
API-Prefer: An API Package
Recommender System Based on
Composition Feature Learning

Yancen Liu and Jian Cao(B)

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

{LiuYancen,cao-jian}@sjtu.edu.cn

Abstract. With the exponential increase in Web Application Pro-
gramming Interfaces (APIs), selecting appropriate APIs to construct a
mashup is a challenging task. When multiple APIs are put together, their
overall function is not just a superposition of their individual functions
in many cases. Unfortunately, the approaches proposed to date do not
sufficiently model the synthetical functions of the combined APIs. In
this paper, an API Package recommender system based on composition
feature learning (API-Prefer) is proposed. API-Prefer tries to learn the
composition features of an API pair. Then the composition features can
be used to predict whether this API pair can be adopted by a mashup
or not. Specifically, a deep neural network is designed for composition
feature learning and adoption probability prediction in API-Prefer. Since
there is a large amount of API pairs, API-Prefer applies a strategy to
select the potential APIs first, then the API packages can be discov-
ered based on the predicted scores over multiple API pairs. Experiments
on a real-world dataset show API-Prefer is significantly better than the
comparative methods.

Keywords: API package recommendation · Composition feature ·
Mashup · API · Neural network

1 Introduction

Web services are important components of a modern information system. As
a type of Web services, the number of Web Application Programming Inter-
faces (or APIs, for short) is increasing exponentially on the Web. In order to
help developers or non-IT professionals make use of APIs, various tools have
been developed. Of them, mashups are becoming a commonly used approach,
through which multiple APIs can be combined together to provide more compre-
hensive functions. Since the number of available APIs on the Web is huge, it is a
challenging task to find the APIs we need. To better assist mashup development,
we recommend multiple sets of cooperative APIs where each of them can achieve

c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 500–507, 2020.
https://doi.org/10.1007/978-3-030-65310-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65310-1_36&domain=pdf
https://doi.org/10.1007/978-3-030-65310-1_36


API-Prefer 501

the functions of a mashup as a whole. These sets of cooperative APIs are often
referred to as “API Packages”.

We propose an API Package recommender system based on composition
feature learning (API-Prefer). API-Prefer extracts the composition features of
an API pair through a neural network. The contributions of this paper are as
follows:

– Based on analyzing the relationships between APIs and mashups, we design a
deep learning model to learn the composition features of API pairs to support
both shallow composition relationships and deep composition relationships.

– We propose API-Prefer, an API package recommender system for mashup.
API-Prefer is based on composition feature learning. It also includes the
strategies to avoid unnecessary calculations and generate the final packages.

– We compare API-Prefer with baselines and state-of-art models and the exper-
imental results show that API-Prefer is significantly better than the counter-
parts in terms of the recall and precision.

2 Related Work

API (or Web Service) recommendation for mashups has been a popular research
topic, and various methods have been proposed in recent years.

When an API is published, its name, description, or tags are often pro-
vided. These methods utilize traditional information retrieval ways to select the
recommended APIs by matching the description of the mashup with the API
description. For example, in [1], a vector space model is used for service retrieval.
Recently, researchers began to adopt more advanced technology to extract the
semantic relationship between mashups and APIs.

With the continuous development of machine learning and deep neural net-
work in recent years, some methods combining deep learning with service rec-
ommendation have emerged. In [2], a method to extract user preference embed-
dings to personalize and precisely recommend APIs to mashup developers is pro-
posed. Although these approaches try to learn more latent relationships between
mashups and APIs through the deep learning model, they don’t learn the syn-
thetical functions of composed APIs. Furthermore, these approaches still recom-
mend an API list instead of an API package.

The frequent co-occurrence set-based approach applies some traditional data
mining technology to discover frequent API sets. For example, in [3], a method
to mine frequent API pairs for recommendation is proposed. An information-
retrieval based approach can be combined with the frequent co-occurrence set-
based approach. For example, a multi-level relational network is proposed to
obtain the comprehensive relationships among topics, tags and APIs [4].

Our model is also a hybrid approach. Different from the other models, our
model learns the composition features of API pairs through a deep neural
network, which can support both shallow composition and deep composition
relationships.



