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Abstract. Many approaches that have been proposed that allow users
to create a Web Ontology Language (OWL) ontology from a relational
database fail to include metadata that are inherent to the database
tables. Without metadata, the resulting ontology lacks annotation prop-
erties. These properties are key when performing ontology alignment.
This paper proposes a method to include relevant metadata through
annotation properties to OWL ontologies, which furthers the ability to
integrate and use data from multiple unique ontologies. The described
method is applied to geospatial data collected from The National Map,
a data source hosted by the U. S. Geological Survey. Following that
method, an ontology was manually created that used the metadata from
The National Map. Because a manual approach is prone to human error,
an automated approach to storing and converting metadata into anno-
tation properties is discussed.
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1 Introduction

The next generation of the World Wide Web, named the Semantic Web, focuses
on increasing the accessibility and readability of data for machines. The Semantic
Web uses concepts and data standards, such as Resource Description Framework
(RDF) and Web Ontology Language (OWL) to accomplish that goal. By follow-
ing Semantic Web guidelines and practices, data from multiple different sources
can be accessed, leveraged, and integrated for any application. The research doc-
umented in this paper explores the process of adding annotation properties to
an OWL ontology generated from a preexisting relational database.

The U.S. Geological Survey (USGS) publishes free geospatial data that
cover the United States. Data are published in layers, each referring to a spe-
cific geospatial feature set. These data layers include structures, transportation,
hydrography, geographic names, boundaries, elevation, land cover, and ortho-
graphic images. Whereas the USGS generates some data, a significant portion is
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collected from third-party sources including individual States, the U.S. Census
Bureau, and other organizations. The USGS collects these data, standardizes
them, and publishes the data as a single dataset. This process results in a major
challenge since the data are not USGS created. In some cases, constraints are
imposed by the standards of the collecting agencies. Thus, the USGS acts as a
data steward and publisher for data acquired from a variety of different sources.

The data published by the USGS provide an opportunity to bring a large-
scale data source to the Semantic Web. Multiple other data sources such as Wiki-
data, DBPedia, and Geonames.org have brought geospatial data to the Semantic
Web [3,5,24]; however, this work examines a process to align data with Semantic
Web standards, unlike other data sources in which data are directly in the RDF
format.

Various research projects have proposed techniques and workflows that gen-
erate an OWL ontology and convert data contained in a relational database into
RDF. A major problem with past approaches is the lack of useful annotation
properties in an OWL ontology. An annotation property is a property that has
a data literal, URI reference, or an individual as the object [15]. These prop-
erties fully define entities in an ontology such as classes, properties, datatypes,
and even the ontology itself. By adding information to these entities, users can
determine the relationships among them. Five different annotation properties are
predefined by OWL: owl:versionInfo, rdfs:label, rdfs:comment, rdfs:seeAlso, and
rdfs:isDefinedBy. This basic information allows classes, properties, and instances
to be compared and contrasted resulting in ontology alignment. Ontology align-
ment is an important feature of OWL ontologies since they are rarely uniform.
The Semantic Web encourages users to build ontologies to fit their needs, result-
ing in the lack of a complete standard for ontologies to exist. Unique classes,
properties, and instances from different ontologies must be linked if their data
are going to be used together. Annotation properties provide one method for
doing so.

Since the Semantic Web is designed with machines in mind, this problem
needs to be examined from a machine perspective. A machine would only be
able to use the data at hand to match instances. Common data properties for
geospatial data include human readable names and coordinate information. Both
Wikidata and DBpedia use the widely accepted rdfs:label1 datatype property to
describe entities. However, the GeoNames ontology uses the geonames:name2

annotation property. The issue for a machine is not comparing the data from
those two properties, but rather knowing which two properties to compare. Since
the same attribute exists in both Wikidata and DBpedia, a machine would have
no problem finding similarities on an instance level for these two data stores.
With the introduction of the GeoNames’ ontology, a problem arises. For datatype
properties, the machine could use annotation properties to draw a compari-
son between two or more instances. Common properties such as rdfs:comment,
rdfs:range, and rdfs:seeAlso can be used to look for similarities. However, the

1 The rdfs namespace is http://www.w3.org/2000/01/rdf-schema#.
2 The geonames namespace is http://www.geonames.org/ontology#.

http://www.w3.org/2000/01/rdf-schema#
http://www.geonames.org/ontology#


Creating Annotations for Web Ontology Language 47

geonames:name property only possesses the rdfs:domain field, something entirely
dependent on the ontology of Geonames. Thus, a machine would be unable to
make any real comparison this way and would be forced to compare the instances
of each datatype property to align any instances.

