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Abstract. Spreading processes are increasingly analysed in the context of com-
plex networks, for example in epidemics research, information dissemination or
rumors. In these contexts, the effect of structural properties that facilitate or decel-
erate spreading processes are of high interest, since this allows insights into the
extent to which those processes are controllable and predictable. In social net-
works, actors usually participate in different densely connected social groups that
emerge from various social contexts, such as workplace, interests, etc. In this
paper, it is examined if the number of groups an actor connects to can be used
as a predictor for its capability to spread information effectively. The social con-
texts (i.e. groups) a node participates in are determined by the Link Communities
approach by Ahn et al. (2010). The results are contrasted to previous findings of
structural node properties based on the k-shell index of nodes (Kitsak et al. 2010)
by applying both methods on artificially generated and real-world networks. They
show that the approach is comparable to existing ones using structural node prop-
erties as a predictor, yet no clear evidence is found indicating that one or the other
approach leads to better predictions in all investigated networks.
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1 Introduction

Spreading processes, originally examined in areas such as disease modelling [1, 2] and
epidemiological mathematics [3], are increasingly examined to study social phenomena
of information diffusion within complex networks, such as the spreading of rumours
[4] or the communication during crisis events, for example [5]. They also gain special
relevance considering the global COVID-19 pandemic, possibly yielding results to better
understand and mitigate its spread. As a result of the way users connect and interact with
each other, the social networks used for these analyses often exhibit properties of small-
world and scale-free networks [6], making topological characteristics of the network an
important aspect when analysing spreading processes. A common goal of the mentioned
studies is to predict the efficiency of the spreading process, with the broader intention to
acquire knowledge on how to control it. In this context, both local and global network
properties related to spreading processes have to be explored. This paper focuses on local
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properties (topological properties of the network attributed to nodes) but goes beyond
their immediate neighbourhood. Using local properties to predict spreading efficiency,
Kitsak et al. [7] already showed that the most efficient spreaders within a network are not
necessarily the most connected nodes (i.e. nodes with the highest degree), but the ones
that are located in densely connected cores of the network indicated by a high k-shell
index. However, apart from being located within the core of a network or having a certain
degree, structural properties of the network such as its tendency to form clusters might
also yield an informative measure to predict the spreading efficiency. The general idea is,
that someone who is member of many different overlapping social groups (workplace,
sports club, friendship circles) is better capable of injecting information into various
densely connected regions of the network where it further circulates. This notion of
overlapping social groups is operationalised by applying the link-clustering approach
by Ahn, Bagrow & Lehmann [8], where resulting clusters are highly interleaved and
sometimes even nested. The approach clusters the links instead of the nodes, resulting
in nodes possibly belonging to multiple clusters. It is reasonable to assume then, that the
number of groups a node belongs to predicts its spreading capability as good as or even
better than its k-shell index. Thus, we derive the following research questions:

RQ1: Isthe community membership of nodes as determined by the Link Communities
approach a good predictor for efficient spreaders within complex networks?

RQ 2: Are the two approaches (Link Communities and k-Core) comparable for
determining influential spreaders?

2 Background

Spreading processes and the analysis of potential spreaders have a long history in science
and generally describe a flow of information between actors or members of a network [9].
For complex networks such as computer networks or networks of real individuals, infor-
mation can refer to diseases and computer viruses [1, 10], whereas for other networks
(i.e. created from Social Media data), it can refer to opinions, news articles or influence
[11-13]. The spreading, i.e. the flow of information within these networks can result in
diverse operationalisations, and obviously in contrary motifs regarding its analysis. For
disease spreading, potential strategies to mitigate are sought-after, whereas for influence
maximisation or opinion spreading, strategies to accelerate the flow of information are
desired. For that reason, influencing factors are of great interest. Within complex net-
works where spreading can only happen between adjacent nodes, there is one aspect
that affects the spreading, and likewise the efficiency of a single spreader — regardless
of the motifs of analysis — to an equal degree: the topology of the network (see [9]).
With regard to this topology, the origin of the diffusion process (i.e. the spreader) is of
interest, as these so called “seeds” [14] and their properties yield important information
from which inferences regarding the efficiency of the spreading process can be drawn.
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2.1 Properties of the Network

