses the two public-keys to transmit two messages in an encrypted way, so
that Bob can only recover the message for which he knows the secret-key skc.

A crucial point in such schemes is making sure that Bob is only able to
decrypt one of the messages. In order to enforce this property, our protocol relies
on Property 1 and uses the random oracle to force the element q to be chosen
uniformly at random from PK. After generating the pair of public and secret-key
(pkc, skc), Bob samples a seed s, queries the random oracle FgRO1 with s to obtain
q, and computes pk1−c such that pk0 � pk1 = q. Bob then hands the public-key
pk0 and the seed s to Alice, enabling her to also compute pk1. Since the public-
keys are indistinguishable according to Property 2, Alice learns nothing about
Bob’s choice bit. Next, Alice picks two uniformly random strings p0, p1, queries
them to the random oracle FgRO2 obtaining p̃0, p̃1 as response, and then she
computes one-time pad encryptions of her messages m0,m1 as m̃0 = m0 ⊕ p̃0 and
m̃1 = m1 ⊕ p̃1. Alice also computes ct0 ← Enc(pk0, p0; r0), ct1 ← Enc(pk1, p1; r1)
and sends (m̃0, m̃1, ct0, ct1) to Bob. Bob can use skc to decrypt ctc obtaining pc.
He then queries pc to the random oracle FgRO2 obtaining p̃c as response, and
retrieves mc = m̃c ⊕ p̃c. Due to Property 1, Bob will not be able to recover p1−c

in order to query it to the random oracle and to decrypt m̃1−c. Therefore, the
security for Alice is also guaranteed.
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Fig. 3. Protocol πSFOT

Even though this simple protocol seemingly performs an oblivious transfer,
it poses significant challenges for a proof in the Global Random Oracle model of
Canetti et al. [10], where the simulator cannot program the answers to random
oracle queries. In the case of a malicious sender, the simulator would need to
generate a seed s and public key pk0 such that it knows both secret keys asso-
ciated to the resulting public keys pk0 and pk1, which it needs to know in order
to extract the messages m0 and m1. However, while this is easy if the simulator
could program an arbitrary random oracle answer given the seed s, it cannot
be done in this model. In the case of a malicious receiver, Property 2 ensures
that the simulator cannot learn any information about the choice bit c before
the adversary queries the random oracle on pc, which only happens after the
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simulator has sent its last message. The simulator could possibly program the
random oracle answer given pc so that the result is mc (received from the OT
functionality), but this is not possible in this setting. In order to circumvent
these challenges, we augment the simple protocol described before with mecha-
nisms that allow the simulator to extract the choice bit c and messages m0 and
m1 without resorting to programming the random oracle.

In order to obtain security against a malicious receiver, we use a challenge-
response mechanism that follows the approach of Doerner et al. [21]. Basically,
before carrying out the actual transfer, Alice queries (pk0, p0, r0) and (pk1, p1, r1)
to the random oracle FgRO3 (note that this oracle is different from FgRO2) obtain-
ing p′

0, p
′
1, and then queries p′

0, p
′
1 to the random oracle FgRO3 obtaining p′′

0 , p′′
1 .

Alice fixes the challenge as ch ← p′′
0 ⊕ p′′

1 and sends ch to Bob. Bob queries
FgRO3 with (pkc, pc, rc), which is possible because PKE has witness-recovering
decryption according to Property 5, obtaining p′

c and then with p′
c obtaining

p′′
c . Bob returns p′′

c ⊕ (c · ch) to Alice, who checks if the returned value is equal
to p′′

0 . Alice then sends p′
0, p

′
1 to Bob, who checks if these values are compatible

with the values he previously computed and ch. After receiving a valid response
from Bob, Alice proceeds with the transfer. A crucial aspect of this mechanism
is that in order to obtain p′′

c , Bob is forced to first issue a query associated to its
choice bit c to the random oracle, allowing for extraction. In the proof, the sim-
ulator can extract c solely by observing the adversary’s queries after it receives
the challenge, allowing it to obtain mc from the OT functionality and prepare
the last message to the adversary accordingly. This mechanism allows selective
failure attacks, but the resulting scheme fulfills the requirements to be used as
base OTs in the OT extension scheme of Keller et al. [34] (see Sect. 2).

Instead of querying FgRO2 with p0, p1, we query it with (pk0, p0, r0) and
(pk1, p1, r1) to obtain p̃0, p̃1. These queries of the form (pki, pi, ri) to FgRO2 and
FgRO3 allow the simulator to extract both of the corrupt sender’s messages solely
by observing the queries to the random oracle. In the simulation, the simulator
reconstructs ciphertexts ĉtj = Enc(pki, p̂j , r̂j) from all random oracle queries of
the form (pki, p̂j , r̂j), looking for a ciphertext ĉtj that matches ciphertext cti
(for i ∈ {0, 1}) in the adversary’s message. Having found these ciphertexts the
simulator can proceed to recover each message mi. An adversary could try to
confuse the simulator by making two different queries to the random oracle that
pass the tests above. However, this is not possible due to Properties 3 and 4.

Protocol πSFOT is described in Fig. 3 and its security if formally stated in
Theorem 1, which we prove in the full version [17]. A CDH based instantiation
is described in the full version [17].

Theorem 1. Let PKE be a public-key encryption scheme that satisfies Proper-
ties 1, 2, 3, 4 and 5. When instantiated with PKE, Protocol πSFOT UC-realizes
functionality Fλ

SFOT with security against static malicious adversaries in the
global random oracle model.
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4 Realizing Fλ,1
OT Directly

Our previous generic protocol can be modified to directly realize the standard
1-out-of-2 OT functionality Fλ,1

OT without any selective failure issues, instead
of first realizing Fλ

SFOT and then employing the OT extension of Keller et al.
to realize Fλ,�

OT. However, we will rely directly on the specific CDH based PKE
constructed in the full version [17] instead of a generic PKE with Properties 1, 2,
3, 4 and 5. This is necessary since the simulator will now need to extract messages
encrypted under this PKE that it cannot extract by simply observing queries
to the random oracle instances used in the protocol but that can be extracted
by observing queries to the random oracle instance used by this specific PKE
construction.

In order to eliminate the potential selective failure from our first protocol,
we need to provide Bob with a proof that Alice has used exactly the values p0, p1
contained in ciphertexts ct0, ct1 to generate challenge ch. The main idea is to
use two instances of our original protocol that are run using the same public
keys pk0, pk1 (encoding the same choice bit). One of them is used to execute the
challenge-response mechanism and the other is used to execute a random OT,
which can be later derandomized. In our previous protocol, Alice only reveals
the outputs of FgRO3 upon being queried with (sid, pki, pi, ri), which only allows
Bob to check that these were the values used in the challenge with probability
1
2 . In order to prove that those values were indeed used, we will leverage the
committing property (Property 3) of the underlying cryptosystem and have
Alice reveal p0, p1, r0, r1 to Bob upon getting a valid response to the challenge.
Using these values, Bob can recompute the challenge (checking that it matches
ch received from Alice) and check that cti

$← Enc(pki, pi; ri), for i = {0, 1}. If
those checks fail, the receiver aborts but, if they succeed, it is assured by the
committing property that those values were used in computing ct0, ct1 and ch
(meaning the choice bit was not leaked). Having both p0, p1 revealed to Bob,
we will need to have Alice generate new p̂0, p̂1 and corresponding ĉt0, ĉt1 to
complete the OT as in our first protocol. However, notice that this protocol still
leaks Bob’s choice bit to an adversary who mounts a successful selective failure
attack, even though the attack is detected and the protocol is aborted. In order
to deal with this, Bob uses a random choice bit to execute a random OT that is
derandomized after Bob is certain no selective failure attack occurred.

The simulator for a corrupt Alice does not have to extract the “guess” bit of
the adversary, just acting as an honest Bob and extracting the messages m0,m1

using the same techniques as the simulator in πSFOT. However, it will need to
extract messages p̂0, p̂1 from the ciphertexts ĉt0, ĉt1 by observing queries to the
random oracle used in the CDH based PKE described in the full version [17]. The
simulator for a corrupt Bob uses the same techniques as the simulator in πSFOT

to extract the choice bit. The difference is that the ciphertexts ct′0, ct
′
1 obtained

from the challenger in the game of Property 1 are given to the adversary as
ctc, ĉt1−c in the reduction showing that an adversary that obtains m1−c when
interacting with this simulator breaks Property 1.
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Fig. 4. Protocol πOT

Protocol πOT is described in Fig. 4 and its security if formally stated in Theo-
rem 2, which we prove in the full version [17]. The CDH based PKE instantiation
is described in the full version [17].
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Theorem 2. Under the CDH assumption, Protocol πOT UC-realizes functional-
ity Fλ,1

OT with security against static malicious adversaries in the global random
oracle model.
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Abstract. Tweakable TWINE (T-TWINE) is the first lightweight dedi-
cated tweakable block cipher family built on Generalized Feistel Struc-
ture (GFS). T-TWINE family is an extension of the conventional block
cipher TWINE with minimal modification by adding a simple tweak based
on the SKINNY’s tweakey schedule. Similar to TWINE, T-TWINE has
two variants, namely T-TWINE-80 and T-TWINE-128. The two variants
have the same block size of 64 bits and a variable key length of 80
and 128 bits. In this paper, we study the implications for adding the
tweak on the security of T-TWINE against the integral cryptanalysis. In
particular, we first utilize the bit-based division property to search for
the longest integral distinguisher. As a result, we are able to perform
a distinguishing attack against 19 rounds using 26 × 263 = 269 chosen
tweak-plaintext combinations. We then convert this attack to key recov-
ery attacks against 26 and 27 rounds (out of 36) of T-TWINE-80 and
T-TWINE-128, respectively. By prepending one round before the distin-
guisher and using dynamically chosen plaintexts, we manage to extend
the attack one more round without using the full codebook of the plain-
text. Therefore, we are able to attack 27 and 28 rounds of T-TWINE-80
and T-TWINE-128, respectively.

1 Introduction

A Tweakable block cipher (TBC) is a symmetric-key cryptographic primitive
that takes an auxiliary input called tweak in addition to the inputs of traditional
block ciphers, plaintext message and cryptographic key [12]. Ideally, a different
tweak value gives randomly chosen and different instant of the permutation
over the message space without needing to change the key which may be costly
in traditional block ciphers. A Tweakable block cipher is a powerful primitive
that can be used in several applications such as disk encryption in which the
repeated same plaintext should be encrypted to different ciphertexts under the
same key. The concept of tweakable block ciphers also allows interesting modes
for authenticated encryption such as OCB3 [11] and Counter-in-Tweak [13].

There are two general approaches to build TBCs: (i) using ordinary block
ciphers through modes of operation, and (ii) dedicated constructions. Both the
LRW and XEX modes of operations [14] are examples of the first approach. For
c© Springer Nature Switzerland AG 2020
S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 485–504, 2020.
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a block cipher with n-bit block, the security of these modes is guaranteed up to
around 2n/2 queries. For a higher level of security, we can use a dedicated TBC
that is built with the tweak concept from the beginning such as Deoxys-BC [9],
SKINNY [1], and CRAFT [2].

Tweakable TWINE (T-TWINE) [15] is the first lightweight dedicated TBC
that is built on Generalized Feistel Structure (GFS). It was built with the goal of
reducing the cost of design, security evaluation, and implementation. Therefore,
the designers decided to reuse a well-designed GFS block cipher, TWINE [20],
and attached an extremely simple tweak scheduling to it. Similar to TWINE, T-
TWINE has two variants namely, T-TWINE-80 and T-TWINE-128. These variants
have the same block size of 64 bits, a tweak of 64 bits, and a variable key length
of 80 and 128 bits.

The security of T-TWINE is evaluated by its designers against distinguish-
ing attacks including differential, linear, impossible differential, and integral
cryptanalysis. Regarding the integral cryptanalysis, they only reported an 11-
round integral distinguisher. Key recovery attacks based on impossible differen-
tial against reduced-round of T-TWINE are presented in [22].

Our Contributions. In this work, we study the security of T-TWINE against
the integral attack. More precisely,

1. We utilize a Mixed-Integer-Linear Programming (MILP) model of the bit-
based division property to search for the longest integral distinguisher in the
chosen tweak, chosen tweak-plaintext, and chosen tweak-ciphertext attack
settings. As a result, we found two 11-round integral distinguishers using a
tweak with only one active nibble in the chosen tweak setting. We also checked
the 11-round distinguisher reported in the design paper and we show that it
is not correct. All the found 11-round distinguishers are verified experimen-
tally. Furthermore, we found several 19-round integral distinguishers in both
chosen tweak-plaintext and chosen tweak-ciphertext settings. This allows us
to attack an extra three rounds more than TWINE which has 16-round inte-
gral distinguisher [24]. The best distinguishing attack can be performed using
26 × 263 = 269 chosen tweak-plaintext combinations.

2. We employ meet-in-the-middle [16] and partial-sum [7] techniques to convert
the best distinguishing attack to key recovery attacks against 26 (27) out of
36 rounds of T-TWINE-80 (T-TWINE-128) by appending 7 (8) rounds after
the disntinguisher.

3. By prepending one round before the distinguisher and using dynamically cho-
sen plaintexts [3], we managed to extend the attack one more round without
using the full codebook of the plaintext. Therefore, we are able to attack 27
and 28 rounds of T-TWINE-80 and T-TWINE-128, respectively.

Table 1 summarizes the complexities of our attacks and contrast them with the
complexities of the impossible differential attacks presented in [22].
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Table 1. Attack results on T-TWINE where CTP denotes chosen tweak-plaintext.

Attack #Rounds Data Time Memory Reference

T-TWINE-80 Imp. diff 25 265.5 CTP 270.86 266 [22]

Integral 26 270.58 CTP 272.62 267.62 Sect. 4.1

27 270.95 CTP 275.79 271.08 Sect. 5.1

T-TWINE-128 Imp. diff 27 264 CTP 2120.83 2118 [22]

Integral 27 271.58 CTP 2109.54 290.58 Sect. 4.2

28 272.27 CTP 2113.38 294.32 Sect. 5.1

Outline. The rest of this paper is organized as follows. In Sect. 2, we briefly
revisit the specifications of T-TWINE and the integral cryptanalysis using the
bit-based division property. The detailed integral distinguishing attacks against
T-TWINE is explained in Sect. 3. In Sect. 4, we describe the key recovery attacks
against 26 and 27 rounds of T-TWINE-80 and T-TWINE-128, respectively. Then,
the details of our attacks against 27 and 28 rounds of T-TWINE-80 and T-
TWINE-128 using dynamically chosen plaintexts are presented in Sect. 5. Finally,
the paper is concluded in Sect. 6.

2 Preliminaries

2.1 T-TWINE Specifications

The following notation is used throughout the rest of the paper:

– K: The 80 or 128 bits master key.
– Kj : The jth nibble of K. The indices of the nibbles begin from 0.
– RKi: The 32-bit round key used in round i.
– RKi

j : The jth nibble of RKi. The indices of the nibbles begin from 0.
– T : The 64-bit tweak.
– Tj : The jth nibble of the tweak T .
– RT i: The 24-bit round tweak used in round i, where RT i ← ti0||ti1||

ti2||ti3||ti4||ti5, and tij is the jth nibble of RT i.
– Xi: The 16 nibbles input to round i. The indices of the round begin from 1.
– Xi

j : jth nibble of Xi.
– x[m]: mth bit of the nibble x where x[0] is the least significant bit.
– ⊕: The XOR operation.
– ||: The concatenation operation.
– Rotz(x): The z-bit left cyclic shift of x.

As we mentioned above, T-TWINE is an extension of the conventional block
cipher TWINE . It takes a tweak of 64 bits as an extra input in addition to a
block of plaintext with 64 bits in order to produce a block of ciphertext using
80 or 128 bits of a secret key. T-TWINE structure consists of three parts: data
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Fig. 1. T-TWINE round function

Table 2. Nibble shuffle π

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

processing which is a slightly modified version of the equivalent part in TWINE
to deal with the extra input, key scheduling function of TWINE, and tweak
scheduling function. The two variants of T-TWINE are the same except in the
key scheduling function.

Data Processing. The round function is based on a variant of Type-2 GFS
[19] with 16 4-bit nibbles as depicted in Fig. 1. It consists of a nonlinear layer
(F -function operations), round tweak XOR, and a diffusion layer which is a 16-
nibble shuffle operation (π, see Table 2). The F -function operation is a round-key
XOR followed by 4-bit Sbox (S, see Table 3). This round function is iterated 36
times in both variants where the diffusion layer is omitted from the last round.

Key Scheduling Function. Each variant of T-TWINE has its own key sched-
ule. The key scheduling function is used to stretch 80/128 bits of the master key
K to 36 32-bit round keys RKi where 1 ≤ i ≤ 36. For more details, see [15,20].

Tweak Scheduling Function. A 64-bit tweak T is used to generate 36 24-bit
round tweaks RT i where 1 ≤ i ≤ 36 using a permutation-based function. Firstly,
the 64-bit tweak T is loaded to 16 4-bit nibbles t1j where 0 ≤ j ≤ 15. In i-th round,
the first 6 nibbles (ti0, . . . , t

i
5) are used as the round tweak RT i, then these nibbles

are shuffled using a 6-nibble permutation πt, s.t. (0, 1, 2, 3, 4, 5) → (1, 0, 4, 2, 3, 5).
After that, all nibbles are shifted by 6 nibbles to construct ti+1

j where 0 ≤ j ≤ 15
as depicted in Fig. 2.

2.2 Integral Cryptanalysis

Integral cryptanalysis was firstly introduced by Daemen et al. in [4] to analyze
the security of the block cipher SQUARE. Subsequently, Knudsen and Wagner
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Table 3. 4-bit Sbox (S) of T-TWINE in hexadecimal form

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 0 f a 2 b 9 5 8 3 d 7 1 e 6 4

Fig. 2. Tweak schedule of T-TWINE

[10] formalized this technique. It is a chosen-plaintext attack and can be per-
formed as follows. Firstly, the cryptanalyst constructs a set of plaintexts that
has a constant value at some bits while the other bits vary through all possible
values. After that, the cryptanalyst calculates the XOR sum of all bits (or some
of them) on the corresponding ciphertext. If it is always 0 irrespective of the
used secret key, these bits are called balanced. This property can be used to
distinguish the block cipher under test form a random permutation.

Bit-Based Division Property. In [21], Todo and Morii proposed the bit-based
division property, which can be used to build a longer integral distinguisher for
block ciphers with block size less than 32 bits. Xiang et al. [23] overcome the
problem of the restriction on the block size using the division trails. They pro-
posed systematic rules to represent the bit-based division property propagation
as a set of Mixed Integer Linear Programming (MILP) constraints. Hence, we
can use MILP solvers to search for a distinguisher.

Definition 1 (Bit-based Division Property [21]). Let X be a multiset whose
elements take a value of Fn

2 . When the multiset X has the division property D1n

K
,

where K denotes a set of n-dimensional vectors whose i-th element takes 0 or 1,
it fulfills the following conditions:

⊕

x∈X

xu =

{
unknown if there exists k ∈ K s.t. u � k,

0 otherwise.

where xu =
∏n

i=1 x[i]u[i], u � k if u[i] ≥ k[i] ∀i, and x[i], u[i] are the i-th bits
of x and u, respectively.

Definition 2 (Division Trail [23]). Let fr denote the round function of an
iterated block cipher. Assume that the input multiset to the block cipher has the
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initial division property D1n

{k}, and denote the division property after i-round
propagation through fr by D1n

Ki
. Thus, we have the following chain of division

property propagations: {k} def= K0
fr−→ K1

fr−→ K2
fr−→ · · · fr−→ Kr. Moreover, for

any vector k∗
i ∈ Ki(i ≥ 1), there must exist a vector k∗

i−1 ∈ Ki−1 such that k∗
i−1

can propagate to k∗
i by the division property propagation rules. Furthermore,

for (k0,k1, . . . ,kr) ∈ K0 × K1 × · · · × Kr, if ki−1 can propagate to ki for all
i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

Using the division trial, the search process for an integral distinguisher is
converted to check if the division trail k0 → · · · → ei (a unit vector whose
i-th element is 1) does exist or not. If it does not exist, then the i-th bit of
r-round output is balanced. This process can be modeled efficiently as an MILP
optimization problem. Further details can be found in [5,17,23].

In the following, we summarize the MILP models of the propagation rules of the
bit-based division property through the basic operations in block ciphers.

– Model for COPY: Let (a) COPY−−−−→ (b1, b2, . . . , bm) denote the division trail
through COPY function, where a single bit (a) is copied to m bits. Then, it
can be described using the following MILP constraints:

a − b1 − b2 − · · · − bm = 0, where a, b1, b2, . . . , bm are binary variables.

– Model for XOR: Let (a1, a2, . . . , am) XOR−−−→ (b) denote the division trail
through an XOR function, where m bits are compressed to a single bit (b)
using an XOR operation. Then, it can be described using the following MILP
constraints:

a1 + a2 + · · · + am − b = 0, where a1, a2, . . . , am, b are binary variables.

– Model for S-boxes: The division property through an S-box can be obtained by
representing the S-Box using its algebraic normal form (ANF) [23]. The divi-
sion trail though an n-bit S-box can be represented as a set of 2n-dimensional
binary vectors ∈ {0, 1}2n which has a convex hull. The H-Representation of
this convex hull can be computed using readily available functions such as
inequality generator() function in SageMath1 which returns a set of lin-
ear inequalities that describe these vectors. We use this set of inequalities as
MILP constraints to present the division trail though the S-box.

3 Integral Distinguishing Attacks

Since T-TWINE is an extension of TWINE which has 16-round integral distin-
guisher using 263 chosen plaintexts [24], in this section we study the effect of
the freedom gained by adding a tweak to the structure. Thereby, we report the
1 http://www.sagemath.org/.

http://www.sagemath.org/
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result regarding the integral distinguishers in the three attack settings: chosen
tweak, chosen tweak-plaintext, and chosen tweak-ciphertext. To this end, we
utilize MILP models of the propagation rules of the bit-based division property
described in the previous section to automate the search process using Gurobi
optimizer [8]. We obtain the best distinguisher in two steps. In the first step, we
look for a distinguisher that covers the maximum number of rounds irrespective
of the data complexity. Then, we try to reduce the data complexity of the longest
one in the second step. We use the following notation to present the status of
each nibble of the tweak, plaintext, and ciphertext:

– C each bit of the nibble is fixed to constant.

– A all bits of the nibble are active.

– Ã all bits of the nibble are active except one arbitrary bit is constant.

– B each bit of the nibble is balanced (the XOR sum is zero).

– U a nibble with unknown status.

Chosen Tweak Setting. In this setting, all the plaintext bits are fixed to con-
stant values and some or all the bits of the tweak are active while the remaining
bits are constant.

In the first step, we set al.l bits of the tweak to active. We then target r
rounds and use our MILP model to search for some balanced bits. If there is at
least one balanced bit, we increase the target rounds to r + 1 and repeat the
search process in the same way. Otherwise, we conclude that the disnguisher with
the maximum number of rounds based on our model covers r rounds. Based on
our evaluation, there is no distinguisher for 12 or more rounds and the longest
distinguisher is an 11-round one. In the second step, we try to reduce the data
complexity of that 11-round distinguisher by minimizing the number of active
nibbles in the tweak. To this end, we start with only one active nibble and if
there is no balanced bits, we progressively increase the number of active nibbles.
Fortunately, we find two distinguishers with only one active nibble as shown
below:

Plaintext C C C C C C C C C C C C C C C C
Tweak C C C C C C C C C C C C C C A C 11R−−→ U U U U U U U B U U U U U U U U
Tweak C C C C C C C C C C C C C C C A 11R−−→ U U U U U B U U U U U B U U U U

It should be mentioned that the designers have reported in [15] a different
11-round integral distinguisher in which the plaintext nibbles are fixed to con-
stant, the three nibbles (5, 10, 11) in the tweak are actives, and the remaining
nibbles in the tweak are fixed to constant. This distinguisher has two balanced
nibbles (0, 11) in the ciphertext side as shown below. However, when we test this
distinguisher using our MILP model with the same input settings, we confirmed
that there is only one balanced nibble (11) in the ciphertext side.
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Plaintext C C C C C C C C C C C C C C C C
Tweak C C C C C A C C C C A A C C C C 11R−−→ B U U U U U U U U U U B U U U U ✗ ([15])

Tweak C C C C C A C C C C A A C C C C 11R−−→ U U U U U U U U U U U B U U U U ✓(Ours)

Since the data complexity for each one of the two 11-round integral distinguishers
we have proposed is 24, we have verified the correctness of them experimentally
to validate our results. Additionally, the data complexity of the 11-round distin-
guisher with the same input settings as the distinguisher reported in [15] is 212,
we also have verified experimentally that it has only one balanced nibble (11) in
the ciphertext side which is consistent with the result using our MILP model2.

Chosen Tweak-Plaintext Setting. In this setting, some of plaintext bits are
active and the remaining bits are constant. For the tweak, some or all bits are
active and the remaining bits are constant.

Since the goal of the first step is to obtain the longest distinguisher, we set
the 64 bits of the tweak and 63 bits of the plaintext to active and the remaining
bit of the plaintext to constant3. We then target r rounds and iterate over the
64 positions of the constant bit until we find some balanced bits or terminate
without finding any. In the first case, we increase the target rounds to r + 1
and repeat the search process in the same way. Otherwise, we conclude that the
disnguisher with the maximum number of rounds based on our model covers r
rounds. In our evaluation, we found that the 19-round distinguisher is the longest
one.

In order to convert the distinguishing attack to a key recovery attack appli-
cable for both variants T-TWINE-80 and T-TWINE-128, the data complexity of
the distinguisher must be less than 280. Therefore, we limit the search process
to find a distinguisher that needs up to 80 active bits.

During the second step, we try to reduce the data complexity by minimizing
the number of active bits in both plaintext and tweak. We follow the technique
described in [18] to reduce the active bits of the plaintext. In particular, we
repeat the previous step for 19 rounds and instead of stopping the search process
if there are some balanced bits, we keep a record of the position of the constant
bit in case of no balanced bits. In our evaluation, there are 32 bits corresponding
to the nibbles (1, 3, 5, 7, 9, 11, 13, 15) that must be active to obtain 19-round
distinguisher and the remaining bits may be active or constant. After that, we
try all the combinations of 2 out of 32 bits that might be constant and check
if the 19-round distinguisher exists. Unfortunately, such distinguisher does not
exist if we set any two bits in the plaintext to constant. Regarding the active
bits reduction in the tweak, we start with only one active nibble and if there is
no distinguisher, we progressively increase the number of active nibbles.
2 The code can be found at:

https://github.com/mhgharieb/Integral-Attack-T-TWINE.
3 The data complexity of plaintext must be less than the full codebook because using

the full codebook of any permutation (a random permutation or a block cipher)
always gives a balanced output.

https://github.com/mhgharieb/Integral-Attack-T-TWINE
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Fig. 3. 104 19-round integral distinguishers in chosen tweak-plaintext setting, where
the three groups consist of 4 × (1 + 1) = 8, 4 × (4 + 1 + 4) = 36, and 4 × (4 + 1 + 1 +
1 + 4 + 1 + 1 + 1 + 1) = 60 distinguishers.

Fig. 4. 104 19-round Integral distinguishers in chosen tweak-ciphertext setting, where
the five groups consist of 20, 28, 8, 32, and 16 distinguishers.

In our evaluation, there are several 19-round integral distinguishers using
tweak with two active nibbles. Moreover, we are able to reduce the active bits to
7 bits for some of them and 6 bits for the distingiusher that we will use during the
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key recovery attacks. Figure 3 summarizes 40 distinguishers with 28 ×263 = 271,
and 64 distinguishers with 27 × 263 = 270 chosen tweak-plaintext combinations.

Chosen Tweak-Ciphertext Setting. In this setting, some of ciphertext bits
are active and the remaining bits are constant. For the tweak, some or all bits
are active and the remaining bits are constant.

We followed the same technique we have used in chosen tweak-plaintext set-
ting and we found that the 19-round integral distinguisher is the longest one.
Like chosen tweak-plaintext setting, the distinguisher does not exist if there are
two constant bits in the ciphertext. Also, there are several two active nibbles
combinations of the tweak that lead to 19-round distinguisher. Moreover, we are
able to reduce, for some of them, the active bits to only 7. Figure 4 summarizes
104 19-round integral distinguishers, 64 of them need 27 × 263 = 270 chosen
tweak-ciphertext combinations and the remaining need 28 × 263 = 271 chosen
tweak-ciphertext combinations.

4 Integral Attacks on T-TWINE

We convert the distinguishing attacks described in the previous section to key
recovery attacks against reduced-round versions of T-TWINE. In particular, we
target 26 and 27 rounds of T-TWINE-80 and T-TWINE-128, respectively, using
the following 19-round distinguisher that needs 6 and 63 active bits of the tweak
and the plaintext, respectively:

Plaintext : (A,A,A,A,A,A,A3,A,A,A,A,A,A,A,A)
Tweak : (C, C, C, C, C, C,A1,3, C, C, C, C, C, C, C,A, C)

↓ 19R
(U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,B)

where A3 means all bits of the nibble are active except bit 3, counted from the
least significant bit, is constant and A1,3 means bits (0 and 2) are active and
bits (1 and 3) are constant.

In the following, we revisit the Meet-in-the-Middle technique [16] and Partial-
Sum technique [7] that we use to enhance the time complexities of our proposed
attacks.

Meet-in-the-Middle Technique. Let Zi
j , (0 ≤ j ≤ 7) denote the output of

the F functions in i-th round of T-TWINE. Consider the 19-round distinguisher
mentioned above, then the nibble X20

15 is balanced (
⊕

X20
15 = 0). Since this

nibble can be expressed as a linear combination of Z20
7 and X21

14 , we can obtain
the following relation ⊕

Z20
7 =

⊕
X21

14

In meet-in-the-middle technique [16], each sum is independently computed
from ciphertexts (e.g., see Fig. 5) and the subkeys used during the computation
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are stored in two different tables indexed by the value of the sum. After that, we
consider the matches between the two tables, in the same manner of the meet-
in-the-middle attack, as candidate subkeys because they satisfy the previous
relation. Since the procedure to obtain both

⊕
Z20
7 and

⊕
X21

14 independently
involves less number of subkeys than the one to obtain

⊕
X20

15 directly, the time
complexity will be improved.

Partial-Sum Technique. Ferguson et al. introduced the partial-sum technique
to improve the time complexity of integral attacks [7]. Suppose the key recovery
procedure during the integral cryptanalysis involves N operations, κ-bit subkey
and 2|I| ciphertexts, then the time complexity of the direct computation will be
N ×2|I|+κ operations. Using the partial-sum technique, this time complexity can
be improved as follows. We firstly store the ciphertexts that appear odd times
in the memory whereas the ciphertexts that appear even times are discarded
since they have no effect on the balanced property. Then, we guess a part of the
subkey (κ1-bit) and partially decrypt the ciphertexts through a single operation
to an intermediate state with |I1|-bit size (that can have up to 2|I1| values) such
that |I1| ≤ |I|. The time complexity of this step is 2|I|+κ1 operations. After that,
we repeat the step of storing the values that appear odd times and partially
decrypting the intermediate state using κi-bit to get another intermediate state
with |Ii|-bit size such that |Ii| ≤ |Ii−1|. The time complexity of the i-th step will
be 2|Ii−1|+κ1+···+κi where I0 is I, and the whole time complexity will be

N∑

i=1

2|Ii−1|+κ1+···+κi <

N∑

i=1

2|I|+κ = N × 2|I|+κ

In the following, we give the details of the key recovery attack against T-
TWINE-80.

4.1 Attack on 26-Round T-TWINE-80

The ciphertexts of 26-round of T-TWINE-80 can be written as X27. The process
of obtaining

⊕
X20

15 involves the following 27 round keys (See Fig. 5):

RK26, RK25
[0,1,2,3,4,5,7], RK24

[0,1,2,6,7], RK23
[0,4,6], RK22

[4,5], RK21
5 , RK20

7

However, we only need to guess 76 bits in 19 round keys and the other 8 round
keys can be computed based on the key schedule as follows:

RK24
0 = RK25

7 ⊕ S(RK26
6 ⊕ (0||CON26

L )), RK24
1 = RK26

5 ,

RK24
2 = S−1(RK26

7 ⊕ RK25
0 ) ⊕ S(RK24

7 ), RK23
4 = RK26

0 ,

RK23
6 = RK26

1 ⊕ (0||CON26
H ), RK22

4 = RK25
0 ,

RK21
5 = RK26

4 , RK20
7 = RK26

6 ⊕ S(RK26
2 ) ⊕ (0||CON26

L ).

where CON26
L and CON26

H are predefined constants.
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Fig. 5. Analysis rounds of T-TWINE-80 where the upper part is used during computing⊕
Z20

7 and the lower part is used during computing
⊕

X21
14 .

Key Recovery Procedure. We firstly construct a data structure where all the
bits of the plaintext X1 are active except the bit X1

6 [3] which is fixed to constant.
For the tweak, the 6 bits T6[0, 2]||T14 are active whereas the other bits are fixed
to constant. We then ask the encryption oracle to obtain the corresponding
ciphertext (X27). After that, we initialize two empty hash tables HZ and HX

with 256 and 240 entries to store the values of
⊕

Z20
7 and

⊕
X21

14 , respectively,
indexed by the round keys used during the computations.
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Since obtaining
⊕

Z20
7 (the upper part of Fig. 5) requires much more com-

putation than obtaining
⊕

X21
14 (the lower part of Fig. 5), we only explain

the procedure to obtain
⊕

Z20
7 . The attack starts by storing the values of

X27
[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15]||T6[0, 2]||T14 that appear odd times in a list called

the state S0 which has a size of up to 266 66-bit values. Then, we guess at the
i-th step a round key (or deduce it based on the key schedule as shown above)
and partially decrypt the values in the state Si−1, then store the values of the
output that appear odd times in a new state Si. For example, we guess at step 1
RK26

2 and partially decrypt X27
4 and X27

5 to obtain X26
5 = X27

5 ⊕S(X27
4 ⊕K26

2 ).
The state size after compression is up to 262 62-bit values. The time complexity
of this step is 24 × 266 = 270 F -function operations. Table 4 summarizes the
steps of the attack procedure.

Finally, we access the hash tables (HZ ,HX) for each 76-bit key, and we con-
sider a 76-bit key as a candidate if the two entries are equal. The 4 balanced bits
lead to 4 bits filtration, therefore we get 272 76-bit candidates for the round keys
when we use a single data structure. We can reduce the number of the candidates
by repeating the attack using another data structure. Thanks to the key sched-
ule, we can obtain 276 80-bit candidates for the master key corresponding to
these 272 76-bit round keys by guessing 4-bit round key. The details of this step
can be found in Appendix A. We then get the right master key by exhaustively
searching over these candidates using 2 plaintext/ciphertext pairs.

Attack Complexity. When we use a single data structure, we need 26 × 263 =
269 queries to the encryption oracle. From Table 4, we need 278.13 F -function
operations to compute

⊕
Z20
7 . Using the same method, we need 259.91 F -

Function operations to compute
⊕

X21
14 .

We then access the hash tables (HZ ,HX) sequentially to retrieve 2 4-bit
words. For simplicity, we consider the time to retrieve a single 4-bit word as a
one F -function operation. Therefore, for this step, we need 256 × (1 + 220) ≈
276 F -function operations. Consequently, we got 272 76-bit candidates of the
round keys. As shown in Appendix A, we need 145 F -function operations for
each candidate to get the corresponding 24 80-bit candidates of the master key.
The exhaustive search over the candidates to get the right master key takes
276 + 212 26-round encryptions. Therefore, the total time complexity is 269 +
1 × 278.13+259.91

8×26 + 276

8×26 + 145×272

8×26 + 276 + 212 ≈ 276.11 26-round encryptions.
The memory complexity is dominated by storing the part of the ciphertexts
involved during the computation of

⊕
Z20
7 (the state S0) which is 266 66-bit

blocks that is equivalent to 266.04 64-bit blocks. As shown in Table 5, the lowest
time complexity can be achieved using 3 data structures and in this case the
data, time, and memory complexities are 3 × 26 × 263 = 270.58 chosen tweak-
plaintext combinations, 272.62 26-round encryprions, and 267.62 64-bit blocks,
receptively.



498 M. ElSheikh and A. M. Youssef

Table 4. Summary of the procedure to obtain
⊕

Z20
7 where ’Size’ refers to the size of

the intermediate state Si after the partial decryption at each step, the nibbles Xr
j in

the state Si−1 are replaced by the nibbles Xr
j s in the state Si during the i-th step, and

’Complexity’ is measured in term of F -function operations except step 0 is measured
in number of memory accesses (MA).

Step Key Size The State (Si) Complexity

0 - 266 X27
0 , X27

2 , X27
3 , X27

4 , X27
5 , X27

6 , X27
7 , X27

8 , X27
9 , X27

10 , X27
11 , X27

12 , X27
13 , X27

14 , X27
15 , T6, T14 266 MA

1 RK26
2 262 X27

0 , X27
2 , X27

3 , X26
5 , X27

6 , X27
7 , X27

8 , X27
9 , X27

10 , X27
11 , X27

12 , X27
13 , X27

14 , X27
15 , T6, T14 24 × 266 = 270

2 RK26
5 258 X27

0 , X27
2 , X27

3 , X26
5 , X27

6 , X27
7 , X27

8 , X27
9 , X26

11 , X27
12 , X27

13 , X27
14 , X27

15 , T6, T14 28 × 262 = 270

3 RK26
7 254 X27

0 , X27
2 , X27

3 , X26
5 , X27

6 , X27
7 , X27

8 , X27
9 , X26

11 , X27
12 , X27

13 , X26
15 , T6, T14 212 × 258 = 270

4 RK25
0 250 X25

1 , X27
2 , X27

3 , X27
6 , X27

7 , X27
8 , X27

9 , X26
11 , X27

12 , X27
13 , X26

15 , T6, T14 216 × 254 = 270

5 RK26
3 250 X25

1 , X27
2 , X27

3 , X26
6 , X26

7 , X27
8 , X27

9 , X26
11 , X27

12 , X27
13 , X26

15 , T6, T14 220 × 250 = 270

6 RK24
1 246 X24

3 , X27
2 , X27

3 , X26
6 , X26

7 , X27
8 , X27

9 , X26
11 , X27

12 , X27
13 , X26

15 , T6 220 × 250 = 270

7 RK26
4 244 X24

3 , X27
2 , X27

3 , X26
6 , X26

7 , X26
8 , X26

9 , X26
11 , X27

12 , X27
13 , X26

15 224 × 246 = 270

8 RK26
1 244 X24

3 , X26
2 , X26

3 , X26
6 , X26

7 , X26
8 , X26

9 , X26
11 , X27

12 , X27
13 , X26

15 228 × 244 = 272

9 RK25
3 240 X24

3 , X26
2 , X26

6 , X26
7 , X25

7 , X26
9 , X26

11 , X27
12 , X27

13 , X26
15 232 × 244 = 276

10 RK25
5 236 X24

3 , X26
6 , X26

7 , X25
7 , X25

11 , X26
11 , X27

12 , X27
13 , X26

15 236 × 240 = 276

11 RK24
7 232 X24

3 , X26
6 , X26

7 , X25
7 , X27

12 , X27
13 , X24

15 , X26
15 240 × 236 = 276

12 RK24
2 228 X24

3 , X24
5 , X26

6 , X26
7 , X27

12 , X27
13 , X24

15 240 × 232 = 272

13 RK26
6 228 X24

3 , X24
5 , X26

6 , X26
7 , X26

12 , X26
13 , X24

15 244 × 228 = 272

14 RK24
4 224 X24

3 , X24
5 , X26

7 , X25
9 , X26

12 , X24
15 248 × 228 = 276

15 RK23
6 220 X24

3 , X24
5 , X26

7 , X26
12 , X23

13 248 × 224 = 272

16 RK22
4 216 X24

5 , X26
7 , X22

9 , X26
12 248 × 220 = 268

17 RK25
2 212 X24

5 , X25
5 , X22

9 252 × 216 = 268

18 RK23
0 28 X23

1 , X22
9 256 × 212 = 268

19 RK21
5 24 X21

11 256 × 28 = 264

20 RK20
7 1 Z20

7 = S(X21
11 RK20

7 ) 256 24 = 260

Table 5. The data, time, and memory complexities using multiple data structures.

