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Abstract. Fake news diffusion represents one of the most pressing issues
of our online society. In recent years, fake news has been analyzed from
several points of view, primarily to improve our ability to separate them
from the legit ones as well as identify their sources. Among such vast
literature, a rarely discussed theme is likely to play uttermost importance
in our understanding of such a controversial phenomenon: the analysis
of fake news’ perception. In this work, we approach such a problem by
proposing a family of opinion dynamic models tailored to study how
specific social interaction patterns concur to the acceptance, or refusal,
of fake news by a population of interacting individuals. To discuss the
peculiarities of the proposed models, we tested them on several synthetic
network topologies, thus underlying when/how they affect the stable
states reached by the performed simulations.
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1 Introduction

Nowadays, one of the most pressing and challenging issues in our continuously
growing and hyperconnected (online) world is identifying fake/bogus news to
reduce their effect on society. Like all controversial pieces of information, fake
news usually polarizes the public debate - both online and offline - with the side
effect of radicalizing population opinions, thus reducing the chances of reaching a
synthesis of opposing views. Moreover, such phenomena are usually amplified due
to the existence of stubborn agents, individuals that foster - either for personal
gain, lack of knowledge, or excessive ego - their point of view disregarding the
existence of sound opposing arguments or, even, debunking evidence. So far, the
leading efforts to study such a complex scenario was devoted to: (i) identifying
fake news, (ii) debunk them, (iii) identifying the sources of fake news, and (iv)
studying how they spread. Indeed, all such tasks are carriers of challenges as
well as opportunities: each costly, step ahead increasing out knowledge on this
complex phenomenon, a knowledge that can be applied to reduce its effect on
the public debate. Among such tasks, the analysis of how fake news diffuse is
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probably the most difficult to address. Even by restricting the analysis on the
online world, tracing the path of a content shared by users of online platforms
is not always feasible (at least extensively): it becomes even impossible when
we consider that such content can diffuse across multiple services, of which we
usually have only a partial view. However, we can argue that - in the fake news
scenario - it is important how a given controversial content spreads (e.g., how
different individuals get in touch with it) and how the population reached by such
content perceives it. Dangerous fake news cannot only reach a broad audience,
but it is also capable of convincing it of its trustworthiness. The latter component
goes beyond the mere spreading process that allows it to become viral: it strictly
relates to individuals’ perception, opinions that are formed not only to the news
content itself but also through the social context of its users.

In this work, moving from such observation, we propose a family of opin-
ion dynamics models to understand the role of specific social factors on the
acceptance/rejection of fake news. Assuming a population composed of agents
aware of a given piece of information - each starting with its attitude toward
it - we study how different social interaction patterns lead to the consensus or
polarization of opinions. In particular, we model and discuss the effect that stub-
born agents, different levels of trusts among individuals, open-mindedness and,
attraction/repulsion phenomena have on the population dynamics of fake news
perception.

The paper is organized as follows. In Sect. 2, the literature relevant to our
work is discussed. Subsequently, in Sect. 3, we describe the opinion dynamics
models we designed to describe and study the evolution of Fake news percep-
tion. In Sect. 4, we provide an analysis of the proposed models on synthetic net-
works having heterogeneous characteristics. Finally, Sect. 5 concludes the paper
by summarizing our results and underlying future research directions.

2 Related Works

We present the literature review by dividing this Section into two sub-
paragraphs: first, we try to characterize fake news, and we illustrate the main
areas of research for these. Then, we introduce opinion dynamics, and we describe
the most popular methods.

Fake News Characterization. Before examining the central studies in the lit-
erature on the topic of fake news, it is appropriate to define the term itself.
There is no universal definition of fake news, but there are several explanations
and taxonomies in the literature. We define “fake news” to be news articles
that are intentionally and verifiably false and could mislead readers, as reported
in [1]. Indeed, identifying the components that characterize fake news is an open
and challenging issue [2]. Moreover, several approaches have been designed to
address the problem of unreliable content online: most of them propose meth-
ods for detecting bogus contents or their creators. Focusing on the target of
the analysis involving fake news, we can distinguish different areas of research:
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creator analysis (e.g., bots detection [3]), content analysis (e.g., fake news iden-
tification [4]), social context analysis (e.g., the impact of the fake news and their
diffusion on society [5]).

