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Abstract. The design and implementation of Robotic process automa-
tion (RPA) requires an architecture where there is seamless coordina-
tion between humans, robotic agents, and intelligent agents automat-
ing information acquisition tasks and decision-making tasks. Effective
coordination of agents would need to consider the efficiency of differ-
ent types of resources in completing tasks, the quality when handling
complex tasks, and the cost of resources executing the task. In this
work, a novel approach for generating an optimal architecture consider-
ing distinct types of resources that include human, intelligent and robotic
agents is proposed. An optimal architecture is the optimal enactment
of process instances executed by a combination of human and automa-
tion agents based on their characteristics. The architecture considers
resources, resource types, and their characteristics that meet multiple
objectives of process execution.

Keywords: Robotic process automation · Multi-objective
optimization · Genetic algorithm · Optimal resource architecture

1 Introduction

The idea of Robotic Process Automation, where some (or all) tasks in a busi-
ness process are automated by deploying software agents, intelligent agents or
conversational agents (chatbots) to execute tasks which would have traditionally
been executed by human operators, has steadily grown in popularity over the
recent past. By various accounts, the size of the global market for RPA products
runs into the billions of dollars.

One of the problems that has been highlighted by researchers in this space
is that of identifying which tasks to automate [15]. This assumes a simple
dichotomy in the available agent types: human agents and robotic agents. The use
of only the former type of agents would represent the old approach to executing
processes while the use of the latter would represent an emphasis on automa-
tion. More recently, the repertoire of available agent types has expanded to also
include intelligent agents which are endowed with the ability to learn from past
experience and make more complex decisions.
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This greater variety of resource/agent types also leads to greater diversity in
performance characteristics. Human agents tend to be expensive and are typ-
ically slower than robotic agents or intelligent agents. Intelligent agents some-
times turn out to be not adept at taking certain decisions (for instance due to
limitations in their machine learning routines), necessitating the deployment of
human agents to cross-check their decisions. Robotic and intelligent agents take
very little time to complete their tasks, relative to human agents. We can also
sometimes assume that there is an unlimited supply of robotic and intelligent
agents, while we have to contend with a fixed number of expensive-to-deploy
human agents. There are clearly, at the very least, three non-functional factors
at play: time, cost, and performance (i.e., the extent to which an agent is able
to deliver correct outcomes, measured on a numeric scale). We aim to minimize
time and cost and maximize performance. It is important to note that all of these
factors are measurable and easily monitored. We rate agent types on these factors
for different task types for simplicity in this paper, although our approach could
easily be extended to agent instances. Rating would involve assessing agents’
time, cost, and performance on a comprehensive set of benchmark problems.

This leads us to the problem of identifying an optimal RPA architecture.
Recall that the traditional notion of a software or system architecture involves
the specification of how system components connect and interact to realize over-
all system functionality. In our setting, an RPA architecture specifies how the
various agents involved in the execution of a (partially or fully) automated pro-
cess connect and interact to realize overall process functionality. An RPA archi-
tecture specifies, for each process task in each process instance, the agent (type)
allocated for executing that task. There is a vast space of possible allocations,
each of which leads to different outcomes in terms of overall time taken, overall
cost incurred, and performance (or quality of work) achieved in each of the tasks.
This suggests a multi-criteria optimization problem where there are at least three
distinct (and incommensurable) objective functions at play: cost minimization,
time minimization, and performance maximization.

In the next section, we provide a background of the over-arching problem.
Section 3 provides details of the multi-criteria optimization problem and motives
the problem with an example. Section 4 presents related work. We present our
conclusions and discuss future work in Sect. 5. It is instructive to take a step
back and observe that the solution we have presented also solves the more gen-
eral problem of devising process architectures (i.e., deciding which resource will
execute each task in all process instances).

2 Background

An RPA implementation would require human agents and robotic agents work-
ing together with suitable coordination. The coordination between agents has
been suggested in prior human-automation [12,21] and RPA [19] studies. Such a
coordination between the agents can generally be broken down into three broad
categories: (i) levels where the task is primarily performed by a human, (ii) levels
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where the human-agent interaction is high during task execution, and (iii) levels
with low human involvement.

Agents executing tasks can be broadly categorised as: (i) Human Agent (HA)
capable of executing all types of (manual) tasks of the process, (ii) Robotic Agent
(RA) or specialised software program, that automates information acquisition
tasks or information gathering tasks, and (iii) Intelligent Agent (IA) that auto-
mates information analysis or decision-making tasks and improves its perfor-
mance through learning [17].

Agents can have distinct resource characteristics such as performance, expe-
rience or suitability when executing different tasks [19]. For example, an IA may
have good performance when performing a task to verify the details of the loan
application document, but may have low performance in computing the credit
risk of the applicant having large number of financial transactions in a different
country. In such scenarios, an HA would be required to validate the task done
by an IA. Thus, in certain scenarios referred to as a lower level of automation,
an HA would often be required to execute the task again after its completion
by an IA or RA. At higher levels of automation, HAs exercise a supervisory
role intervening only if necessary (failures, errors, or poor execution quality), or
further have tasks fully executed by an IA or RA. Human verification tasks may
be added dynamically during process execution based on resource characteristics
of the IAs or RAs.

