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The availability of increasingly larger amounts of electronic health records
(EHRs) has motivated the exploration of large scale artificial intelligence, data
mining and machine learning methods aimed to provide effective clinical deci-
sion support [14,22]. Key to many of these methods is the representation of such
patient data available in the form of EHRs. This is prominent for example in
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Abstract. The ability to rapidly identify at scale patients that are sim-
ilar based on their electronic health records (EHRs) is fundamental for
a number of clinical informatics applications, such as clinical decision
support, cohort selection, treatment recommendation, among others.

The effective representation of EHR data is paramount to effective
computational similarity methods. Such representation would take into
account the complex properties of EHR data including temporality and
multivariaty. Of critical importance for this is the modelling of: (i) com-
pound information — multiple medical events for a patient occur in order
and may be at the same time, (ii) clinical patterns — frequent common
sequential patterns that are associated with specific sequences of clinical
events. To model these, in this paper we exploit the recently proposed
Temporal Tree technique to capture compound information and we fur-
ther apply sequential pattern mining (SPM) with gap constraint to dis-
cover more complex clinical patterns.

The effectiveness of the proposed EHR representation method is eval-
uated using a real EHR dataset, MIMIC III, based on two task types
within an Intensive Care Unit setting: (i) similar patients retrieval (ii)
sepsis prediction and mortality prediction. The empirical results show
that representation of EHRs with Temporal Tree and SPM, used in con-
junction with traditional similarity measures or more complex embed-
ding methods, delivers significant improvements in effectiveness in the
considered tasks.
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the task of similarity computing, i.e. establishing how similar a pair of patients
is based on the information recorded in their EHRs [20,21]. The computation
of such a similarity requires to take into account treatments, symptoms, lab-
oratory reports, vital signals, among other data types. The task of similarity
computing, indeed, is central to other advance applications such as automatic
stratification of patients [14], analysis of patient’ clinical pathways [13], per-
sonalise healthcare [32], and identifying the relationship between diseases and
co-morbidities [18]. Because of its central role, in this paper we investigate a new
EHR data representation method in the context of similarity computing.

The effective representation of EHR data for similarity computing, however,
is challenging due to the complex nature of EHRs. EHRs in fact are multivariate,
temporal, heterogeneous, irregular, and sparse. In addition, because of these
multivariate and temporal characteristics, many inherent relationships between
clinical events are present in EHR data. These relationships take two forms: that
of compound information, and that of clinical patterns.

EHR information is compounded when multiple clinical events appear at
the same point in time (or within a short period of time). For example, in
Fig. la, the following patient measurements are recorded within one hour!:
<Systolic Blood Pressure(SBP):80>, <Respiratory Rate(RR):18>, <Glasgow
Coma Scale(GCS):16> — because these clinical measurements are recorded
within the same temporal time unit used for representation (one hour), they
form a compound information.

Clinical patterns (CPs) occur when common sequential clinical events emerge
over time from the EHR data. For example, Fig.la shows the clinical event
sequence for SBP as <SBP:80, SBP:78,...>.

Clinical diagnoses are often made on the basis of observations at one point
in time (compound information) and the trend of similar observations over a
period of time (clinical patterns). Thus, the availability of an effective method
for jointly modelling compound information and clinical patterns may be crucial
for example for differential diagnosis and for reaching a deeper understanding
of patient conditions — important factors when considering patient similarity or
other advance clinical decision support tasks.

Previous methods have been proposed that address the above challenges, but
only partially. Multivariate time series has been used to represent EHR data [6,
8], thus modelling the temporal and multivariate aspects; however this method
does not consider the inherent relationships between the clinical events, such as
events occurring within a short period of time [26]. Graph mining methods such
as subgraph2vec [23] and deep graph [35] can be used to represent compound
information through the neighbourhoods of a node but they do not allow for
the representation of temporal information. Sequential Pattern Mining (SPM)
methods [34,36] or SPM with gap constraint [24] are useful to discover clinical
pattens, however they only use univariate data and cannot model compound
information. Recently, the Temporal Tree technique [26] has been proposed to

! Assume one hour is the temporal time unit used for representation.
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capture compound information in EHRs; however Temporal Tree cannot identify
and represent clinical patterns.

