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Abstract. Detecting users’ significant intentions (e.g., new features
wanted) timely and precisely is crucial for developers to update and
maintain their apps in the competitive mobile app market. Sentiment and
preference mining from crowd reviews provide an opportunity to proac-
tively collect app users’ intentions, e.g., bug fixing and feature refine-
ment. However, users’ sentiment and preferences often change over time
due to either internal factors (e.g., new bugs) or external factors (e.g.,
new competitors). This makes it difficult for app developers to grasp
users’ sentiment and preferences in time. In this paper, we propose a
novel and automated framework named DSISP for detecting users’ sig-
nificant intentions effectively via sentiment-preference correlation analy-
sis. DSISP first employs sentiment analysis and NLP (Natural Language
Processing) techniques to obtain sentence-level sentiment scores and fine-
grained user preference features from app reviews in different time slices.
Then, the temporal correlation between user sentiment and preferences
is analyzed, which can be used to monitor users’ sentiment tendency
and preferences in time. Finally, DSISP identifies users’ dramatically-
changing sentiment (e.g., sentiment valley) to detect users’ significant
intentions. We evaluate the feasibility and performance of DSISP by
using real-world app reviews and app official changelogs. The experi-
mental results show that DSISP can detect users’ significant intentions
effectively and efficiently, with a precision of 0.962 on average. It can help
app developers keep track of how their users’ intentions evolve over time
so that they can improve their apps correspondingly and continuously.
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1 Introduction

App stores are digital distribution platforms that allow users to submit ratings,
feedback and comments on apps, which explicitly or implicitly expresses their
potential sentiment and preferences for apps [1,2], e.g., their satisfaction with
particular features, the vulnerabilities encountered or requests for new features.
Sentiment represents a user’s approval of an app, and preference indicates its
intention of the app. Users’ preferences can be obtained by mining crowd review
features that reflect users’ opinions. Keeping track of users’ sentiment and pref-
erence features timely and precisely can help app developers update and improve
their apps, e.g., in terms of fixing bugs, or adding new features, etc. [3,4].

User reviews are direct feedback from users that have experienced the apps.
In recent years, researchers have proposed several approaches to extract useful
information from crowd reviews for maintaining and evolving mobile apps [3,5].
These approaches are mainly designed for user reviews classification [6,7], clus-
tering [8,9], and summarization [1,3,10]. The extracted information represents
crowd-sourced knowledge from the users’ perspective and can be used to identify
users’ intention [11] or detecting app emerging issues [12], etc.

The abovementioned studies are mainly focused on reducing the effort in
extracting software aspects or user preferences without considering the changes
in users’ sentiment and preference over time. In fact, due to app updates or
changes in the external environment (e.g., new competitors), users’ sentiment
and preferences will change dynamically over time. For example, when an app
crashes, is injected with ads, or breaches users’ privacy, users’ complaints will
increase immediately. Their sentiment will also turn negative rapidly.

Users’ up-to-date sentiment and preferences indicate their instant experiences
with apps in use. When the users’ sentiment and preferences are not grasped by
app providers in time, it may lead to the loss of users and reduce the users’
stickiness. For example, Facebook Messenger lost a large number of users in
August, 2014 because it was found to contain severe privacy issues (e.g., accessing
the photos and contact numbers on users’ phones)1. Such issues had already been
pointed out by users in their reviews a few months ago before that. Therefore,
detecting and understanding of users’ intentions timely is necessary and critical.
However, the problem of how to effectively and timely detect users’ significant
intentions from app reviews have not been studied systematically.

In this paper, we propose a novel framework named DSISP (Detecting users’
Significant Intentions via Sentiment and Preference analysis) for detecting users’
sentiment and preferences by analyzing their reviews. DSISP takes user reviews as
input and employs sentiment analysis technique [13] to calculate users’ sentiment
scores within different time slices. Then, it employs NLP and collocation finding
technology [14] to mine fine-grained preference features from user reviews. After
that, it analyzes the temporal correlation between users’ sentiment and prefer-
ences. Finally, DSISP uses a SVI (Sentiment Valley Identification algorithm) and

1 http://www.businessinsider.com/facebook-messenger-app-store-reviews-
arehumiliating-2014-8.

http://www.businessinsider.com/facebook-messenger-app-store-reviews-arehumiliating-2014-8
http://www.businessinsider.com/facebook-messenger-app-store-reviews-arehumiliating-2014-8
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Twitter-LDA [15] to identify users’ significant sentiment and detect their signif-
icant intentions, respectively. In summary, the contributions of this paper are as
follows.

