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Abstract. To enhance the intelligence of IoT devices, offloading suffi-
cient learning and inferencing down to the edge environment is promising.
However, there are two main challenges for applying the cloud generated
model in the edge environment. On the one hand, the input may vary
on dimensions or cover different situations that the cloud hasn’t met.
On the other hand, the model’s output might not satisfy the given user’s
personalized preference. To make full use of the cloud generated model in
the edge environment for accelerating personalized service provision, we
propose cloud-aided edge learning. Unlike current federated learning and
transfer learning, we focus on knowledge fusion in edge decision making
and try to build the supplement/correction model. We take the person-
alized service provision in a smart lighting system as an example, design
and implement the related deep reinforcement learning model, and take
experiments based on the data generated on the open software DAILux
to show our approach’s effectiveness and performance.

Keywords: Edge intelligence · Edge-cloud collaborated learning ·
Personalized service provision · Smart lighting · Deep Reinforcement
Learning (DRL)

1 Introduction

The Internet of Things (IoT) [3,20] enables all kinds of real-world objects (includ-
ing human beings) to be connected to the cyber world. Considering the char-
acteristics of human-in-the-loop, providing personalized IoT services efficiently
and transparently turns to be essential. Recently, applying machine learning to
speed up personalization becomes a promising way[22,36], which can extract
useful knowledge from interactions happening in the physical world to produce
proper reactions.

To process the continuously generated IoT data efficiently, it needs a pow-
erful data center with enough storage and computing resources. Although cloud
computing is an excellent platform to handle the enormous IoT data, push-
ing all the raw data to the cloud is inefficient in response latency, network
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bandwidth cost, and possible privacy concerns [8,23]. To solve these problems,
edge computing [28], also known as fog computing [4], is becoming the right solu-
tion and get more attention in both research and industry domain. By offloading
sufficient training and inferencing down to the edge environment, edge intelli-
gence would be enhanced to satisfy users’ personalized needs more efficiently
while protecting privacy [19,27,32,37]. Combining both cloud computing and
edge computing advantages to offer flexible edge-cloud collaboration gets more
attention [5,27,36].

Existing studies usually focus on the underlying mechanisms of edge-cloud
collaboration. However, there are more challenges to accelerate personalized ser-
vice provision through deep learning. For example, data achieved by the edge
node might be different from the generic dataset used to generate the global
model. It does not only refer to the differences in input dimensions but also
other situations occurring in the edge environment. Besides, different preferences
among edge nodes may cause conflicts during knowledge fusing [17,24].

To solve the above problems, we focus on reducing the edge computation
cost as much as possible by making full use of the global model and only learn
to deal with the inapplicable parts. Since the successful application of Deep
Reinforcement Learning (DRL) [6,9,16,30] in playing Atari and Go games, we
adopt DRL to realize efficient online learning. Taking the example of offering
comfortable, personalized illumination in a smart lighting system, we designed
and implemented the corresponding algorithms, generated data based on an
open software platform, DIALux, and tested our approaches’ effect. The main
contributions of this paper are as follows.

– We propose a cloud-aided edge reinforcement learning framework that sup-
ports downloading the global consensus model from the cloud center and fuses
it into the edge learning process.

– To enhance the efficiency and effect by applying the downloaded pre-trained
model, we put forward two integration strategies, i.e., input expansion strat-
egy and output correction strategy.

– We conduct a case study on smart lighting as an example and present the
proposed approach’s effects.

2 Background and Related Work

2.1 Edge-Cloud Collaboration

Among most current studies, virtualizing the resources and services over WAN
networks is the shared premises to combine cloud computing and edge comput-
ing. Researches such as Pcloud [11], CoTware [1], FocusStack [2], etc. emphasize
to virtualize resources of individual devices, edge nodes and cloud to build a dis-
tributed resource pool for supporting resource-limited front-end devices. While,
SpanEdge [26], CloudPath [21], ECHO [25], etc. focus on the data stream pro-
cessing across different layers seamlessly.
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These works establish an elastic data analysis environment. However, most
of them pay attention to leveraging resources on higher layers along the path
from front-end devices to cloud with fewer considerations on how these analy-
sis results will reflect behaviors provided on the front layers. Moreover, as pre-
sented in several works [28,29,34], most existing studies lack information sharing
among multiple stakeholders, while the sharing may help these edge nodes to
make smarter decisions. Thus, it is still challenging to support more diversified,
personalized, and delay-sensitive system behaviors in the edge environment.

2.2 Schemes for Edge-Cloud Collaborated Model Training

At present, research on improving computing power and effects based on edge-
cloud collaboration is still in its early stages [34]. There are three primary
schemes for edge-cloud collaborated training models.