502 Y. Liu and J. Cao

3 API-Prefer: An API Package Recommender System
Based on Composition Feature Learning

3.1 Composition Features of APIs

Let us give specific explanation of composition features through two real-world
examples. The first example is a mashup with the description “Find lyrics and
karaoke videos with this mashup. Record it and publish it also”. It is based on
two APIs, YouTube API and LyricWiki API. This example represents the case
where we can search APIs based on the phrases in the mashup descriptions in
a straightforward way, which is called a shallow composition relationship. The
second example is RueFind, whose description is “RueFind is a travel application
which tracks interesting tourist attractions around the world. Users can add, rank
or create lists of their favorite attractions”. Google Map API and Yahoo Weather
API are used in RueFind. According to the descriptions, the main function of
RueFind is to share information on tourist attractions. Although travel relates to
maps and weather, it cannot be matched with them directly. This fact indicates
that by combining APIs with different functions, synthetical functions can be
created. This is called a deep composition relationship.

Composition features are context-dependent, i.e., when a set of APIs is
applied to mashups with very different functions, their composition features
may be different. The approaches to learn composition features are introduced
in Sect. 4.

3.2 Overview of API-Prefer

API package recommendation by API-Prefer consists of two stages, i.e., the train-
ing stage and the recommendation stage. During the training stage, a deep neural
network that can predict whether an API pair can be applied to a mashup or not
is trained. Specifically, this network uses a multiple-layer structure to learn the
composition features of this API pair for a mashup. During the recommendation
stage, given the mashup description, potential API pairs will be inputted to the
network and the probability of this API pair being used by this mashup is out-
putted. Finally, a recommendation algorithm generates multiple API packages
in terms of the adoption probability of API pairs and other information.

4 A Deep Neural Network for Predicting the Adoption
Probabilities of an API Pair Based on Composition
Feature Extraction

The descriptions of mashups and APIs vary in length, so we need to embed
these descriptive texts into the uniform vectors. We use the latent Dirichlet
allocation topic model to extract the topic feature of the text. After tokeniza-
tion, the standard steps for text data pre-processing are undertaken, these being



API-Prefer 503

Fig. 1. The deep neural network model for predicting the adoption probability of an
API pair

stemming, lemmatization and removing stop words. We transfer the descrip-
tions of the APIs, the historical mashups and the mashup to be developed into
200-dimension LDA topic vectors (Fig. 1).

The LDA topic vector of API1, API2,and mashup is denoted by Ta1 , Ta2

and TM respectively, which are denoted as: T = {t1, t2, t3, ..., ti, ...}.
Since we want to mine the composition features from a pair of APIs, the

interactions of the features of two APIs can yield new features. Therefore, we
add an interaction layer into the network, through which all the features of two
APIs interact in pairs. The results are denoted by a matrix Ma1,a2 as Ma1,a2 =
Ta1 ⊗ Ta2 (Mi,j = ta1

i · ta2
j ).

However, not all feature interactions are equally useful. Therefore, we add a
weight layer W to adjust the interaction features as MTF = Ma1,a2 �W (mCF

i,j =
(ta1

i ·ta2
j )·wi,j). We get the interaction feature matrix MTF . Then we use a 10×10

max polling filter to process the matrix, and this will turn the original matrix
into a 20 × 20 matrix. Then we transform it to a 400 × 1 vector, which is the
interaction feature vector TIF .

We merge the topic information of API1 and API2 to a combination fea-
ture vector Ta1,a2 as Ta1,a2 = {max(ta1

1 , ta2
1 ),max(ta1

2 , ta2
2 ), ...,max(ta1

i , ta2
i ), ...}.

Then we concatenate the combination features, interaction features and mashup
features together ({Tx = Ta1,a2 , TIF , TM}) as the input to the multiple hidden
layers of the network.

After 3 hidden layers, we use a sigmoid function in the output layer to make
the prediction score between 0 and 1. The loss function for the network is cross
entropy, and we also add a L2 normalization to avoid the overfitting of our model.

Therefore, through a multi-layer neural network, the composition features are
actually learned from the combination features, interaction features and mashup
features, which are then used to make an adoption probability prediction.