– We present a method for aggregating crowed users’ sentiment for each prefer-
ence with automated sentiment analysis on app reviews. Then, we analyzed
how these preferences are temporal correlation to users’ sentiment.

– We propose a framework named DSISP to automatically detect users’ signif-
icant intentions by analyzing the temporal correlation between users’ senti-
ment and preferences. The source code of DSISP and review data are pub-
lished on GitHub2.

– We verify the effectiveness of DSISP based on the changelogs of six apps
(include three open-source Android apps) in different app categories.

The remainder of the paper is structured as follows. Section 2 introduces the
related work. Section 3 outlines the overall picture of DSISP and details each step
involved in its procedure. Section 4 reports the experimental results. Section 5
concludes this paper and points out the future work.

2 Related Work

Currently, a number of approaches have been proposed to mine and analyze
app reviews with the goal of deriving important information to help developers
update their apps [7,8,16]. For example, Pagano et al. [16] investigated the corre-
lation between app reviews and ratings. Harman et al. [17] proposed the concept
of app store mining and identified the correlation between user ratings and app
download rankings. These studies provide a basis for developers to understand
user behaviors and adjust their app deployment strategies. However, there are
several limitations which prevent app developers from using the information in
the reviews effectively. For example, an app store generates a lot of app reviews
every day - the Facebook app receives more than 10,000 reviews on Google Play
every day3. Besides, reviews vary in quality. Manual analysis of a large number
of such reviews is time-consuming and labor-intensive. To address this issue,
automatic feature extraction is proposed to mine user needs [3,8,10].

Chen et al. [18] devised AR-MINER, an approach for filtering and rank-
ing informative reviews using a semi-supervised learning based approach. They
demonstrated that, on average, 35% of reviews contain informative contents.
Based on AR-MINER, L. Villarroel et al. [7] proposed a method named CLAP,
which employs classification and clustering algorithms to automatically prioritize
the user reviews to be implemented when planning the subsequent app release.
Palomba F et al. [8] proposed a method named CHANGEADVISOR to analyze
the structure, semantics and sentiment of sentences in user reviews, extract use-
ful information from user reviews and suggest changes to software components for

2 https://github.com/ztxjm123/DSISP.
3 App Annie. https://www.appannie.com/en.

https://github.com/ztxjm123/DSISP
https://www.appannie.com/en
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developers. Zhou Y et al. [9] proposed an automated method named RISING that
supports continuous integration of user feedback through classifying, clustering,
and linking user reviews to the source code. Their experimental results show that
RISING outperforms CHANGEADVISOR in clustering and positioning accuracy,
thus producing more reliable results.

To better understand users’ review contents and reduce the information gap
between developers and users, most studies tend to artificially customize specific
rules or concepts for mining user review features. Guzman E et al. [19] proposed
a method for classifying app reviews into several categories related to software
maintenance. Specifically, they divided user reviews into bug reports, functional
advantages, functional defects, user requests, etc., which can provide developers
with a detailed suggestion based on user reviews. Di Sorbo et al. [3,10] proposed
a user intention classification method SURF to systematically define specific
aspects of an app (such as UI, file download, etc.) that need to be maintained.
It can effectively help developers plan app update tasks in the future.

Compared with directly extracting or clustering user review topics, the above-
mentioned approaches further refined user review information and partitioned
it into specific categories. However, little attention has been paid to how to
mine users’ significant intentions from app reviews in a timely manner, which
are essential for developers to update and maintain their apps. To this end, this
paper focuses on extracting users’ sentiment and preference features in a con-
tinuous period. This will allow app developers or app vendors to track users’
behaviors timely, and alert them to users’ significant intentions promptly.

3 Methodology

DSISP aims to help developers to keep track of users’ significant intentions which
may be considered in app maintenance and improvement tasks for developers.
It employs data mining and sentiment analysis techniques to automatically ana-
lyze users’ sentiment and preferences for apps over a period of time. Figure 1
overviews the framework of DSISP. First, DSISP extracts users’ sentiment and
fine-grained preferences from their reviews through sentiment analysis and NLP,
respectively. This obtains the user sentiment and produces a list of fine-grained
preference features. Then, the review sentiment and preference evolution are ana-
lyzed based on time series. Afterwards, DSISP establishes the temporal correla-
tion between sentiment and preference features. Finally, it employs a sentiment
valley identification algorithm to detect users’ significant intentions.

