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Abstract. In this paper, an adaptive network model is presented for cognitive
analysis and support processes for the situation and states of a human, illustrated for
a car driver. The adaptive network model makes use of first-order self-models for
the internal mental models used for the cognitive analysis and support processes.
To obtain adaptation of these first-order self-models, second-order self-models are
included. The adaptive network model is illustrated for realistic scenarios for a
car driver.

1 Introduction

Complex cognitive processes often make use of internal mental models for the processes
addressed; e.g., [9, 10, 12, 15]. In the current paper, the focus is on cognitive processes
involved in monitoring and assessing the situation of a human (in the addressed case
study, a car driver), and generating support actions in order to keep the situation (the
driving) safe. For example, when we observed that the driver took alcohol, wewill assess
that it will not be safe to start driving and therefore as a support action we will (try to)
block starting the car. As another example, if while driving we observe that the driver’s
steering is unstable, we will assess this as unsafe driving and therefore as a support
action we will propose to slow down the car (and perhaps completely stop the driving).
Internal mental models involved in such processes are an analysis model to determine
assessments based on the monitoring information and a support model to determine
the proper support action based on the generated assessment. In principle, such internal
mental models are adaptive so that they can improve over time.

Artificial variants of such cognitive processes implemented as AI, are more andmore
built in as automatic safety systems in new generations of cars. The advantage of this
is that no passenger is needed to monitor the driver and, moreover, without further ado
the car can more adequately execute support actions, for example, by refusing to start
or refusing to drive fast if the driver condition is assessed as not safe.

In this paper, it is shown how the complex cognitive processes described above can
be modeled using a network-oriented modeling approach. There are three crucial ele-
ments that play a role here. The first is that within the overall network model, internal
mental models need to be modeled and executed, the second is that these mental mod-
els are adaptive so that they can improve over time, and the third is that control over
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these processes is useful. All three elements can be addressed well by the approach
based on self-modeling networks described in [20]. According to this approach through
what is called network reification or self-modeling, any network can be extended to
a self-modeling network by adding a self-model of part of its own network structure
characteristics. Moreover, this can be done iteratively, so that multi-order self-models
can be included in a self-modeling network, where any included self-model (of some
order) can have its own (next-order) self-model.

In the paper, in Sect. 2 the modeling approach based on self-modeling networks is
briefly described. In Sect. 3 the application domain is described in some detail. Section 4
presents the design of the introduced self-modeling network model and Sect. 5 presents
outcomes of example simulations of it. Finally, Sect. 6 is a discussion.

2 Network Models Using Self-models

In this section, the network-oriented modeling approach used from [19, 20] is briefly
introduced.

Distinction Between Network Characteristics and Network States
The following is a crucial distinction for network models:

• Network characteristics (such as connection weights and excitability thresholds) have
values (their strengths) and determine (e.g., cognitive) processes and behaviour in an
implicit, automatic manner. They can be considered to provide an embodiment view
on the network. In principle, these characteristics by themselves may not be directly
accessible nor observable for network states (or a person: usually you don’t see or
feel a specific connection in your brain).

• Network states (such as sensor states, sensory representation states, preparation states,
emotion states) have values (their activation levels) and are explicit representations
that may be accesible for network states or a person and can be handled ormanipulated
explicitly. They can be considered to provide an informational view on the network;
usually the states are assumed to have a certain informational content. In principle,
for the case of a mental network, states may be accessible or observable for a person:
you may see (mental image), feel (emotion) or note in some other way a specific state
in your brain.

Following [18, 20], a temporal-causal network model is characterised by (here X and Y
denote nodes of the network, also called states):

• Connectivity characteristics
• Connections from a state X to a state Y and their weights ωX,Y

• Aggregation characteristics
• For any state Y, some combination function cY (..) defines the aggregation that is

applied to the impacts ωX,YX(t) on Y from its incoming connections from states X.
• Timing characteristics
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Each state Y has a speed factor ηY defining how fast it changes for given impact. The
following difference (or differential) equations that are used for simulation purposes and
also for analysis of temporal-causal networks incorporate these network characteristics
ωX,Y , cY (..), ηY in a standard numerical format:

Y (t + �t) = Y (t) + ηY [cY (ωX1,Y X1(t), . . . ωXk ,Y Xk(t)) − Y (t)]�t (1)

for any state Y and where X1 to Xk are the states from which Y gets its incoming
connections. Here the overall combination function cY (..) for state Y is the weighted
average of available basic combination functions cj(..) by specified weights γj,Y (and
parameters π1,j,Y , π2,j,Y of cj(..)) for Y:

cY (V1, . . . ,Vk) = γ1,Y c1(V1, . . . ,Vk) + . . . + γm,Y cm(V1, . . . ,Vk)

γ1,Y + . . . + γm,Y
(2)

Such Eqs. (1), (2) and the ones in Table 1 are hidden in the dedicated software environ-
ment; see [20], Ch 9. Within the software environment described there, a large number
of around 40 useful basic combination functions are included in a combination function
library; see Table 1 for the first two of them: these are the ones used in this paper. The
above concepts enable to design network models and their dynamics in a declarative
manner, based on mathematically defined functions and relations. How it works is that
the network characteristics ωX,Y , γj,Y , π1,j,Y , π2,j,Y , ηY that define the design of the
network model, are given as input to the dedicated software environment, and hidden
within this environment the difference Eqs. (1) are executed for all states, thus generating
simulation graphs as output.

Table 1. Basic combination functions from the library used in the model presented here

Notation Formula Parameters

Euclidean eucln,λ(V1, …,
Vk)

n
√

V1n+···+Vkn
λ

Order n > 0
Scaling factor λ > 0

Advanced logistic
sum

alogisticσ,τ(V1,
…,Vk)

[ 1
1+e−σ(V1+···+Vk−τ) −
1

1+eστ) ](1 + e−στ)

Steepness σ > 0
Excitability threshold τ

Self-models Representing Network Characteristics by Network States
As indicated above, ‘network characteristics’ and ‘network states’ are two distinct con-
cepts for a network. Self-modeling is a way to relate these distinct concepts to each other
in an interesting and useful way:

• A self-model is making the implicit network characteristics (such as connection
weights and excitability thresholds) explicit by adding states for these characteris-
tics; thus the network gets an internal self-model of part of the network structure
itself.
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• In thisway, different self-modeling levels can be createdwhere network characteristics
from one level relate to explicit states at a next level. By iteration, an arbitrary number
of self-modeling levels can bemodeled, covering second-order or higher-order effects.

Self-modeling causal networks can be recognized both in physical and mental domains.
For example:

• In the physical domain, in the brain, information about the characteristics of the
network of causal relations between activation states of neurons is, for example, rep-
resented in physical configurations for synapses (e.g., connection weights), neurons
(e.g., excitability thresholds) and/or chemical substances (e.g., neurotransmitters).

• In the mental domain, a person can create mental states in the form of representations
of his or her own (personal) characteristics, thus forming a subjective self-model
(acquired by experiences); e.g., of being very sensitive for pain or for critical feedback
or of having an anger issue.

Adding a self-model for a temporal-causal network is done in the way that for some of
the states Y of the base network and some of the network structure characteristics for
connectivity, aggregation and timing (in particular, some from ωX,Y , γi,Y , πi,j,Y , ηY ),
additional network states WX,Y , Ci,Y , Pi,j,Y , HY (self-model states) are introduced (see
the blue upper plane in Fig. 2):

(a) Connectivity self-model

• Self-model states WXi,Y are added representing connectivity characteristics, in
particular connection weights ωXi,Y

(b) Aggregation self-model

• Self-model states Cj,Y are added representing aggregation characteristics, in
particular combination function weights γi,Y

• Self-model states Pi,j,Yare added representing aggregation characteristics, in
particular combination function parameters πi,j,Y

(c) Timing self-model

• Self-model statesHY are added representing timing characteristics, in particular
speed factors ηY

The notationsWX,Y ,Ci,Y ,Pi,j,Y ,HY for the self-model states indicate the referencing
relation with respect to the characteristics ωX,Y , γi,Y , πi,j,Y , ηY : here W refers to ω, C
refers to γ, P refers to π, and H refers to η, respectively. For the processing, these self-
model states define the dynamics of state Y in a canonical manner according to Eqs. (1)
whereby ωX,Y , γi,Y , πi,j,Y , ηY are replaced by the state values of WX,Y , Ci,Y , Pi,j,Y , HY

at time t, respectively.
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An example of an aggregation self-model state Pi,j,Y for a combination function
parameter πi,j,Y is for the excitability threshold τY of state Y, which is the second
parameter of the logistic sum combination function; then Pi,j,Y is usually indicated by
TY , where T refers to τ. Such aggregation self-model states TY will play an important
role in the network model addressed below, as will connectivity self-model statesWX,Y ,
referring to connection weights ωX,Y . As the outcome of the addition of a self-model
is also a temporal-causal network model itself, as has been proven in [21], Ch 10, this
construction can easily be applied iteratively to obtain multiple levels of self-models.