Opinion Dynamics. Recently, opinion formation processes have been attracting
the curiosity of interdisciplinary experts. We hold opinions about virtually every-
thing surrounding us, opinions influenced by several factors, e.g., the individual
predisposition, the possessed information, the interaction with other subjects.
In [6], opinion dynamics is defined as the process that “attempts to describe
how individuals exchange opinions, persuade each other, make decisions, and
implement actions, employing diverse tools furnished by statistical physics, e.g.,
probability and graph theory”. Opinion dynamics models are often devised to
understand how certain assumptions on human behaviors can explain alterna-
tive scenarios, namely consensus, polarization or fragmentation. The consensus
is reached when the dynamic stable state describes the population agreement
toward a single and homogeneous opinion cluster; polarization describes a simul-
taneous presence of more than one, well defined, separated opinion clusters of
suitable sizes; finally, fragmentation corresponds to a disordered state with an
even higher set of small opinions’ clusters.

Agent-based modeling is often used to understand how these situations are
achieved. In these models, each agent has a variable corresponding to his opin-
ion. According to the way opinion variables are defined, models can be classified
in discrete or continuous models. Among the classic models, we can distinguish:
the Voter model [7], the Majority rule model [8], and the Sznajd model [9],
which are discrete models that describe scenarios in which individuals have to
choose between two options on a given topic (for example, yes/no, true/false,
iPhone/Samsung). For the continuous models, on the other hand, the most
prominent ones are the Hegselmann-Krause (HK) model [10] and Deffuant-
Weisbuch model [11] that describe the contexts in which an opinion can be
expressed as a real value - within a given range - that can vary smoothly from
one extreme to the other, such as the political orientation of an individual.

3 Fake News: Opinion Dynamic Modeling

To model opinion dynamics of fake news perception, we assume a scenario in
which a set of agents shares their position w.r.t a given piece of news (that we
assume to be bogus) posted on a social platform. Agents are allowed to interact
only with the contents posted by their friends, updating their point of view to
account for their distance in opinions. Thus, our effort is not in estimating how
the fake news spread but, conversely, in understanding how agents perceive them
as a function of the social environment that surrounds them.

Due to the peculiar nature of the phenomena we are analyzing - e.g., how fake
news is perceived by individuals and how such perception fosters their spread-
ing - we opted for a continuous modeling framework, extending the well-known
Hegselmann-Krause model.
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Fig. 1. Weight example. Opinion xi is influenced by the opinions of agents with the
opinion more similar to its opinion; e.g., the agents in the yellow elliptical. At the end
of the interaction, xi approaches the opinions of the agents with heavier weights (as
visually shown xi change of position).

Definition 1 (Hegselmann-Krause (HK)). The HK model considers N
agents - each one having an internal status representing its opinion in the con-
tinuos range [−1, 1] - that interact during discrete time events, T = {0, 1, 2, . . . }.
Agents can only interact if their opinions differ up to a user-specified threshold
ε, namely their confidence level. During each interaction event t ∈ T a random
agent i is selected and the set Γε(i) of its neighbors j whose opinions differ at
most di,j = |xi(t)−xj(t)| ≤ ε is computed. Leveraging Γε(i), when selected, agent
i changes its opinion following the update rule:

xi(t + 1) =

∑
j∈Γε(i)

ai,jxj(t)
∑

j∈Γε(i)
ai,j

(1)

where ai,j is 1 if i, j are connected by an edge, 0 otherwise. As an outcome, i’s
opinion at time t + 1 becomes the average of its ε-neighbors’ opinions.

The HK model converges in polynomial time, and its behavior is strictly related
to the expressed confidence level: the higher the ε value, the higher the number
of opinions clusters when model stability is reached.

Given its definition, the HK model does not consider the strength of the ties
of the agents. In a fake news scenario, we can suppose that when an agent i
reads a post on his Facebook wall concerning a news A the reliability attributed
from i to the content of the post is closely linked to the user that shared it - as
exemplified in Fig. 1. To adapt the HK model to include such specific information,
we extend it to leverage weighted, pair-wise, interactions.