Fig. 1. Overview of the DSISP
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3.1 Review Preprocessing

App reviews are generally submitted via mobile terminals and written using
mobile keyboards. They often contain lots of noise data, such as misspelled
words, non-English words and non-informative words, etc. Such noise data
impacts the fine-grained preference feature extraction from user reviews. The
review data needs to be preprocessed first.

Multi-language Filtering and Lemmatization. We use the Langid tool4

to filter non-English comment information from user reviews. Then, we use the
Wordnet5 lemmatizer from NLTK6 to achieve word stem for reducing the number
of features that need to be inspected later.

Noun, Verb, and Adjective Extraction. We use the part of speech (POS)
tagging functionality of NLTK to extract the nouns, verbs, and adjectives in
the reviews as these parts of a speech are most likely to express the users’ fine-
grained preference features. We manually inspected 1,040 reviews to validate
this assumption.

Noise Word Filtering. This step aims to reduce the non-informative words
from user reviews, such as emotional words (e.g., “bad” and “nice”), abbrevia-
tions (e.g., “asap”), and useless words (e.g., “someone”), etc. We use wordMap-
per [20], a dictionary of nearly 300,000 vocabularies related to app reviews, to
reduce the impact of non-information words. It contains common spelling errors,
abbreviations and abbreviated words in user reviews and their corrections. Based
on this dictionary, we add extra words related to app reviews to the dictionary,
such as“you’re→you are”, “app”, “developer names”, etc., summarized by two
researchers from 1,040 user reviews. These predefined stop words are filtered out
together with the stop words provided by NLTK.

After the preprocessing, most of the noise data has been removed from the
user reviews. However, the preprocessing also shortens the length of the review
texts at the same time. Thus, some of the review texts may contain too little
information to be useful for extracting preference features. Therefore, in our
work, we select reviews with rich vocabulary information - reviews with 4 words
or fewer are discarded.

3.2 Review Sentiment Extraction

Sentiment analysis is the process of assigning a positive or negative quantita-
tive value for each review [21]. We use SentiStrength [13], a sentiment analysis
tool, to perform user review sentiment analysis. Compared with other tools,
SentiStrength provides several advantages: it is designed for short informal texts
with abbreviations and slang (features commonly observed in app review). It
employs linguistic rules for negations, amplifications, booster words, emotions,
which are particularly well suited for processing user reviews.
4 https://github.com/saffsd/langid.py.
5 https://wordnet.princeton.edu/.
6 http://nltk.org/.

https://github.com/saffsd/langid.py
https://wordnet.princeton.edu/
http://nltk.org/
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With SentiStrength, we assign each user review a positive RS+ and negative
RS− sentimental score, both ranging from 1 (neutral) to 5 (extremely positive
or negative). The higher absolute value of the sentence score is taken as the
final score of the review sentence, because the larger absolute value can reflect
the actual sentiment of the sentence more accurately. In addition, it is worth
noting that the emoticons, polarity words, etc., in user reviews would impact
their sentiment. For instance, “love” is assigned a score of [3, −1] and “!” a
[1, −1] score. Therefore, we analyze the user review sentiment scores directly
without data preprocessing discussed in Sect. 3.1.

3.3 Fine-Grained Preference Extraction

Compared with ratings provided by users, user reviews offer finer-grained infor-
mation and have become a rich source to help detect users’ preferences [22].
Most of the reviews contain users’ opinions on various aspects of the app (i.e.,
user preference), such as functional features or app security. For example, let us
consider the review sentence “Uploading pictures with the app is necessary!”.
The functional feature (i.e., user preference feature) “Uploading picture” in this
sentence expresses the user’s intention directly.