To overcome the limitations of existing methods and address the identified
challenges, in this paper we propose a novel method that builds upon the recent
Temporal Tree technique by integrating Sequential Pattern Mining. The pro-
posed method works as follows: First, the Temporal Tree representation is used
for capturing compound information. Then, sequences of clinical events are gen-
erated from the Temporal Tree representation. Subsequently, SPM with gap con-
straint is applied for discovering the complex clinical patterns. In this process,
clinical patterns are generated not only from sequences of univariate observa-
tions (e.g., observations of SBP over a period of time) but also, with the help of
Temporal Tree, from sequences of compound information captured across multi-
ple levels of the hierarchical structure (e.g., combined observations of SBP, RR,
GCS over a period of time). By doing so, the discovered clinical patterns encode
complex relationships between clinical events due to the ability to capture mul-
tiple observations at the same time as well as frequent patterns over a period of
time. We evaluate the proposed Temporal Tree with Sequential Pattern Mining
for EHR representation across multiple clinical tasks where similarity comput-
ing is paramount, and consider an array of similarity measures as representative
instantiations of traditional methods (Jaccard, overlap, weighted-cosine) and
state-of-the-art embedding techniques (pv-dbow, pv-dm, soft-cosine).

This paper puts forward the following contributions:

1. A novel method for representing EHR data that captures complex inherent
relationships between clinical events. This method is based on the Temporal
Tree technique and Sequential Pattern Mining with gap constraint.

2. An evaluation of the proposed representation method on clinical tasks where
effective similarity computing is paramount: (i) similar patient retrieval (ii)
sepsis prediction and patient mortality prediction.

3. A comparison of the effectiveness of the proposed representation method
against state-of-the-art methods on real ICU data, showing that the proposed
method provides significant improvements in effectiveness in the considered
evaluation tasks.

2 Related Work

Patient Similarity. The problem of computationally establishing how similar
two patients are based on their EHRs has been explored in a number of previous
studies. For example, Sun et al. [31] used locally supervised metric learning to
compute a patient similarity matrix. Miotto et al. [20] used unsupervised deep
feature learning to derive a general purpose patient representation. Jia et al. [15]
used diagnoses sets and converted the multi-label classification problem into a
single-value regression problem to identify similar patients. A common drawback
of these methods, however, is that they do not consider the inherent relationships
between clinical events when computing similarity.
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Other methods do tackle the problem of representing inherent relationships
between clinical events. For example Wang et al. [33] first derived dynamic
Bayesian networks (DBNs) from the EHRs for finding the correlation among
variables, and then exploited the DBNs within a recurrent neural network archi-
tecture to generate a representation of each patient. These sequences were uti-
lized to learn patient embeddings using med2vec [9]. However, this method does
not consider compound information and is characterised by an overwhelming
amount of parameters, rendering the learning process difficult and lengthy.

Patient Embeddings. Embedding techniques have been exploited to represent
EHR data into lower dimensional vectors, where similar patients would be repre-
sented by similar embeddings. Zhang et al. [37], Choi et al. [10], and Glicksberg
et al. [11] used word2vec [19] to construct a lower dimensional embedding, while
Bajor et al. [5] used the document-level embedding approach [17] (also known as
doc2vec). However, these methods do not explicitly model the inherent relation-
ships between clinical events. The method of Pokharel et al. [26], Temporal Tree,
which is at the basis of the method put forward in this paper, models compound
information for representing a patient into an embedding; however it does not
model clinical patterns.

Sequential Pattern Mining on EHRs. SPM [1] has found wide application
for discovering frequent patterns from the EHR data. Wright et al. [34] used SPM
to identify temporal relationships between drugs; these relationships were then
exploited to predict the next prescribed medications. Similarly, Rjeily et al. [27]
applied SPM, specifically Compact Prediction Tree plus (CPT+), for identifying
heart failure patients. These previous examples, however, rely on SPM using
univariate data only. In addition, they do not use the gap constraint in their
SPM, which is important to identify clinical events that occur in close time
proximity: these events are in fact likely to be more meaningful than distantly
occurring events. Batal et al. [7] used pattern mining on multivariate temporal
data for identifying patients who can have potential risk of heparin-induced
thrombocytopenia. However they did not consider compound information and
gap constraint.

3 Temporal Tree with Sequential Pattern Mining

In this paper we investigate the application of the Temporal Tree technique [26]
to capture compound information and further propose to extend this method
using SPM with gap constraint with the aim of discover and model more complex
clinical patterns. Next, we detail the Temporal Tree technique (Sect.3.1) and
subsequently the use of SPM to generate clinical patterns (Sect. 3.2).