Data Time Complexity Memory

1 269 269 + 1 × 278.13+259.91
8×26 + 276

8×26 + 145×272
8×26 + 276 + 212 ≈ 276.11 266.04

2 270 270 + 2 × 278.13+259.91
8×26 + 276+272

8×26 + 145×268
8×26 + 272 + 28 ≈ 273.03 267.04

3 270.58 270.58 + 3 × 278.13+259.91
8×26 + 276+272+268

8×26 + 145×264
8×26 + 268 + 24 ≈ 272.62 267.62

4 271 271 + 4 × 278.13+259.91
8×26 + 276+272+268+264

8×26 + 145×260
8×26 + 264 ≈ 272.95 268.04
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4.2 Attack on 27-Round T-TWINE-128

The ciphertexts of 27-round of T-TWINE-128 can be written as X28. The process
of obtaining

⊕
X20

15 involves the following 35 round keys:

RK27, RK26, RK25
[0,1,2,3,4,5,7], RK24

[0,1,2,6,7], RK23
[0,4,6], RK22

[4,5], RK21
5 , RK20

7

However, we only need to guess 116 bits in 29 round keys and the other 6 round
keys can be computed based on the key schedule as follows:

RK23
0 = RK27

4 , RK23
6 = RK27

2 ,

RK22
4 = RK27

6 ⊕ S(RK27
7 ), RK22

5 = RK26
0 ,

RK21
5 = RK25

0 , RK20
7 = RK27

1 ⊕ S(RK25
5 ) ⊕ (0||CON24

L ) ⊕ (0||CON27
H ).

where CON24
L and CON27

H are predefined constants.

Key Recovery Procedure. Using the same procedure we have applied in the
previous section, we can recover 2112 116-bit candidates of the round keys and
then retrieve 2124 128-bit candidates of the master key by guessing 12 bits. The
number of the candidates can be reduced by repeating the attack several times
using different values of the constant bits in the data structure.

Attack Complexity. When we use a single data structure, we need approxi-
mately 2113.83 F -function operations to fill the hash tables, then we need addi-
tionally 2116 F -function operations to access the tables and recover 2112 116-bit
candidates. Thus, we retrieve the right master key using 2×2124 27-round encryp-
tions. By repeating the attack 6 times, we need 1

8×27 ×(6×2113.83+2116+2112+
· · ·+296)+2104 +240 = 2109.54 27-round encryptions to retrieve the right master
key. Hence, the data complexity is 6 × 269 = 271.58 chosen tweak-plaintext com-
binations. The memory complexity is dominated by storing the values of

⊕
Z20
7

in the hash table HZ . Therefore, we need 6×292 4-bit blocks which is equivalent
to 290.58 64-bit blocks.

5 Attacking One More Round

Chu et al. [3] presented a general method to use the dynamically chosen plain-
texts idea in order to attack one more round in the integral cryptanalysis by
adding this round before the distinguisher. In general, appending rounds before
the integral distinguisher may lead to use the full codebook of the plaintext.
However, the dynamically chosen plaintext method guarantees that we will not
use the full codebook of the plaintext. In this section, we explain how we can
prepend one round before the integral distinguisher. Consequently, we can target
27 and 28 rounds of T-TWINE-80 and T-TWINE-128, respectively.

The core idea of the method is to express one of the constant bits (c) of the
distinguisher input as a non-linear boolean function in some plaintext bits (x)
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and key bits (k) i.e., c = f(x, k). Then, we guess the key bits (k) and carefully
select a specific plaintext set Dc

k that guarantees the constant bit c is fixed to 0
or 1 while the other bits satisfy the distinguisher input. Consequently, the whole
plaintext set used during the attack will be

⋃ Dc
k.

In our attack, the plaintext is X1 and the distinguisher input is X2. There-
fore, we have to select the plaintexts such that X2

6 [3] (the most significant bit
of X2

6 ) is fixed to 0 or 1 while the other bits of X2 are active. From T-TWINE
structure, X2

6 [3] = X1
9 [3] ⊕ S(X1

8 ⊕ k)[3] where k = RK1
4 ⊕ RT 1

2 .
Based on the algebraic normal form of T-TWINE’s Sbox, X2

6 [3] can be
expressed as follows:

X2
6 [3] =X1

9 [3] ⊕ 1 ⊕ x[0] ⊕ x[2] ⊕ (x[0] · x[1]) ⊕ (x[1] · x[2]) ⊕ (x[0] · x[1] · x[2])
⊕ (x[0] · x[1] · x[3]) ⊕ (x[1] · x[2] · x[3])

where x[i] = X8
1 [i] ⊕ k[i] and k[i] = RK1

4 [i] ⊕ RT 1
2 [i]. Therefore, X2

6 [3] depends
on the 5 bits X1

8 ||X1
9 [3] and the 4 bits of the round key RK1

4 .
The procedure to determine the suitable plaintext set in our attack is as

follows:

1. Initialize 32 empty lists namely D0
k and D1

k where 0 ≤ k ≤ 15.
2. For each possible value of k and for all 25 possible values of X1

8 ||X1
9 [3], com-

pute X2
6 [3] and store X1

8 ||X1
9 [3] in D0

k if X2
6 [3] is 0 or in D1

k if X2
6 [3] is 1.

3. For each C := {ck|0 ≤ k ≤ 15} ∈ F
16
2 , if |⋃k Dck

k | < 25, export C and its
corresponding {Dck

k } as a possible plaintext set.

Based on our evaluation, there are 32 plaintext sets of {Dck
k }. In each set,

there are 31 out of 32 possible values of X1
8 ||X1

9 [3]. To validate these sets, we
perform an extra step as follows: for each k, we construct X1

8 ,X1
9 such that

X1
8 ||X1

9 [3] ∈ Dck
k and X1

9 [2]||X1
9 [1]||X1

9 [0] takes all possible values, then compute
X2

6 = X1
9 ⊕ S(X1

8 ⊕ k), after that, we check if X1
8 ||X2

6 [2]||X2
6 [1]||X2

6 [0] takes all
128 possible values and X2

6 [3] = ck or not. Table 6 in [6] depicts an example of
these sets in which X1

8 ||X1
9 [3] does not take the value of 000000.

Data Collection. We firstly construct a data structure in which all bits of X1

take all the possible values except X1
8 ||X1

9 [3] ∈ ⋃ Dck
k . For the tweak, all bits

are fixed to constant except the 6 bits (T3, T12[0, 2]) take all the possible values.
Then, we ask the encryption oracle to obtain the corresponding ciphertexts and
store the ciphertext associated with the active bits of the tweak in a hash table
indexed by the value of X1

8 ||X1
9 [3]. Therefore, the data complexity of a single

structure is 26 × (264 − 259) ≈ 269.95 chosen tweak-plaintext combinations.

5.1 Key Recovery Attacks

T-TWINE-80. We firstly guess the value of RK1
4 and based on the value of

k = RK1
4⊕RT 1

2 , we select a set of 269 ciphertexts corresponding to the plaintexts
that include Dck

k . After that, we apply the same steps described in Sect. 4.1 to
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obtain 272 candidates of the 76-bit round keys. It should be mentioned that the
relative relations between the round keys involved in the analysis rounds are the
same as in Sect. 4.1.

Using each value of RK1
4 combined with 272 76-bit candidates of the round

keys, we can compute 272 80-bit candidates of the master key. Subsequently, we
get in total 24 × 272 = 276 80-bit candidates of the master. The right master key
can be retrieved by the exhaustive search over these candidates using 2 pairs of
plaintext/ciphertext.

The time complexity is 269.95+24×( 2
78.13+259.91

8×27 + 276

8×27+ 145×272

8×27 )+276+212 ≈
276.47 27-round encryptions. The time complexity can be reduced to 275.79 27-
round encryptions if we use two data structures (2×269.95 = 270.95 chosen tweak-
plaintext combinations). The memory complexity is dominated by storing the
ciphertexts associated with the active bits of the tweak. Therefore, the memory
complexity will be 271.08 64-bit blocks.

T-TWINE-128. In the same manner, we can target 28 rounds of T-TWINE-
128. By repeating the attack using different 5 data structures, we can retrieve
the right master key. The data complexity is 5 × 269.95 = 272.27 chosen tweak-
plaintext combinations. The time complexity is 2113.38 28-round encryptions.
The memory complexity is 5 × 24 × 292 4-bit blocks which is equivalent to 294.32

64-bit blocks.

6 Conclusion

We studied the security of T-TWINE against the integral cryptanalysis. In par-
ticular, we showed that adding a tweak to the round function structure gives the
attacker more room to target a large number of rounds in T-TWINE compared to
TWINE. More precisely, we are able to construct several integral distinguishers
that cover 19 rounds of T-TWINE whereas the longest distinguisher covers only
16 rounds of TWINE. Furthermore, we launched key recovery attacks against
27 and 28 of T-TWINE-80 and T-TWINE-128, respectively. Up to the authors’
knowledge, the presented attacks are the best-published attacks against both
variants of T-TWINE.

A Recovery of 80-bit keys of T-TWINE-80 attack

During the key recovery attack against T-TWINE-80, we have got 272 76-bit
candidates of the 19 round keys RK26

[0,1,2,3,4,5,6,7], RK25
[0,1,2,3,4,5,7], RK24

[6,7], RK23
0 ,

RK22
5 as shown in Sect. 4.1. In this section, we describe how we can transform

them to the 80-bit candidates of the master key.
Based on the key schedule of T-TWINE-80, these 19 round keys can be

expressed as:
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RK23
0 = V1 ⊕ CL10 ⊕ CH13 (1)

RK25
0 = V2 ⊕ CL12 ⊕ CH15 (2)

RK26
0 = V3 ⊕ CL13 ⊕ CH16 (3)

RK25
4 = V4 ⊕ CL15 ⊕ CH18 (4)

RK26
4 = V5 ⊕ CL16 ⊕ CH19 (5)

RK22
5 = V6 ⊕ CL17 ⊕ CH20 (6)

RK26
3 = V7 ⊕ CL19 ⊕ CH22 (7)

RK25
3 = V8 ⊕ CL18 ⊕ CH21 (8)

RK26
5 = V9 ⊕ CL21 ⊕ CH24 (9)

RK26
1 = V10 ⊕ CL23 ⊕ CH26 (10)

RK25
1 = V11 ⊕ CL22 ⊕ CH25 (11)

RK26
2 = V12 (12)

RK25
2 = V13 (13)

RK25
5 = V14 ⊕ CL20 ⊕ CH23 (14)

RK24
7 = V15 (15)

RK26
7 = V2 ⊕ CL12 ⊕ CH15 ⊕ S(V16 ⊕ CL7 ⊕ CH10 ⊕ S(V11) ⊕ S(V15)) (16)

RK24
6 = V17 ⊕ CL4 ⊕ CH7 ⊕ S(V7) ⊕ S(V16 ⊕ CL7 ⊕ CH10 ⊕ S(V11)) ⊕ CL24 (17)

RK26
6 = V18 ⊕ CL6 ⊕ CH9 ⊕ S(V9) ⊕ S(V12) ⊕ CL26 (18)

RK25
7 = V19 ⊕ CL11 ⊕ CH14 ⊕ S(V18 ⊕ CL6 ⊕ CH9 ⊕ S(V9) ⊕ S(V12)) (19)

where CLi = 0||CON i
L and CHi = 0||CON i

H are predefined constants. The variables
V1, . . . , V19 are expressed as follows:

V9 = K19 ⊕ CL1 ⊕ CH4 ⊕ S(V5) ⊕ S(V17 ⊕ CL4 ⊕ CH7 ⊕ S(V7)) (20)
V8 = K7 ⊕ CH1 ⊕ S(V3) ⊕ S(K19 ⊕ CL1 ⊕ CH4 ⊕ S(V5)) (21)
V4 = K14 ⊕ S(V1) ⊕ S(K7 ⊕ CH1 ⊕ S(V3)) (22)
V2 = K2 ⊕ S(V16) ⊕ S(K14 ⊕ S(V1)) (23)

V12 = K9 ⊕ S(V17) ⊕ S(K2 ⊕ S(V16)) ⊕ CL9 ⊕ CH12 ⊕ S(V17 ⊕ CL4 ⊕ CH7

⊕ S(V7) ⊕ S(V16 ⊕ CL7 ⊕ CH10 ⊕ S(V11))) (24)
V18 = K16 ⊕ S(K9 ⊕ S(V17)) (25)
V10 = K4 ⊕ S(K16) ⊕ CL3 ⊕ CH6 ⊕ S(V8) ⊕ S(V18 ⊕ CL6 ⊕ CH9 ⊕ S(V9)) (26)
V14 = K15 ⊕ CH3 ⊕ S(V4) ⊕ S(K4 ⊕ S(K16) ⊕ CL3 ⊕ CH6 ⊕ S(V8)) (27)
V6 = K3 ⊕ S(V2) ⊕ S(K15 ⊕ CH3 ⊕ S(V4)) (28)

V15 = V1 ⊕ CL10 ⊕ CH13 ⊕ S(A ⊕ CL5 ⊕ CH8 ⊕ S(V14) ⊕ S(V13)) (29)
V11 = K0 ⊕ CL2 ⊕ CH5 ⊕ S(V6) ⊕ S(A ⊕ CL5 ⊕ CH8 ⊕ S(V14)) (30)
V7 = B ⊕ S(K0 ⊕ CL2 ⊕ CH5 ⊕ S(V6)) (31)
V5 = K18 ⊕ S(V19) ⊕ S(B) (32)



Integral Cryptanalysis of Reduced-Round Tweakable TWINE 503

V13 = C ⊕ CL8 ⊕ CH11 ⊕ S(V10) (33)
V3 = K6 ⊕ S(C) ⊕ S(K18 ⊕ S(V19)) (34)
V1 = K13 ⊕ S(A) ⊕ S(K6 ⊕ S(C)) (35)

V16 = K1 ⊕ S(K0) ⊕ S(K13 ⊕ S(A)) (36)
V17 = K8 ⊕ S(K1 ⊕ S(K0)) (37)
V19 = K17 ⊕ S(V18) ⊕ S(K10 ⊕ S(K9 ⊕ S(V17) ⊕ S(K2 ⊕ S(V16)))) (38)
B = K11 ⊕ CH2 ⊕ S(K10 ⊕ S(K9 ⊕ S(V17) ⊕ S(K2 ⊕ S(V16))) ⊕ S(K3 ⊕ S(V2)))

(39)
C = K5 ⊕ S(K4 ⊕ S(K16)) ⊕ S(K17 ⊕ S(V18)) (40)
A = K12 ⊕ S(K5 ⊕ S(K4 ⊕ S(K16))) (41)

Therefore, we can compute the values of the variables V1, . . . , V19 directly
from Eqs. (1)–(19). Hence, we substitute their values into the Eqs. (20)–(41).
Thus, it is easy to obtain the values of K19, K7, K14, K2, K9, K16, K4, K15, K3,
A, K0, B, K18, C, K6, K13, K1, K8 one by one from Eqs. (20)–(37). Next, we guess the
value of K10 and obtain the values of K17, K11, K5, K12 from Eqs. (38)–(41).
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Abstract. Cache side channels constitute a persistent threat to crypto
implementations. In particular, block ciphers are prone to attacks when
implemented with a simple lookup-table approach. Implementing crypto
as software evaluations of circuits avoids this threat but is very costly.

We propose an approach that combines program analysis and circuit
compilation to support the selective hardening of regular C implemen-
tations against cache side channels. We implement this approach in our
toolchain RiCaSi. RiCaSi avoids unnecessary complexity and overhead
if it can derive sufficiently strong security guarantees for the original
implementation. If necessary, RiCaSi produces a circuit-based, hardened
implementation. For this, it leverages established circuit-compilation
technology from the area of secure computation. A final program analysis
step ensures that the hardening is, indeed, effective.

1 Introduction

Cache side channels are unintended communication channels of programs. Cache-
side-channel leakage might occur if a program accesses memory addresses that
depend on secret information like cryptographic keys. When these secret-depen-
dent memory addresses are loaded into a shared cache, an attacker might deduce
the secret information based on observing the cache.

Such cache side channels are particularly dangerous for implementations of
block ciphers, as shown, e.g., by attacks on implementations of DES [58,67],
AES [2,11,57], and Camellia [59,67,73]. A key reason why block-cipher imple-
mentations are vulnerable to cache-side-channel attacks is that they traditionally
use secret-dependent accesses to lookup tables in memory. For instance, the orig-
inal AES specification [20] recommends lookup tables to increase performance.
Such lookup-table-based AES implementations are still available in many crypto
libraries, including, e.g., OpenSSL [55] and mbedTLS [7].

To avoid cache-side-channel leakage, block ciphers can be implemented as
circuits that are evaluated in software, e.g., using the bitslicing technique
[12,35,47]. For instance, Matsui and Nakajima [47], as well as Käsper and
c© Springer Nature Switzerland AG 2020
S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 505–525, 2020.
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Schwabe [35] argue why their circuit-based AES implementations are side-
channel resistant.

Manually developing circuit-based implementations from algorithm specifi-
cations is costly and error-prone due to the huge gap between the two levels
of abstraction. Moreover, to run software-based circuits in a real-world setting,
additional code is needed, e.g., to initialize the inputs. Since this additional code
is a potential source of leakage, its development requires a high level of rigor.

Unfortunately, there is currently no end-to-end tool support for this complex
task: Existing tools for generating circuit-based crypto implementations require
the input specification to be already at the level of a circuit description [9,48].
Conversely, existing tools for high-level synthesis that operate, e.g., on ANSI C
or SystemC programs do not generate software. Instead, they transpile code
to hardware description languages like Verilog or VHDL [51], from which logic
synthesis tools (e.g., [62]) can derive FPGA configurations or ASIC designs.

We address this open problem by proposing an approach that hardens high-
level C implementations by translating them into circuit-based software imple-
mentations. Our approach applies the hardening selectively, based on automatic
quantitative program analysis. To support the translation to circuit format, our
approach leverages existing compiler infrastructures from the area of secure com-
putation, where circuit compilers, e.g., [15,32,40,43,61,72], are used to gener-
ate circuit descriptions that obliviously evaluate functions on private inputs via
homomorphic encryption [27] or interactive cryptographic protocols [28,71].

We implement our approach in our toolchain RiCaSi, which takes as input a
regular C implementation (e.g., of a block cipher) and outputs a circuit-based x86
binary together with a reliable quantitative security guarantee with respect to
cache-side-channel leakage. Naturally, these security guarantees are based on
established formal models. RiCaSi builds on the circuit compiler HyCC [15] and
the program analysis tool CacheAudit [25], augmented with novel implemen-
tations and extensions required for the toolchain integration. Supplementary
downloads are freely available at www.mais.informatik.tu-darmstadt.de/ricasi.
html.

We evaluate RiCaSi across lookup-table-based AES implementations from
the libraries OpenSSL [55], mbedTLS [7], Nettle [49] and LibTomCrypt [41],
and across implementations of DES [52], 3DES, and Camellia [4] from mbedTLS.
RiCaSi is easily applicable to all of these implementations. Moreover, it success-
fully improves their level of cache-side-channel security. For instance, the anal-
ysis integrated in RiCaSi derives an upper bound of 73.82 bit on the amount
of information that the original OpenSSL AES might leak to an access-based
cache side-channel attacker. After the conversion to a circuit-based implemen-
tation, this leakage bound drops to 0 bit. These upper bounds are based on
rigorous program analysis and, hence, constitute reliable security guarantees.

Overall, we summarize our contributions as follows:

1. We present RiCaSi, a toolchain that semi-automatically produces circuit-
based implementations of block ciphers with corresponding quantitative secu-
rity guarantees on cache side-channel leakage.

www.mais.informatik.tu-darmstadt.de/ricasi.html
www.mais.informatik.tu-darmstadt.de/ricasi.html
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2. We evaluate RiCaSi across implementations of AES, DES, 3DES, and Camel-
lia, demonstrating the effectiveness of our approach by obtaining 0 bit upper
leakage bounds for previously vulnerable implementations.

3. We furthermore evaluate the run-time and storage overhead induced
by RiCaSi, demonstrating its practicality for security-critical applications.

2 Preliminaries

2.1 The Block Ciphers AES, DES and Camellia

AES. The Advanced Encryption Standard (AES) [53] is a block cipher that
encrypts 128 bit message blocks using a symmetric secret key of size 128, 192,
or 256 bit. To this end, AES creates so-called round keys from the secret key. The
first round key is added to the message block using bitwise XOR. The remaining
round keys are used to transform the block in multiple rounds.

The original AES proposal [20] suggests optimizing performance by precom-
puting the results of the transformation rounds for all possible inputs and storing
them in lookup tables. Then, one simply needs to look up the transformation
result from the table at the index corresponding to the current round input. The
round inputs are the round key and the current state of the transformed mes-
sage. Implementations that follow this table-based technique are prone to cache
side-channel attacks: The indices of the table accesses and, hence, the addresses
of the accessed memory locations depend on the secret message and round keys.
If a memory entry is loaded into a cache that is shared with an attacker, the
attacker might notice the presence of the entry in the cache and deduce secret
information. He might even recover the entire secret key [2,5,6,11,31,36].

DES. The Data Encryption Standard (DES) [52] is a block cipher that
encrypts 64 bit message blocks using a symmetric secret key of size 56 bit.
Triple DES (3DES) is an extension for a key size of 168 bit, essentially perform-
ing three DES encryptions sequentially using three 64 bit substrings of the 3DES
key as DES keys. Both DES and 3DES are deprecated [54], but they are still
part of many common crypto libraries like mbedTLS [7] and OpenSSL [55].

Implementation of DES and 3DES might be susceptible to cache side-channel
attacks. DES keys can, e.g., be recovered based on the cache misses encountered
by implementations that use eight lookup tables (S-Boxes) for substitutions [67].
Such an implementation with eight lookup tables is, e.g., available in mbedTLS.

Camellia. Camellia [4] is a block cipher that encrypts 128 bit message blocks
with symmetric secret 128, 192, or 256 bit keys in transformation rounds.
Like AES and DES, Camellia uses round keys in each transformation round.

There are multiple techniques for cache attacks on implementations of Camel-
lia that use lookup tables (S-Boxes). The Camellia secret key can, e.g., be
recovered from an implementation with four tables using cache-access patterns
obtained from power measurements [59]. Access-driven cache attacks can also
be used to recover keys from a table-based Camellia implementation [73]. Table-
based implementations are available, e.g., in OpenSSL [55] and mbedTLS [7].
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2.2 Boolean Circuits for Secure Computation

Secure computation techniques make it possible to involve untrusted parties in
the processing of private data. More specifically, homomorphic encryption allows
one to outsource computation on private data to untrusted third parties [27].
In contrast, in secure two- or multi-party computation, two or more mutually
distrusting parties jointly and interactively compute on private data [28,71].

Secure computation techniques obliviously compute publicly known func-
tions expressed as combinatorial Boolean and/or arithmetic circuits. Boolean
circuits are composed of AND and XOR gates, whereas arithmetic circuits con-
sist of addition and multiplication gates. Both types of circuits are functionally
complete when having access to constants, i.e., they can represent arbitrary com-
putable functions. A Turing machine T with input length n can be expressed as
a circuit of size Õ(t(T, n)), where t(T, n) denotes the running time of T on input
length n [30].

As noted in [26], the evaluation of Boolean and arithmetic circuits as done
in secure computation is inherently secure against a wide range of software side-
channel attacks. This is due to the fact that every possible branch of the function
represented by such a circuit is executed in parallel and that the memory accesses
performed by such circuit implementations do not depend on input data.

Unfortunately, designing circuits from high-level function descriptions is com-
plex and requires tool support. Moreover, for secure computation, expert knowl-
edge about the underlying protocols is required to achieve efficient results.

In hardware design, there exist academic as well as commercial high-level
synthesis tools that automatically transpile, e.g., ANSI C or SystemC code to
hardware description languages like Verilog or VHDL [51]. Via established logic
synthesis tools (e.g., [62]) that output FPGA configurations or ASIC designs,
it is furthermore possible to go to hardware level. Logic synthesis tools have
also been adapted for secure computation by providing customized ASIC cell
libraries and optimization parameters as well as algorithms [21,61,63,64].

Being much more convenient for regular software developers, a line of research
has focused on creating optimized compilers that directly transform ANSI C
programs to basic (Boolean) circuit representations that can easily be evaluated
in software, e.g., by secure computation frameworks like ABY [22]. State-of-the-
art in this domain is HyCC [15], the successor of the CBMC-GC compiler [32],
which in turn is based on the bounded model checker CBMC [17].

HyCC provides optimizations like automated parallelization of concurrent
code, logic minimization, loop unrolling, and minimization of the resulting cir-
cuits. However, in this work we target only size-optimized Boolean circuits and
hence do not use the computationally expensive optimization steps of HyCC.

2.3 Program-Analysis Approach

To quantify the leakage of x86 binaries through cache side channels, we use
a combination of information theory and abstract interpretation. This app-
roach was first established in [38], later extended and then implemented in
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the tool CacheAudit [25], of which multiple variants have been developed (e.g.,
[13,24,46]). We build on CacheAudit and extend it with support for additional
language features where necessary. Below, we describe the underlying approach
in more detail.

We model a cache side channel as a deterministic, discrete, memoryless chan-
nel from an input alphabet (random variable X) to an output alphabet (ran-
dom variable Obs). The min-entropy H∞(X) = − log2 maxi p(xi) of X cap-
tures the uncertainty an attacker has about the secret input if the probabil-
ity for each input xi is p(xi) [60]. The conditional min-entropy H∞(X|Obs) =
− log2 Σ

|Obs|
j=1 p(obsj) · maxi

p(obsj |xi)·p(xi)
p(obsj)

captures the attacker’s remaining
uncertainty after observing the channel output, where output obsj occurs for
secret xi with probability p(obsj |xi) and occurs overall with probability p(obsj).
The information that an output reveals about the input is modeled by the min-
entropy leakage H∞(X) − H∞(X|Obs), which is upper bounded by log2 |Obs|
bit [39,60].

Let X be the set of possible secret inputs (secret key and message) and Obs
be the possible observations of a cache-side-channel attacker. We compute cache
side-channel leakage bounds as log2 |ObsD|, where ObsD is an overapproximation
of the reachable observations Obs. The overapproximation makes the analysis
feasible and is done using abstract interpretation [19]. More concretely, we over-
approximate the actual possible execution states D by more abstract execution
states D and the actual semantics updD : D × I → D of instruction set I by an
abstract semantics updD : D × I → D. We then compute the reachable abstract
observations according to updD and count the number of actual observations
they represent. We take the logarithm to obtain the leakage bound log2 |ObsD|.

We consider four models of cache side-channel attackers, i.e., four variants
of Obs: (1) Attackers under the model acc can deduce which memory entries
are cached in a shared cache after the victim program is executed, (2) attackers
under accd can deduce the number of memory entries the victim loaded into each
cache set of such a shared cache, (3) attackers under trace can deduce the trace of
cache hits and cache misses that occurred during the victim-program execution,
and (4) attackers under time can deduce the execution time of a victim-program
execution (modeled by fixed durations for cache hits, misses, and other steps).

3 The RiCaSi Toolchain

The goal of RiCaSi is to allow developers to obtain x86 binaries from regular and
potentially vulnerable C code that come with quantitative security guarantees
with respect to cache side channels. The high-level overview of our toolchain and
its workflow is depicted in Fig. 1.

First, the C code provided by the user (e.g., a block-cipher implementation)
is compiled to an x86 binary (e.g., with GCC) and analyzed with our extended
version of CacheAudit (cf. Sect. 3.5). If the resulting upper bound on the cache-
side-channel leakage of the binary is below an acceptable threshold, the binary
can be used securely and RiCaSi terminates.
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In case the threshold leakage is exceeded, RiCaSi compiles the C code into a
circuit representation, which in turn is compiled into an x86 binary for further
analysis. For this, we first preprocess the C code to substitute constructions
currently not supported by existing circuit compilers (cf. Sect. 3.2), e.g., with
respect to memory management and the passing of parameters.

The resulting C code is then compiled with the state-of-the-art circuit com-
piler HyCC [15] (cf. Sect. 3.3). For transforming the resulting circuit representa-
tion back to C code, we implement our own tool in Python (cf. Sect. 3.4).

After compilation to an x86 binary, we perform a second round of analysis
with our extension of CacheAudit (cf. Sect. 3.5). Here, the expected output is
an improved security guarantee in the form of an upper leakage bound that lies
below the acceptable threshold or is even equal to 0 bit leakage.

Fig. 1. Overview of our RiCaSi toolchain and workflow.

In the following, we detail the individual steps of the RiCaSi toolchain at
the running example of a lookup-table-based implementation of AES encryption
from OpenSSL (cf. Listing 1). The original implementation is vulnerable to cache
side-channel attacks because it accesses lookup tables (e.g., table Te0 as shown
in Listing 1) at round-key dependent indices.

stat ic const u32 Te0 [ 2 5 6 ] = {0xc66363a5U , . . . } ; // lookup tab l e
. . .
void AES encrypt ( const unsigned char ∗ in , . . . ) { . . .

s0 = GETU32( in ) ˆ rk [ 0 ] ; . . . // i n i t i a l round
t0 = Te0 [ s0 >> 24 ] ˆ . . . ; // s e c r e t−dependent memory ac c e s s

. . . }

Listing 1. Excerpt of OpenSSL AES encryption.
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3.1 Initial Side-Channel Analysis

In the first step of RiCaSi, we apply automatic program analysis to determine
whether the input implementation can be used as is or whether any hardening
against cache side channels is required. To this end, we derive quantitative secu-
rity guarantees for the x86 binary corresponding to the given implementation.
More concretely, we compute upper bounds on the cache side-channel leakage
of the binary and compare them to the threshold for the desired level of secu-
rity. If non-zero bounds are not acceptable, the threshold can be set to zero.
Technically, we use a combination of information theory and abstract interpre-
tation, implemented in the tool CacheAudit. The tool takes an x86 binary and
outputs bounds on the min-entropy leakage to the attacker models acc, accd ,
trace and time (cf. Sect. 2.3).

If the resulting leakage bounds lie below the desired leakage threshold, no
hardening is required and unnecessary overhead can be avoided. If the leakage
bounds are too high, we proceed with the preprocessing for circuit compilation.

Listing 2 shows the leakage bounds for OpenSSL AES from Listing 1. The
bounds guarantee, for instance, that at most 73.83 bit are leaked to an attacker
under the model acc (cf. Line 2 in Listing 2) and at most 70.34 bit are leaked
to an attacker under accd (cf. Line 3). These bounds are rather weak security
guarantees and would likely exceed the acceptable threshold leakage for most
applications such that further steps of RiCaSi would be applied.

. . .
Number o f va l i d cache c on f i g . ( shared memory) : . . . (73 .820808 b i t s )
Number o f va l i d cache c on f i g . ( d i s j . memory) : . . . (70 .339850 b i t s )
# t r a c e s : . . . , 280.000000 b i t s
# times : . . . , 8 .134426 b i t s
Ana lys i s took 18 seconds .

Listing 2. Excerpt of analysis results for OpenSSL AES.

3.2 C Code Preprocessing

The “C-to-circuit” compilation as provided by HyCC [15] comes with several
limitations regarding the processable source code. To avoid compilation issues,
we manually apply several preprocessing steps to make existing implementa-
tions compatible. Although these steps are targeted towards our case stud-
ies (cf. Sect. 4), they might be of independent interest and worth to fully auto-
mate, as they can be applied to make the regular usage of HyCC more convenient.

1. Especially when compiling code that depends on an extensive library, it is best
to first bundle all required methods in a single file. If possible, all method calls
are replaced by inlining the required code into a method named mpc main.
Otherwise, debugging compilation errors becomes infeasible.

2. Global and static variables are not supported by HyCC. They must instead
be declared in the main method (cf. the declaration of Te0 in Listing 3).
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3. Memory management via malloc and calloc is not supported by HyCC.
Often, it is sufficient to declare arrays with fixed size instead. In many cases,
it is also possible to simply remove such statements as the compiler can
determine array sizes from later assignments. However, dealing with such
memory management issues was not required for any of our case studies.
HyCC also does not support passing arrays or pointers in method headers.
This can be circumvented by splitting arrays into single variables, which are
passed instead (cf. passing the plaintext data in01 in Listing 3).

The preprocessed OpenSSL AES encryption code is shown in Listing 3.

int mpc main (unsigned char in01 , . . . ) { . . . // inputs s p l i t in bytes
const unsigned char in [ 1 6 ] = { in01 , . . . } ; // r e c on s t ru c t inputs
const u32 Te0 [ 2 5 6 ] = {0xc66363a5U , . . . } ; // tab l e d e c l a r a t i on

. . . }

Listing 3. Excerpt of preprocessed OpenSSL AES encryption.

3.3 C Code to Circuit Compilation

The compilation of the preprocessed C code to a circuit description happens
through a straightforward application of HyCC [15]. For the compilation, the C
code is first transformed into a “goto code” intermediate representation, loops
are unrolled, variables are split into single bits, and operations over those bits
are expressed as Boolean functions [32]. As briefly described in Sect. 2.2, HyCC
also performs several optimizations like circuit minimization.

However, in comparison to the regular usage of HyCC, several of the most
computationally expensive steps can be skipped. This is because here we tar-
get only the creation of size-optimized Boolean circuits and do not consider
depth-optimized Boolean or arithmetic circuits (which are beneficial for some
interactive secure computation protocols [28]).

Therefore, for our purpose, HyCC does not need to decompose the code
into separate modules and compile each module into multiple different types
of circuits. We can also skip the final step where HyCC tries to heuristically
optimize the total cost for secure computation protocols by finding the best
possible combination of different types of circuits and protocols.

3.4 Circuit to Binary Compilation

In the following, we describe how the HyCC circuit output is translated into C
code and further compiled into an x86 binary.

The circuit output produced by HyCC is by default in a binary format to
be processed by the ABY MPC framework [22] via a specialized adapter. To
facilitate further processing without ABY, we use a HyCC export function-
ality for conversion into the human-readable and widely used BRISTOL cir-
cuit format [66]. In the BRISTOL format, every line of the circuit description
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file declares the type of one gate as well as the number and the identifiers of
the gate’s input and output wires. The supported gate types are AND, XOR,
and INV (inversion). The header of the circuit description specifies the total
number of gates, the total number of wires, and circuit input as well as output
wires. The HyCC output in the BRISTOL format for OpenSSL AES is shown
in Listing 4.

490425 490809
384 0 160
. . .
2 1 121 377 385 XOR // XOR gate in BRISTOL rep r e s en t a t i on
1 1 385 386 INV // INV gate in BRISTOL rep r e s en t a t i on
2 1 384 386 387 AND // AND gate in BRISTOL rep r e s en t a t i on
. . .

Listing 4. HyCC circuit for OpenSSL AES encryption in BRISTOL format.

We implemented a converter tool in Python to translate BRISTOL circuit
description files into C source code. The converter is controlled via a configura-
tion file that, besides the circuit name and file, specifies input and output types,
and which external libraries (e.g., stdio.h) should be included.

The converter first declares a variable for each wire and disassembles the
specified inputs into the respective circuit input wires. It then iterates through
each line of the circuit description and inserts the respective C instruction for
performing the specified gate operation (e.g., & for AND gates) on the variables
corresponding to the gate input and output wires. This is possible because the
gates in the BRISTOL circuit format are ordered topologically, i.e., all input
wires for each gate have been assigned before. Finally, the circuit output is
assembled in the configured type from the circuit output wires. The converter
output for our OpenSSL AES encryption example is shown in Listing 5.

int op en s s l a e s en c ( int in01 , . . . ) {
unsigned char w0 , . . . , w490808 ;
int i n b i t s 0 1 [ 8 ] = s p l i t ( in01 ) ;
w0 = inb i t s 0 1 [ 0 ] ;
. . .
w385 = w121 ˆ w377 ; // C code f o r gate 2 1 121 377 385 XOR
w386 = ! w385 ; // C code f o r gate 1 1 385 386 INV
w387 = w384 & w386 ; // C code f o r gate 2 1 384 386 387 AND
. . .

}

Listing 5. Excerpt of OpenSSL AES encryption in circuit-style C.

The resulting C code file can then be compiled into an x86 binary using,
for example, the GCC compiler. It is also possible to integrate the produced C
code with another application before compilation, or to modify the code, e.g.,
to include further input and output processing.
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3.5 Final Side-Channel Analysis

To ensure that no potential for cache side-channel leakage remains in the final
circuit binary, we perform an additional program analysis step. To this end,
we apply a variant of the tool CacheAudit that we extended for the purpose
of analyzing circuit binaries. Our variant of CacheAudit augments the prior
version in two directions: support for large control-flow graphs and support for
additional x86 opcodes.

Circuit-based binaries are significantly larger than regular binaries because
all individual gates are encoded in the assembly code. Since CacheAudit was not
intended for the analysis of binaries with large basic blocks, its parser quickly
runs into overflows when trying to build a control-flow graph for the studied
circuit-based binaries. By rewriting the corresponding parts of the CacheAudit
implementation in a tail-recursive style, we now avoid this issue.

Furthermore, circuit-based binaries use x86 opcodes that did not occur in
the binaries that have been analyzed with CacheAudit before. In particular, the
comparison instructions with opcodes 0xA8 and 0xF7/0 occur in the binaries.
We added support for both instructions to CacheAudit.

Our resulting variant of CacheAudit can be successfully applied to all circuit-
based binaries in our evaluation and is of independent interest.

Listing 6 shows an excerpt of the analysis results for the x86 binary cor-
responding to the circuit-compiled variant of OpenSSL AES from Listing 5. In
this example, the resulting leakage bounds are 0 bit across all four attacker mod-
els (cf. Line 2 in Listing 6 for acc, Line 3 for accd , Line 4 for trace and Line 5
for time). That is, the circuit-compiled binary does not leak secret information
through cache side channels to attackers under any of these attacker models.