We use the collocation search algorithm of NLTK to extract the fine-grained
features in user reviews. Collocation can be expressed as a set of words that
often co-occur [23]. It can include two or more words [14], but does not require
words that are always adjacent. In user reviews, preference features can often
be described as collocation phrases since they usually appear more frequently
and represent a specific meaning about the app, e.g., app features or used expe-
rience. Given a set of collocation phrases, we use the grammatical relationship
collocation extraction algorithm based on n-gram distance to find a collocation
of two words in user reviews. Assume a collocation phrase (wi, wj), wi is the base
word, and wj is the collocation word. Both wi and wj belong to the review corpus
after the preprocessing discussed in Sect. 3.1. We evaluate whether the review
collocation phrase is reasonable based on the following three conditions [24]:

strength = freqi−f̄
σ ≥ k0, (C1)

spread ≥ U0, (C2)
pi

j ≥ p̄i +
(
k1 × √

Ui

)
, (C3)

(1)

where freqi represents the frequency of collocation phrase (wi, wj) appear in user
reviews, f̄ is the average frequency of all collocation phrases in review corpus.
In addition, let us define

spread = Ui =

∑10
j=1

(
pj

i − p̄i

)2

10
(2)

where pj
i is the appearance times of the collocation phrase (wi, wj) in the distance

j, the distance range of English words is defined as [−5, 5], similar to [24],
p̄i = 1

10

∑5
j=−5 p

j
i (j �= 0) is the average appearance times of collocation phrase



392 J. Xiao et al.

(wi, wj) in all distances. k0, k1, and U0 are custom thresholds. In our work, we
set k0 = 1, k1 = 1, and U0 = 10, similar [24].

In fact, the strength in C1 of formula (1) is to calculate the z−score of freqi,
so as to filter out collocation phrases that appear less frequently in users reviews.
The spread in C2 is the variance of collocation phrases at various distances, the
greater the spread, the more reasonable the collocation phrase. The C3 further
filters out collocation phrases that are k1 times of pi based on the distance
distribution of collocation (wi, wj). So as to get the most reasonable collocation
phrase.

A large number of collocations can be mined from user reviews, since users
might use different words to express the same preference feature, i.e., the col-
location phase has a synonym phenomenon. Therefore, we use the synonym
dictionary Wordnet to merge different collocations. For example, if we have the
following collocation phrases, <picture view>, <view photographs> and <see
photo> with a frequency of 20, 10, and 5 respectively, we will select the most
frequent occurrence collocation phrase (i.e., <picture view>) as the final merged
preference feature. After implementing synonym merging, the top 10 colloca-
tion phrases with the highest frequency are selected as the final fine-grained
preference features.

Preference Feature Score Acquisition. We compute the sentiment score for
a preference feature based on the following principles: 1) If preference feature
PFi appears in review sentence j, its sentiment score is equal to the positive
or negative score of the sentence in which it is located; 2) If there are both
positive Po+ and negative Ne− scores in review sentence j, the preference feature
sentiment score PFSi is calculated as:

PFSi =
{
Po+, |Po+| > |Ne−|
Ne−, else (3)

That is, the largest absolute value is selected as the feature score since it best
expresses the user’s sentiment toward the preference feature.

3.4 Sentiment and Preference Evolution

Time Series Sentiment Evolution. Assuming the users have made n reviews
on an app during time slice Ti. A total of sentiment scores can be obtained,
denoted as RS( score ) = {RSi1, RSi2, . . . , RSin}. It is worth noting that at a
fixed time, the number of user reviews for the same app is not fixed. Therefore,
we take the average sentiment score ARS(score) as the users’ sentiment score
calculated as follows:

ARS( score ) =
1
n

n∑

j=1
i∈T (T1,T2,...,Tm)

RSi,j (4)

where T (T1, T2, . . . , Tm) represents m consecutive but non-overlapping time
slices with equal length. For example, each Ti is 5 days or a week, RSi,j is
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Fig. 2. Sentiment evolution of Uber and PPSSPP-PSP

the jth review sentiment score of the app in the Ti, n is the number of reviews
within Ti.

Figure 2 shows the sentiment evolution trends of Uber and PPSSPP-PSP. The
history of users’ sentiment score changes from Dec. 2018 to Jan. 2019 is visualized
by line charts. We can see that the users express various changing trends for
different apps over time. This phenomenon also validates our assumption above
- users’ sentiment changes over time. In addition, apart from a stable sentiment
trend, users’ sentiment often rises or falls rapidly during different time slices,
resulting in peaks and valleys, e.g., Uber.

