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Abstract. Many contemporary service-based systems follow the
microservice approach, particularly in DevOps or continuous delivery
contexts. They share a set of important tenets such as independent devel-
opment and deployment, high releasability, polyglot technology support,
and loose coupling. A number of best practices for microservice architec-
tures have been codified as patterns, which embody those tenets. How-
ever, no real-world microservices system can support all patterns and
practices well, but rather architectural decisions making trade-offs among
them are needed. Conformance to the patterns and practices selected in
such decisions is hard to ensure and assess automatically, especially in
large-scale, complex, and evolving systems. In this work, we propose a
model-based approach based on generic, technology-independent met-
rics, tied to typical architectural design decisions in the microservice
domain. With this approach we can measure conformance to the pat-
terns and related tenets. We demonstrate and assess the validity and
appropriateness of these metrics in performing an assessment of a sys-
tem’s conformance to patterns through statistical methods.

1 Introduction

Microservices architectures [10,19] structure an application as a collection of
autonomous services, modeled around a domain. They share a set of impor-
tant tenets such as development in independent teams, cloud-native technolo-
gies and architectures, polyglot technology stacks including polyglot persistence,
lightweight containers, loosely coupled service dependencies, high releasability,
end-to-end tracing and monitoring, and continuous delivery [9,10,19]. This work
examines ways to ensure architecture conformance to these microservice tenets
while applying established patterns and practices. That is, many architectural
patterns that reflect recommended “best practices” in a microservices context
have already been published in the literature [14,15,20]. Conformance to these
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patterns impacts how far a microservice system supports the desired microser-
vices tenets.

Unfortunately, as real-world, industrial microservice-based systems are usu-
ally highly complex, often highly polyglot, and rapidly changed and released
(see, e.g. [2,8]), an automatic or semi-automatic assessment of their pattern
conformance is difficult: real-world systems feature various combinations of these
patterns and different degrees of violations of the same. Different technologies
in various parts of the system implement the patterns in different ways, and
these implementations are continuously changing at a high pace. Making mat-
ters even more challenging, a high level of automation is required for complex
systems. While for small-scale systems of a few services, a manual assessment by
an expert is probably as quick and as accurate as an automated one, that is not
true for industrial-scale systems of several hundred or more services, which are
being developed by different teams or companies, evolving at different paces. In
that case, manual assessment is laborious and inaccurate, and a more automated
method would vastly improve cost-effectiveness. Another major challenge is that
no microservice system can support all microservice tenets well at once. Rather
the architectural decisions for or against a set of related patterns and practices
need to make a trade-off among the desired tenets and important other qual-
ity attributes [6,19]. Under these considerations, this paper aims to study the
following research questions:

– RQ1. How can conformance to the tenets embodied in microservice architec-
ture decision options (i.e. patterns and practices) be automatically assessed?

– RQ2. How well do measures for assessing decision options and their associ-
ated tenets perform?

– RQ3. What is a set of minimal elements needed in a microservice architecture
model to compute such measures?

Our approach to address these challenges is to define a set of metrics for
each microservice decision associated to the decision’s options, i.e. at least one
metric per major decision option. Based on a manual assessment of a small set of
models and model variants that is representative for the possible decision options
and option combinations of the studied decisions, we derive a ground truth. The
ground truth is established by objectively assessing whether each decision option
is supported. By combining the outcome of all options of a decision, we can
then derive an ordinal assessment of how well the decision is supported in each
model. We then use the ground truth data to assess how well the hypothesized
metrics can possibly predict the ground truth data by performing an ordinal
regression analysis. In this paper, we propose an architectural component model
based approach which uses only modeling elements that can be derived from the
system’s source code. For this reason, it is important to be able to work with a
minimal set of modeling elements, else it might be difficult to continuously parse
them from the source code.

