
NOV-RSI: A Novel Optimization Algorithm
for Mining Rare Significance Itemsets

Huan Phan1,2,4(B) and Bac Le3,4

1 Division of IT, VNUHCM-University of Social Sciences and Humanities,
Ho Chi Minh City, Vietnam

huanphan@hcmussh.edu.vn
2 Faculty of Mathematics and Computer Science, VNUHCM-University of Science,

Ho Chi Minh City, Vietnam
3 Faculty of IT, VNUHCM-University of Science, Ho Chi Minh City, Vietnam

lhbac@fithcmus.edu.vn
4 Vietnam National University, Ho Chi Minh City, Vietnam

Abstract. Rare itemsets mining is an important task for potential applications
such as the detection of computer attacks, fraudulent transactions in financial
institutions, bioinformatics and medicine. In the traditional data mining on trans-
action databases, such items have no weight (equal weight, as equal to 1).
However, in real world application, each item often has a different weight (the
importance/significance of each item). Therefore, we need to mine weighted fre-
quent/rare itemsets on transactiondatabases. In this paper,wepropose an algorithm
for mining rare significance itemsets based on NOT satisfy the downward closure
property. We propose an efficient algorithm called NOV-RSI. The experimental
results show that the proposed algorithm performs faster than other existing algo-
rithms on both real-life datasets of UCI and synthetic datasets generated by IBM
Almaden.

Keywords: Data mining · NOT satisfy the downward closure property ·
NOV-RSI algorithm · Rare significance itemset

1 Introduction

For more than two decades, most of the researches are for mining frequent itemsets
with the weights/significance of all items are the same (equal weight, as equal to 1),
the algorithmic approaches based on Apriori [1] and FP-Tree [2]. In addition, to speed
up the execution of mining frequent itemsets, Phan et al. proposed NOV-FI [3] algo-
rithm based on the Kernel_COOC array. Besides, rare itemsets mining is an important
task for potential applications such as the detection of computer attacks, fraudulent
transactions in financial institutions, bioinformatics and medicine. Algorithms such as
Apriori-Inverse [4] and Rarity [5] implement an Apriori-like approach. Thereafter to
speed up the execution of mining minimal rare itemsets, Szathmary et al. proposed
Walky-G [6] algorithm based on the IT-Tree structure. But in real-world applications,

© Springer Nature Switzerland AG 2020
X. Yang et al. (Eds.): ADMA 2020, LNAI 12447, pp. 17–29, 2020.
https://doi.org/10.1007/978-3-030-65390-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65390-3_2&domain=pdf
http://orcid.org/0000-0002-2886-9352
https://doi.org/10.1007/978-3-030-65390-3_2

18 H. Phan and B. Le

items can have different significance/importance in databases, and such databases are
called weighted databases. Most algorithms for frequent weighted/significance itemsets
mining are based on satisfying the downward closure property such as algorithms [7–9].
However, Huai et al. [10] proposed Apriori-like algorithms based on approach NOT
satisfy the downward closure property (very rare proposed algorithms following this
approach). This is a great challenge.

In this paper, we propose a novel algorithm called NOV-RSI for mining rare signif-
icance itemsets based on NOT satisfying the downward closure property. Furthermore,
the proposed algorithm is easily expanded on parallel computing systems. The paper
has algorithms as follows:

– Algorithm 1: Computing Kernel_LOOC array of co-occurrences/occurrences of
kernel item in at least one transaction;

– Algorithm 2: Building list nLOOC_Tree based on Kernel_COOC array;
– Algorithm 3: NOV-RSI algorithm mining all rare significance itemset based on list of
nLOOC-Tree.

This paper is organized as follows: in Sect. 2, we describe the basic concepts for
mining frequent itemsets, rare itemsets (the weights/significance of all items are the same
or different) and data structure for datasets. Some theoretical aspects of our approach
relies, are given in Sect. 3. Besides, we describe our NOV-RSI algorithm to mine rare
significance itemsets based on Algorithm 1 and Algorithm 2. Details of implementation
and experiment are discussed in Sect. 4. Finally, we conclude with a summary of our
approach, perspectives and extensions of this future work.