3 Domain Description: Cognitive Analysis and Support Processes

In many cases, when humans perform complex or demanding tasks, it makes sense to
keep an eye on them, to see how they are doing and to assess in how far their functioning
is getting poor. If so, then some support actionsmay be needed or desirable. To determine
such assessments and support actions requires complex and adaptive cognitive processes.
For example, for a car driver, based on sensoring or observation data, it may involve
judgements about the driver’s alcohol usage, gaze and steering behaviour and whether
for long trips (s)he takes enough rest. If the gaze is unfocused or the steering behaviour
unstable, this may be assessed as a driving risk and if that occurs, a support action like
slowing down the car may be adequate. The knowledge behind such assessments may
be adaptive, so that the underlying cognitive processes can improve over time.

Within such complex and adaptive cognitive processes usually internal mental mod-
els are used. For example, in [3–6] internal mental models were used for the analysis
process and for the support process (see also Fig. 1):

• analysis model
This is used to assess the human’s states and processes using observations (possibly
using specific sensors) and domain knowledge. Examples of observations that are used
in the car driver example are a long period of driving, a gaze that is not well-focused,
unstable steering, and alcohol usage. Examples of assessments that come out of this
process are that there is a risk for getting exhausted or there are other risks for driving.

• support model
This is used to generate support for the human based on domain knowledge. This uses
as input the assessments made by the analysis model. Examples of actions that come
out of this process are advice to take some rest period, blocking the starting of the car
(when it is not driving), and slowing down the car (when it is driving).

As such processes are in principle adaptive, a third internal mental model is needed
[18], Ch. 16:

• adaptation model
To make the analysis and support model better fit the specific characteristics of the
driver, car and the further situation. This can be done by adapting certain characteristics
of the internal mental models for analysis and support.
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Analysis 
model

Support 
model

Adaptation
model

Fig. 1. Adaptive model-based architecture to analyse and support humans; adapted from [18], Ch
16, p. 469

Section 4 addresses the question how these internal mental models can be modeled
by a self-modeling network, with as outcome a second-order self-modeling network
model.

4 The Second-Order Adaptive Self-modeling Network Model

In this section it will be shownhow themodeling approach briefly described in Sect. 2 can
be and actually has been used to model within one self-modeling network the adaptive
mental models for analysis and support sketched in Sect. 3.

A useful network architecture to handle internal mental models in general is a self-
modeling network that covers at least two levels (see also [2]): a base level representing
the mental model as a network so that it can be used to process it (based on within-
network dynamics), and a first-order self-model explicitly representing the (network)
characteristics of the mental model which can be used for formation and adaptation of
the mental model. In addition, a third level with a second-order self-model can be used
to control these processes. This general setup has been applied here.

First two useful adaptation principles for plasticity and metaplasticity from the Cog-
nitive Neuroscience literature are discussed. When self-models are changing over time,
this offers a useful method to model adaptive networks. This does not only apply to first-
order adaptive networks, but also to higher-order adaptive networks, using higher-order
self-models. For example, two types of (connectivity and aggregation) self-model states
can be used to model adaptive connection weights and intrinsic neuronal excitability as
described in [7]:

‘Learning-related cellular changes can be divided into two general groups: mod-
ifications that occur at synapses and modifications in the intrinsic properties of
the neurons. While it is commonly agreed that changes in strength of connections
between neurons in the relevant networks underlie memory storage, ample evi-
dence suggests thatmodifications in intrinsic neuronal propertiesmay also account
for learning related behavioral changes’. [7], p. 30.