3.1 Temporal Tree

A Temporal Tree [26] is a temporal hierarchical structural network which is
constructed based on the temporal co-occurrence of clinical events, and it allows
us to represent the compound information present in EHR data. A Temporal
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Tree is constructed for each patient. An example of a simple Temporal Tree is
shown in Fig. 1b. Each branch from a root node of a SubTree represents an event
type such as laboratory events, prescriptions, etc. In this paper, we use a single
event type, i.e., quick Sequential Organ Failure(qSOFA) variables (see Sect.4.2
for more details), but multiple event types are possible.

Compound information in the Temporal Tree is generated based on the
local neighbourhood relationships between clinical events and is represented in
a hierarchical form. Here, the leaf nodes represent the actual clinical events
that appear at the respective timestamps and non-leaf nodes represent the com-
pound information which is generated by the relabelling process. For relabelling,
the Weisfeiler-Lehman graph kernels re-labelling method [29] is used. Note that
during the relabelling process, the label of a parent node is generated from its
children nodes by sorting them first and then concatenating them e.g., in Fig. 1b
GCSN is generated from GCN and N rather than NGC'S.

Generation of Compound Information Sequences. Compound informa-
tion sequences are generated from a Temporal Tree by Breath First Search (BFS)
traversal. To avoid the unmeaningful labels and to capture the clinical patterns
for each variables as well as compound information separately, we modify the
original formulation of Temporal Tree [26] when generating a clinical sequence
as follows. (1) We only consider gSOFA variables, hence we have only one branch
from the root node of level 0. As a result, the labels of level 0 and level 1 are the
same and thus the labels of level 0 are ignored when generating the sequence.
Similarly, we also ignore the level 3 because if we generate the sequences from
level 3, then they only contain the repetition of the same level (e.g., SBP, RR,
GCS, A, N) which is not meaningful for distinguishing patients. (2) We generate
many sequences from level 1 and level 2 as indicated by the horizontal doted
line in Fig. 1b — this is unlike in the original Temporal Tree where one sequence
for each level was generated. For example, in Fig. 1b we generate three differ-
ent sequences from level 2 (for each variable: SBP, RR, GCS). Then, for each
patient, all the generated sequences are concatenated to form a single clinical
event sequence.

3.2 Clinical Patterns

Clinical Sequence. Each patient is considered as a sequence of compound infor-
mation as described in Sect. 3.1. Formally, let X' be a set of symbols (compound
information) and |X| denote its cardinality. A clinical sequence S is defined as
a temporally ordered list of clinical events and is written as S = {ej1,ea,..., €}
where e; € X is the symbol at position i. D = {S1,Sa,...,Sn} is a dataset of N
sequences.

Subsequence. Let S; = {ej,ea,...,e,}t and So = {é1,6a,...,é,} be two
sequences over Y. Then, S is a subsequence of Sy (denoted by S; C Sy and also
referred to as Sy contains Sy) if there exists a one-to-one mapping ¢ : [1,m] —
[1,n], such that Si[i] = S2[¢(i)] and for any two positions 4, j in S1, i < j =
8(i) < 6(7) [36].
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Fig. 1. (a) An example of EHR data for an ICU patient (b) Temporal Tree represen-
tation, where qSOFA are shown as example events. The horizontal dotted line is not
part of Temporal Tree: it instead indicates the traversal strategy being used.

General SPM instantiations are set to discover all present patterns without
modelling the gap between the symbols. We argue however that in the case of
clinical event sequences, this gap does matter. During a patient’s stay in ICU,
for example, a patient condition is very unstable and one of the key goals of an
ICU doctor is to bring the patient to a stable condition. Treatments are thus
provided based on the immediate condition of a patient being observed; further
observations are made thereof, adjusting or changing the treatment regime. Thus,
the closer two clinical events are (close gap), the more meaningful and strong
their relationship is. To model this, we consider sequential patterns under gap
constraint satisfaction.

Gap Constraint. A gap (denoted by A) is a positive integer, A > 0. Let a
clinical sequence be S = {é;1,¢éa,...,¢é,} and an occurrence o = {i1,42,...,i,}
of a subsequence X of S. If ix41 < i + A (Vige[i,n — 1]), then o satisfies the
A-gap constraint. If there is at least one occurrence o of X that satisfies the
A-gap constraint, then X satisfies the A-gap constraint [24].