. . .
Number o f va l i d cache c on f i g . ( shared memory) : 1 , (0 .000000 b i t s )
Number o f va l i d cache c on f i g . ( d i s j . memory) : 1 , (0 .000000 b i t s )
# t r a c e s : 1 , 0 .000000 b i t s
# times : 1 .000000 , 0 .000000 b i t s
Ana lys i s took 185392 seconds .

Listing 6. Excerpt of analysis results for circuit-compiled OpenSSL AES.

Note that circuit compilation does not inevitably lead to 0 bit leakage bounds.
Since side channels are vulnerabilities at the level of implementation details, it is
crucial to ensure that the hardening is effective in all details. In an intermediate
version of RiCaSi we had accidentally introduced potential side-channel leakage
in the circuit-to-C compilation step: our initialization of the circuit inputs was
not constant-time. With the final program-analysis step of RiCaSi, we detected
the mistake due to unexpectedly high leakage bounds for the generated binary.
We then adapted our circuit-to-C compilation tool accordingly. As shown in
Listing 6, the hardening with RiCaSi is now effective in all details, leading to 0
bit leakage bounds for the resulting binary.
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4 Evaluation of Cache-Side-Channel Security

We evaluate the applicability of RiCaSi and the benefit it provides in terms of
cache side-channel security guarantees in two dimensions.

We first consider a range of lookup-table-based AES implementations: an
implementation from OpenSSL [55] that uses four lookup tables of size 1 kB, an
implementation from mbedTLS [7] (a library used, e.g., by cURL [65] and Open-
VPN [56]) that uses four 1 kB tables and a 0.25 kB S-Box, an alternative imple-
mentation with lookup tables and an S-Box from Nettle [49], and one implemen-
tation from the library LibTomCrypt [41] that uses eight 1 kB lookup tables.

In the second step, we broaden the evaluation to implementations of other
block ciphers. We consider implementations of three additional block ciphers
from the library mbedTLS: Camellia, DES, and 3DES.

4.1 RiCaSi for AES Implementations

We analyze the sequence of the key-generation and encryption functions from
the respective AES implementations, applied to a 256 bit key and 128 bit plain-
text. We configure mbedTLS without x86 VIA PadLock instructions because we
are interested only in the software AES implementation. We configure LibTom-
Crypt to omit assert statements with indirect jumps to make the computation of
security guarantees with state-of-the-art program analysis feasible. The details
on the configurations that we used are summarized in Table 1.

Table 1. AES implementations inspected in our case study.

Library Version Configuration Analyzed functions

OpenSSL 1.1.1d default AES set encrypt key,
AES encrypt

mbedTLS 2.16.5 removed
MBEDTLS PADLOCK C

mbedtls aes init,
mbedtls aes setkey enc,
mbedtls aes encrypt,
mbedtls aes free

Nettle 3.5 default aes256 set encrypt key,
aes256 encrypt

LibTomCrypt 1.18.2 ARGTYPE rijndael enc setup,
rijndael enc ecb encrypt

To compute guarantees for the cache side-channel security of these implemen-
tations before and after circuit compilation, we use our extension of the program
analysis tool CacheAudit as described in Sect. 3.5.

Our analysis with CacheAudit and the resulting security guarantees focus
on one single level of cache. This is a common simplification of modern multi-
level cache hierarchies that is frequently applied in cache side-channel quan-
tification [13,24,25,46]. In our analysis, we consider an 8-way set associative
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cache with 64 cache sets and a line size of 64 Bytes with the PLRU cache line
replacement strategy. This reflects, e.g., the L1 data caches of the Intel Skylake
architecture [33, Table 2–4], [1] and the AMD Zen2 architecture [3].

As a baseline for our evaluation, we compute upper bounds on the cache
side-channel leakage of the original, vulnerable AES implementations. We then
harden the implementations using RiCaSi. In the final analysis step of RiCaSi,
CacheAudit is applied again to compute cache-side-channel leakage bounds for
the hardened implementations. In both cases, we consider the 32 bit x86 binaries
obtained from the C implementations using gcc version 5.4.0.

Baseline Results. Our baseline analysis results across the AES implementa-
tions and side-channel attacker models described in Sect. 3.5 are shown on the
left side of Table 2. We round the leakage bounds to two decimal places.

Table 2. AES leakage bounds in [bit] before (left) and after (right) RiCaSi.a

Cipher
Attacker Model

acc accd trace time

OpenSSL 73.82 70.34 280.00 8.13
mbedTLS 88.09 81.55 287.00 8.17
Nettle 85.93 78.55 299.00 8.23
LibTomCrypt 204.03 143.43 274.00 8.10

Cipher
Attacker Model

acc accd trace time

OpenSSL 0.00 0.00 0.00 0.00
mbedTLS 0.00 0.00 0.00 0.00
Nettle 0.00 0.00 0.00 0.00
LibTomCrypt 0.00 0.00 0.00 0.00

aFor homogeneity across tables, we use the full display format also for all-zero tables.

CacheAudit yields rather high leakage bounds, between 70.34 bit and 299.00
bit for the attacker models acc, accd and trace across all libraries. For the
attacker model time, the bounds are lower and lie between 8.10 bit and 8.23 bit.
For instance, the time leakage bound for OpenSSL AES is 8.13 bit. This means
that one execution of this AES binary leaks at most 2.12% of the 384 secret
bits (256 bit key and 128 bit plaintext) to an attacker under the model time.

The high leakage bounds for acc, accd and trace are rather weak security
guarantees. That is, for the attacker models acc, accd and trace, the level of
security on which we can rely is rather low. Even for the attacker model time,
we do not obtain guarantees for the complete absence of leakage.

The high bounds are not surprising because all analyzed binaries belong to
lookup-table-based implementations that use secret-dependent memory accesses.
Next, we evaluate how effective RiCaSi is in hardening the implementations.

Results for RiCaSi. The leakage bounds for the circuit-based binaries pro-
duced by RiCaSi are shown on the right-hand side of Table 2. Note that the
upper bounds on the leakage are 0 bit across all implementations and attacker
models. That is, no information is leaked to attackers under the four models.

While the 0 bit leakage bounds might not be surprising at first sight, recall
that they play a central role in RiCaSi. If any detail of the circuit compilation
and translation failed, as in our prior implementation (cf. Sect. 3.5), we would
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spot this here. With 0 bit bounds, we can be sure that the hardening with RiCaSi
is effective in all implementation details.

Table 3. DES, 3DES and Camellia implementation inspected in our case study.

Cipher Key length Plaintext length Analyzed functions

Camellia 256 bit 128 bit mbedtls camellia init,
mbedtls camellia setkey enc,
mbedtls camellia crypt ecb,
mbedtls camellia free

DES 64 bit 64 bit mbedtls des init,
mbedtls des setkey enc,
mbedtls des crypt ecb,
mbedtls des free

3DES 128 bit 64 bit mbedtls des3 init,
mbedtls des3 set2key enc,
mbedtls des3 crypt ecb,
mbedtls des3 free

4.2 RiCaSi for Block Ciphers from mbedTLS

For each of the three block ciphers Camellia, DES, and 3DES, we analyze the
respective sequence of functions to initialize the data structures, compute the key
schedule, perform the encryption and free the data structures from mbedTLS
version 2.16.5. The details, including key and plaintext lengths, are described
in Table 3. We use the same CacheAudit variant and configuration as in Sect. 4.1.

Table 4. mbedTLS leakage bounds in [bit] before (left) and after (right) RiCaSi.

Cipher
Attacker Model

acc accd trace time

AES 88.09 81.55 287.00 8.17
Camellia 28.50 25.75 242.00 7.92
DES 38.40 37.75 141.00 7.16
3DES 52.20 48.34 416.00 8.70

Cipher
Attacker Model

acc accd trace time

AES 0.00 0.00 0.00 0.00
Camellia 0.00 0.00 0.00 0.00
DES 0.00 0.00 0.00 0.00
3DES 0.00 0.00 0.00 0.00

Baseline Results. The leakage bounds for the original block-cipher implemen-
tations from mbedTLS (including mbedTLS AES for comparison) are shown on
the left side of Table 4. The acc and accd leakage bounds for Camellia, DES,
and 3DES are lower than the leakage bounds for AES, but still rather high com-
pared to the respective sizes of the secret key and message (384 bit for Camellia,
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128 bit for DES, and 192 bit for 3DES). For the attacker models trace and time,
the leakage bounds for 3DES are even higher than those for AES. This might be
due to an accumulation of leakage across the DES executions in 3DES.

Again, the high leakage bounds are not surprising given the known cache-
side-channel attacks on such implementations described in Sect. 2. Next, we
apply RiCaSi to harden the implementations against such attacks. The resulting
leakage bounds are shown on the right-hand side of Table 4.

Results for RiCaSi. For all block-cipher implementations hardened with
RiCaSi, we are able to derive guarantees for 0 bit leakage for all four cache
side-channel attacker models. That is, RiCaSi effectively hardened the imple-
mentations against cache side-channel attackers under these models.

Overall, RiCaSi hence supports the hardening not only of AES implementa-
tions but also of a broader range of block-cipher implementations. In all cases
that we considered in our evaluation, the effectiveness of the hardening was
automatically verifiable using the program analysis of CacheAudit.

5 Evaluation of Overhead

Compiling applications into side-channel resistant executables is a one time cost
that is quickly amortized over time. However, RiCaSi generates repeated over-
head in two aspects, which we evaluate in detail: First, we study how much
the size of the circuit-based binaries increases compared to regular compilation
results. Then, we evaluate how much the run-time of the side-channel resistant
binaries increases compared to the vulnerable counterparts.

5.1 Binary Sizes

In Table 5, we compare the binary sizes of the regular block-cipher implemen-
tations to the output produced by RiCaSi. While storage costs nowadays are
almost negligible at the given scale, considering the overhead in terms of binary
sizes is especially necessary to estimate the additional costs when widely dis-
tributing software over the Internet, or for embedded devices.

The results in Table 5 strongly vary among the considered block ciphers.
The binary sizes for DES and 3DES, e.g., stay well below 5 MB and have
less than factor 5× blow-up. However, binary sizes for AES increase up to
about 24 MB, which corresponds to a blow-up of two orders of magnitude. There-
fore, we recommend to use RiCaSi mainly on small, highly security critical code
sections.

Note that the compilation setup in our case studies was not tailored to opti-
mize the binary sizes. All binaries include debug information. Moreover, while
the original AES binaries were linked dynamically, we used static linking for all
other binaries to make them self-contained for the program analysis. By drop-
ping dispensable information from the binaries, the sizes could be reduced if
necessary.
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Table 5. Comparison of binary sizes.

Cipher Library Original (in KB) RiCaSi (in KB) Overhead

AES OpenSSL 37.72 23, 624.18 626.30×
Nettle 29.81 23, 573.93 790.81×
LibTomCrypt 56.70 23, 623.09 416.63×
mbedTLS 57.32 23, 581.20 411.40×

Camellia mbedTLS 890.56 11, 923.80 13.39×
DES mbedTLS 891.80 1, 408.01 1.58×
3DES mbedTLS 891.84 3, 497.00 3.92×

5.2 Run-Times

We evaluate the run-times of the executables of various block ciphers generated
by RiCaSi and compare the resulting overhead to the regular vulnerable executa-
bles in Fig. 2. All binaries are executed on one logical core of an Intel Core i9-
7960X CPU clocked at 2.8 GHz (with up to 4.2 GHz turbo boost). The stated
run-times are averages over 10 executions.

Fig. 2. Comparison of run-times for encrypting an increasing number of blocks with
different ciphers. Left: Camellia, DES, 3DES (mbedTLS). Right: different AES imple-
mentations; the differences in the respective RiCaSi versions are negligible.

In Fig. 2, we observe about two (DES, 3DES) to three (Camellia, all AES
implementations) orders of magnitude overhead when executing the binaries
produced by RiCaSi. For encrypting large amounts of data (i.e., in the order
of gigabytes) or applications with strict real-time requirements (e.g., Bitlocker),
this overhead quickly becomes impractical. However, for processing small or
even large amounts of data in high-security contexts without strict real-time
requirements, the binaries generated by RiCaSi deliver practical performance.
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6 Related Work

6.1 Secure Computation Techniques for Side-Channel Mitigation

So-called one-time programs (OTPs) are studied in [30], which are programs
that can be evaluated only on a single input chosen at run-time. The proposed
construction is based on a combination of tamper-resistant hardware with Yao’s
garbling scheme for Boolean circuits [71]. In this scheme, the gate tables are
encrypted and the corresponding keys required for decryption are carried by the
circuit wires instead of single bits. Importantly, the nature of the garbled circuit
evaluation prevents all potential side-channel leakage.

A variant of this idea was later implemented on FPGAs by [34]. Their per-
formance evaluation observes an overhead of about factor 106× comparing one
unprotected AES evaluation in hardware to a provably side-channel resistant
hardware-accelerated OTP evaluation. Despite this significant overhead, the
authors argue their solution might be reasonable for high-security applications.

In contrast to these works, we provide a generic compiler toolchain for creat-
ing and evaluating Boolean (non-garbled) circuits in software. Our performance
evaluation shows an overhead of only about factor 103× when comparing regular
vulnerable implementations of various block ciphers to circuit-based executables
with 0 bit upper leakage bounds with respect to cache side channels.

In [26], Felsen et al. use circuit representations to mitigate side-channel
attacks for programs shielded with Intel Software Guard Extensions (SGX) [18].
Intel SGX is a trusted execution environment available in many Intel CPUs that
allows one to run so-called enclaves in isolation from all other software. How-
ever, Intel considers software side channels out of scope for the attacker model,
which resulted in many attacks showing the vulnerability especially of enclaves
running cryptographic code (e.g., [69]). As a solution, Felsen et al. created an
enclave that evaluates Boolean circuits on private inputs provided to the enclave
via secure channels [26]. They claim resistance against timing and page-table-
as well as cache-based software side channels, but do not provide any analyses
for confirmation. Also, they do not provide an integrated solution for obtaining
the circuit representations required for their circuit evaluator.

In contrast to [26], we provide an automated way to generate side-channel
resistant executables with our toolchain RiCaSi. Most importantly, our app-
roach is backed by formal analyses showing upper bounds of 0 bit on the cache
side-channel leakage for various implementations of block ciphers. In the future,
RiCaSi could be extended to produce side-channel resistant Intel SGX enclaves.

The concept of Oblivious RAM (ORAM) [29] was introduced to prevent that
code can be reverse-engineered from observations about the memory accesses
performed by the code. The key idea is to replace each memory access with a
sequence of memory accesses that conceals the address of the original memory
access. That is, ORAM prevents information leakage via memory accesses with-
out removing these accesses completely. RiCaSi follows the alternative approach
of eliminating the memory accesses through circuit compilation.
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6.2 Systematic Detection and Assessment of Side-Channel Leakage

Systematic approaches to side-channel security range from qualitative
approaches, like type-based techniques [8,23,37,50], to quantitative approaches,
like abstraction-based techniques [25,38,42] or experiment-based techniques
[16,44,45]. In the following, we provide an overview of existing qualitative and
quantitative approaches with a focus on cache side channels.

Qualitative approaches to cache side-channel detection include, e.g., DATA
[70] and CacheD [68]. Both tools check for cache side channels in execution
traces. They are intended for debugging and do not provide security guarantees.
The tool CaSym [14] soundly verifies LLVM code against cache side channels.
While DATA uses statistical methods, CacheD and CaSym use symbolic execu-
tion.

Quantitative approaches to cache side-channel assessment include multiple
variants of the tool CacheAduit [25]. CacheAudit computes upper bounds on
the cache side-channel leakage of x86 binaries using a combination of infor-
mation theory and abstract interpretation. It has been successfully extended
and applied for the analysis of multiple cryptographic implementations, includ-
ing AES implementations [46], modular exponentiation [24], and lattice-based
cryptography [13]. Our work is based on CacheAudit and extends the tool for
our purposes with better scalability and additional x86 language coverage.

6.3 Analysis of Side-Channel Leakage in Circuit Implementations

To the best of our knowledge, the closest to our work in combining circuit com-
pilation with side-channel security guarantees are the Usuba compiler [48] and
its extension to Tornado [9]. Both, Usuba and Tornado take as input a circuit
specification in the Usuba specification language.

Usuba compiles the specification to C code and introduces optimizations
like bitslicing. Bitslicing [12] optimizes the performance of circuit-based soft-
ware implementations by parallelization. To this end, the variables that model
the circuit wires are used to store multiple bits instead of just one bit. Apply-
ing bitwise operations to these variables will then model the application of the
corresponding gate to all bits in parallel.

Tornado augments Usuba and returns an optimized circuit binary that sat-
isfies security guarantees with respect to the register-probing adversary model.
That is, the resulting circuit is secure against side-channel adversaries that can
probe intermediate values of registers during the execution of the software circuit.
To this end, Tornado extends Usuba with support for the masking countermea-
sure. Masking mitigates side-channel leakage by splitting the secret value into
shares that are only meaningful in combination. Moreover, Tornado combines
the extended Usuba with the tool TightProve [10] to show that the resulting
masked implementation is secure with respect to the register-probing model.

That is, both Usuba and Tornado work at the level of circuits. Both optimize
the circuits and Tornado also provides security guarantees. Neither of the tools
aims at supporting the development of circuits from high-level specifications.
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Overall, Tornado and Usuba are complementary to RiCaSi. Tornado and
Usuba focus on optimizing circuits, e.g., by bitslicing. RiCaSi currently uses
only one bit of each variable, i.e., does not apply bitslicing. Tornado and Usuba
do not support the generation of a circuit specification from a high-level imple-
mentation. RiCaSi closes this gap and converts high-level C implementations into
circuit-based implementations that are reliably secure against cache side-channel
attacks.

7 Conclusion

In this paper, we presented the toolchain RiCaSi, an integrated solution for
hardening regular C implementations against cache side channels by transform-
ing them into circuit-based x86 binaries.

RiCaSi applies program analysis to quantify the threat of cache side-channel
leakage in a given implementation. Based on the analysis results, the implementa-
tion can be hardened selectively and unnecessary costs are avoided. With RiCaSi,
we successfully transformed multiple vulnerable crypto implementations (AES
from OpenSSL, mbedTLS, Nettle, and LibTomCrypt; Camellia, DES, and 3DES
from mbedTLS) into circuit-based binaries with zero-leakage guarantees against
four cache attacker models. For these binaries, we observed overhead of up to
three orders of magnitude, which is acceptable for critical applications without
hard real-time requirements. Overall, RiCaSi performs a selective, effective and
affordable hardening of regular C implementations against cache side channels.

In the future, integrating steps for circuit optimization into the toolchain,
e.g., the use of vectorized instructions or automated bitslicing as in [48], will be
a promising direction to greatly reduce overhead while maintaining the applica-
bility to high-level C implementations and the reliable security guarantees.
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10. Beläıd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing secu-
rity with the least refreshing. In: ASIACRYPT (2018)

11. Bernstein, D.J.: Cache-timing attacks on AES. University of Illinois at Chicago,
Technical report (2005)

12. Biham, E.: A fast new DES implementation in software. In: FSE (1997)
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Abstract. A major challenge when applying cryptography on con-
strained environments is the trade-off between performance and secu-
rity. In this work, we analyzed different strategies for the optimization of
several candidates of NIST’s lightweight cryptography standardization
project on a RISC-V architecture. In particular, we studied the gen-
eral impact of optimizing symmetric-key algorithms in assembly and in
plain C. Furthermore, we present optimized implementations, achieving
a speed-up of up to 81% over available implementations, and discuss
general implementation strategies.

Keywords: RISC-V · Lightweight cryptography · Software
optimization · NIST

1 Introduction

The enormous growth of the “Internet of Things” (IoT) is changing the world.
Forecasts [27] project the number of interconnected embedded devices to around
50 billion worldwide by 2030, a five-fold increase in the next ten years. Driven
by the lack of cryptographic algorithms which are more suitable for such con-
strained environments, NIST started in 2015 a project1 (NIST-LWC) to solicit,
evaluate, and eventually standardize lightweight authenticated encryption algo-
rithms with associated data (AEAD) and hashing. In August 2019, NIST selected
32 candidates for round 2, which is expected to last one year. Lightweight cryp-
tography (LWC), a sub-field of cryptography, covers cryptographic algorithms
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intended for use in constrained hardware and software environments. The main
goal of NIST’s project is to provide algorithms that are more suitable for use
on constrained devices where the performance of current NIST cryptographic
standards is not acceptable. Thereby, performance figures should be considered
on a wide range of 8-bit, 16-bit and 32-bit microcontroller architectures.

On the hardware side, we are facing challenges where critical vulnerabili-
ties [24,26] cannot be tracked back due to the lack of transparency. The RISC-V
project, with roots in academia and research (University of California, Berkeley),
has initiated a fundamental shift in the technical and business models for micro-
processors. RISC-V [33], a royalty-free and open-source reduced instruction-set
architecture (ISA), provides a competitive advantage and the required degree
of flexibility to develop secure microprocessors with addresses of 32-, 64-, and
128-bits in length.

Contribution of this Paper. This paper aims at comparing optimization at
different levels of round-2 NIST lightweight candidates algorithms on a RISC-V
architecture. To achieve this, we first present optimized RISC-V implementations
of several cryptographic algorithms. Further, we study the impact of implement-
ing these primitives on RISC-V in assembly compared to in C. Based on this,
general implementation strategies are derived and discussed.

Related Work. Many aspects regarding the optimization of lightweight crypto-
graphic algorithms have been studied in the literature. In [28], generic security,
efficiency, and some considerations for cryptographic design of lightweight con-
structions were explored. The modular and reusable architecture of RISC-V facil-
itates a variety of designs for the implementation of accelerators, ranging from
loosely [32] to tightly coupled designs [1]. However, only few works focused on
the optimization of cryptographic algorithms on the standard RISC-V instruc-
tion set. Stoffelen [31] presented the first optimized assembly implementations of
AES, ChaCha, and the Keccak-f [1600] permutation for the RISC-V instruc-
tion set. In [29] the 32 s round finalists from the NIST-LWC were evaluated on
RISC-V without further optimization.

Organization of this Paper. This paper is structured as follows. Section 2 pro-
vides background information on the RISC-V 32-bit architecture and instruction
set. We also give the necessary background on the platforms used for bench-
marking. In Sect. 3, we briefly recall the selected algorithms and present our
optimization strategies, before we describe the benchmarking setup and discuss
the achieved results in Sect. 4. Finally, in Sect. 5, we conclude the paper.

Availability of Implementations. We place all software and hardware imple-
mentations described in this paper into the public domain (https://github.com/
AsmOptC-RiscV/Assembly-Optimized-C-RiscV).

https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV
https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV
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2 RISC-V

In Sect. 2.1 we describe in more details the RISC-V 32-bit architecture before
detailing the associated instruction set (Sect. 2.2). We then discuss different
approaches to execute code targeting RISC-V platform (Sect. 2.3).

2.1 Architecture

The RISC-V architecture uses 32-bit registers numbered from x0 through x31.
To ease their use, they also have aliases. zero (x0) is hard-wired to the value
0; ra (x1) corresponds to the return address; sp (x2) to the stack pointer; gp
(x3) to the global pointer; tp (x4) to the thread pointer. a0-a7 (x10-x17) are
function arguments with a0 and a1 also functioning as return values. s0-s11 (x8-
x9, x18-x27) are saved registers. Finally, t0-t6 (x5-x7, x28-x31) are temporary
registers.

The caller has the responsibility for the saved registers s0-s11 while the callee
is able to freely modify the arguments (a0-a7) and temporary registers (t0-t6).

Excluding the zero, ra, sp, gp, and tp registers, we are left with 27 freely
usable 32-bit registers. This is twice of what is available in the Cortex-M3 and
Cortex-M4 architectures; and it enables us to easily take care of register alloca-
tion.

2.2 Instruction Set

The RISC-V base instruction set contains a small number of instructions which
we briefly describe here.

Bitwise and arithmetic instructions such as add, addi, and, andi, or, ori,
sub, xor, xori take three register operands, or if postfixed by i, two registers
and one 12-bit sign-extended immediate.

We soon notice missing instructions. e.g., mov rd, rs is implemented by
taking advantage of the zero register as add rd, zero, rs. Similarly, the two’s
complement negation neg rd, rs is replaced by sub rd, zero, rs and the
one’s complement negation not rd, rs as xori rd, rs, -1. Subtract imme-
diate (subi) is written as addi with a negative immediate.

The base ISA does not provide rotation instructions but logical and arith-
metic shifts: sll, slli, srl, srli, sra, and srai. Those instructions are read
as shift [left|right] [logical|arithmetic].

Load of constants is done with two instructions: lui and addi. Load upper
immediate lui takes a 20 bit unsigned immediate and places it in the upper 20
bits of the destination register. The lowest 12 bits are filled with zeros.

.equ UART_BASE, 0x40003000

lui a0, %hi(UART_BASE)
addi a0, a0, %lo(UART_BASE)
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In order to load words, half-words (unsigned), or bytes (unsigned) from mem-
ory, the instructions lw, lh, lhu, lb, lbu are used. Similarly sw, sh, shu, sb,
sbuare available to store values into the memory. For example lw a5, 8(a2)
will load into a5 the word located at address a2 + 8. Note that the offset has to
be a constant. Additionally loads and stores of words have to be 32-bit aligned,
e.g., lw a5, 3(a2) will fail.

Text labels are used as targets for branches, unconditional jumps and symbol
offsets. They are added to the symbol table of the compiled module. Numeric
labels are used for local references. When used in jumps and similar instructions,
they are suffixed with ‘f’ for a forward reference or ‘b’ for a backwards reference.

loop:
...
j loop

j func
...

fun:

1:
...
j 1b

j 2f
...

2:

In addition to the jal and jalr unconditional jump –relative to the program
counter or as an absolute address in a register– the instruction beq, blt, bltu,
bge, bgeu are used for conditional jumps. They take three arguments, the first
two are used in the comparison while the third one is the destination –label–
encoded later as an offset relative to the program counter.

To perform our benchmarks we use the csrr instruction (control and status
register) to read the 64-bit cycle-counter. On the RV32I architecture, it is split
into two 32-bit words (cycle and cycleh).

2.3 Executing Code

To write optimized code for a specific architecture, we need ways to measure
improvements or regressions. Below, we describe 3 test platforms which allowed
us to benchmark our code.

SiFive E31 Core. We use a HiFive1 development board. They are easily avail-
able and contain the FE310-G000 SoC with an E31 core. The CPU implements
the RV32IMAC instruction set. This corresponds to the RV32I base ISA with the
extensions for multiplications, atomic instructions and compressed instructions.

It has to be noted that RISC-V does not specify how many cycles an instruc-
tion may take or the kind of memory used. As a result benchmarks between
different RISC-V cores have to be carefully compared.

The E31 runs at 320+ MHz and uses a 5-stage single-issue in-order pipeline.
Additionally it uses a 16KB, 2-way instruction cache. Fetching an instruction
from the cache takes only 1 cycle. Most instruction execution takes 1 cycle with a
few exceptions. For example, if there is a cache hit, load word (lw) takes 2 cycles,
loads of half word (lh) and bytes (lb) a 3-cycle latency. In the case of a cache
miss, the latency is highly dependent on the flash controller’s clock frequency.
To prevent such unpredictability, we fill up the cache before any benchmarks.
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The E31 comes with a 1-cycle latency branch predictor. It uses a 28-entry
branch target buffer (BTB), a 512-entry branch history table (BHT) for the
direction of conditional branches, and a 6-entry return-address stack (RAS). A
correctly predicted control-flow instruction results in no penalty while mispre-
dictions incur a 3-cycle penalty.

The RISC-V specification requires a 64-bit cycle counter accessible via two
CSR registers which we will use to benchmark code. Occasionally measurements
may end up taking much longer than expected, we ignore these odd values.

VexRiscv Simulator. VexRiscv is a 32-bit RISC-V CPU implementation writ-
ten in SpinalHDL. Although it is possible to load the core onto an FPGA; we use
the Verilator simulator to emulate a core and flash binaries to it. This process
allows us to have cycle counts and to evaluate how each algorithm is performing.

The core features the RV32IM instruction set. This corresponds to the base
ISA with the extension for multiplications. We initialize the simulator with
256KiB of RAM and 128KB of sRAM.

Similarly to the E31 core, the VexRiscv makes use of a 5-stage pipeline.
The absence of a branch predictor and an instruction cache give a significant
advantage to algorithms which have been unrolled either by hand or the com-
piler. This explains major cycle-counts differences in the execution of different
implementations of a same algorithm.

riscvOVPsim Simulator. Finally, as opposed to executing code on a board
or on a fully simulated core, we use the Open Virtual Platforms developed by
Imperas Software, Ltd. Their RISC-V simulator uses Just-in-Time Code Mor-
phing and executes RISC-V code on a Linux or Windows host computer.

This simulator implements the full Instruction Set and permits us to enable
or disable specific extensions such as Vector instructions or Bit manipulations.
The B extension gives us access to more advanced instructions such as rotations
(rori, roli), packing (pack, packu), and many others.

Unfortunately, this approach simulates neither pipeline nor cache. While it
allows us to execute RISC-V binary files, the results may be biased towards
some optimization practices, leading to significant differences between imple-
mentations as shown in our benchmarks (see Sect. 4).

3 Optimized Algorithms

Optimized cryptographic implementation are usually written directly in assem-
bly with the idea to prevent the compiler from introducing bugs or weaknesses.
By making sure we do not branch on secret data and considering the small size
of the RISC-V ISA, we trust the compiler to match our implementations.

We call “Optimized C” the translation of an assembly implementation back
into C, making use of uint32_t such that the C code mimics the assembly
instructions. The underlying idea is to have the compiler further optimize our
code and take care of the register allocation.

We now describe the algorithms we optimized and some of the implementa-
tion strategies we used.
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3.1 GIMLI

Gimli [6] is a lightweight scheme proposed by Bernstein, Kölbl, Lucks, Massolino,
Mendel, Nawaz, Schneider, Schwabe, Standaert, Todo, and Viguier. It makes use
of a sponge construction and is based on a 384-bit permutation. Its design puts
an emphasis on cross-platform performance and simplicity. The code is compact
and uses only logical operations and shifts. The absence of additions allows to
“interleave” implementations for platform with different register size than 32 bits.
An implementation for RISC-V-64 with the B extension would likely be using
such strategy.

The Permutation. The 24-round permutation operates on a 384-bit state seen
as a 3 × 4 matrix of 32-bit words. Gimli works first locally on the four 96-bit
columns; and, to ensure diffusion through the full state, a 2-word swap is applied
on the upper 128-bit row of the state every 2 rounds. The symmetries in the state
are broken by the addition of an incrementing round constant every 4 rounds.

Using a sponge construction [8], the designers created two variations: a hash
function Gimli-Hash and an authenticated cipher Gimli-Cipher.

Gimli-Hash and Gimli-Cipher. Gimli-Hash initializes a 48-byte state
to all-zero before reading sequentially through a variable-length input as a series
of 16-byte input blocks. Each full 16-byte input block is absorbed into the state.
The final non-full (empty or partial) block is padded with a byte 0x01 before
its absorption while a domain separation byte 0x01 is XORed in the last byte
(47th) of the state. The 32-byte digest output is extracted by blocks of 16-bytes.
Each absorption or extraction of blocks is interweaved with calls to the Gimli
permutation.

After initializing the state with a nonce and a key, Gimli-Cipher processes
the additional data in the same way as Gimli-Hash. The message is processed
in a similar fashion with the exception that after each absorption of a block, the
modified first 16 bytes of the state are produced as cipher text. Once the last
non-full block is processed; the 16-byte authentication tag is generated from the
first 16 bytes of the state.

We are able to get speed-ups on both Gimli-Hash and Gimli-Cipher by
optimizing the underlying permutation Gimli. We rescheduled the order of
instructions to avoid swap operations.

Bounds and Optimizations. We optimize Gimli by first having a deeper
look at the inner permutation and by computing the lower bound of the number
of cycles used. Gimli’s state representation uses twelve 32-bit words which are
easily contained in the 27 general-use 32-bit registers. [6] shows that only 2
additional registers are required in order to compute the column operations; as
a result, in a fully unrolled implementation, the only cycles necessary in the
computation are the ones required by the logical operations.

Gimli uses 2 rotations, 6 XORs, 2 ANDs, 1 OR, and 4 shifts. All logical
operations have a latency of 1 cycle, except for rotates which have a 3-cycle
latency. A column operation requires thus 19 cycles; iterated over 4 columns and
24 rounds, this totals to 1824 cycles.
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Gimli uses 6 constants (loaded in 2 cycles) derived every 4 rounds (an addi-
tional 5 cycles) before being XORed into the state (6 XORs, thus 6 cycles).
When the permutation is not directly inlined and used as a function, it requires
12 loads and 12 stores to get the state into registers for an additional 48 cycles.
Excluding the cycles needed to preserve some of the callee registers, we have a
total of 1885 cycles.

As a base line, the reference C code runs at 2178 cycles. By using careful
scheduling of the instructions, and using a minimum number of register – saving
into the stack only 4 callee–, our assembly implementation runs at 2092 cycles.
The Optimized C version runs in 2132 cycles. This timing difference is explained
by the compiler’s use of the 12 callee registers, inducing a 40-cycle penalty.

By unrolling in C –the same approach could have been applied in assembly–
over 8 rounds and propagating the swapping by renaming variable to avoid move
operations, the compiler manages to achieve further speed-ups by getting down
to 1900 cycles. Using this last implementation, we get a 19% speed-up for Gimli-
Hash and Gimli-Cipher (Table 1).

Table 1. Cycle counts for different Gimli implementations on the SiFive board; Gimli-
Hash over 128 bytes of data, Gimli-Cipher over a 128 bytes message with 128 bytes
of associated data. Compiled with Clang-10 and -O3

C-ref Assembly Optimized C 8-round Optimized C

Gimli 2178 2092 (−4%) 2132 (−2%) 1900 (−13%)
Gimli-Hash 23120 20812 (−10%) 21055 (−9%) 18678 (−19%)
Gimli-Cipher 44423 39583 (−10%) 40816 (−8%) 35853 (−19%)

3.2 SPARKLE

Sparkle [3] is a family of cryptographic permutations based on the block cipher
Sparx [20] and designed by Beierle, Biryukov, Cardoso dos Santos, Großschädl,
Perrin, Udovenko, Velichkov, and Wang. Schwaemm (an AEAD cipher scheme)
and Esch (a hash function) follow a not hermetic design approach, and share
Sparkle as the underlying permutation. The Sparkle permutation is a classic
ARX design, which, unlike most ARX constructions, provides security guaran-
tees with regard to differential and linear cryptanalysis based on the long trail
strategy (LTS) [20]. Schwaemm and Esch work on a relatively small state,
which is only 256 bits for the most lightweight instance of Schwaemm and
384 bits for the lightest variant of Esch. The biggest possible state size with
512 bits, can be applied by both schemes. Both algorithms employ the sponge
construction.

Two instances for hashing were proposed in [3], i.e., Esch256 and Esch384,
which allow to process messages of arbitrary length and output a digest of 256
bit, and 384 bit, length, respectively. Esch256, the main instance of Esch and
the one considered in our work, uses the 384-bit Sparkle permutation and has
a claimed security level of 128 bits.
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All the four instances for authenticated encryption with associated data pro-
posed in [3], i.e., Schwaemm128-128, Schwaemm256-128, Schwaemm192-
192 and Schwaemm256-256 use a variation of the Beetle mode of operation
first presented in [15], which in turn is based on the duplexed sponge construc-
tion. We focus again on the main version Schwaemm256-128, which uses the
384 bit Sparkle (Sparkle384) permutation, with a rate of r = 256 bit and a
capacity of c = 128 bit, claiming a security level of 120 bits.

Sparkle384 requires 50 rotations, 68 XORs, 24 ADDs, and 2 shifts for a
single round. With the exception of rotation (3 cycles), all operations have a
latency of 1 cycle. Thus, iterated over 7 or 11 rounds this totals to an estimated
lower bound of 1708 cycles, and 2684 cycles respectively. For further details, we
refer to the specification [3].

Loop Unrolling. Although unrolling the main loop within the Sparkle per-
mutation over 7 or 11 rounds results in a significant speed-up (see Table 3) when
using instruction cache (like the SiFive core used in this work, see Sect. 2.3), this
leads to significantly worse results in the case of AEAD (see Table 2).

Round Constants. In this optimization, we speed-up the permutation by
increasing the space required. In every round of the permutation, each of the
six ARX-boxes uses the same round constant in their computations. The idea
is to avoid the loading of the constants for the ARX-boxes in every round by
loading and saving these 6 constants in the registers before the transformation.
This comes with the cost of dedicating 6 registers to these constants.

This optimization can be applied in the loop as well as in the unrolled variant
of the implementation. In the unrolled implementation, we further reduce the
loading of round constants, since these 6 constants are also being used as the
round constants that are added to the state every round. In the 7-round variant of
the permutation, we save the loading of the first 6 round constants and only have
to load the 7th constant. In the 11-round variant of the permutation, we only
have to load the 8th constant extra. The other three are already loaded because
there are only 8 round constants defined and the selection index is calculated
modulo 8. In the loop unrolled implementation we reduce the instruction count
for 7 rounds by 72 instructions and for 11 rounds by 126 instructions.

Table 2 shows the achieved speed-up for Schwaemm256-128, Table 3
presents the achieved results for Esch256.

Table 2. Cycle counts for different Schwaemm256-128 implementations on the SiFive
board; encryption over a 128 bytes of message with 128 bytes of associated data.

Platform Compiler Opt Opt. C looped + round cst ASM loop-unrolled Opt. C

SiFive Clang-10 -O3 72286 43877 (−40%) 1059813 (+94%)
SiFive GCC -O3 71271 42634 (−40%) 1790566 (+95%)

riscvOVPsim Clang-10 -O3 20842 20840 (±0%) 20277 (−3%)
riscvOVPsim GCC -O3 20762 20161 (−2%) 20010 (−3%)

VexRiscv GCC -O2 25464 27018 (+6%) 24769 (−3%)
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Table 3. Esch256 cycle counts on each platform. The hashing operation hashes 128
bytes of data.

Platform Compiler Opt Opt. C loop-unrolled Opt. C

SiFive Clang-10 -O3 62734 34664 (−44%)
SiFive GCC -O3 58193 33331 (−42%)
riscvOVPsim Clang-10 -O3 17439 16552 (−5%)
riscvOVPsim GCC -O2 17849 17231 (−3%)
VexRiscv GCC -O2 18874 17753 (−6%)

3.3 SATURNIN

Saturnin [14] is the NIST lightweight candidate designed by Canteaut, Duval,
Leurent, Naya-Plasencia, Perrin, Pornin, and Schrottenloher. By building on top
of a 256-bit block cipher with a 256-bit key, they describe three constructions for
hashing (Saturnin-Hash) and authenticated encryption of small (Saturnin-
Short) and large data segment (Saturnin-Cipher). This last AEAD scheme
uses the counter mode and a separate MAC.