2 Background

In this section, we present the basic concepts for mining frequent itemsets, rare itemsets
(theweights/significance of all items are the same or different) and efficient data structure
for dataset.

2.1 Mining Weighted/Significance Frequent, Rare Itemset

Let I = {i1, i2, …, im} be a set of m distinct items. A set of items X = {i1, i2, …, ik},
∀ij ∈ I (1 ≤ j ≤ k) is called an itemset, an itemset with k items is called a k-itemset. D́
be a dataset containing n transaction, a set of transaction T = {t1, t2, …, tn} and each
transaction tj = {ik1, ik2, …, ikl}, ∀ikl ∈ I and a set of weight/significance SIG = {sigi1,
sigi2, …, sigim}, ∀sigik ∈ [0, 1] respective to each item.

Definition 1. The count of an itemset X is the number of transaction in which occurs
as a subset, denoted count(X). The support of an itemset X computes:

sup(X) = count(X)/n (1)

Definition 2. Let X = {i1, i2, …, ik}, ∀ij ∈ I (1 ≤ j ≤ k), significance of itemset X to
compute sig(X) = max(sigi1, sigi2, …, sigik).

NOV-RSI: A Novel Optimization Algorithm 19

The significance support of itemset X to computes as follow:

sigsup(X) = sig(X) × sup(X) (2)

Definition 3. Letmaxsigsup be the thresholdmaximum significance support value spec-
ified by user. An itemset X is a rare significance itemset if sigsup(X) < maxsigsup,
denoted RSI is the set of all the rare significance itemset.

See an Example transaction database D in Tables 1 and 2.

Table 1. The transaction database D used as our running example

TID Items TID Items

t1 A C E F t6 E

t2 A C G t7 A B C E

t3 E H t8 A C D

t4 A C D F G t9 A B C E G

t5 A C E G t10 A C E F G

Table 2. Items significance of D

Item A B C D E F G H

Significance 0.55 0.70 0.50 0.65 0.40 0.60 0.30 0.80

Example 1. See Table 1 and 2. There are eight different items I = {A, B, C, D, E, F,
G, H} and ten transactions T = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}. And see Table 2 and
maxsigsup = 0.20. Consider item X = {G}, sup(G) = 0.50, sig(G) = 0.30, sigsup(G)
= 0. 15 < maxsigsup, we have itemset X = {G}∈ RSI. However, itemset Y = {G,
A}, sup(GA) = 0.30, sigsup(GA) = max(sigG, sigA) = 0.70, sigsup(GA) = sig(GA) ×
sup(GA)= 0.70× 0.50= 0.35≥maxsigsup, we have itemG /∈RSI (DOESNOT satisfy
the downward closure property).

Property 1. ∀ik ∈ I, sigsup(ik) < maxsigsup: ik ∈ RSI.

2.2 Data Structure for Transaction Database

The binary matrix is an efficient data structure for mining frequent itemsets [3]. The
process begins with the transaction database transformed into a binary matrix BiM, in
which each row corresponds to a transaction and each column corresponds to an item.
Each element in the binary matrix BiM contains 1 if the item is presented in the current
transaction; otherwise it contains 0.

20 H. Phan and B. Le

3 The Proposed Algorithms

3.1 Generating Array Contain Co-occurrence Items of Kernel Item

In this section, we describe the framework of the algorithm that generates co-occurrence
items of items in transaction database.

Definition 4. [3] Project set of item ik on database D: π(ik) = {tj ∈ D | ik ⊆ tj} is set
of transaction contain item ik. According to Definition 1

count(ik) = |π(ik)| (3)

Definition 5. [3] Project set of itemset X = {i1, i2, …, ik}, ∀ij ∈ I (1 ≤ j ≤ k): π(X) =
π(i1) ∩ π(i2) … π(ik).

count(X) = |π(X)| (4)

Definition 6. (Reduce search space) Let ∀ik ∈ I (i1 � i2 � … � im) items are ordered
in significance descending, ik is called a kernel item. Itemset Xlexcooc ⊆ I is called co-
occurrence items with the kernel item ik, as to satisfy π(ik) ≡ π(ik ∪ ij), ik ≺ ij, ∀ij ∈
Xlexcooc. Denoted as lexcooc(ik) = Xlexcooc.