Definition 2 (Weighted-HK (WHK)). Conversely from the HK model, dur-
ing each iteration WHK consider a random pair-wise interaction involving agents
at distance ε. Moreover, to account for the heterogeneity of interaction frequency
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among agent pairs, WHK leverages edge weights, thus capturing the effect of dif-
ferent social bonds’ strength/trust as it happens in reality. To such extent, each
edge (i, j) ∈ E, carries a value wi,j ∈ [0, 1]. The update rule then becomes:

xi(t + 1) =

{
xi(t) + xi(t)+xj(t)wi,j

2 (1 − xi(t)) if xi(t) ≥ 0
xi(t) + xi(t)+xj(t)wi,j

2 (1 + xi(t)) if xi(t) < 0
(2)

The idea behind the WHK formulation is that the opinion of agent i at time
t + 1, will be given by the combined effect of his previous belief and the average
opinion weighed by its, selected, ε-neighbor, where wi,j accounts for i’s perceived
influence/trust of j.

Moreover, we can further extend the WHK model to account for more com-
plex interaction patterns, namely attractive-repulsive effects.

Definition 3 (Attraction WHK - (AWHK)). By “attraction”, we identify
those pair-wise interactions between agents that agree on a given topic. At the end
of the interaction, agent i begins to doubt his position and to share some thoughts
of j. For this reason his opinion will tend to approach that of his interlocutor,
so dij(t) > di,j(t + 1).

After selecting the pair of agents i and j, the model has the following update
rule:

xi(t + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(t) − sumop

2 (1 − xi(t)) if xi(t) ≥ 0, xj(t) ≥ 0, xi(t) > xj(t)
xi(t) + sumop

2 (1 − xi(t)) if xi(t) ≥ 0, xj(t) ≥ 0, xi(t) < xj(t)
xi(t) + sumop

2 (1 + xi(t)) if xi(t) < 0, xj(t) < 0, xi(t) > xj(t)
xi(t) − sumop

2 (1 + xi(t)) if xi(t) < 0, xj(t) < 0, xi(t) < xj(t)
xi(t) − sumop

2 (1 − xi(t)) if xi(t) ≥ 0, xj(t) < 0, sumop > 0
xi(t) + sum,op

2 (1 − xi(t)) if xi(t) ≥ 0, xj(t) < 0, sumop < 0
xi(t) + sumop

2 (1 + xi(t)) if xi(t) < 0, xj(t) ≥ 0, sumop > 0
xi(t) − sumop

2 (1 + xi(t)) if xi(t) < 0, xj(t) ≥ 0, sumop < 0
(3)

where sumop = xi(t) + xj(t)wi,j.

The used criterion is always the same: the new opinion of i is the result of the
combined effect of his initial opinion and that of the neighbor j, but each case
applies a different formula depending on whether the opinions of i and j show
discordant or not, so we can guarantee that the difference between the respective
opinions is reduced after the communication.

However, when observing real phenomena, we are used to identifying more
complex interactions where individuals influence each other despite their initial
opinions, getting closer to the like-minded individuals and moving apart from
ones having opposite views.

Definition 4 (Repulsive WHK - (RWHK)). This circumstance is called a
“repulsion”: two agents’ opinions will tend to move them apart. Consider the
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situation where agent i communicates with j with an opposite belief. At the end
of the interaction, i will continue to be more convinced of his thoughts and his
new opinion will be further away from that of j. So, when the communication
between the two agents ends, the opinion of i will move away from that of j by
following:

xi(t+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(t) + sumop
2 (1 − xi(t)) if xi(t) ≥ 0, xj(t) ≥ 0, xi(t) > xj(t)

xi(t) − sumop

2 (1 − xi(t)) if xi(t) ≥ 0, xj(t) ≥ 0, xi(t) < xj(t)
xi(t) − sumop

2 (1 + xi(t)) if xi(t) < 0, xj(t) < 0, xi(t) > xj(t)
xi(t) + sumop

2 (1 + xi(t)) if xi(t) < 0, xj(t) < 0, xi(t) < xj(t)
xi(t) + sumop

2 (1 − xi(t)) if xi(t) ≥ 0, xj(t) < 0, sumop > 0
xi(t) − sumop

2 (1 − xi(t)) if xi(t) ≥ 0, xj(t) < 0, sumop < 0
xi(t) − sumop

2 (1 + xi(t)) if xi(t) < 0, xj(t) ≥ 0, sumop > 0
xi(t) + sumop

2 (1 + xi(t)) if xi(t) < 0, xj(t) ≥ 0, sumop < 0

(4)

with sumop = xi(t) + xj(t)wi,j.

