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Abstract. Retrieval of knowledge from short texts has attracted a lot
of attention these days as topic discovery from them can unearth hid-
den information. In many applications, such topics are needed to be
learned on the fly for streaming short texts. In this work we propose an
online topic discovery algorithm (OTDA) for short texts. It overcomes
the inability of short texts to capture word co-occurrence information
by adopting word-context semantic correlation through the skip-gram
view of the corpus, following the approach of semantics-assisted NMF
(SeaNMF) model due to Shi et al. This OTDA works with one data
point or one chunk of data points at a time instead of keeping the entire
data in the memory, and also admits the property of memorylessness.
We consider a couple of public data sets and an internal data set to
conduct experiments using one-pass and multi-pass iterations of the pro-
posed algorithm. The results show encouraging performance of OTDA
in terms of average Frobenius loss, Topic Coherence, Normalized Mutual
Information (NMI), and emerging topic detection.
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Non-negative matrix factorization (NMF) · Average frobenius loss ·
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1 Introduction

Lot of applications involving short texts need to possess the ability to learn
topics on the fly as new data points arrive in the context of an evolving system.
For example, consider the case when an organization tries to address the issue
of understanding customer feedback (which is typically short text) using topic
modeling. With the constant churning of feedback from customers it is not very
prudent to run the topic modeling algorithm on complete data on every update
(whenever a new feedback is collected). Also as an organization introduces new
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services and functionalities on the existing issues in their products/services, the
nature of user supplied feedback texts changes over time. To capture the thematic
content of evolving feedback materials an online topic modeling algorithm should
be in place that can give more importance to the current feedback than the
older feedback texts. Motivated by this, we propose an online topic discovery
algorithm (OTDA) for streaming short texts which incorporates word-context
semantic correlation learnt from the skip-gram view of the corpus much like the
semantics-assisted NMF (SeaNMF) model [19], with the adaptivity of forgetting
mechanism [5]. The SeaNMF model is solved using a block co-ordinate descent
(BCD) algorithm. The well known methods for solving BCD need to hold the
entire data matrix in the memory throughout the process of computation which
can be prohibitive in case of large amount of data sets. Although various online
NMF algorithms like the algorithm [6], have been proposed that can detect
latent factors and track their evolution with new data arrival, none of them
are suitable to be applied to short texts. To address this issue we incorporate a
variant of the online NMF algorithm of [21] in OTDA, grounded in the framework
of SeaNMF [19], to discover topics from very large scale/streaming short texts.

The OTDA algorithm works with one data point or one chunk of data points
instead of storing the whole data in the memory. Further it updates the topic
representation in an underlying space as well as context representation in terms
of words on arrival of new data stream, by employing Projected Gradient Descent
(PGD) algorithm in both the steps. Admission of context information improves
the quality of incremental topic modeling as it can capture the semantics of
the short text corpus based on word-document and word-context correlations,
thus overcoming the problem of lacking word co-occurrence in short texts. To
highlight the adaptivity of our learning algorithm we introduce a decay factor
that exponentially reduces the contribution of history data, thereby imposing a
forgetting (memorylessness) mechanism on the topic discovery process [5]. We
design experiments to investigate the effect of the forgetting mechanism, and
the results show that one needs to forget to adapt, that is, in absence of decay
parameters the quality of generated topics suffers (NMI values go down) as new
data points arrive, and richer topics are generated for streaming data when decay
factors are present.

Contribution of This Work. This work has contributed to the body of online
topic discovery in several ways. The topic learning incorporates word-context
semantic correlation from SeaNMF model, however, it uses the framework of
distributed clustering algorithm [22] without an increase in computational over-
head and memory requirements. This algorithm has noticeable speed-up as the
topic computation is done locally via a reduction in the memory footprint. Also
like other online applications, we allow memorylessness with our method by
introducing decay factors in the computation which causes the past history to
be forgotten at exponential rate and attaches more importance to the current
set of data. Extensive experimentation on real-life data sets produce interesting
results on metrics, such as average Frobenius loss, Topic Coherence, NMI and
emergent topic detection.
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Organization: The paper is organized as follows. In the next section (Sub-
sect. 1.1) we discuss the current literature related to this work. In Sect. 2 we
review background material on NMF concepts and related matters. We propose
our online topic discovery algorithm in Sect. 3. We discuss the data sets and the
metrics used for experimentation in Sect. 4 and 5 respectively. The results of the
experiments are furnished in Sect. 6. Finally we conclude in Sect. 7.