Time Series Preference Evolution. To calculate fine-grained preference fea-
ture score during different time slices and grasp the tendency of different prefer-
ence features over time, for each app, we construct a TSPFS (Time-Series Prefer-
ence Feature Score) matrix to represent the distribution of fine-grained preference
feature scores by all the users on each feature within different time slices.

Table 1. Time-series preference feature score matrix (TSPFS)

T1 T2 . . . Tm

PF1 PFS1,1 PFS1,2 . . . PFS1,m

PF2 PFS2,1 PFS2,2 . . . PFS2,m

. . . . . . . . . . . . . . .

PFn PFSn,1 PFSn,2 . . . PFSn,m

Table 1 presents a TSPFS matrix. A row of the matrix indicates that n fine-
grained preference features (i.e., PF1, PF2, . . . , PFn), and columns are m con-
secutive but non-overlapping time slices with equal lengths (i.e., T1, T2, . . . , Tm).
Ti represents the ith time slice. PFSi,j is the overall score of preference feature
j within the ith time slice, and is calculated as follows:

PFSi,j =
n∑

k=1
i∈T (T1,T2,...,Tm)

FRSi,j,k (5)
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where n indicates the frequency that feature j appears within the ith time slice,
FRSi,j,k is the score of preference feature j in review k in slice Ti.

Figure 3 shows the evolution of users’ preference features toward Uber, which
includes the preference features and its proportions, feature scores. Take “cus-
tomer service (−19): 38.45%” in Fig. 3 for example. It is a preference feature,
where −19 is the preference feature score, and 38.45% is the proportion of pref-
erence features “customer service” of all the preference features at that time.
Given a larger proportion of the feature and the absolute value of the feature
score, the preference feature can better reflect the user’s intention within that
time slice.

As we can observe from Fig. 3, users’ preferences are constantly changing
across different time slices. For example, users’ preferences include features “cus-
tomer service”, “waiting time” and “credit card”. Their scores are −19, −6 and
4, respectively between December 12, 2018, and December 15, 2018. However,
from December 16, 2018, to December 19, 2018, users’ preference feature “credit
card” disappeared, and the feature scores of “customer service”, “waiting time”
changed. This means that the degree of preference changed. The similar can be
observed in other time slices. Here, we mainly focus on the new features with
low feature scores since they are more likely to indicate users’ real intention.

Fig. 3. Time series preference feature evolution of Uber

3.5 Sentiment-Preference Feature Correlation Analysis

As discussed before, users’ sentiment change over time due to the app updates,
security issues, etc. Accordingly, peaks and valleys appear in users’ sentiment
trend. Figure 4 shows the temporal correlation between users’ sentiment and pref-
erence features. (T1, T2, T3, . . . , Tm) represents consecutive but non-overlapping
time slices with equal lengths. During different time slices, we can mine users’
preference features based on users’ sentiment (e.g., valley or peak) and imple-
ment sentiment-preference correlation analysis. In this study, we focus on the
users’ sentiment in valleys since they are more likely to indicate users’ prefer-
ence features. (t1, t2, t3, . . . , tm) represents the corresponding sentiment valley
time points in each time slice. Through these valley time points, we can mine
users’ preference features and obtain their significant intentions.



Detecting User Significant Intention via Sentiment-Preference 395

Fig. 4. Temporal correlation between user sentiment and preference features

3.6 User Significant Intention Detection

Users’ intentions are in association with their sentiment. In order to detect users’
significant intentions, the first step is to identify their significant sentiment (i.e.,
valley). Given the review sentiment scores and fine-grained preference features
obtained with the methods discussed in Sects. 3.2 and 3.3, we partition a fixed
time slice vt, such as 5 or a week, etc., and find the sentiment valleys during that
time slice. The specific process for identifying user sentiment valleys is shown in
Algorithm 1.

We detect users’ significant intentions around sentiment valleys. Similar to
twitter texts, user reviews are short texts. Pagano and Maalej [16] found that
80.4% of users’ reviews contain 160 characters or fewer, making Twitter-LDA [15]
a good candidate for analyzing topics in user reviews. Therefore, we use Twitter-
LDA to summarize the fine-grained preference features (i.e., collocation phrases)
during the sentiment valley time slice as users’ significant intentions (i.e., high-
level preference features, referred to as HLpf hereafter). Table 2 shows three
most common HLpf topic distribution of Uber app with their sentiments under
sentiment valley within the time slices December 12–15, 2018. We can observe
that these topics mainly represent the users complain about the worst customer
service, credit card and waiting for time problems of Uber. These can well reflect
the users’ significant intentions.