More in particular, the following quote indicates that synaptic activity relates to long-
lasting modifications in excitability of neurons:

‘Long− lasting modifications in intrinsic excitability are manifested in changes
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in the neuron’s response to a given extrinsic current (generated by synaptic

activity or applied via the recording electrode’.[7], p.30 (3)

The above refers to a form of plasticity, which can be described by a first-order adap-
tive network that is modelled using a dynamic first-order self-model for aggregation
characteristics of the base network, in particular for the excitability threshold used in
aggregation. Whether or not and to which extent such plasticity actually takes place
is controlled by a form of metaplasticity; e.g., [1, 8, 13, 14, 16, 17]. For example, in
[14] the following compact quote is found, summarizing that due to stimulus exposure,
adaptation speed will increase:

‘Adaptation accelerates with increasing stimulus exposure’ [14], p.2 (4)

This indeed refers to a form of metaplasticity, which can be described by a second-
order adaptive network that is modeled using a dynamic second-order self-model for
timing characteristics of the first-order self-model for the first-order adaptation. In this
way, both (first- and second-order) adaptation principles for plasticity andmetaplasticity
summarized in (3) and (4) will be applied in the network model presented below.

Because of its complexity, the model will be presented in two steps as depicted
in Fig. 2 and Fig. 3. In Fig. 2 the connectivity of the first two levels of the proposed
network model is depicted. This covers the base network within the base (pink) plane,
and the first-order self-model in the upper (blue) plane. For an overview of all states of
the network model, see Table 2; here the first 10 states describe the base level and the
next 15 states (up to state 25) the network’s first-order self-model.

The base network consists of two subnetworks, one that describes amental model for
the analysis to determine (by within-network dynamics) out of monitored information
about the driver’s situation (long drive, alcohol, unstable steering, unfocused gaze), an
assessment of the situation of the driver (within the considered scenarios the two options
are exhaustiveness risk and driving risk). The second one describes a mental model for
the support process to determine (by within-network dynamics) out of the assessment
a suitable support action for the driver (in the considered scenarios three options: rest
advice, slow down, and block start).

For these mental models described at the base level, corresponding self-models have
been added to be able to change them, for example by learning. The first-order self-
model in the upper plane in Fig. 2 models some of the network characteristics of the two
(sub)networks at the base level:

Analysis Self-Model: First-order self-model W-states and T-states X11 to X16.
Support Self-Model: First-order self-model W-states and T-states X17 to X25.

For each of the subnetworks for mental models at the base level, the first-order self-
model has two submodels: a first-order connectivity self-model (based onW-states) and
a first-order aggregation self-model (based on T-states). The connectivity self-model
represents the connectivity characteristics of the particular mental model by self-model
states WX,Y and the aggregation self-model represents the excitability thresholds of
the assessment options (for the analysis model) and the support action options (for the
support model) by self-model statesTY . Each of these first-order self-model statesWX,Y

andTY has a downward connection (in pink) to indicate the stateY of thementalmodel at
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First-order
Self-Model
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slowdown
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unstabsteer

drivingrisk
unfocgaze

driving

Trestadvice

Tslowdown

TblockstartWdriving,blockstart 

Wlongdrive,exhrisk 
Wunfocgaze,drivingrisk 
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Walcohol,drivingrisk 

Wdrivingrisk,blockstart 
Texhrisk 

Tdrivingrisk 
Wdriving,restadvice 

Wdriving,slowdown Wdrivingrisk,slowdown 
Wexhrisk,restadvice

Fig. 2. Connectivity of the first-order self-modeling network model

the base level for which they have their special effect; so, based on these downward links,
the value of WX,Y plays the role of the indicated connection weight and the value of TY

the role of excitability threshold for the state Y pointed at. For the sake of simplicity, the
connectivity self-model states WX,Y have no incoming connections from other states;
for the scenarios considered here they are kept constant, in further extensions of the
model they easily may made dynamic as well, for example, based on hebbian learning
as modeled in [21], Ch. 3.

The aggregation self-model states for excitability thresholds do have incoming con-
nections which make them dynamic, to model the abovementioned adaptation princi-
ple (3) for plasticity from [7]. This is modeled by specifying a negative weight of the
connections from the states that causally preceed the indicated state Y.

In addition, to counterbalance an excess of this negative effect, a positive weight 1
is used for all upward connections from Y itself to TY . For the simulation outcomes dis-
cussed in next section it is shown how these two opposite effects create some equilibrium
value for each aggregation self-model state TY , which illustrates one form of adaptiv-
ity in the model: in this way the aggregation self-model learns. However, by including
a second-order self-model as shown (in the purple plane) in Fig. 3, this learning has
been made adaptive itself (in particular the learning speed), which creates second-order
adaptation used as a form of control over the first-order adaptation.