Definition 7. (Reduce search space) Let∀ik ∈ I (i1 � i2 �…� im) items are ordered in
significance descending, ik is called a kernel item. ItemsetYlexlooc ⊆ I is called occurrence
items with item ik in as least one transaction, but not co-occurrence items, so that 1≤
|π(ik ∪ ij)| < |π(ik)|, ∀ij ∈ Ylexlooc. Denoted as lexlooc(ik) = Ylexlooc.

Algorithm Generating Array of Co-occurrence Items
This algorithm is generating co-occurrence items of items in transaction database and
archived into the Kernel_COOC array and each element has 4 fields:

– Kernel_COOC[k].item: kernel item k;
– Kernel_COOC[k].sup: support of kernel item k;
– Kernel_COOC[k].cooc: co-occurrence items with kernel item k;
– Kernel_COOC[k].looc: occurrence items kernel item k in at least one transaction.

NOV-RSI: A Novel Optimization Algorithm 21

The framework of Algorithm 1 is as follows:

We illustrate Algorithm 1 on Example database in Table 1.
Initialization of the Kernel_COOC array, number items in database m = 8;

Item A B C D E F G H

sup 0 0 0 0 0 0 0 0

cooc 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

looc 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Read once of each transaction from t1 to t10
Transaction t1 = {A, C, E, F} has vector bit representation 10101100;

Item A B C D E F G H

sup 1 0 1 0 1 1 0 0

cooc 10101100 11111111 10101100 11111111 10101100 10101100 11111111 11111111

looc 10101100 00000000 10101100 00000000 10101100 10101100 00000000 00000000

The same, transaction t10 = {A, C, E, F, G} has vector bit representation 10101110;

Item A B C D E F G H

sup 8 2 8 2 7 3 5 1

cooc 10100000 11101000 10100000 10110000 00001000 10100100 10100010 00001001

looc 11111110 11101010 11111110 10110110 11101111 10111110 11111110 00001001

22 H. Phan and B. Le

After the processing of Algorithm1, theKernel_COOC array is as follows (Table 3):

Table 3. Kernel_COOC array are ordered in support ascending order (line 1 to 11)

Item H B D F G E A C

sup 0.10 0.20 0.20 0.30 0.50 0.70 0.80 0.80

cooc E A, C, E A, C A, C A, C C A

looc G F, G D, E, G B, D, E, F A, B, C, F,
G, H

B, D, E, F, G B, D, E, F, G

Execute command line 12, 13 and 14 in Algorithm 1:
We added the sig field to demonstrate items the ordered by significance descending.

We have looc(G) = {B, D, E, F}, where B � D � F � E � G, so lexlooc(G) = {∅} and
result on Table 4.

Table 4. Kernel_COOC array are co-occurrence items ordered in significance descending

3.2 Generating List NLOOC-Tree

In this section, we describe the algorithm generating list nLOOC-Tree based on
Kernel_LOOC array. Each node within the nLOOC_Tree, 2 main fields:

– nLOOC_Tree[k].item: kernel item k;
– nLOOC_Tree[k].sup: support of item k;

NOV-RSI: A Novel Optimization Algorithm 23

The framework of Algorithm 2 is as follows:

Fig. 1. List nLOOC-Tree based on Kernel_COOC array

Each nLOOC-Tree has the characteristics following Fig. 1:

– The height of the tree is less than or equal to the number of items that occur at least
in one transaction with the kernel item (items are ordered in significance support
ascending order).

– Single-path is an ordered pattern from the root node (kernel item) to the leaf node
and the support of the pattern is the support of the leaf node (ik → ik+1 → … → i�).

– Sub-single-path is part of single-path from the root node to any node in an ordered
pattern and the sub-single-path support is the support of the child node at the end of
the sub-single-path.

