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Abstract. Network Science is an active research field, with numer-
ous applications in areas like computer science, economics, or sociology.
Criminal networks, in particular, possess specific topologies which allow
them to exhibit strong resilience to disruption. Starting from a dataset
related to meetings between members of a Mafia organization which oper-
ated in Sicily during 2000s, we here aim to create artificial models with
similar properties. To this end, we use specific tools of Social Network
Analysis, including network models (Barabási-Albert identified to be the
most promising) and metrics which allow us to quantify the similarity
between two networks. To the best of our knowledge, the DeltaCon and
spectral distances have never been applied in this context. The construc-
tion of artificial, but realistic models can be a very useful tool for Law
Enforcement Agencies, who could reconstruct and simulate the evolution
and structure of criminal networks based on the information available.

Keywords: Criminal networks · Complex networks · Social network
analysis · Graph theory · Graph comparison · Graph similarity · Graph
matching

1 Introduction

Criminal organizations [16] often profit from providing illicit goods and services
in public demand, or by offering legal goods and services in an illicit manner. One
of the most renowned criminal organisations (i.e., clans, gangs, syndicates) is the
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Sicilian Mafia. This organisation was analysed in Gambetta’s classic work on its
economics and dynamics [17], where it is referred to as the original “Mafia”. In
a more recent work [23], Letizia Paoli provided a clinically accurate portrait of
mafia behavior, motivations, and structure in Italy, relying on previously undis-
closed confessions of former mafia members now cooperating with the police.

The analysis of the Sicilian Mafia syndicates social structure generated great
scientific interest [20]. Currently, scholars and practitioners alike are increasingly
adopting a network science perspective to explore criminal phenomena [6].

Social Network Analysis (SNA) has emerged as an important component in
the study of criminal networks and in criminal intelligence analysis. This tool
is used to describe the structure and functioning of a criminal organisation, to
construct crime prevention systems [5] or to identify leaders within a criminal
organisation [19]. Indeed, some studies had the unique opportunity to examine
real datasets and to use the data sources to build networks and to examine them
by means of classical SNA tools [5,8,11,15,25,26,30].

Law Enforcement Agencies (LEAs) increasingly employ SNA in the study of
criminal networks, as well as to analyse the relations amongst criminals based
on calls, meetings and other events derived from investigations [1,14,15]. When
dealing with practical networks, missing data may refer to nodes and/or edges.
Often, criminal networks are incomplete, incorrect, and inconsistent, either due
to deliberate deception on the part of criminals, or to limited resources or unin-
tentional errors by LEAs [1,4,5,9,14]. SNA is also used to evaluate LEA inter-
ventions aimed at dismantling and disrupting criminal networks [8,11].

Another interesting application of SNA and graph theory is to develop ran-
dom graph models which mimic the structure and behaviour of real criminal net-
works. Indeed, even if the growing mechanism of this criminal network remains
largely unknown, growth and preferential attachment mechanisms are most prob-
ably at the core of the affiliation process. In this respect, comparing an artifi-
cial model network to a real network is not only plausible, but even fruitful
in terms of useful insights about the structure and behaviour of the real net-
work. The growth of available data and number of network models [22,24,28],
has led researchers to face the problem of comparing networks, i.e., finding and
quantifying similarities and differences between them.

Network comparison requires measures for the distance between graphs [29].
This is a non-trivial task, which involves a set of features that are often sensitive
to the specific application domain such as: the results’ effectiveness, the inter-
pretability, and the computational efficiency. There is some debate about the
weakness of this technique, principally due to cospectrality issues, but there is
evidence that the fraction of cospectral graphs is 21% for networks composed of
10 nodes and is less for 11 nodes [34]. We may, therefore, expect that cospectrality
becomes negligible for larger graphs. Granted the reliability of these techniques,
we selected the simplest and yet effective among the various metrics.

The literature on this topic is abundant, but the classification of best methods
for specific situations (including the comparison of real-world networks) remains
an open field. A few critical reviews of the literature on this subject have already
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been compiled [10,12,27]. Wills and Meyer [33] compared commonly used graph
metrics and distance measures, and demonstrate their ability to discern between
common topological features found in both random graph models and real world
networks. They put forward a multi-scale picture of graph structure wherein they
studied the effect of global and local structures on changes in distance measures.
The number of useful graph comparison techniques [2] drastically reduces when
one requires an algorithm which runs in reasonable time on large graphs.