A similar situation occurs if the machine examines the description of
an object in the form of a geometry. These geometries take the form of a
point, polyline, and polygon. In all three data stores, geometries are rep-
resented with coordinate points of latitude and longitude. GeoNames and
DBpedia uses geo:lat and geo:long3 whereas Wikidata uses custom datatype
properties wikibase:geoLatitude4 and wikibase:geoLongitude. The geo:lat and
geo:long datatype properties have annotations such as rdfs:domain, rdfs:label,
and rdfs:comment. The wikibase:geoLatitude and wikibase:geoLongitude have
an rdfs:label, rdfs:comment, rdfs:domain, and rdfs:range. Plain text compari-
son of both sets of rdfs:label and rdfs:comment would be able to provide some
links for a machine. However, the lack of an rdfs:range annotation for the geo
namespace becomes a hurdle since coordinates can be represented in a variety
of formats. The machine would have to again rely on comparing the instances to
affirm the contents rather than being able to draw this link from the ontology
alone.

A machine needs to accurately analyze datatype and object properties to
align different ontologies. Whereas some annotation properties are present, many
ontologies lack complete descriptions. Many authors have previously proposed
methods for converting relational databases to OWL ontologies. However, a
method for converting metadata to annotation properties and adding these to
OWL ontology has not been proposed. Without annotation properties to fully
define entities within an OWL ontology, Semantic Web data sources will struggle
to be used in conjunction with other data sources.

Section 2 of this paper presents background information on the research area
being presented. Section 3 discusses past proposed solutions to converting rela-
tional database to Semantic Web formats and cases that are inadequate. In
Sect. 4, the approach used to manually create an OWL ontology for USGS data
is presented. Section 5 presents the resulting ontology created after applying the
proposed approach. Challenges faced and the verification of the ontology are also
discussed. Section 6 discusses the proposed approach and potential automated
conversion solutions. Lastly, in Sect. 7, conclusions from this work are presented.

2 Background

An OWL ontology is a formal method to describe the taxonomy and relation-
ships that exist within data. It consists of classes, properties, and datatypes,
and instances that are comparable to the table and key structure for a rela-
tional database and instance data that are comparable to individual records.
When converting a relational database to an OWL ontology, the structure of the
3 The geo namespace is http://www.w3.org/2003/01/geo/wgs84 pos#.
4 The wikibase namespace is http://wikiba.se/ontology#.

http://www.w3.org/2003/01/geo/wgs84_pos#
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database is stored in an OWL ontology whereas the data records are converted
into instances.

Classes are an abstract method for grouping instances with similar charac-
teristics. This grouping is the same as a table in a relational database. All of
the records in the table have similar attributes, with some characteristics being
common among them. Labeling an instance with a class in an OWL ontology
allows that instance to inherit the attributes and additional properties of that
class. In a relational database, the records in a table are constrained by any
overriding rules of that table. This results in those records inheriting the rules
of the table.

Properties for OWL ontologies consist of three types: object properties, data
properties, and annotation properties. Object properties define relationships
between objects, each with a unique Universal Resource Identifier (URI). These
properties are comparable to foreign keys in a relational database. For example,
geo:hasGeometry is an object property that connects a geographic feature (the
subject) to an object describing its coordinate representation (the object). Data
properties define relationships between objects and literals. Literal data, which
are classified using datatypes, are the plain text data that connect additional
information to an object. In a relational database, literal data are the data that
are not foreign keys attached to an individual record. A popular example of a
data property is geo:asWKT, which links a geometry object (the subject) to a
geo:wktLiteral representation of the geometry (the object). Annotation proper-
ties are akin to the metadata within a relational database. They describe the
restrictions placed on attributes and allow users to understand the contents of
that attribute. For example, rdfs:label links a URI (the object) to a human-
readable label describing the entity (the subject).