As described above, the topology of a network results in certain characteristics of nodes,
from which inferences regarding their spreading capability can be drawn. On an individ-
ual level, the degree centrality of a node is one such characteristic, as nodes with high
degree centralities naturally have more possibilities to potentially spread information
to other nodes [15]. Thus, so called “hubs” mark efficient spreaders (see [7]), which
is also reflected by the fact that an uneven degree distribution (many hubs) results in
more efficient spreading [7]. Apart from this, the community structure of a network can
also influence spreading processes, as it is conceivable that information can spread more
easily within highly interconnected sub-communities [16].

One notion to describe the community structure and the cohesiveness of subgraphs
is the k-core of a network and the respective k-shell index of a node, which is the highest
k such that the node is still part of the respective k-core. The index results in nodes
which have at least k connections to other nodes within their core, resulting in highly
interconnected nodes, whose spreading capability is high and where spreading is likely
to occur. Furthermore, community detection techniques such as the Louvain method
[17] can be used to examine the community structure of a network. However, as it
assigns sub-communities to nodes based on high connections within a community and
little connections between different sub-communities, each node is assigned a unique
sub-community. To infer the spreading capability of a node however, its membership of
a subcommunity yields little information: Information that originates from a spreader
located within a highly interrelated sub-community might propagate quickly within the
respective sub-community but is less likely to propagate to other sub-communities in
the case of highly separated communities. In contrast, nodes with many different com-
munity memberships, indicating activities in various social contexts, are hypothesised
to be capable spreaders. Such multiple community memberships can be found by clus-
tering methods such as Clique Percolation [18] or Link Communities [8] that allow for
overlapping sub-communities.

3 Approach

In this paper, it is hypothesised that actors who connect groups in different social contexts
and thus are part of different overlapping and nested link communities are capable spread-
ers. The underlying assumption is that information items, diseases, etc. mainly circulate
within densely connected groups. Actors in the overlap of such groups can be infected
within one group and inject the spreading process into several other groups. To this end,
we investigate whether the membership in multiple link communities (see Sect. 3.1) is
another factor that determines spreading capability in addition to the node’s k-shell index
[7]. It is further argued, that the number of link communities a node belongs to, also
constituting a topological feature of the network organisation, suggests that the spreader
has close connections to many other actors from different sub-communities within the
network, and is thus able to spread between different highly interconnected communities
more easily. Kitsak et al. [7] argue, that especially during the early stages of spreading
processes, through the many pathways that exist for nodes located within the core of the
network, the k-Shell index of a node predicts its spreading capability. However, nodes
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within these cores also tend to exhibit multiple community memberships, which yields
an additional inferential value in comparison to solely taking the node’s k-Shell index
into account (see Fig. 1). Additionally, when multiple outbreaks happen, information
can spread more easily between different sub-communities, whereas for different cores,
the distance between them needs to be taken into account [7]. The Link Communities
approach by Ahn, Bagrow, & Lehmann [8] offers a method to determine overlapping
communities, as it assigns multiple community-memberships to a single node. From
this, inferences regarding the spreading capability of single nodes can be drawn.
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Fig. 1. On the left, an example from Kitsak et al. (2010) can be seen. Nodes within the core of the
network, i.e. with a high k-Shell index, were found to be good spreaders. On the right, the same
network is shown, but clustered with the Link Communities approach by Ahn et al. (2010). Nodes
with black borders are nodes which are hypothesized to exhibit a high spreading capability. In this
example, nodes with multiple community memberships also exhibit a high community centrality.