Example 2. Consider kernel item F, we observe nLOOC-Tree(F) generating single-
path {F → E → G}, sup(FEG) = 0.10 and sigsup(FEG) = 0.06; sub-single-path {F →
E}, sup(FE) = 0.20 and sigsup(FE) = sig(FE) × sup(FE) = 0.60 × 0.20 = 0.12.

24 H. Phan and B. Le

3.3 Algorithm Generating All Rare Significance Itemsets

In this section, we describe the framework of the algorithm generating all rare
significance itemsets based on the nLOOC-Tree and Kernel_COOC.

The power set of any itemset X is the set of all subsets of X, including the empty set
and X itself, variously denoted as ℘(X). The set of subsets of X of cardinality greater
than or equal to k is sometimes denoted by ℘≥k(X).

Lemma 1. (Generating rare significance itemset from co-occurrence items) ∀ik ∈ I, if
sigsup(ik) < maxsigsup and itemset Xlexcooc is set of for all element of lexcooc(ik) then
sup(ik ∪ xlexcooc) < maxsigsup, ∀xlexcooc ∈ ℘≥1(Xlexcooc) and itemset {ik ∪ xlexcooc} ∈
RSI, ∀xlexcooc ∈ ℘≥1(Xlexcooc).

Proof. According toDefinition 6, (1), (2) and (3): itemsetXlexcooc is set of co-occurrence
items with the kernel item ik, as to satisfy π(ik) ≡ π(ik ∪ xlexcooc), ∀xlexcooc ∈
℘≥1(Xlexcooc). Therefore, we have sup(ik) = sup (ik ∪ xlexcooc), sigsup(ik) = sigsup(ik ∪
xlexcooc) = sig(ik ∪ Xlexcooc) × sup(ik) = sig(ik) × sup(ik) < maxsigsup and according
to Definition 7: itemsets{ik ∪ xlexcooc} ∈ RSI, ∀xlexcooc ∈ ℘≥1(Xlexcooc)�.

Example 3. See Table 4. Consider the item D as kernel item (maxsigsup = 0.15), we
detect co-occurrence items with the item D́ as lexcooc(D) = {A, C} then ℘≥1({A, C})
= {A, C, AC}, sigsup(DA) = sigsup(DC) = sigsup(DAC) = sig(D) × sup(D) = 0.65 ×
0.20 = 0.13 < maxsigsup and itemsets {DA, DC, DAC}are rare significance itemset.

Lemma 2. (Generating rare significance itemset fromoccurrence itemswith kernel item
k in at least one transaction) ∀ik ∈ I, sigsup(ik) < maxsigsup, Xlexcooc = lexcooc(ik) ∧
∀spj ∈ nLOOC-Tree(ik), if sigsup(spj) < maxsigsup then {ik ∪ ssp�}∈ RSI, ∀ssp� ∈ spj
and {ik ∪ sspj ∪ xlexcooc} ∈ RSI, ∀xlexcooc ∈ ℘≥1(Xlexcooc).

Proof. According to Definition 6, 7 and Lemma 1: we have |π(ik ∪ ylexlooc)|< |π(ik)|≡
|π(ik ∪ Xlexcooc)|, ylexlooc ≡ spj ∈ nLOOC-Tree(ik) contain of single-paths/sub-single-
paths, and sigsup(ik ∪ spj) < maxsigsup, {ik ∪ spj}∈ RSI. Therefore, we have sigsup(ik
∪ spj ∪ xlexcooc)<maxsigsup and {ik ∪ spj ∪Xlexcooc}∈RSI, xlexcooc ∈ ℘≥1(Xlexcooc)�.

Example 4. See Table 4 and Fig. 1. Consider the item D as kernel item (maxsigsup =
0.15) with sigsup(D) = 0.13 < maxsigsup, we detect occurrence items with kernel item
D in at least one transaction as Ylexlooc = lexlooc(D) = {F, G}; we observe nLOOC-
Tree(D) generating single-path {D → F → G}, sup(DFG) = 0.10 and sigsup(DFG) =
0.65 × 0.10 = 0.065 < maxsigsup then itemsets {DF, DG, DFG} are rare significance
itemset and itemsets {DAF, DCF, DACF, DAG, DCG, DACG, DAFG, DCFG, DACFG}
∈ RSI.