Instance level semantics are the overwhelming majority of links between
ontologies [10]. They generally take the form of object properties, such as
owl:sameAs. The owl:sameAs relationship indicates that the two instances it
links refer to the same thing. Whereas the owl:sameAs relationship is an effec-
tive method for drawing connections between instance data, two issues currently
exist. First, these relationships must be determined ahead of time and the triples
must be stored. Typically, this process is done manually by experts with in-depth
knowledge on those ontologies. Secondly, some authors argue that owl:sameAs
is often inaccurate when comparing instances [8].

Ontology alignment examines the different ontologies and determines rela-
tionships between classes and properties. With these relationships present, direct
comparisons of the instance-level data can be performed using string comparisons
to determine instance-level relationships. Properties used in ontology alignment
can bring in relevant information without needing to state the exact relationship
between the instance. This on-the-fly process can avoid the argument about the
semantics of such relationships and remove the need to manually link ontologies.
However, to perform this task, annotation properties must be defined and used
to provide enough depth of information for different ontologies to be aligned
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successfully. With this background information, previous research in this area is
discussed in the next section.

3 Related Work

Significant research has examined approaches to convert a relational database to
the Semantic Web standards. Proposed methods to convert a relational database
to an OWL ontology include [1,9,12,18]. Each of these references suggests slight
variations to achieve similar results. Li et al. [12] proposed a set of 12 rules that
were grouped into five categories: rules for learning classes, rules for learning
properties and property characteristics with rules for learning hierarchy, cardi-
nality, and instances.

Similarly, Sequeda et al. [18] present a solution to mapping relational
databases to RDF that focuses on maintaining information preservation and
query preservation during their conversion process. Information preservation
refers to the ability to recreate the relational database from the OWL ontology
after the mapping process has occurred. Query preservation is the notion that
every query that can be performed on the relational database can be translated
into an equivalent query on the data post mapping to OWL.

Hu et al. [9] propose an approach to discovering simple mappings between a
relational database schema and an ontology. The authors construct a special type
of semantic mapping called a contextual mapping, which holds the subsumption
relationships existing within the relational database.

The most intuitive of these approaches is one proposed by Astrova et al. [1]
for automatic transformation of relational databases to ontologies in which the
quality of the transformation is also considered. They created a set of rules for
mapping tables, columns, datatypes, constraints, and rows.

The major drawback of these previous approaches is that annotation proper-
ties are not discussed. Without annotation properties, the OWL ontologies cre-
ated by the proposed approaches suffer from the drawbacks discussed in Sect. 1
and Sect. 2.

Other work examined the inverse relationship; converting an OWL ontology
to a relational schema. Gali et al. [4] present a set of techniques to provide a
lossless mapping of an OWL ontology to a relational schema and the correspond-
ing instances to data. They presented a set of mapping rules for converting an
OWL ontology to a relational schema. Similar to the approaches that developed
mappings from a relational database to an OWL ontology, the work does not
discuss annotation properties.

4 Approach

The Protege tool was used to manually create an OWL ontology for USGS The
National Map (TNM) data [14]. Data dictionaries describing the metadata prop-
erties of different layers were referenced to build the OWL ontology. These refer-
ences are not downloaded or incorporated with the datastores. Instead, the USGS
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is in the process of building a specifications library, SpecX, to store detailed data
dictionaries about the USGS products [23]. The Domestic Geographic Names
layer was added to the ontology even though its data dictionaries are not cur-
rently available in SpecX. Instead, the file format for the data can be accessed
online [22].

Data from the USGS TNM is downloaded in datasets that consist of multiple
layers grouped. For example, the Transportation dataset contains layers includ-
ing trails, roads, railways, and airways. In each dataset, each layer is stored as a
table. Since all data are downloaded from TNM, a class called topo:TNM5 was
created with two subclasses: topo:Attribute and topo:Feature. Topo:Attribute
refers to data belonging to static tables in the database. These include tables
containing feature names, feature codes, resolution types, and more. This is sep-
arate from the topo:Feature class since the data are referenced across different
datasets and layers. By making these static tables a set of static classes, redun-
dant information regarding each instance of these classes can be removed and
replaced with object properties referring to these classes, reducing data storage
requirements.