3.1 Link Communities

To determine the community-
memberships of nodes, the Link Com-
munities approach by Ahn et al. (2010) is
used. In their approach, a sub-community
is characterised as a set of closely
interrelated links instead of closely
interconnected nodes. As a result, sub-
communities can overlap, and single

nodes can be members of multiple sub- o
communities. The procedure to cluster

the links by Ahn et al. (2010) is described

as follows: Edges (ej and ej) with

a common neighbour k are compared Fig. 2. Ilustration from Ahn et al. (2010). As
pairwise. Node k is called keystone node,  can be seen, only the neighbourhood of the
while the other two nodes are called impost nodes is taken into account.

impost nodes. It should be noted, that

keystone node
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only the neighbours of the impost nodes

are taken into account for the calculation, as the neighbours of k (except the impost
nodes) are of no interest. To calculate the similarity of the nodes, the similarity criterion
S (Jaccard-index, [19]) is applied (see Eq. 1). The set of the node i and its neighbours is
denoted as n +i.

In + @) Nn+ (¢l

S(ew: i) = 1 6 U £ ) &

For the above example (Fig. 2), this would resultin S = %. A dendrogram is then built
through single-linkage hierarchical clustering and cut at a certain threshold according
to the partition density, which then results in the link communities [8]. From these link
communities, the community memberships of the nodes can be derived, and thus each
node is assigned a vector of community memberships, from which the actual number of
communities it belongs to can be calculated. The possibility to detect multiple community
memberships differentiates our approach from other approaches analysing properties of
influential spreaders [20], where nodes can only belong to one community each due to
the community detection algorithm being used.

Community Centrality. Although the number of communities a node belongs to might
be an important predictor for its spreading capability, there are possible limitations.
Generally, due to the nested nature of link communities, a node can be a member of
many communities. One can assume, that being a member of many communities goes
along with a high spreading capability. However, because of this pervasive overlap,
the set of directly reachable nodes can be limited, even for nodes belonging to multiple
groups and the inferential value of the nodes’ number of community-memberships might
be limited. This is reflected by the community centrality by Newman [21], which assigns
higher centrality values to nodes if they belong to many communities with little overlap.
In this study, this concept is extended, additionally taking the size of the communities
into account. For simplicity, it will also be denoted as community centrality. Formally, it
is defined as the cardinality of the union of nodes in all communities a node belongs to.
Consequently, it is high if a node belongs to many large communities with little overlap.
Community centrality will be denoted as CC.

4 Evaluation

To evaluate the capability of nodes to spread information through the network, spread-
ing processes are simulated according to well-known SIR models [3]. The process starts
with one initially infected node. This node infects its neighbours at a given infection rate
(denoted as B) and recovers. The resulting infected nodes then try to infect their neigh-
bours themselves. The process terminates when no new infections occur. In this study,
the spreading capability of a node x corresponds to the average fraction of infected popu-
lation in 100 SIR runs starting at node x. For the community detection, it is decided to cut
the resulting dendrogram at a smaller threshold to also detect smaller sub-communities.
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Analysed Datasets. To evaluate our measure, we chose to use both real-world networks
to increase the external validity, as well as artificially generated networks to maintain
a high internal validity. The generated networks were created according to the forest-
fire algorithm as shown by Leskovec, Kleinberg & Faloutsos [22], as it creates networks
with properties typical of real-world graphs such as heavy-tailed degree distributions and
communities. To this end, 8 undirected networks were created, each with 1000 nodes,
with forward burning probabilities (fiwprob) ranging from .05 to .40 (Table 1) and a
fixed backward burning probability of 1 (see [22]). The fwprob controls for the tendency
to form densely connected and potentially nested clusters. Additionally, we analysed
one ego-networks from the SNAP (Stanford Network Analysis Project) at Stanford
University [23] to evaluate our metric on real-world data. The network represents the
connections between all friends of the individual of which the ego network is derived
from (thus ego), with all connections between the ego and friends removed. To increase
informative value and evaluate our measure on a bigger network than our created ones,
we chose the /07 network because of its size (at 1912 nodes and 53498 edges), a local
average clustering coefficient of .534 and a mean spreading capability of .683.

