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Abstract. Learning new knowledge or a new skill usually requires the develop-
ment of an adequate internal mental model in the form of a mental network. The
learning process for such an internal model involves (first-order) mental network
adaptation. Such a learning process often integrates different elements, such as
learning by observation and learning by instruction. For an effective learning pro-
cess, a main issue is to get an appropriate timing of the different elements. To
control the timing of these elements of a learning process, the mental network
adaptation process has to be adaptive itself: second-order mental network adapta-
tion. The second-order adaptive mental network model proposed here addresses
this, where the first-order adaptation process models the learning process of men-
tal network models and the second-order adaptation process controls the timing of
the elements of the learning process. It is illustrated for learner-controlled mental
model learning in the context of driving a car where the learner is in control of the
integration of learning by observation and learning by instruction.

1 Introduction

For cognitive functioning, usually mental models are applied for learning and problem
solving of individuals in interaction with their environment; e.g., [5–7, 10, 12, 19, 20,
22, 24, 30, 31, 33–37]. As an example, mental models of devices are applied to be able to
use these devices; e.g., [11, 21]. The question howmental models are developed or learnt
and how to control such learning processes is an interesting and challenging one, and
computational models of such processes are almost absent; e.g., [3, 8, 14]. As one of the
rare exceptions, in [8] a production rule modeling format is used to simulate students’
construction of energy models in physics. In general, however, research into howmental
models develop especially for learning to operate a device, is hard to find.

The current paper contributes such a computational model based on multi-order
adaptive network-oriented modeling [40] and illustrated for learner-controlled mental
model development while learning to drive a car. Such a driver’s mental model and
how it can be developed in an effective manner can be a basis for the design of virtual
pedagogical agents, and for support of the interaction between driver and the adaptive
automation in cars.
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Network-oriented modeling for adaptive networks [40] can be applied in general to
model adaptive mental processes as interactions of mental states where their connections
change based on principles of network adaptation such as Hebbian learning [16]. Learn-
ing of mental models in particular involves adaptation of these connections, but also con-
trol of this learning, which is a form of second-order adaptation. The network-oriented
modeling approach from [38–40] covers such multi-order adaptive processes.

So, as a mental model can be modeled as a base network, learning it can be modeled
as (first-order) adaptation of that base network. Moreover, the control of such learning
processes can be modeled as a form of second-order adaptation, which adapts the first-
order adaptation. Thus, the three-level second-order adaptive network architecture for
mental model development was obtained which is presented in the current paper. It is
illustrated for learning mental models by a learner-controlled combination of observa-
tional and instructional learning in the context of learning how a car works and how to
drive it.

First, a brief literature overview can be found in Sect. 2. In Sect. 3, the overall
design of the developed second-order adaptive network architecture is discussed, cov-
ering integration of observational and instructional learning and its control. In Sect. 4,
a more detailed refinement of this general architecture is discussed to address the case
study involving learner-controlled integration of observational and instructional learn-
ing. Simulations for the example scenario are discussed in Sect. 5. Section 6 is a final
discussion.

2 A Brief Overview of Background Knowledge

The notion of (internal) mental model has a longstanding tradition in Cognitive and
Social Sciences and in Educational Sciences; e.g., [2, 5–7, 10, 12, 19, 20, 22–31, 33–37,
46]. Within educational psychology the notion model-based learning indicates learning
that occurs when people construct coherent mental models [4, 5, 9, 15, 24]. Buckley [5]
formulates it as: ‘Model-based learning is a dynamic, recursive process of learning by
building mental models.’ [5], p. 896. More specifically, the following elements can be
considered in such learning.

Learning by observation or observational learning takes place when observation
and/or imitation of others is one of the sources that help the formation of mental models.
In model-centered learning, trainees watch someone else perform a target behavior and
then attempt to reenact it; e.g., [4, 44]. Demonstration is an often usedmethod in teaching
new motor tasks. This particular type of learning is referred to as observational motor
learning. Empirical findings show that observational motor learning improves action
perception and motor execution. Mirror neurons are assumed to be responsible for the
ability to learn by observing and/or imitating others as they help us understand the actions
performed by others; e.g., [18, 32, 41].