The ability of distinct types of resources to automate various tasks of a pro-
cess leads to increased execution alternatives. The choice of alternatives available
needs to account for multiple and often conflicting objectives such as: i) minimiz-
ing the cost of execution as each of these types of resources have a cost associated
with each type of agent executing a task, ii) maximizing the performance or qual-
ity of the work done by the resource, and iii) minimizing the makespan or the
shortest possible time for all the process instances to complete execution. For
example, an HA can be expensive and may take longer to complete the tasks
but will be able to handle any task with minimal errors (or high quality). An IA
or RA can take lower time to complete tasks but may execute certain tasks with
lower quality. Choosing the right types of resources and the tasks executed by
the resources results in a trade-off between different objectives. Hence, selecting
an RPA architecture that considers resources, resource types, resource charac-
teristics, and the necessary objectives is complex, time consuming, and crucial
to avoid sub-optimal and error prone process executions.

3 Problem Formulation of an Optimal RPA Architecture

In this section we describe the optimization model to enable decisions on the
suitability of an RPA solution that meets the required objectives. In this paper,
we consider three important objectives. However, our approach is generic and can
support multiple and additional objectives. The objectives are to minimize the
cost and the overall time taken to execute the process instances (or makespan)
while maximizing the performance. The optimization problem is formalized.
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The inputs are as follows:

– W , be the maximum number of tasks, i ∈ {1, . . . , W}
– M , be the maximum number of resources j ∈ {1, . . . , M}
– C, be the maximum number of process instances, k ∈ {1, . . . , C}
– φj , the type of resource j where φj ∈ {HA, IA,RA}
– πj , the cost of a resource of type φj

– σij , is 1 if the the resource of type φj is suitable to perform task i match and
zero otherwise

– αij , the effort on task i by a resource of type φj

– βij , the performance of resource of type φj on task i
– τperfi , an acceptable performance threshold for task i
– dii′ , is one if there is sequential dependency and tasks i precedes i′

The key inputs to the model are the resources and their characteristics such as
suitability, performance, and cost.

Suitability is the inherent quality of a resource j to perform a task i. The suit-
ability of a resource is considered tobe abinaryvalue. Suitability canbedetermined
based on agent specification and implementation, or can be determined based on
the organization model attributes such as role or department of the resource.

Performance: Automation agents are more susceptible to resource specific errors
i.e. errors made by resources when performing a task [16]. Performance measure
of an IA can be computed based on the algorithms implemented such as F1-score,
root mean square error, precision, or precision@k [20]. These measures can be
computed during the training and testing of the algorithms. The performance
resource types φj , on task i can be computed using the measure specific to the
implemented algorithms. A threshold τperfi indicates an acceptable performance
necessary for any agent. If the performance of an agent is below this threshold,
the task is either re-executed by an HA or verified by an HA.

Effort: The time taken to complete a task i varies for different resource types.
An IA or RA has higher processing power and hence takes significantly lower
effort as compared to an HA.

The process model provides inputs on the dependencies between the tasks
represented by dii′ specifying that to execute task i′, the task i needs to be
executed before.

The decision variables are as follows:

– xij , which is true if task i is assigned to resource j, and false otherwise
– ei, the end date of task i
– si, the start date of task i

This leads to the following optimization objectives.

min(max(ei) − min(si′)) ∀i, i′ (Minimize makespan)

min
∑

i,j

πjxij (Minimize cost)

max
∑

i,j

βijxij (Maximize performance)



452 G. Mahala et al.

The following constraints are also imposed.

s.t.
∑

j

xij = 1 ∀i where βij ≥ τperfi
(one task to one resource if performance is high)

∑

j

xijxij′ = 1 ∀i where βij < τperfi
, φj′ = HA

(one task is supervised by HA if performance is low)
∑

j

xij(ei − si) ≥ αij for all i (planned end time of task considers effort)

∑

j

(xijxi′j = 1) ⇒ (ei < si′ ∨ si > ei′ ) for all i �= i
′ (one task at a time)

∑

i,j

xijσij > 0 (task suitable by resource)

∑

ii′jj′
dii′ (xijxi′j′ = 1) ⇒ ei < si′ (sequential dependency)

xij ∈ {0, 1}

Running Example. We illustrate the need for such an optimization architec-
ture with the help of a simple example. Figure 1 (a) presents a business process
with 3 tasks to process a claim application. The three types of resources HA, IA,
and RA have different resource characteristics on each of these three tasks. An
HA has highest performance but requires higher effort and comes with a higher
cost. An IA can support the decision making task of evaluating a claim having
lower performance than an HA but better cost and effort parameters. An RA
can perform the task of notifying the status of the application with high perfor-
mance but is incapable of performing the first two tasks of the process (namely
checking the claim application and evaluating the claim). In this example, we
consider all resources of a given resource type with the same resource character-
istics. However, our problem formulation does not make any such assumption.
The values for effort (αij), performance(βij), and cost (πj) considered for the
three tasks and three resource types is presented in Fig. 1 (a).