SPM with Gap Constraint. Given a clinical sequential dataset D, a gap
constraint A and a minimum support threshold (denoted by § € [0, 1]), sequential
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Fig. 2. (a) An example of compound information; (b) sequence of clinical events with-
out applying Temporal Tree; (¢) clinical sequence generated by Temporal Tree using
BFS traversal; (d) from table ¢, ten clinical patterns are discovered using SPM with
gap constraint, given that A = 1 and § = 0.6; (e) sequence of clinical patterns for each
patient.

pattern discovery deals with finding all the subsequences(X), along with their
corresponding supports (o), such that o(X, A) > 4.

Ezample 1. Figure 2 shows an example of generating the clinical pattens for each
patient using Temporal Tree and SPM with gap constraint.

Generating the clinical patterns has the following advantages: (1) they cap-
ture the inherent complex temporal and multivariate relationships between clin-
ical events. For example, X9 is a pattern of a patient having normal GCS and
then abnormal GCS. In real data, we observe a large number of more complex
patterns than the example X9. (2) They increase the accuracy of the represen-
tation. (3) By considering both singleton clinical events and clinical patterns, we
can increase the vocabulary size which results in better feature representation.

Ezxample 2. Listing 1.1 shows an example of discovered clinical patterns using a
real dataset. Here, X101 represents that a patient has normal GC'S and RR, but
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abnormal SBP at the same time. Likewise X974 represents a clinical pattern
of the type: abnormal RR, abnormal RR, abnormal RR, normal RR.

Listing 1.1. Examples of CPs. 0:normal and l:abnormal. * represents occuring of
respective events at the same time.

X101: {0_ges"0_rr"1_sbp}
X974: {1rr, 1rr, 1rr, 1rr, Orr}
X4773: {0_ges™0_rr"0-sbp, 0_ges"0_rr"0_sbp, ..., 0_ges"0_rr" 1 sbp}

4 Evaluation Methodology

4.1 Dataset and Patient Cohort Selection

We use a publicly available de-identified real ICU dataset, MIMIC III [16], to
evaluate the proposed approach. We consider each ICU admission as referring to
a unique patient. Patients were selected according to the following criteria: (i)
adults (patients aged 16 years or more), (ii) have at least one value recorded for
each qSOFA variable (see Sect. 4.2 for more details), (iii) have been admitted to
ICU for the first time — re-admitted patients are excluded because it is likely a
patient is re-admitted for the same condition, and thus the data would show a
high correlation, (iv) top-3 most frequent first?> diagnoses only. This is because
the use of all diagnoses available would result in a largely sparse similarity matrix
to be used for evaluation. To avoid this, we filter the patients using such a crite-
ria. Note that this is not a limitation of the proposed method, but an empirical
setting chosen to maintain reliability in the evaluation. The filtered subset con-
tains a total of 5,274 patients. Note the dataset presents a bias towards survival
patients (did not die during hospital stay); mortality: 642, survival: 4,632. Sim-
ilarly, the dataset contains 1,783 patients that have developed sepsis and 3,491
with no sepsis.

4.2 Features Selection

The features are selected based on the gSOFA criteria. The gSOFA score [4] is
a simplified version of Sequential Organ Failure Assessment (SOFA) Score as
an initial way to assess patients at high risk of poor outcome with respect to
infection/sepsis. The advantage of qSOFA is its simplicity compared to SOFA
which requires numerous lab tests, more time and is more expensive. gSOFA
can be repeated serially and it can be applied outside the ICU setting as an
initial way to identify patients at risk. qSOFA uses three variables to test the
abnormality of organs according to the following criteria: Low Blood Pressure
(SBP <100 mmHg), High Respiratory Rate (RR > 22 breaths/min) and Altered
Mentation (GCS < 13) [28].

2 Each patient may have multiple diagnoses: we only consider the first diagnosis when
filtering the data to create the subset for evaluation. The used primary icd9_code
are: “41401”7,“0389” and “51881”.
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Table 1. Similarity computation methods considered by our empirical evaluation.

Methods Formula Remarks
Jaccard % Given X and Y are the two lists
Overlap % Given X and Y are the two lists
. . i XY, . . .
Weighted-cosine —_——— Given the N dimensional vectors X and Y
N x2 N y2
VE; );fz VI Y
. i XY . . .
Embedding [17] =t Given X and Y are low dimensional vectors
N x2 N 2
VED XTVED Y generated by using embedding technique [17]

(either pv-dbow or pv-dm)

N o . x.v:
. i s;5 XY . . .
Soft-cosine [30] = - Given the N dimensional vectors X and Y
\/Zi,]‘ 835 Xi X \/Zi,j 55 YiYj | where si,; = similarity(feature;, feature;)

s;,5 is calculated by using pv-dbow

SEsM Xy
Optimized Soft-cosine — e B ]\2 J ‘Where L,M are the unique features of X and
\/Zi,j 855 X X5 \/Ei,j 5ijYiYj | Y. Since, L, M << N then time reduces from

O(N?) to O(LM).