1.1 Related Work

Two groups of topic models are frequently employed to automatically extract
topical contents from the documents, generative probabilistic models such as
PLSA [10], LDA [3], and non-negative matrix factorization (NMF) [24]. They
normally work well for lengthy documents. However these techniques do not pro-
duce meaningful results for short texts as term document matrix is very sparse
which produces scarce word co-occurrence information and hence, generates poor
quality topics [7,19]. There are lot of methods proposed in recent times to tackle
this problem. These include aggregating short texts into pseudo-documents, and
extracting cross document co-occurrence [16,27] using internal semantic relation-
ship between words. While a pseudo-document generated in the first approach
may contain many irrelevant short texts, noise and bias can creep in due to
adoption of Wikipedia-centric notions of semantics in the second approach. To
alleviate these problems, Shi et al. have proposed a novel semantics-assisted
NMF (SeaNMF) model for short texts which incorporates word-context seman-
tic correlations learned from the skip-gram view of the corpus [19]. Rest of the
discussion on relevant prior art is divided into two parts, online topic discovery
and online NMF.

Online Topic Discovery. In one of the earlier work on online topic modeling
based on LDA Blei et al. [2] develop a family of probabilistic time series models
in order to analyze the time evolution of topics in documents. Another LDA-
based model is proposed in [23] to model a topic as a continuous distribution
over timestamps and the mixture distribution as a function of both word co-
occurrences and the document’s timestamp. AlSumait et al. [1] introduce a topic
modeling framework based on the LDA model to make it work in an online
fashion such that it incrementally builds an up-to-date model (mixture of topics
per document and mixture of words per topic) as a set of documents appear. The
authors [11] propose another online topic model for sequentially analyzing time
evolution of topic along multi-scales in a large collection of documents. Some
online topic models have been also proposed for short texts like tweet data, such
as [18] wherein the authors model the generation process of tweets by estimating
the ratio between topic words and general words for each user.

Online NMF. We do not come across any work which uses NMF to present
online topic model, hence we discuss few pieces of works related to online NMF.
Cao et al. have proposed an online NMF which finds two factor matrices to
approximate the whole data matrix [6]. Although it performs well in practice
it cannot be applied to large-scale or streaming data sets due to the memory
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limitations. Bucak and Gusel have proposed an incremental NMF [5] in which the
term topic matrix at (t+1)th step is updated on the arrival of (k +1)th sample.
It has been seen that this works well in practice but, it is time consuming as the
updation of rules have slow convergence. Zhou et al. has proposed another variant
of incremental NMF with volume constraint [26]. In [8] Guan and Tao propose
an efficient online NMF algorithm that learns NMF in an incremental fashion
using robust stochastic approximation. In [21] an online NMF algorithm has been
proposed for efficient document clustering for very large and streaming data sets.
The proposed algorithm in this paper is an improvement of this algorithm in the
sense that we consider word context correlation in the model and incorporate
decay factors that cause the past history to be forgotten at an exponential rate.

2 Basic NMF Model for Topic Discovery

In this section we discuss basic NMF method, its application to topic modeling
and the recently proposed SeaNMF method [19] for short texts.

Notation: Let R denote the set of real numbers (or reals), R+ the set of non-
negative real numbers and N the set of natural numbers. xxx ∈ R

n denotes an n-
dimensional vector of reals. 111K denotes a row vector of size 1 whose all elements
are 1. Also ‖xxx‖1 and ‖xxx‖2 denote the �1 and �2 norms of vector xxx respectively.
We use the notation X ∈ R

p×q to denote a matrix of real numbers having p
and q number of rows and columns respectively (or having dimension p × q).
We denote the elements of a matrix X ∈ R

p×q
+ as [xij ]{1≤i≤p,1≤j≤q}. We use XXXi·

and XXX ·j to denote the ith row vector and the jth column vector of matrix X. In
some cases the column vector XXX ·j will be also denoted as xxxj as before. Further
‖X‖2F denotes the sum of the squared elements in the matrix X (also called the
Frobenius norm). The zero matrix 000 has all zero entries with its dimension to be
read off from its context.