Once again, we proceed for cases, each of which defines a particular situation
given by the sign of agents’ opinions. The updated opinion of i will ensure that
di,j(t) < di,j(t + 1).

Indeed, AWHK and RWHK can be combined to obtain a comprehensive
model that accounts for both behaviors.

Definition 5 (Attraction-Repulsion WHK - (ARWHK)). To model the
attraction and repulsion of opinions, during each iteration an agent i is randomly
selected along with one of its neighbors, j - not taking into account the ε threshold.
Once identified the pair-wise interaction, the absolute value of the difference
between the opinions of i and j is computed. If such a value is lower than ε
AHK is applied to compute xi(t + 1), otherwise RHK. If the difference between
xi(t) and xj(t) exceeds ε then the repulsive interaction occurs and the update
rule 4 is applied.

The ARWHK model allows us to describe several complex scenarios and, among
them, the changes of mind that individuals experience when confronted with a
piece of news, either fake or not, shared by a trusted/trusted peer.

However, such a model still does not consider the existence of stubborn indi-
viduals - e.g., agents having fixed opinions that, despite communicating with
neighboring ones, are not subject to external influence acting to influence their
peers. Stubborn agents are representative of different types of individuals and
are used to model those who spread misinformation.

This type of agent can correspond to prominent individuals in society, such
as media, companies, or politicians. [12] and [13] are among the first studies in
which the presence of this type of agent has been introduced. In the former, the
system behavior is studied on homogeneous graphs for mean-field approximation;
in the latter, there is an analysis based on the average of random networks and
the mean-field approximation.
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To integrate this idea into the model presented above, we add a binary flag
to each agent to denote it as “stubborn” or not. The update rule changes are
then straightforward: if the randomly selected agent is a stubborn one, he will
not update his opinion and, therefore, xi(t) = xi(t+1); otherwise, the previously
discussed update strategy is applied.

4 Experimental Analysis

This Section describes the performed experimental analysis, focusing on its main
components: the selected network datasets, the designed experimental protocol,
and the obtained results. To foster experiments reproducibility, the introduced
models have been integrated within the NDlib1 python library [14].

Datasets. We simulate the AWHK and ARWHK models on three scenarios:
(i) mean-field (e.g., complete graph), (ii) random network, and (iii) scale-free
network. In all scenarios, since we are not interested in studying the proposed
models’ scalability, we set the number of nodes to 100. Moreover, due to lack
of space, we show the results obtained only for the networks generated with the
following parameter setup: (i) Random network (Erdös and Rényi) [15], p = 0.4;
(ii) Scale-free network (Barabasi-Albert) [16], m = 3.

To simulate a more realistic mesoscale network topology (e.g., presence of
communities), we also tested the model against a network generated through
the LFR benchmark [17]. The LFR graph is composed by 300 nodes, assigned to
4 non overlapping communities. The parameters used for its construction have
been set as follows: (i) power law exponent for the degree distribution, γ = 3;(ii)
power law exponent for the community size distribution, β = 1.5; (iii) fraction
of intra-community edges incident to each node, μ = 0.1; (iv) average degree of
nodes, < k >= 7; (v) minimum community size mins = 40.

Analytical Protocol. The proposed model is analyzed while varying the
bounded confidence, ε, and the percentage of stubborn agents in the network.
The simulation results are then discussed through opinion evolution plots rep-
resenting the evolution through each agent’s opinion.

Results. We report the results obtained by AWHK and ARWHK on the pre-
viously described synthetic scenarios and, after that, we discuss the impact of
community structure on them. Edge weights, representing trust values among
agent pairs, are drawn from a normal distribution.

Attraction & Stubbornness. Figure 2 shows the results obtained by AWHK on
the scale-free network for different values of ε while maintaining constant the
percentage of stubborn agents (90% of the individuals assume and maintain a
positive opinion). Different colors represent the agent’s initial opinion (positive,

1 NDlib: Network Diffusion library. https://ndlib.readthedocs.io/.

https://ndlib.readthedocs.io/
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Fig. 2. Effect of the stubborn agents varying epsilon on scale-free network in the
AWHK model. Stubborn population opinion evolution lines are omitted.