In recent years, many random graph models emulating features of real-world
graphs [3,31] have been developed. An accurate probabilistic study of the appli-
cation of graph distances to these random models is difficult, as they are often
defined in terms of their generative process. For this reason, most researchers
restrict their attention to very simple random models such as that of Erdös and
Rényi [13]. Even so, rigorous probabilistic analysis can be difficult. A possible
solution is the one proposed by Wills and Meyer [33], that is a numerical app-
roach where a sample is taken from random graph distributions and the empirical
performance of various distance measures is observed.

Despite the growing scholarly attention to network comparison, to the best of
our knowledge, there is no previous research aiming to identify best measures for
the distance between graphs related to real criminal networks. Filling this gap is a
first step towards comparing and generating artificial networks which mirror the
topology and functionality of real criminal networks. Far more important, LEAs
could considerably benefit from such a discovery. A surrogate network on which
to conduct their investigations could predict the evolution of new connections
between criminals or, on the other side, break those links by arresting one (or
more) of the suspects, based on the network topology.

To this end, we borrow some of the distance techniques proposed by [33].
We first generate data using popular artificial network models like Erdös and
Rényi (ER), Watts-Strogatz [31] (WS), and different configurations of Barabási-
Albert (BA) [3]. This is compared against real criminal network dataset named
Meetings network from our earlier works [5,8,15], whose datasets are publicly
available on Zenodo [7]. This captures the physical meetings among suspects in
an anti-mafia investigation called “Montagna Operation”, concluded in 2007 by
the Public Prosecutor’s Office of Messina (Sicily).

2 Materials and Methods

This section shows the standard definitions used in this work, as well as a brief
description of the real dataset used to compare the artificial networks, along
with the method followed to pursue the experiments.

2.1 Background

In this paper we deal with unweighted undirected graphs.
An unweighted graph G = 〈N,E〉 consists of a finite set N of n nodes (also

called vertices/actors) and a set E ⊆ N ×N of m edges (or links/ ties). A graph
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is undirected when all the edges between nodes are bidirectional, as opposed to
a directed graph, where the edges actually point to a direction.

The adjacency matrix of graph G defined over the set of nodes N =
{1, . . . , n}, is a n × n square matrix denoted by A = (aij), 1 ≤ i, j ≤ n, where
aij = 1 if there exists an edge joining vertices i and j, and aij = 0 otherwise.
In the case of an undirected graph, its adjacency matrix is symmetric, i.e.,
aij = aji. Such a matrix, along with the Laplacian and Normalized Laplacian
matrices, are the most common representation matrices for a graph.

The spectrum of a graph consists of the set of sorted (increasing or decreasing)
eigenvalues of one of its representation matrices. It is used to characterise graph
properties and extract information from its structure. The spectra derived from
each representation matrix may reveal different properties of the graph. The
largest eigenvalue (in absolute value) of the graph is called the graph’s spectral
radius. In the case of the adjacency matrix A, if λk is its kth eigenvalue, the
spectrum is given by their descending order as λ1 ≥ λ2 ≥ · · · ≥ λn.

The spectral distance [34] between two graphs G and G′ of size n, is the
Euclidean distance between their spectra, i.e., the set of eigenvalues λi and λ′

i

(according to the chosen representation matrix). In case of the adjacency matrix,
the Adjacency Spectral Distance is

d(G,G′) =

√
√
√
√

n∑

i=1

(λi − λ
′
i)2; (1)

If the two spectra have different sizes, the smaller graph (of size k ≤ n)
is brought to the same cardinality of the other by adding zero values to its
spectrum. In such case, only the first k eigenvalues are compared, which for
the Adjacency Spectral Distance d are the largest k eigenvalues. Comparing
the higher eigenvalues allows to focus more on global features. Another class of
graph distances is the matrix distance [33]. A matrix of pairwise distances δ(v, w)
between graph nodes is constructed for each graph, where δ is the shortest path
connecting the nodes v and w. Such matrices provide a signature of each graph
characteristics and carry important structural information. Given two graphs
defined on the same set of nodes, their respective matrices of pairwise distances
are built and then the distance between the two matrices is computed with any
of the many available norms. In this work we adopt the DeltaCon distance.