Property 2. ∀spj ∈ nLOOC-Tree(ik) ∧ sig(ik) × minsup_leafnode(spj) ≥ maxsigsup:
{ik ∪ spj}/∈ RSI (minsup_leafnode is minimum support value of each leaf node on
single-paths in nLOOC-Tree(ik)).

NOV-RSI: A Novel Optimization Algorithm 25

The framework of Algorithm 3 is presented as follows:

3.4 The Algorithm Diagram NOV-RSI

In this section, we represent the diagram of NOV-RSI algorithm for high-performance
mining rare significance itemsets, as follows Fig. 2:

Fig. 2. The diagram algorithm for NOV-RSI.

We illustrate Algorithm 3 on Example database in Table 1, 2 and maxsigsup =
0.10. After the processing Algorithm 1 result the Kernel_COOC array in Table 4 and
Algorithm 2 presented the list nLOOC_Tree in Fig. 1.

Consider kernel item H, sigsup(H) = 0.80 × 0.10 = 0.08 < maxsigsup (Lemma 1
- line 3) generating rare significance itemset of kernel item H as RSI[H] = {(H; 0.08),
(HE; 0.08)};

26 H. Phan and B. Le

Consider kernel item D, sigsup(D) = 0.65 × 0.20 = 0.13 > maxsigsup, lexcooc(D)
= {A, C} have ℘≥1({A, C}) = {A, C, AC}. We observe nLOOC-Tree(D) have single-
path/sub-single-path {D → F → G}, {D → F} and {D → G}: sigsup(DFG) = 0.65 ×
0.10= 0.065<maxsigsup; sigsup(DF)= 0.65× 0.10= 0.065<maxsigsup; sigsup(DG)
= 0.65 × 0.10 = 0.065 < maxsigsup (Lemma 2 - line 5) generating rare significance
itemset of kernel itemD asRSI[D] = {(DFG, 0.065), {(DF, 0.065), {(DG, 0.065), (DAFG,
0.065), (DCFG, 0.065), (DACFG, 0.065), (DAF, 0.065), (DCF, 0.065), (DACF, 0.065),
(DAG, 0.065), (DCG, 0.065), (DACG, 0.065)};

Consider kernel item B, sigsup(B)= 0.70× 0.20= 0.14>maxsigsup, lexcooc(B)=
{A, C, E} have ℘≥1({A, C, E}) = {A, C, E, AC, AE, CE, ACE}. We observe nLOOC-
Tree(B) have single-path {B → G}: sigsup(BG) = 0.70 × 0.10 = 0.07 < maxsigsup
(Lemma 2 - line 5) generating rare significance itemset of kernel item B as RSI[B] =
{(BG, 0.07), (BAG, 0.07), (BCG, 0.07), (BEG, 0.07), (BACG, 0.07), (BAEG, 0.07),
(BCEG, 0.07), (BACEG, 0.07)};

Consider kernel item F, sigsup(F) = 0.60 × 0.30 = 0.18 > maxsigsup, lexcooc(F)
= {A, C} have ℘≥1({A, C}) = {A, C, AC}. We observe nLOOC-Tree(F) have single-
path/sub-single-path {F → E → G}, {F → E} and {F → G}: sigsup(FEG) = 0.60 ×
0.10 = 0.06 < maxsigsup; sigsup(FE) = 0.60 × 0.20 = 0.12 > maxsigsup; sigsup(FG)
= 0.60 × 0.20 = 0.12 > maxsigsup generating rare significance itemset of kernel item
F as RSI[F] = {(FEG, 0.06), (FAEG, 0.06), (FCEG, 0.06), (FACEG, 0.06)} (Lemma 2
- line 5);

Consider kernel item E, sigsup(E) = 0.40 × 0.70 = 0.28 > maxsigsup. We observe
nLOOC-Tree(E) have single-path {E → G}, minsup_leafnode({E → G}) = 0.30 and
sig(E) × minsup_leafnode({E → G}) = 0.40×0.30 = 0.12 > maxsigsup, so RSI[E] =
{∅} (Property 5 - line 7).