To study the research questions we selected and modeled three major deci-
sions, which represent important aspects in architecting microservices. To illus-
trate our approach we selected by purpose very different aspects of microservices
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architecture, in particular: the decision for an external API, message persistence,
and end-to-end tracing. For each of these we hypothesized a number of generic,
technology-independent metrics to measure conformance to the respective deci-
sions. For the evaluation of these metrics, we modeled 24 architecture models
taken from the practitioner literature and assessed each of them manually regard-
ing its support of the patterns and practices contained in each decision. We then
compared the results in depth and statistically over the whole evaluation model
set. The results show that a subset of each decision related metrics are quite
close to the manual, pattern-based assessment.

This paper is structured as follows: Sect. 2 compares to related work. In
Sect. 3 we explain the decisions considered in this paper and the related pat-
terns/practices. Next, we describe the research methods and the tools we have
applied in our study in Sect. 4. In Sect. 5 we report how the ground truth data
for each decision is calculated. Section 6 introduces our hypothesized metrics.
Section 7 describes the metrics calculations results for our models and the results
of the ordinal regression analysis. Section 8 discusses the RQs regarding the eval-
uation results and analyses the threats to validity. Finally, in Sect. 9 we draw
conclusions and discuss future work.

2 Related Work

Much research has been conducted in collecting and systematizing microservice
patterns. For instance, Richardson [14] collected microservice patterns related
to major design and architectural practices. Zimmermann et al. [20] intro-
duce microservice API related patterns. Skowronski [15] collected best practices
for event-driven microservice architectures. Microservice fundamentals and best
practices are also discussed by Fowler and Lewis [9], and are summarized in
a mapping study by Pahl and Jamshidi [11]. Taibi and Lenarduzzi [16] study
microservice bad smells, i.e. practices that should be avoided (which would cor-
respond to metrics violations in our work).

Many of the works on service metrics today are focused on runtime proper-
ties (see e.g. [13]). A number of studies has used metrics to assess microservice-
based software architectures, e.g. [1,12,18], but each is focused on narrow sets of
architecture-relevant tenets (e.g. loose coupling), and no general approach for an
assessment across different microservice tenets exists. Pautasso and Wilde [12]
propose a composite, facet-based metric for the assessment of loose coupling
in service-oriented systems. Zdun et al. [18] study the independent deploy-
ment of microservices by defining metrics to assess architecture conformance
to microservice patterns, focused on two aspects: independent deployment and
shared dependencies of services. Bogner et al. [1] propose a maintainability qual-
ity model which combines eleven easily extracted code metrics into a broader
quality assessment. Engel et al. [3] also propose a method of using real-time sys-
tem communication traces to extract metrics on conformance to recommended
microservice design principles such as loose coupling and small service size.

These studies focus on treating microservice architectures as a question of
components and connectors, factoring in the technologies used, and producing
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assessments that combine different assessment parameters (i.e. metrics). Such
metrics, if automatically collected, can be utilized as part of larger assessment
models/frameworks during design and development time. Our work broadly fol-
lows the same approach, but extends it to different architecture tenets relevant
to microservice-specific design decisions. Once metrics can be checked automat-
ically, our approach can be classified as a metrics-based, microservice-specific
approach for software architecture conformance checking. In general, approaches
for architecture conformance checking are often based on automated extraction
techniques [5,17]. Techniques that are based on a broad set of microservice-
related metrics to cover multiple microservice tenets do not yet exist.

3 Background

External API Decision. One central decision in microservice-based systems
is how the external API is offered to clients. This is tightly coupled to the loose
coupling, releasability, independent development and deployment, and contin-
uous delivery tenets, as it determines the coupling between client and internal
system concerns. In some service-based systems, the clients can call into sys-
tem services directly, meaning high coupling and thus difficulties in releasing,
developing, and deploying the clients and system services independently of each
other. A better decoupling level might be reached through an API Gateway [14],
a pattern that describes a common entry point for the system through which all
requests are routed. It is a specialized variant of a Reverse Proxy, which covers
only the routing aspects of an API Gateway but not further API abstractions
such as authentication, rate limiting, and so on (see [20]). A variant of API
Gateway for servicing different types of clients (e.g., mobile and desktop clients)
is the Backends for Frontends pattern [14], which offers a fine-grained API for
each specific type of client. A variant where clients can call into system services
directly, but are still decoupled is API Composition [14], i.e. a service which can
invoke other microservices and provides an API for the connected services.