We ported to our benchmark platform the reference implementation and both
the 32-bit optimized “bs32” and “bs32x” C implementations [14, Section 3.4.2].
The “bs32” and “bs32x” implementations both implement Saturnin in a 32×
bitsliced fashion. Their difference is that “bs32” bitslices inside of blocks, whereas
“bs32x” bitslices across blocks. When comparing the two bitsliced implementa-
tions, “bs32” showed a consistently better performance than the other, albeit
sometimes with a small margin. We decided that “bs32” would be the preferred
implementation to use on our platforms.

In all the implementations, we tweaked the code to make sure that any con-
stants would be loaded from SRAM, instead of (the relatively slow) SPI flash.
This considerably improved the performance of the bitsliced implementations.

In the end, we see that the Optimized C implementation is considerably
faster than the reference implementation in terms of performance, with gener-
ally a speed-up by a factor of 2. Another interesting property from the results in
Tables 4 and 5 is the performance stability of the implementations across com-
pilers. Where the “bs32” performance is very stable—with cycle counts generally
varying less than 10%—the performance of the reference implementation varies
a lot with different compiler versions. Nonetheless, we see that newer compiler
versions seem to produce faster code.

Table 5 illustrates the fact that the greedy unrolling and inlining by GCC
with -O3 results in major speed-up on simulators. However once tested on a
physical device such as the SiFive development board (2.3), this results in a
code too large for the 16KB cache, inducing in a slowdown by a factor of 5.
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Table 4. Saturnin-Hash cycle counts on each platform. The hashing operation hashes
128 bytes of data.

Platform Compiler Opt Ref bs32

SiFive Clang-10 -O3 49433 28199 (−43%)
SiFive GCC -O3 78110 30321 (−61%)
riscvOVPsim Clang-10 -O3 46946 27070 (−42%)
riscvOVPsim GCC -O3 76211 29030 (−61%)
VexRiscv GCC -O2 103325 32169 (−69%)

Table 5. Saturnin-Cipher cycle counts on each platform. The cipher encrypts 128
AD bytes and 128 message bytes.

Platform Compiler Opt Ref bs32 bs32x

SiFive Clang-10 -O3 121651 59368 (−51%) 68792 (−43%)
SiFive GCC -O3 151428 60817 (−60%) 5210541 (×34)
SiFive GCC -Os 183464 65469 (−64%) 138187 (−24%)
riscvOVPsim Clang-10 -O3 93184 55154 (−41%) 61077 (−34%)
riscvOVPsim GCC -O3 145734 57366 (−61%) 75646 (−48%)
VexRiscv GCC -O2 202226 65015 (−68%) 88278 (−56%)

3.4 ASCON

Ascon [21] is a scheme proposed by Dobraunig, Eichlseder, Mendel and Schläf-
fer. It uses a very small 320-bit state which allows it to fit in registers on most
systems. The authors introduce multiple variants of Ascon AEAD as well as
a hashing scheme. We focus our efforts on the Ascon-128 AEAD variant. We
expect that our results translate fairly well to the other variants and the hashing
scheme as they are very similar.

We use the Ascon C [2] repository as a base line, more specifically we use
the reference, the 64-bit optimized, and the 32-bit interleaved implementations
as starting point for our optimizations.

Improved Formula. First we optimize the inner permutation by improving the
Ascon S-box formula (Fig. 1). We reduce the number of required instructions
from 22 to 17 and the number of temporary registers from 5 to 3 at the cost of
less potential for parallelism. Instruction-level parallelism—such as out-of-order
execution—is common in high-end CPUs but not so common in lightweight
platforms like our RISC-V targets. This optimization gives us a 10% speed-up
for both the assembly and Optimized C implementations (Table 6).
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Fig. 1. These formulas compute the Ascon S-box in 17 operations (once duplicate
operations are taken out); on indicates output bit n and in indicates input bit n.

Table 6. Cycle counts for the different Ascon’s round functions over 6 rounds; Com-
piled with Clang-10 and -O3

Platforms C-ref Assembly Optimized C

SiFive 832 750 (−10%) 750 (−10%)
riscvOVPsim 830 748 (−10%) 748 (−10%)

Bit Interleaving. We also compare the C implementation optimized for 32-bit
interleaving. It performs the worst of all others including the baseline imple-
mentation. Bit interleaving allows 32-bit rotations to model 64-bit rotations effi-
ciently, unfortunately our targets does not support 32-bit rotations. We expect
this implementation will perform better when targeting RISC-V cores comes
with the B extension, which adds rotation instructions.

Optimized 64 Bits. Finally, we compare the C implementation optimized for
64-bit processors. On RISC-V cores without the B extension, the 64-bit oper-
ations are compiled to 32-bit operations in a straightforward manner and the
compiler has no trouble with it. As RISC-V does not support misaligned memory
access, we had to modified the code to handle the authentication tag.

While on the RISC-V OVP simulator the 64-bit optimized version is 7% faster
than the baseline, testing it on the SiFive board reveals significant slowdowns
due to the code not fitting in the 16KB instruction cache.

Our final implementation makes use of the improved S-box formula in a 6-
round unrolled Optimized C permutation. By folding the processing of associated
data and message we are able to reuse the code and have to compiled code fit in
the instruction cache. Applying these modifications, we achieve our best results:
15% faster than the baseline (Table 7).
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Table 7. Cycle counts for different Ascon implementations in OVP sim for encrypting
128 bytes of message and 128 bytes of associated data; compiled with Clang-10 and
-O3

Implementation OVP sim SiFive

ref. & default permutation 31990 32038
ref. & asm permutation 28988 (−9%) 29036 (−9%)
ref. & inlined Optimized C perm 27489 (−14%) 27703 (−14%)
bit interleaved inline permutation 32001 (±0%) 1559691 (×49)
opt. 64-bit & default unrolled perm 29646 (−7%) 1191702 (×37)
opt. 64-bit & asm permutation 29090 (−9%) 29170 (−9%)
opt. 64-bit & fully unrolled Opt. C perm 27589 (−14%) 809631 (×25)
opt. 64-bit & 6-round unrolled Opt. C perm 27184 (−15%) 27271 (−15%)

3.5 Delirium

Elephant [11] is a family of lightweight authenticated encryption schemes
designed by Beyne, Chen, Dobraunig, and Mennink. The mode of Elephant is
a nonce-based encrypt-then-MAC construction, where encryption is performed
using counter mode based on permutation masked using LFSRs. One of the
instances of Elephant is Elephant-Keccak-f [200], also called Delirium,
which uses Keccak as its permutation primitive. Delirium has a state size
of 200 bits and claimed a security level of 127 bits. We optimize Delirium by
exploiting Elephant’s possibility for parallelization by using bit-interleaving.

Bit Interleaving. In order to make full use of the 32-bit registers, we combine
four blocks of byte-sized elements into one block of 4-byte elements. Thus, we can
process four blocks at the same time and our state representation changes to an
array of 25 32-bit words (5-by-5-by-32) with a total size of 800 bits. In this new
representation, one block amounts to four blocks in the standard representation.

There are two possible cases when transforming blocks before encrypting/de-
crypting to the new representation. The first and the easiest case is when the
amount of blocks that need to be transformed is a multiple of four. This means
that all groups of four blocks consisting of 8-bit words can be interleaved to
make one block of 32-bit words. The second case is when the amount of blocks
is not a multiple of four. Since the new representation needs four “old” blocks
to transform into one new block, we have to use padding blocks filled with zero
values to add to make the amount of blocks to a multiple of four.

After encryption/decryption, when transforming back to a byte representa-
tion of the data, we have to de-interleave each interleaved 32-bit block back to
four blocks of bytes. Since it is possible that the amount of original blocks was
not a multiple of four, we need to make sure none of the data from the added
padding blocks gets joined in the output data. This can be done by cutting off
any output data which exceeds the message-length variable.
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As shown in Table 8, we note that shorter inputs perform worse in the opti-
mized implementation. This is because the effort of interleaving data to process
four blocks simultaneously is wasted if there are very few blocks to process.

Table 8. Cycle counts for different Elephant-Keccak-f [200] implementations on
the SiFive board; encryption over a 32/64/128 bytes message with 32/64/128 bytes of
associated data.

Platform Compiler Message length Data length C-ref Bit interleaved

SiFive GCC 16 16 66541 73989 (+11%)
SiFive GCC 32 32 91837 74385 (−19%)
SiFive GCC 64 64 143181 74890 (−47%)
SiFive GCC 128 128 245100 113031 (−53%)
SiFive Clang-10 128 128 241975 145936 (−40%)
riscvOVPsim GCC 32 32 64651 66690 (+3%)
riscvOVPsim GCC 64 64 102138 66805 (−35%)
riscvOVPsim GCC 128 128 176086 101966 (−42%)
riscvOVPsim Clang-10 128 128 163973 103631 (−37%)

3.6 XOODYAK

Xoodyak [18]—designed by Daemen, Hoffert, Peeters, Van Assche, and Van
Keer—based on the Xoodoo permutation [16,17], is a cryptographic scheme
that is suitable for several symmetric-key functions, including hashing, encryp-
tion, MAC computation and authenticated encryption. Xoodoo, according to
its authors [17], can be seen as a porting of the Keccak-p [9,10] design approach
to a Gimli-shaped [6] state.

Xoodoo iteratively applies 12 rounds to a 384-bit state, which can be treated
as 3 horizontal planes, each one consisting of 4 parallel 32-bit lanes. The choice
of 12 rounds justifies a security claim in the hermetic philosophy. The claimed
security strength for Xoodyak is 128 bits.

An estimated lower bound for cycles taken by Xoodoo can be calculated as
follows. It requires 24 rotations, 37 XORs, 12 ANDs, and 12 NOTs for a single
round. With the exception of rotation (3 cycles), all operations take 1 cycle.
Thus, iterated over 12 rounds this totals to 1596 cycles.

Lane Complementing. The idea behind lane complementing, first proposed
in the Keccak implementation overview [10], is to reduce the number of NOT
instructions by complementing certain lanes before the transformation.

In Xoodoo the state is ordered in 4 sheets, each containing 3 lanes with a
width of 32-bit. The χ layer computes 3 XOR, 3 AND and 3 NOT operations for
every sheet in the state. This sums up to 12 NOT operations per round and 144
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NOT operations in total. In the default case, the χ transformation for every lane
a[i] in a sheet, with 0 ≤ i ≤ 2 and index calculation mod 3, can be calculated as
shown in Eq. (1).

a[i] ← a[i] ⊕ (a[i + 1] ∧ a[i + 2]) (1)

For example, we now want to complement lane a[2]. Thus, the equation of lane
a[0] gets rearranged as follows:

a[0]′ = a[0] ⊕ (a[1] ∧ a[2]) = a[0] ⊕ (a[1] ∨ a[2]) = a[0] ⊕ (a[1] ∨ a[2]),

a[0]′ = a[0] ⊕ (a[1] ∨ a[2]).

The complementation of a[2] results in the cancellation of the negation of a[1],
the switch from an AND to an OR operation and the complement of a[0]′. Now
we calculate all three lanes of a sheet with the complement of the lane a[2] ← a[2]:

a[0] ← a[0]′ = a[0] ⊕ (a[1] ∨ a[2]),

a[1] ← a[1]′ = a[1] ⊕ (a[2] ∧ a[0]),

a[2] ← a[2]′ = a[2] ⊕ (a[0] ∧ a[1]).

It can be observed that we only need one complementation for this sheet, instead
of three. For the computation of a[1], a[0] is complemented to be positive, because
a[0] was negated before. This example of lane complementing comes with the
cost of applying the input mask a[2] and output mask a[0], a[2].

The possible transformations of the boolean equations for a sheet are not
fixed to one. Thus, there are multiple boolean equations that are still logically
congruent, but may differ in the input and output mask. We want to find the
boolean equations and input mask with the lowest possible number of NOT-
instructions. To simplify this problem, we set the boolean equations to a fixed
set and only care about the possible input patterns. Therefore, we employ an
algorithm for finding the minimum NOT instruction count for a certain set
of boolean equations. We test all 212 possible combinations of input masks. For
every input mask, we follow the complements propagation through the 12 rounds
of the permutation as a symmetric difference pattern in the state and count the
NOT instructions.

After the application of the algorithm, we obtain an input mask and a
sequence of boolean equations. This input mask is 2-round invariant, meaning
that the input mask is the always same after every two rounds. Hence, it can be
implemented as a loop and therefore have a smaller code size.

We reduce the number of NOT operations to exactly 33% over 12 rounds.
The application of our input and output mask, each costs 4 NOT operations.
Due to a larger number of lanes in Keccak, Stoffelen [31] achieved a reduction
to 20%.

Lane complementing is not an assembly-specific optimization. As shown
in Table 9 and 11, we achieve a very similar speed-up in assembly and in C
(Table 10).
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Table 9. Cycle counts for different implementations of Xoodyak in AEAD mode GCC
compiled with -O2 in riscvOVPsim for encrypting 128 bytes of message and 128 bytes
of associated data.

Implementation riscvOVPsim Relative

Reference 105463
Loop unrolled + lane complementing assembly 29574 −71%
Loop unrolled + lane complementing Optimized C 28672 −72%

Table 10. Cycle counts for Xoodyak in hash mode on each platform, compiled with
-O3. The hashing operation hashes 128 bytes of data.

Platform Compiler Ref Unrolled & lane comp

SiFive Clang-10 81349 17963 (−78%)
SiFive GCC 82741 17063 (−79%)
riscvOVPsim Clang-10 18114 16845 (−7%)
riscvOVPsim GCC 23247 16614 (−29%)
VexRiscv GCC -O2 261678 38378 (−85%)

Table 11. Cycle counts for Xoodyak in AEAD mode on each platform, compiled with
-O3, for encrypting 128 bytes of message and 128 bytes of associated data.

Platform Compiler Ref Unrolled & lane comp

SiFive Clang-10 103717 26246 (−75%)
SiFive GCC 103522 23238 (−78%)
riscvOVPsim Clang-10 25002 23429 (−6%)
riscvOVPsim GCC 29775 21668 (−28%)
VexRiscv GCC -O2 261678 38378 (−85%)

3.7 AES

In [31], Stoffelen proposes two assembly implementations of AES: the first one
is based on lookup tables, and the second one uses a bitsliced approach.

With a Lookup Table. When encrypting a single block of 16 bytes, multiple
steps of the round function can be combined in a lookup table, also called T-
table by Daemen and Rijmen in [19]. Note that this type of implementation is

Table 12. Cycle counts for the Assembly of [31] and its translation to C on the SiFive
board, compiled with Clang-10 and -O3.

Assembly Optimized C

Key schedule 342 342
1-block encryption 903 901
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usually vulnerable to cache attacks [4,12,30]. Because none of our benchmarking
platforms have a data cache, we believe this implementation is likely “safe” to
use.

For his table-based implementation, Stoffelen makes use of the baseline
instructions described in [7]. Most of the proposed optimization by Bernstein
and Schwabe are not applicable due to the small instruction set of the RISC-V
architecture. The translation from assembly to C using uint32_t to simulate
registers is straightforward, and the lookup table is converted to an array as
uint32_t variable[] (Table 12).

Note that if the table is declared as const, the compiler will place it in the
.rodata segment. While this change does not have any impact on the verilator
and the riscvOVPsim simulators, it induces a major slowdown in the case of the
SiFive board as the SPI flash is significantly slower than the SRAM.

In order to prevent the compiler from messing with the pointer arithmetic,
data pointers are kept in the uint8_t* type. This forces us to cast the pointer to
uint32_t* before de-referencing to trigger the compiler to use the lw instruction.

Y0 = RK[0]; T0 = (uint32_t*)(LUT1 + ((*X0 & 0xff) << 4)); Y0 = Y0 ^ *T0;
Y1 = RK[1]; T1 = (uint32_t*)(LUT1 + ((*X1 & 0xff) << 4)); Y1 = Y1 ^ *T1;
Y2 = RK[2]; T2 = (uint32_t*)(LUT1 + ((*X2 & 0xff) << 4)); Y2 = Y2 ^ *T2;
Y3 = RK[3]; T3 = (uint32_t*)(LUT1 + ((*X3 & 0xff) << 4)); Y3 = Y3 ^ *T3;

Listing 1.1. Code fragment of AES encryption

Using a Bitsliced Approach. When using AES in CTR or GCM mode, mul-
tiple blocks can be processed in parallel using a bitsliced implementation [23,25].
This strategy is often more efficient and avoids lookup tables, making the imple-
mentation more resistant against timing attacks.

By using the same approach as with lookup tables, we translate the assembly
from [31] back into C. As seen in Table 13 the key schedule it is slightly slower.
However this translation approach gives us a 4% speed-up in the case of the
encryption in CTR mode (Table 13).

Table 13. Cycle counts for the Assembly of [31] and its translation to C on the SiFive
board, compiled with Clang-10 -O3.

Assembly Optimized C

Key schedule 1248 1256
Encryption of 128 blocks 260695 249813 (−4%)

3.8 Keccak

We now have a look at the Keccak-f family permutation—designed by Bertoni,
Daemen, Peeters and Van Assche [9]—, more precisely its 1600-bit instance
found in the SHA-3 standard by NIST[22]. The permutation is used in multiple
cryptographic constructions including future post-quantum candidates such as
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FrodoKEM[13], SPHINCS+[5] and others. Stoffelen [31] provides us with another
optimized implementation for RISC-V inspired by the Keccak implementation
overview [10]. Keccak-f [1600] works on a state composed of 25 64-bit lanes, in
other words a total of 50 32-bits words. This is more than the number of register
made available by the ISA, preventing the state from completely fitting in the
registers. By using bit interleaving and other techniques, Stoffelen manages to
reduce the number of cycles used.

Table 14. Cycle counts for the Assembly of Keccak [31] and its translation to C on
the SiFive board, compiled with GCC -Os.

Assembly Optimized C

Keccak-f [1600] 13731 13336 (−3%)

We take his implementation and translate it back to C. We compile with GCC
and -Os instead of -O2 or -O3 to get slightly faster results than the assembly
implementation in [31] (Table 14).

4 Comparison with Other Implementations
and Additional Benchmark

Some other implementations of lightweight candidates are publicly available;
we chose to compare our work against the repository of Weatherley2 as their
implemented are “focused on good performance in plain C on 32-bit embedded
microprocessors”.

As Clang-10 generally produces faster results than GCC with -O3, we used
it to compile and benchmark every optimized C implementation provided by
Weatherley. We measure the cycle counts for encryption of AEAD schemes for
128-byte messages with 128 bytes of associated data. In Table 15, we summarize
the performance of our software and Weatherley’s implementations.

While on the OVP simulator most of our implementations produces just
slightly better results with an average at −4% cycle counts; when using the
SiFive board, the unrolled implementation of Weatherley suffer heavily from
the 16KB instruction cache. This makes our RISC-V-optimized code on average
47.5% faster.

2 https://github.com/rweather/lightweight-crypto, commit 52c8281.

https://github.com/rweather/lightweight-crypto
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Table 15. Cycle counts for AEAD mode on the SiFive and riscvOVPsim platform,
compiled with Clang-10 -O3, for encrypting 128 bytes of message and 128 bytes of
associated data.

Algorithm Weatherley Our results
OVP SiFive OVP SiFive

Gimli 37596 38530 35690 (−5%) 35853 (−7%)
Schwaemm256-128 20842 72286 20277 (−3%) 43877 (−40%)
Saturnin 55367 152803 55154 (−1%) 59368 (−61%)
Ascon 41228 42562 27184 (−34%) 27271 (−36%)
Delirium 110171 765235 103631 (−6%) 145936 (-81%)
Xoodyak 18852 64869 23451 (+24%) 26246 (−60 %)

5 Conclusion

We described how multiple lightweight NIST candidates such as Gimli,
Sparkle, Saturnin, Ascon, Delirium, and Xoodyak can be efficiently imple-
mented. With strategies such as loop unrolling, we are able to write assembly
code close to the lower bound given by the number instructions arithmetic. By
translating our assembly implementation back into C, we get the compiler to
further optimize our results.

Using the AES and Keccak assembly implementations from Stoffelen [31],
we also show that our approach is applicable to existing code bases, and may
provide slightly improved results while increasing the readability and maintain-
ability of the code.

We use the HiFive1 development board to illustrate that algorithms need
to be tested on physical devices in order to guarantee useful optimized imple-
mentations. Although strategies such as fully unrolled loops may work nicely in
simulated environments such as riscvOVPsim; they will fail at length on physical
devices with e.g., a 16KB instruction cache.

As the NIST lightweight competition is currently taking place, we hope our
results will be found useful by the candidates’ implementers and designers. On
the other side, RISC-V offers the opportunity to disrupt the processor indus-
try by using a very collaborative approach offering more interoperability and
partnership opportunities.
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Abstract. LAC is a Ring Learning With Error based cryptosystem that
has been proposed to the NIST call for post-quantum standardization
and passed the first round of the submission process. The particular-
ity of LAC is to use an error-correction code ensuring a high security
level with small key sizes and small ciphertext sizes. LAC team pro-
poses a CPA secure cryptosystem, LAC.CPA, and a CCA secure one,
LAC.CCA, obtained by applying the Fujisaki-Okamoto transformation
on LAC.CPA. In this paper, we study the security of LAC Key Exchange
(KE) mechanism, using LAC.CPA, in a misuse context: when the same
secret key is reused for several key exchanges and an active adversary
has access to a mismatch oracle. This oracle indicates information on
the possible mismatch at the end of the KE protocol. In this context, we
show that an attacker needs at most 8 queries to the oracle to retrieve one
coefficient of a static secret key. This result has been experimentally con-
firmed using the reference and optimized implementations of LAC. Since
our attack can break the CPA version in a misuse context, the Authenti-
cated KE protocol, based on the CCA version, is not impacted. However,
this research provides a tight estimation of LAC resilience against this
type of attacks.

1 Introduction

The threat of a quantum computer that breaks most of the current public-key
cryptosystems with Shor’s Algorithm [18], led the National Institute of Standards
and Technology (NIST), in 2016, to begin a call for post-quantum safe public-key
cryptography [15]. The NIST specifically asked for quantum safe Key Encapsu-
lation Mechanisms (KEMs).

Among the different quantum resistant cryptosystems, those using ideal lat-
tices based on a Ring instantiation of the Learning With Errors problem (RLWE)
[12] are believed to be a promising direction to provide efficient and secure can-
didates. Indeed, 4 out of the 17 remaining KEMs of the round 2 of the NIST
submissions are ideal lattices based on the RLWE problem [1,2,9,19]. The inter-
est of RLWE based KEM is confirmed by real life experiments. In 2016, Google
c© Springer Nature Switzerland AG 2020
S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 549–569, 2020.
https://doi.org/10.1007/978-3-030-65411-5_27
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started to experiment RLWE based KEM between Chrome and Google’s services.
Moreover, several RLWE-based KEMs are implemented by the Open Quantum
Safe project in their OpenSSL and OpenSSH forks. This project involves aca-
demics, like University of Waterloo, and technology companies like Amazon Web
Services or Microsoft Research. However, before a world-wide practical deploy-
ment of lattice-based KEMs, it is interesting to assess their security in different
scenarios, for example in misuses conditions.

Motivation
In this paper we study LAC [19], a RLWE candidate to the NIST standardization
process. It differs from other RLWE KEMs by its small key and ciphertext sizes,
for an equivalent security level. Such small sizes can be an advantage, particu-
larly in constrained environments and embedded systems. We focus on LAC.KE,
a KEM based on the CPA secure public-key cryptosystem LAC.CPA. In con-
strained environments it’s interesting to determine the impact of key caching to
evaluate the requirement of random generation. Furthermore, the specification
of CCA version of LAC uses a static secret key due to security provided by the
Fujisaki Okamoto (FO) transformation [7]. However, as shown in [4,16] without
a secure implementation of FO transformation, a physical attack can bypass
security provided by FO and modifies a CCA version to a CPA one with a static
secret key.

Our study is inspired by previous works in [4,11,17], which evaluate the
resilience in a misuse context offered by two other NIST KEM candidates. Here
we propose to pursue this evaluation with another NIST candidate to determine
which one is the more resilient against this kind of attack.

Previous Works
The seminal work of Menezes and Ustaoglu [13] paved the way for active attacks
on KE protocols. The idea of key mismatch attack on LWE based key exchange
was first proposed by Fluhrer in [5,6]. In a key mismatch attack, a participant’s
secret key is reused for several key establishments, and his private key can be
recovered by comparing the shared secret key of the two participants.

Some lattice-based KEM of the NIST competition were analysed in the key
reused context using a key mismatch oracle. In [3], Baetu et al. proposed a generic
attack for several algorithms using the same structure called meta-algorithm.
However, most of the algorithms attacked in [3] did not pass the first round of
the submission, except Frodo-640 and NewHope512. However in [10], Huguenin-
Dumittan et al. pursue the work of generic attack for round 2 candidates. The
security of NewHope1024 CPA algorithm in this misuse scenario is analyzed by
Bauer et al. in [4] and an improvement is proposed in [11]. More recently, in the
same context, an attack on Kyber CPA KEM is proposed by Ding et al. [17].

In [8], Guo et al. presented an attack against the CCA version of LAC. This
attack is theoretically stronger than ours since it does not rely on a misuse
hypothesis but it requires 2162 pre-computations that cannot be achieved in
practice.
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Our Contribution
In this article, we investigate the resilience of the LAC KEM under a misuse case:
we assume that the same secret key is reused for multiple key establishment and
we assume that an attacker can use a key mismatch oracle as introduced in [4].

Since LAC uses encoding and compression functions different from a classical
RLWE scheme, Fluhrer’s attack [6] cannot be applied directly. Furthermore,
these functions are different from those used in NewHope or Kyber, so we cannot
apply straightforwardly the attacks described in [4,11,17]. A recent independent
work in [10] attacks several round 2 candidates using the generic structure of
these schemes. Their attack is applied to the first security level of LAC but is
focused on the theoretical aspect. Our work complete this work by bringing a
practical aspect and an extension to the others security levels.

The main idea of these attacks is to send forged ciphertexts to a victim,
ensuring that its decryption will leak partial information of his static secret
key. LAC algorithms use two encoding functions including an error-correction
code BCH that can correct a limited number of errors. If a message exceeds the
number of errors that the error-correction code can correct, then a decryption
failure occurs. Thus, we propose to use this failure to provide leaks about the
static secret key.

More precisely, we propose a deterministic key mismatch attack on LAC KE
for the first two security levels: LAC-128 and LAC-192, which required at most
2 queries per coefficient of the secret key. Afterwards, we adapt our attack to the
highest security level LAC-256 which is still deterministic but we need at most
8 queries per coefficient of the secret key.

We experimented our attack with the reference and optimized implementa-
tion in C provided by the LAC team [19] with parameters described in Sect. 2.2.
The code of our attack is available in [14].

Organization
In Sect. 2, we introduce some notations, describe LAC.CPA and LAC Key
Exchange Mechanism and present the different parameters used in LAC algo-
rithms. In Sect. 3, we describe the notion of key mismatch oracle introduced in
[4] and the attack for the first two security levels. Finally, in Sect. 4 we adapt
the attack to the higher security level.

2 Preliminaries

2.1 Notation

Ring Definition. For an integer q ≥ 1, let Zq be the residue class group
modulo q such that Zq can be represented as {0, . . . , q − 1}. We define Rq being
the polynomial ring Rq = Zq[x]/(xn + 1).
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Polynomial. A polynomial in Rq is of degree at most (n − 1) with coefficients
in Zq. Given P ∈ Rq, we denote by P [i] or Pi the coefficient associated with the
monomial xi. P can also be represented as a vector with n coordinates. In the
following, the notation (a)lv (lv ∈ N), where a is a vector (or a polynomial) of
dimension n > lv, means we keep the first lv coordinates of a.

Message Space. Let the message space M be {0, 1}lm and the space of random
seeds S be {0, 1}ls , where lm and ls are two integer values.

Random Distribution. Let ψσ be the centred binomial distribution on the
set {−1, 0, 1}. We denote the centred binomial distribution for n independent
coordinates by ψn

σ i.e. for a vector a of dimension n each coefficient is sampled
with the centred binomial distribution. In LAC algorithms we use:

1. ψ1 : Pr(x = 0) = 1
2 , Pr(x = −1) = 1

4 , Pr(x = 1) = 1
4

2. ψ 1
2

: Pr(x = 0) = 3
4 , Pr(x = −1) = 1

8 , Pr(x = 1) = 1
8

Given a set A, U(A) is the uniform distribution over A. We denote by H a hash
function and Samp(D, seed) an algorithm which samples a random variable
according to a distribution D with a given seed.

Error Correction Code. We denote by [n′, k, d] a set of parameters of an
error-correction code (in our case a binary BCH code). n′ denotes the length of
the codewords, k is the dimension and d is the minimal Hamming distance of
the code.

2.2 LAC

LAC is a Ring-LWE based public key encryption scheme over Rq. In order to
balance performance and size, LAC team chose q = 251, that fits on one byte.
This choice of a small modulus implies a lower security or a higher decryption
error rate. To overcome these issues, an error-correction code is used, allowing
to keep a low decryption error rate and maintain the same security level than
schemes using larger modulus. Three security levels are proposed for LAC: LAC-
128, LAC-192 and LAC-256. In this section, we describe the four algorithms
CPA.KeyGen, CPA.Encrypt, CPA.Decrypt, CPA.Decrypt256 of
the CPA version of LAC, the four subroutines BCHEncode, BCHDecode,
Compress and Decompress and the CPA-KEM scheme.

Note that KeyGen and Encrypt are common to the three security levels.
However, the decryption depends on the security level: Algorithm3 is the decryp-
tion process for LAC-128 and LAC-192. The decryption routine for LAC-256 is
described in Algorithm 4.
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Algorithm 1.
CPA.KeyGen()
Ensure: Key pair (pk, sk)
1: seeda ←− U(S)
2: a ← Samp(U(Rq), seeda)) ∈ Rq

3: s ←− ψn
σ

4: e ←− ψn
σ

5: b ← a × s + e ∈ Rq

6: return (pk, sk) = ((seeda, b), s)

Algorithm 2.
CPA.Encrypt(pk,m, seed)
Ensure: Ciphertext c = (c1, c2)
1: (seeda, b) ← pk

2: a ← Samp(U(Rq), seeda) ∈ Rq

3: m̂← BCHEncode(m)∈{0, 1}lv

4: r ← Samp(ψn
σ , seed)

5: e1 ← Samp(ψn
σ , seed)

6: e2 ← Samp(ψlv
σ , seed)

7: c1 ← ar + e1 ∈ Rq

8: c2 ← (br)lv + e2 + � q
2
�m̂ ∈ Z

lv
q

9: if LAC-256
10: c2 ← c2||c2 //D2 encoding
11: end if
12: c2 ← Compress(c2)
13: return c = (c1, c2)

Algorithm 3.
CPA.Decrypt(sk, c = (c1, c2))
Ensure: Plaintext m
1: c2 ← Decompress(c2)

2: ̂M ← c2 − (c1sk)lv ∈ Z
lv
q

3: for i = 0 to lv − 1 do
4: if q

4
≤ ̂Mi < 3q

4
then

5: m̂i ← 1
6: else
7: m̂i ← 0
8: end if
9: end for

10: m ← BCHDecode(m̂)
11: return m

Algorithm 4.
CPA.Decrypt256(sk, c = (c1, c2))
Ensure: Plaintext m
1: c2 ← Decompress(c2)

2: ̂M ← c2 − (c1sk)2lv ∈ Z
2lv
q

3: for i = 0 to lv−1 do //D2 Decoding

4: tmp1, tmp2 := ̂M [i], ̂M [i + lv]
5: if tmp1 < q

2

6: tmp1 ← q − tmp1

7: else if tmp2 < q
2

8: tmp2 ← q − tmp2

9: end if
10: if tmp1 + tmp2 − q < q

2

11: m̂i ← 1
12: else
13: m̂i ← 0
14: end if
15: end for
16: m ← BCHDecode(m̂)
17: return m

Subroutines
BCHEncode and BCHDecode. The function BCHEncode takes as input
a message m of length lm, pads it with (k−lm) zeros, where k is the dimension of
the BCH code, and returns the corresponding value c on the code. The function
BCHDecode takes as input a message ĉ of length n−1, retrieves the codeword
c closest to ĉ and returns m such that c = mG, where G is the generator matrix
of the code.
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Compress and Decompress. The function Compress takes as input a vari-
able c = (c0, . . . , clenc

) where each coefficient ci is a 8-bits number and returns
c′ = (c′

0, . . . , c
′
lenc

) where each c′
i is a 4 bits number obtained by keeping the

highest 4 bits of ci.
The function Decompress takes as input a variable c′ = (c′

0, . . . , c
′
lenc

)
where each coefficient c′

i is a 4-bit number, and returns c̃ = (c̃0, . . . , c̃lenc
) where

each c̃i is a 8 bits number obtained by padding each coefficient c′
i with 4 zero

bits.

Parameters
In the following we denote the secret key sk by s. Recall that LAC is a RLWE
public-key encryption scheme on Rq = Zq[x]/(xn + 1), with input messages of
length lm.

LAC uses different parameters for its three algorithms:

Name n q Distrib lm lv Code(BCH) [n′, k, d] D2

LAC-128 512 251 ψ1 256 lm + 144 [511, 367, 33] No

LAC-192 1024 251 ψ 1
2

256 lm + 72 [511, 439, 17] No

LAC-256 1024 251 ψ1 256 lm + 144 [511, 367, 33] Yes

The value lv depends on the BCH code. Let G be a generator matrix of
the BCH code C. By the construction of LAC, G is on systematic form G =
(Idk|An′−k). In fact, we cannot keep only lv bits of a codeword without this
condition. The BCHEncode function takes as input a message m of length lm
and pads it with (k − lm) zeros. We obtain

(m1, . . . ,mlm , 01, . . . , 0k−lm)G = (m1, . . . ,mlm , 01, . . . , 0k−lm |mAn′−k) = c

We omit the (k − lm) zeros of c then lv = lm + (n′ − k).

LAC Key Exchange
We describe the LAC Key Exchange introduced in [19], based on the CPA version
of the LAC public-key encryption scheme.
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If Key Exchange succeeds then r′ = r and KeyB = KeyA.

3 Attack on LAC Key Exchange

In this section, we present the main result of this paper. We start by defining
the scenario of the attack by introducing the oracle defined in [4].

3.1 Attack Model

Suppose that Alice does a misuse of the Key Exchange Mechanism by caching
her secret s. More precisely:

Assumption 1. Alice keeps her secret key constant for several CPA key estab-
lishments requests.

Eve is a malicious active adversary who acts as Bob and can cheat and generate
c that is not the encryption of a random r. To mount the active attack, we
suppose that Eve has access to a session key mismatch oracle defined as follow.

Definition 1. A key mismatch oracle outputs a bit of information on the possi-
ble mismatch at the end of the key encapsulation mechanism. In the LAC context,
this oracle, denoted O, takes any message c and any session key guess μ as input
and outputs:

O(c, μ) =
{

1 if H(pk,CPA.Decrypt(s, c)) = μ
−1 otherwise

This oracle can also be used by Bob during an honest key exchange with
Alice, when he verifies the match between his session key and Alice’s one.

The idea of the attack mounted by Eve is to send forged ciphertexts to Alice
to ensure that she obtains information on some coefficients of Alice’s secret key.
As Eve knows that c = (c1, c2) and s are used during the decryption algorithms
(s is multiplied by c1), she will mount an attack using this fact and following
four mains steps:

• Choose a session key μ.
• Construct c1 such that some coefficients of the secret key are exposed.
• Construct c2 depending of μ such that the result of Alice’s decryption can be

monitored as a function of the key guess.
• Call to the oracle O to obtain information about our key guesses.

The following section shows how to choose appropriate (c, μ) to retrieve infor-
mation on s. We assume that Eve has access to the oracle O.

3.2 Attack on LAC-128-KE and LAC-192-KE

First, we use a simplified version where we do not consider Compress
and Decompress functions. We follow the different steps of the decryption
Algorithm 3.
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Simplified Version
In this first result, we show how one can forge a LAC ciphertext in order to
impose which plaintext will be obtained after decryption. To do so, we need to
forge c such that the impact of the secret key during the decryption is under our
control.

Proposition 1. Assume that Eve forges c = (c1, c2) such that :

• c1 = −axn−w where w is an integer 0 ≤ w < n and 0 ≤ a < q
4• c2 = (α0, . . . , αlv−1) where αi = q

2 or 0 for all i in [0, lv − 1].

Then she can determine the plaintext m that Alice will obtain after decryption.

Proof. When Alice deciphers Eve’s ciphertext she:

1. Computes ̂M = c2 − (c1s)lv

2. Compares each coefficient of ̂M to q
4 and 3q

4 to define m̂
3. Retrieves m using BCHDecode algorithm on m̂

Let c1 = −axn−w and s = s0 + s1x
1 + . . . + sn−1x

n−1 then

c1s = asw + asw+1x + . . . + asn−1x
n−w−1 − as0x

n−w − . . . − asw−1x
n−1

and the polynomial c1s can be represented as the vector (asw, . . . ,−asw−1)
During the computation of ̂M , two cases are possible:

• w < lv then ̂M = c2−(c1s)lv = (α0−asw, . . . , αw+as0, . . . , αlv−1+asw+lv−1)

• w ≥ lv then ̂M = c2 − (c1s)lv = (α0 −asw, α1 −asw+1, . . . , αlv−1 −asw+lv−1)
After this computation each coefficient of ̂M is compared to q

4 ≤ ̂Mi < 3q
4 .

Recall that since s ←− ψn
σ , each of its coefficients belongs to {−1, 0, 1}. Let i

be an integer such that 0 ≤ i < n and j ≡ n − w + i mod n.

If αi = q
2 one gets:

αi ∓ asj =

⎧

⎨

⎩

q∓2a
2 if sj = ±1

q
2 if sj = 0
q±2a

2 if sj = ∓1

If αi = 0 one gets:

αi ∓ asj =

⎧

⎨

⎩

±a if sj = ∓1
0 if sj = 0
∓a if sj = ±1

In the first case, the three possible values for αi ∓ asj lie in
[

q
4 , 3q

4

[

if 0 ≤
a ≤ q

4 . In the case αi = 0, the three possible values do not lie in
[

q
4 , 3q

4

[

when
0 ≤ a < q

4 or 3q
4 ≤ a ≤ q.

Thus, Eve can choose a < q
4 and αi = q

2 or 0 to determine what Alice will
obtain on the first lv coordinates of m̂. Then, Eve can deduce, by applying BCH
decoding, what Alice obtains at the end of the decryption procedure.

The next example explains how one can use Proposition 1.
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Example 1. Suppose that Eve wants that Alice will obtain, after decryption,
the message m = BCHDecode(1, 0, 1, 1, 0, . . . , 0). Then she forges c = (c1, c2)
such that:

• c1 = − q
5xn = q

5 on Rq. In fact Eve can take any c1 such that c1 = −axn−w

with 0 ≤ a < q
4• c2 = ( q

2 , 0, q
2 , q

2 , 0, . . . , 0)

From c Alice first computes:

̂M = c2 − (c1s)lv

=
(q

2
, 0,

q

2
,
q

2
, 0, . . . , 0

)

− q

5
(s0, s1, . . . , slv ) , si belongs to {−1, 0, 1}

=
(q

2
− q

5
s0,−q

5
s1,

q

2
− q

5
s2,

q

2
− q

5
s3,−q

5
s4, . . . ,−q

5
slv

)

Then, Alice compares each coefficients of ̂M to q
4 and 3q

4 . She obtains (see proof
of Proposition 1):

m̂ = (1, 0, 1, 1, 0, . . . , 0)

At the end, Alice obtains m by applying BCHDecode algorithm to m̂. Thus,
Eve had forged c such that Alice has m = BCHDecode(1, 0, 1, 1, 0, . . . , 0).