Basic NMF Model. The problem of Non-Negative Matrix Factorization
(NMF) deals with factoring a given matrix into two non-negative matri-
ces [13,24]. Given an input matrix X ∈ R

m×n
+ , an integer K � min(m,n),

NMF tries to solve a lower-rank approximation, X ≈ UVT . where U ∈ R
m×K
+

and V ∈ R
n×K
+ are factor matrices. This is done by considering the optimiza-

tion problem that minimizes the following objective function/loss function (also
called the error of approximation or the Frobenius loss):

min L(U,V)
(

=
1
2

∥∥X − UVT
∥∥2

F

)
, s.t.,U ≥ 0,V ≥ 0 (1)

Popular algorithms for solving the NMF problem with Frobenius loss as given
by Eq. 1 are Multiplicative Update Rule (MUA) [14], Blockwise Co-ordinate
Descent (BCD) [12], Projected Gradient Method (PGD) [15] to name a few. We
shall mainly adopt PGD [15] which follows alternative minimization principle.

Topic Discovery Using NMF. In topic modeling, X ∈ R
m×n
+ is called the

term-document matrix where we assume a given corpus with n documents and
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m terms. XXX ·l ∈ R
l
+ represents the l-th column vector of X, which corresponds

to the bag-of-words representation of document l with respect to m terms, pos-
sibly using TF*IDF weight after some pre-processing, and column-wise �2 nor-
malization. For solving the minimization problem in Eq. 1 one assumes a pre-
determined number of topics K.

Topic Modeling for Short Texts Using NMF. As short texts are sparse
and consists of only a few terms many unrelated documents may lead to biased
relationship between terms resulting in poor clustering (and topic extraction).
Moreover, most of the algorithms for solving NMF fail to appropriately discover
the relationship between terms and their contexts. To overcome this problem
the authors in [19] propose a novel semantics-assisted NMF (SeaNMF) model to
learn topics from short texts.

The SeaNMF approach is based on the idea that terms are dependent on
contexts as they appear around them. Towards this the authors define term-
context correlation matrix R [19] using Skip-gram view of the corpus in the
presence of an M -dimensional context vector ccc:

rij = max
[
log

(
#(ti, cj)

#(ti) · p(cj)

)
− log κ, 0

]
, 1 ≤ i ≤ m, 1 ≤ j ≤ M (2)

We use V to denote the the overall vocabulary of terms and contexts. The nota-
tion #(ti, ci) denotes the number of times ti appears with context ci in text
corpora. Further #(ti) =

∑
cj∈V

#(ti, cj) and #(cj) =
∑

ti∈V
#(ti, cj) represent

the number of times ti and cj occur in all possible term-context pairs respec-
tively, and κ is the number of negative samples. Finally, p(cj) is a unigram
distribution for sampling a context cj defined as p(cj) = #(cj)∑

cj∈V
#(cj)

. There are

a few techniques to specify the sliding window for a context [19]. For example,
each document can be selected as a window of context [19] for a term in short
text corpus or it can be a long pseudo-text obtained by aggregating short texts
belonging to a cluster. A fixed size window of neighboring words can act as a
context for a word, and so on.

Finally, SeaNMF proceeds in two step. In the first step the term-context cor-
relation matrix R is factored into two matrices, term-topic matrix U ∈ R+

m×K

and another newly introduced matrix context topic matrix Uc ∈ R+
M×K . In

the second step the term document matrix X ∈ R
m×n
+ is factored along with

the term-topic matrix to obtain the document-topic matrix V ∈ R
n×K
+ (some

sparsity constraint may be imposed on X in the process). For details the reader
is advised to consult [19].

The computational complexity of SeaNMF for short texts is same as the
computational complexity of standard NMF [12] using MUA or BCD method and
is equal to O(nmK) for single iteration and O(TnmK) for T iterations (assuming
K � min(n,m)). However, as R and X are sparse matrices the authors conclude
that the complexity of the SeaNMF model using BCD is O(zK) (O(TzK)) for
single (T ) iteration(s), where z = max (zR, zX), and zR and zX are the non-
zero elements in the matrices R and X respectively, max (zR, zX) � mn and



568 S. Roy et al.

K � min(m,n), which is less expensive than the standard NMF. Further it
is required to hold the matrices X and R at a storage cost of O(mn) in the
SeaNMF model.

3 Proposed Online Topic Modeling for Short Texts

We propose an online Topic Discovery (OTDA) algorithm that updates the
matrices U,Uc and V by adding the effects of subsequent samples in an incre-
mental fashion.