Learning by instruction or instructional learning assumes that instructions from an
expert instructor can be helpful. For a beginner, learning by discovery or observation
may involve a great deal of trial and error; e.g., [35, 36]. Hence, along with self-learning,
instructions from an expert are considered useful to build accurate and effective mental
models. This notion is supported by scaffolded model-based learning in which a variety
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of supports like prompts, questions, hints, stories, conceptual models, visualizations are
provided to assist the students’ progress during learning tasks; e.g., [17].

Learner-controlled learning for the integration of observational and instructional
learning is discussed by Gibbons and Gray [13], thereby putting forward that instruc-
tions serve human learning processes best when under the control of the learner. Thus
instructions do not cause learning but rather support it. The scaffolded model-based
learning mentioned above supports this integration. Kozma [23] suggested that individ-
uals do use external information sources for model construction provided in specific
learning environments. Learners are sensitive to characteristics of the learning environ-
ment like availability of certain information at a given time, the structure of information
and how it is introduced as well as the ease with which it can be accessed. Thus, the
learner’s need for instruction and ease for acquiring it are crucial for development of
accurate mental models. In guided discovery methods of learning, the learner seeks for
information in the environment in order to complete the initial mental model or prior
understanding. It requires the learner to be proactive and direct the learning experience.
However, in expository teachingmethods, an instructor directs thementalmodel progres-
sion by providing adequate information [29]. Meela, and Yuenyong [25] demonstrated
in their study that Model-Based Inquiry (MBI) could support a student’s mental model
in scientific learning. MBI focuses on developing students’ formulations of questions
and procedures, creating and communicating conclusions consistent with empirical evi-
dence [27]. Knowledge of results or feedback on performance are a significant factor in
learning [1]. Many studies have established that feedback is crucial in skill acquisition
[43].

Thus, in the adaptive network model introduced below, it was modeled that the
learner can seek for instructions whenever it may be needed or as a feedback about
what she/he has learnt by observation. This was addressed by utilizing control states for
instructions on a separate level within the adaptive network model by which the learner
controls the amount and timing of incoming information by seeking it onlywhen it seems
appropriate to her/him. More specifically, based on the above literature, in next section
it is discussed how a learning process based on mental models can be modeled by a
three-level adaptive network model. Applying a network-oriented modeling perspective
for adaptive networks [40], the above literature leads to the following three different
description levels that have to be addressed. First of all, the mental models themselves
can be described by base networks. Next, during learning, thementalmodels change; this
change of mental models can be described by (first-order) network adaptation. Finally,
control of such a learning process is a form of adaptation of the learning process; this can
be described by adaptation of the first-order adaptive network for the learning process,
which is called second-order network adaptation.

3 Network Architecture for Controlled Mental Model Learning

In this section a global view on the architecture of the introduced network model for
learner-controlled mental model learning is discussed. In accordance with what was
concluded in Sect. 2, this architecture has to cover the following three types of processes
in an integrated manner: (1) The mental models themselves described by networks, (2)
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Learning as change ofmentalmodels described byfirst-order network adaptation, and (3)
Control of learning processes described by second-order network adaptation. Using the
notion of multi-level network reification [38–40], these three description levels indeed
can be modeled adequately by a three-level second-order adaptive network architecture
as depicted in Fig. 1.

Second reification level
Control of learning a mental model

First reification level
          Learning a mental model

Base level
                 Mental model

Fig. 1. Overview of the introduced second-order adaptive network architecture

Here, for any specific application each plane contains a specific network and specific
upward and downward connections define the interactions between the different levels.
The more specific adaptive network model described in Sect. 4 will be such a refinement
of this overall network architecture. The generic types of states and connections used
at and between the three levels within this architecture are shown in Tables 1 and 2.
Note that the colours used in these tables indicate to which level the states belong, as
they correspond to the colours of the planes in Figs. 1, 2 and 3. At the base level, the
learner’s (subjective) mental model is defined by the connections (between base states)
BSX →BSY , whereas the connections (between observation states)OSX →OSY define
the (objective) relations in the real world. Moreover, the connections (from observation
state to base state)OSY → BSY define the mirroring process by which the observations
affect the learner’s own states.