1) Gradient sharing: Reduce the transmission size of a single model by compress-
ing the gradient, so that the model update results are transmitted frequently
and multiple times to make up for the lack of computing power of edge nodes
[10,12]. The training effect in the network is independent of the same and dis-
tributed data. As a result, the sharing effect of multi-edges in heterogeneous
networks with different data sets cannot be guaranteed.

2) Parameter sharing: The edge side conducts preliminary training of the model
and transmits the parameters to the parameter server. The parameter aggre-
gation method in the cloud improves the accuracy of the edge side model
[15,18]. This scheme can reduce the transmission volume. It also protects the
privacy and improves model accuracy, but in scenarios with high personaliza-
tion requirements, parameter aggregation still has challenges.

3) Data sharing: When it is necessary to collect the original data and perform
parameter aggregation or train directly on the parameter server, noise can
be added to the data on the edge side or privacy leakage can be reduced
by preprocessing [35]. Simultaneously, there are some methods to study how
to enhance the processing capabilities of edge nodes through algorithms or
model hardware [14,31].

Existing work focuses more on improving the efficiency of data analysis and
model training and protecting privacy. However, the issue of how to improve the
personalized intelligence at the edge through the edge-cloud collaboration still
needs further studies.

2.3 Fast Personalization by Federated Reinforcement Learning

Personalization aims to understand user behavior and adapting to it, which is cru-
cial for gaming, personal assistants, dialogue managers, etc. It is often time con-
suming, so a critical challenge of personalization is how to adapt to a new situ-
ation quickly. To make robots quickly adapt to the new environment by sharing
their experiences, Liu et al. [17] proposed the Lifelong Federated Reinforcement
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Learning (LFRL) architecture. Each robot learns to avoid some new types of
obstacles in the new environment through reinforcement learning. After obtain-
ing a private Q-network model, the robot will upgrade this model by fusing with
models submitted by other robots through federated learning. This work assumed
all agents make the same decision when they meet the same type of obstacle. How-
ever, different agents might prefer to make other decisions to adapt to their cur-
rent behavior. Zhou et al. [38] proposed a similar federated reinforcement learn-
ing framework by building a Multilayer Perception (MLP) to compute a global
Q-network output with all Q-network results. It also doesn’t consider to enable
agents to make personalized decisions.

Nadiger et al. [22] pay attention to personalization in the context of gaming.
They propose an overall architecture, including the grouping policy, the learning
policy, and the federation policy. By putting forward the grouping policy, this
approach can avoid the risk of adding irrelevant samples, which may increase
the personalization time while guaranteeing the model quality. Unlike the above
works, this approach solves the problem resulting from conflict samples by only
allowing similar agents to share data samples. However, as reinforcement learning
is a typical online learning algorithm, considering the latency of generating a new
shared model, directly updating the private model weights might overwrite some
new knowledge learned during the shared model updating.

To solve these problems, we propose cloud-aided edge learning to fuse shared
knowledge gained at the cloud to the edge. Unlike existing studies, we try to
avoid training the whole shared model by only focusing on different situations
to reduce edge computation as much as possible.

3 System Model for Cloud-Aided Edge Reinforcement
Learning

3.1 Basic Ideas of the Cloud-Aided Edge Reinforcement Learning

To provide satisfactory personalized services, it requires capturing users’ per-
sonalized explicit or implicit requirements by self-learning. Besides, considering
the influences from the external environment and the users’ changing prefer-
ences, the system should be able to adapt to these new situations to provide
better services. We propose a hybrid framework focusing on how to realize and
improve the self-learning and adaptive ability of an edge system. Figure 1 shows
the proposed edge-cloud collaborative framework.

We focus on two key aspects to achieve smarter automation, learning, and
adaptation.

1) How to share knowledge among different edge nodes with cloud assistance:
Single edge environments always face the data sparsity problem. For exam-
ple, lack of various states of weather, season, and system deployment. It is
necessary to share knowledge among different edge systems, which will enable
an edge system to make more smart decisions by taking advantage of the sit-
uations shared by others that haven’t already appeared but might happen in
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Fig. 1. The overview of collaboration for learning and adaptation in smart home sys-
tems between the edge node and the cloud.

the future. The offline learning part in Fig. 1 is in charge of sharing knowledge
among different edge nodes by parameter sharing.