Topo:Feature refers to the dynamic tables in the database that contain
instance data. The topo:Feature was made equivalent to the geosparql:Feature
class. GeoSPARQL was used to leverage preexisting query capabilities that
exceed SPARQL, the current standard for performing queries on Semantic Web
compliant data [16]. GeoSPARQL is the Open Geospatial Consortium standard
for representing and querying geospatial data in the Semantic Web. It adds
additional query capabilities that allow users to perform comparisons between
geometries. This added equivalence relationship allows the ontology created in
this work to leverage the feature geometry relationship and the set of geometry
properties, including geosparql:asWKT and geosparql:asGML. This relationship
removed the need to create custom definitions of the attributes. It also increased
the set of operations that can be performed on the ontology by users.

4.1 Creating Class

The following rules were used to generate classes for the OWL ontology.

– Each database will have its own class. The database’s class will be a subclass
of topo:Feature.

– Each dynamic table in the database will have its own class. This class will be
a subclass of the class for its database.

– Each class referring to a dynamic table belonging to the same database is dis-
joint from all other classes referring to a dynamic table in the same database.

– Each static table will have its own class. This class will be a subclass of
topo:Attribute. Static tables shared across multiple databases shall not be
duplicated.

5 TNM is a spatial data infrastructure for topographic data. The namespace http://
data.usgs.gov/lod/topo/ was used for the ontology describing TNM data.

http://data.usgs.gov/lod/topo/
http://data.usgs.gov/lod/topo/


Creating Annotations for Web Ontology Language 51

– Each class representing a static table will be disjoint from all other subclasses
of topo:Attribute.

– Each record in a static table will have its own class. This class will be a
subclass of the class for its table.

– Each record in a static table will be disjoint from all other classes resulting
from records in the same static table.

The tables in the Structures data dictionary is split into four categories:
Feature Classes, NonSpatial Tables, Feature Code (FCode) Domains, and Non-
FCode Domains. The Feature Class tables are dynamic and contain instance
data. The NonSpatial Tables contain data that refer to the internal workflows
used to publish the data. They are purposely excluded from this work since
that information, whereas important, cannot be linked easily to other ontolo-
gies. Both the FCode and NonFCode categories refer to sets of static tables.
FCode tables are used to explicitly label geographic features.

4.2 Creating Object Properties

The following rules are implemented to generate object properties. The major
difference between an object property and a data property is the link to another
class. In TNM data, a large volume of data are located in a static table. Thus,
object properties are leveraged to decrease the number of instances of that infor-
mation, overall decreasing the space required to store all the data.

– If an attribute in a table links to another table, that is, it is a foreign key,
then it is an object property. In SpecX, this can be seen as the existence of a
value in the Domain field. The FCode and FType fields are also considered
object properties regardless of the lack of data in the domain field.

– The class representing the table that contains the foreign key becomes the
object property’s domain.

– The class representing the table to which the foreign key links becomes the
object property’s range.

– If the foreign key exists in multiple tables, the domain of the object property
is the union of those tables.

– If the foreign key has a one-to-one relationship, the object property is a
functional property.

The rdfs:subPropertyOf relationship was leveraged to reduce the size of the
ontology.

4.3 Creating Data Properties

The following rules are implemented to generate data properties. These proper-
ties contain the bulk of the data published by the USGS TNM.

– If an attribute does not link to another table, then it is a data property. In
the SpecX database, this means that the domain field is blank.
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– The table that contains the attribute becomes the data property’s domain.
– The data type of the attribute becomes the data property’s range.
– Any unique datatypes that are not defined in geosparql, xsd, rdf, or rdfs

become a unique data type.
– If the attribute exists in multiple tables, the domain of the data property is

the union of those tables.
– If the attribute has a one-to-one relationship, the data property is a functional

property.

Only one unique datatype, topo:objectID, was created for the TNM ontology.
The rest of the datatypes were mapped to preexisting datatypes in the rdfs
ontology.

4.4 Creating Annotation

While changes were added to previous approaches to create classes, object prop-
erties, and data properties, creating annotation properties is an entirely new
aspect.

– Any description of the table located in the data dictionary becomes an
rdfs:comment for the class representing that table.

– Any metadata attribute located in the data dictionary description become an
annotation property.

– The description of the metadata attribute becomes an rdfs:comment of the
annotation property.

– The datatype for the metadata attribute becomes the range of that annotation
property.

– Any metadata attribute located in the data dictionary description for an
attribute becomes an annotation property for that class, object property, or
data property.

– If attributes contain different metadata, they must be considered different,
unique properties and labeled accordingly.