With Proposition 1 we construct a ciphertext such that the secret key has no
impact during decryption. Now Eve needs to construct forged ciphertexts that
allow a key guessing strategy in order to retrieve the secret key. Thus, we need
that the secret key has an impact during decryption if and only if we did a good
key guess.

Proposition 2. Let s′
w be a guess done by Eve on the w-th coefficient of the

secret key s, where 0 ≤ w < n. Assume sw = 1 or −1. If Eve forges c = (c1, c2)
as given in Proposition 1 and modify the first coordinate of c2 such that:

• c2 = (as′
w, α1, . . . , αlv−1) with q

8 < a < q
4 .

Then she can verify her key guess from the plaintext computed by Alice from c.

Proof. Suppose that Eve wants to retrieve the w-th coefficient of s. When Alice
will decipher Eve ciphertext she first computes:

̂M = c2 − (c1s)lv = (as′
w − asw, α1 − asw+1, . . .)

According to Proposition 1, Eve can determine what Alice will obtain for every
coefficient different from her guess s′

w. Let see what happens with this coefficient
by analysing as′

w − asw.

as′
w − asw =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if s′
w = sw

2a if s′
w = 1 and sw = −1

−2a if s′
w = −1 and sw = 1

∓a if s′
w = 0 or sw = 0
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Let q
8 < a < q

4 then q
4 < 2a < q

2 and −2a = q−2a satisfies q
2 < q−2a < 3q

4 Then
with a ∈] q

8 , q
4 [. The key guess is good (resp. wrong) when a 1 (resp. 0) is returned

at the first coordinate of m̂. Hence Eve can effectively determines what Alice
obtained by applying BCHDecode algorithm to m̂ and thus deterministically
verifies her key guess from m̂.

Proposition 2 ensures that if Eve guessed the good key then Alice
will obtains m = BCHDecode(1, . . .). Otherwise, she will obtain m =
BCHDecode(0, . . .). Computational details are given in the following example.

Example 2. Suppose that Eve wants to learn information about the first bit of
Alice’s secret key. Eve forges c = (c1, c2) such that:

• c1 = − q
5xn = q

5 on Rq.
• c2 =

(

q
5s′

0, 0, q
2 , q

2 , 0, . . . , 0
)

where s′
w is Eve’s key guess.

As in Example 1, Alice first computes ̂M = c2 − (c1s)lv = ( q
5s′

0 − q
5s0, − q

5s1,
q
2− q

5s2,
q
2 − q

5s3,− q
5s4, . . . ,− q

5slv ) where si belongs to {−1, 0, 1}. Then, Alice com-
pares each coefficients of ̂M to q

4 and 3q
4 . She obtains (see proof of Proposition 2):

m̂ = (1, 0, 1, 1, 0, . . . , 0) if s′
0 = −s0 and s0 �= 0

m̂ = (0, 0, 1, 1, 0, . . . , 0) otherwise

At the end, Alice obtains m by applying BCHDecode algorithm to m̂. Thus,
Eve did the good key guess if Alice gets m = BCHDecode(1, 0, 1, 1, 0, . . . , 0).

Proposition 2 already gives interesting information to Eve but it is not enough
to mount an attack since Eve needs a way to verify if Alice obtains:

– either m = BCHDecode(1, 0, 1, 1, 0, . . . , 0)
– or m = BCHDecode(0, 0, 1, 1, 0, . . . , 0)

without knowing m. Moreover, most of the time BCHDecode(1, 0, 1, 1, 0,
. . . , 0) will not differ from BCHDecode(0, 0, 1, 1, 0, . . . , 0).

To overcome these issues we need to instantiate precisely the oracle given in
Definition 1 using Proposition 2.

Instantiation of the Oracle. The oracle defined in Definition 1 gives infor-
mation about the success of a key session establishment between Alice and Bob.
Eve can use such an oracle with the help of Proposition 2 and the BCH code
decryption failure to overcome issues mentioned above.
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In the sequel, we show how Eve can practically mount an attack by forging
specific inputs to this oracle and deduce information on Alice’s secret key. The
following theorem and its proof detail this construction then Algorithm 5 and
Algorithm 6 formally describe the attack.

Theorem 1. Let s′
w ∈ {−1, 1} be the guessed value of sw (0 ≤ w < n) done by

Eve. If Eve takes a session key μs′
w

then she can forge cs′
w

= (c1, c2) depending
of μs′

w
by using properties given in Proposition 2 such that by calling O(cs′

w
, μs′

w
)

with s′
w ∈ {−1, 1}, she retrieves the w-th coefficient of s. In consequence, Eve

needs at most 2 calls to the oracle in order to retrieve a coefficient of Alice’s
secret key.

Proof. According to Proposition 2, Eve can monitor Alice’s decryption procedure
if she does the good key guess.

An error-correction code can correct at most d−1
2 errors (where d is the minimal

Hamming distance of the BCH code). The idea is that after comparison with q
4 and

3q
4 , m̂ is a codeword with d

2 errors if Eve did the wrong key guess, causing a decoding
error. Suppose Eve wants to retrieve the w-th coefficient of s:

1. Eve chooses a codeword called cdword with a 1 at the first coordinate such
that cdword = mG where G is the generator matrix of the BCH code

2. Eve injects d−1
2 errors to cdword at any coordinate except the first one

3. Eve chooses a verifying q
8 < a < q

4 according to Proposition 2
4. Eve constructs c1, c2 with her key guess at the first bit of c2: c2[0] = as′

w and
such that after comparison with q

4 and 3q
4 , Alice retrieves cdword with d−1

2

errors or cdword with d
2 errors

5. Eve sends c = (c1, c2) to Alice

With this construction, Alice obtains a codeword with d
2 errors if Eve provides

a wrong key guess. At this point, Eve’s session key is sessE = H(pk,m) and
Alice’s session key sessA depends on Eve’s key guess. Eve can verify whether
she did the correct key guess with the oracle as follow:

Ifs′
w = 1 and O(c, sessE) = 1 then sw = −1 and sessA = sessE

Else Ifs′
w = −1 and O(c, sessE) = 1 then sw = 1 and sessA = sessE

Otherwisesw = 0

Algorithm 5 and Algorithm 6 are based on the construction described in the
proof of Theorem 1. Here, we fix the constant a to q

7 in the construction of c1.
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Algorithm 5. forge(hyp,bit)
Ensure: Forge ciphertext c = (c1, c2)
1: c1 := − q

7
xn−bit

2: m := [0 : for i := 0 to 255]
3: m[0] := 1
4: codeword := (m||0..0)G
5: Add d−1

2
errors to codeword (but

not on codeword[0])
6: For i = 0 to Len(codeword) :
7: if i == 0 :
8: c2[0] ← hyp× q

7

9: else if codeword[i] == 1 :
10: c2[i] ← q

2

11: else
12: c2[i] ← 0
13: end if
14: end for
15: Return(m, c = (c1, c2))

Algorithm 6. recoverOneBit(bit)
Ensure: A bit of s
1: m, c := forge(−1, bit)
2: If O(c, m) == 1 :
3: Return 1
4: end if
5: m, c := forge(1, bit)
6: If O(c, m) == 1 :
7: Return −1
8: end if
9: Return 0

Using Theorem 1, a key of length n can be fully recovered with at most 2×n
requests to the oracle. LAC-128 works with keys of length n = 512 and LAC-192
with length n = 1024.

Full Version
The subroutine Compress removes the 4 lowers bits of each coeff of c2. They
are replaced by 4 zero-bit when the subroutine Decompress is applied at the
beginning of the decryption process. Thus, each coefficient of c2 can be only
equal to 16, 32, 64, 128 and any sum of theses values.

For c2 in our attack, we only consider the values q
7 , − q

7 and q
2 . In our imple-

mentation [14] we approximate q
7 ≈ 32, − q

7 ≈ 128 + 64 + 16 = 210 and q
2 ≈ 128.

Proposition 2 is still verified and we still retrieve s with at most 2 × n requests
to the oracle by the Theorem 1.

In comparison of the recent work of Huguenin-Dumittan et al. in [10], our
upper-bound for LAC128 is 2 times less than theirs. Indeed, they need at most
211 queries to retrieve the entire secret key, while we need at most 210 queries.

Implementation Results
We have developed a C implementation of the attack (see [14]). To assess its
efficiency we use the reference code of LAC [19] as a target. In the following, we
present practical results on the average of 1000 attacks launched on 1000 random
secret keys for LAC-128 and LAC-192. Timing results have been evaluated on
core i5-8350U at 1.90 GHz.

The size of LAC-192 secret key is 2 times larger than LAC-128 one, but the
number of required request to retrieve sk is more than 2 times larger. This is
due to a different probability distribution between these two levels of security.
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Nb of coeff of sk Average oracle requests Average time

LAC-128 512 896 2, 94 ms

LAC-192 1024 1920 15, 53 ms

In average we need 1, 75 × 512 oracle requests for LAC-128 and 1, 875 × 1024
requests for LAC-192. For both cases, the practical result is less than the upper
bound of 2 × n where n = 512 or 1024.

4 Attack on LAC-256-KE

4.1 Attack on LAC-256-KE

Since LAC-256 encryption uses D2 encoding, the decryption procedure is slightly
different. Let c = (c1, c2), D2 encoding duplicates the coordinate of c2: c2 =
(c2||c2). The use of this encoding allows to decrease decoding errors.

In Attack on LAC-128/192 we forged c1 as a monomial to avoid linear combi-
nation between coefficients of s during computation of c1s. This allows to do key
guess on only one coefficient of s. But, despite the use of a monomial for c1, D2
encoding ensures that each coefficient of c1s is a linear combination of at least 2
coefficients of s. It implies that we need to do key guesses on two coefficients of
s. In this section, we adapt our previous attack to allow to do two key guesses
rather than one. The attack procedure is the same as previously:

• Choose a session key μ.
• Construct c1 such that some coefficients of the secret key are exposed.
• Construct c2 depending of μ such that the result of Alice’s decryption can be

monitored as a function of the key guess.
• Call to the oracle O to obtain information about our key guesses.

For the sake of clarity all proposition proofs are in Appendix.

CPA.Decrypt256 Description
The first step of the decryption it’s to compute ̂M = c2 − (c1s)2lv as previously.
However the comparison is different for LAC-256. The decryption algorithm
considers two cases

Case 1. If ̂M [i] and ̂M [i + lv] < q
2 or ̂M [i] and ̂M [i + lv] ≥ q

2 then algorithm

CPA.Decrypt256 checks whether:
̂M [i]+̂M [i+lv ]

2 ∈] q
4 , 3q

4 [
Case 2. If ̂M [i] < q

2 and ̂M [i + lv] ≥ q
2 or ̂M [i] ≥ q

2 and ̂M [i + lv] < q
2 then

CPA.Decrypt256 checks whether |̂M [i]−̂M [i+lv]|
2 ∈]0, q

4 [

In the following we notice when we are in the case 1 or 2.
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4.2 Attack on LAC-256-KE Simplified

As previously we first use a simplified version where we do not consider
Compress and Decompress subroutines.

Proposition 3. Assume that Eve forges c = (c1, c2) such that:

• c1 = −axn−w where w is an integer 0 ≤ w < (n − lv) and 0 ≤ a < q
4• c2 = (α0, . . . , αlv−1, αlv , . . . , α2lv−1) where αi = q

2 or 0 for all i in [0, 2lv − 1]

Then she can determine the plaintext m that Alice obtains after decryption.

Example 3. Suppose that Eve wants that Alice obtains, after decryption, the
plaintext m = BCHDecode(1, 1, 0, 1, 0, . . . , 0). Eve forges c = (c1, c2) such
that:

• c1 = − q
5xn = q

5 on Rq.
• c2 = ( q

2 , q
2 , 0, q

2 , 0 . . . , 0|| q
2 , q

2 , 0, q
2 , 0 . . . , 0). The symbol || delimit the lv first

part to the lv second part of c2 (we duplicate c2 due to D2 encoding in
Algorithm 2). The two parts are symmetric .

When Alice deciphers c, she computes ̂M = c2−(c1s)2lv and uses the comparison
procedure describes in Algorithm 4 to obtain m̂ of length lv. If c1 and c2 are
constructed according to Proposition 3, then (cf Proof 5):

• If c2[i] = c2[i + lv] = q
2 then m̂[i] = 1

• If c2[i] = c2[i + lv] = 0 then m̂[i] = 0

Then, with our c2 = ( q
2 , q

2 , 0, q
2 , 0 . . . , 0|| q

2 , q
2 , 0, q

2 , 0 . . . , 0) Alice obtains m̂ =
(1, 1, 0, 1, 0, . . . , 0). Thus, Alice retrieves m = BCHDecode(1, 1, 0, 1, 0, . . . , 0).

So Eve can choose a < q
4 and αi = q

2 or 0 to know what Alice obtains on the
lv coordinates of m̂ and then Eve can deduce what Alice obtains at the end of
decryption for m. Eve needs to construct forged ciphertexts which allow to verify
her key guesses.

Proposition 4. Let s′
w and s′

w+lv
be guesses done by Eve on the w-th and

w+ lv coefficients of the secret key s. Assume sw, sw+lv = 1 or −1. If Eve forges
c = (c1, c2) as given in Proposition 3 and modify the first and lv-th coordinates
of c2 such that:

• c2 = (as′
w, α1, . . . , αlv−1, as′

w+lv
, . . . , αlv−1) with q

8 < a < q
4 .

Then she can verify her key guesses from the plaintext computed by Alice from c.

Example 4. Suppose that Eve wants to learn information about the first and the
lv-th bit of Alice’s secret key. Eve forges c = (c1, c2) such that:

• c1 = − q
5xn = q

5 on Rq.
• c2 = ( q

5s′
0,

q
2 , 0, q

2 , 0 . . . , 0|| q
5s′

lv
, q
2 , 0, q

2 , 0 . . . , 0) where s′
0 and s′

lv
are key

guesses



Attack on LAC Key Exchange in Misuse Situation 563

When Alice deciphers c she computes ̂M = c2−(c1s)2lv and uses the comparison
procedure describes in Algorithm 4 to obtain m̂ of length lv. If c1, c2, s′

0 and s′
lv

are constructed according to Proposition 4, then (cf Proof 5):

• If s′
0 = −s0 and s′

lv
= −slv then m̂[0] = 1

• Else m̂[0] = 0
• The value of the others coefficients of m̂ are determined as in the previous

example

If Eve does correct key guesses then Alice obtains m̂ = (1, 1, 0, 1, 0, . . . , 0). Oth-
erwise, Alice obtains m̂ = (0, 1, 0, 1, 0, . . . , 0)

Proposition 4 ensures that Eve can know what Alice obtains if Alice’s secrets
coefficients are different from 0. Let see what happens when one of the two
coefficient is equal to 0.

Proposition 5. Let s′
w and s′

w+lv
be guesses done by Eve on the w-th and

w+ lv coefficients of the secret key s. Assume sw = 0 or sw+lv = 0. If Eve forges
c = (c1, c2) as given in Proposition 3 and modify the first and lv-th coordinates
of c2 such that:

• c2 = (as′
w, α1, . . . , αlv−1, as′

w+lv
, . . . , αlv−1) with q

6 < a < q
4 .

Then she can verify her key guesses from the plaintext computed by Alice from c.

Proposition 5 works like Proposition 4 but for the case where one of the two
targeted coefficient is equal to 0. However, as previously, Proposition 4 and
Proposition 5 are not enough to mount an attack for the same reasons:

• Eve needs a way to verify what Alice obtains.
• A bit of difference on m̂ is corrected by the BCH code. Thus, at the end of

the decryption procedure Alice and Eve have the same plaintext.

Nonetheless, Eve can use Proposition 4 and Proposition 5, the BCH code decryp-
tion failure and the oracle to overcome these issues.

Theorem 2. Let s′
w, s′

w+lv
∈ {−1, 1} be the guessed values of sw and sw+lv done

by Eve. If Eve takes a session key μs′
w,s′

w+lv
then she can forge cs′

w,s′
w+lv

= (c1, c2)
depending of μs′

w,s′
w+lv

by using properties given in Proposition 2 such that by
calling O(cs′

w,s′
w+lv

, μs′
w,s′

w+lv
) with s′

w, s′
w+lv

∈ {−1, 0, 1}, she retrieves the w-th
and w + lv-th coefficients of s. In consequence, Eve needs at most 8 × (n − lv)
calls to the oracle in order to retrieve two coefficients of Alice’s secret key.

Proof. The idea is the same as LAC-128 and 192, Eve takes c2 to ensure, after
comparison in CPA.Decrypt256, that m̂ is a codeword with d

2 errors if she
did a wrong key guess. Since at most d−1

2 errors can be corrected, a decoding
errors occurs.
According to Proposition 4 and Proposition 5, Eve can monitor Alice’s decryp-
tion procedure if she does the good key guess.
Suppose Eve wants to retrieve the w-th and the (w + lv)-th coefficients of s:
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1. Eve chooses a codeword called cdword with a 1 at the first coordinate such
that cdword = mG where G is the generator matrix of the BCH code

2. Eve injects d−1
2 errors to cdword at any coordinate except the first one

3. Eve chooses a verifying q
8 < a < q

4 if she is on the case of Proposition 4 or
q
6 < a < q

4 if she is on the case of Proposition 5
4. Eve constructs c1 and c2 with her key guesses at the first and lv-th coefficient

of c2: c2[0] = as′
w and c2[lv] = as′

w+lv
and such that after comparison, Alice

retrieves cdword with d−1
2 errors or cdword with d errors

5. Eve sends c = (c1, c2) to Alice

With this construction Alice obtains a codeword with d
2 errors if Eve does a

wrong key guess. At this point, Eve’s session key is sessE = H(pk,m) and
Alice’s session key sessA depends on Eve’s key guesses. Eve can verify if she did
a good key guess with the oracle.
First Eve determines if sw and sw+lv are different from 0 (see Proposition 4):

Ifs′
w = 1, s′

w+lv = 1 and O(c, sessE) = 1 then sw = −1 and sw+lv = −1
Else Ifs′

w = −1, s′
w+lv = −1 and O(c, sessE) = 1 then sw = 1 and sw+lv = 1

Else Ifs′
w = 1, s′

w+lv = −1 and O(c, sessE) = 1 then sw = −1 and sw+lv = 1
Else Ifs′

w = −1, s′
w+lv = 1 and O(c, sessE) = 1 then sw = 1 and sw+lv = −1

If the oracle does not return 1, then Eve determines which coefficient is equal to
0 (see Proposition 5):

Ifs′
w = 1, s′

w+lv = 1 and O(c, sessE) = 1 then sw = −1 and sw+lv = 0
or sw = 0 and sw+lv = −1
Ifs′

w = −1, s′
w+lv = 1 and O(c, sessE) = 1 then sw = 0 and sw+lv = −1

Else IfO(c, sessE) = −1 then sw = −1 and sw+lv = 0
Else Ifs′

w = −1, s′
w+lv = −1 and O(c, sessE) = 1 then sw = 1 and sw+lv = 0

or sw = 0 and sw+lv = 1
Ifs′

w = 1, s′
w+lv = 1 and O(c, sessE) = 1 then sw = 0 and sw+lv = 1

Else ifO(c, sessE) = −1 then sw = 1 and sw+lv = 0
Otherwisesw = 0 and sw+lv = 0

Eve can applies this procedure for 0 ≤ w < (n − lv) to retrieve the entire secret
key.

To recover the entire key we need at most 8 × (n − lv) requests to the oracle
due to Theorem 2, where lv = 400 and n = 1024.

Full Version
The subroutine Compress removes the 4 lowers bits of each coeff of c2. They
are replaced by 4 zero-bit when the subroutine Decompress is applied at the
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beginning of the decryption process. So each coefficient of c2 can be only equal
to 16, 32, 64, 128 and any sum of these values.

For c2 in our attack we choose a ≈ q
7 for Proposition 4 and a ≈ q

5 for
Proposition 5. Then, we only consider the values q

7 , − q
7 , q

5 , − q
5 and q

2 . In our
implementation [14] we approximate q

7 ≈ 32, − q
7 ≈ 128 + 64 + 16 = 210 or

− q
7 ≈ 128 + 64 + 32 = 224 (we use two different values to compensate the

approximation), q
5 ≈ 16 + 32 = 48, − q

5 ≈ 128 + 64 = 192 and q
2 ≈ 128. Propo-

sition 4 and Proposition 5 are still verified and we still retrieve s with at most
8 × (n − lv) requests to the oracle by the Theorem 2.

Implementation Results
We assess our attack implementation [14] plug in the reference code of LAC.
Following results are the average of 1000 attacks launched on 1000 random
secret keys for LAC-256. Timing results have been evaluated on core i5-8350U
at 1.90 GHz.

Nb of coeff of sk Average oracle requests Average time

LAC-256 1024 3355 30, 31 ms

In average we need 5, 4 × (1024 − 400) oracle requests that is much less than
the upper bound of 8 × (n − lv) requests

5 Conclusion

In this paper, we show how to mount an attack on CPA version of LAC-KE
when the same secret key is reused. Moreover, on constrained environment this
attack can be applied on the CCA version by applying physical attack on the
Fujisaki-Okamoto transformation as shown in [7,16]. We prove that this attack
needs at most 8 × 1024 queries of key exchanges. This low number of queries
to recover the secret confirmed the necessity to not reuse the same private key
even for a very small number of key exchanges. One can compare this number
with the key mismatch attack on NewHope in [11] that requires 882, 794 queries
and the one on Kyber in [17] that requires 2, 4 × 1024 queries. Hence, in the
context of key reuse, LAC-256 is much less resilient than NewHope but a little
more resilient than Kyber. It is important to note that this situation is a misuse
and thus, LAC is still believed to be safe when a fresh secret key is used for each
exchange. (The same remark applies to NewHope and Kyber.)

Appendix

Proof of Proposition 3

Proof. Assuming Alice receives c = (c1, c2) then she:
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1. Computes ̂M = c2 − (c1s)2lv

2. Compares q
4 <

̂M [i]+̂M [i+lv]
2 < 3q

4 or 0 < |̂M [i]−̂M [i+lv]|
2 < q

4 for i = 0 to lv − 1
to define each coefficient of m̂

3. Retrieves m using BCHDecode algorithm on m̂

Let c1 = −axn−w and s = s0 + s1x
1 + . . . + sn−1x

n−1 then c1s = asw +
asw+1x + cldots +asn−1x

w − as0x
w−1 − · −asw−1x

n−1.
c1s can be represented as a vector: (asw, . . . ,−asw−1). During the computa-

tion of ̂M two cases are possible:

• w < 2lv then ̂M = c2 − (c1s)2lv = (α0 − asw, α1 − asw+1, . . . , αw +
as0, . . . , α2lv−1 + as(2lv−1+w mod n))

• w ≥ 2lv then ̂M = c2 − (c1s)2lv = (α0 − asw, α1 − asw+1, . . . , α2lv−1 −
as(2lv−1+w mod n))

Recall that since s ←− ψn
σ , each of its coefficients belongs to {−1, 0, 1}. Let i be

an integer such that 0 ≤ i < lv and j ≡ i + w mod n. For decryption there are
the three following cases. (We cannot have the case where ̂M [i] = αi + asj and
̂M [i + lv] = αi+lv − asj+lv because that implies j + lv ≤ w + lv and w < j with
lv > 0 and j ≥ 0.)
1. ̂M [i] = αi − asj and ̂M [i + lv] = αi+lv − asj+lv If αi = q

2 one gets:

– If sj = sj+lv or sj + sj+lv = −1 we are in the Case 1 described in 4.1, where
αi − asj = ̂M [i]. Then

αi = αi+lv =
q

2
,
(αi − asj) + (αi+lv − asj+lv )

2
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

q−2a
2 if sj = sj+lv = 1

q+2a
2 if sj = sj+lv = −1

q
2 if sj = sj+lv = 0
q+a
2 if sj + sj+lv = −1

These 3 values lie in
]

q
4 , 3q

4

[

if 0 ≤ a < q
4 .

– Otherwise we are in the Case 2 described in Paragraph 4.1, where αi − asj =
̂M [i]:

αi = αi+lv =
q

2
,
|(αi − asj) − (αi+lv − asj+lv )|

2
=

⎧

⎨

⎩

a
2 if sj + sj+lv = 1
a if sj = −1, sj+lv = 1

or sj = 1, sj+lv = −1

These values lie in
[

0, q
4

[

if 0 ≤ a < q
4 .

Then for both cases, if c1 = −axn−w with αi, αi+lv = q
2 , we can ensure that we

have a 1 after comparison.
If αi = 0 then we are in the Case 1 described in Paragraph 4.1, where αi −asj =
̂M [i]:

(αi − asj) + (αi+lv − asj+lv )
2

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a if sj = sj+lv = −1
0 if sj = −sj+lv or sj = sj+lv = 0
−a if sj = sj+lv = 1
±a

2 otherwise
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Then these 3 values do not lie in ] q
4 , 3q

4 [ for 0 ≤ a < q
4 .

2. ̂M [i] = αi + asj and ̂M [i + lv] = αi+lv + asj+lv . The proof is the same as
above. We give here the different decryption cases:

– If αi = q
2 then two cases are possible: if sj = sj+lv or sj + sj+lv = 1 then we

are in the decryption Case 1 otherwise in the Case 2.
– If αi = 0 then we are in the decryption Case 1.

3. ̂M [i] = αi − asj and ̂M [i + lv] = αi+lv + asj+lv . The proof is the same as
above. We give here the different decryption cases:

– If αi = q
2 then two cases are possible: if sj = −sj+lv or sj = 0, sj+lv = 1 or

sj = −1, sj+lv = 0 then we are in the decryption Case 1, otherwise in the
Case 2.

– If αi = 0 then we are in the decryption Case 1.

Proof of Proposition 4

Proof. According to Proposition 3 Eve can determine what Alice obtains at
the end of the decryption procedure for every coefficient different from the key
guesses. Assume that Eve wants to retrieve the w-th and (w + lv)-th coefficients
of s. Let ̂M = c2 − (c1s)2lv , due to 0 ≤ w < (n − lv) the only case to consider is
̂M [0] = as′

w − asw and ̂M [lv] = as′
w+lv

− asw+lv .
Let s′

w = s′
w = 1 and q

8 < a < q
4 , so we are in the Case 1 described in

Paragraph 4.1. Let see what happens with
̂M0+̂Mlv

2 =
as′

w−asw+as′
w+lv

−asw+lv

2 :

a − asw + a − asw+lv

2
=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2a if sw = sw+lv = −1
0 if sw = sw+lv = 1
3a
2 if sw = 0, sw+lv = −1

or sw = −1, sw+lv = 0
a
2 otherwise

Then only the case a−asw+a−asw+lv

2 = 3a
2 can put a 1 to m̂0 if q

8 < a < q
4 .

With the same condition on a and with the same method Eve can have :

• If s′
w = s′

w+lv
= 1 and m̂0 = 1 then sw = sw+lv = −1

• If s′
w = s′

w+lv
= −1 and m̂0 = 1 then sw = sw+lv = 1

• If s′
w = 1, s′

w+lv
= −1 and m̂0 = 1 then sw = −1 and sw+lv = 1

• If s′
w = −1, s′

w+lv
= 1 and m̂0 = 1 then sw = 1 and sw+lv = −1

Proof of Proposition 5

Proof. Assume that Eve wants to retrieve the w-th and (w + lv)-th coefficients
of s.
As Proof 5 the only case to consider is ̂M [0] = as′

w − asw and ̂M [lv] = as′
w+lv

−
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asw+lv . Suppose q
6 < a < q

4 , s′
w = 1 and s′

w+lv
= 1. Let see what happens with

̂M0+̂Mlv

2 =
as′

w−asw+as′
w+lv

−asw+lv

2 (Case 1 described in Paragraph 4.1):

a − asw + a − asw+lv

2
=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3a
2 if sw = −1 and sw+lv = 0

or sw = 0 and sw+lv = −1
a
2 if sw = 0 and sw+lv = 1

or sw = 1 and sw+lv = 0
a if sw = sw+lv = 0

With q
6 < a < q

4 then only the case where the result is 3a
2 can put a 1 to m̂w.

However Eve needs to determine if sw = −1 or sw+lv = −1.

Suppose a < q
4 , s′

w = −1 and s′
w+lv

= 1, sw = −1 and sw+lv = 0 or sw =
0 and sw+lv = −1. Here, we need to consider the both decryption cases described
in Paragraph 4.1. Let see what happens:

– If sw = −1 and sw+lv = 0 we are in Case 1 4.1 thus q
4 < a < 3q

4 .
– If sw = 0 and sw+lv = −1 we are in Case 2 4.1 thus 0 < |−a−2a|

2 < q
4 which

implies 0 < a < 3q
8 .

However a < q
4 , then only one case can put a 1 to m̂0.

With the same condition on a and with the same method, Eve can retrieve
the others values:

• If s′
w = 1, s′

w+lv
= 1 and m̂0 = 1 then sw = −1, sw+lv = 0 or sw = 0,

sw+lv = −1
• If s′

w = −1, s′
w+lv

= 1 and m̂0 = 1 then sw = 0, sw+lv = −1 else sw = −1,
sw+lv = 0

• If s′
w = −1, s′

w+lv
= −1 and m̂0 = 1 then sw = 1, sw+lv = 0 or sw = 0,

sw+lv = 1
• If s′

w = 1, s′
w+lv

= −1 and m̂0 = 1 then sw = 0, sw+lv = 1 else sw = 1,
sw+lv = 0
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Abstract. The advent of quantum computers is a threat to most cur-
rently deployed cryptographic primitives. Among these, zero-knowledge
proofs play an important role, due to their numerous applications. The
primitives and protocols presented in this work base their security on
the difficulty of solving the Rank Syndrome Decoding (RSD) problem.
This problem is believed to be hard even in the quantum model. We first
present a perfectly binding commitment scheme. Using this scheme, we
are able to build an interactive zero-knowledge proof to prove: the knowl-
edge of a valid opening of a committed value, and that the valid openings
of three committed values satisfy a given linear relation, and, more gener-
ally, any bitwise relation. With the above protocols it becomes possible to
prove the relation of two committed values for an arbitrary circuit, with
quasi-linear communication complexity and a soundness error of 2/3. To
our knowledge, this is the first quantum resistant zero-knowledge pro-
tocol for arbitrary circuits based on the RSD problem. An important
contribution of this work is the selection of a set of parameters, and an a
full implementation, both for our proposal in the rank metric and for the
original LPN based one by Jain et al. in the Hamming metric, from which
we took the inspiration. Beside demonstrating the practicality of both
constructions, we provide evidence of the convenience of rank metric, by
reporting performance benchmarks and a detailed comparison.

Keywords: Post Quantum · Code-based cryptography · Rank metric ·
Zero-knowledge proof · Identification protocol · Commitment scheme

1 Introduction

Due to the results of Grover [21] (1996) and Shor [33] (1997), the advance-
ments in quantum information theory, and the discovery of new technologies,
quantum computers are becoming more and more of a threat to the currently
deployed cryptosystems, especially to those based on public key cryptography.
Among these, zero-knowledge proofs (ZKP) are gaining particular attention due
c© Springer Nature Switzerland AG 2020
S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 570–592, 2020.
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to their numerous applications. They can be used to obtain identification and
login mechanisms, cryptographic signature schemes, systems to enforce honest
behaviour of the users, and to prove statements in public transaction systems
such as blockchains. The growing interest from both academia and industry on
the ZKP topic, has led to a series of results that improve upon previous theory
and allow for the development of practical applications, and a standardization
effort for zero-knowledge systems is also being carried on by the cryptographic
community [34,37]. On the other hand, most of ZKP schemes are not quantum
resistant.

Zero-knowledge proofs were first introduced by Goldwasser, Micali and Rack-
off in 1989 [20]. In their work, they created a new proving procedure for com-
municating a proof, or in modern terms, an efficient interactive proof system.
An interactive proof is a process in which a prover probabilistically convinces a
verifier of the correctness of a mathematical proposition, also called statement.
If the proof does not reveal to the verifier any additional information about the
mathematical proposition, except if it is true or not, then it is called a zero-
knowledge proof. A zero-knowledge proof of knowledge of a secret information
is a special case of zero-knowledge proof, in which the statement consists only
of the fact that the prover knows the secret information. Goldreich, Micali and
Wigderson [19] showed how to make any proving system in NP (i.e. where the
verifier is a deterministic, polynomial-time machine) zero knowledge, meaning
that the verifier learns nothing but the correctness of the proposition. Further-
more, Impagliazzo and Yung in 1987 [22], and Ben-Or et al. in 1990 [8], showed
that anything that can be proved by an interactive proof system can be proved
with zero knowledge. Zero-knowledge proofs therefore provide complete privacy
to the prover while convincing the verifier. Further research resulted in the study
of non-interactive zero-knowledge proofs (NIZKs), a variant that does not require
interaction between the prover and the verifier. Building on top of these, modern
NIZK systems have become more efficient, including succinct proofs, sub-linear
verifiers and highly efficient provers.

In this work, we will focus on quantum resistant interactive zero-knowledge
proofs, with the property of public-coin, i.e. verifier’s random coins are made
public throughout the proof protocol. Notice that, a public-coin interactive proof
of knowledge can always be converted into a non-interactive proof of knowledge
by means of the Fiat-Shamir heuristic [14]. Furthermore, if the interactive proof
is used as an identification tool, then the non-interactive version can be used
directly as a digital signature.

1.1 Our Contribution

A commitment scheme is a cryptographic primitive that allows one to commit to
a chosen value (or chosen statement) while keeping it hidden to others, with the
ability to reveal (or to open) the committed value later. Commitment schemes
are designed so that a party cannot change the value or statement after they
have committed to it: that is, commitment schemes are binding.
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In this work, we design and implement a perfectly binding and computation-
ally hiding commitment scheme whose security relies on the hardness of solving
the Rank Syndrome Decoding (RSD) problem, i.e. on the hardness of decoding
random linear codes in the rank metric. This problem is believed to be hard even
in the quantum model. Using this scheme, we are able to build an interactive
zero-knowledge proof to prove: the knowledge of a valid opening of a commit-
ted value, and that the valid openings of three committed values satisfy a given
linear relation, and, more generally, any bitwise relation.

With the above protocols it becomes possible to prove that the committed
values c0, c1 satisfy c0 = C(c1) for an arbitrary circuit C. As proved in [23], the
total communication complexity of this protocol is O(|C|μ log μ) where μ is the
length of the committed messages. The soundness error is 2/3, and thus for most
applications must be lowered by (parallel) repetition.

Moreover, we also compute secure parameters, and implement1 both schemes
in the rank and Hamming metric, and compare their performances. Notice that,
in [23], no parameters, nor an implementation was provided. Our proposal gen-
erates proofs that are 60% smaller and the size of the public parameters required
is only a 1% with respect to the public parameters for the Hamming metric.

To our knowledge, this is the first zero-knowledge protocol for arbitrary cir-
cuits whose security relies on the difficulty of solving the Rank Syndrome Decod-
ing problem, and the collision resistance of a hash function.

In Subsect. 1.2, we give an overview of the works related to our result. In
Sect. 2, we introduce the basic notions needed to understand our scheme. In
Sect. 3, we define a commitment scheme, and below it, in Sect. 4, we build our
zero-knowledge protocols. In Sect. 5, we select a set of parameters both for our
scheme and for its analogue in the Hamming metric, and we provide benchmarks
of our implementations of the corresponding ZKP protocols. Finally, in Sect. 6,
we draw the conclusions.

1.2 Related Works

This work is an adaptation of the protocols presented by Jain et al. in [23], where
they show how to build a zero-knowledge protocol for arbitrary circuits reducing
the security of their system to the difficulty of solving the Learning Parity with
Noise problem, or, equivalently, to the difficulty of decoding a random linear
code in the Hamming metric.

In turn, Jain’s work is based on the preliminary identification protocol pro-
posed by Stern in 1993 [35,36], which inspired a long sequence of works improving
either the scheme parameter size, or the communication cost. All the subsequent
schemes derived from Stern’s can be divided in four categories:

– Type 1: 3-pass protocols using the parity-check matrix of a code,
– Type 2: 3-pass protocols using the generator matrix of a code,

1 A C++ implementation of the schemes described in this work can be found at
https://github.com/ahasikos/rank commitments.

https://github.com/ahasikos/rank_commitments
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– Type 3: 5-pass protocols using the parity-check matrix of a code,
– Type 4: 5-pass protocols using the generator matrix of a code.

Type 1 protocols can be seen as Zero-Knowledge Proof of Knowledge (ZKPoK)
of a solution of an instance of the Syndrome Decoding problem for some spe-
cific code, where the syndrome is the public key and the corresponding error
the private secret. As the original Stern proposal, they are 3-move Σ-protocols
with a soundness error of 2/3, and perfect completeness. The original Stern pro-
posal used binary linear codes over the Hamming metric. Also, a second variant
minimizing the computing load was presented, but its longer proof renders it
unpractical. Double circulant codes, again in the Hamming metric, were pro-
posed in 2007 by Gaborit and Girault in [16]. In 2011, Gaborit et al. adapted
their proposal with double circulant codes to rank metric, obtaining the most
compact code based identification scheme of Type 1. In 2008, Stern scheme was
also adapted to the lattice setting by Kawachi et al. [24], who also extended the
initial identification scheme to an anonymous identification scheme.

Using a generator matrix rather than the parity-check matrix, allows to
reduce the communication cost, at expense of a slightly larger private key. This is
why Type 2 protocols were introduced, in 1997, by Veron, in [38]. Type 2 proto-
cols use a secret message and a secret error as the private key, and their encoding
under a public generator matrix as the public key. Initially, the advantage in the
communication cost was due to the fact that the committed value, which needs
to be revealed in the response phase, was in the code plain message space rather
than in the encoded message space. In 2012, Jain et al. [23] pointed out that
Veron scheme did not reach perfect zero-knowledge, and proposed a variation of
it, which they then used to construct zero-knowledge proof of knowledge of linear
and multiplicative relations between committed messages. Jain version, though,
lost the feature that was reducing the communication cost, as their commitment
value was in the error space, which had the same size as the encoded message
space. In 2018, Bellini et al. proposed the rank metric version of Veron scheme,
thought without providing a security proof, and their scheme was attacked in
2019 in [25]. This is, so far, the only Stern-based scheme that has been attacked.

Notice that Type 1 and Type 2 protocols are 3-pass Σ-protocols, with perfect
completeness and a soundness error (often referred to as cheating probability)
of 2/3. Type 3 and Type 4 protocols were introduced to reduce the soundness
error from 2/3 to almost 1/2, by performing 5 steps instead of 3. This allows to
run less parallel execution of the protocol to reach a smaller desired soundness
error, and, sometimes, a smaller communication cost at expense of some extra
computation.