2) How to utilize the historical experiences/knowledge generated on cloud in
making real-time decisions on edge nodes efficiently: Learning performed on
cloud is based on the historical data. Therefore, the resulting knowledge usu-
ally reflects past situations that may be outdated in current states. An appro-
priate mechanism is needed to integrate such historical experiences with fast
rules of the local environment to improve the accuracy of reactions gener-
ated by an edge decision-maker. The online learning part in Fig. 1 aims to
enhance real-time decision making by applying consensus achieved through
offline learning on the cloud.

3.2 Knowledge Fusion Strategies on Edge Nodes

As mentioned above, data achieved by the edge node might be different from the
generic dataset used to generate the pre-trained model, including differences in
either input dimensions or situations occurring in the edge environment. Besides,
different preferences among edge nodes may also be different from each other. To
cope with such various problems, we propose two knowledge fusion strategies to
accelerate edge personalized decision making, i.e., input expansion and output
correction.

The Input Expansion Strategy. As the global model and the local model
are trained based on different data samples, there may be some special states
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emerging in the edge environment that have not met by the cloud. In this case,
the global consensus model only captures part of the knowledge about the edge
environment. To complement the model to provide more accurate decisions, we
propose the input expansion strategy shown in Fig. 2. As shown in Fig. 2, the
current state will be sent to both the global consensus model and the local
private model as input. Then, the decision-maker will produce the final action
by integrating outputs of both the two models. Such fusing can be realized as
follows.

Fig. 2. The input expansion strategy.

H(x) =
N∑

i=1

wi ∗ hi(x) (1)

where, wi is the weight of the output hi(x), and N is the total number of models
participate in fusing.

Under the edge-cloud collaboration framework, both the global and the local
model might have some information not learned by the counterpart model. So
the setting of weights needs to balance the advantages of both parties. Assuming
that the accuracy of both parties is the same, the weights of the two are the same,
and the advantages of both parties can be guaranteed to be balanced. While, if
they have different degrees of accuracy, it is necessary to ensure that the model
with higher accuracy has a higher weight. For reinforcement-learning, we define
accuracy as the proportion of decisions resulted in a reward greater than zero
in all decisions. With this in mind, we define the following equation to compute
the weight wi based on the corresponding accuracy Acci.

wi =
Acci∑N
i=1 Acci

(2)

Considering the simplest situation that there are only one global model and one
local model, the value of N is 2.

On this basis, suppose the accuracy of the private model is Accedge, and the
accuracy of the global model is Acccloud. The corresponding model output value
formula is
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H(x) =
Accedge

Accedge + Acccloud
∗ hedge(x)

+
Acccloud

Accedge + Acccloud
∗ hcloud(x)

(3)

Initially, the edge model has just started training and is still in the process
of exploration. At this time, the accuracy of the local model should be set to
0 while the weight of the cloud model should be set to 1. After training for a
while, as the accuracy of the edge model improves, its weight, i.e. the value of
Accedge/(Accedge + Acccloud) will gradually increase.

The Output Correction Strategy. Because the global consensus model is
achieved by integrating, it contains user consensus with similar characteristics.
However, when the model is delivered to a given edge environment, it may not
be able to meet the preference of a specific user. To satisfy users’ personalized
usage habits and requirements, we need to modify the output of the global model
properly. To this end, we take the output of the global model as an additional
input in training the local personalized model, as shown in Fig. 3.

Fig. 3. The output correction strategy.

The corresponding algorithm is shown in Algorithm 1, which both accelerates
the training of the local model but also improves the effectiveness of the decision
making. Here, we only consider revising the final decision generated by the global
model.

4 Reinforcement Learning for Providing Personalized
Illuminance in Smart Lighting

Lighting plays a significant role in our daily lives. Generally, lighting includes the
use of both natural illumination in the form of daylight and electric illumination
provided by various light sources. Together with the flourishing of IoT, a new
generation of LED lighting systems are emerging, i.e., LED-based intelligent
lighting systems where LEDs are integrated with sensors and actuators to have
intelligence. For example, Philips Hue is a wireless lighting product, which can
cooperate with a range of smart devices such as Amazon Echo, Apple HomeKit,
Google Home, etc. to provide a convenient and comfortable way for occupants
to control and experience light.
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Algorithm 1. Collaborative algorithm by adjusting cloud model’s output.
Require:

The environment state, S =< Bright1, Bright2, Distance, T ime >;
User’s operation on the light, Icontrol

The globel model, Model1
Ensure:

The adjustment action to the light, Action;
1: Set the training episode to n;
2: for i = 1 to n do
3: Achieve the initial state S;
4: Set the max adjustment time to m;
5: for j = 1 to m do
6: Input S to Model1 and get the output o1;
7: Combine S and o1 to a new state S−;
8: Input the state S− into the local model Model2. Train the model and get the

output Action;
9: Perform the generated Action;