This matrix distance method is based on the Matsusita difference (also called
root euclidean distance) drootED(G,G′) between matrices S and S′, created from
the fast belief propagation method of measuring node affinities [21]. The fast
belief propagation matrix is defined as S = [I + ε2D − εA]−1, where I is the
identity matrix. D is the degree matrix, namely a diagonal matrix whose ele-
ments are defined as dii = ki, ki being the degree of the ith node, A is the
adjacency matrix and ε = 1/(1 + maxi dii) [21]. The DeltaCon similarity, with
values in the interval [0, 1] is introduced as

simDC(G,G′) =
1

1 + drootED(G,G′)
, (2)
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where drootED(G,G′) is given by

drootED(G,G′) =

√
√
√
√

∑

i,j

(√

Si,j −
√

S′
i,j

)2

. (3)

The Matsusita difference is used instead of classical euclidean distance since,
as opposed to the latter, it detects even small changes in the graphs.

Random network theory emulates the irregularity and unpredictability of real
networks by constructing from scratch and characterizing graphs that are truly
random. Some of the most popular random network models are Erdös-Rényi
(ER), Watts-Strogatz (WS) and Barabási–Albert (BA).

According to the ER model [13], a network is firstly generated by laying
down a number n of isolated nodes. Then each pair is selected and a random
number in the interval [0, 1] is generated. If the generated number exceeds a
chosen probability p, then the selected nodes are connected. Otherwise they
are left disconnected. The procedure is performed for all the n(n − 1)/2 pairs of
nodes. This is the simplest model, also known as the G(n, p) model [18]. A closely
related variant is the G(n,M) model, where n labeled nodes are connected with
M randomly placed links that is the model we used to conduct our experiments.
Even though it is unlikely that real social networks form like this, such models
can predict a number of different properties [13].

While the ER model may exhibit a small clustering coefficient along with a
small average shortest path length, the WS model [31] can produce graphs with
small-world properties, which are highly clustered but with small characteristic
path lengths. Most nodes are not neighbors, but the neighbors of a node are
likely to be connected and most nodes can be reached from every other one by
a small number of steps (also called Six Deegree of Separation property) [31].

In a small-world network, if L is the distance in steps between two randomly
chosen nodes, it grows proportionally to the logarithm of the number of nodes
n: L ∝ log(n).

Thus, the model is constructed as follows. Starting from a ring of nodes,
each node is connected to their previous and next neighbours. Each link is then
rewired with probability p to a randomly chosen node. For small values of p, the
network maintains high clustering but the random long-range links can drasti-
cally decrease the distances between the nodes. When p = 1, all links are rewired,
so the network turns into a random ER network [31].

The BA model [3] exploits a preferential attachment mechanism to develop a
scale-free network, i.e., the degree distribution follows a power law. The algorithm
starts from a network with m0 nodes, whose links are chosen arbitrarily, as long
as each node has at least one link. At each step, a new node with m ≤ m0 links is
added. The preferential attachment ensures that the probability pi that the new
node is connected to a node i depends on the degree di of the latter as follows:

pi =
di

∑

j dj
. (4)
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So the new node prefers to attach itself to already heavily linked nodes, called
hubs, that tend to accumulate even more links at each step, while nodes with
only few links are unlikely to be chosen [3].

2.2 Dataset

Our dataset is available on Zenodo [7] and was discussed in detail in our earlier
studies [5,8,15]. Derived from the pre-trial detention order issued by the Court
of Messina’s preliminary investigation judge on March 14, 2007, was towards
the end of the major anti-mafia effort referred to as “Montagna Operation”,
concluded in 2007 by the Public Prosecutor’s Office of Messina (Sicily) and con-
ducted by the Special Operations Unit of the Italian Police (the R.O.S. Reparto
Operativo Speciale of the Carabinieri is specialising in anti-Mafia investigations).
This prominent operation focused on two Mafia clans, known as the “Mistretta”
family and the “Batanesi clan”. From 2003 to 2007, these families were found to
have infiltrated several economic activities including major infrastructure works,
through a cartel of entrepreneurs close to the Sicilian Mafia. We created two
networks, capturing phone calls and physical meetings, respectively. Herein, we
focus on the Meetings network which accounts for the physical meetings among
suspected (police stakeout), which is composed of 101 nodes and 256 edges.