In Fig. 3, the connectivity of the entire second-order adaptive network model is
depicted. Compared to Fig. 2 a third (upper, purple) plane was added consisting of a
second-order self-model for the network. The second-order self-model states in this
upper (purple) plane are explained in Table 2: the last 19 states from state 26 on:

Adaptation Self-Model: Second-order self-model W-states and HT-states X26 to
X44.

As in the first-order self-model, the second-order self-model includes a second-order
connectivity self-model using statesWX ,TY for all incoming connections of the T-states
of the first-order self-model. Again, like in the first-order self-model case, these states
WX ,TY are kept constant for now. In addition, the second-order self-model includes
a second-order timing self-model for the first-order T-states based on states HTY . This
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Table 2. Explanation of the states of the second-order self-modeling network model

Name             Explanation
X1 longdrive The driver is driving for a long period of time
X2 alcohol Alcohol is detected
X3 unstabsteer The driver’s steering is unstable
X4 unfocgaze The driver’s gaze is not focused
X5 exhrisk Assessment of a risk that the driver will get exhausted
X6 drivingrisk Assessment of a safety risk for the driving
X7 driving The car is driving
X8 restadvice Supporting action to advice the driver to take some rest
X9 slowdown Supporting action to slow down the car
X10 blockstart Supporting action to block the starting of the car
X11 Wlongdrive,exhrisk First-order connectivity self-model state for weight of the connection from longdrive to exhrisk
X12 Walcohol,drivingrisk First-order connectivity self-model state for weight of the connection from alcohol to drivingrisk
X13 Wunstabsteer,drivingrisk First-order connectivity self-model state for weight of the connection from unstablesteer to drivingrisk
X14 Wunfocgaze,drivingrisk First-order connectivity self-model state for weight of the connection from longdrive to drivingrisk
X15 Texhrisk First-order aggregation self-model state for excitability threshold of exhrisk
X16 Tdrivingrisk First-order aggregation self-model state for excitability threshold of drivingrisk
X17 Wexhrisk,restadvice First-order connectivity self-model state for weight of the connection from exhrisk to restadvice
X18 Wdriving,restadvice First-order connectivity self-model state for weight of the connection from driving to restadvice
X19 Wdrivingrisk,slowdown First-order connectivity self-model state for weight of the connection from drivingrisk to slowdown
X20 Wdriving,slowdown First-order connectivity self-model state for weight of the connection from driving to slowdown
X21 Wdrivingrisk,blockstart First-order connectivity self-model state for weight of the connection from drivingrisk to blockstart
X22 Wdriving,blockstart First-order connectivity self-model state for weight of the connection from driving to blockstart
X23 Trestadvice First-order aggregation self-model state for excitability threshold of restadvice
X24 Tslowdown First-order aggregation self-model state for excitability threshold of slowdown
X25 Tblockstart First-order aggregation self-model state for excitability threshold of blockstart
X26 Wlongdrive,Texhrisk Second-order connectivity self-model state for weight of the connection from longdrive to Texhrisk

X27 Wexhrisk,Texhrisk Second-order connectivity self-model state for weight of the connection from exhrisk to Texhrisk

X28 Walcohol,Tdrivingrisk Second-order connectivity self-model state for weight of the connection from alcohol to Tdrivingrisk

X29 Wunstabsteer,Tdrivingrisk Second-order connectivity self-model state for weight of the connection from unstabsteer to Tdrivingrisk

X30 Wunfocgaze,Tdrivingrisk Second-order connectivity self-model state for weight of the connection from unfocgaze to Tdrivingrisk

X31 Wdrivingrisk,Tdrivingrisk Second-order connectivity self-model state for weight of the connection from drivingrisk to Tdrivingrisk

X32 Wexhrisk,Trestadvice Second-order connectivity self-model state for weight of the connection from exhrisk to Trestadvice

X33 Wrestadvice,Trestadvice Second-order connectivity self-model state for weight of the connection from restadvice to Trestadvice

X34 Wdrivingrisk,Tslowdown Second-order connectivity self-model state for weight of the connection from drivingrisk to Tslowdown

X35 Wdriving,Tslowdown Second-order connectivity self-model state for weight of the connection from driving to Tslowdown

X36 Wslowdown,Tslowdown Second-order connectivity self-model state for weight of the connection from slowdown to Tslowdown

X37 Wdrivingrisk,Tblockstart Second-order connectivity self-model state for weight of the connection from drivingrisk to Tblockstart