3.1 An Incremental Form of NMF

Note the loss function in Eq. 1 can be decomposed as [12]:

L(U,V) =
∥∥X − UVT

∥∥2

F
=

n∑
j=1

∥∥∥X·j − UV·jT
∥∥∥2

F
=

n∑
j=1

‖xxxj − Uvvvj‖2F (3)

Consider the problem of generating K topics from the data set. The term
topic matrix will look like U = [uuu1 · · ·uuuK ] which represents each topic as the
weighted combination of terms. Further vvvj = [gj1 · · · gjK ]T are the reconstruction
weights of xxxj from these representatives.

When U is fixed, the minimum value of L(U,V) is reached if and only if
the cost function L(U, vvvj) = ‖xxxj − Uvvvj‖2F is minimized for all j, 1 ≤ j ≤ n.
Thus, one solves independent Non-negative Least Squares (NNLS) problems of
the form,

min
vvvj≥0

‖xxxj − Uvvvj‖2F , j = 1, 2 . . . n (4)

and aggregate the solution as V = [vvv1 · · ·vvvn].

3.2 Computing Document Representations

In this step we let the topic representation U to be fixed. We solve the optimiza-
tion problem in Eq. 5 to compute vvv(t):

min
1
2

(∥∥∥xxx(t) − Uvvv(t)
∥∥∥2

F
+ λ

∥∥∥vvv(t)
∥∥∥2

1

)
s.t., vvv(t) ≥ 0,U is given (5)

where λ > 0 is a constant. We also impose the sparsity on vvv(t) by adding a
suitable �1 norm on it. The NNLS problem given by Eq. 5 is the so-called Lasso
problem [20] which can be solved using Projected Gradient (PGD) [15] with the
gradient computed as: ∂L(t)

∂vvv(t) = −(xxx(t))
T
U + (Uvvv(t))

T
U + λ111T

K .
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3.3 Solving for Context Representation

In this step we try to compute the context representation of term in an incremen-
tal fashion. We assume that the M -dimensional context vector ccc(t) is available
at time instant t, this can be invariant with time or can be learned incrementally
as new samples arrive, e.g., it can be learned online as a cluster of data points
for streaming data [25]. Thus at time point t we can compute the term context
correlation matrix R(t) with the aid of current context information ccc(t) using
Eq. 2.

Now we solve for the underlying representation of context in the form of
context-topic matrix U(t)

c by minimizing the following cost function in Eq. 6
keeping U as constant. Also below, we impose the condition that the computed
U(t)

c will be dense by using a �2-regularization term for it, where β > 0 is a con-
stant. Again this NNLS can be solved using a standard optimization algorithm.

1
2

∥∥∥R(t) − U(U(t)
c )T

∥∥∥2

F
+ β

∥∥∥U(t)
c

∥∥∥2

F
s.t., U(t)

c ≥ 0, U is given (6)

3.4 Updating Topic Representations

The topic represented in the form of term-topic matrix U is updated in this
step. At time instant t, as xxx(t) arrives, OTDA first solves for vvv(t) and U(t)

c using
U(t−1), and then updates U by minimizing the following loss function:

L(t)(U(t)) =

[
γ0
2

t∑
s=1

μ
∥∥∥R(s) − U(t)U(s)

c

T
∥∥∥2

F
+

t∑
s=1

γs

2

∥∥∥xxx(s) − U(t)vvv(s)
∥∥∥2

F

]
(7)

under the constraints U(t) ≥ 0. Further vvv(s) is obtained as a solution of the
minimization problem given in Eq. 5, and U(s)

c is found by solving Eq. 6.
We introduce decay factors [5] to ensure that the effects of new samples on

the representation is higher, while that of old ones wane (memorylessness). That
is, γ0, γs (s = 1, 2 . . . , t) are the decay factors which cause the past history to be
forgotten at an exponential rate. We define,

γj = γ0
(t−2r), j ≤ 2r

= γ0
(t−j)γf , 2r < j ≤ t

We assume γ0 < 1(γ0 ≈ 0.5), γf < 1(γf ≈ 0.9) and r = 1.
The gradient of L(t) wrt U(t) is given by

∇U(t)

(
L(t)(U(t))

)
= −γ0

t∑
s=1

μ[RRR(s)U(s)
c − U(t)U(s)

c

T
U(s)

c ]

−
t∑

s=1

[γs(xxx(s)vvv(s)
T − U(t)vvv(s)vvv(s)

T
)] (8)
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One can update U(t) using PGD assuming an initial value of U(t)
0 . However, when

we implement the first-order PGD we do not get quality results as expected,
because there are some known drawbacks for the first-order PGD, for instance,
large step size in the update leads to slow convergence etc. Hence we use second
order PGD for which we compute the Hessian matrix of L(t) wrt U(t),