The results of applying these rules can be seen in the example RDF/XML
shown below generated by Protege from applying the rules to create annotation
properties.

<owl:Annotat ionProperty rd f : about=” ht tp : // data . usgs . gov/ lod / topo/ de s c r i p t i on ”>
<rdfs:comment>Descr ip t i on o f a property .</ rdfs:comment>
<r d f s : r a ng e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”/>

</ owl:Annotat ionProperty>
<owl :C la s s rd f : about=” ht tp : // data . usgs . gov/ lod / topo/ Structure / St ruc t Po int ”>

<rd f s : subCla s sOf r d f : r e s o u r c e=” ht tp : // data . usgs . gov/ lod / topo/ Structure ”/>
<rdfs:comment>A fea tu r e c l a s s r ep r e s en t i ng the l o c a t i on o f a bu i ld ing or

other s t ru c tu r e as a point .</ rdfs:comment>
</ owl :C la s s>
<r d f :D e s c r i p t i o n rd f : about=” ht tp : // data . usgs . gov/ lod / topo/ objectID ”>

<comments></comments>
<de fau l t Va lue></ de fau l t Va lue>
<d e f i n i t i o n>I n t e rna l f e a tu r e or event number .</ d e f i n i t i o n>
<p r e c i s i o n></ p r e c i s i o n>
<a l l ows Nu l l s rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#boolean ”>

f a l s e</ a l l ows Nu l l s>
<l ength></ length>

</ r d f :D e s c r i p t i o n>
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4.5 Creating Geometries

Geometries are unique geospatial data. When coupled with GeoSPARQL, geome-
tries allow users to find unique relationships among instances that otherwise
would not exist.

– The geometry field for all tables is not converted to a data property or object
property. Instead, it is converted to a geosparql:Geometry.

Since this paper does not cover converting instance data in depth, example
geometry data are not included.

4.6 URI Naming Conventions

Due to the size of the datasets published in the USGS TNM, a formal naming
convention was created. For classes representing a dataset or attribute table, the
name of the table was appended to the namespace for the TNM ontology. For
the classes representing dynamic tables, the name of the table was appended to
the URI of the class representing the dataset of which it is a part. Similarly, for
the content of the static table, the name of the record is appended to the class
representing the table in which it is contained. For object properties, data prop-
erties, annotation properties, and datatype properties the name of the attribute
was appended to the URI for the namespace. The only exception to the rule is
properties incorporated from the Geographic Names dataset. Instead, those were
appended to the URI for the class representing the Geographic Names dataset.
The conventions can be seen in Table 1.

Table 1. URI naming conventions for TNM ontology

Entity Convention

Dataset classes Topo namespace + Entity name

Static table classes

Object properties

Data properties

Annotation properties

Datatype properties

Dynamic table classes Topo namespace + Dataset name + “/” + Entity name

Static tables contents

All geographic name entities topo namespace + “GNIS/” + Entity name

5 Results

The resulting metrics produced by the Protege tool can be seen in Table 2
through Table 6. Protege produces five different metric tables for various parts
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Table 2. Protege ontology metrics

Metric Count

Axiom 6682

Logical axioms 2135

Declaration axioms 1241

Classes 909

Object properties 87

Data properties 225

Annotation properties 33

Table 3. Annotation axioms

Metric Count

AnnotationAssertion 3288

AnnotationPropertyDomain https://www.overleaf.com/project/5f85d900cbe2ca0001b11f7b 0

AnnotationPropertyRagneOf 9

Table 4. Protege ontology object property
axioms

Metric Count

SubObjectPropertyOf 59

EquivalentObjectProperties 0

InverseObjectProperties 4

DisjointObjectProperties 0

FunctionalObjectProperty 43

InverseFunctionalObjectProperty 0

TransitiveObjectProperty 3

SymmetricObjectProperty 4

AsymmetricObjectProperty 0

ReflexiveObjectProperty 0

IrrefexiveObjectProperty 0

ObjectPropertyDomain 74

ObjectPropertyRange 70

SubProprtyChainOf 0

of the ontology including general metrics, class metrics, object property metrics,
data property metrics, and annotation metrics. In looking at these results, it
is important to note that some entities are added automatically to an ontology
created using Protege. Additionally, the GeoSPARQL ontology was imported
into the ontology as a result of the approach discussed in Sect. 4. Thus, some
of the relationships not mentioned in the approach were inherent within that
ontology.