2.3 Methodology

The main question we want to address in this paper is to measure how well an
artificial network may catch some real network features. In this respect we first
computed the simDC similarity and the drootED distance (see Eqs. 2 and 3).

Thus, we have compared three network models (ER, WS and BA) with sev-
eral BA configurations (BA2, BA3, and EBA), reaching a total of five networks,
with the Meetings dataset. We have chosen BA because in [15] we have discov-
ered that the criminal network under scrutiny follows a scale-free power law [15].
Furthermore, while not being the main focus of this study, there are reasons to
believe that criminals follow specific criteria for recruiting new affiliates (growing
and preferential attachment dynamics) [32]; however, this behaviour cannot be
identified by a single network snapshot, as the real network herein investigated
is. Moreover, in order to have a yardstick, we have also selected the ER and WS
models. In particular, WS is not a totally unrealistic model because it is charac-
terised by a short diameter and distance between nodes. The models have been
created by using NetworkX libraries and the source code has been developed in
Python. Table 1 summarises the input parameters required and the values we
assigned to them. The number of nodes n is defined a priori in all the models
considered, whereas the number of edges m is set only in ER model.

In WS, 〈k〉 represents the average degree. This has been set equal to 6, in
order to obtain a final configuration as close as possible to the real criminal
network in terms of number of total links. The same has been done for the input
parameters of all the BA models chosen herein.
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Indeed, three different flavours have been selected: BA2 and BA3, in which
the number of edges added at each iteration mi is equal to two and three,
respectively, and the extended BA version (EBA) in which two more parameters
are required: (i) p, the probability that m already existing pairs of nodes may
be connected by a link, and (ii) q, the probability that an already existing link
may be rewired. Thus, instead of creating a new link, an old one is reconnected
between another pair of nodes; however, we set q = 0 to avoid injecting more
randomness into the network building process.

Table 1. Artificial models configurations.

ER WS BA2 BA3 EBA

{
n = 101

m = 256

⎧⎪⎨
⎪⎩
n = 101

〈k〉 = 6

p = 0.6

{
n = 101

mi = 2

{
n = 101

mi = 3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
n = 101

m = 2

p = 0.225

q = 0

Afterwards, we first computed the DeltaCon distance as it can be used
to compare two graphs with different numbers of nodes and/or edges. Unfortu-
nately, the results this metric provide did not allow to determine which network
model is closer to the real network. For this reason, we have also computed the
spectral distance by using the adjacency matrix A, which undoubtedly identified
the BA models to be the best ones to catch some real network features among
the ones herein analysed.

The last refinement concerned the number of edges: as BA2 and BA3 pro-
duced networks with a number of edges different from the real network, we
decided to further investigate whether the spectral distance could be reduced
increasing (resp., decreasing) the number of edges of BA2 (resp., BA3).

The experiments consisted of adding an edge to the BA2 (resp., removing
an edge from the BA3) network and computing the spectral distance. This pro-
cedure would eventually end when the number of edges reaches the number of
edges in the real network. We devised two strategies to add (resp., remove) edges:
(i) the preferential attachment selection, according to which the edge is created
(removed) between the most attractive nodes and (ii) the random selection, in
which the pair of nodes is selected in a purely random way.

In order to have statistically sound results, 1000 artificial networks of each
type (ER, WA, EBA, BA2, BA3) have been produced, from which the average
values have been computed.

3 Results

This section shows the main findings obtained from our comparative investiga-
tion between artificial and real networks. As stated in Sect. 2.3, our study starts
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from the computation of S, the fast belief propagation matrix that is required to
compute the Matsusita difference whose outcomes are commented in Sect. 3.1.
Next, the spectral distance previously described is discussed in Sect. 3.2.

3.1 Matrix Distance

The discovery of an artificial network that almost mirrors the topology of the
Meetings network begins by using the DeltaCon distance. As shown in Table 2,
the largest differences emerge for the ER and WS models, whereas all the BA
tests have slight differences between each other. However, there is no distance
that sticks out among them. Thus, this metric is insufficient on its own to point
out a model with significantly better performances in terms of emulating a crim-
inal network topology. Even the values of simDC do not allow to conclude which
artificial model network is more similar to the real network. As expected, the
values of simDC lie in the interval [0, 1], and there is little to no difference among
the various artificial model networks. It could be interesting to investigate the
similarity among them, but this lies outside the scopes of this work. For these
reasons we have opted to also use the spectral distance.