HU(t)

(
L(t)(U(t))

)
= 2

t∑
s=1

[
μ · γ0 · U(s)

c

T
U(s)

c + γsvvv
(s)vvv(s)

T
]

(9)

Finally we adopt the following update rule for the second order PGD that
can guarantee faster convergence without using any parameter:

U(t)
k+1 = P

[
U(t)

k − ∇U(t)

(
L(t)(U(t)

k )
)

H−1
U(t)

(
L(t)(U(t)

k )
)]

(10)

where H−1 is the inverse of the Hessian matrix H. As the computation of H−1

matrix is time consuming we adopt Conjugate Gradient to calculate it. The
second-order PGD has been shown in Algorithm 1. For notational convenience
we introduce the following first-order and second-order terms respectively.

W(t) =
t∑

s=1

[
γ0 · μ · RRR(s)U(s)

c + γs · xxx(s)vvv(s)
T
]

(11)

H(t) =
t∑

s=1

[
γ0 · μ · U(s)

c

T
U(s)

c + γs · vvv(s)vvv(s)T )
]

(12)

Algorithm 1: 2nd order PGD for updating U(t)

Input : Number of topics K, Initial term-topic matrix U
(t)
0 , and

document-topic matrix V(t), and other terms W(t) and H(t)

/* Using Conjugate Gradient Descent (CGD); k is the index of

iterations and Γ is no. of iterations */

for k = 1, . . . , Γ do

Compute the gradient Δk = W(t) − U
(t)
k−1H

(t) † ;

Solve Q such that QH(t) = Δk ;

U
(t)
k = max

(
000,Q + U

(t)
k−1

)

end

3.5 Online Topic Discovery

Using second-order PGD we can design an online algorithm for topic discovery
for short texts. This algorithm procedure can be performed using one pass and
multiple passes. The complete one-pass algorithm is mentioned in Algorithm 2.
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This algorithm follows mini-batch implementation [4] which is at the con-
fluence of Stochastic Gradient Descent and the traditional batch descent algo-
rithms. As this algorithm imports p data points at each step, the OTDA algo-
rithm can be expected to converge faster. Consequently the update rules for
W(t) and H(t) are given by,

W(t) = W(t−1) +
p∑

i=1

[
γ0 · μ · RRR(t,i)U(t,i)

c + γt · xxx(t,i)vvv(t,i)
T
]

(13)

H(t) = H(t−1) +
p∑

i=1

[
γ0 · μ · U(t,i)

c

T
U(t,i)

c + γt · vvv(t,i)vvv(t,i)T )
]

(14)

Notice that we do not recompute W(t) and H(t) afresh each time. Rather
we update W(t) and H(t) by using Eqs. 13 and 14 respectively. Although only
a single pass over the data seems to be feasible in data stream applications,
multiple passes can be run in many applications. In the multi-pass OTDA, the
document topic assignment matrix V can be updated using term-topic matrix
U. Moreover, the first and second order information W and H in the previous
pass can be updated and utilized. When multiple passes are feasible one can
expect to obtain more accurate results.

Algorithm 2: One-pass OTDA in the mini-batch model (n is the total no
of data points
Input : Term-document matrix X, Initial term-topic matrix U(0), No

of data points at each step = p, No of steps S =
⌈

n
p

⌉
, Initial

Emerging topic set Etopics(1) = ∅, Confidence level CL
Initialization: W(0) = 000,H(0) = 000
for t = 1, . . . , S do

Draw XXX(t) (p data points) from from X;

Compute vvv(t) by solving the optimization problem given in Eqn. 5;

Update W(t) and H(t) using Eqns 13 and 14 respectively;

Update U(t) by Algorithm 1;
if t > 1 then

Etopics(t) = Edetect(CL) using the algorithm in [1]
end section 3.2
;

end

3.6 Computational Savings

As the OTDA proceeds by solving Eqs. 5, 6 and 7 it incurs computational cost
of O(mnK), O(mmK) and O(nmK) at each of these steps respectively. How-
ever, since X and R are sparse matrices, we only need to multiply the non-
zero elements with factor matrices. Hence the cost for these operations will be
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O(zXK), O(zRK) and O(zK), where z = max (zR, zX) for single iteration1. The
proposed OTDA will therefore will have a cost of O(zK) for single iteration.
The Frobenius loss of OTDA is frequently very close to the Frobenius loss of the
SeaNMF algorithm after T ≤ 2 iterations as witnessed by our experimentation,
which will save computational cost appreciably (≈ O(zK) cost only). Also our
one-pass OTDA needs to only load the data matrix once which involves low IO
cost. Our experiment results shows that we often do not need many passes to
obtain very accurate results.