Inter-service Message Persistence Decision. In many business-critical
microservice systems, an important concern is that no messages get lost. This
concern directly influences the communication between services, and, depending
on which option is chosen, the coupling between services, their releasability, their
independent development and deployment, as well as their continuous delivery
are impacted. Many systems choose communication means that offer no inter-
service message persistence. Some patterns better support the related aspects of
the microservice tenets: The Messaging pattern [7] describes service communica-
tion, in which persistent message queuing is used to store a producer’s messages
until the consumer receives them. Many Stream Processing [15] components (e.g.
Apache Kafka) offer a very similar message persistence level. These solutions
offer optimal inter-service message persistence, in the sense that the technol-
ogy is designed for providing support for it. Some other solutions applied in the
microservice field can be used (or adapted) to support it: Interaction through a
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Shared Database, even though frowned upon with regard to other microservice
tenet aspects, supports some level of message persistence as well, but not the
automated support of Messaging. A more microservice-style technique that sup-
ports this level of database-based persistence is the combination of the Outbox
and the Transaction Log Tailing patterns [14] in which each service that sends
messages has an outbox database table. As part of the database transaction,
the service sends messages by inserting them into the outbox table. A message
relay component reads the outbox table and publishes the messages to a message
broker. Using the Event Sourcing pattern [14] every change to the state of the
system should be contained in an event object and stored sequentially in order
to be accessible over time. The events are persisted in an event store. This way
at least a temporary message persistence is achieved.

End-to-End Tracing Decision. Logging and monitoring are standard practices
for creating observability of microservices. As microservice architectures are used
for highly distributed and polyglot systems with complex interactions, many of
them go one step further and realize end-to-end tracing. It supports tracing and
monitoring tenets directly, as well as understandability concerns during indepen-
dent development and deployment, mastering complexity of highly decoupled ser-
vices, and thus indirectly releasability and continuous delivery. Like in the other
decisions, one option is to offer No Tracing Support. In contrast, Distributed Trac-
ing [14] is a method used to profile and monitor applications through recording
traces on the distributed components. It can either be supported on the microser-
vices of a system, on the gateways of a system, or on both. If both support Dis-
tributed Tracing, this is optimal, as all relevant traces in ingress, egress, and inter-
service communication can be recorded. If it is not supported, a lower level of
tracing and monitoring can be reached by routing the service communication
through a central component, such as a Publish/Subscribe or Message Broker com-
ponent [7]. This can also be achieved if all internal inter-service communication is
routed through the API Gateway, or if Event Sourcing or Event Logging [14,15]
are used, which store all events temporarily. None of the later techniques has the
same level of support as Distributed Tracing, but all of them can – with some pro-
gramming or manual effort – be used to reconstruct traces.

4 Research and Modeling Methods

4.1 Model Selection Methods

This study focuses on architecture conformance to microservice patterns and
practices. To be able to study this, we first performed an iterative study of
a variety of microservice-related knowledge sources, and we refined a meta-
model which contains all the required elements to help us reconstruct exist-
ing microservice-based systems. For problem investigation and as an evaluation
model set for eventually creating a ground truth for our study, we have gathered
a number of microservice-based systems, summarized in Table 1. Each of them
is either taken directly from a system published by practitioners (on GitHub
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and/or practitioner blogs) or a system variant adapted according to discussions
in the relevant literature. The systems were taken from 9 independent sources.
They were developed by practitioners with microservice experience, and they
provide a good representation of the microservices best practices summarized in
Sect. 3. We performed a fully manual static code analysis for those models where
the source code was available (i.e. 7 of our 9 sources; two were modeled based
on documentation created by the practitioners). The result is a set of precisely
modeled component models of the software systems (modeled using the tech-
niques described below). Variations were modeled to cover the complete design
space of our three decisions described in Sect. 3, according to the referenced
practitioner sources. Apart from the variations described in Table 1 all other
system aspects remained the same as in the base models. This resulted in a total
of 24 models summarized in Table 1. We assume that our evaluation models are
close to models used in practice and real-world practical needs for microservices.
As many of them are open source systems with the purpose of demonstrating
practices, they are at most of medium size, though.