Table 2. DeltaCon distance and similarity between the Meetings dataset and the
artificial models.

Model m Dist. S simDC

ER 256 2.2 ± 0.2 0.317

WS 202 2.5 ± 0.2 0.287

EBA 246 1.31 ± 0.08 0.433

BA2 198 1.28 ± 0.08 0.438

BA3 294 1.27 ± 0.07 0.441

3.2 Spectral Distance

The spectral distances are computed for the Adjacency matrix A. Table 3 con-
firms the ER and WS to perform worst, however we still cannot identify the
best BA configuration because of the significant error range led to an overlap-
ping outcome cross all BA tests. Thus, we have adjusted these configurations
by adding (resp., deleting) links from the BA2 (resp., BA3) model following two
options: first, choose the pair of nodes through preferential attachment (resp.,
detachment); second, pick those pairs among which adding (resp., deleting) links
randomly. The resulting graph in Fig. 1 suggests that by adjusting the number
of edges, the distance is reduced without a preferable BA configuration.
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Table 3. Degree distribution variation between the Meetings dataset and the artificial
models computed by the spectral distance.

Model m Dist. A

ER 256 8.4 ± 0.2

WS 303 9.2 ± 0.2

EBA 255 6.6 ± 0.2

BA2 198 6.9 ± 0.2

BA3 294 7.1 ± 0.2

Fig. 1. Spectral distances evolution during the addition/deletion of edges. Upper sub-
plot: spectral distance of the adjacency matrix using the preferential attachment-based
selection of edges; Lower subplot: same distance using a random selection of edges.

4 Discussion and Conclusions

This paper paves the way to a new branch of criminal network analysis by pro-
viding a new perspective on how SNA methods can help LEAs. We applied tools
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from Network Science and Graph Theory on a real criminal network dataset with
the aim to discover new ways to use artificial networks on police investigations.
The idea is to find a way to replicate the topology of real criminal networks
through classical models widely used in the state-of-art for several domains.

Consequently, we computed two distance metrics on different artificial mod-
els to find the one which better reproduces the features of a real criminal network
topology. To do so, we started by computing the DeltaCon distance on ER,
WS, and BA models. This metric is independent from the graphs’ size and, from
our experiments, it has only suggested which model(s) could be discarded, mov-
ing towards the computation of the spectral distance. However, even by using
this metric, small differences emerge because the error range overlap some of
the models outcomes. Hence, we adjusted the edges’ number of the artificial
networks, in order to match the real criminal size used as litmus test. The link
selection criteria followed is twofold: first, we selected the pair of nodes accord-
ingly with the preferential attachment (resp., detachment) that also takes into
account the nodes’ degree; second, we opted for a randomly choice of the links
that need to be added (resp., removed).

So far the conclusion is that the BA model unveiled to be the closest one to
the real dataset considered for the comparison among the ones herein investi-
gated. Performance was not significantly affected by its construction. The results
obtained suggest pathways to new scenarios and applications; indeed, the use of
an artificial model may significantly help LEAs. Starting from the investigation
data (even though affected by noise or missing information), it could be possible
in the future to create a substitute model that replicates, closely enough, the
criminal network under scrutiny. Thus, it could be useful for the investigators
to make their decisions in terms of how to efficiently spread their resources (i.e.,
policeman, patrols, etc.): from one side, the artificial model could be able to
predict (and prevent) the creation of relationship ties between criminals; on the
other side, LEAs could quickly intervene to break the links among them (when
already present) by arresting one or more of the suspects.

As future work, we wish to extend those tests performing them on different
spectral distance configurations (such as, choosing the Laplacian, rather than
the Adjacency matrix, as the latter appears as the weakest among the matrix
representations of a graph [34]) as well as including both of the real criminal net-
works we modelled (i.e., Meetings and Phone Calls) as they are complementary
to each other and a joint analysis may offer a better view on the overall intercon-
nections. As those networks are weighted, we would like to discover whether and
how weights influence the performances obtained by the artificial models herein
investigated. Another interesting point is to try to answer to another open ques-
tion that is how to compare through SNA two different real criminal networks
in order to unveil whether there are some analogies despite their size.
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