3.7 Topic Detection and Tracking

Our dynamic topic model enables capturing the topics and their evolution over
time. The vector U(t)

·k portrays the evolution of topic k at time t. As each topic
is represented in the form of a column vector, represented as a weighted combi-
nation of terms the dissimilarity between the representation of a topic k at time
point t+1 and t, is defined as Dist(k, t) =

∥∥∥U(t+1)
·k − U(t)

·k
∥∥∥
2
. We consider a topic

to be emerging if it is different from its peers in the same stream, or from all
the topics seen so far. The identification of emerging topics can be modeled by
considering the K topic distances computed at time t using a confidence level
CL. Then we use the algorithm in [1] (Sect. 3.2) to compute nominated emerging
topics in which the function Edetect(CL) returns the emerging topics Etopics(t)
generated in the time slice t and (t + 1).

4 Data Sets for Experimentation

We have considered four sets of short text data for experimental purposes, three
of which are public datasets and the fourth is an internal data set. Public data
sets are Yahoo manner, SearchSnippets and StackOverflow. Yahoo manner data
set (Yahoo) is a subset of the Yahoo Answers Manner Questions, version 2.042.
The data set SearchSnippets (Snippets) is selected after searching through the
transactions on the web using predefined phrases of 8 different domains. Stack-
Overflow (Stack) is the challenge data set published online3. The fourth data
set (Optum) contains feedback texts that are provided by customers (from an
offshore center of Optum) in certain healthcare domains. Three public data sets
are labeled with categories, for which we generate the same number of topics.
For Optum feedback texts we assume 9 topics by using the standard criterion of
selecting optimal number of clusters.

1 We assume a low average number of PGD iterations for updating U or V in one
round, and also a low average number of trials needed for implementing the Armijo
rule [15,21].

2 https://webscope.sandbox.yahoo.com/catalog.php?datatype=l.
3 Kaggle.com.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://Kaggle.com
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Table 1. Statistics of data sets considered

Data set # docs # terms density(X) density(R) doc-length #cats #topics

generated

Yahoo 24555 14370 0.0482 0.1598 11.1 8 8

Snippets 10060 23031 0.0561 0.513 17.87 8 8

Stack 10000 8162 0.0858 0.354 8.22 8 8

ptum 9999 4372 0.3736 1.896 28.41 NA 9

Some basic statis-
tics of these data
sets are shown in
Table 1. ‘#docs’
represents the num-
ber of documents
in each data set,
and ‘#terms’ the number of terms in the vocabulary. The quantity ‘density’ is

defined as
#non-zero

#docs · #terms
, where #non-zero is the number of non-zero elements

in the matrix. The entities ‘density(X)’ and ‘density(R)’ represent the density of
term-document matrix X and term-context correlation matrix R, respectively.
‘doc-length’ represents the average length of the documents. ‘#cats’ denotes the
number of distinct categories.

5 Evaluation Metrics

We present an evaluation of our approach by comparing the performance of
our online topic discovery algorithm with other relevant algorithms on three
characteristics, average Frobenius loss [14,21], Topic Coherence (Coherence) [17]
and Normalized Mutual Information (NMI) [7]. As a topic can be related to a
cluster we use a cluster-related metric Normalized Mutual Information (NMI)
to measure the efficacy of our method, especially for labeled data. Due to which,
it is not possible to compute NMI values for Optum dataset.

For comparison with our OTDA on average Frobenius loss, we use the work
on clustering using online NMF due to Wang et al. [21] (ClusterONMF). There
is an old work of online NMF for latent factor tracking due to Cao et al. [6]
(LatentONMF), however it is shown that ClusterNMF performs better than
LatentONMF in terms of average Frobenius loss [21], and hence we do not con-
sider LatentONMF in our experimentation. When we compare our OTDA using
Coherence and NMI we use three baseline methods other than ClusterONMF,
- adaptive Online-LDA (A-OLDA) [1], Online Learning for LDA (L-OLDA) [9]
and Dynamic Topic Model (DTM) [2].