Table 1. Selected models: size, details, and sources

Model ID Model size Description/Source

BM1 10 components
14 connectors

Banking-related application based on CQRS and event sourcing
(from https://github.com/cer/event-sourcing-examples)

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely
synchronous service invocations instead of event-based
communication

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely
asynchronous service invocations instead of event-based
communication

CO1 8 components
9 connectors

The common component model E-shop application implemented
as microservices directly accessed by a Web frontend (from
https://github.com/cocome-community-case-study/cocome-
cloud-jee-microservices-rest)

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service
with a message broker. Added support for Open Tracing. Added
an API gateway

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use
inter-service communication, but a shared database for accessing
product and store data. Added support for Open Tracing

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations,
databases per service, and an API gateway (from https://
codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-
it-to-docker-part-4-703c2b0dd269)

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API
gateway

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of
the API gateway

(contniued)

https://github.com/cer/event-sourcing-examples
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-part-4-703c2b0dd269
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Table 1. (contniued)

Model ID Model size Description/Source

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the
client and another subsystem routing all traffic via the API
gateway

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing
microservices and an API gateway for service-based API (from
https://microservices.io/patterns/microservices.html)

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event
sourcing internally

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one
service interactions

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based
interaction, a middleware-triggered identity service, databases per
service (4 SQL DBs, 1 Mongo DB, and 1 Redis DB), and
backends for frontends for two Web app types and one mobile app
type (from https://github.com/dotnet-architecture/
eShopOnContainers)

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API
gateway instead of event-based communication and one shared
SQL DB for all 6 of the services using DBs. However, no service
interaction via the shared database occurs

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API
gateway instead of event-based communication and one shared
database for all 4 of the services using SQL DB in ES1 However,
no service interaction via the shared database occurs

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly
linked to a Web UI (from https://github.com/jferrater/Tap-And-
Eat-MicroServices)

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API
composition and asynchronous interservice communication. Added
Jaeger-based tracing per service

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and
OpenCensus monitoring & Tracing for all but one services as well
as on the gateway (from https://github.com/
GoogleCloudPlatform/microservices-demo)

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event
sourcing, except for one service, and realizes the tracing on all
services

RM 11 components
18 connectors

Restaurant order management application based on SAGA
messaging and domain event interactions. Rudimentary tracing
support (from https://github.com/microservices-patterns/ftgo-
application)

RS 18 components
29 connectors

Robot shop application with various kinds of service
interconnections, data stores, and Instana tracing on most
services (from https://github.com/instana/robot-shop)

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases
per services from (https://www.nginx.com/blog/introduction-to-
microservices/)

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event
sourcing for all but one service interactions

https://microservices.io/patterns/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/microservices-patterns/ftgo-application
https://github.com/microservices-patterns/ftgo-application
https://github.com/instana/robot-shop
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/
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4.2 Metrics Definition, Ground Truth Calculation, and Statistical
Evaluation Methods

To measure conformance to the respective patterns and practices in the design
decisions from Sect. 3, we defined a set of metrics for each microservice decision
associated to the decision’s options, i.e. at least one metric per major decision
option. Based on the manual assessment of the models from Table 1, we derived
a ground truth for our study (the ground truth and its calculation rules are
described in Sect. 5). The ground truth is established by objectively assessing
whether each decision option is supported, partially supported, or not supported.
By combining the outcome of all options of a decision, we then derived an ordinal
assessment on how well the decision is supported in each model, using the scale:
[++: very well supported, +: well supported, o: neutral, −: badly supported,
−−: very badly supported]. Our scale does not assume equal distances (i.e. it
is not a Likert scale), but it assumes the given order. We then used the ground
truth data to assess how well the hypothesized metrics can possibly predict the
ground truth data by performing an ordinal regression analysis.