We set the time intervals to one hour and if more than one event is found

within an interval, we take the average value of the events. Further, missing
data is restored using linear interpolation. Numeric values are converted into
categorical values (A: Abnormal, N: Normal) using the qSOFA criteria. We

al

so set time intervals for Temporal Tree to one hour because the clinical events

that occur in close temporal proximity often have a stronger relationship than
events that occur far apart (at least during an admission in ICU).

4.3 Baselines

In the experiments, we apply the proposed representation to both traditional
(jaccard, overlap, weighted-cosine) as well as state-of-the-art embedding based
similarity methods (pv-dbow, pv-dm, soft-cosine), see Table 1.

Jaccard: Similarity is computed based on the number of common clinical
patterns shared by two patients (each patient is represented as a set of clinical
patterns) over the size of the union for two patients.

Owverlap: Similarity is computed based on number of common clinical pat-
terns shared by two patients (each patient is represented as a set of clinical
patterns) over the size of the smaller set of the two patients.
Weighted-cosine: The clinical patterns are weighted according to term fre-
quency (tf)-inverse document frequency(idf). Then, the similarity is calcu-
lated based on the cosine angle between the two patient vectors.

PV-DM [17]: State-of-the-art embedding based method where concatenation
(or average) of a sequence vector along with surrounding CPs is used to
predict a target CP. The sequence vector represents the missing information
from the current context and can act as a memory of the topic (in the original
paper, topic refers to topic of a paragraph) of the sequence of CPs. Note that
each patient is represented as a sequence of CPs as described in Sect. 3.2.
PV-DBOW [17]: State-of-the-art embedding based method where the
sequence vector is trained to predict the CPs in a small window. Unlike the
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PV-DM, this model ignores the surrounding CPs in the input, but force the
model to predict CPs which are randomly sampled from the sequence of CPs
in the output. Note that each patient is represented as a sequence of CPs as
described in Sect. 3.2.

— Soft-cosine [30]: The tf-idf schema is used for assigning weights to clinical
patterns and pv-dbow is used for calculating the similarity between clinical
patterns. We have used the optimized soft-cosine formula as shown in Table 1
to reduce computational complexity.

As for comparison, we consider the following EHRs representations (i) raw
features - clinical events without considering Temporal Tree and the modelling of
clinical patterns (ii) Temporal Tree [26] - originally proposed without modelling
of clinical patterns (iii) Temporal Tree with SPM - the proposed representation
method in this paper where Temporal Tree with modelling of clinical patterns
are considered. We apply all the above measures to these three considered rep-
resentations.

4.4 Evaluation Tasks

The effectiveness of the proposed representation method is evaluated in two
contexts: (i) similar patients retrieval (ii) prediction models.

Similar Patients Retrieval. We cast the similarity computing problem into
an information retrieval problem where the task is to retrieve the patients that
are similar to a query patient. For this, we follow the previous similar works
by Gottlieb et al. [12] and Pokharel et al. [26]. Similar to them, we use the
International Classification of Diseases, Ninth Revision (ICD-9) codes as gold
standard to measure patient similarity. The gold standard similarity between
two patients is calculated based on the number of diagnoses shared along with
the respective ranking of diagnoses. This is achieve by using the SimIndex
function [25]. For a query patient, the ranking of similar patients retrieved by
the system is evaluated in terms of the following parameters: (1) Mean Square
Error (MSE): computes the error made by the system when retrieving similar
patients, compared to the gold standard. (2) Normalized Discounted Cumulative
Gain (nDCG): Discounted Cumulative Gain (DCG) computes a weighted sum
of the degree of relevancy while ranking the retrieved similar patients by the
system. And the nDCG is DCG normalized by the ideal DCG - in our case,
ideal DCG is DCG measure from patient similarity matrix which is obtained by
using gold standard. (3) Precision: we follow the work of Gottlieb et al. [12]
where they only consider the top two diagnoses (highest priority) and don’t use
simIndex function. So, relevance of the query patient is defined as follows: if a
retrieved patient contains any of the two diagnosis of the query patient, then the
patient is considered as relevant to the query patient. We restrict the number of
retrieved patients for a given patient query to k = 1,5, 10, 20.