6 Experimental Results

We present experimental results on the data sets discussed before. For the benefit
of reproducible research we upload all our codes and the baseline methods on
https://github.com/varma-ds/OTDA. We have tweaked parameters appearing
in loss functions in Sect. 3, but they do not have much effect on the results. So,
we use default hyperparameter settings for each of the baselines. We use Scikit-
learn’s online LDA implementation4 for L-OLDA and Gensim’s LdaSeqModel5

4 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDi
richletAllocation.html.

5 https://radimrehurek.com/gensim/models/ldaseqmodel.html.

https://github.com/varma-ds/OTDA
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
https://radimrehurek.com/gensim/models/ldaseqmodel.html
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implementation for DTM. For L-OLDA and A-OLDA we use document topic
prior value as 1/K.

6.1 OTDA with Conjugate Gradient

We mainly focus on OTDA with second order methods using conjugate gradient
method. The performance of OTDA with first order PGD is not satisfactory,
and hence is not presented (for space constraints).

Fig. 1. (a) Average Frobenius loss for one-pass and two-pass with increasing number of
batches (b) Average Frobenius loss with increasing number of passes on Yahoo dataset

For the below experiments, we assume that data is divided into different
batches of some fixed size. For each batch, both term-document matrix and
word context correlation matrix are generated using fixed vocabulary. For com-
puting word-context correlation matrix each short text is considered as a con-
text. Using this information word context correlation matrix is updated for each
batch. Other context information like fixed size window of words, streaming text
clusters [25] etc. can be also considered.

Fig. 2. NMI measured at the end of each
pass on Yahoo data

We present the results for the aver-
age Frobenius loss for one-pass and
two-pass with increasing number of
batches. For the second pass we com-
pute the average Frobenius loss using
all the n data points. For the first
pass, average Frobenius loss is calcu-
lated only for the data points seen so
far. From Fig. 1(a), we can see that
with only one pass of the algorithm,
the average Frobenius loss increases at
first and then starts decreasing as the
number of batches increases. If two passes are allowed the average Frobenius loss
remains almost constant, but it is smaller than the values in the first pass as
it learns the topics from the initial batch only. All the data sets show almost
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similar pattern. Results in Fig. 1(b) indicate that the average Frobenius loss
continues to decrease as we increase number of passes with diminishing returns
for almost all data sets. Here we reproduce the results for only one initialization
and omit results for other initializations for space constraints. We show results
for Yahoo data set as other datasets exhibit similar patterns only.

We further compute the NMI values for the labeled data sets using OTDA
and plot the results in Fig. 2 for Yahoo dataset. It shows that NMI continues to
go up as we increase number of passes to an extent and then stabilizes.

6.2 Comparison with Online Methods

We now compare the performance of OTDA with ClusterONMF [6], A-OLDA [1],
L-OLDA [9] and DTM [2] using the metrics topic coherence and NMI. Addi-
tionally, we compare Frobenius loss for both OTDA and ClusterNMF during
learning. We publish the best score achieved by each of the models for all the
datasets in Table 2.

Table 2. Performance of OTDA against baselines.
(Best scores across different batch sizes and number
of passes are chosen for each model)

Data Model Loss at learning Topic quality

Avg. Frobenius loss Coherence NMI

Yahoo OTDA 0.748 0.485 0.390

ClusterNMF 0.712 0.449 0.350

L-OLDA – 0.302 0.112

A-OLDA – 0.269 0.054

DTM – 0.340 0.123

Snippets OTDA 10.114 0.656 0.280

ClusterNMF 9.746 0.411 0.190

L-OLDA – 0.491 0.176

A-OLDA – 0.271 0.030

DTM – 0.560 0.285

Stack OTDA 1.213 0.327 0.186

ClusterNMF 1.112 0.084 0.185

L-OLDA – 0.295 0.077

A-OLDA – 0.190 0.035

DTM – 0.322 0.113

Optum OTDA 1.762 0.468 –

CLusterNMF 1.569 0.430 –

L-OLDA – 0.183 –

A-OLDA – 0.186 –

DTM – 0.191 –

Average Frobenius Loss.
We compare our OTDA with
ClusterONMF in terms of the
average Frobenius loss (using
Eq. 4.22 in [6]). We report
the result for only one ini-
tialization and different batch
sizes. Further we produce the
results for only one-pass of
the algorithm for obvious rea-
sons. We compute the Frobe-
nius loss given using Eq. 4.20
in [6] (at the final iteration)
for each batch due to the
method of Lee and Seung,
which is shown as a dashed
line (labeled by L-S) in Fig. 3,
wherein which we report the
average Frobenius loss for 3
different method on Yahoo
dataset only. Similar behav-
ior is observed in other 3
datasets as well, the descrip-
tion of which is omitted in this paper due to space constraint. In all the cases
OTDA produces higher loss than ClusterONMF. It is expected as we minimize
the Frobenius loss along with another term involving context information, that
acts like a regularization term (see Eq. 7).
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Fig. 3. Comparison of Average Frobenius loss on
Yahoo