Ordinal regression is a widely used method for modeling an ordinal response’s
dependence on a set of independent predictors. For the ordinal regression analysis
we used the lrm function from the rms package in R [4].

4.3 Methods for Modeling Microservice Component Architectures

From an abstract point of view, a microservice-based system is composed of
components and connectors with a set of component types and a set of connector
types. Our paper has the goal to automate metrics calculation and assessment
based on the component model of a microservice system. That is, if the system
is manually modeled or the model can be derived automatically from the source
code, our approach is applicable. For modeling microservice architectures we
followed the method reported in our previous work [18]. All the code and models
used in and produced as part of this study have been made available online for
reproducibility1.

5 Ground Truth Calculations for the Study

In this section, we report for each of the decisions from Sect. 3 how the ground
truth data is calculated based on manual assessment whether each of the relevant
patterns is either Supported (S in Table 2), Partially Supported (P in Table 2),
or Not-Supported (N in Table 2). The ordinal results of those assessments are
then reported in the Assessments rows of Table 2.

Following the argumentation, which decision option explained in Sect. 3 has
which impact on the External API Decision related tenets, we can derive the
following scoring scheme for our ground truth assessment of this decision:

1 https://doi.org/10.5281/zenodo.3999477.

https://doi.org/10.5281/zenodo.3999477
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Table 2. Ground truth data

– ++: All client traffic is routed through an API Gateway or Backends for
Frontends.

– +: All client-connected services provide API Composition or only Reverse
Proxy capabilities.

– o: Some client traffic is routed through API Gateway or Backends for Fron-
tends.

– -: Some client-connected services provide API Composition or only Reverse
Proxy capabilities.

– --: All client traffic is directly connected to backend services and no API
Composition happens.

From the argumentation for the Inter-service Message Persistence Decision, we
can derive the following scoring scheme for our ground truth assessment:

– +: Message Brokers or a persistent Publish/Subscribe or Stream Processing
component are used for all inter-service communication.

– +: All interservice communication is persisted by some combination of partial
Message Brokers, persistent Publish/Subscribe, or persistent Stream Process-
ing or partial or full coverage with Shared Database, Event Sourcing, Out-
box/Transaction Log Tailing.

– o: A part of the interservice communication is persisted by partial cover-
age with Message Brokers, persistent Publish/Subscribe, or persistent Stream
Processing.

– -: A part of the interservice communication is persisted by partial coverage
with Shared Database, Event Sourcing, Outbox/Transaction Log Tailing.
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– --: None of the above is supported.

Finally, from the argumentation for theEnd-to-end Tracing Decision, we can
derive the following scoring scheme for our ground truth assessment:

– ++: Distributed Tracing is fully supported on all services and gateways.
– +: Distributed Tracing is fully supported on either the services or the gate-

ways.
– o: Distributed Tracing is partially supported or Event Sourcing/Event Logging

are fully supported.
– -: Publish/Subscribe, Message Broker, or Invocations Routed Via API Gate-

way are fully supported for service interactions or those patterns are partially
supported and at the same time Event Sourcing/Event Logging are supported.

– --: None of the above is supported.

6 Metrics

All metrics, unless otherwise noted, are a continuous value with range from 0 to
1, with 1 representing the optimal case where a set of patterns is fully supported,
and 0 the worst-case scenario where it is completely absent. For instance, in EC1
client traffic is partially routed through API Gateway resulting CCF = 0.25. The
metrics results for each model per decision metric are presented in Table 3.