At the first reification level, the connectionsLWX,Y →RWX,Y and IWX,Y →RWX,Y

model the integration of what is learnt by observational learning and by instructional
learning, respectively. The connections ISX,Y → IWX,Y model the instruction commu-
nication actions from instructor to learner. The effect of activation of second-order state
CIWX,Y is that the connection (or channel) from the instructor info state ISX,Y to state
IWX,Y of the learner is opened (i.e., gets high connection weight) so that this information
is transferred from instructor state ISX,Y to learner state IWX,Y .This opening of the chan-
nel ISX,Y → IWX,Y is modeled by the connections CIWX,Y → IWX,Y , where CIWX,Y

represents the role of connection weight from ISX,Y to IWX,Y . Via its incoming observa-
tional learning monitoring connection LWX,Y →CIWX,Y, the control stateCIWX,Y will
become active depending on the corresponding LW-state LWX,Y . This models asking
the instructor for verification and confirmation of what was just learnt by observation.

A more detailed display of the network’s connectivity for a specific case study can
be found in Sect. 4, Figs. 2 and 3.
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Table 1. Types of states in the introduced three level network architecture

BSY Base states for the considered mental model of the learner

OSY The corresponding observation states in the real world

ISX,Y Representation for the connection weights of the mental model of the instructor

LWX,Y Representation for the connection weights for the mental model as learnt from
observation (using the Hebbian learning principle)

IWX,Y Representation for the connection weights for the mental model as learnt from
instruction (using the instructor)

RWX,Y Representation for the connection weights for the learner’s mental model integrating
observational (via LWX,Y ) and instructional (via IWX,Y ) learning

CIWX,Y Initiation of instruction: control state for requesting the weight of the connection
from X to Y for the mental model from the instructor

Table 2. Types of connections in the introduced adaptive network architecture

Intra-level connections

BSX → BSY The learner’s (subjective) connections between the base states,
indicating the current mental model of the learner

OSX → OSY The real world’s (objective) connections between the observation
states, indicating the real-world process

OSY → BSY Mirroring connections defining the mirroring process for the base
states. These connections model the effect of observations on the
learner.

ISX,Y → IWX,Y Being informed by the instructor: the communicated instruction
concerning the connection from X to Y. These connections ISX,Y →
IWX,Y can be controlled by control states CIWX,Y at the second
reification level

IWX,Y → RWX,Y Integration of knowledge obtained by instructional learning

LWX,Y → RWX,Y Integration of knowledge obtained by observational learning

Interlevel connections

BSX → LWX,Y
BSY → LWX,Y

Connections supporting
observational learning

Upward from base level to first
reification level

RWX,Y → BSY Effectuation of base connection
weights in the mental model

Downward from first reification
level to base level

LWX,Y → CIWX,Y Observational learning
monitoring connections

Upward from first to second
reification level

CIWX,Y → IWX,Y Effectuation of instructional
learning control

Downward from second to first
reification level
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Fig. 2. Connectivity for part of the second-order adaptive network model.

4 Detailed Description of the Second-Order Adaptive Network
Model for a Case Study

In this section, a more detailed description is presented of the designed second-order
adaptive network model applied to an illustrative case study, based on the following
scenario:

PersonAhas almost no knowledge about a car’s components, and their interactions
and how to drive a car. This person’s mental model of the car and driving it has to
be learned during driving lessons. During person A’s first driving lesson, instructor
B demonstrates how to start a car and get it moving. The observation of B makes
that A learns an initial mental model of the car and operating it (observational
learning). During A’s further learning, an iterative process of extending and/or

Fig. 3. Connectivity for the complete adaptive network model.
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modifying the mental model takes place, leading to a more accurate and com-
plete mental model. Besides observational learning, also learning from instruction
plays an important role (instructional learning). This instructional learning takes
place by incorporating incoming information communicated by B. In this scenario
this instructional learning only takes place upon request of the learner (learner-
controlled instructional learning), as a form of verification and consolidation after
A learnt about it by observational learning.