Prediction Models. Intuitively, similar patients are likely to exhibit similar
mortality and sepsis risks — thus effective representation methods would exhibit
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similar features for similar patients and thus be effective for prediction tasks
such as (i) sepsis prediction (ii) in ICU patient mortality prediction. We use
these two important ICU tasks as a down-stream application of the proposed
EHR data representation method.

For sepsis prediction, we consider the sepsis information (sepsis or not-sepsis)
for a patient as the class labels, thus becoming a binary classification problem.
For obtaining the sepsis information, we follow the work of Angus et al. [3] which
is common practice in hospitals for sepsis patient identification.

For mortality prediction, we consider the mortality information (survive or
not-survive) for a patient at the end of their ICU stay as the class labels, thus
becoming a binary classification problem.

For both prediction tasks, we use k-Nearest Neighbourhood (kNN) for clas-
sification as it is an intuitive similarity-based approach that can directly rely on
the representations studied in this paper. We evaluate the classification effec-
tiveness according to fl_micro, fl-macro and Area Under the Receiver Oper-
ating Characteristic Curve (AUC). We apply 5-folds cross validation: in each
fold (training:four portions, testing:one portion), the training dataset is further
divided into sub-training and sub-validation dataset with 80:20 ratio to deter-
mine the value of k (which gives the maximum accuracy); k is varied in the range
[0,20] with step 1; thus obtaining k is used for evaluation by using training and
testing dataset. The whole process is repeated five times and the effectiveness is
averaged to weed out bias due to the random partition of the training data.

5 Analysis of Empirical Results

5.1 Experimental Criteria Setup

Three main parameters govern our experiments: the minimum threshold (4), the
gap constraint (A) for discovering clinical patterns, and the number of embed-
ding dimensions (ed). We set ¢ = 0.05 which is a common value for this param-
eter, A = 2 because in the case of ICU, the clinical events that are close to each
other in time are more meaningful than others, and ed = 50 following Altszyler
et al. [2] who suggested 50 dimensions are appropriate for a medium-size dataset
like the one we consider.

5.2 Similar Patients Retrieval Task

Tables 2, 3 and 4 report the performance of different methods for similar patient
retrieval in terms of nDCG, Precision and MSE. Note that all differences
between methods are statistically significant (t-test with Bonferroni correction).
In the rest of the paper, the suffixes indicate the following strategies: _raw:
without use of Temporal Tree and clinical patterns, _t¢t: with use of Temporal
Tree only, _tt_spm: with use of Temporal Tree with clinical patterns.
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Table 2. nDCG Table 3. precision
Methods k=1 k=5 k=10 k=20  Methods k=1 |k=5 |k=10 k=20
jaccard raw 0.242 10.306 0.323 0.360  jaccard_raw 0.371 |0.460 |0.487 0.552
jaccard-tt 0.454 |0.399 ]0.418 ]0.411 jaccard_tt 0.693 [0.569 |0.612 |0.582
jaccard_tt_spm 0.446** | 0.455%%|0.460%* |0.467** jaccard_tt_spm 0.693**|0.689** | 0.685** | 0.679**
overlap_raw 0.178 0.261 0.249 0.304 overlap_raw 0.277 0.407 0.362 0.472
overlap_tt 0.178 ]0.269 |0.277 |0.325 overlap_tt 0.276 |0.408 |0.421 |0.506
overlap_ttspm  |0.481%%|0.437%*|0.426%|0.420%"  oyerlap_tt_spm  |0.688%*|0.598%*|0.588%*|0.580**
wt-cosine_raw 0.425 10.413 ]0.412  10.415 wt-cosine_raw 0.618 0.603 |0.600 |0.595
wt-cosine_tt 0.418 10.411 ]0.411 10.414  wt_cosine_tt 0.615 |0.604 [0.600 |0.594
wt-cosine-tt-spm |0.447**|0.452%*|0.455%*|0.461**  \t_cosine_tt_spm |0.691%*|0.683%*|0.677%*|0.669**
pv-dbow._raw 0.393 10.397 |0.401 0.407 pv-dbow_raw 0.614 |0.604 |0.598 0.593
pv-dbow-tt 0.403 |0.406 0.409 0.414 pv-dbow_tt 0.627 |0.616 |0.608 0.602
pv-dbow_tt_spm [0.439%%|0.445%%|0.449%%|0.455%* pv-dbow_tt_spm |0.681**|0.674**|0.667**|0.661**
pv-dm_raw 0.359 0.370 0.377 0.387 pv-dm_raw 0.561 0.565 0.566 0.566
pv-dm_tt 0.392 10.394 10.398 10.405 pv-dm_tt 0.608 [0.597 |0.592 0.589
pv-dm_tt_spm 0.391%% |0.397** | 0.402%*[0.408** L\ _dm_tt_spm 0.611%* 0.605%* 0.602%* | 0.596**
soft-cosine-raw  |0.476 [0.450 |0.443 |0.438 soft-cosine_raw  |0.657 |0.624 [0.614 |0.603
soft-cosine._tt 0.474 10.448 ]0.438 |0.434 soft-cosine_tt 0.657 0.624 |0.610 |0.600
soft-cosine_tt_spm|0.431**|0.432%* |0.434* [0.4357 (5 cosine_tt_spm|0.668T |0.655%* 0.645%*|0.630%*
Table 4. MSFE