X38 Wdriving,Tblockstart Second-order connectivity self-model state for weight of the connection from driving to Tblockstart

X39 Wblockstart,Tblockstart Second-order connectivity self-model state for weight of the connection from blockstart to Tblockstart

X40 HTexhrisk Second-order timing self-model state for the speed of Texhrisk

X41 HTdrivingrisk Second-order timing self-model state for the speed of Tdrivingrisk

X42 HTrestadvice Second-order timing self-model state for the speed of Trestadvice

X43 HTslowdown Second-order timing self-model state for the speed of Tslowdown

X44 HTblockstart Second-order timing self-model state for the speed of Tblockstart

second-order self-model is dynamic,whichmakes thewhole network second-order adap-
tive. The special effect of each state HTY as speed factor for state TY is effectuated by
the downward (pink) connection to the related state TY .

To make them dynamic, the states HTY themselves are affected by upward connec-
tions from the base level network, in this case following the abovementioned adaptation
principle (4) for metaplasticity ‘Adaptation accelerates with increasing stimulus expo-
sure’ [14]. Therefore, there are (blue) upward links with positive weights to each state
HTY from the base states causally preceeding base state Y. This makes that, as soon as
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Fig. 3. Connectivity of the entire second-order self-modeling network model

these causal ‘antecedents’ of Y get higher activation levels, the adaptation speed (starting
from 0: no adaptation initially) will increase, as will be shown in the example scenarios.

For full specifications of the adaptive network model, see the Appendix at URL
https://www.researchgate.net/publication/344165044. For example, for connectivity
characteristics all connection weights not determined bij W-states are 1, except for the
connection from driving to HTblockstart , which is −1. For aggregation characteristics, the
logistic sum combination function is used for the base states for assessment and support
options (with steepness σ = 8 and adaptive excitability threshold) and the second-order
HT-states (with steepnessσ=4 and excitability threshold τ=0.7 or 1.4 depending on the
number of incoming connections). All other states use the Euclidean combination func-
tion with n= 1 and λ= 1 (see Table 1), which actually is just a sum function. For timing
characteristics, the speed factors of the base states for assessment and support options
are 0.5 and for the second-order HT-states 0.05. All other speed factors are adaptive (the
base states for assessment and support options) or 0 (for the other base states and for
allW-states). The initial values for allW-states (which are constant due to speed factor
0) are 1 when they represent a positive connection; negative ones are Wdriving, blockstart,
Wlongdrive, Texhrisk,Walcohol, Tdrivingrisk,Wunstabsteer, Tdrivingrisk,Wunfocgaze, Tdrivingrisk,
Wexhrisk, Trestadvice which have initial value −1, and Wdrivingrisk, Tslowdown, Wdriving,
Tslowdown,Wdrivingrisk, Tblockstart,Wdriving, Tblockstart with initial value −0.5. The initial
values of all HT-states are 0 as are they for all base states except the observables shown
in Table 3, which depend on the chosen scenario. Finally, the initial values for the five
T-states were on purpose set on too high values 2, 1.4, 2.4, 2.8, 2.4, respectively (in
relation to the number of their incoming connections), in order to let adaptation happen.

https://www.researchgate.net/publication/344165044


270 J. Treur

5 Outcomes of Example Simulation Scenarios

In Figs. 4, 5 and 6 simulation results are shown for three realistic scenarios, defined by
the common settings as shown in the role matrices in the Appendix discussed in the last
paragraph of Sect. 4 and specific constant values 0 or 1 for the states X1 to X4 and X7
as shown in Table 3. In these graphs the following are shown:

• the relevant assessment (resulting from the analysis model) and support action
(resulting from the support model)

• how the excitability thresholds used within the analysis model and the support model
adapt over time and how the adaptation speed for them changes over time (resulting
from the adaptation model)

The initial values for the excitabilty thresholds for the analysis model and support
model were deliberately set too high, so that the adaptation process that was needed to
get results is illustrated. Note that the adaptation speeds have initial values 0 so that in
the first phase nothing happens in the analysis model and support model until indeed
a suitable adaptation process has started and in a next phase has resulted in successful
adaptation of the analysis and support models.