The first Type 3 protocol was presented in the second variant of Stern’s
original proposal. However, also this alternative had a larger proof and was
not practical. In 2010, Cayrel-Veron-El Yousfi Alaoui (CVE) [12] presented a
5-pass identification protocol with soundness error of q/(2q − 2), using codes
over Fqm , this time improving significantly the communication cost compared
to the initial 5-pass proposal by Stern. A version of CVE scheme in the rank
metric is presented in [7], though lacking a security proof. It is worth noting that
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the parameters proposed for this particular rank version of CVE scheme do not
improve key size nor communication cost with respect to the Hamming metric
version. A lattice based version of CVE was presented in 2012 by Cayrel et al.
[11], reaching a smaller public key, but larger private key and communication cost
than CVE. This scheme also improves under all aspects the Type 1 lattice-based
scheme of Kawachi et al. [24]

The first Type 4 protocol was presented in 2011 in [2] by Aguilar et al., where
double circulant codes were used. The key size, the communication cost and the
soundness error of this protocol were later significantly improved in 2019, by
Bellini et al. in [6], by replacing the Hamming metric with the rank metric.
A lattice based version of the Jain et al. protocol was presented by Mart́ınez
and Morillo in 2019 [29], where they also use some ideas from [26] and [40].

Table 1. Summary of Stern-like protocols.

Name Ref Year Metric Setting Aim Notes

3-pass, with parity-check matrix

Stern(1) [35,36] 1993 Hamm Linear codes Identification -

Stern(2) [35,36] 1993 Hamm Linear codes Identification Minimize

computing load,

proof not practical

GG [16] 2007 Hamm Double Circulant codes Identification -

KTX [24] 2008 Euclidean Lattices Anonymous

Identification

-

GSZ [18] 2011 Rank Double Circulant codes Identification -

3-pass, with generator matrix

Veron [38] 1997 Hamm Linear codes Identification Not perfect ZK

JKPT [23] 2012 Hamm Linear codes ZKPoK of

relations

-

BKLP [9] 2015 Euclidean Lattices ZKPoK of

relations

-

BCHMM [7] 2018 Rank Linear Codes Signature Attacked in [25]

This work - - Rank Linear codes ZKPoK of

relations

-

5-pass, with parity-check matrix

Stern(3) [35,36] 1993 Hamm Linear codes Identification Proof not

practical

CVE [12] 2010 Hamm q-ary Linear Code Identification -

CLRS [11] 2012 Euclidean Lattices Identification -

BCHMM [7] 2018 Rank Linear Codes Signature -

5-pass, with generator matrix

AGS [2] 2011 Hamm Double Circulant codes Identification -

BCGMM [6] 2019 Rank Double Circulant codes Signature -

MM [29] 2019 Euclidean Ideal Lattices ZKPoK of

relations

-
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The authors do not propose a set of parameters and leave as future work an
implementation of their scheme.

All the above mentioned protocols are believed to be secure even against
quantum adversaries, thought the situation is more uncertain as far as it concern
the analogue of the Fiat-Shamir transform for 5-pass protocols.

In the case of lattices, it is possible to construct zero-knowledge proofs using
approaches different from Stern, as it was done, for example, in [26,28,31]. A
summary of the above described Stern-like protocols can be found in Table 1.

2 Preliminaries and Notations

2.1 Codes in the Rank Metric

We use Mr,c(R) and M∗
r,c(R) to denote, respectively, the set of all matrices and

the set of all full rank matrices with r rows and c columns with entries over the
ring R. Given M1 ∈ Mr,c1(R) and M2 ∈ Mr,c2(R), we indicate with M1‖M2

the concatenation of the two matrices.
A linear (n, k)q-code C is a vector subspace of (Fq)n of dimension k, where

k and n are positive integers such that k < n, q is a prime power, and Fq is the
finite field with q elements. Elements of the vector space are called vectors or
words, while elements of the code are called codewords. A matrix G ∈ M∗

k,n(Fq)
is called a generator matrix of C if its rows form a basis of C, i.e. C = {x · G :
x ∈ (Fq)k}. A matrix H ∈ M∗

n−k,n(Fq) is called a parity-check matrix of C if
C = {x ∈ (Fq)n : H · xT = 0}.

In this paper, we work with codes in the rank metric. Given a fixed basis
β = {β1, . . . , βm} of (Fq)m, a vector a ∈ (Fqm)n can be represented as a matrix
with entries in Fq, by expanding each component of ai with respect to β in a
column (a1,i, . . . , am,i)T , where ai =

∑m
j=1 aj,iβj , i = 1, . . . , n. We define the

rank wR(v) of a vector v as the rank of its matrix representation, with respect
to β. We denote the previous matrix representation as φβ(a), and by φ−1

β the
inverse map. In what follows, we will omit β as we consider it fixed.

To send a binary vector of a certain Hamming weight to any other vector
of the same Hamming weight, it is sufficient to apply a random permutation to
vector components. The map with the analogue property in the rank metric, i.e.
sending a vector of a certain rank to any other vector of the same rank, can be
defined as follows (see [18]).

Definition 1. Let Q ∈ M∗
m,m(Fq) be a q-ary matrix of size m × m, P ∈

M∗
n,n(Fq) be a q-ary matrix of size n × n, and v = (v1, . . . , vn) ∈ (Fqm)n. We

define the function ΠP,Q such that (π1, . . . , πn) = ΠP,Q(v) = φ−1(Q ·φ(v) ·P ) ∈
(Fqm)n, where for h = 1, . . . , n, πh := β1

∑m
i=1

∑n
j=1 Q1,ivi,jPj,h + . . . +

βm

∑m
i=1

∑n
j=1 Qm,ivi,jPj,h, with β = {β1, . . . , βm} a basis of (Fq)m.

In [18], it is proved that, for any x, y ∈ (Fqm)n, and any full rank P ∈ M∗
n,n(Fq)

and any full rank Q ∈ M∗
m,m(Fq), then ΠP,Q has the rank preserving property,

i.e. wR(ΠP,Q(x)) = wR(x), and is a linear mapping, i.e. aΠP,Q(x) + bΠP,Q(y) =
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ΠP,Q(ax + by). Furthermore, for any x, y ∈ (Fqm)n such that wR(x) = wR(y), it
is possible to find P ∈ M∗

n,n(Fq) and Q ∈ M∗
m,m(Fq) such that x = ΠP,Q(y).

The last property shows that, given a vector of a certain rank, it is possible to
associate to it any other vector of the same rank by modifying P and Q. This
property will be used in the zero-knowledge proof of the proposed scheme. Notice
also that ΠP,Q is invertible if P and Q are.

We denote by
[
n
s

]
=

∏s−1
i=0

qn−qi

qs−qi the number of s-dimensional vector sub-
spaces of (Fq)n over Fq. A ball Br

R(a) in the rank metric of radius r centered
in a vector a ∈ (Fqm)n is the set of all vectors in rank distance at most r from
a. It can be shown [39] that |Br

R(a)| =
∑r

i=1

[
m
i

] ∏i−1
j=0(q

n − qj), which does not
depend on a.

The following bound plays an important role in the choice of the parameters
of our schemes.

Theorem 1 (q-ary Gilbert-Varshamov Bound in rank metric [15]). Let
AR

qm(n, d) be the maximum cardinality of a linear block code over Fqm of length n,
size M , and minimum distance d in the rank metric. Then AR

qm(n, d) ≥ qmn

|Bd−1
R (0)| .

Both in the Hamming and in the rank metric, random codes over Fq asymp-
totically achieve the Gilbert-Varshamov bound [15]. Furthermore, they have
close to optimal correction capability [27]. This result is important for the scheme
that we propose, as it allows to choose random generator (or parity-check) matri-
ces as long as the code parameters respect the bound.

2.2 Rank Decoding Problem

We now define the problem upon which the security of the commitment schemes
we present is based. This problem is equivalent to the decoding problem for
random linear codes, which consists of searching for the closest codeword to a
given vector. More precisely, given G, y = xG+e, and the weight w, the decoding
problem consists in finding the pair (x, e), where the weight of e is w. In the case
of linear codes, it can be easily shown that the decoding problem is equivalent to
the problem in which the syndrome s = Hy of the received vector is given instead
of the received vector itself. In this case we use the term Syndrome Decoding
(SD) when referring to linear code in the Hamming metric, and Rank Syndrome
Decoding (RSD) when referring to linear code in the rank metric.

Definition 2 (RSD Distribution). Given the positive integers n, k, and ρ,
the RSD(n, k, ρ) Distribution chooses H ←$ M∗

n−k,n(Fqm) and x ←$ (Fqm)n such
that wR(x) = ρ, and outputs (H,H · xT )

Problem 1 (RSD Problem). On input (H, yT ) ∈ M∗
n−k,n(Fqm) × (Fqm)n−k from

the RSD distribution, the Rank Syndrome Decoding problem RSD(n, k, ρ) asks
to find x ∈ (Fqm)n such that H · xT = yT and wR(x) = ρ.

The previous problem can be defined correspondingly also in the Hamming met-
ric, in which setting the problem has been proven to be NP-complete [10]. The
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RSD problem has recently been proven difficult with a probabilistic reduction
to the Hamming scenario in [1]. By applying the transformation described in [1]
it can be shown that the Decisional version of the RSD problem can be reduced
to a search problem for the Hamming metric, providing some evidence on the
hardness of the problem.

2.3 Commitment Schemes

In this section we define a commitment scheme and the properties which are
related to this paper.

Definition 3. A triple of algorithms (Setup,Com,Ver) is called a commitment
scheme if it satisfies the following:

– On input 1λ, the setup algorithm Setup outputs the public commitment param-
eters pp.

– The commitment algorithm Com takes as inputs a message m from a message
space M and a the the public commitment parameters pp, and outputs a
commitment/opening pair (c, d).

– The verification algorithm Ver takes the parameters pp, a message m, a com-
mitment c and an opening d and outputs true or false.

The commitment scheme we describe satisfies these security properties:

– Correctness: Ver evaluates to true if the inputs are honestly computed, i.e.,

Pr[Ver(pp,m, c, d) = true; pp ←$Setup(1λ),m ∈ M, (c, d) ←$Com(m, pp)] = 1

– Perfect binding : With overwhelming probability over the choice of the public
commitment parameters pp ←$Setup(1λ), no commitment c can be opened
in two different ways, i.e.,

(Ver(pp,m, c, d) = true) and (Ver(pp,m′, c, d′) = true) =⇒ m = m′

– Computational hiding : A commitment c computationally hides the commit-
ted message if, with overwhelming probability over the choice of the value
pp ←$Setup(1λ), for every m,m′ ∈ M , and for (c, d) ←$Com(m, pp) and
(c′, d′) ←$Com(m′, pp) the distributions c and c′ are computationally indis-
tinguishable.

2.4 Zero-Knowledge Proof of Knowledge

A zero-knowledge proof of knowledge is a protocol in which P wants to prove to
a V the knowledge of some secret information without revealing anything about
it, except the fact that he knows it. More formally, in a zero-knowledge proof for
a binary relation R, the two parties have a common input y and P has a private
input w such that (y, w) ∈ R. To be defined as zero-knowledge, the protocol
must then satisfy the following three properties:
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– Completeness: for an honest prover, the verifier always accepts.
– Zero-knowledge: for every potentially malicious verifier V′ there exists a PPT

simulator only taking y as an input whose output is indistinguishable from
conversations of V′ with an honest prover.

– Proof of knowledge: from every prover P which can make the verifier accept
with a probability larger than a threshold k (the knowledge error), a w′

satisfying (y, w′) ∈ R can be extracted efficiently in a rewindable black-box
way.

For a more formal definition we refer to Bellare and Goldreich [5].

3 A Commitment Scheme in the Rank Metric

In this section we describe a perfectly binding commitment scheme whose secu-
rity depends on the difficulty of solving the Rank Syndrome Decoding (RSD)
problem. This commitment scheme follows the structure of the commitment
scheme presented [23], based on the LPN problem.

The scheme is parameterized by the following values: the prime characteristic
q (in our implementation we set q = 2) and the degree m of a q-ary extension
field Fqm , the bit length μ of a message m ∈ F

μ
q , the bit length π of the ran-

domness s ∈ F
π
q , the length n of the linear code C, and the rank weight ρ of

an error e ∈ F
n
qm . The dimension k of the code C is given by k = (μ + π)/m

(we require μ and π to be both multiples of m, so that (s‖m) can be seen as an
element of Fk

qm). Notice also that an instance of the RSD problem is hard if the
weight ρ is taken close to the Gilbert-Varshamov bound. Once the scheme public
parameters q,m, μ, π, n, ρ are chosen accordingly with the security parameter λ
(see Subsect. 5.1 for an example of actual values), then the commitment scheme
is defined by the following three algorithms (Setup, Com, Ver):

Setup(1λ)

Gm ←$ M∗
μ
m

,n(Fqm)

Gs ←$ M∗
π
m

,n(Fqm)

return G = (GT
s ‖GT

m)T

ComG(m)

s ←$F
π
2

e ←$F
n
qm , s.t. wR(e) = ρ

c = (s‖m) · G + e

return c, s

VerG(c,m′, s′)

e′ = c + (s′‖m′) · G

if wR(e′) = ρ return True

else return False

The matrix G is called the public commitment key. We will write Com and
Ver, omitting G, when clear from the context. The second output s of the Com
algorithm is needed by the party generating the commitment, in order to prove
that it was the one generating the commitment.

Theorem 2. Let us fix q,m, μ, π, n, ρ so that the RSD problem is hard. Let
G ∈ M∗

k,n(Fqm) be the generator matrix of a random linear code C of dimension
k and length n. Then the above defined commitment scheme is perfectly binding
and computationally hiding.
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Proof. We first prove that the scheme is perfectly binding. First, let us recall that
random linear codes over Fqm asymptotically achieve the Gilbert-Varshamov
bound. Thus, with overwhelming probability, the code C has minimum rank
distance greater than dC = 2ρ. This means that no codeword in C can have
rank weight less than or equal to dC . Now, let us assume, by contraposition,
that there exists two different openings m,m′ for a commitment c. This means
that e = c+ (s‖m) · G and e′ = c+ (s′‖m′) · G are such that wR(e) = wR(e′) = ρ.
Since e + e′ = ((s‖m) + (s′‖m′)) · G ∈ C, and because of the metric properties,
we have that wR(e + e′) ≤ wR(e) + wR(e′) = 2ρ = dC . This means that the
codeword (e + e′) has minimum rank weight less than the code distance. Since
this is impossible, than m must be different from m′.

To prove that the scheme is computationally hiding, we first notice that
c = s · Gs + m · Gm + e. Then we conclude that c is indistinguishable from
a random vector of the same length, since both s and e are sampled from a
random distribution, and we are assuming that s ·Gs +e is also indistinguishable
from random. �	

4 Zero Knowledge Proof Protocols

In this section we describe three Σ-protocol. The first protocol is a proof of
knowledge of a valid opening. It is a variant of Stern protocol [35], or, more
precisely, of the dual of it due to Veron [38]. The second protocol allows to prove
that committed strings satisfy any linear relation. Finally, the third protocol
allows to prove that committed strings satisfy any bitwise relations, as bitwise
AND, NAND, OR, or NOR. Since NAND is functionally complete, using this
protocol we can construct Σ-protocols for any relation amongst committed mes-
sages. For all three protocols, we follow the ideas and proofs of [23], and adapt
them to rank metric.

4.1 Proving Knowledge of a Valid Opening

The following Σ-protocol proves knowledge of a valid opening for commit-
ments of the form described in Sect. 3, i.e., it shows possession of s,m, e such
that y = (s‖m) · G + e for an error satisfying wR(e) = ρ. For the sake of
notation convenience, we will sometimes write x to denote the vector (s‖m).
The protocol is described in Fig. 1. The inputs for P are x ∈ (Fqm)k and
e ∈ (Fqm)n s.t. wR(e) = ρ. The pair (x, e) is the secret P wants to prove the
knowledge of. Both P and V share as input the public parameters: the generator
matrix G and the error rank weight ρ. The function E() takes a sequence of
inputs and converts it to a binary string of size μ (a collision resistant hash or
XOF function can be used), suitable to be used as input message for the Com or
Ver algorithm. Notice that, the protocol uses Π as defined in Subsect. 2.1 with
P and Q being invertible. This allows us to operate with f and f + e in a way
that preserves the rank of the error but still hides it. The Π operation preserves
linearity and is the key on the adaptation from Hamming to rank metric.
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Theorem 3. The protocol described in Fig. 1 is a Σ-protocol for the following
relation: RRSD = {((G, y), (s,m, e)) : y = (s‖m) · G + e and wR(e) = ρ}
The proof of Theorem3 can be found in Sect. B.

4.2 Proving Linear Relations

As it is introduced in Jain et al. paper, our adaptation into rank metric is also
suitable to prove linear relations of several valid openings. The main idea is
to provide a method by which a prover P can prove knowledge of a bitwise
relation between the committed messages without showing the messages. The
whole construction is similar in the sense that the relation is still holding in the
message space of the commitments.

Given the three q-ary vectors m1, m2, m3 and two q-ary matrices X1,X2 ∈
Mμ,μ(Fq) such that m3 = X1m1 + X2m2, a prover can prove in zero knowledge
the existence of this relation by running the protocol detailed in Fig. 2. P first
commits to the values obtaining yi = (si||mi)G + ei, and then generates v1 and

Fig. 1. A Σ-protocol proving valid opening of a commitment in the rank metric.
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v2 at random to later compute v3 = X1v1 +X2v2. With this second set of values
sharing the same linear relations the prover proceeds by proving valid opening
of the vi values using the proof from Subsect. 4.1 but now the verifier validates
different computations regarding the linear relation and how it applies to either
vi or vi +mi depending on the challenge. The protocol protects the values mi by
masking them with the random values vi which, given that they share the linear
relations, can be evaluated without disclosing their values. It is worth noting
that, both prover P and verifier V know the public parameters y1, y2, y3, G,
ρ, and the relations X1 and X2. On the other hand, only the prover P knows
x = (si||mi) and e.

4.3 Proving Multiplicative Relations

When the properties we want to prove are multiplicative such as m3 = m1 ◦m2,
we will follow the original idea and try to reduce the multiplicative relation into
a linear relation in order to use the construction from Subsect. 4.2. In a nutshell,
the prover P will have the commitments y1 y2, and y3 of the messages m1, m2,

Fig. 2. A Σ-protocol proving linear relations of valid opening in the rank metric.
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and m3. In order to prove the ◦ relation, P will begin sampling vectors m′
i sharing

the same multiplicative relation and adding restrictions to its structure. After
this, P will generate a random permutation matrix R such that R · m′

i = mi.
Finally, P will use the proof of linear relation with the linear relation R but, given
that R is not known by V, it will send a commitment to R and also commitments
to m′

i for i = 1, 2, 3. The detailed version of the protocol is presented in Fig. 3
(commitment) and Fig. 4 (challenge and response). The inputs for P are mi ∈ F

μ
2 ,

ei ∈ (Fqm)n s.t. wR(ei) = ρ, and si ∈ F
π
2 for i = 1, 2, 3. Both P and V share as

input the public parameters: the generator matrix G, the error rank weight ρ, and
the commitments yi for i = 1, 2, 3. Besides this, they also share knowledge of the
multiplicative relation ◦. For the purpose of readability, we use similar notation
to the original Jain et al. protocol, which includes the use of mj

i to denote the j-th
bit block of mi. Following this reasoning, Rj would be the submatrix resulting
from taking only the columns from (j − 1)μm + 1 to jμm. We use the same
notation for Qi, Q

′
i, Pi, and P ′

i . Notice that, the conversion from Hamming to
rank metric, is again made possible by the use of the functions ΠP,Q, which are
linear mappings preserving the rank.

5 Implementation

In the original proposal from Jain et al. [23], no set of parameters was provided,
and consequently no implementation to prove the efficiency of the scheme in
a real scenario. In this section, we first fix a set of parameters for a quantum
security level of 128 bit, and then we provide benchmarks of our implementation
of the commitment schemes in the Hamming and the rank metric.

5.1 Parameters

For the Jain et al. commitment scheme we have to choose a proper set of param-
eters n, k, w such that the syndrome decoding problem in the Hamming metric
can be solved with at least 2128 operations with a quantum or a classical com-
puter. The difficulty of solving the syndrome decoding problem in the Hamming
metric and in the full distance decoding scenario2 and when n ≈ 2k (the hardest
case), is given by 20.097n [30]. For quantum security, the exponent should be
divided by two. To obtain a security level of λ bit in the quantum scenario, then
n = 2λ/0.097. For λ = 128 we obtain n = 2640, k = 1320. Since the Gilbert-
Varshamov bound for the given n, k is d = 294, we choose w close to this value,
e.g. w = 284. We recall that, in [23], the dimension k is split in two values 	 and
v (in this paper corresponding to π and μ, respectively), where 	 is the security
parameter, resulting in 	 = 128 and v = 1192.

2 In the full distance decoding, the attacker receives an arbitrary point and aims at
decoding the closest codeword. In the half distance decoding, the attacker knows that
the error vector is within the error correction distance, i.e. wH(e) ≤ �(d − 1)/2�. In
this case the decoding complexity is 20.0473n.



Enhancing Code Based Zero-Knowledge Proofs Using Rank Metric 583

Fig. 3. Commitment step of the Σ-protocol proving multiplicative relations in the rank
metric.
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Fig. 4. Challenge and response steps of the Σ-protocol proving multiplicative relations
in the rank metric.
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For our commitment scheme, we choose a proper set of parameters q,m, n, k, r
such that the SD problem in the rank metric can not be solved with less than 2128

operations using a quantum or a classical computer. To obtain a security level
of λ = 128 bit in the quantum scenario, we selected the following parameters:
q = 2,m = 43, n = 38, k = 17, ρ = 13. Notice that the Gilbert-Varshamov
bound for the given q,m, n, k is d = 15. Finally, we have π = 129 (greater than
λ = 128)and μ = mk − π = 602. The work factor (i.e. the base 2 logarithm of
the attack time complexity) of the known attacks for the chosen parameters is
summarized in Table 2. Since the cheating probability of the scheme is 2/3, to
reach 128 bit of security, we need to repeat the protocol δ times, where δ is the
least integer such that (2/3)δ < 2−128. This gives us δ = 219.

Table 2. Work factor of the known attacks to the rank syndrome decoding problem
for q = 2, m = 43, n = 38, k = 17, ρ = 13.

Reference Attack type Complexity Work factor

[13] Combinatorial (nρ + m)3q(m−ρ)(ρ−1)/2 207.21

[32] (1) Combinatorial (mρ)3q(ρ−1)(k+1)/2 135.38

[32] (2) Combinatorial (k + ρ)3ρ3q(m−ρ)(ρ−1)/2 205.82

[17] (1) Combinatorial (n − k)3m3qρ�k∗m/(2n)� 146.46

[17] (2) Combinatorial (n − k)3m3q(ρ−1)�(k−1)m/(2n)� 137.46

[3] Combinatorial (n − k)3m3qρ�(k+1)m/(2n)�−m 129.46

[17] (3) Algebraic ρ3k3qρ�((ρ+1)(k+1)−(n+1))/ρ� 244.36

[4] Algebraic
(

((m+n)ρ)ρ+1

(ρ+1)!

)w

, w = 2.807 292.55

5.2 Sizes and Communication Cost Comparison

Table 3 shows a comparison of the secret and public parameter sizes and the
average communication cost of one round of the Σ-protocol of Fig. 1, for a quan-
tum security level of 128 bits, for both Hamming and rank metric. In the rank
metric, the average communication cost is about 60% lower, while the public
parameters size is two orders of magnitude smaller. However, the size of the
secret in the ZKP is also 40% smaller. The size of the secret can be evaluated as
both a benefit and a drawback. On one side, the proof is limited on the size of the
secret, therefore, bigger secrets would also require bigger proofs. On the other
side, this also means the proof is able to provide security to a smaller value. A
common application of this last argument is a signature scheme, where the secret
is the private key of the signer. In that case, the size of the private key could
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be smaller and, therefore, the scheme would be more efficient in terms of size.
Notice that the communication cost could be reduced by using techniques simi-
lar to the ones presented in [6]. Also, secret and public parameters sizes could be
reduced in both Hamming and rank metric by using ideal or quasi-cyclic codes
instead of random linear codes.

Table 3. Communication cost and parameters bit sizes of the Σ-protocol of Fig. 1 for
a quantum security level of 128 bits.

Parameters |Secret| |Public Param.| Average communication

Hamming [23] Formula (n, k, w) k + n n + kn + log2(w) 5n + �2/3(n log2(n))� + 2λ

Bits (2640,1320,284) 3960 3487449 33461

Rank (this work) Formula (q, m, n, k, ρ) mk + mn mn + mkn + log2(ρ) 5mn +
⌈
2/3(m2 + n2)

⌉
+ 2λ

Bits (2,43,38,17,13) 2365 29416 10622

5.3 Performance Comparison

We have implemented both Jain et al. [23] schemes and ours. In both implemen-
tations we have used the NTL library from Victor Shoup. The implementations
were written in C++ and the benchmarks were conducted on a 2.9 GHz Quad-
Core Intel Core i7 with 16GB of LPDDR3 RAM clocked at 2133MHz.

Table 4. Commitment scheme performance comparison.

Commitment scheme

Jain et al. This work

Routine Subroutine Time [ms] Routine Subroutine Time [ms]

Setup Generate matrix A 1.303 Setup Generate matrix G 0.030

Commitment Generate random vector r negl Commitment Generate random vector s negl

Generate error vector e 0.168 Generate error vector e 1.800

Compute commitment c 0.029 Compute commitment c 0.025

Total 0.197 Total 1.825

Verification Recover error vector e 0.029 Verification Recover error vector e 0.0250

Compute hamming weight of e 0.001 Compute rank of e 0.0160

Total 0.030 Total 0.041

Table 4 depicts the performance in milliseconds of the two commitment
schemes. In Table 5, we compare the performance of both Hamming and rank
metric variants for the knowledge of a valid opening. Table 6 show the perfor-
mance of the linear and multiplicative relations. For the latter two modes the
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Table 5. Knowledge of Valid Opening performance comparison.

Knowledge of Valid Opening

Jain et al. This work

Routine 0 Subroutine fTime [ms] Routine Subroutine Time[ms]

Proof gen. Generate π 0.552 Proof gen. Generate ΠP,Q 0.135

Generate random vectors negl Generate random vectors negl

Comm. 0 t0 0.032 Comm. 0 r0 0.020

E(tπ, t0) 0.400 E(rP,Q, r0) 0.035

Com(E(tπ, t0)) 0.200 Com(E(rP,Q, r0)) 1.860

Comm. 1 t1 0.038 Comm. 1 r1 0.044

E(t1) 0.391 E(r1) 0.019

Com(E(t1)) 0.203 Com(E(r1)) 1.809

Comm. 2 t2 0.040 Comm. 2 r2 0.044

E(t2) 0.396 E(r2) 0.018

Com(E(t2)) 0.197 Com(E(r2)) 1.736

Total 1.897 Total 5.585

Proof ver. Verif. 0 Ver(c0, E(tπ, t0), s0)) 0.423 Proof ver. Verif. 0 Ver(c0, E(rP,Q,

r0), s0))

0.077

Ver(c1, E(t1), s1) 0.426 Ver(c1, E(r1), s1) 0.064

t0 + π−1(t1) ∈ Img(A) 170.888 r0 + Π−1
r0

(r1)

∈ Img(G)

2.559

Verif. 1 Ver(c0, E(tπ, t0), s0)) 0.424 Verif. 1 Ver(c0, E(rP,Q,

r0), s0))

0.080

Ver(c2, E(t2), s2) 0.444 Ver(c2, E(r2), s2) 0.066

t0 + π−1(t2)

+y ∈ Img(A)

175.526 r0 + Π−1
r0

(r2)

+y ∈ Img(G)

2.47

Verif. 2 Ver(c1, E(t1), s1) 0.459 Verif. 2 Ver(c1, E(r1), s1) 0.064

Ver(c2, E(t2), s2) 0.446 Ver(c2, E(r2), s2) 0.064

wH(t1 + t2) 0.001 wR(r1 + r2) 0.018

Total 349.037 Total 5.462

comparison is more brief as the subroutines are mostly the same as in Table 5.
The key outcomes of this comparison are the following. For the commitment
scheme, the generation of the commitment is slower in the rank metric because
of the algorithm that generates an error of a given rank. The verification of the
commitment is slower in the rank metric because we have to compute the rank
of a matrix rather than the Hamming weight of a binary vector. The generation
of matrix A is slower than matrix G due to their different size. The generation of
the proof of Knowledge of a Valid opening, Linear relations and Multiplicative
Relations achieve similar timings for both variants. For the verification of the
proofs, the performance of the rank metric is around 100 times better than the
Hamming metric. This happens because of the large linear systems that have to
be solved in the Hamming case.
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Table 6. Linear and multiplicative relations performance comparison.

Linear Relations

Jain et al. This work

Routine Subroutine Time [ms] Routine Subroutine Time[ms]

Proof Gen. Generate permutation P 3.039 Proof Gen. Generate matrices P and Q 0.869

Generate random vectors 0.030 Generate random vectors 0.568

Generate commitments 4.502 Generate commitments 10.539

Total 7.571 Total 11.976

Proof Ver. Verification 1 524.682 Proof Ver. Verification 1 4.780

Verification 2 525.985 Verification 2 4.765

Verification 3 2.344 Verification 3 0.512

Total 1053.011 Total 10.057

Multiplicative Relations

Jain et al. This work

Routine Subroutine Time [ms] Routine Subroutine Time[ms]

Proof Gen. Generate permutation P 72.462 Proof Gen. Generate matrices P and Q 28.432

Generate random vectors 0.177 Generate random vectors 0.120

Generate commitments 16.130 Generate commitments 47.430

Total 88.769 Total 75.982

Proof Ver. Verification 1 2634.96 Proof Ver. Verification 1 22.402

Verification 2 2580.93 Verification 2 22.760

Verification 3 6.508 Verification 3 2.463

Total 5222.398 Total 47.625

6 Conclusion

We showed that quantum resistant zero-knowledge proof protocols can be built
upon the Rank Syndrome Decoding problem in an efficient way. In particular, we
implemented the building blocks needed for a zero-knowledge protocol to prove
the relation among two committed values for any circuit. Our protocol is quasi-
linear in the size of the circuit, has a soundness error of 2/3, and is quantum
resistant. We hope this work to be a starting point to build even more efficient
zero-knowledge protocols based on the RSD problem.

A Sigma Protocol

We give the definition of Σ-protocol, which is the basis of the protocols we
present. This definition might help understanding the security proof in Sect. B.

Definition 4 (Σ-protocol). Let (P,V) be a two-party protocol, where V is
PPT, and let R be a binary relation. Then (P,V) is called a Σ-protocol for R
with challenge set C, public input y and private input w, if and only if it satisfies
the following conditions:

– 3-move form: The protocol is of the following form:
• P computes a commitment t and sends it to V.
• V draws a challenge c ←$ C and sends it to P.
• P sends a response s to V.
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Depending on the protocol transcript (t, c, s), V accepts or rejects the proof.
The protocol transcript (t, c, s) is called accepting, if V accepts the protocol
run.

– Completeness: V accepts whenever (y, w) ∈ R.
– Special soundness: There exists a PPT algorithm E (the knowledge extractor)

which takes a set {(t, c, sc) s.t. c ∈ C} of accepting transcripts with the same
commitment as inputs, and outputs w′ such that (y, w′)R.

– Special honest-verifier zero-knowledge: There exists a PPT algorithm S (the
simulator) taking y and c ∈ C as inputs, and which outputs triples (t, c, s)
whose distribution is (computationally) indistinguishable from accepting pro-
tocol transcripts generated by real protocol runs.

B Proof of Theorem3

Proof. We need to prove that the protocol is 3-move, complete, sound and zero-
knowledge.

– 3-move: the protocol is 3-move by design.
– Completeness: it is easy to see that the if the protocol is honestly run by a

prover, then it always returns true.
• If ch = 0 then r0 +Π−1

r0
(r1) = v ·G+f +Π−1

P,Q(ΠP,Q(f)) = v ·G ∈ Img(G)
and P,Q are two binary matrices of size m × m and n × n respectively.

• If ch = 1 then r0+Π−1
r0

(r2)+y = v ·G+f +Π−1
P,Q(ΠP,Q(f +e))+x ·G+e =

(v + x) · G ∈ Img(G).
• If ch = 2 then wR(r1 + r2) = wR(ΠP,Q(f) + ΠP,Q(f + e)) = wR(ΠP,Q(f +

f + e)) = wR(e) = ρ.
– Special soundness: we first assume that the values c0, c1, c2 and openings for

all challenges ch ∈ {0, 1, 2} have been fixed in such a way that that V accepts
on all of them. Since the underlying commitment scheme Com is perfectly
binding and the compression function E collision resistant, then the openings
to identical commitments have to be identical when different challenges are
given, or a collision for E should be found. We have that Π−1

P,Q(r1 + r2) + y ∈
Img(G) thanks to the verification equations for ch = 0 and ch = 1, and thus
that y = x′·G+Π−1

rP,Q
(r1+r2), where x′ = (s′‖m′) can be easily computed. Now,

a valid witness of (G, y) is given by (s′,m′,Π−1
rP,Q

(r1+r2)), since wR(r1+r2) = ρ.
It is important to highlight that the input of the commitment scheme is the
result of a collision resistant function, therefore, the probability for the above
mentioned equations to not be correct is negligible, as it is the probability of
a collision in a collision resistant compression function.

– Honest Verifier Zero-knowledge: we need to prove that there exist an efficient
simulator Sim, which, for each challenge ch ∈ {0, 1, 2}, outputs an accept-
ing protocol transcript that is computationally indistinguishable from a real
protocol transcript performed by an honest prover for the given challenge ch.
The simulator can be described as follows:
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– ch = 0: Sim computes c0, c1 as in the protocol, and c2 as a commitment to
0. It is straightforward that the distribution of c0, c1, rP,Q, r0, r1 is identical
to the one of a real transcript. Furthermore, the fact that the commitment
scheme Com is computationally hiding implies that the distribution of c2
is computationally indistinguishable from the real protocol runs.

– ch = 1: Sim selects uniformly at random the values Q ←$ M∗
m,m(Fq),

P ←$ M∗
n,n(Fq), b ←$ (Fqm)k, a ←$ (Fqm)n. Then, computes the commit-

ments c0 = Com(E(P,Q, b · G + y + a)) and c2 = Com(E(ΠP,Q(a))). The
value of c1 is computed as commitment to 0. The openings of c0, c2 are
verified correctly by the verifier. The distribution of the openings is cor-
rect because of the perfect uniform distribution of r2 in the real protocol
run and ΠP,Q(a) in the simulated run in F

n
qm , and of the permutations

in the set of permutations. Regarding the opening of c0, notice that in
the real protocol run, it holds rP,Q = v · G + f , where v is uniformly at
random, and f = Π−1

P,Q(r2 + e). In the simulated transcript the content
of c0 is b · G + y + a = (b + x) · G + (a + e). The distributions of c0 and
c2 and their openings are perfectly simulated, since v and b + x are both
uniformly random, and the terms f and a+ e are uniquely determined by
the contents of c0 and c2. Finally, the distribution of c1 is computationally
indistinguishable by the assumed hiding property of Com.

– ch = 2: Sim selects uniformly at random a ←$ (Fqm)n, b ←$ (Fqm)n such
that wR(b) = ρ. It computes c0 as commitment to 0. c1 = Com(E(a))
c2 = Com(E(a+b)). As in the case of ch = 1, the binding property of Com
implies that the distributions of c0 is computationally indistinguishable
from real protocol runs. Furthermore, the behavior of an honest prover
can be perfectly simulated by c1 and c2 and their openings.

�	
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Abstract. Presented in this paper is a new Gaussian sampler targeted
at lattice-based signatures. It is the first secure algorithm for implement-
ing the Box-Muller Gaussian sampling algorithm, which produces contin-
uous Gaussian samples. The samples can be made discrete by rounding
and this method has recently been shown to suffice for the purpose of dis-
crete Gaussian sampling for lattice-based signatures. Rounded Gaussians
allow quick transformations from samples of low standard deviation to
samples with a high standard deviation. This makes them well-suited to
producing the wide distributions needed for the target primitives. Cur-
rent state-of-the-art methods sample wide distributions with multiple
samples from a narrow distribution, joined by a convolution algorithm,
for each single sample. The number of required samples per output sam-
ple grows with the width of the distribution. The rounded Gaussian
method allows sampling wide distributions with complexity which is con-
stant with increasing standard deviation. The main contribution of the
work is a novel, low-memory algorithm, based on the CORDIC family of
algorithms, for the fixed-point and secure evaluation of the elementary
functions necessary for the Box-Muller continuous sampling method. It is
the first secure, continuous sampler for the production of rounded Gaus-
sian distributions. A proof-of-concept implementation of the algorithm
is used to demonstrate that Box-Muller sampling is a competitive alter-
native to sampling the discrete Gaussian distribution, for lattice-based
signatures.

1 Introduction

Over the last couple of decades, the necessity of Post-Quantum Cryptography
(PQC) research has been the driving force for investigations into non-traditional
algorithms for Public-Key Cryptography (PKC). Popular paradigms can be clas-
sified roughly into five areas: code-based [1,2], hash-based [3], multivariate [4],
supersingular isogeny key exchange [5,6] and lattice-based cryptography (LBC)
[7–9]. The latter field is the largest by volume of literature and involves the math-
ematics of discrete subsets of vector spaces, often drawing on abstract algebra.
For a thorough introduction to LBC, see [10].
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Cryptography using lattices goes beyond the primitive functionality of key
encapsulation by encryption, or key exchange mechanism (KEM), and authen-
tication from digital signatures. LBC has been useful in the pursuit to replace
public-key infrastructure (PKI) in a number of ways. For instance, identity-
based cryptography (IBC) was shown to be equivalent to PKI based on cer-
tificate authorities. Although this is not a new idea, it resurfaced when lattice
trapdoors were found to be effective in their construction [11] and, importantly,
solved problems relating to revocable trust when that trust is based on identity
[12]. Similar strides have been made in attribute-based and fully-homomorphic
cryptography.

Central to the underlying complexity theory of LBC is the discrete Gaussian
distribution over the integers [13]. Sampling from this distribution enables better
properties, such as smaller key or signature sizes, for LBC systems. In a setting
which otherwise requires only arithmetic between integers within native word
lengths, the benefits of Gaussian sampling can only be attained by addressing the
complications it brings: higher precision and non-integer arithmetic (including
for sampling the integers).

The relevance of the problems addressed in this paper can be seen with
the Dilithium scheme [9], which traded Gaussian sampling for uniform random
numbers. The scheme has a variant, namely Dilithium-G, which does not make
this trade-off and which improves parameters. However, the variant receives less
attention because of the difficulty achieving the high standard deviation required.
The likely driver of this design decision is a cache attack in [14] on the most
highly discussed samplers, namely the cumulative distribution Tables (CDT),
Knuth/Yao and Ziggurat samplers. The most punishing finding of this paper:
the attack works on samplers which are constant-time (CT), as the memory
access is not wholly sequential (WS) or probabilistically uniform (PU). Another
prominent lattice scheme using Gaussian sampling is the Falcon digital signature
scheme [15].