Methods k=1 k=5 k=10 |k=20

jaccard_raw 0.546 0.142 0.085 0.052

jaccard_tt 0.308 |0.129 0.094 0.054

jaccard_tt_spm 0.315%* | 0.121%%|0.078* |0.0521

overlap_raw 0.621 0.157 0.076 0.050

overlap_tt 0.619 0.150 0.083 0.053

overlap_tt_spm | 0.846%*|0.114**|0.0737 | 0.0487

wt-cosine_raw 0.363 0.133 0.084 0.052

wt-cosine_tt 0.365 0.137 0.087 0.054

wt-cosine_tt_spm | 0.316** | 0.120%* | 0.080** | 0.052F

pv-dbow_raw 0.370 0.143 0.091 0.058

pv-dbow_tt 0.362 0.141 0.090 0.056

pv-dbow_tt_spm | 0.324%*|0.125%* | 0.083 0.052%*

pv-dm_raw 0.410 0.146 0.089 0.057

pv-dm_tt 0.374 0.137 0.087 0.056**

pv-dm_tt_spm 0.371%%]0.166*%* |0.108 0.066

soft-cosine_raw 0.334 0.110 0.061 0.036

soft-cosine_tt 0.332 0.107 |0.066 0.040

soft-cosine_tt_spm |0.3347 | 0.125%* |0.081% |0.052%*

Effectiveness in terms of nDCG, Precision and MSE
for the considered patient similarity approaches. ** *  {
indicates statistical significance difference with p < 0.01, p
< 0.05, p > 0.05 obtained when comparing the similarity
method with and without tt_spm strategy.
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Table 5. Sepsis prediction Table 6. Mortality prediction
Model F1_micro F1_macro AUC Model F1_micro F1l_macro AUC
jaccard_raw 0.724+0.01 0.674+£0.023 |0.672£0.018 Jjaccard_raw 0.888+£0.002 |0.581£0.014 |0.563 £0.009
Jjaccard_tt 0.759+0.003 {0.702+0.002 |0.690 +0.002 Jjaccard_tt 0.891+0.001 |0.639+0.014 |0.607 +0.013
Jjaccard_tt_spm 0.810 £ 0.002 |0.776 £ 0.002 |0.765 £+ 0.002  jaccard_tt_spm 0.906 £0.002|0.713 + 0.004 | 0.669 £ 0.004
overlap_raw 0.680£0.008 |0.518+0.069 |0.566 4 0.043 overlap_raw 0.87940.001 0.483+0.022 |0.508+0.011
overlap_tt 0.688 £ 0.009 |0.525+0.046 |0.561 +0.025 overlap_tt 0.881+£0.002 |0.5144+0.022 |0.525+0.012
overlap_tt spm  |0.626+0.004 |0.609 + 0.004 |0.624 % 0.005  overlap_tt_spm 0.883 % 0.002 | 0.654 £ 0.009 |0.626 + 0.009
wt_cosine_raw 0.736 £ 0.005 |0.677 £0.006 |0.668 +0.005 wt_cosine 0.899+0.001 |0.697+0.001 |0.658 +0.002
wt_cosine_tt 0.740£0.005 |0.68040.005 |0.670=+0.004 wt_cosine_tt 0.902+0.001 |0.698+0.003 |0.657 4 0.003
wt_cosine_tt_spm |0.813 + 0.002|0.782 + 0.002 |0.772 £+ 0.002 wt_cosine_tt_spm |0.904 &+ 0.002 |0.713 4+ 0.008 |0.672 %+ 0.009
pv-dbow_raw 0.7324+0.003 |0.664 +0.002 0.656 +0.001 pv-dbow_raw 0.89+£0.002 |0.6754+0.003 |0.643 £0.002
pv-dbow_tt 0.751£0.003 |0.68540.004 |0.67440.003 pv-dbow_tt 0.893+£0.001 |0.679+0.007 |0.644 40.007
pv-dbow_tt_spm |0.803 £ 0.003 |0.769 £+ 0.003 |0.758 £ 0.002  pv-dbow_tt_spm |0.903 4+ 0.001 |0.723 £+ 0.004|0.687 + 0.003
pv-dm_raw 0.732+0.002 |0.70040.003 |0.700+0.003 pv-dm_raw 0.874+0.002 |0.634+0.006 |0.61240.005
pv-dm_tt 0.740 £ 0.003 |0.706 + 0.003 |0.704 +0.003  pv-dm_tt 0.886 £ 0.002 |0.636 £+ 0.008 |0.607 £ 0.005
pv-dm_tt_spm 0.722+0.003 |0.620+0.004 0.619+0.003 pv-dm_tt_spm 0.888 £ 0.001 |0.579 = 0.008 |0.562 =+ 0.005
soft_cosineraw ~ |0.73740.004 |0.677£0.005 |0.668 % 0.004 soft_cosineraw  0.89940.002 |0.696 £0.006 | 0.657 £ 0.006
soft_cosine_tt 0.741+£0.001 |0.68140.001 0.671+0.001 soft_cosine_tt 0.903£0.002 |0.7014+0.007 |0.659 £0.007
soft_cosine_tt_spm| 0.776 &+ 0.003 | 0.755 + 0.003 |0.762 £ 0.003  soft_cosine_tt_spm | 0.893 & 0.001 |0.634 £ 0.006 | 0.602 + 0.005