negative, or neutral). We can observe that in the selected scenarios, the increase
of the bounded confidence interval results in a more chaotic regime, character-
ized by a subset of agents whose opinions heavily fluctuates toward the critical
mass introduced by the stubborn agents. The presence of stubborn agents affects
opinions’ evolution since they act as pivots for those open to change their minds.
We executed the same simulation varying the percentage of stubborns and the
set of initial stubborns’ opinion. As expected, we observed a similar result when
stubborns are tied to negative opinions and even a more chaotic regime when
such class of agents equally distributes over the opinion spectrum (we do not
report the figures for limited space). So stubborns act as persuaders, bringing
the opinion of the population closer to theirs. The higher their number, the more
evident appears their action on the remaining population. As previously stated,
Fig. 2 reports the results observed in a scale-free scenario: however, our experi-
mental investigation underlines that the observed trends can also be identified
in random and mean-field scenarios (with a significant reduction of the chaotic
regime due to the more regular topological structure).

Attraction/Repulsion & Stubborness. Figure 3 shows the simulation results
obtained while introducing repulsion between the interacting subjects - as
defined in the ARWHK model - while maintain constant the percentage of stub-
born agents (30% of the individuals assume and maintain a negative opinion).
In these settings, the overall observed while running the simulation on the scale-
free network is different from what happens in the random one. In the former
(highlighted in the first row of Fig. 3), we observe a fragmentation in three clus-
ters of opinions, with the central group (the one generated by the attractive
interactions), which tends to disappear by increasing the confidence parameter.
In latter, when the ε value increases, the opinion groups tend to converge into a
single one, obtaining a situation very similar to consensus. We can thus observe
how the more complex scenario described by ARWHK results in more erratic
behaviors. An extensive analysis of simulation results underlines that ε acts as a
razor that implicitly separates the probability of observing either attractive or
repulsive pair-wise interactions: low ε values will favor the application of RWHK
- thus leading to a more fragmented equilibrium - while higher ones will results in



378 C. Toccaceli et al.

Fig. 3. Effect of the stubborn agents varying epsilon on scale-free (first row) and
random network (second row) in the ARWHK model. Stubborn population opinion
evolution lines are omitted.

a more likely application of AWHK - thus leading to consensus. However, disre-
garding the network topology simulating the social tissue, ARWHK convergence
will require a higher number of iterations than the previously analyzed models.
Moreover, even when accounting for repulsive behaviors, stubborn agents play
an important role in the opinion dynamics. Our experiments suggest that their
presence (i) foster the repulsive behavior for lower values of ε (thus increasing
opinion fragmentation) and, (ii) slow-down the convergence process to a neutral
opinion for higher values of such parameter.

Community Structure. To better underline node clusters’ effect to the unfold-
ing of the opinion dynamic process, we report network visualization instead of
the previously adopted opinion dynamic plots. In such visualizations, nodes with
positive opinions are shown in red. In contrast, the ones with negative opinions in
blue: the darker the shade of colors, the more extreme opinion2. In this scenario,
we study the opinion spreading process while varying the number of stubborn
agents and the distribution of initial opinions in the network communities. As
a general remark, we observed that the stubborn agents’ effect plays a relevant
role only in the presence of high bounded confidence values and only when they
reach high critical mass. Such a behaviour can be explained by the modular

2 All images are taken from animations that reproduce the unfolding of the simulated
dynamic processes. Animations, as well as the python code to generate them, are
available at https://bit.ly/3jzp1Qs.

https://bit.ly/3jzp1Qs
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(a) (b) (c)

Fig. 4. Network visualizations. (a) Nodes initial conditions - three communities, two
prevalently negative (blue node), two positive (red nodes); (b) AWHK final equilibrium;
(c) ARWHK final equilibrium.