Table 4 and Table 6 both show interesting results in terms of the Disjoint-
ObjectProperties and the DisjointDataProperties. Both tables show that none
of those relationships were generated during ontology creation. In several of the
data layers that were incorporated into the system, there were multiple places
where multiple fields for a single entity related to a static type with multiple
object properties. A primary example of this phenomenon is the trails layer in
the transportation dataset. In this trails layer table, a majority of the attributes
tell a user whether a certain mode of transportation is allowed on a trail. All of
the fields then link to the TrailYesNoDomain. Thus, these relations break the
formal definition of DisjointObjectProperty [7]. For the DisjointDataProperty,
there is no way to determine if one data instance would be linked to an entity
with multiple relationships. This is especially true if multiple data objects share
a common DataPropertyRange. Thus, no DisjointDataProperties were added to
the system (Tables 3 and 5).

https://www.overleaf.com/project/5f85d900cbe2ca0001b11f7b
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Table 5. Protege ontology class axioms

Metric Count

SubClassOf Properties 921

Equivalent Classes 1

Disjoint Classes 62

GCI Count 0

Hidden GCI Count 2

Table 6. Data property axioms

Metric Count

SubDataPropertyOf 219

EquivalentDataProperties 0

DisjointDataProperties 0

FunctionalDataProperty 211

DataPropertyDomain 229

DatatPropertyRange 235

5.1 Challenges

When manually creating this ontology, two major challenges were faced. The
first challenge to create an OWL ontology from preexisting data is the reuse of
attribute labels. Across all datasets published by the USGS, attribute names are
shared whereas their meaning and attached metadata are changed. One primary
example is the use of the attribute “Name”. Working exclusively with the five lay-
ers mentioned earlier, twelve different sets of metadata were associated with this
attribute. These attributes have a variety of different definitions, field lengths,
and some nullable values. Whereas some may consider generalizing the attribute
metadata and associating all of these with the same data property in an OWL
ontology, that would be a mistake. Each attribute fundamentally has a differ-
ent definition and could be referring to semantically different things. Manually
expanding the ontology, careful attention was paid to ensure all unique pair-
ings of attribute names and metadata were found. A unique entity was created
for each pairing. However, this resulted in the second major challenge—naming
conventions.

Whereas all of these unique pairings have the same attribute name, each
pairing must result in a unique URI. This resulted in the creation of a custom
naming convention. For naming these attributes, a combination of the namespace
and the metadata difference was used. A shorthand for the table containing the
unique pairing was appended if the only major difference between pairings is
the description metadata field. Otherwise, the different metadata attribute was
appended to the original attribute.

5.2 Validation

The plugin OntoDebug was used to validate the formal logic contained within
the OWL ontology [17]. This plugin uses the preexisting reasoners to determine
whether the ontology is coherent and consistent. For an ontology to be coherent,
all classes must be satisfiable. For an ontology to be consistent, one of its classes
must be satisfiable.

To validate the logic contained within the ontology, three different reasoners
were used: Pellet, ELK, and HermiT.

Pellet is a popular reasoner created to support OWL Description Logic
(OWL-DL) [19]. It is implemented in Java and is free to download as a plugin
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for the Protege tool. Version 2.2.0 was used within this work. When OntoDebug
is run with the Pellet reasoner on the created ontology, it is both coherent and
consistent.

ELK is another reasoner available for use through the Protege tool [11]. Ver-
sion 0.4.3 was used in this work. Although efficient, it does not support a signif-
icant number of axioms including DataPropertyRange, ObjectPropertyRange,
FunctionalDataProperty, SubDataPropertyOf, and more. With the axioms it
does support, ELK produces coherent and consistent results when run on the
generated ontology.

HermiT version 1.4.3 is the reasoner shipped with the installation of Protege
[6]. This was the only reasoner out of the three that produced an error. However,
this error was the result of a restriction on the set of acceptable datatypes allowed
in the reasoner. The reasoner only allows datatypes of the OWL 2 datatype map.
The xsd:date and topo:objectID datatypes both resulted in errors since they are
not present in the standard. A test version of the ontology without either of
these datatypes was created and validated using this reasoner. HermiT produced
a coherent and consistent validation result.