Topic Coherence. We com-
pute topic coherence for all the
data sets as shown in Table 2.
For all of them OTDA per-
forms better than all other base-
lines. While for Snippets, Stack
and Optum datasets apprecia-
ble improvement of Coherence
is observed for OTDA, Snippets
data set shows marginal gain
with both OTDA and DTM.
Further, in Fig. 4(a) we observe
that with increase in batch size,
topic coherence values reduce as the models tend to assign more diverse and
non-coherent words associated with topics.

NMI. Quantitative evaluation using NMI metric is conducted on the three data
sets with label information, e.g., Yahoo, Snippets and Stack have the same num-
ber of clusters being equal to 8. Table 2 depicts the comparison of clustering for
each method on three labeled data sets. Overall, OTDA always outperforms
ClusterONMF in terms of NMI values. For Yahoo and Snippets data, OTDA
shows an improvement of 5-8% in NMI values in comparison to ClusterONMF.
On the other hand, DTM performs slightly better than OTDA on Snippets
dataset. Figure 4(b) shows the comparison of different models on Yahoo dataset.
We observe a competitive performance between OTDA and ClusterNMF with
increasing batch size.

Fig. 4. Comparison of different models w.r.t. Topic Coherence and NMI on Yahoo data

6.3 Effect of Decay on Streaming Data

We now examine the effect of decay factors on the streaming data. For that we
curate Yahoo data set as follows. We divide the data set into 4 groups and 2
types, characterized by the categories, that is, each type will contain exactly
4 distinct categories of data. Details of this curated data is shown in Table 3.
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We assume each group corresponds to one batch and data arrives in batches.
Using this curated data we have experimented with and without decay factors in
OTDA formulation. The results are presented in Fig. 5. It shows that in absence
of decay factors when a new type of data arrives, NMI reduces. But, with the
introduction of decay factors in OTDA, the algorithm is able to forget the past
topic distributions and learn the new topic distributions.

Table 3. Curated Yahoo data

Group Data indices Type Categories

1 0–3999 1 Family, Maths, Cleaning, Dogs

2 4000–8999 2 Cooking, Finance, Repairs, Diet

3 9000–13999 1 Family, Maths, Cleaning, Dogs

4 14000–18999 2 Cooking, Finance, Repairs, Diet

Fig. 5. Decay effect on NMI for
Yahoo data

6.4 Emerging Topic Detection

Fig. 6. Probability distribution and Distance of
the topic Maths across different batch numbers
(Trending regions are highlighted)

To test the ability of OTDA
to detect novel topics as they
evolve, we create synthesized
data by mixing Yahoo and Stack
Overflow data sets from which
we take 10 categories (all the
categories from Yahoo and only
2 categories from Stack overflow)
in the following manner: (1) we
add 9 categories in equal pro-
portions (i.e.p.) excluding the
topic Maths; (2) we add all
the 10 categories i.e.p. including
Maths; (3) we repeat step 1 and
2 four times; and (4) in the 9th time instant we have added 9 categories i.e.p.
excluding Maths. With this synthesized data, we are able to detect the topic
Maths as an emerging one at 2nd, 4th, 6th and 8th time instances at 90% con-
fidence level (Fig. 6). The detected Topic probability distribution of Maths is
also presented in Fig. 6.

7 Conclusion

We have proposed an efficient online NMF algorithm for discovering topics from
short texts which processes incoming data incrementally. There are several rea-
sons for choosing NMF over LDA to design this online algorithm.
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While our method advocates optimizing loss function directly, other varia-
tions of (LDA-based) online topic discovery algorithms using variational infer-
ence techniques produce approximations of the actual results. Further, all
Markov chain Monte Carlo-based topic extractions (e.g., LDA) are asymptoti-
cally exact although computationally expensive. This makes our model a perfect
fit for accurate as well as fast, scalable alternative to other topic models.
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