The allocation of task to resources that meets multiple objectives while sat-
isfying the constraints can result in multiple solutions. One such solution of task
allocation with 3 process instances and 6 resources (2 HA, 2 IA, and 2 RA) is
shown in Fig. 1 (b). Solutions that meet multiple objectives form a Pareto front
of minimum cost, minimum makespan, and maximum performance. A solution
on a Pareto front does not dominate another solution on the same front, i.e. by
moving along the curve, you could minimize makespan at the expense of reducing
performance or maximize performance at the expense of increasing makespan.
For example, in Fig. 1 (c) the three solutions on the blue line are non-dominating
solutions. The solutions vary with the performance threshold set for the super-
visory control of an HA (τperfi = 5 for the blue line), i.e. if the performance of
an agent is lower than the threshold, it needs to be followed by another task
that is performed by an HA to validate or supervise the task executed by an IA
or an RA. If the performance threshold is lower (e.g. τperfi = 3, orange line),
then an IA or RA can do the task without HA supervision. Thus, the makespan
reduces, and so does the performance of the entire allocation. Similarly, if the
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Fig. 1. (a) Example process with resource characteristics, (b) Optimal Solution to
execute 3 process instances, (c) Performance vs. Makespan for different performance
thresholds (τperfi), and (d) Cost Vs. Makespan for different performance thresholds.
(Color figure online)

performance threshold is set to a higher value (e.g. τperfi = 6), then most tasks
performed by IA or RA will be supervised by an HA, resulting in increased
performance and increased makespan. Figure 1 (d) presents the makespan and
cost for the non-dominating solutions when different performance thresholds are
set. The example motivates the need for considering distinct resources, their
characteristics, multiple objectives, and constraints for selecting a suitable RPA
architecture.

4 Related Work

Prior studies on RPA have focused on the design phase presenting techniques to
identify candidate tasks for automation [15]. Studies have explored an increase
in the scope of automation by the agents supported by Artificial Intelligence
(AI) and Machine learning to do complex tasks [1,18]. Recent work has further
distinguished types of resources and their characteristics in terms of suitability
for execution of different types of tasks and presented a declarative specification
to enable different levels of automation [19]. This work considers such a spec-
ifications as input where tasks can be executed by distinct types of resources
permitting the generation and selection of an RPA architecture optimizing mul-
tiple objectives that are necessary for an effective implementation.

There have been extensive studies focusing on resources and their character-
istics [2,7,9,13]. Resource characteristics are used for the allocation of tasks to
resources [6,10,11]. The focus of these studies has been human participants and
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their use for effective resource allocation. The need for robots and human par-
ticipants to collaboratively work forms an important part of human-automation
studies [12,21]. The need for such interactions has been discussed in BPA [1,19].
In this work, we consider distinct types of resources and their characteristics and
their interactions with human participants to support effective automation and
allocation.

Optimal allocation of tasks to human participants has been widely studied
in different domains such as IT service delivery [4,5]. Task allocation to human
participants supporting multiple objectives has been an important area of work
for flexible business process executions [8,14]. In many of the previous studies,
multi-objective optimization uses simulation or conventional constraint based
optimization. In this work, we have defined our solution approach to account
for the crucial interplay between human and automation agents. Further, we
have explored the use of genetic algorithm to support optimization of multiple
objectives.

5 Conclusion and Future Work

We offer a solution to the difficult problem of devising an RPA architecture.
An approach based on genetic algorithms can be effective in generating useful
design alternatives for an RPA architect. Evolutionary search can be employed
to find optimal RPA architectures which simultaneously satisfies all objectives
and constraints discussed in Sect. 3. Central to genetic algorithms is the rep-
resentation of the solution. For example, binary representation can be used to
constitute an RPA solution as a genotype of bit strings. This string represents
a complete RPA setting, including all process instances, tasks in each process
instance, and all resources including HA, IA, and RA. Assuming that we use
non-dominated sorting algorithm (NSGA-II) [3] as evolutionary search at each
generation, NSGA-II would sort the current population into a number of non-
dominated fronts. The evolution process would continue until it would arrive at
a specified number of generations. In the final generation, NSGA-II would return
a set of Pareto optimal solutions as optimal RPA architectures. We also note
that our approach is general enough to compute optimal process architectures
(an allocation of resources to each task in a pool of process instances), but a
detailed evaluation requires search through a somewhat different search space.
This remains high on our list of priorities for future work.
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2013. LNCS, vol. 7908, pp. 594–609. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38709-8 38

10. Kumar, A., Dijkman, R., Song, M.: Optimal resource assignment in workflows for
maximizing cooperation. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 235–250. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40176-3 20

11. Kumar, A., et al.: Dynamic work distribution in workflow management systems:
How to balance quality and performance. J. Manage. Inf. Syst. 18(3), 157–194
(2002)

12. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels
of human interaction with automation. IEEE Trans. Syst. Man Cybern. Part A
30(3), 286–297 (2000)

13. Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst,
W.M.P.: Mining resource profiles from event logs. ACM Trans. Management Inf.
Syst. 8(1), 1:1–1:30 (2017)
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