Table 1. Analysed datasets. We used the average local clustering coefficient. The spreading
capability is the mean spreading capability of all nodes.

Network  Edges  avg. Degree  Clust. Coeff. Diameter  Spreading Cap. FwProb

1 1,076 2.152 0.160 23 0.066 0.050
2 1,193 2.386 0.306 24 0.136 0.100
3 1,275 2.550 0.358 21 0.236 0.150
4 1,416 2.832 0.385 21 0.339 0.200
5 1,829 3.658 0.490 19 0.552 0.250
6 2,271 4.542 0.530 16 0.638 0.300
7 5,455 10.910 0.540 11 0.792 0.350
8 48,355 96.710 0.837 8 0.952 0.400

4.1 Metrics for Evaluation

In addition to descriptively comparing the proposed measure with established measures,
certain metrics are applied to objectively evaluate it.

The Imprecision Function. To quantify the importance of nodes with a high commu-
nity centrality during the spreading, an objective measure has to be calculated. The
imprecision function serves just that purpose. Similar to Kitsak et al. (2010), these func-
tions are calculated for each of the three relevant measures, and they are denoted as
eks (P), ecc(p) and e4(p), respectively. For each subset p of nodes (here, p refers to a
specific percentage of the dataset) with the highest spreading capability (denoted as ¢, )
and the highest value according to one of the three measures (denoted as g5, ¢cc and
@®q), the average spreading is calculated. Then, the difference in spreading between the
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p nodes with highest values in any of the measures and the most efficient spreaders is
calculated. Formally, for ecc, the function is defined as follows:

_ 9ccP)

=1
fee (p) (pejf (p)

@)

Note that through subtracting the fraction from 1, higher values correspond to more
imprecision, while smaller values for € show less imprecision and thus a better measure.

4.2 Results

In the following, the results of the evaluation will be presented. All of the evaluations
are calculated at a beta value (infection rate) of 7%.

Descriptive Results

General Observations. To assess how
well the community memberships of a
node allow inferences about its spread-
ing capability, they are compared to
other measures, more specifically to .
the k-Shell index of a node [7] and to avg. Shell
its degree. As can be seen in Fig. 3, the i oo
measures generally correspond to each

other, and higher fwprob values result

in higher values for CC, degree and k-

Shell index. Figure 4 shows the results i s i o

of a bivariate comparison for our gen- Fwprob

erated networks with 1000 nodes, beta  Fig. 3. Average values of the compared measures
= 7 and fwprob values of .05, .15 and for the chosen fwprob values.

.30. It can be seen that higher fivprob

values correspond to higher spreading

capabilities, likely because of more community structure within the graphs. While the
predictive value of all shown measures seems to be smaller for lower fwprob values
with regard to the spreading capability, it increases for higher fwprob values. The figure
shows, that generally, the CC corresponds with the degree and the k-Shell index of a node.
Especially in comparison with the degree of a node, it can be seen that low degree values
do not consistently correlate with low spreading capabilities, whereas for the CC, they
do. For fwprob = .30, higher CC values also consistently reflect high spreading capa-
bilities, whereas for degree, there are effective spreaders with small degrees. However,
this effect shows less so for the k-Shell index of a node, where effective spreaders can
be found for a greater variety of CC values, especially at high k-Shell values. Regarding
RQ1, it can be said that the CC can also be used as a predictor for the spreading capabil-
ity of the nodes: For high CC values, there are high spreading capabilities whereas for
small CC values, spreading capabilities generally remain low. This discriminatory value
increases with higher fwprob values and thus higher community structures within the