504 Y. Liu and J. Cao

5 API Package Recommendation

We select and sort the historical mashups in terms of the similarity between the
descriptions of the historical mashups and the mashup to be developed. After we
obtain a sufficient number of mashups, we use the APIs used by these candidate
mashups to generate the API packages. As for the number of candidate APIs,
on the one hand, we don’t want too many APIs in the candidate set, but on the
other hand, we want the candidate API set to cover as many potential APIs as
it can. Therefore, we need to find an appropriate value for it.

After obtaining a set of APIs as candidates, we can predict the adoption
probability p(APIi, APIj) of each API pair. By regarding each API as a node,
and the adoption probability of an API pair as the weight of the edge between
them, we can draw a relational network of APIs. API packages can be discovered
on this network.

In order to discover API packages, we add a restriction on the network,
i.e., only when p(APIi, APIj) > max(p(APIi), p(APIj), ε) is true, will an edge
appear in this network. To discover all the effective edges for an API, we just
get the possibilities between this API with all the other candidate APIs in the
candidate set and use the equation above to get all the effective ones. This pro-
cess is Function SearchEdges, which is used in the following Package Discovery
Process. Then we try to discover the fully connected sub-graphs and the APIs
represented by their nodes can compose packages. As a special case, a single API
can also be a package when it is not in any fully connected sub-graph, provided
its prediction score is higher than a threshold.

The discovery process starts from an API seed, and makes use of breadth-first
search (BFS) to search for other members that are appropriate for a package.
The API seeds are chosen based on the their popularity in the mashup candidate
set from the largest to the smallest. For an API seed APISeed, after we detect
all its effective edges, then:

– If there is no effective edge for it, p(APISeed) is compared with a threshold
η. If p(APISeed) is over the threshold, then APISeed itself can be a package,
otherwise, it is skipped.

– If multiple effective edges can be found, we adapt a BFS algorithm to find
the fully connected sub-graph for this node. We maintain a queue QAPI and
push the seed node into QAPI and the set Pkg first. Then each time we
operate on the node APIhead, which is the head of the QAPI until the QAPI

is empty. For APIhead, we traverse its effective edges to obtain an API list
whose members are sorted in the descending order of their weights. If an API
APIi from this list has effective edges with all nodes corresponding to the
APIs in the set Pkg, that is, it can form a fully connection graph with these
nodes, we then append it to Pkg and QAPI . Otherwise, we skip it and fetch
the next APIhead.

We try more APISeeds till the number of packages meets the requirements.



API-Prefer 505

6 Experiments

6.1 Dataset and Experiment Settings

We crawled 12,140 APIs and 6,976 mashups from Programmable Web, which is
the largest mashup and API information sharing platform. There are 200 * 200
units in the Interaction Feature Extraction Layer, and we use a 10 * 10 filter for
Max-pooling. The configuration of the 3 hidden layers is (200, 100, 20). And the
L2 Regularization Strength λ is set to 0.001.

An important parameter in our method is the size of the candidate APIs.
When the number reaches around 200, the mean cover rate of the final adopted
APIs reaches 0.92, which is an appropriate parameter setting. As for the two
thresholds in API package recommendation, after parameter tuning, we finally
set ε = 0.86 and η = 0.92.

6.2 Comparison Methods

Some baselines and state-of-the-arts methods are selected as the comparison
methods.

– WVSM sorts the APIs by the product of similarity and popularity.
– WJaccard is similar to WVSM. The difference is it uses Jaccard similarity.
– Collaborative Filtering Method (CF) is based on TF-IDF between the mashup

description texts is calculated to evaluate whether they are similar or not.
– ERTM [5] recommends the APIs based on an enhanced relational topic model,

which leverages the potential Dirichlet distribution of the probabilistic topic
model to extract the functional properties of APIs.

– TopicCF [6] combines the topic model with the collaborative filtering app-
roach.

– SASR [7] models multi-dimensional social relationships among potential
users, topics, mashups, and APIs using a coupled matrix model.

– MRN [4] captures the deep relationships among APIs on top of the latent
topic, tag and API network.

6.3 Evaluation Metrics

We use precision, recall and f1-measure to evaluate our experimental results.
recall = TP

(TP+FN) , precision = TP
(TP+FP ) , f1 − measure = 2·recall·precision

(recall+precision) .
where precision represents the acceptance degree of users in relation to the

recommendation results, recall represents the completeness of the recommenda-
tion results, and the f1-measure is the synthesis of the two evaluation indexes.