The design decisions required to avoid discrete Gaussian sampling DGS are
not always favourable, or even possible. It is therefore important for these deci-
sions to be based on the full scope of possible exchanges in time, memory and
security. In order to be inherently resistant to cache attacks such as in [14],
algorithms need to be WS, or PU, and CT.

Current state-of-the-art Box-Muller implementations rely on calls to the
math module of the C standard library, using floating-point arithmetic and being
unlikely to ever be WS/CT. Algorithms for which the latter two properties hold
have complexities which grow with the standard deviation parameter. Hence,
there is a window for improvement in the high σ domain, as the Box-Muller
method has a constant complexity in this regard. If the method is worked on
to the same extent as others have been, the performance in this domain can be
favourable.
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1.1 Related Work

It is broadly true that encryption schemes using DGS require only a low value
for the standard deviation σ. However, as was shown in [16], in the New Hope
KEM, a binomial sampler was shown to be sufficient for most applications of
low σ. Binomial sampling can be done simply and efficiently and is naturally
WS/CT. Where binomial distributions cannot be used, the low standard devia-
tion required poses no problems for a secured, WS/CT, discrete Gaussian sam-
pler. The attention of research remains mostly on digital signatures.

The current state-of-the-art in Gaussian sampling consists of two samplers.
The first is the fast, compact, and constant-time (FACCT) sampler by Zhao
et al. [17]. This sampler achieves the fastest benchmarks for sampling, but with
the use of single-instruction multiple-data (SIMD) intrinsics. Without this vec-
torised acceleration, the algorithm is somewhat slower than the algorithm used
for comparison in this paper.

The algorithm compared to in this paper is the Knuth-Yao sampler adapted
by Roy in [18]. It is WS/CT and relatively fast, given these constraints. However,
the Knuth-Yao sampler is known to have time and space complexities which grow
rapidly with standard deviation. The effect is to render Knuth-Yao, on its own,
impractical for digital signatures.

The advice, therefore, is to use it as a base sampler in Micciancio and Walter’s
algorithm [19], which uses Gaussian convolution methods to generate samples
with large standard deviation from samples with a smaller one. This replaces
the quickly growing complexities with slower ones. As the complexity is not
constant for these algorithms, the little-researched Box-Muller method offers
possible advancements in this area.

This paper builds on the work of Hülsing et al. in [20] who proved that
sampling from a continuous Gaussian distribution and rounding the result is
as secure as DGS, for lattice-based signature schemes based on rejection sam-
pling. The paper is a theoretical contribution, i.e. it shows that the rounded
Gaussian distribution is a secure replacement for the discrete kind in the dense
theory of lattices. Although it comes with an implementation of the Box-Muller
algorithm, used for continuous Gaussian sampling, this implementation calls the
math functions ln, cos, sin and square root of a C++ single instruction, multiple
data (SIMD) library using floating point data types.

Moreover, the library used by the paper does not calculate the elementary
functions in constant time. In other words, the elementary functions are a black
box in the paper, from a security perspective, and the performance metrics of
SIMD instructions do not compare fairly to the rest of the literature, as admitted
in the paper.

But these and other problems, including the use of floating-point arithmetic
(see [21] for why this is an issue), result in the secure evaluation of the Box-
Muller functions being an open problem in LBC. The transformative nature
of Box-Muller, making it a prime candidate for constant-time sampling, along
with the ease at which higher standard deviations are reached compared with
discrete sampling, warrant that the method be investigated to the same extent
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as the discrete case. This requires that the field of LBC has explicit, portable
and secure algorithms in native C using only integers and fixed-point precision,
for every function call or subprocess.

1.2 Our Contribution

This paper presents a novel algorithm for sampling rounded Gaussians via the
Box Muller method, including proposals for the WS/CT evaluation of the tran-
scendental functions involved. The method chosen is the CORDIC family of
algorithms, which has several attractive qualities for our purposes. For example,
the CORDIC architecture can be used to calculate all the necessary functions
with tuned input parameters and modes of operation. Two of these functions,
cos and sin, can be evaluated simultaneously with one iteration of CORDIC.
Furthermore, the algorithm is sequential in its memory access and algorithmi-
cally constant-time - so long as the novel, secure paradigm of operation, outlined
in this paper, is adhered to.

We modify the CORDIC algorithm to carry out secure evaluation of the tar-
get functions, while maintaining a practical level of efficiency and doing so with
a negligibly lightweight memory profile. All logical and comparative procedures
use constant-time idioms, no floating-point arithmetic is used and it is expected
to be fully secure under all conventional side-channel attacks.

The sampler, being discretised by rounding a continuous distribution, is a
more generic approach to reaching higher standard deviations than applying
Micciancio and Walters convolution methods, as the steps involved are much
simpler and require less overhead. Our sampler has a one-to-one mapping from
uniform samples to Gaussian samples, which is true for all values of standard
deviation. The performance of the Box-Muller algorithm, therefore, does not
incur as large a penalty as that of the Knuth-Yao/Micciancio-Walters approach,
on platforms with no hardware-accelerated cryptographic random number gen-
eration. The latter approach requires multiple calls to the base sampler, resulting
in multiple calls to the cryptographically-secure pseudo-random number gener-
ator (CSPRNG).

Large values of the standard deviation parameter are the focus of this paper,
but it should also be noted that the Micciancio/Walters construction requires
further calls to the base sampler, and more convolution, when the distribution
is centered between integers. The complexity grows with the precision of the
center. The rounded Gaussian method, of this paper, only requires that the new
center be added to each sample. For the most generic distributions, therefore,
there is a strong case for investigating the Box-Muller approach.

We compare our algorithm with the Knuth/Yao implementation of [18], in
Sect. 4, and show that Box-Muller sampling has competitive performance and
memory usage with the ensemble of [18] and [19], for particular application
and domain areas. This is done with a proof-of-concept implementation used to
demonstrate the potential of the Box-Muller sampler as a competitive alternative
to sampling the discrete Gaussian distribution. Such areas where the method is
favourable are explored and the next steps for consolidating and expanding its
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applicability are identified. In particular, we note that the algorithms of this
paper can be optimised further, through adjustments to the algorithm itself and
by refining the code of the implementation. The result is a first look at the
Box-Muller method for cryptographic use.

2 Method Background

2.1 Box-Muller Gaussian Sampling

The Box-Muller (BM) algorithm [22] is a transformation on two uniform random
variables, u1 and u2:

v1 =
√

−2 ln(u1) · cos(2πu2) (1)

and

v2 =
√

−2 ln(u1) · sin(2πu2). (2)

The first, and common, term in these expressions is the inverse of the Gaus-
sian function with unit standard deviation and zero mean. Combined with two
sinusoidal random variables π radians out of phase, this inverse Gaussian ran-
dom variable produces a random variable distributed according to a Gaussian
distribution.

The Box-Muller algorithm has several advantages. It is lightweight, requiring
no memory on top of what is needed for function evaluation and, more impor-
tantly for security optimisation, its sampling procedure consists of a transfor-
mation from two uniformly distributed samples to two Gaussian samples.

2.2 CORDIC Algorithm for Evaluation of Transcendental Functions

CORDIC is shorthand for coordinate rotation digital computer. It is a family
of algorithms designed for hardware implementations of the types of function
evaluation we are interested in, typically to be used in calculators. It is a serial,
iterative method and the number of iterations depends only on the precision.
This paper follows the algorithms described in [23].

The functions cos and sin can be evaluated with one round of CORDIC in
rotation mode, described below, under the Euclidean notion of rotation. Natural
log can be evaluated with one round of CORDIC in vectoring mode under hyper-
bolic rotation. The square root requires a further round of the latter regime.

The algorithms make transformations to the x and y coordinates of the input
vector, using only additions or subtractions and bit shifts. This does not amount
to an actual rotation, under either geometry, as the radius does not transform
accordingly. The transformations, often referred to as pseudo-rotations, are

xi+1 = xi + myiδi (3)

and
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yi+1 = yi − xiδi. (4)

Here, m is 1 if the geometry is Euclidean, referred to as circular mode. For
hyperbolic mode, m = −1. The variable δi is chosen to be equal to 2−i, in order
to avoid multiplication on its early hardware targets. The x0, y0 and θ0 are
all chosen to produce correct output values. The two (non-geometric) modes of
execution used in this paper are the vectoring and rotation modes. They can be
composed with the two geometric modes, hyperbolic and circular.

Rotation mode involves beginning on the x-axis (y0 = 0) and rotating
towards a final vector. The angle θ0 is initialised so that rotations towards the
final vector brings the θ iteration variable to a final value negligibly close to 0. θ
usually represents the input value to the function of interest in vectoring mode.

In vectoring mode, the initial vector is not on the x-axis (but in quadrants
1 or 4) and is rotated towards it. Hence, y is the variable which, when brought
to zero, determines the end of the iterations, in this mode. The input to the
function is usually parameterised between x0 and y0.

The angle, θ, and radius, R, vary along with the transformations according
to

θi+1 = θi − αi, (5)

where

αi =

{
tan−1(2−i) circular/rotation mode
− tanh−1(2−i) hyperbolic/vectoring mode

(6)

and
Ri+1 = Ri · Ki. (7)

Here, Ki is the factor by which each rotation step is out from being a true
radius-preserving rotation. Hence,

Ki =
√

1 + m · δ2i (8)

and, because this only depends on i, the refactoring of the radius can be done
in one multiplication, if needed. The resultant factor is

Kn =
n−1∏

i=0

Ki. (9)

The rotations become increasingly smaller and are always towards the final
vector. So, when the ith vector takes a step in the direction of v and passes it, the
(i + 1)th rotates in the opposite direction and converges to the final vector v. This
involves adding where previously there was subtraction, and vice versa. Hence,
the procedure for adjusting the direction of rotation must be made constant-time,
as addition and subtraction are not the same operation on computer hardware.

The algorithm, in general, transforms input vectors
(
x0, y0, θ0

)T to output

vectors
(
xn, yn, θn

)T . There are two initialisations of CORDIC of importance in
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this paper. The first, namely circular/rotation mode, approximates the sin and
cos functions to n bits of precision, using n rotations as described above. The
initial and final conditions are shown by the vector transformation in Eq. (11).

⎛

⎝
1/Kn

0
θ

⎞

⎠ CORDIC−−−−−−→
circ/rot

⎛

⎝
cos θ
sin θ

0

⎞

⎠ , (10)

The second set of initial conditions, for hyperbolic/vectoring mode, allows the
calculation of both the square root and natural log functions. However, we
must parameterise the intended input to this function (let this be w) differ-
ently for each function, to obtain initial vectors with which the correct final
vectors are computed. The general procedure is shown in the vector transfor-
mation in Eq. (11), but to calculate

√
w, let x0 = w + 1

4 and y0 = w − 1
4 , and

to calculate ln w, let x0 = w + 1 and y0 = w − 1. For the latter, we need the
identity lnw = 2 tanh−1(y/x).

⎛

⎝
x0

y0
0

⎞

⎠ CORDIC−−−−−−→
hyp/vect

⎛

⎝

√
x2
0 − y2

0

0
tanh−1(y0/x0)

⎞

⎠ (11)

While there may exist a set of conditions for hyperbolic/vectoring mode which
calculates the composite function

√−2 ln x, the parameterisation means the two
functions must be calculated sequentially in this setting.

The domains of convergence for these algorithms are limited and the following
identities are used to expand the accessible domain to meet the needs of high
precision Box-Muller sampling.

To calculate the two trigonometric functions for angles between 0 and 2π,
as is needed for Box-Muller, we use the CORDIC algorithm on a reduced angle
between 0 and π

2 according to

sin
(
Q

π

2
+ D

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sinD if Q mod 4 = 0
cos D if Q mod 4 = 1
− sin D if Q mod 4 = 2
− cos D if Q mod 4 = 3

|D| <
π

2
(12)

and

cos
(
Q

π

2
+ D

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos D if Q mod 4 = 0
sinD if Q mod 4 = 1
− cos D if Q mod 4 = 2
− sin D if Q mod 4 = 3

|D| <
π

2
. (13)

Similarly, the range reduction for the hyperbolic tangent and square root func-
tions proceed according to

tanh−1
(
1 − M2E

)
= tanh−1 (T ) + (E/2) ln 2 0.17 < T < 0.75, (14)
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where T =
(
2 − M − M2−E

)
/
(
2 + M − M2−E

)
for 0.5 ≤ M < 1 and E ≥ 1,

and

√
M2E =

{
2

E
2
√

M if E mod 2 = 0
2

E+1
2

√
M/2 if E mod 2 = 1

{
0.5 ≤ M < 1
0.25 ≤ M/2 < 0.5

(15)

3 Secure CORDIC Algorithm

This section details the proposed secure version of the CORDIC algorithm in
C-style pseudocode, hence, for example the ∧ operator is the xor, as opposed
to the logical and operation. The algorithm is capable of using arbitrarily high-
precision fixed-point data types, in multiples of 64 bits. Unsigned 64-bit integer
arrays are used for this fixed-point representation. The variable size denotes the
number of such integers contained in the array, which depends on the precision
to be used. The fixed point representation is little endian. Where possible, 32-bit
unsigned integers are used for carrying out operations and some of the functions
used have 32-bit, 64-bit and 64-bit-array versions.

3.1 Fundamental Arithmetic

The algorithm and implementation adheres to the WS/CT property described
in Sect. 1. Therefore, all logic must be carried out by changing values of the
same sequential memory addresses, as opposed to selecting memory addresses
containing different values. Hence, constructs such as if/else or the ternary oper-
ator must be replaced with such sequential functions.

The Algorithm described in Sect. 2.2 can be viewed as a series of additions
and subtractions on the three variables x, y and θ. In each mode combination
used in this paper, one of these variables is driven to zero and will cross it
repeatedly, becoming closer on each iteration. For circular/rotation mode, that
variable is θ, which keeps track of the angle between the initial and final vectors,
and for hyperbolic/vectoring mode it is y which is driven towards zero which is
parameterised on the input.

The variable crossing zero must be subtracted from, if it is greater than zero,
and added to, if it is less than zero. As this needs to be done wholly sequentially,
so that memory access does not depend on input, and in constant time, the main
challenge is synthesising a procedure which can add and subtract with a single
add or subtract operation.

The approach used in this paper relies on the fact that, for example, sub-
tracting one fixed-point number from another can be done by adding the signed
representation of that number, i.e. the two’s complement. The same can be done
for addition with a subtract operator. By allowing the variable to overflow and
underflow in this way, but keeping track of the sign in a separate variable, the
constant-time change in direction can be implemented.

In what follows, the ct prefix indicates constant-time, although all functions
are. The prefix fp indicates a function on a multi-precision fixed-point data type.
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The letter u followed by a 64 or 32 denotes an unsigned integer data type with
that many bits.

Here, we list some of the less verbose, and more fundamental, algorithms
used in this work.

– ct lt uX(x, y) returns x < y where X is the number of bits, 64 or 32, of x
and y. Evaluates

(
x ∧ ((x ∧ y) | ((x − y) ∧ y))

)
>> X − 1.

– ct gt uX(x, y) returns x > y by evaluating ct lt uX(y, x).
– ct select(c, a, b,bit) evaluates c = bit ? a : b, where a, b and c can be fixed-

point arrays or unsigned native integers, by c[i] = (mask &(a[i] ∧ b[i])) ∧ b[i],
for each element in the array or once for native integers. The mask variable
is initialised as −bit.

– overflow(r, a, b) returns the overflow when the operands a and b are added
to give r, by evaluating
ct lt uX(r, ct select uX(a, b, ct lt uX(a, b))).

– underflow(r, a) returns the underflow of r = a − b by evaluating
ct gt uX(r, a).

– fp sub(c, a, b, size) subtracts u64 arrays a and b to give c by initialising
borrow = 0; and evaluating t = a[i] − b[i]; tborrow = underflow(t, a[i]);
c[i] = t−borrow; borrow = tborrow|underflow(c[i], t); for all elements in the
arrays. It then returns borrow.

– fp add(c, a, b, size) carries out a similar routine to fp sub using overflow
instead of underflow and returns the 1 or 0 to carry.

– fp lsh by one(out, x, size) essentially doubles x and writes it to the variable
out. It initialises carry=0 and computes out[i] = (x[i] << 1) + carry;
carry = (x[i] & 1 << 63) >> 63; for each array element.

– fp mul(c, a, b, size a, size b) multiplies a and b, but can take different sizes for
each input.

– cond inc(x, cond, size) conditionally increments x and overwrites it.

Algorithm 1: fp rsh non word(out, x, a, w, size)
Input : x : u64 array to be shifted

a : amount to shift by mod 64,
w : # of whole u64s to shift by
size: Number of u64 blocks in arrays

Output: out = x >> (64 · l + a)
1 carry = 0
2 i = w
3 while (i < size − 1) do
4 carry = x[i + 1] << (64 − amt)
5 out[i − w] = (x[i] >> amt) + carry
6 i ++
7 out[i − l] = x[size − 1] >> amt
8 for ( i = size − w; i < size; i ++ ) do
9 out[i] = 0
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Also required is a WS/CT right shift function, fp rsh(), which is not
constant-time because its use in the algorithms throughout do not require it
to be. The function calls another, named fp rsh word(), when the number of
bits to shift by is a multiple of 64. This is done by copying u64 words down the
array. If the number of bits is not a multiple of 64, it calls the fp rsh non word()
function. Only the latter function is shown here in Algorithm 1. The fp rsh()
function takes the same arguments as this and the fp rsh word() function drops
the argument a. All uses of the right-shift function are sequential in nature (the
same values of a and w are input at the same stage of each iteration) and the
different paths do not depend on secret data.

These functions form the basis of the algorithms for evaluating all the Box-
Muller functions. The algorithms described thus far are all very well suited to
applications in hardware, as well as the application here: constant-time, sequen-
tial compilation in software. The methods described in Sects. 3.3 and 3.4, which
follow, are all well-suited to use cases where hardware or resource is expensive,
requiring no multiplication and low code and memory space.

3.2 Constant-Time, Sequential Rotations

Algorithm 2 shows how the x, y and θ arrays are adjusted in the main procedure
for the sequential and constant-time evaluation of the CORDIC algorithm. Given
a boolean value change, determined by the θ variable in circular/rotation (C/R)
mode and the y variable in hyperbolic/vectoring (H/V) mode, the adjust rotation
function ensures that the values to be added or subtracted are converted to their
two’s complement, or not. This drives the rotation in constant time. We declare
here, without detail, two functions similar to adjust rotation, but which either
allow two fixed-point variables to be adjusted independently of each other, or
allow one such variable to be adjusted. These are the xy adjust(x, y, Sx, Sy,
size) and y adjust(y, Sy, size) functions, with x and y, the fixed-point numbers
to be made conditionally two’s-complement, of type u64[] and Sx and Sy, the
sign variables, encoding those conditions.

Algorithm 2: adjust rotation(x, y, θ, change, size)
Input : x, y, θ : u64 arrays

change : bool
size: Number of u64 blocks in arrays

Output: x, y, θ : rotated coordinates
1 xmask = −change
2 ymask = −change
3 θmask = −change
4 for ( i = 0; i < size; i++ ) do
5 x[i] = x[i] ∧ xmask
6 y[i] = y[i] ∧ ymask
7 θ[i] = θ[i] ∧ θmask
8 cond inc(x, change, size)
9 cond inc(y, change, size)

10 cond inc(θ, change, size)
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The convention used to keep track of this sign variable is to let it be repre-
sented with a u32 data type. Then, the state of being below zero can be assigned
to the maximum possible value of this data type and the state of being above is
assigned to zero. It is required, for the cos and sin functions, to allow Sθ to be
1, representing that the θ value is positive, but also ≥ 1. This is an edge case,
being only permissible at the beginning and for certain inputs, those close to the
maximum π

2 (after reduction to first quadrant).
The algorithm must detect edge cases and deal with them in constant time.

These edge cases are slightly different for the two modes used. In C/R mode,
the x and y variables sometimes fall below zero, despite the initial and average
conditions being in the first quadrant. When this happens, the right shift cannot
occur without first using xy adjust before and after it.

In H/V mode, the y variable crosses zero by design, but the x remains pos-
itive. The former, hence, uses y adjust while the latter uses the x shift int
in Algorithm 3, which deals with the x value now being able to cross 1 and the
possible integer value which is not accounted for in the x shift in Algorithm 5.
Each mode has its own constraints based around the values denoted as change,
Sx, Sy and Sθ, which determine the sign and/or the possible integer part of a
value.

Algorithm 3: x shift int(x, cond, i, j, size)
Input : x : u64 arrays

cond: value of integer
i, j: indexes in main algorithm loop
size: Number of u64 blocks in arrays

Output: x : Accounts for missing integer in shift
1 return x[size-1-i] += 1 << (63 - (j - 1 - cond))

3.3 Reduced Cos and Sin Algorithm

The edge conditions for the C/R mode occur when the rotated vector passes
either from quadrant 1 to 2, or from quadrant 1 to 4, in which cases the x and
y, respectively, fall below zero. The logic tables detailing the possible situations
are shown in Table 1. The possible sign values, e.g. Sx, do not map in an obvious
way to the value which tells us whether the operation on, say, x overflowed. We
denote the overflow variable with a subscript.

The algorithm for calculating cos and sin between 0 and π/2 is as shown in
Algorithm 4. The table containing the value of tan−1(2−i) in the ith index is
called cordic circ table. The x value is initialised to the inverse of Kn, described
in Eqs. (8) and (9), and y is initialised to zero. As input, a number is gener-
ated uniformly between zero and π

2 , while the fixed-point, fractional component
becomes θ and the integer component becomes Sθ.

Determining the logic that controls the signs of x, y and θ is not a straightfor-
ward process. It is more easily ascertained through the logic tables and results in
logic which is more complicated for C/R mode than for H/V mode. The change
condition to determine the direction of rotation is, in the C/R case, 1, if the sign
of θ is the value obtained by the subtraction 0 − 1, and 0, otherwise. A variable
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Table 1. The allowed states for the variables by which the signs of x (left table) and
y (right table) are controlled.

xoverflow change Sxi−1 Sxi

1/0 1/0 0 0

1 0 0 1

0 1 1 0

1 1 1 1

yoverflow change Syi−1 Syi

1/0 1/0 0 0

0 1 0 1

1 0 1 0

0 0 1 1

named gtz is set up to control when the amount to be subtracted from Sθ goes
to zero. This way, the value to be subtracted can synthesise addition from the
subtraction operation, in constant time, and Sθ can switch between the values
−1 (unsigned, θ < 0), 0(θ ≥ 0) and 1 (1 ≤ θ < π

2 ).

3.4 Reduced Natural Logarithm and Square Root Functions

The algorithms in this section work similarly to those in Sect. 3.3. The core
differences are that y is now the variable driven to zero and the add and subtract
operations on the x and y coordinates are now aligned, whereas previously they
were anti-aligned. We do not get the advantage of being able to calculate each
function concurrently, as the result of one is input to the other, however there
are several favourable factors which help to limit the overhead caused by this,
as explained.

The square root function relies on keeping the transformed x coordinate.
Thus, the transformations can be done without heed of the angle θ and all of
its operations. This function also benefits from converging in half the number of
iterations required for the others. Although the natural logarithm does not have
these advantageous properties (e.g. it is the transformation of θ and requires all
3 variables), both functions in this section have simpler, and more performant,
logic than those in the previous section. We wish to find ln(w) where 0.5 ≤ w < 1.
Initialisation is parameterised in this case, as w is transformed into both x and
y. Algorithm 5 shows how this function is evaluated. The square root is the same
algorithm as Algorithm 5, except for the initialisations of x and y, which add
and subtract the fixed-point representation of one quarter, respectively. Only the
x may overflow, but, if it does, it is a definite change of value, not a synthesised
operation utilising the overflow. Hence, it is easily dealt with. The inner for loop
runs only up to and including 32, for the square root function.
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3.5 Range Restoration and Full Sampler

To summarise, in Sects. 3.1 to 3.4 it was demonstrated how the Box-Muller
functions can be calculated by the CORDIC algorithm in constant time with
security constraints. The latter part of Sects. 2.2 outlined the identities to be
used in range reduction and restoration, whereby the input is mapped to a
(convergent) subset and the output mapped back to the full, desired set. The
task is now to implement constant-time transformations around Eqs. (12) to (15).

Algorithm 4: fp cos sin(x, y, θ, Sθ, size)
Input : x, y, θ : fixed-point u64 arrays

x = 1/Kcirc, y = 0, u
$ Uλ

(0, π
2 )

Sθ = �u� : u32 theta sign counter
θ = u − Sθ: u64[]
size: Number of u64 blocks in arrays

Output: x = cos(θ), y = sin(θ) : fixed-point u64 arrays
1 for ( i = 0 ; i < size ; i++ ) do
2 for ( j = 0 ; j < 64 ; j++ ) do
3 k = i · 63 + j
4 θbuf = cordic circ table[k]
5 xbuf = x
6 ybuf = y
7 xy adjust(xbuf, ybuf, Sx, Sy, size)
8 fp rsh(xbuf, xbuf, j, i, size)
9 fp rsh(ybuf, ybuf, j, i, size)

10 xy adjust(xbuf, ybuf, Sx, Sy, size)
11 change = ct eq u32(Sθ, 0xffffffff)
12 adjust rotation(xbuf, ybuf, θbuf, change, size)
13 xoverflow = fp sub(x,x, ybuf, size)
14 yoverflow = Sx

15 Sx = (ct eq u32(change, xoverflow) & Sx) |
((xoverflow ∧ change) & ∼ Sx) & (∼ Sy & 1)

16 xoverflow = yoverflow

17 yoverflow = fp add(y, y, xbuf, size)
18 Sy = (ct eq u32(change, yoverflow) & Sy) |

((yoverflow ∧ change) & ∼Sy) & (∼ xoverflow & 1)
19 θoverflow = fp sub(xbuf, θ,θbuf, size)
20 fp copy(θ, xbuf, size)
21 θ′

overflow = ∼ θoverflow & 1
22 gtz = (θoverflow & 1) & ((Sθ & (1 << 31)) >> 31)
23 gtz | = (θ′

overflow & 1) & ∼ (Sθ & 1)
24 θoverflow = θoverflow − θ′

overflow

25 θoverflow = ct select u32(0, θoverflow, gtz)
26 θoverflow =

ct select u32(1, θoverflow, ct eq u32(Sθ, 1))
27 Sθ = θoverflow
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Algorithm 5: fp ln(ln, w, size)
Input : w: u64[]

size: Number of u64 blocks in arrays
Output: ln: u64[]

1 x = w
2 y = w
3 θ = 0
4 change = 1
5 Sx = 0
6 Sy = 1
7 for ( i = 0 ; i < size ; i++ ) do
8 for ( j = 1 ; j ≤ 64 ; j++ ) do
9 k = i ∗ 63 + j

10 xbuf = x
11 ybuf = y
12 θbuf = cordic hyp table[k]
13 y adjust( ybuf, Sy, size)
14 fp rsh(xbuf, xbuf, j, i, size)
15 fp rsh(ybuf, ybuf, j, i, size)
16 y adjust( ybuf, Sy, size)
17 x shift int(xbuf, Sx, i, j, size)
18 adjust rotation(xbuf, ybuf, θbuf, change, size)
19 xoverflow = fp sub(x,x, ybuf, size)
20 yoverflow = fp sub(y,y, xbuf, size)
21 θoverflow = fp add(θ,θ, θbuf, size)
22 change = yoverflow

23 y sign = yoverflow

As a reminder, the main CORDIC algorithms operate on the domains (0, π
2 ]

in C/R mode, (0.5, 1] for natural log and square root, the latter only if the input is
even, and for odd square root input, (0.25, 0.75]. Recall also Eq. (1) and Eq. (2),
the equations for the Box-Muller transformation. Expressing these succinctly
and letting g(x) = −2 ln(x), h(x) =

√
x, X(x) = cos(x), Y (x) = sin(x) and

f(x) = h(g(x)), we have
v1 = f(u1)X(u2) (16)

and
v2 = f(u1)Y (u2). (17)

Algorithm 6 describes the full algorithm for the secure evaluation of cos and
sin. The random fixed-point value 0 < u1 ≤ 1 is reduced to a value between 0
and 1

4 , as described in Algorithm 8, and multiplied by 2π, using a fixed-point
algorithm similar to the addition and subtraction, before being input to the
main CORDIC algorithm of Algorithm 4. The quadrant Q is obtained by the
reduction and used to restore the output value to the original range, described
in Algorithm 11. In Algorithm 7, the exponent E is obtained from the reduction
of u2 and used to restore the output of the main CORDIC for natural log. The
reduction and restoration algorithms for natural log can be seen in Algorithms
9 and 12. Before restoration, the value is effectively multiplied by minus two in
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lines Lines 3 and 4, using the overflow and left-shift-by-one functions, the former
being the single-variable version of the adjust rotation function of Algorithm 2.
The reduction and restoration of square root are slightly different and involve
Algorithms 10 and 13.

Algorithm 6:
cordic xy(x, y, u2 size)
Input : u1: u64 [size]
Output: x, y: u64 [size]

Sx, Sy: u32
1 Q = cordic reduction circ (

u2, size)
2 fp mul(wred, u2, 2π, size, size+1)
3 Sθ = �wred�
4 fp cos sin (

x, y, wred + size, Sθ, size)
5 return

cordic restoration circ (
x, y, Q, size)

Algorithm 7:cordic f(f , u1, size)
Input : u1: u64 [size]
Output: f : u64 [size]

1 E = cordic reduction ln(u1, size)
2 fp ln(f , u1, size)
3 y adjust(f , 1, size)
4 fp lsh one(u1, f , size)
5 wZ = cordic restoration ln (

f , E, size)
6 E = cordic reduction sqrt (

f , wZ, size)
7 fp sqrt(f , u1, size)
8 cordic restoration sqrt (

f , E, size)

The circular reduction of Algorithm 8 iterates through the quadrants and
determines which one the value lies in and the amount by which it overflows.
The reduction algorithms for natural log and square root require Algorithms 14
and 15, which calculate the mantissa and exponent in constant-time.

Algorithm 8:
cordic reduction circ (
w, size)
Input : w: u64 [size]
Output: w: u64 [size]

quadrant: u32
1 quadzero = 0
2 for ( i = 0 ; i < 4 ; i++ ) do
3 quadrant +=

ct gt u64(w[size-1], quadzero)
4 quadzero += 1

4

5 fp sub(w, w, = 1
4
∗quadrant, size)

6 return quadrant

Algorithm 9:
cordic reduction ln (
w, size)
Input : w: u64 [size]
Output: w: u64 [size]

E: u32
1 E = count leading zeroes (

w, size)
2 calc mantissa(w, E, size)
3 return E

The cos and sin are restored by swapping pointers using the masking select
function and constant-time logic. Line 3 and Line 4 encapsulate the logic of
swapping the functions and determining the signs, which are stored in the lowest
two bits of a u64.
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Algorithm 10: sqrt reduction(w, wZ, size)
Input : w: u64 [size]

wZ: u64, integer component
Output: w: u64 [size]

E: u32
1 lz = count leading zeroes(&wZ, 1)
2 E = 64 − lz
3 fp rsh(w, w, E, size)
4 w[size-1] += wZ << lz
5 E′ = E
6 E+= (E&1)
7 E >>= 1
8 fp rsh(buf, w, 1, size)
9 ct select(w, buf, w, size, E′&1)

10 return E

Algorithm 11: cordic restoration circ(x, y, Q, size)
Input : x y: u64∗∗

Q: u32
Output: x y: u64 ∗∗

Sx Sy: u32
1 xtempptr = ∗x
2 ytempptr = ∗y
3 swap funcs = Q&1
4 ret = (Q&2) >> 1
5 ∗x =(u64 ∗)ct select u64((u64)ytempptr,

(u64)xtempptr, swap funcs)
6 ∗y =(u64 *)ct select u64((u64)xtempptr,

(u64)ytempptr, swap funcs)
7 return ret

Algorithm 12:
cordic restoration ln (
g, E, size)
Input : g: u64 [size]

E: u32
Output: g: u64 [size]

gZ: u32
1 fp mul (

buf, ln2, (u64 [1])E, size, 1)
2 return buf[size] +

fp add(g, buf, g, size)

Algorithm 13:
cordic restoration sqrt (
h, E, size)
Input : h: u64 [size]

E: u32
Output: h: u64 [size]

hZ: u32
1 emod2 = E&1
2 E+= emod2
3 esh = E >> 2
4 E =ct eq u32(esh, emod2)
5 return calc sqrt mantissa (

h, E, size)
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Algorithm 14:
count leading zeroes(x, size)
Input : x: u64 [size]
Output: count: u32

1 n =size ∗64
2 rsh = n >> 1
3 while rsh != 1 do
4 words = rsh >> 6
5 amt = rsh - words∗64
6 fp rsh(y, x, amt, words, size)
7 inz = ct isnonzero(y, size)
8 sfn = ct select u32 (

rsh, 0, inz)
9 n −= sfn

10 ct select(x, y, x, size, inz)
11 rsh >>= 1
12 fp rsh(y, x, 1, 0, size)
13 return ct select u64(n − 2,

n x[0], ct isnonzero(y, size))

Algorithm 15: calc mantissa(M ,
E, size)
Input : M : u64 [size]

E: u32
Output: M : u64 [size]

1 l = 0
2 for i = 0; i <size; i ++ do
3 l+ =ct gt u32(E, (i + 1) ∗ 64)
4 a = E − 64 · l
5 for i = 0; i <size; i ++ do
6 tomul[i] =

(u64) ct eq u32(i, l) << a

7 fp mul(buf, M , tomul, size, size)
8 fp copy(M , buf+size, size)

Algorithm 16: box muller(size)
Input : size: u32: size = λ/64

(precision λ)
Output: samples: s32[2]

1 u1
$← Uλ

(0,1]

2 signs = fp xy(x, y, u+size, size)
3 fp f(f , u, size)
4 fix mul(buf, f , x, size+1, size)
5 samples[0] = (s32) buf[2*size]
6 fix mul(buf, f , y, size+1, size)
7 samples[1] = (s32) buf[2*size]
8 samples[0] −= signs ∗ (samples[0] << 1)
9 samples[1] −= signs ∗ (samples[1] << 1);

The restoration algorithms for natural log and square root in Algorithms
12 and 13 are further straightforward applications of the techniques throughout
this paper. The only thing to note is that calc sqrt mantissa is the same
as calc mantissa except that it returns an integer component. Finally, with
these functions we can produce two Gaussian samples in constant-time, using
Algorithm 16.

4 Results and Discussion

The timing results for the CORDIC implementation of the Box-Muller algorithm
and the Knuth-Yao/Micciancio-Walter ensemble are given in Table 2. These
results indicate an upper limit for any future CORDIC-based Box-Muller sam-
pler for cryptographic purposes. Several methods exist for optimising CORDIC,
including reducing the number of iterations by a half and introducing modes of
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operation better suited to parallelism. For a review of these optimisations, see
[24].

The Knuth/Yao-Micciancio/Walter method has an added disadvantage when
it comes to sampling from distributions which are centered between integers. It
requires further calls to the base sampler, the number of which grows with the
precision of the center, and these need to be convoluted in the same way as
for arbitrary standard deviation. Hence, for the most arbitrary distributions, a
doubling of the time given in Table 2 could be seen for Knuth-Yao/Micciancio-
Walter sampling. Not only does our sampler reach arbitrary center and standard
deviation with no overhead, compared with sampling a standard deviation of 1
and center 0, but we can also expect to see a halving of the timing results, if the
methods of [24] are applied.

Table 2. The time, in seconds, for 1 million samples at 64-bit precision and the
code and data memory usage in bytes. Measurements taken on Intel(R) Core(TM)
i7-6700HQ CPU @ 2.60GHz.

Sampler

Time for
106

Samples (s)

Overall
Memory use

(B)

Knuth-Yao (Roy et al.)
σ = 6.15543 0.023

256 < σ < 65536 0.74 70752
σ > 65536 1.48

Box-Muller (CORDIC)
σ = 1

256 < σ < 65536 3.60 72624
σ > 65536

Further to the capacity for optimisation is the ability to implement CORDIC
in a parallelised fashion. As Knuth-Yao is a tree traversal algorithm, it does not
have the capacity for parallelism within the base sampling method. Any paral-
lelism which can be brought about by calculating the base samples simultane-
ously can be done with the CORDIC as well, except that the resulting samples
for CORDIC will be the generated values required for the cryptographic scheme.
In the Knuth-Yao sampler, these will amount to just one sample.

The future directions discussed here, whilst promising, are a small subset of
the available methods for making the secure Box-Muller faster. As we require
the calculation of 3 or 4 functions, depending on whether f from Sect. 3 is a com-
posite or two separate functions, each can be calculated with different methods
than CORDIC (for example, with polynomials) and the optimal combination of
methods chosen.

One final advantage of the rounded Box-Muller regime is the ratio of
CSPRNG calls to output samples. It is not always the case that a target plat-
form has the availability of a hardware-accelerated CSPRNG, or it may be the
case that the CSPRNG has, by some design decision, been given less priority
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regarding performance. The performance penalty in these instances is greater
for the Knuth-Yao convolution method, than it is for our sampler. This is by a
factor of 16 for 256 < σ < 65536 and a factor of 32 for σ > 65536. The results
of Table 2 were performed with an Intel hardware-accelerated CSPRNG and,
hence, such a penalty is minimised.

The work in this paper serves as a starting point for research into rounded,
continuous Gaussian sampling for lattice-based signatures. Whether this be as
a benchmark for different avenues of exploration, or as the basis on which to
enhance the performance of the CORDIC implementation, the contributions in
this paper outline a number of useful techniques and results for evaluating side-
channel-secure rounded Gaussian samplers.
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Abstract. Proxy Re-Encryption (PRE) is an indispensable tool in many
public-key cryptographic schemes that enables users to delegate decryp-
tion rights to other users via a proxy. In this work, we present a high
performance implementation of PRE schemes on NVIDIA GPUs. We
target two lattice based PRE schemes, BV-PRE and Ring-GSW PRE
defined over polynomial rings. We design a parallel Number Theoretic
Transform (NTT) procedure capable of working on arbitrary precision
moduli (in CRT form) and demonstrate several low level and GPU opti-
mizations techniques to accelerate the PRE schemes.

For the same or higher security settings our results show 39x to
228x factors of improvement in performance with a peak throughput of
6.3 Mbps when compared to the CPU implementation of the BV-PRE
scheme in the PALISADE lattice crypto software library. Similarly, for
the Ring-GSW PRE scheme we achieve a peak throughput of 49 Mbps
and up to 11x improvement in performance.