6.1 Metrics for the External API Decisions

Client-side Communication via Facade utilization metric (CCF). This
metric returns the number of the connectors from Clients to Facade components
set in relation to the total number of unique Client connectors. This way, we can
measure how many unique client links are using the External API used by one
of the Facade components (i.e. offered through patterns such as API Gateway,
Reverse Proxy, Backends for Frontends).

CCF =
Number of Client to FacadeLinks

Number of UniqueClientLinks

In this metric (and in other metrics below), the number of unique client links
is defined as follows:

Number of UniqueClientLinks =
max{Number of FacadesLinked toClients,

Number of ClientsLinked to Facades}
+Number of Client toNon − Facade/Non − ClientLinks

As a result, the only decision option remaining is API Composition, for which
we formulated the APIC metric.
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API Composition utilization metric (APIC). In cases that a client is
directly connected to services, it is possible that these services offer an External
API shielding the interfaces of other services that are connected to them. That
is, a client can have access to a system service via other services. To detect such
cases, we count the routes from the client to system services via other services
and set this number in relation to the total number of system services. That gives
us the proportion of services that are accessible by clients via other services. We
then divide this number with the unique client links to estimate the proportion
of clients connected services which are possibly composing an External API using
API Composition.

APIC =

Number of Client to Services via other ServicesRoutes

Total Number of Services

Number of UniqueClientLinks

6.2 Metrics for Persistent Messaging for Inter-Service
Communication Decision

Service Messaging Persistence utilization metric (SMP). One important
aspect in services interconnections is the persistence of the exchanged messages.
We defined this metric to measure the proportion of the services interconnec-
tions that are made persistent through supporting technology (i.e. Messaging or
Stream Processing).

SMP =
Service InterconnectionswithMessaging or StreamProcessing

Number of Service Interconnections

Shared DataBase utilization metric (SDB). Although a Shared Database is
considered as an anti-pattern in microservices, there are many systems that use
it either partially or completely. The pattern might be beneficial for persistent
messaging, but definitely is not the optimal option. To measure its presence
in a system, we count the number of interconnections via a Shared Database
compared to the total number of interconnections. We note that for this metric,
our metrics scale is reversed in comparison to the other metrics, because here
we detect the presence of an anti-pattern: the optimal result of our metrics is 0,
and 1 is the worst-case result.

SDB =
Service InterconnectionswithSharedDB

Number of Service Interconnections

Outbox/Event Sourcing utilization metric (OES). Outbox and Event
Souring can ensure temporary message persistence. Our metric measures the pro-
portion of the interconnections with Outbox/Event Sourcing to the total number
of interconnections.

OES =
Service InterconnectionwithOutbox or Event Sourcing

Number of Service Interconnections
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6.3 Metrics for End-to-End Tracing Decision

SFT =
Services andFacades SupportDistributed Tracing

Number of Services andFacades

Service Interaction via Central Component utilization metric (SICC)
and Service Interaction with Event Sourcing utilization metric (SIES).
Distributed Tracing can be supported by routing the inter-service communication
via a central component (e.g. Publish/Subscribe, Message Broker and API Gate-
way). Since Event Sourcing also enables tracing by tracking the messages, we
distinguish between systems that support Event Sourcing (SIES), and systems
that do not (SICC).

SICC =
Service Interaction viaCentral Componentw/oEvent Sourcing

Number of Service Interconnections

Table 3. Metrics calculation results

Metrics BM1 BM2 BM3 CO1 CO2 CO3 CI1 CI2 CI3 CI4 EC1 EC2

External API

CCF 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.50 0.25 0.25

APIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.10 0.00 0.00

Persistent messaging for inter-service communication

SMP 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SDB 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

OES 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

End-to-end tracing

SFT 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

SICC 0.00 1.00 1.00 0.00 1.00 1.00 0.14 1.00 0.00 0.60 1.00 0.00

SIES 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Metrics EC3 ES1 ES2 ES3 FM1 FM2 HM1 HM2 RM RS TH1 TH2
External API