6.4 Results

Firstly, we compare the performances of all the approaches with the number
of recommended APIs and the results are shown in Fig. 2. The performance of



506 Y. Liu and J. Cao

Fig. 2. Performance comparisons of all methods

the baselines is not good when either a small amount [1, 5] or a large amount
[5, 50] of APIs are recommended. Which indicates that only considering semantic
similarity and few attributes like popularity, cannot get ideal result. MRN and
SASR, on the other hand, take all the features into account. Their performances
are better than the previous methods. The results show that it is useful to con-
sider multilevel relationships. However, with a recommendation number between
[1, 5], the performance of API-Prefer is clearly better than the others. This also
reflects the effectiveness of the composition feature learning in API-Prefer.

Fig. 3. Performance comparisons of API package recommendation methods

Of all the compared approaches, MRN is the only one that can recommend
API packages. We compare the performances of API-Prefer and MRN with the



API-Prefer 507

number of API packages to be recommended. Figure 3 shows that performances
of API-Prefer are significantly better than the performances of MRN.

7 Conclusions and Future Work

In this paper, we analyze the main deficiency in the current approaches of API
recommendations for mashup. Therefore, we propose API-Prefer, an API pack-
age recommender system based on composition feature learning. API-Prefer
learns the composition features of an API pair based on combination features,
interaction features and mashup features through a deep neural network. Then,
the adoption probability can be predicted based on the description of the mashup
to be developed and the composition features of API pairs. Finally, the API pack-
ages can be generated based on the adoption probabilities. The performance of
API-Prefer is verified through the experiments.

Our future work will focus on improving the recommendation accuracy by
using advanced textual embedding techniques and considering the composition
of three or more APIs also have specific features.

Acknowledgement. This work is supported by National Key Research and Develop-
ment Plan (No. 2018YFB1003800).

References

1. Platzer, C., Dustdar, S.: A vector space search engine for web services. In: Third
European Conference on Web Services (ECOWS 2005), pp. 9-pp. IEEE (2005)

2. Fletcher, K.: Regularizing matrix factorization with implicit user preference embed-
dings for web API recommendation. In: 2019 IEEE International Conference on
Services Computing (SCC), pp. 1–8. IEEE (2019)

3. Maaradji, A., Hacid, H., Skraba, R., Vakali, A.: Social web mashups full completion
via frequent sequence mining. In: 2011 IEEE World Congress on Services, pp. 9–16.
IEEE (2011)

4. Cao, J., Lu, Y., Zhu, N.: Service package recommendation for mashup development
based on a multi-level relational network. In: Sheng, Q.Z., Stroulia, E., Tata, S.,
Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 666–674. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46295-0 46

5. Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for API recommendation in
mashup development. In: 2014 IEEE International Conference on Web Services, pp.
289–296. IEEE (2014)

6. Jain, A., Liu, X., Yu, Q.: Aggregating functionality, use history, and popularity of
APIs to recommend mashup creation. In: Barros, A., Grigori, D., Narendra, N.C.,
Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 188–202. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48616-0 12

7. Xu, W., Cao, J., Hu, L., Wang, J., Li, M.: A social-aware service recommendation
approach for mashup creation. In: 2013 IEEE 20th International Conference on Web
Services, pp. 107–114. IEEE (2013)

https://doi.org/10.1007/978-3-319-46295-0_46
https://doi.org/10.1007/978-3-662-48616-0_12

	API-Prefer: An API Package Recommender System Based on Composition Feature Learning
	1 Introduction
	2 Related Work
	3 API-Prefer: An API Package Recommender System Based on Composition Feature Learning
	3.1 Composition Features of APIs
	3.2 Overview of API-Prefer

	4 A Deep Neural Network for Predicting the Adoption Probabilities of an API Pair Based on Composition Feature Extraction
	5 API Package Recommendation
	6 Experiments
	6.1 Dataset and Experiment Settings
	6.2 Comparison Methods
	6.3 Evaluation Metrics
	6.4 Results

	7 Conclusions and Future Work
	References