10: Achieve the next state S
′
;

11: Achieve use’s operation Icontrol;
12: Compute the Reward based on Icontrol;
13: Perform related iterative formula or loss function to optimize Model2.
14: Update the state to the next iteration, S = S

′
;

15: end for
16: end for

To enhance the quality of user experience, light control strategies need to be
more flexible and automatic. Thus, AI and data-mining technologies are widely
adopted to seek useful information on resident behavior and the state of the envi-
ronment for generating satisfactory reactions [7,13,24,33]. These approaches are
usually storing and analyzing the continuous human-system interactions during
the non-stop system running. Considering the successful application of DRL, we
adopt DRL to realize personalized illuminance setting.

According to the definition of reinforcement learning, we use a quadruple
< S,A, P,R > to represent a reinforcement learning model, where S represents
an environmental state, A represents an action, P represents a state transition
probability, and R represents a reward value.

In reinforcement learning, the state comes from the agent’s observation of
the environment. We suppose there are four sensors around a light, which are
two light sensors, one ultrasonic sensor, and one infrared sensor. Generally, the
infrared sensor is usually used to determine whether there is a person or not
to turn on or turn off the light. Thus, we only use the other three sensors
to construct the current state. Specifically, we define the state as a 4-tuple
< Bfeeling,Bnature,Distance, T ime >. We get the synthesized brightness (i.e.,
Blight) and natural light (i.e., Bnature) by the two light sensors. The distance
data (i.e., Distance) is obtained by the ultrasonic sensor and the Time is when
constructing the state values.
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For an LED, the action represents the adjustment of the lamp output by
the model. For simplicity, we only consider the brightness in this paper. There
should be two kinds of actions. One is a determined value of brightness or a
predefined gear. The other is one of the operations up, down, and hold.

Reinforcement learning needs to construct reward functions for training the
model. To achieve higher user satisfaction, we define the reward function as
follows.

r = α ∗ Rpositive +
∑

γi ∗ Rpositive + Icontrol ∗ Rnegative (4)

When the user moved to another place or the sunlight intensity changed, the
algorithm should generate a proper illuminance and set the light accordingly.
Whether the user adjusts the light manually after running the automated setting
is used as the feedback for training a DQN. In the above equation, Rnegative is the
negative feedback, which is collected if the user adjusts the light manually after
an automated adaptation. In other words, the algorithm didn’t find a satisfactory
brightness for the user. Similarly, if the user didn’t take any action after an
automated adaptation, it means the algorithm meets users expect. α is the times
that there is no user adjustment during an episode. γ is the reward decay rate
to decrease the reward if there is no manual adjustment. i is the continuous
times without manual adjustment in an episode, and Icontrol is the number of
manually adaptions.

5 Experiments

5.1 Dataset

We use the open software DIALux to generate a dataset for simulating the
training and decision making procedure. DIALux is a lighting design software,
which is a useful lighting calculation software. It can use all the lamps and
lanterns provided by the lamp manufacturers and add sunlight to the scene
according to actual calculation requirements. We set a 5.4 m * 3.6 m room in
DIALux with a window, a variable power lamp placed on a table in the center
of the room, as shown in Fig. 4. The light is 1.8 m away from the window and
0.85 m away from the ground. Taking the height of 0.85 m above the ground
as the daily working plane, people can obtain the light intensity of each point
on the working plane under different power under the influence of the current
sunlight.

When we set the present time is 8 am, Fig. 5 shows the brightness in the room.
The red point is the position of the light, and the blue line at the bottom is the
window’s position. We can find that light intensity around the lamp is about
300 lux, while the light intensity near the window is about 1367 lux. Different
conditions of the room can be obtained by adjusting the power of the table
lamp and the sunlight. Based on this basic dataset, we generate sequences to
simulate interaction procedures between different users and lamps under various
environments.
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Fig. 4. Data collection environment
setting in DAILux.

Fig. 5. Brightness value in the room.
(Color figure online)

5.2 Experimental Setup

To verify the effectiveness and performance of the proposed approach, we build
a three-layer neural network, an input layer, a fully connected layer and an
output layer, in which four neuron activation functions are set to Relu in the
input and the fully connected layer. Three neurons are set in the output layer,
and the activation function is linear. The distance, current sunlight intensity,
and current table light intensity are used as input of the neural network. The
three output values represent increasing the lamp power, decreasing the lamp
power, and keeping the power unchanged. The lamp power is adjusted through
the decision output of the neural network.