Table 2. Topic distribution within the sentiment valley of Uber

Topic PFSi,j

customer service, customer disgusting, service sometimes,
service worst, contact customer

−19

credit card, credit cost, card adding, card discounted,
card inconvenient

4

waiting time, waiting outside, amount time,
driver waiting, driver outside

−6
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Algorithm 1. User Sentiment Valley Identification (SVI)
Input: D: the set of user reviews which include sentiment score and date

vt: the number of days in a time slice
Output: valley list: the list of valleys

1: initialization : status ← unknown
2: for each d ∈ D do
3: if d.status ← unknown then
4: if d.sentiment score >d+1 then
5: status ← downhill
6: else
7: status ← uphill
8: end if
9: end if

10: if d.status ← downhill then
11: if d.sentiment score<(d+1).sentiment score then
12: if d.date valley list[−1].date<vt then
13: if valley list [-1].sentiment score>d.sentiment score then
14: valley list[-1]← d
15: else
16: add d to valley list
17: end if
18: end if
19: end if
20: end if
21: end for
22: return valley list

4 Experiments and Results

4.1 Experiment Preparation

Review Dataset. We select the testing apps based on the following three cri-
teria: i) there are adequate user reviews; ii) they are from different categories to
ensure the generalization of the testing apps; iii) there are detailed changelogs.

Finally, we select six testing apps from Google Play and collected their
changelogs from App Annie. Table 3 lists the testing apps with app name, cat-
egory, total reviews and review time, etc. Overall, we obtain 48,278 reviews
between November, 2018 and April, 2019 for all testing apps. Among them, they
are include 3 open-source apps, because we want to verify whether DSISP can
detect the users’ significant intentions when the app with fewer user reviews
but more modifications than closed-source apps. In addition, the review time is
before the app update time. This can judge whether the user intentions detecting
by DSISP are processed by the developer in time, thereby verifying the feasibility
and efficiency of DSISP.

Changelogs. We evaluate the performance of DSISP using apps’ official changel-
ogs as ground truth. The changelogs reflect the actual modifications made by
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Table 3. The subject apps

AppName Category Reviews Review time Changelog version Update time

YouTube Music Music & Audio 5,875 2018.11.9–

2019.1.24

2019.04.01 2019.4.1

Uber Maps & Navigation 7,890 2018.12.12–

2019.1.6

3.332.10005 2019.1.9

Facebook Social 33,288 2018.12.19–

2019.1.7

2019.01.08 2019.1.8

PPSSPP-PSP

emulator (open)

Action 1,100 2018.12.6–

2019.3.17

1.8.0 2019.3.18

AnySoftKeyb

oard (open)

Tools 59 2018.12.12–

2019.3.21

2019.03.22 2019.03.22

Tutanota (open) Communication 66 2018.12.22–

2019.4.4

3.50.11 2019.4.25

the developer when maintaining and updating an app. Table 4 shows several
changelogs of PPSSPP-PSP emulator under version 1.8.0. As we can see that
the changelog records include bugs fixing (e.g., Graphics fixes), or new feature
added (e.g., Allow putting PSP storage on custom paths like SD cards), etc.
Although the changelogs may not cover all the modifications to the releases,
they represent a lower bound and the prominent part of the changes [12]. Hence,
It is suitable for validating the users’ significant intentions detected by DSISP.

Table 4. The Changelog of PPSSPP-PSP emulator under V1.8.0

Performance Metrics. We employ the following three performance metrics
to verify the effectiveness of DSISP. The PrecisionSI indicates the precision of
detecting users’ significant intentions. RecallSI indicates whether the detected
significant intentions reflect the changes mentioned in the changelogs. Fhybrid

balances between PrecisionSI and RecallSI .

PrecisionSI =
S(C ∩ SI)

S(C)
, RecallSI =

S(C ∩ SI)
S(SI)

Fhybrid = 2 × PrecisionSI × RecallSI

PrecisionSI + RecallSI

(6)

S(C) represents the changelog records, S(SI) is the users’ significant inten-
tions detected by DSISP, and S(C ∩ SI) represents the number of detected
significant intentions which mentioned in changelogs. During our evaluation, we
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experimentally set the parameters of topic k = 10 by empirically, vt = 5. More
other vt values will be discussed in Sect. 4.2.