structure of the analyzed network that acts as boundaries for cross-cluster dif-
fusion. The network topologies considered in this analysis are exemplified in the
toy example of Fig. 4, that we will use to summarize the observed outcomes of
our analysis. Such a particular case study describes a setup in which network
nodes are clustered in four loosely interconnected blocks - two composed by
agents sharing opinions in the negative spectrum, the others characterized by
an opposite reality. In Fig. 4(a), we report the initial condition shared by two
simulations (one based on AWHK, the other on ARWHK) that will be further
discussed. Both simulations assume the same value for ε = 0.85 and a fixed set of
stubborn agents (e.g., the 6 less community embedded nodes - namely, the ones
with the higher ratio among their intra-community degree and their total degree)
- which are prevalently allocated to the bigger negative (blue) community. While
performing a simulation that involves attraction, using AWHK, we can observe
how the resulting final equilibrium (Fig. 4(b)) converges toward a common spec-
trum. In particular, in this example, we can observe how stubborn agents can
make their opinion prevail, even crossing community boundaries. Indeed, such
a scenario can be explained in terms of the prevalence of negative stubborn
agents and the relative size of the negative communities (covering almost 3/5
of the graph). Conversely, when applying the ARWHK model, we get a com-
pletely different result, as can be observed in Fig. 4(c). Two strongly polarized
communities characterize the final equilibrium. In this scenario, stubborns have
a two-fold role: (i) they increase the polarization of their community by radi-
calizing agents’ opinions and, (ii) as a consequence, make rare the eventuality
of cross-community ties connecting moderate agents, thus ideologically breaking
apart the population. While varying the models’ parameters, our experimen-
tal analysis confirms the results obtained on the scale-free and random graphs:
well-defined mesoscale clusters prevalently slow-down convergence in case of a
population-wide agreement while accelerating the process of fragmentation.
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5 Conclusion

In this paper, we modeled the response of individuals to fake news as an opin-
ion dynamic process. Modeling some of the different patterns that regulate the
exchange of opinions regarding a piece of given news - namely, trust, attrac-
tion/repulsion and existence of stubborn agents - we were able to drive a few
interesting observations on this complex, often not properly considered, context.
Our simulations underlined that: (i) differences in the topological interaction
layer reflect on the time to convergence of the proposed models; (ii) the presence
of stubborn agents significantly affects the final system equilibrium, especially
when high confidence bounds regulates pair-wise interactions; (iii) attraction
mechanisms foster convergence toward a common opinion while repulsion ones
facilitate polarization.

As future work, we plan to extend the experimental analysis to real data
to understand the extent to which the proposed models can replicate observed
ground truths. Moreover, we plan to investigate the effect of higher-order inter-
actions on opinion dynamics, thus measuring the effect that peer-pressure has
on the evolution of individuals’ perceptions.

Acknowledgment. This work is supported by the scheme ‘INFRAIA-01-2018-2019:
Research and Innovation action’, Grant Agreement n. 871042 ‘SoBigData++: European
Integrated Infrastructure for Social Mining and Big Data Analytics’.

References

1. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J.
Econ. Perspect. 31(2), 211–36 (2017)

2. Zhang, X., Ghorbani, A.A.: An overview of online fake news: characterization,
detection, and discussion. Inf. Process. Manage. 57(2), 102025 (2020)

3. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: DNA-inspired
online behavioral modeling and its application to spambot detection. IEEE Intell.
Syst. 31(5), 58–64 (2016)

4. Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., Liu, Y.: Combating
fake news: a survey on identification and mitigation techniques. ACM Trans. Intell.
Syst. Technol. (TIST) 10(3), 1–42 (2019)

5. Visentin, M., Pizzi, G., Pichierri, M.: Fake news, real problems for brands: the
impact of content truthfulness and source credibility on consumers’ behavioral
intentions toward the advertised brands. J. Interact. Market. 45, 99–112 (2019)

6. Si, X.-M., Li, C.: Bounded confidence opinion dynamics in virtual networks and
real networks. J. Comput. 29(3), 220–228 (2018)

7. Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite sys-
tems and the voter model. Ann. Probab. 3, 643–663 (1975)

8. Galam, S.: Minority opinion spreading in random geometry. Eur. Phys. J. B-
Condens. Matter Complex Syst. 25(4), 403–406 (2002)

9. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod.
Phys. C 11(06), 1157–1165 (2000)

10. Hegselmann, R., Krause, U., et al.: Opinion dynamics and bounded confidence
models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3), 1–33 (2002)



Bounded Confidence, Stubborness and Peer Pressure 381

11. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among inter-
acting agents. Adv. Complex Syst. 3(01n04), 87–98 (2000)

12. Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev.
Lett. 91(2), 028701 (2003)

13. Wu, F., Huberman, B.A.: Social structure and opinion formation arXiv preprint
cond-mat/0407252 (2004)

14. Rossetti, G., Milli, L., Rinzivillo, S., Ŝırbu, A., Pedreschi, D., Giannotti, F.: NDLIB:
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