Measure

Value
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graphs. To additionally evaluate this on a real network, we created the same plot for the
107 network (Fig. 5) at beta = 1 (high beta values would result in little variance of the
spreading capability), where a similar pattern as above and in Kitsak et al. [7] emerges.
Even more clearly than for the generated networks, it can be seen that high values in
either community centrality, degree or k-Shell index, go along with a high spreading
capability. Thus, and also considering what can be seen in Fig. 3, both the k-Shell index
and the Link Communities approach are comparable in predicting the spreading capabil-
ity (RQ2). However, this effect shows less so for our generated networks at high fwprob
values than for our analysed /07 network.

fwprob = .05 fwprob = .15 fwprob = .30

‘Spreading Capabilty
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Sproading Capabilty
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Fig. 4. Bivariate distribution for the examined measures on our generated networks. The colours
indicate the spreading capability.
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Fig. 5. Bivariate distribution for the 107 Facebook ego network

Correlational Measures. Correlations between the CC and the established measures are
calculated. The mean correlation across all of our generated networks between the CC
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and the k-Shell index of a node is r = .56 and r = .54 between CC and the degree. All
measures correlate with the spreading capability of a node (r = .40 for CC, r = .40 for
degree and r = .47 for k-Shell). In the /07 network, the CC also correlates with the other
measure (r = .90 with k-Shell and r = .88 for degree) and with the spreading capability
of a node (r values at .50 for CC, .55 for degree and .63 for k-Shell). Regarding RQ2,
this makes the CC comparable to the k-Shell index of a node.

Imprecision Function. Apart from using correlational measures and looking at the dis-
tribution of data points, focusing on the top n nodes, the imprecision function is applied
to all of the studied networks, in order to objectively evaluate the proposed measure
in comparison to the other measures. It was calculated for all of our generated net-
works at beta = 7. As can be seen in Fig. 6 very clearly, the errors decrease with
higher fwprob values, reflecting the observation described above and indicating that
the predictive value of all measures (the CC included) seems to increase when there
is a higher community structure. However,

with M = 0.18 (SD = 0.20) for the k-Shell

index, M = 0.10 (SD = 0.12) for degree and

M =0.15 (8D = 0.20) for community central-

ity, they are generally quite low, with the k- °*

Shell index showing the highest average error.
For the 107 network, the error values are espe-
cially low at .01 for degree, .02 for k-Shelland ..
.01 forthe CC. As there is no significant differ-
ence between the imprecision of our measure
and the imprecision of other measures for both
real and generated networks, the measures are
comparable (RQ2), while the low error values
additionally indicate the CC to be a good pre- Fig. 6. Results of the imprecision function
dictor for the spreading capability of a node for our generated networks.

(RQ1).

Measure
€ (k-Shell)
& (Degree)
@ & (Community Centrality)

& (Fwprob)

01 03 04
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5 Discussion

The aim of this paper is to contribute to research on spreading processes within com-
plex networks and identify properties which increase the efficiency of spreading. To
this end, a novel measure is introduced, from which inferences regarding the spreading
capability of single actors can potentially be drawn. Using link clustering [8] to infer
multiple community memberships of nodes, we evaluate and compare the measure to
other approaches. Generally, our results extend the understanding of the effect of struc-
tural properties of networks on information diffusion beyond centralities and k-shell and
show that the community centrality of a node is comparable in predicting its spreading
capability.