Keywords: Homomorphic encryption · Ring-LWE · GPU
acceleration · CUDA

1 Introduction

First introduced in the work of Blaze, Bleumer and Strauss [3], Proxy Re-
Encryption (PRE) is a powerful cryptographic primitive that allows a subscriber
(Bob) to exchange and interpret encrypted data received from a publisher (Alice)
without ever exchanging any secret key. To interpret the messages, Alice creates
and gives to a Proxy (Polly) a re-encryption key which then allows Polly to
transform messages encrypted with Alice’s public key into an encrypted mes-
sage that can be decrypted by Bob’s secret key. Furthermore, semantic security
of proxy re-encryption guarantees that the proxy Polly, does not learn anything
about Alice’s secret key or messages.

Proxy re-encryption can be a useful tool in brokering information exchanges
in untrusted environments such as cloud computing platforms. Users can choose
to store contents in encrypted form on the cloud and then register re-encryption
keys of other users they want to interact with. Now, the cloud acting as a proxy
can re-encrypt messages on the fly and deliver encrypted messages that can be
c© Springer Nature Switzerland AG 2020
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read by the desired users. Even if the cloud is corrupted by a malicious adver-
sary and all the data stored on the cloud is compromised, the adversary cannot
retrieve meaningful information out of it. Further, an adversary in possession of
re-encryption keys cannot deduce the secret keys of either the producer or con-
sumer. Additionally, if the PRE scheme in deployment is key private secure then
the adversary cannot even trace the identities of Alice and Bob. It can be easily
seen that a PRE scheme is not just restricted to cloud computing environments
but the same idea can be extended to other similar privacy concerning appli-
cations. PRE schemes have been proposed for use in digital rights management
(DRM) systems [24], secure file storage systems [2], email list services [17], and
many other applications.

In the literature of cryptology many proxy re-encryption schemes have been
proposed starting with the pioneering work of the BBS [3] PRE scheme. Other
PRE schemes have been known to be constructed on bilinear pairings and
the decisional Diffie-Hellman (DBDH) assumption. Many of these schemes are
computationally intensive and inefficient to implement in real world applica-
tions. Another problem associated with some of these PRE schemes is their
bi-directional nature which allows them to perform re-encryption from publisher
encrypted data to consumer encryption and also in reverse using the same re-
encryption key. This is considered to be an undesirable property because of
unwarranted rights acquired by the proxy. A uni-directional PRE scheme is more
practical as it possesses translation capability in one direction only. Another
important property that defines the flexibility of a PRE scheme is the number
of hops for which it can be re-encrypted. A multi-hop PRE scheme was first pre-
sented by Canneti and Hohenberger [7]. Among the many open problems cited
in their work was the construction of a PRE scheme which is simultaneously
multi-hop and uni-directional.

The emergence of lattice based cryptography has paved the road for many
new constructions with some of them being quite efficient and secure against
quantum computers. Among the most notable developments is the breakthrough
work of Gentry [14] on fully homomorphic encryption. A subsequent line of
work by Brakerski and Vaikuntanathan [4–6] presented FHE schemes based on
standard lattice assumptions which can be reduced to worst case hardness of
approximating lattice problems. These FHE schemes are endowed with much
better noise controlling mechanisms which allow them to evaluate circuits of
greater depth. However, to keep the noise growth to a minimum, multiplication is
often performed using a binary multiplication tree. Gentry et al. [13] introduced
a FHE scheme roughly similar to Regev’s [23] encryption scheme which further
improved upon this noise growth during circuit evaluation by restricting it to
a quasi additive nature. Such asymmetric noise growth can be used to support
sequential multiplication of ciphertexts.

Building a PRE primitive with these FHE schemes presents a simple yet pow-
erful approach for extending them for information exchanges in an untrusted
environment. Further, these PRE schemes mitigate some of the above men-
tioned problems associated with traditional PRE schemes as they are inherently
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endowed with a uni-directional and multi-hop nature. A construction of a PRE
scheme based on the BV [5] FHE scheme was presented in [22] where the authors
exploited the key-switching procedure for achieving the re-encryption function-
ality. Along the same lines, we extended the PRE scheme to the Ring-GSW [16]
FHE scheme. Evaluation of both BV-PRE and Ring-GSW-PRE schemes (with
r = 1) with standard parameter set and security factor (100-bits) shows that
the re-encryption procedure can be completed in the order of 10–100 ms.

Nowadays, owing to the ever increasing computational power and network
efficiency most of the applications hosted on the cloud are expected to work
in real time. An application involving a PRE primitive is no different. Being a
low level primitive, the PRE scheme in deployment is expected to deliver the
least possible latency. The above mentioned PRE schemes share the similarity
of using the algebraic structure of ideal lattices as polynomial rings (RLWE). As
a result, many of the computational bottlenecks in the implementation of these
PRE schemes arise due to large ring dimensions, arbitrary precision multiplica-
tions, polynomial tensors, number theoretic transforms, matrix multiplication,
etc. Over the years many of these problems have been remedied by switch-
ing over to better algorithms or optimizations. However, to provide additional
speedups better hardware architectures have to be considered. In a heteroge-
neous computing model, these hardware accelerators acting as co-processors can
be orchestrated by CPUs to achieve the desired levels of throughput. Among
the common hardware accelerators such as FPGAs, ASICs and GPUs the most
common and readily available solution is provided by GPUs. Modern GPUs con-
sist of streaming multi-core processors which can be utilized to accelerate parts
of computations that can be processed in parallel.

Lattice based cryptography and more specifically RLWE based FHE schemes
being amenable to such parallelism have shown significant folds of performance
improvement when implemented on GPUs. For example, in [8] the authors pre-
sented an implementation of the NTRU FHE scheme on GPUs and evaluated
the AES and Prince block ciphers resulting in 2.5–7.6x factors of speedup over
CPUs. Similarly, in [9] the authors present a homomorphic encryption acceler-
ator library, cuHE targeting LTV [20], BGV [4] and DHS [11] FHE schemes.
Speedups of 12–41 were reported for homomorphic sorting of ciphertexts. In
another work, [16] leveraged the power of GPUs towards constructing a homo-
morphic Bayesian spam filter, secure multiple keyword search and evaluation of
binary decision trees based on the Ring-GSW FHE scheme. For the same security
settings [16] reported a factor of 10x improvement in performance when com-
pared with the IBM HeLib [15] software library. Continuing in this line of work,
we present an implementation of PRE schemes based on BV and Ring-GSW
FHE schemes.

Our Contributions: We enumerate our main contributions and scope of the
paper as follows.

– We present a GPU implementation of number theoretic transforms (NTT)
based on finite field arithmetic where butterfly operations are performed in
parallel. In order to extend the finite field over large numbers we keep integers
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in CRT representation. Our NTT implementation targets both small (n ≤
1024) and large (n > 1024) polynomial dimensions.

– Armed with a parallel implementation of NTT operations, next we tar-
get the parallelization of bit decomposition procedure. Relinearization along
with bit/digit decomposition is considered to be the most critical procedure
in many homomorphic encryption schemes and accelerating this operation
imparts overall efficiency to the FHE scheme.

– Finally, utilizing the above implementations we demonstrate the acceleration
of BV-PRE and Ring-GSW PRE schemes. In our implementation, we have
reduced the number of memory transfers between host and device to a min-
imum by storing most of the dynamic elements on GPU memory. Another
key feature of our implementation is the use of CUDA streams which allow
concurrent execution of kernels thereby minimizing latency.

Paper Organization: In Sect. 2, we first provide the basic syntax of a public-
key encryption scheme augmented with proxy re-encryption procedures. Section
3 introduces the mathematical notations and preliminaries we have used through-
out the paper. Section 4 discusses the implementation of the underlying arith-
metic layer, number theoretic transforms and bit decomposition procedures on
the GPU along with other optimizations. The next two sections, Sects. 5 and 6
describe the lattice-based PRE schemes. In Sect. 7, we provide the parameters
selected for implementation. Section 8 discusses the evaluation of PRE-schemes
and their overall speedups.

2 Design

2.1 Syntax of Unidirectional PRE Scheme

We recall that a non-interactive PRE scheme is an ensemble of PPT algorithms
Π = (ParamsGen, KeyGen, ReKeyGen, Encrypt, ReEncrypt, Decrypt), which
can be defined as per the following syntax:

– ParamsGen
(
1λ

)
: It takes the security parameter λ and returns the corre-

sponding public parameters pp.
– KeyGen

(
pp, 1λ

)
: It takes the public parameters pp and returns the key pair

(pk, sk).
– ReKeyGen(pp, ski, pkj): It takes the public parameters, secret key of pub-

lisher i, public key of subscriber j and returns the re-encryption key rki→j .
– Encrypt(pp, pk,m): Given public key and public parameters, it encrypts the

message m and returns a ciphertext c.
– ReEncrypt(pp, rki→j , ci): It transforms a ciphertext ci of the party i into a

ciphertext cj that can be decrypted by party j.
– Decrypt(pp, sk, c): It recovers the message m from ciphertext c.
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3 Preliminaries and Mathematical Notations

In this work, we represent scalars in plain, vectors by lower-case bold letters (e.g.,
a) and matrices by upper-case bold letters (e.g., A). Ring elements, for example
x ∈ Rq, are represented by lower case letters in plain. We define [k] = {1, · · · , k}
for any non-negative integer k. The i-th norm of a vector v is denoted by ‖v‖i.
We denote the tensor (Kronecker) product of two matrices A and B as A⊗B. We
extend this notation to a vector v where the Kronecker product is represented as
v ⊗ A. Unless explicitly mentioned logarithms are to be understood with base
2. We denote the horizontal and vertical concatenation of matrices by operators
(·||) and (·||ᵀ) respectively. For two matrices A,B ∈ Z

n×n [A || B] produces a
matrix C ∈ Z

n×2n. Similarly, [A ||ᵀ B] produces a matrix C ∈ Z
2n×n.

3.1 Gadget Matrix and Relinearization Functions:

For LWE dimension n and modulus q, we use the following “gadget” vector [21]:

g =
(
1, 2, 4, · · · , 2�−1

)
∈ Z

�
q, where � = �log q�.

The gadget matrix G is then defined as the diagonal concatenation of the g
vector n times. Formally, it is written as G = g ⊗ In ∈ Z

�n×n
q . To perform relin-

earization we define the following operations [5,13] with respect to an element a
which can be either a vector or matrix or polynomial ring.

– BitDecomp (a): For a vector a ∈ Z
n
q this operation produces a bit decom-

posed and expanded vector a′ ∈ Z
n�
q where ai =

∑�
j=0 2ja′

i�+j . In case of a
matrix A ∈ Z

m×n
q this operation produces a matrix that is expanded along

the column resulting in A′ ∈ Z
m×n�
q . Finally, in case of a polynomial ring

a ∈ Rq this operation produces a′ ∈ R�
q.

– PowerOf2 (a): Given a vector a ∈ Z
n
q this operation produces an expanded

vector a′ ∈ Z
n�
q where a′ =

(
a0, 2a0, · · · , 2�−1a0, · · · , 2�−1an−1

)
. Similarly, for

a polynomial ring a ∈ Rq we get a′ ∈ R�
q where a′

i = 2ia.

Using these operations, we can produce a product of a and b as follows:

〈BitDecomp (a) ,PowersOf2 (b)〉 = 〈a,b〉

4 Number Theoretic Transform and Bit-Decomposition

4.1 Number Theoretic Transform

Cryptosystems based on the RLWE security assumption are defined over a poly-
nomial ring R = Z [X] /Φm (X) where Φm (X) is an irreducible monic cyclotomic
polynomial of order m. This notation is extended to a polynomial Rq modulo an
integer q where the coefficients of the polynomial are in the interval (−q/2, q/2].
Alternatively, an element a ∈ Rq is simply considered to be a coefficient vector
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a ∈ Z
ϕ(m)
q . While addition of these polynomials is quite efficient, multiplication

leads to quadratic time complexity. To circumvent this inefficiency, we represent
polynomial rings in the so called “Evaluation” representation. For a polynomial
a ∈ Rq the coefficients can be converted to the evaluation domain ā by evaluat-
ing a (X) at each of the m-th primitive roots of unity modulo q. The coefficients
of ā are related to polynomial a through the relation āi = a

(
ωi

)
mod q where

(i,m) = 1 and ω is a m-th primitive root of unity modulo q.
This back and forth conversion of a polynomial can be achieved efficiently

by using number theoretic transforms (NTT) which is roughly similar to the
classical n-dimensional fast Fourier transform where a finite field is used instead
of complex numbers. Concretely, in our implementation, we use the power of two
cyclotomics (m = 2k) where Φm (X) is maximally sparse and the ring dimension
n = ϕ (m) = m/2 is also a power of two. The power of two cyclotomics along
with NTT has become so pervasive in lattice based cryptography that the overall
efficiency of the cryptosystem depends upon the latency of NTT procedure. For
this reason, we chose to implement NTT as an iterative Cooley-Tukey algorithm.
More specifically, we implemented the NTT routine with Fermat theoretic trans-
form (FTT) optimization which eliminates interleaved zero paddings when using
the conventional NTT procedure.

4.2 Parallel NTT

Exploiting the NVIDIA GPU architecture, we reduce the NTT latency further
by mapping the butterfly computations of each of the log n stages to an indepen-
dently processing thread of a thread block. In the NVIDIA CUDA architecture,
each kernel or device function can be potentially divided into a 3-dimensional
array of blocks where a block further consists of several threads. Because of
hardware restrictions, a maximum of 1024 threads can be assigned to a block.
Further, the threads within a block have the capability to share data and more
importantly synchronize with each other. In our implementation, for small poly-
nomials (n ≤ 1024) we map the coefficients entirely to a thread block and syn-
chronize the thread block after completion of a stage as shown in Fig. 1. We use
shared memory for storing the intermittent results as latency associated with
global memory is higher than that of shared memory which resides on the chip.
For larger polynomial rings (n > 1024), we use a combination of block level syn-
chronization and stream level synchronization to avoid data race conditions. As
stream level synchronization avoids data race conditions via global memory syn-
chronization we pay the penalty of using slower memory but only for a fraction
of the NTT procedure calls.

The evaluation of the proposed NTT procedure on GPU platforms and CPU
platforms is shown in Fig. 2. From the figure, we can see that the CPU plat-
form running on a single thread achieves slightly better performance for smaller
ring dimensions. As the ring dimensions grow higher we can see that the GPU
platform starts showing significant improvement in performance.
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Fig. 1. Parallel implementation of the i-th stage of NTT on a GPU, N = 8.

Fig. 2. Comparison of CPU and GPU runtimes of the NTT algorithm.

4.3 Barrett Modulo Reduction and Arbitrary Precision Support

For modulo reduction, we used a variation of the generalized Barrett modulo
reduction [10] as outlined in Algorithm 1. Barrett modulo reduction requires a
pre-computation term μ = 
22b/q� for a particular modulus q and its bit width,
b = �log2 q�. We pre-compute these terms and transfer them to GPU global
memory for read only access to any kernel. NVIDIA GPUs are restricted to a
32-bit architecture and 64-bit arithmetic are supported only through assembly
code emulation. For this reason, we prefer moduli with bit width closer to 32-bits
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so that the precomputation term μ fits into the word size. Concretely, we allow
up to 29–30 bit width moduli in our implementation.

Lattice based cryptosystems employ the addition of low norm noise terms
to base their security on Ring-LWE and LWE assumptions. For preserving the
correctness constraints so that ciphertexts are decrypted correctly, the modulus
q should be chosen large enough such that the final accumulated error terms do
not “wrap around” modulo q. To extend support for larger moduli we store a
set of increasing prime moduli qi by an application of the Chinese Remainder
Theorem (CRT). We only reconstruct the coefficients into larger terms for the
purpose of decryption or bit-decomposition where the polynomial needs to be
represented in terms of the larger modulus, q =

∏t−1
i=0 qi.

Evaluation of the NTT procedure on a GPU with varying number of moduli,
t and ring dimension N can be seen in Fig. 3. For most of the ring dimensions,
the runtimes vary a little. This is due to the fact that GPUs have the capability
to improve throughput by hiding latency with the concurrent execution of the
NTT procedure on different polynomials. On a CPU platform the runtime is
estimated to scale linearly with the number of moduli assuming a single thread
execution environment.

Algorithm 1: Mod Barrett Reduction
Input : x ∈ [

0, (q − 1)2
]
, modulus q, bit-width b = �log q�, q̄ = 2 · q and

μ = �22b/q�.
Output: z ← x% q

1 z ← x � b ;
2 z ← z · μ ;
3 z ← z � b ;
4 z ← z · q ;
5 x ← x − z ;
6 if x >= q̄ then
7 z ← x − q̄;
8 end if
9 if z >= q then

10 z ← z − q;
11 end if
12 return z
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Fig. 3. GPU runtimes of the NTT algorithm with varying dimension N and moduli t.

4.4 Bit Decomposition

Bit decomposition along with the relinearization procedure forms the backbone
of lattice based cryptography. While bit decomposing integers is simple in finite
field arithmetic, it is accompanied with additional overheads in Ring-LWE based
cryptosystems. In Ring-LWE cryptosystems, ciphertexts and other key elements
are mostly present in evaluation representation. To bit decompose, polynomial
rings need to be switched back to coefficient representation. At this stage, bit
decomposition of the polynomial results in a vector of b polynomials, where
b is the bit length of the modulus q. To perform further computations, these
polynomials need to be converted back to evaluation representation by a series
of NTT calls. Since the bit decomposed polynomials are independent of each
other, we apply NTT procedures on them in parallel using a three dimensional
CUDA grid mapping. To avoid race conditions in the NTT procedure, we provide
the kernel with appropriate synchronization. From Fig. 4, we can observe that
our GPU implementation of bit decomposition outperforms runtimes of the CPU
platform for all ring dimensions and further the speedups are more pronounced
in case of higher ring dimensions.

5 PRE Cryptosystem with BV FHE Scheme

The BV-PRE [22] scheme described here is based on the BV FHE [5] scheme
introduced by Brakerski and Vaikuntanathan. The message space for the scheme
is restricted to M ∈ Rp where p is the plaintext modulus.
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Fig. 4. GPU vs CPU runtimes of bit decomposing a polynomial ring with varying ring
dimension N .

5.1 BV Encryption Scheme

The scheme is parameterized using the following quantities:

– Security parameter (λ),
– Ciphertext modulus q and plaintext modulus 2 ≤ p � q,
– Ring dimension n,
– D-bounded discrete Gaussian error distribution χe with distribution param-

eter σe,
– Ternary uniform distribution T which samples from {−1, 0, 1},
– Discrete uniform distribution Uq,

The scheme consists of the following operations:

• ParamsGen
(
1λ

)
: Choose positive integers q = q (λ) and n = n (λ). Return

pp = (p, q, n).

• KeyGen(pp, λ): Sample polynomials a ←$ Uq, s ←$ T and e ←$ χe. Compute
b := a · s + pe ∈ Rq. Set the public key pk and private key sk as follows:

sk := (1, s) ∈ R2
q , pk := (a, b) ∈ R2

q

• Encrypt(pp, pk = (a, b) ,m ∈ M): Sample polynomials v ←$ T , e0, e1 ←$ χe.
Compute the ciphertext c = (c0, c1) ∈ R2

q as follows:

c0 = b · v + pe0 + m ∈ Rq, c1 = a · v + pe1 ∈ Rq

• Decrypt(pp, sk = s, c = (c0, c1)): Compute the ciphertext error t = c0 − s ·
c1 ∈ Rq. Output m′ = t mod p. For correct decryption, the coefficients of the
noise polynomial, t should not wrap around modulo q.
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5.2 Proxy Re-encryption Scheme

We refer to the publisher of information as party A and the subscriber of infor-
mation via the proxy as party B. Additional operations pertaining to PRE com-
putation are as follows:

• Preprocess(pp, λ, skB = (1, sB)) Sample uniformly distributed random
polynomials αi ←$ Uq and error polynomials ei ←$ χe for i ∈ [0, �log2(q)/r�).
Here r is the relinearization window. Compute the following elements:

γi = αi · sB + pei ∈ Rq; pkB = (αi, γi)i∈{0,1,··· ,�log2(q)/r�}

• ReKeyGen(pp, skA = (1, sA) , pkB): Compute βi and set the re-encryption
key as follows:

βi = γi − sA · (2r)i ∈ Rq, rkA→B = (αi, βi)i∈{0,1,··· ,�log2(q)/r�}

• ReEncrypt(pp, rkA→B = (αi, βi) , c = (c0, c1)): To get the re-encrypted
ciphertext c′ = (c′

0, c
′
1) first apply 2r base decompositions and proceed as

follows:

c′
0 = c0 +

�log2 (q)/r�∑

i=0

(
c
(i)
1 · βi

)
, c′

1 =
�log2 (q)/r�∑

i=0

(
c
(i)
1 · αi

)

where c
(i)
1 represents the i-th digit of the base-2r decomposition of c1.

Under the new secret key sk = (1, sB) decryption of the ciphertext c′ =
(c′

0, c
′
1) can be shown as

c′
0 − sB · c′

1 = c0 +
�log2 (q)/r�∑

i=0

(
c
(i)
1 · βi

)
− sB ·

�log2 (q)/r�∑

i=0

(
c
(i)
1 · αi

)

= c0 +
�log2 (q)/r�∑

i=0

(
c
(i)
1 ·

{
αi · sB + pei − sA · (2r)i

})

− sB ·
�log2 (q)/r�∑

i=0

(
c
(i)
1 · αi

)

= c0 − sA · c1 + pEi; Ei =
�log2 (q)/r�∑

i=0

(
c
(i)
1 · ei

)

To preserve the correctness of the re-encrypted ciphertext c′ = (c′
0, c

′
1), we

derive the following constraint:

‖t‖∞ ≤ 3
√

npD +
√

npD · Dr�log2 (q)/r�
≈

√
npDDr (�log2 (q)/r� + 1) � r > 1

⇒ q ≥ 2
√

npDDr (�log2 (q)/r� + 1)

where, Dr is the bound of the bit decomposed polynomial in base 2r represen-
tation.
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5.3 Security

The security of PRE schemes is generally covered under indistinguishability
against chosen-plaintext attacks (IND-CPA). For brevity we omit the formal
definition of the IND-CPA security notion and capture the security with the
following theorem.

Theorem 1 [22]. Under the RLWEΦ,q,χe
assumption, the BV-PRE scheme is

IND-CPA secure. Specifically, for a poly-time adversary A, there exists a poly-
time distinguisher D such that

Advcpa
A (λ) ≤ (ρ · (Qrk + Qre) + N + 1) · AdvRLWEΦ,q,χ

D

where Qrk and Qre are the numbers of re-encryption key queries and re-
encryption queries, respectively; N is the number of honest entities; λ is the secu-
rity parameter; Φ is the cyclotomic polynomial defining the ring Rq = Zq[x]/〈Φ〉
and ρ = �log2 (q)/r�.

6 PRE Cryptosystem with Ring-GSW FHE Scheme

The Ring-GSW PRE scheme described here is based on the Ring-GSW FHE
scheme, a RLWE variant of the GSW [13] FHE scheme. The message space for
the scheme is restricted to M ∈ Rp similar to the BV-FHE scheme.

6.1 Ring-GSW Encryption Scheme

The scheme is parameterized similar to the BV-FHE scheme. It consists of the
following operations:

• ParamsGen
(
1λ

)
: Choose positive integers q = q (λ) and n = n (λ). Return

pp = (�,N, p, q, h, n) where � = �log2 (q)/h� and N = 2�. Here h is the
relinearization factor.

• KeyGen(pp, λ): Sample polynomials a ←$ Uq, s ←$ T and e ←$ χe. Com-
pute b := a · s + pe ∈ Rq. Set the public key pk and private key sk as follows:

sk := (1;−s) ∈ R2×1
q , pk := A = [a b] ∈ R1×2

q

• Encrypt(pp, pk = A,m): Sample random matrix R from ternary distribu-
tion and an error matrix E ∈ RN×2

q from discrete Gaussian distribution.
Compute the ciphertext C ∈ RN×2

q as follows:

R = {r0, · · · , rN−1} ←$ T N
Rq

, E ←$ χN×2
e,Rq

C = m · G + R ⊗ A + pE

• Decrypt(pp, sk = (1;−s) ,C): Message m′ is recovered by multiplying the
first row of the ciphertext C with the secret key sk. This is shown as:

m′ = (C0 × sk mod q) mod p

Decryption works correctly as the first row of the ciphertext is in the form
of a BV scheme ciphertext.
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6.2 Proxy Re-encryption Scheme

We describe the operations pertaining to PRE computation for a publisher A
and a subscriber B as follows:

• ReKeyGen(pp, skA, pkB): The re-encryption key consists of two polyno-
mial matrices. To generate the matrices, we first sample two ternary uniform
matrices R0,R1 ∈ RN

q . Next, we sample two error matrices from χe,Rq
and

set the evaluation matrices EK (i) as follows:

Ri ←$ T N
Rq

, Ei ←$ χN×2
Rq,B , i ∈ {0, 1}

EK[i] = Ri ⊗ AB + pEi + (PowerOf2 (skA) � i)
rkA→B = { EK[0], EK[1] }

• ReEncrypt(pp,CA, rkA→B): We use the top � rows of the ciphertext CA

to perform re-encryption and denote this as Ctop
A . Next, we multiply each of

the matrices EK[i] with Ctop
A and reassemble the results into a Ring-GSW

ciphertext CA→B . This is shown as follows:

Ci
A→B = BitDecomp

(
Ctop

A

)
· EK[i] ∈ R�×2

q

CA→B =
[
C0

A→B ||ᵀ C1
A→B

]

To formulate the correctness constraint we have to ensure that there is no
wrap around mod-q in the noise term t while decrypting the re-encrypted cipher-
text. The noise term t is given by:

t = CA→B,0 × skB = CA→B,0,0 − sBCA→B,0,1

Let αi = BitDecomp
(
Ctop

A,j,0

)
and βi = BitDecomp

(
Ctop

A,j,1

)
for (i, j) ∈ [0, �).

Then, CA→B,0 can be shown as:

CA→B,0 = [αi βi]
�−1
i=0 · [rjAB + pEj + PowerOf2 (skA)]

where i ∈ [0, �) and j ∈ [0, 2�) .

CA→B,0,0 = bB

�−1∑

i=0

(αiri + βir�+i) + p

�−1∑

i=0

(αiEi,0 + βiE�+i,0)

+
�−1∑

i=0

αiPowerOf2 (1) +
�−1∑

i=0

βiPowerOf2 (−sA)

= bBr′
0 + pE′

0,0 + α − sAβ

Similarly,

CA→B,0,1 = aB

�−1∑

i=0

(αiri + βir�+i) + p
�−1∑

i=0

(αiEi,1 + βiE�+i,1)

= aBr′
0 + pE′

0,1
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Therefore,

t = r′
0 (bB − aBsB) + p

(
E′

0,0 − sBE′
0,1

)
+ α − sAβ ∼= m mod p

For correct decryption ‖t‖∞ ≤ q/2. By using the central limit theorem we
arrive at the final correctness constraint:

‖t‖∞ ≤ 2p
√

nDhD�log2 (q)/h� ·
(
2
√

n + 1
)

+ 3p
√

nD ≈ 6pnDhD�log2 (q)/h�
⇒ q ≥ 12pnDhD�log2 (q)/h�

6.3 Security

IND-CPA security of the Ring-GSW-PRE scheme is defined in a similar manner
as in the BV-PRE scheme and only differs in the parameter of ρ which describes
the number of RLWE samples in the re-encryption key.

Theorem 2. Under the RLWEΦ,q,χe
assumption, the Ring-GSW PRE scheme

is IND-CPA secure. Specifically, for a poly-time adversary A, there exists a poly-
time distinguisher D such that

Advcpa
A (λ) ≤ (ρ · (Qrk + Qre) + N + 1) · AdvRLWEΦ,q,χe

D

where Qrk and Qre are the numbers of re-encryption key queries and re-
encryption queries, respectively; N is the number of honest entities; λ is the secu-
rity parameter; Φ is the cyclotomic polynomial defining the ring Rq = Zq[x]/〈Φ〉
and ρ := 4�log2(q)�.

7 Parameter Selection

Estimating parameters for LWE or RLWE based encryption schemes is a signif-
icantly challenging task. On one hand we have to ensure that the chosen param-
eters generate an underlying RLWE instance that is hard to solve as per known
attacks while on the other hand we have to also meet the correctness constraint.
The correctness constraint can be trivially achieved by choosing an arbitrarily
large modulus q. However, such a strategy is not suitable for efficient implemen-
tation and further leads to insecure LWE instances. It was shown in [18] when
the modulus is exponential in the LWE dimension, q ≥ 2O(n) and error distri-
bution is narrow enough, the secret key can be recovered in polynomial time
using standard lattice basis reduction algorithms. In order to layout concrete
parameters, Lindner and Peikert [19] gave a heuristic relation that computes the
runtime of BKZ lattice reduction algorithm for a particular root Hermite factor,
δ. This is shown as:

log2 (tBKZ) ≥ 1.8
log2(δ)

− 110
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Further, Gentry et al. [12] gave a relation which computes minimum LWE
dimension secure for a particular modulus q, standard deviation of error distri-
bution σe and root Hermite factor, δ. Combining the two we can express the
minimum LWE dimension to support κ-bits of security as follows:

n ≥ log2 (q/σe) (κ + 110)
7.2

In particular, we used the runtime of BKZ2.0 [1] (considered to be a improved
version of BKZ algorithm) given by the relation

log2 (tBKZ2.0) ≥ 0.009
log22 δ

− 27

Again, combining this with the minimum LWE dimension relation from [12] we
arrive at our final security constraint as follows:

n ≥ log2 (q/σe)
√

κ + 27
0.379

In our implementation we targeted for κ = 128-bits of security for both BV-
PRE and Ring-GSW-PRE scheme. Using the correctness constraint from the
respective schemes we generated the working modulus for various ring dimen-
sions as shown in Table 1.

Table 1. Minimum modulus bits, b that satisfies 128-bits of security for the BV-PRE
and Ring-GSW PRE scheme according to the respective correctness constraints and
varying dimension, n. D = 15 and σ = 4.

n b

BV-PRE scheme Ring-GSW-PRE scheme

512 18 -

1024 18 25

2048 19 26

4096 19 27

8192 20 28

16384 20 29

8 GPU Implementation and Results

8.1 Software Implementation

We evaluated both the BV-PRE and the Ring-GSW-PRE scheme on two
NVIDIA GPU devices, namely, GeForce GTX-1050 and Titan-RTX as shown
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in Table 2. While GPU1 is a commodity grade notebook GPU, GPU2 is a much
more powerful GPU targeted towards compute intensive applications. Our soft-
ware implementation follows the modular structure of the PALISADE homomor-
phic encryption library separating crypto implementations from lower level math
layers. Our implementation is compiled with the CUDA 10.0 NVCC compiler
along with C++14 support. Our single threaded execution environment consists
of 64-bit x86 architecture with operating system for GPU1 and GPU2 as Ubuntu
18.04 and Scientific Linux 6.10 (available on university HPC) respectively.

Table 2. Configuration and features of GPU with their corresponding CPU used for
the evaluation of the PRE schemes.

Feature CPU1 CPU2 GPU1 GPU2

Model Intel i7-7700HQ Intel Silver 4114 NVIDIA GeForce GTX 1050 NVIDIA Titan RTX

Cores 4 10 640 4608

Clock rate 2.8GHz 2.2GHz 1.49GHz 1.77GHz

Multiprocessors - - 5 72

RAM memory 16 GBytes 181 GBytes 4042 MBytes 24190 MBytes

CUDA capability - - 6.1 7.5

In our implementation we primarily aimed to improve the runtimes of oper-
ations pertaining to the encryption scheme and the PRE scheme by switching
the CPU routines with CUDA kernel calls. We outline the main aspects of our
GPU optimizations as follows:

• Optimized pre-computation phase: Our implementation consists of a
pre-computation phase wherein we compute most of the cryptosystem param-
eters and NTT related parameters on the CPU and transfer them to GPU
global memory. For faster memory transfers we use coalesced memory spaces
which require fewer memory transfer calls. On the CPU side we mostly use
memory allocation using pinned host memory. Memory transfer using pinned
memory is faster than pageable host memory because the GPU can directly
access such memory spaces. Lastly, we remark that we do not make use of
constant or texture memory as it reported little or no improvement in perfor-
mance. Moreover, such memory spaces are available in very limited number
and not scalable for higher ring dimensions.

• Memory related optimizations: Being a heterogeneous platform, one
should expect a significant amount of data transfers between CPU and GPU
memory. However, it is known that such data transfers are generally slower
(because of lower bandwidth PCIe) and can sometimes degrade the overall
performance of an application. To get a more realistic performance estimate of
the various operations, we eliminated most of the data transfers by allocating
memory for most of the cryptosystem elements on GPU memory directly.

• Fast Random Generators: Our implementation relies on the CUDA ran-
dom number generation library cuRAND for generating random polynomials.
The distributions targeted in our application are uniform random distribu-
tion Uq, discrete Gaussian distribution χe with standard deviation σe, binary
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and ternary uniform distributions. Except for uniform distribution, all other
distributions were generated using continuous Gaussian distribution on pre-
allocated memory and then launching appropriate kernels to reduce them in
a particular range. More specifically, we used the CURAND RNG PSEUDO
MTGP32 set of generators which is 5x faster than other random number gen-
erators of the same family and atleast 10x faster than CPU random number
generators. We remark that we have not evaluated the cryptographic security
of this random number generator and assume that it generates long enough
internal states with desirable statistical properties which prevents any adver-
sarial attack.

• Relinearization: As described in Sect. 4.4 we benefit significantly from map-
ping the bit-decomposed polynomials to a three dimensional CUDA kernel
wherein the NTT procedure can be invoked in parallel. Once the polynomi-
als are evaluated they need to be reduced back into a single polynomial. To
do this efficiently, we launch a parallel reduction kernel with grid dimension
roughly equal to the number of bit-decomposed polynomials. After each ker-
nel call, we obtain the partial results in half the polynomials we start with.
Repeating this process until we reach a single reduced polynomial makes the
relinearization process very efficient with only O (log (log (q))) reduction ker-
nel calls.

• Streams: On GPUs we can increase the throughput of kernels by launch-
ing them simultaneously on independent streams. For example, NVIDIA K20
has the ability to support upto 32 concurrent kernels launched on a separate
stream. In our implementation, we use streams mainly for the parallel gen-
eration of noise, synchronizing NTTs, asynchronous memory transfers and
kernel parallelization. For taking advantage of stream APIs, we always keep
the ciphertext components independent; for example in the Ring-GSW PRE
scheme we keep the ciphertext as a vector of column polynomials in row major
order.

8.2 Experimental Results

For experimental analysis of our PRE schemes, we use latency and through-
put as primary yardsticks. A PRE scheme can be divided into a static and
dynamic phase. The static phase takes into account all sorts of key generation,
pre-computations and parameter setup. The performance of any real time sys-
tem that uses a PRE scheme is largely determined by the dynamic phase where
computations are performed on the fly. Therefore, we only report the runtimes
and throughput for dynamic phase operations by varying the ring dimension, n
and modulus bit length, b determined as per 128-bit security setting. For record-
ing throughput, we consider messages as binary string with length equal to the
ring dimension.

From Tables 3 and 4 we can observe that encryption and decryption runtimes
for the BV-PRE scheme vary in a very small amount with increasing ring dimen-
sions. We remark that encryption runtimes for smaller ring dimensions are still
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slower with break-even occurring for n = 2048 and hence, encryption for smaller
ring dimensions are more suitable for CPU platforms. Re-encryption runtime for
BV-PRE scheme increases linearly with ring dimensions but still does not grow
more than twice as observed on CPU implementations. Comparing our results
with Table 6 [22] for re-encryption runtimes, we get a performance improvement
by a factor of 39x to 228x. Similarly, we get a peak throughput of 6.3 Mbps for
the BV-PRE re-encryption procedure from GPU2.

For the Ring-GSW PRE scheme, decryption runtimes are slightly higher than
that of the BV PRE scheme because of relatively large modulus bit lengths.
Further, the decryption runtimes vary very little and can be treated as constant
for all practical purposes. Re-encryption runtimes are drastically higher and
consequently, throughput is reduced when compared to BV PRE re-encryption
runtimes and throughput. This is due to the fact that the relinearization proce-

Table 3. Experimental runtime performance of encryption, decryption, and re-
encryption operation for ring dimension n at r = 1, p = 5, and 128-bits of security.
Evaluation data reported for GPU1.

PRE scheme Parameters Runtime Throughput

n b Enc

(ms)

Dec

(ms)

ReEnc

(ms)

Enc

(Kbps)

Dec

(Kbps)

ReEnc

(Kbps)

BV-PRE 512 18 2.14 0.46 0.29 239.25 1113.04 1765.51

1024 18 2.18 0.52 0.45 469.72 1969.23 2275.55

2048 19 2.21 0.55 0.85 926.69 3723.63 2409.41

4096 19 2.28 0.66 1.26 1796.49 6206.06 3250.79

8192 20 2.76 1.18 2.76 2968.11 6942.37 2968.11

Ring-GSW-PRE 1024 25 3.92 0.6 39.75 261.22 1706.66 25.76

2048 26 5.34 0.55 61.18 383.52 3723.63 33.47

4096 27 9.85 0.63 118.86 415.83 6501.58 34.46

8192 28 19.89 1.08 259.02 411.86 7585.18 31.62

Table 4. Experimental runtime performance of encryption, decryption, and re-
encryption operation for ring dimension n at r = 1, p = 5, and 128-bits of security.
Evaluation data reported for GPU2.

PRE scheme Parameters Runtime Throughput

n b Enc

(ms)

Dec

(ms)

ReEnc

(ms)

Enc

(Kbps)

Dec

(Kbps)

ReEnc

(Kbps)

BV-PRE 512 18 4.16 0.47 0.31 123.07 1089.36 1651.61

1024 18 4.04 0.57 0.4 253.46 1796.49 2560

2048 19 4.24 0.61 0.69 483.02 3357.37 2968.11

4096 19 4.3 0.63 0.72 952.55 6501.58 5688.88

8192 20 4.99 0.68 1.3 1641.68 12047.05 6301.53

Ring-GSW-PRE 1024 25 4.75 0.62 35.46 215.57 1651.61 28.87

2048 26 5.22 0.67 49.5 392.33 3056.71 41.38

4096 27 7.98 0.71 87.24 513.28 5769.01 46.95

8192 28 12.2 0.71 166.67 671.47 11538.03 49.15
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dure is performed over multiple rows of the ciphertext matrix. However, when
compared to CPU implementations we still get performance improvements of
3.5x to 11x. Runtimes of both BV PRE and Ring-GSW PRE schemes can be
further brought down by considering a larger relinearization window but are
accompanied by larger noise growth and error bounds.

9 Conclusion and Future Work

In this work, we explored GPU acceleration of BV PRE and Ring-GSW PRE
schemes and showed that GPUs are indeed capable of improving performance
by more than an order of magnitude. Moreover, from our experiments, we found
that GPUs are more effective in working with larger ring dimensions. We pre-
sented several lower level optimizations and parallel NTT implementations tai-
lored specifically for GPU platforms which can be further extended to accelerate
other FHE schemes and applications.

In this direction, we would like to support the acceleration of other compute
intensive tasks such as bootstrapping LWE FHE schemes, machine learning on
encrypted data and other similar privacy concerning applications.
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