4.2 User Significant Intention Detection Result

Table 5 reports the results of PrecisionSI , RecallSI , and Fhybrid achieved by
DSISP. We can observe that DSISP has obtained a very high PrecisionSI with
an average value of 0.962, while its RecallSI reaches 0.629 (Fhybrid = 0.755).
For the closed-source apps, the PrecisionSI has reached 1.0, indicating that the
users’ significant intentions detected by DSISP cover all changelog information,
i.e., the users’ preferences in the sentiment valley are genuinely reflect the users’
significant intentions.

Furthermore, we also found that except for YouTube Music (RecallSI =
0.313) and Uber (RecallSI = 0.398) app, the RecallSI of other apps is higher
than 0.7. We manually analyzed the reviews of YouTube Music and Uber app,
and found that this is due to the fact that there are much more reviews for
popular apps under the sentiment valley. As a result, the users’ significant inten-
tions mined by DSISP not only cover the changelogs but also include some other
modification information which not mentioned in changlogs. Therefore, it led to
a lower RecallSI . For open-source apps, due to the more frequent modifies and
updates by developers, the modify records contained in changlog are also more,
so the RecallSI value is higher than the closed-source apps as a whole, which
indirectly proves that DSISP can efficiently mine users’ significant intentions.

In addition, we also analyzed the effect of different vt on the efficiency of
DSISP. vt indicates the size of time slice during the sentiment valleys are mined.
Table 5 shows the results of DSISP when vt = 5, 10 and 15, we can observe that
with vt increases, the PrecisionSI , RecallSI and Fhybrid are showing diversi-
fied changes, such as increasing, decreasing, or unchanged, this indicates that
different time granularities will have a direct impact on mining users’ signifi-
cant intentions by DSISP. The average optimal PrecisionSI (i.e., 0.962) and
Fhybrid (i.e., 0.755) are achieved while vt = 5. This is also the value that we set
in our experiment for detecting users’ significant intentions mentioned above.
More over, the developers can also dynamically set other vt values as needed.

Table 5. PrecisionSI , RecallSI , and Fhybrid achieved by DSISP

AppName vt = 5 vt = 10 vt = 15

PrecisionSI RecallSI Fhybrid PrecisionSI RecallSI Fhybrid PrecisionSI RecallSI Fhybrid

YouTube Music 1.000 0.313 0.606 1.000 0.333 0.500 1.000 0.338 0.506

Uber 1.000 0.398 0.569 1.000 0.398 0.569 1.000 0.398 0.569

Facebook 1.000 0.717 0.835 1.000 0.717 0.835 1.000 0.717 0.835

PPSSPP-PSP

emulator (open)

1.000 0.710 0.830 1.000 0.761 0.864 1.000 0.761 0.864

AnySoftKey-

board (open)

1.000 0.785 0.880 0.750 0.750 0.750 0.750 0.750 0.750

Tutanota (open) 0.772 0.850 0.809 0.409 0.818 0.545 0.272 0.857 0.413

Average 0.962 0.629 0.755 0.859 0.629 0.677 0.837 0.637 0.656
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Efficient detection performance can provide reliable suggestions for developers
to update and maintain their apps in future.

5 Conclusion and Future Work

Timely and effectively detecting users’ sentiment and preferences is crucial to
capturing users’ significant intentions, which is paramount for app developers
and app vendors in mobile app maintenance and evolution. In this paper, we
proposed DSISP, a framework for automatically detecting users’ significant inten-
tions from users’ reviews. DSISP produces two summaries at different granularity
levels about app reviews. These summaries can help app developers to analyze
and quantify users’ intentions about individual app features and to use this infor-
mation to identify new requirements or to plan future releases. Moreover, DSISP
can keep track of users’ up-to-date sentiment and preferences and analyze how
these preference features are temporally correlated with users’ intentions. The
experimental results show that DSISP can effectively and efficiently detect users’
significant intentions, with a precision of 0.962 and a Fhybrid of 0.755 on average.

In the future, we will leverage multi-dimensional user feedback information to
enhance DSISP, such as email records between users and developers, app reviews
on social media, etc. We will also employ the app issues and commits to mining
whether users’ feedback bugs can be reflected at the source code level with the
aim to help app developer maintain and improve their apps.
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