Descriptively, the average values of the measures indicate a comparability (RQ2):
Higher fivprob values and thus a higher community structure go along with higher k-
Shell indices, degrees and community centrality. The bivariate plots (Fig. 4) extend this
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with regard to predicting effective spreaders, additionally hinting at a broad range of
degrees for a small range of community centralities. While the correlation shows less
so in comparison with the k-Shell indices for our generated networks, it does show
for the observed /07 network. There, high community centralities reflect less variance
in spreading capability, implying a more robust prediction. This is especially true for
the comparison between the CC and the k-Shell index, making it a good predictor in
our analysed real network (RQ1). The calculated correlations imply the comparability
of our measure, as it correlates with the other measures and also shows a medium-high
correlation with the spreading capability of a node - for both generated and real networks.
Judging from these correlations alone, regarding RQ1, this does also make the CC a
good predictor for effective spreaders, yet slightly less than the k-Shell index. However,
it should be noted that the expressiveness of correlations is limited in this case because of
long-tailed and different distributions of the variables. The high correlations between the
variables underline this further, as for example, our generated networks are scale free with
many nodes showing a low degree, and consequently, also a low community centrality.
Thus, in addition, the imprecision function focusing on the top n nodes is evaluated. The
results clearly show that the errors in predicting the most efficient spreaders decrease
when there are higher fivprob values and thus more community structure — for the CC
along with the other analysed measures. This is especially relevant, as it shows that
with regard to the results of the imprecision function, our measure is not only a good
predictor for efficient spreaders (RQ1), yet this predictive value increases when the
networks show more properties of real world networks with communities and heavy-
tailed degree distributions. This is also reflected by the results for the 107 network and
additionally undermined by the generally small error values. In our analysed networks,
error values were even slightly higher for the k-Shell index than for the CC, exceeding
our RQ2 of comparability. In conclusion, the evaluations of the proposed measure show
its comparability to other measures, specifically the degree and the k-Shell index of a
node.

Certain things should be taken into account. For our generated networks with high
fwprob values and the /07 network, the mean spreading capability of the sample is
very high. This extreme right-skewness means, that many nodes show a high spreading
capability, and takes away possibilities to examine properties that lead to such high
spreading capability. Apart from that, due to computational constraints, the possibilities
of simulating the spreading processed in the networks were limited, resulting in capping
the size at 1000 nodes. Additionally, fwprob values greater than .40 resulted in networks
with more than 100,000 edges, also making the simulations computationally intensive. It
might therefore be possible that bigger networks or higher fivprob values show different
results —calling for future analyses with bigger networks. For our chosen real network, its
characteristics might have also influenced the metrics used for the conducted analyses.
Thus, other networks (real-world, computer-networks or networks with ground-truth
communities) should also be used for future analyses.

While we systematise the degree of real-world properties of the generated networks
by varying the fwprob values with which they are created, we do not systematise all
aspects of our analyses: There are aspects of our Julia implementation which we use to
simulate the spreading that are fixed, specifically the steps (fixed to 30) and the iterations
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(fixed to 10), and likewise the beta value at .7 (for the generated networks). Future studies
should also vary these fixed parameters and try to systematise them like the systematised
fwprob values in this paper. Additionally, the spreading capabilities obtained are also
not deterministic, that means they rely heavily on chance. It is therefore possible that
another run yields slightly different results.

Conclusion and Outlook. Our analyses and evaluations showed, that apart from the
k-Shell index and centralities, structural properties of the network can affect spreading
processes. To this end, community centrality, the examined measure, proved to be com-
parable in doing so. Along with the other analysed measures, the CC’s inferential value
increases, as the fivprob used to create the network with the forest fire algorithm [21]
increases — meaning that for increasing real-world and scale free properties of a graph,
the CC becomes better in predicting efficient spreaders. While the k-Shell index of a
node seems to be a better predictor for the spreading capability under certain conditions,
there might be applications in which the k-Shell index yields little inferential value or
where there are multiple outbreaks simultaneously. In this case, the community central-
ity might be used instead of the k-Shell index coupled with the distance between cores
[7]. This paper contributes to our understanding of the underlying processes through
offering another measure that can be used to infer the spreading capability of nodes,
and thus the efficiency of information diffusion due to structural properties of complex
networks. Due to factors that could have influenced the evaluations in the present paper,
future studies should further evaluate the measure, apply it to different contexts and
networks and possibly apply new evaluation metrics.
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