The network-oriented modeling approach for adaptive networks used here can be
found in [38–40]. The characteristics used to describe networks are (for nodes or states X
andY ): for connectivity connectionweightsωX,Y , for aggregation combination functions
cY (..) and for timing speed factors ηY . For adaptive networks the notion of network
reification is used, as has been worked out in detail in [40]. This can be done iteratively
to obtain multiple orders of adaptation and is applied in the way that for each state Y
of the base network, for its adaptive network characteristics ωX,Y , cY (..),ηY , additional
network states (called reification states or self-model states) are introduced as new nodes
in the network. For example, for adaptive connectivity characteristics, states RWX,Y are
added representing adaptive connection weights ωX,Y . They form a self-model of the
network’s own structure in the form of a subnetwork within the network. To graphically
distinguish them from states at the level of X and Y, these reification or self-model
states are depicted at one level higher (e.g., see the blue planes in Figs. 1, 2 and 3 with
representations of weights of adaptive connections from the base planes).

As in this case the learning is controlled, it is adaptive itself, which is depicted by
the third level (purple plane) for second-order adaptation in Figs. 1, 2 and 3, which
include second-order reification states CIWX,Y that represent the weight of the connec-
tion ISX,Y → IWX,Y of the middle level (see Sect. 3). In accordance with the distinction
between different levels discussed above, the designed adaptive network model indeed
has three levels as already depicted in Fig. 1: base level (mental model), first reification
level (learning of a mental model) and second reification level (controlling learning of
a mental model). Each level is graphically depicted in 3D by one horizontal plane (see
Figs. 2 and 3). In these figures, the lower (pink) plane contains the base network for
the mental model, whereas the middle (blue) plane represents the reification states: the
IS-States, IW-states,LW-states, andRW-states, all referring to connections between the
BS-states at the base level. This first reification level enables adaptation of the connec-
tions of the mental model; as discussed in Sect. 2, this is needed for learning a mental
model. The structure by the lowest two (interacting) levels distinguish the two types
of processes (and their interaction): using the mental model by changing the BS-states
represented at the base level (used for internal simulation of the mental model) versus
adjusting the mental model by changing the representations at the reification level of
its connections (adaptation, learning of the mental model). The different types of states
are explained in Tables 1, 3, 4. Figure 2 depicts the connectivity for only a part for
a small number of the states to support better understanding. The connectivity for the
complete network model is shown in Fig. 3. The second reification level (purple plane)
enables to control the learning process by changing some of their intra-level connections
within the first reification level (which affects the dynamics of these first-order states),
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based on the second-level reification CIW-states (control states); this is used to model
learner-controlled instruction.

Table 3. Explanation of the base level states in the network model for the case study

States Explanation

X1 BSSwitch Learner’s Representation State for Switch

X2 BSTurnSwitch Learner’s Representation State for TurnSwitch

X3 BSEngine-0n Learner’s Representation State for Engine-On

X4 BSFeelEngine-On Learner’s Representation State for FeelEngine-On

X5 BSPresClutch Learner’s Representation State for PressClutch

X6 BSClutch-On Learner’s Representation State for Clutch-On

X7 BSGearbox-Neutral Learner’s Representation State for Gearbox-Neutral

X8 BSPressGear 1 Learner’s Representation State for PressGear1

X9 BSGear1-On Learner’s Representation State for Gear1-On

X10 BSPressAccelerator Learner’s Representation State for PressAccelerator

X11 BSAccelerator-On Learner’s Representation State for Accelerator-On

X12 BSRevMeter-On Learner’s Representation State for Rev-Meter-On

X13 BSBiteState Learner’s Representation State for BiteState

X14 BSMovingState Learner’s Representation State for MovingState

X15 OSSwitch Observation State for Switch

……

X28 OSMovingState Observation State for MovingState

The conceptual representation of a temporal–causal network model like the one
mentioned above can easily be transformed in an automated manner into a numerical
representation using a dedicated modeling environment; this results in difference or
differential equations ([40], Chapter 9):

Y (t + �t) =Y (t) + ηY
[
aggimpactY (t) − Y (t)

]
�t

or dY (t)/dt =ηY
[
aggimpactY (t) − Y (t)