Consider kernel item C (similarly kernel item E), sigsup(C)= 0.50× 0.80= 0.40≥
maxsigsup. We observe nLOOC-Tree(C) have single-paths {C → E → G}, {C → G},
minsup_leafnode({C → E → G}, {C → G}) = 0.30 and sig(C) × minsup_leafnode{C
→ E → G}, {C → G}) = 0.50 × 0.30 = 0.15 > maxsigsup, so RSI[C] = {∅} (Pro 2 -
line 7).

Consider kernel item A (similarly kernel item C), sigsup(A) = 0.55 × 0.80 = 0.44
≥ maxsigsup, RSI[A] = {∅}.

Table 5 shows the rare significance itemsets at maxsigsup = 0.10.

NOV-RSI: A Novel Optimization Algorithm 27

Table 5. RSI satisfy maxsigsup = 0.10 (Example database in Table 1 and 2)

Kernel item Rare significance itemsets – RSI (#RSI = 26)

H (H; 0.08) (HE; 0.08)

B (BG; 0.07) (BAG; 0.07) (BCG; 0.07) (BEG; 0.07)

(BACG; 0.07) (BAEG; 0.07) (BCEG; 0.07) (BACEG; 0.07)

D (DF; 0.065) (DG; 0.065) (DAF; 0.065) (DCF; 0.065)

(DAG; 0.065) (DCG; 0.065) (DACF; 0.065) (DACG; 0.065)

(DFG; 0.065) (DAFG; 0.065) (DCFG; 0.065) (DACFG; 0.065)

F (FEG; 0.06) (FAEG; 0.06) (FCEG; 0.06) (FACEG; 0.06)

4 Experiments

All experiments were performed on a PC with a Core Duo CPU T2500 2.0 GHz, 4 Gb
main memory, running Microsoft Windows 7 Ultimate. All codes were compiled using
C#, MVStudio 2010, .Net Framework 4.

We experimented on two instance types of datasets, see Table 6:

– Two real datasets are both dense form of UCI Machine Learning Repository [http://
archive.ics.uci.edu/ml] as Chess and Mushroom datasets.

– Two synthetic sparse datasets are generated by software of IBM Almaden Research
Center [http://www.almaden.ibm.com] asT10I4D100K and T40I10D100K datasets.

Table 6. Datasets description in experiments

Name #Trans #Items #Avg. Length Type Density (%)

Chess 3,196 75 37 Dense 49.3

Mushroom 8,142 119 23 Dense 19.3

T10I4D100K 100,000 870 10 Sparse 1.1

T40I10D100K 100,000 942 40 Sparse 4.2

Additionally, we build one table to save the significance values of items by random
real values in the range of 0 to 1. This is the first proposed algorithm for RSI mining
based on approach DOES NOT satisfy the downward closure property. To evaluate the
performance of the proposed algorithm, we modified (DOES NOT satisfy the down-
ward closure property) the AprioriInverse [4] and Rarity [6] to mine RSI called the
WaprioriInverse andWRarity algorithm. Therefore, we have compared the NOV-RSI
algorithm with algorithms WAprioriInverse and WRarity.

http://archive.ics.uci.edu/ml
http://www.almaden.ibm.com

28 H. Phan and B. Le

Fig. 3. Running time of the three algorithms on Chess and Mushroom datasets.

Figure 3(a) and (b) show the running time of the compared algorithms on real datasets
Chess and Mushroom. The NOV-RSI algorithm runs faster than WAprioriInverse and
WRarity algorithms in all maximum significance supports.

Fig. 4. Running time of the three algorithms on T10I4D100K and T40I10D100K datasets.

Figure 4(a) and (b) show the running time of the compared algorithms on synthetic
datasets T10I4KD100K and T40I10D100K. The NOV-RSI algorithm runs faster than
WaprioriInverse and WRarity algorithms.

In the experiment mentioned above, results suggest the following comparison of
these algorithms when running time is concerned: NOV-RSI runs faster than algorithms
WaprioriInverse andWRarity algorithms in allmaxsigsup on real and synthetic datasets.