CCF 0.25 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.25 0.25

APIC 0.00 0.00 0.00 0.00 0.25 0.50 0.70 0.70 0.00 0.00 0.12 0.04

Persistent messaging for inter-service communication

SMP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.11 0.00 0.00

SDB 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.66

End-to-end tracing

SFT 0.00 0.00 0.00 0.00 0.00 1.00 0.90 0.90 0.14 0.62 0.00 0.00

SICC 0.00 0.60 0.45 0.45 0.00 0.00 0.00 0.00 1.00 0.11 0.00 0.00

SIES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.66
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SIES =
Service Interaction viaCentral ComponentwithEvent Sourcing

Number of Service Interconnections

7 Ordinal Regression Analysis Results

The metrics calculations for each model per each decision metric are presented
in Table 3. The dependent outcome variables are the ground truth assessments
for each decision, as described in Sect. 5 and summarized in Table 2. The metrics
defined in Sect. 6 are used as the independent predictor variables. The ground
truth assessments are ordinal variables, while all the independent variables are
measured on a scale from 0.0 to 1.0. The aim of the analysis is to predict the

Table 4. Regression analysis results

Intercepts/Coefficients Value Model p-value
External API
Intercept (≥Badly Supported) −3.5690 4.423828e−11
Intercept (≥Neutral) −4.5042
Intercept (≥Well Supported) −10.2692
Intercept (≥Very Well Supported) −15.7271
Metric Coefficient (CCF) 20.3552
Metric Coefficient (APIC) 18.1419
Persistent messaging for inter-service communication
Intercept (≥Badly Supported) −5.6344 2.002198e−09
Intercept (≥Neutral) −9.5937
Intercept (≥Well Supported) −11.2074
Intercept (≥Very Well Supported) −21.0398
Metric Coefficient (SMP) 94.5503
Metric Coefficient (SDB) 10.4199
Metric Coefficient (OES) 13.3840
End-to-end tracing
Intercept (≥Badly Supported) −35.4940 4.440892e−15
Intercept (≥Neutral) −53.7947
Intercept (≥Well Supported) −103.6085
Intercept (≥Very Well Supported) −135.5906
Metric Coefficient (SFT) 44.6971
Metric Coefficient (SICC) 94.1809
Metric Coefficient (SIES) 125.5634
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likelihood of the dependent outcome variable for each of the decisions by using
the relevant metrics.

Each resulting regression model consists of a baseline intercept and the inde-
pendent variables multiplied by coefficients. There are different intercepts for
each of the value transitions of the dependent variable (≥Badly Supported,
≥Neutral, ≥Well Supported, ≥Very Well Supported), while the coefficients reflect
the impact of each independent variable on the outcome. For example, a positive
coefficient, such as +5, indicates a corresponding five-fold increase in the depen-
dent variable for each unit of increase in the independent variable; conversely, a
coefficient of −30 would indicate a thirty-fold decrease.

In Table 4, we report the p-values for the resulting models, which in all cases
are very low, indicating that the sets of metrics we have defined are able to predict
the ground truth assessment for each decision with a high level of accuracy.

8 Discussion

8.1 Discussion of Research Questions

For answering RQ1 and RQ2, we suggested a set of generic, technology-
independent metrics for each microservice decision, and we associated at least
one metric to each major decision option. The ground truth is established by
objectively assessing how well a pattern and/or practice is supported in each
model, and extrapolating this to how well the broader decision is supported.
We formulated metrics to assess a pattern’s implementation in each model, and
performed an ordinal regression analysis using these metrics as independent vari-
ables to predict the ground truth assessment. Our results show that every set
of decision-related metrics can predict with high accuracy our objectively eval-
uated assessment. This suggests that automatic metrics-based assessment of a
system’s conformance to the tenets embodied in each design decision is possible
with a high degree of confidence.