Effectiveness measure in terms of f1_micro, fl_-macro, AUC for different prediction
tasks. Standard deviation is provided and represents the variation obtained across
different rounds of tuning of the learnt classifier.

The following observations can be made based on the empirical results:

1. In general, all similarity methods obtain higher effectiveness when represent-
ing EHRs with Temporal Tree and even better effectiveness when using in
addition SPM.

2. Surprisingly, jaccard performs better than embedding based methods when
EHRs are represented with Temporal Tree and SPM.

3. The soft-cosine method gives mixed result when using Temporal Tree and
SPM.

4. The best effectiveness is obtained by jaccard (in terms of nDCG for k =
5,10, 20, precision for k = 1,5,10,20) and overlap (in terms of in terms of
nDCG for k = 1) when applying Temporal Tree and SPM. In the case of
MSE, the best effectiveness is obtained by jaccard (for k¥ = 1) and soft-
cosine (for £ = 5) with Temporal Tree only and soft-cosine with raw features
(for k = 10,20).

5. Overall, Temporal Tree with SPM is found to be highly effective for repre-
senting EHRs (note, for M SE, the lower the better).

5.3 Prediction Tasks

Tablesb5 and 6 reports the effectiveness of prediction methods in terms of
flomicro, fl-macro and AUC for sepsis prediction and mortality prediction,
respectively. From the results, the following observations can be made:
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1. The most effective methods have been those that used when Temporal Tree
and Temporal Tree with SPM for representing EHRs.

2. pv-dm, an embedding based method, gives mixed results when using Tempo-
ral Tree with SPM.

3. Weighted cosine is the most effective method for sepsis prediction, while jac-
card (for fl.micro) and pv-dbow (for fl.macro and AUC) are the most
effective for the task of mortality prediction. All these methods perform when
Temporal Tree with SPM is used to represent EHRs.

6 Conclusion and Future Work

In this paper we introduce a novel method for representing patient EHR data
based on Temporal Tree with gap constraint with sequential pattern mining.
The ability to holistically represent EHR data is paramount to effective patient
similarity computation, which forms the basis of many methods in clinical deci-
sion support. Key to our method is the modelling of complex clinical patterns
which exist within EHRs.

To demonstrate the proposed method, we perform an empirical evaluation
that exploits our method within traditional as well as recent embedding based
techniques for patient similarity computation. The empirical results show that
the proposed method, Temporal Tree with sequential pattern mining with gap
constraint, is an effective representation to be exploited when computing patient
similarity from EHR. In future work, we plan to extend our method by investigat-
ing its capabilities in making the representation and the similarity computation
explainable so as to increase clinicians’ understanding of the results produced
by the computational methods.
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