5 Conclusion

According to this paper, we presented a high-performance algorithm for mining rare
significance itemsets on transaction databases, comprising three phases: the first phase,
we quickly detect a Kernel_COOC array of co-occurrences and occurrences of kernel
item in at least one transaction; the second phase, we build the list of nLOOC-Tree
base on the Kernel_COOC and a binary matrix of dataset (self-reduced search space);
the last phase, the algorithm is proposed for fast mining RSI based on nLOOC-Tree.
Besides, when using mining RSI with other maxsigsup value, the proposed algorithm
only performs mining RSI based on the nLOOC-Tree that is calculated previously (the
second phase - Algorithm 2), there by reducing the significant processing time. The
experiment’s results show that the proposed algorithms performbetter than other existing
algorithms.

NOV-RSI: A Novel Optimization Algorithm 29

The results from the algorithm proposed: In the future, we will expand the NOV-RSI
algorithm to be able to mine rare significance itemsets on Multi-Cores, Many-CPUs,
GPU and distributed computing systems such as Hadoop, Spark.

Acknowledgements. This work was supported by the following institutions VNUHCM-
University of Social Sciences and Humanities; VNUHCM-University of Science, Vietnam
National University, Ho Chi Minh City, Vietnam.

References

1. Agrawal, R., Imilienski, T., Swami, A.: Mining association rules between sets of large
databases. In:ACMSIGMODInternational Conference onManagement ofData, pp. 207–216
(1993)

2. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a
frequent pattern tree approach. Data Min. Knowl. Disc. 8(1), 53–87 (2004)

3. Phan, H., Le, B.: A novel algorithm for frequent itemsets mining in transactional databases.
In: Ganji, M., Rashidi, L., Fung, B.C.M., Wang, C. (eds.) PAKDD 2018. LNCS (LNAI), vol.
11154, pp. 243–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04503-6_25

4. Koh, Y.S., Rountree, N.: Finding sporadic rules using Apriori-Inverse. In: Ho, T.B., Cheung,
D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 97–106. Springer, Heidelberg
(2005). https://doi.org/10.1007/11430919_13

5. Troiano, L., Birtolo, C.: A fast algorithm for mining rare itemsets. In: IEEE 19th International
Conference on Intelligent Systems Design and Applications, pp. 1149–1155 (2009)

6. Szathmary, L., Valtchev, P., Napoli, A., Godin, R.: Efficient vertical mining of mRI. In: 19th
International Conference on Concept Lattices and Their Applications, pp. 269–280 (2012)

7. Lan, G.C., Hong, T.P., Lee, H.Y., Lin, C.W.: Tightening upper bounds for mining weighted
frequent itemsets. Intell. Data Anal. 19(2), 413–429 (2015)

8. Kiran, R.U., Kotni, A., Reddy, P.K., Toyoda, M., Bhall, S., Kitsuregawa, M.: Efficient dis-
covery of weighted frequent itemsets in very large transactional databases: a re-visit. In:
Proceedings of the IEEE International Conference on Big Data (Big Data), pp. 723–732
(2018)

9. Yun, U., Shin, H., Ryu, K.H., Yoon, E.: An efficient mining algorithm for maximal weighted
frequent patterns in transactional databases. Knowl.-Based Syst. 33, 53–64 (2012)

10. Huai, Z., Huang, M.: A weighted frequent itemsets Incremental Updating Algorithm base
on hash Table. In: 3rd International Conference on Communication Software and Networks
(ICCSN), pp. 201–204. IEEE (2011)

https://doi.org/10.1007/978-3-030-04503-6_25
https://doi.org/10.1007/11430919_13

	NOV-RSI: A Novel Optimization Algorithm for Mining Rare Significance Itemsets
	1 Introduction
	2 Background
	2.1 Mining Weighted/Significance Frequent, Rare Itemset
	2.2 Data Structure for Transaction Database

	3 The Proposed Algorithms
	3.1 Generating Array Contain Co-occurrence Items of Kernel Item
	3.2 Generating List NLOOC-Tree
	3.3 Algorithm Generating All Rare Significance Itemsets
	3.4 The Algorithm Diagram NOV-RSI

	4 Experiments
	5 Conclusion
	References