Regarding RQ3, we can assess that our microservice meta-model has no
need for major extensions and is easy to map to existing modeling practices.
More specifically, in order to fully model our evaluation model set, we needed
to introduce 25 component types and 38 connector types, ranging from general
notions such as the Service component type, to very technology-specific classes
such as the RESTful HTTP connector, which is a subclass of Service Connector.
Our study shows that for each pattern and practice embodied in each decision
and the proposed metrics, only a small subset of the meta-model is required.
The decision External API requires to model at least the Service, Client, and
the Facade component types and the technology-related connector types (e.g.
RESTful HTTP, Synchronous Connector, HTTP, HTTPS). The Persistent Mes-
saging for Inter-Service Communication and End-to-End Tracing decisions need
a number of additional components (e.g. Event Sourcing, Stream Processing,
Messaging, PubSub) and the respective connectors (e.g. Publisher, Subscriber,
Message Consumer and Messages Producer) to be modeled.
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8.2 Threats to Validity

We deliberately relied on third-party systems as the basis for our study to
increase internal validity, thus avoiding bias in system composition and structure.
It is possible that our search procedures introduced some kind of unconscious
exclusion of certain sources; we mitigated this by assembling an author team
with many years of experience in the field, and performing very general and
broad searches. Given that our search was not exhaustive, and that most of the
systems we found were made for demonstration purposes, i.e. relatively modestly
sized, this means that some potential architecture elements were not included
in our meta-model. In addition, this raises a possible threat to external valid-
ity of generalization to other, and more complex, systems. We nevertheless feel
confident that the systems documented are a representative cross-cut of current
practices in the field, as the points of variance between them were limited and
well attested in the literature. Another potential threat is the fact that the vari-
ant systems were derived by the author team. However, this was done according
to best practices documented in literature. We made sure only to change specific
aspects in a variant and keep all other aspects stable.

Another potential source of internal validity threat is the modeling process
itself. The author team has considerable experience in similar methods, and the
models of the systems were repeatedly and independently cross-checked, but
the possibility of some interpretative bias remains: other researchers might have
coded or modeled differently, leading to different models. As our goal was only
to find one model that is able to specify all observed phenomena, and this was
achieved, we consider this threat not to be a major issue for our study. The
ground truth assessment might also be subject to different interpretations by
different practitioners. For this purpose, we deliberately chose only a three-step
ordinal scale, and given that the ground truth evaluation for each decision is
fairly straightforward and based on best practices, we do not consider our inter-
pretation controversial. Likewise, the individual metrics used to evaluate the
presence of each pattern were deliberately kept as simple as possible, so as to
avoid false positives and enable a technology-independent assessment. As stated
previously, generalization to more complex systems might not be possible with-
out modification. But we consider that the basic approach taken when defining
the metrics is validated by the success of the regression models.

9 Conclusions and Future Work

In this work we have hypothesized that it is possible to develop a method to
automatically assess microservices tenets in microservice decisions based on a
microservice system’s component model. We have shown that this is possible
for microservice decision models comprising patterns and practices as decision
options. Our approach first modeled the key aspects of the decision options
using a minimal set of component model elements (which could be automatically
extracted from the source code). Then we derived at least one metric per decision
option and used a small reference model set as a ground truth. We then used
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ordinal regression analysis for deriving a predictor model for the ordinal variable.
Our statistical analysis shows a high level of accuracy.

While so far many studies on metrics for component model and other archi-
tectures exist, the specifics of microservice architectures and their particular
tenets have not been studied. As discussed in Sect. 2, only using general met-
rics does not help much in assessing microservice architectures. Our approach
is one of the first that studies a metrics-based assessment of multiple, very dif-
ferent microservice tenets. Our main goal is a continuous assessment, i.e. we
envision an impact on continuous delivery practices, in which the metrics are
assessed with each delivery pipeline run, indicating improvements, stability, or
deteriorations in microservice architecture conformance. With small changes, our
approach could also be applied, during early architecture assessment.

As future work, we plan to study more decisions, tenets, and related metrics.
We also plan to create a larger data set, thus better supporting tasks such as
early architecture assessment in a project.
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