6 Discussion

The only requirement for applying the manual approach proposed in this work is
the existence of metadata information for the database. For the USGS, these are
currently presented in the SpecX database and previously described using large
data model posters [21]. The proposed rules could be used to create an OWL
ontology for all datasets from the USGS. Furthermore, it could be extended
to any database outside of the USGS as long as metadata exists. Without the
metadata, the created ontology would match previously proposed approaches.

Applying the approach manually is time consuming. The human error
involved in the process required multiple rounds of revisions to ensure that all the
proposed rules were followed correctly for the example OWL ontology created.
To overcome this challenge, an automated approach to generating the meta-
data needs to be created. A significant amount of research has been done that
proposed automated approaches for generating OWL ontologies from relational
databases [2,13,20,25].

Cullot et al. presented a tool called DB2OWL that automatically gener-
ates ontologies from database schemas [2]. They break the mapping process
into six steps that cover mapping classes, subclasses, object properties, and
datatype properties. Additionally, they include how additional relationships such
as inverse, domain, and range are determined. In [20], Trinh et al. propose
RDB2ONT, a tool that describes a formal algorithm to use relational database
metadata and structural constraints to construct an OWL ontology preserving
the structural constraints of the underlying relational database system. A tool
called Ontology Automatic Generation System based on Relational Database
(OGSRD) was proposed in [25] as a method for automatic ontology building
using the relational database resources. Lastly, Mogotlane & Fonou-Dombeu
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[13] performed a study applying two different tools, DataMaster and OntoBase,
that automatically construct ontologies from a relational database. Definitions
of a class, object properties, datatype property, and instances are given. Nine
different rules are drawn from previous work to map a relational database to an
OWL ontology.

All of these works present methods to correctly create OWL ontologies that
avoid the time-consuming and error-prone process of manually creating them.
However, all of the reviewed works fail to discuss the implementation of anno-
tation properties. One possible reason for this is the lack of metadata for the
databases used. The existence of metadata describing the data model is often
known and maintained by the data provider; however, these metadata generally
are not attached to the database. Whereas this does not present a challenge for
manual approaches, it does for automated approaches. The previous approaches
look exclusively at the relational database and its structure. Requiring the pro-
cess to examine a website, such as SpecX, and get the requisite information
provides its own challenges.

One potential solution to overcoming this challenge is to create metadata
tables as part of a relational database. These tables would contain all metadata
information for the classes, data property, object properties, and even annota-
tion properties. Rather than creating a new approach, this could leverage the
technology already in use in these relational database systems. Additionally, this
extension could be added to previously proposed automated ontology creation
approaches. Example metadata tables are shown in Fig. 1.

Fig. 1. Example automated metadata database

In Fig. 1, there are three tables: instance data, attribute metadata, and anno-
tation metadata. Attributes refer to the columns in the instance data table
and are converted to object and data properties based on the approach used in
this work. Annotations refer to the annotation properties used to describe the
attribute metadata. This second level of annotations is important to describe



58 M. Wagner and D. Varanka

custom metadata used in a system. Many of the properties for the USGS TNM
datasets can be seen in the SpecX database including name, definition, type,
allow nulls, domain, default value, comments, and many more. Whereas some of
these annotations may seem intuitive, fields such as precision and length which
are generated by third-party software are not. Thus, exact definitions need to
be provided to allow for accurate comparisons of classes and properties between
ontologies.

7 Conclusion

This work highlights the need for annotation properties to properly align and
use instance data from different ontologies. Additional rules to create an OWL
ontology directly from a relational database that addresses the need for these
properties is proposed. An ontology was manually created using the Protege
tool to show the results of implementing the proposed approach. It incorporated
multiple different datasets and data layers produced by the USGS TNM. The
ontology excluded instance data due to the size of the datasets. Furthermore,
the OntoDebug plugin was used to validate the formal logic present within the
OWL ontology. The results from three different reasoners prove that the formal
logic in the results of the proposed approach is coherent and consistent.

An automated solution for storing metadata attributes within the database
with the instance data was introduced, which addresses the inherent issues of a
manual approach. If metadata attributes are stored within the database, they
could be converted to annotation properties. This approach could serve as an
extension to previously created solutions instead of requiring new solutions to be
generated. However, the actual creation of this automated tool is left to future
research.

Any use of trade, firm, or product names is for descriptive purposes only and
does not imply endorsement by the U.S. Government.
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