]
(1)

where aggimpactY (t) = cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t))
In the model presented here, for the states, the following combination functions were

used, all generating values in [0, 1] (assuming that their argements are in [0, 1]). The
Euclidean combination function eucln,λ(V1, …, Vk) where n is the order (which can be
any positive real number), and λ the scaling factor is defined by:

eucln,λ(V1, . . . , Vk) = λ (2)
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Table 4. Explanation of reification level states in the network model for the case study

States Explanation

X29 IWSwitch,TurnSwitch Representation state for Informed Weight for Switch
→ TurnSwitch

X30 LWSwitch,TurnSwitch Representation state for Learnt Weight for Switch →
TurnSwitch

X31 RWSwitch,TurnSwitch Representation state for overall Representative
Weight for Switch → TurnSwitch

X32 IWTurnSwitch,Engine-On Representation state for Informed Weight for
TurnSwitch → Engine-On

X33 LWTurnSwitch,Engine-On Representation state for Learnt Weight for
TurnSwitch → Engine-On

X34 RWTurnSwitch,Engine-On Representation state for Representative Weight for
TurnSwitch → Engine-On

X35 IWEngine-On,FeelEngine-On Representation state for Informed Weight for
Engine-On → FeelEngine-On

X36 LWEngine-On,FeelEngine-On Representation state for Learnt Weight for Engine-On
→ FeelEngine-On

X37 RWEngine-On,FeelEngine-On Representation state for Representative Weight for
Engine-On → FeelEngine-On

……

X86 ISSwitch,TurnSwitch Representation state for Information State for Switch
→ TurnSwitch

X87 ISTurnSwitch,Engine-On Representation state for Information State for
TurnSwitch → Engine-On

X88 ISEngine-On,FeelEngine-On Representation state for Information State for
Engine-On → FeelEngine-On

……

X97 CIWSwitch,TurnSwitch Representation state for control of instruction for
Switch → TurnSwitch

X98 CIWTurnSwitch,EngineOn Representation state for control of instruction for
TurnSwitch → EngineOn

X99 CIWEngineOn,FeelEngineOn Representation state for control of instruction for
Engine-On → FeelEngineOn

……

where V1, …, Vk ∈[ 0, 1] indicate the impactsωXi,Y Xi(t) from the states X1, …, Xk from
which Y has an incoming connection. The Advanced logistic sum combination function
alogisticσ,τ(…) is used with steepness σ and threshold τ is defined by (with similar V1,
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…, Vk as above):

alogisticσ,τ(V1, . . . ,Vk) =
[

1

1 + e−σ(V1+...+Vk−τ)
− 1

1 + eστ)

](
1 + e−στ

)
(3)

The Hebbian learning combination function hebbμ(..) for learning of the connection
from state X to state Y used in particular for the LW-states is defined by

hebbμ(V1, V2,W ) = V1V2(1 − W ) + μW (4)

where μ is the persistence parameter, V1 stands for state value X(t), V2 for Y(t), and
W for the learnt connection weight reification state value LWX,Y (t). A more detailed
specification in terms of role matrices can be found in [46].

5 Example Simulation Scenario

The computational network model was simulated using the dedicated software environ-
ment implemented in Matlab as described in [40], Ch 9, to study the development of
a mental model for a car’s functioning and driving it; see Figs. 4, 5, 6 and 7. For the
simulation �t = 0.5 was chosen, the total time 800 (so 1600 simulation steps); the time
scale is left abstract here, for example, it could be seconds. The speed factor for the
BS-states were set at 0.4, for OS-states at 0.05, for IW-states at 0.1, and for LW-states
and RW-states at 0.4. For the second-order CIW-states the speed factor was set at 0.4.
The connection weights between the states and the other characteristics of the network
model and the initial values are shown in [46]. For example, all BS- and OS-states use
either the euclidean function or the logistic sum function, all LW-states the Hebbian
learning function, the IW-states the logistic sum function, the RW-states the first-order
euclidean function, and the CIW-states the logistic sum function. All BS-states have
initial value 0. All OS-States have initial value 0, except the first OS-State X15 which
has an initial value of 1. For all the IW-, LW-, and RW- states, the initial value was set
at 0.1.