We ran the experiments on a PC with an Intel Core i7-7700HQ and 16G
RAM. DQN, the algorithm of the input expansion strategy, and the algorithm
of output correction strategy were used for experiments. Each algorithm trained
50 episodes, and each episode carried out 600 network interactions with humans.
It is known that people work in comfortable environments with an illumination
of about 300 lux. If the comprehensive illumination near the lamp does not reach
290 lux or more than 320 lux, the network will receive a negative reward of −1.
Otherwise, it will receive a positive reward of 1. Adjust the network through the
reward value obtained, and the upper limit of the positive reward obtained is
600. Initially, we apply the same network to train both the global model and the
local private model.

5.3 Experimental Results

Lab1: Comparison on Working in the Same Environment. First, we
compared the rewards of the proposed two strategies and a pure DQN model.
In this experiment, we train a DQN model as the global model and then fuse it
with a new private model which is start training from scratch. The results are
shown in Fig. 6.
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We can find that using these three algorithms all quickly obtain a higher
reward value. However, the reward value obtained by using pure DQN and train-
ing 50 episodes alone does not exceed 400. It means there are still some wrong
decisions in these episodes, which result in a low reward. To get a higher reward,
we need more episodes to train the model. On the contrary, both the input expan-
sion strategy and output correction strategy can get a high reward in a short
episode. The output correction strategy is better than the input expansion strat-
egy from the perspective of speed and stability. It’s because the global model is
achieved in the same environment as the private model. Thus, the global model
output can reach high rewards in most of the cases in the edge environment.
However, as initialization of the local model in the input expansion strategy
might bring more influences.

Lab2: Comparison on Satisfying Different Preferences. To compare the
performance of the two proposed knowledge fusion strategies, we first train the
global model with a target brightness between 290–320lux. At the same time,
the user in the local environment prefers the illumination between 350–380lux.
The results are shown in Fig. 7. From the results, we can see both strategies can
get a high reward quickly compared with using pure DQN, as shown in Fig. 6,
even though the global model is trained to get a different target brightness.

Lab3: Comparison on Training in Different Environments. To test the
performance for fusing models trained in a different environment, we train a
global model in the environment of around 8 am. Then, we try to fuse this
model by the proposed two fusion strategies to adapt to the environment of 8
pm. Figure 8 shows the accordingly results. It can be seen from the experimental
results that using the global model to perform auxiliary training on edge, both
the two strategies can achieve perfect results. In the output correction strategy,
the edge node needs to be adjusted briefly to adapt to the current night envi-
ronment. However, the input expansion strategy can get a higher reward in the
initial states.

5.4 Quantitative Comparison of the Performance of Different
Algorithms

We set the condition that if the algorithm gets a reward which greater than
450 within five consecutive episodes, it is stable enough to adapt to the environ-
ment. Then, by running the above experiments, we collect the time cost, average
training time, and memory size, as shown in Table 1.
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We can clearly find that the average iterations of only using DQN, which
is nearly ten times using either of the proposed strategies. In the latter two
groups of experiments, we can see the output correction strategy requires less
time than the input expansion strategy. While, from the perspective of memory
occupation, our strategies need a little more memory than only using DQN as
we need to load the global model.

(a) Pure DQN (b) Output Correction (c) Input Expansion

Fig. 6. Rewards comparison for applying models trained in the same environment.

(a) Output Correction (b) Input Expansion

Fig. 7. Rewards comparison for applying models trained for satisfying different pref-
erences.



Accelerate Personalized IoT Service Provision 81

(a) Output Correction (b) Input Expansion

Fig. 8. Rewards comparison for applying models trained in different environments.

Table 1. Quantitative comparison of performance of different algorithms.

Experiment Strategy Average
iterations

Time for
training

Memory
occupation

Lab 1 DQN 186 6 m10 s 0.2281 GB

Output correction 10 28 s 0.2301 GB

Input expansion 24 1 m19 s 0.2296 GB

Lab 2 Output correction 19 56 s 0.2303 GB

Input expansion 24 1 m13 s 0.2303 GB

Lab 2 Output correction 14 41 s 0.2310 GB

Input expansion 14 52 s 0.2307 GB

6 Conclusion

In this paper, we propose a cloud-aided edge reinforcement learning framework
and introduce two edge knowledge fusion strategies. As shown in the experi-
ments, the proposed approach can accelerate personalized service provision while
do not increase the memory occupation obviously. We present a case study on
applying the method in providing personalized illuminance services. The pro-
posed framework and strategies are also suitable for other applications. In our
future work, we will focus on identifying and describing the features of different
edge environments, which would better enhance the inference accuracy.
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