Table 3. The three displayed scenarios

X1
longdrive

X2
alcohol

X3
unstabsteer

X4
unfocgaze

X7
driving

Explanation

Scenario 1
(Fig. 4)

1 0 0 0 1 A driver who has been
driving too long

Scenario 2
(Fig. 5)

0 0 0 1 1 A driver who drives with
an unfocused gaze

Scenario 3
(Fig. 6)

0 1 0 0 0 A driver who consumed
alcohol and wants to start
driving

For Scenario 1, it can be seen in Fig. 4 that by the second-order self-model the
adaptation speed for the exhaustion risk excitability threshold (within the analysismodel)
increases from time 0 on (the purple line); this is conform to the ‘Plasticity Versus
Stability Conundrum’ discussed in [17], p. 773: only adapt when relevant (adaptation
speed> 0), otherwise keep stable (adaptation speed 0). This increase in adaptation speed
(due to stimulus exposure) results in adaptation of this excitability threshold (conform
to (3) from [7]): starting at value 2, it goes down to finally (after time 13) reach values
between 0.2 and 0.4 (the brown line). Apparently this is low enough, as after time 10
the exhaustion risk assessment is generated and reaches value 1 after time 15 (the red
line), which makes a successful analysis model outcome for this scenario.

This in turn makes that by the adaptation model after time 10 the adaptation speed
for the excitability threshold of the support action rest advice (in the support model) gets
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Fig. 4. Long drive leads to an exhaustion risk assessment and to the support action rest advice

higher (the orange line). This results in adaptation of that threshold: the value which
initially was 2.4 starts to decrease after time 10 and reaches values between 1.4 and 1.6
after time 18 (the dark purple line). Again, apparently this is low enough as the support
action rest advice comes up after time 18 and reaches 1 after time 25 (the dark green
line). This makes a successful support outcome.

For Scenario 2, it can be seen in Fig. 5 that by the adaptation model the adaptation
speed for the driving risk excitability threshold (within the analysis model) increases
from time 0 on (the light blue line), which results in adaptation of this threshold: starting
at value 1.4, it goes down to (after time 7) reach values below 0.7 (the light green line).
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Fig. 5. Drivingwith an unfocused gaze leads to a driving risk assessment and to the support action
slow down

Apparently this is low enough, as from time 5–10 the driving risk assessment is
generated and reaches value 1 after time 15 (the pink line), which makes a successful
analysis model outcome for this case. This in turn makes that by the adaptation model
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after time 5 the adaptation speed for the excitability threshold of the support action slow
down (in the support model) gets higher (the dark green line). This results in adaptation
of that threshold: the value which initially was 2.8 starts to decrease after time 10 and
reaches values between 1.4 and 1.6 after time 18 (middle green line). Again, apparently
this is low enough as the support action slow down comes up after time 18 and reaches 1
after time 20 (the brown line). This makes a successful support model outcome for this
case.
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Fig. 6. Alcohol usage leads to a driving risk assessment and to the support action block start

For Scenario 3, Fig. 6 shows initially (for the analysis model) a similar pattern as
in Scenario 2. However, for the second part of the process (for the support model), this
scenario shows how also fluctuating patterns can occur. More specifically, this illustrates
how the adaptation of the excitability threshold threshold gets reinforcement from the
outcome of the support model, so that in the end they reach an equilibrium according to
a fluctuating pattern.

6 Discussion

In complex cognitive processes, often internal mental models are used; e.g., [9, 10, 12,
15]. Suchmodels can just be applied, but they are also often adaptive, in order to form and
improve them. The focus in this paper was on adaptive cognitive analysis and support
processes for the situation and states of a human in a demanding task; the adaptive
network model was illustrated for a car driver. Within these processes internal mental
models are used for the analysis and support processes.

An adaptive network model was presented that models such adaptive cognitive
analysis and support processes. The network model makes use of adaptive first-order
self-models for the internal mental models used for the cognitive analysis and support
processes. To control the adaptation of these first-order self-models, second-order self-
models are included. The adaptive network model was illustrated for realistic scenarios
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for a car driver who gets exhausted, shows unstable steering or shows an unfocused gaze
and/or used alcohol.

For the adaptativity and its control, the network model makes use of two biologically
plausible adaptation principles informed by the Cognitive Neuroscience literature, one
within the first-order self-model for adaptation of aggregation characteristics of the base
network, in particular the excitability threshold [7], and the other one [14] within the
second-order self-model for adaptation of timing characteristics for the first-order self-
model by metaplasticity [1, 8, 13, 14, 16, 17]. This study shows how complex adaptive
cognitive processes based on internal mental models can be modeled in an adequate
manner by multi-order self-modeling networks.
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