The IS-states have constant value 1, as they refer to the knowledge of the instructor
(see also Fig. 5). Note that it has been specified in such a way that only one of the
IW-state or LW-state is not enough to get an RW-state with a high value close to 1. A
typical pattern is that first, based on a learnt LW-state only, the RW-state gets a value
somewhere in themiddle of the 0–1 interval, and only after instructional learningmaking
the IW-state high, the RW-state value increases to a high value close to 1.

The typical pattern is that first based on the value of LW-state (i.e., by observational
learning), the second-order CIW-state is activated (Fig. 6) which in turn makes the IW-
state getting a value close to 1 (Fig. 7). The RW-state gets a value somewhere in the
middle of the 0–1 interval, and only after the learner seeks instructional information (or
feedback) making the IW-state high, the RW-state value increases to 1. This shows that
the learner actively engages seeking more information to confirm the accuracy of what
he/she has learnt by observation. The learner hence controls the amount of information
(s)he needs in addition to complete her/his learning based on her/his current level of
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Fig. 4. Dynamics of the Base States X1-X14 showing internal simulation of the mental model.
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X46 RW Clutch-On,Gearbox-Neutral
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Fig. 5. Base States X6 (Clutch-on) and X7 (Gearbox-neutral) with impact from OS-states X20,
X21and LW-state X45, RW-state X46 and learner IW-state X44 and instructor IS-state X85 with
control by CIW-state X102

understanding by own observation. See also Sect. 3. The results indicated in Fig. 5
display the connection between two BS-states X6 and X7. Here it can be seen that,
together with the value of X6 becoming 1 at time 210, theOS-state X21 affects the value
of X7 together with RW-state X46 which combines the weights of the related LW-and
IW-states. The CIW-state controls the weight of IW-state according to the LW-state’s
weight.

The state X7 reaches value 1 at time 250 by an S-curve. The IS-state representing
knowledge of the instructor remains at 1 all the time (a knowledgeable instructor).



256 R. Bhalwankar and J. Treur

Fig. 6. All control CIW-states showing impact from the corresponding observational learning
LW-states

As a form of evaluation, in Figs. 6 and 7 it is displayed how the activation of each
CIW-state follows the activation of the corresponding LW-state, and how in turn the
activation of the CIW-state is followed by the corresponding IW-state. This confirms
that the model displays the intended behavior that first observational learning takes
place, after which there is a learner initiative to request corresponding instruction, and
appropriate instructional learning indeed takes place after that.

6 Discussion

In the present paper, controlled learning of mental models was explored. The learn-
ing usually integrates different types, such as observational learning and instructional
learning. For an effective learning process, appropriate timing of the different types of
learning is crucial. To control this timing, the mental network adaptation process itself
has to be modeled in an adaptive manner as well. The proposed second-order adaptive
mental network model addresses this, where the first-order adaptation process models
the learning process of a mental network model and the second-order adaptation process
controls the focus and timing of the types of learning.

It was illustrated for a case study of learner-controlled mental model learning in
the context of a car and driving it, where the learner is in control of the integration of
observational learning and instructional learning. Based on the implemented second-
order adaptive network model, the learner-controlled learning of mental models while
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Fig. 7. All control CIW-states showing their impact on the corresponding instructional learning
IW-states

learning about a car and how to drive it based on literature was simulated and shown to
work as expected from the literature.

Much literature exists which describes the learning of mental models and is men-
tioned in the paper. But, formalized computational models for it are very rare; exceptions
are [3, 8, 34, 42]. In [8] a production rule modeling format is used to simulate students’
construction of energy models in physics and in [34] the PDPmodeling format was used
to model mental models. In [42] a relatively simple adaptive God model was described,
and in [3] the focus is on learning to drive a car. However, in all four cases [3, 8, 34,
42] no second-order adaptive network model is obtained, so there is no control of the
learning processes. That is a main difference with the current paper, where the focus is
on the control and this is fully addressed by designing a second-order adaptive mental
networkmodel. Note, however, the following disclaimer: the literature onmental models
is extremely diverse, so there cannot be a claim that the way in which mental models
are formalised here from a causality perspective, would be the best formalisation for all
of the wide variety of suggested forms of mental models.
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