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Abstract. Continuous experiments, including practices such as canary
releases or A/B testing, test new functionality on a small fraction of the
user base in production environments. Monitoring data collected on dif-
ferent versions of a service is essential for decision-making on whether to
continue or abort experiments. Existing approaches for decision-making
rely on service-level metrics in isolation, ignoring that new functionality
might introduce changes affecting other services or the overall applica-
tion’s health state. Keeping track of these changes in applications com-
prising dozens or hundreds of services is challenging. We propose a holis-
tic approach implemented as a research prototype to identify, visualize,
and rank topological changes from distributed tracing data. We devise
three ranking heuristics assessing how the changes impact the experi-
ment’s outcome and the application’s health state. An evaluation on two
case study scenarios shows that a hybrid heuristic based on structural
analysis and a simple root-cause examination outperforms other heuris-
tics in terms of ranking quality.

1 Introduction

The ever-increasing need for rapidly delivering code changes to fix problems, sat-
isfy new requirements, and ultimately survive in a highly-competitive, software-
driven market has been fueling the adoption of DevOps practices [2] by many
companies. DevOps promotes the continuous deployment [13] of code to pro-
duction, breaking the traditional barrier between development and operations
teams and establishing a set of software development methodologies heavily
based on tools to automate software builds, tests, configuration, and deploy-
ment. To further increase development agility, companies are frequently following
a microservice-based [10] software architecture style. Microservice-based archi-
tectures are an evolution of the idea of service-oriented architectures [5,20], in
which applications comprise a multitude of distributed services.

The agility facilitated by DevOps practices and microservice-based architec-
tures enables companies to perform continuous experiments [16], which test the
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functionality and performance of new versions of application components under
production load. A common embodiment of continuous experimentation is to
perform canary releases [6]. In this practice, which resembles testing in produc-
tion, one compares the test version (the “canary”) of a microservice against
the current version (the baseline) with respect to performance and correctness.
Initially, the canary is exposed to requests of a small portion of users. If its per-
formance and correctness remains acceptable, it is gradually exposed to more
users until it replaces the baseline. If it fails to perform as expected at any time,
all traffic is shifted to the baseline and the canary is terminated. Crucially, deter-
mining the health of a canary requires (1) collecting and storing the metrics of
interest, and (2) comparatively analyzing the baseline and canary metrics.

Previous work [3,18] on assessing the outcome of continuous experiments
considers the microservice under test in isolation, focusing on service-level met-
rics alone. These approaches ignore the fundamental principle that microservices
communicate with each other and that these interactions affect the overall appli-
cation behavior. For example, performance issues in a canary version of a ser-
vice propagate delays (e.g., higher response times) within the network and when
solely judging on isolated service-level metrics, multiple services could appear
to misbehave. Given the scale of modern microservice-based applications com-
pounded by a myriad of possible inter-service dependency patterns, identifying
the root cause of such issues is challenging, especially when multiple microser-
vices are under experimentation, e.g., running multiple canaries simultaneously.

We contend that continuous experimentation in microservice-based applica-
tions must consider the topology underlying all inter-service calls so as to allow
developers to evaluate new versions holistically as opposed to in isolation. Out
of dozens or even hundreds of identified (topological) changes it is crucial to
assess those in detail that cause effects on the application’s health state. There-
fore, we propose an approach to not only identify and visualize changes between
baseline and canary versions, but also heuristics to rank these changes based on
their potential impact with the ultimate goal to guide developers when assessing
continuous experiments. We implemented our approach as a research prototype
that supports analyses in the context of multiple experiments running in paral-
lel. Our approach starts with inferring interaction graphs for both the baseline
and canary versions from distributed traces collected from microservice-based
applications. We then compare these interaction graphs to identify topological
changes, and rank these changes. A visual frontend allows developers to review
specific changes and associated quality metrics (e.g., response times).

In summary, this paper makes the following contributions: (1) a characteri-
zation of topological changes that occur in microservice-based applications; (2) a
general approach for ranking those observed changes; (3) three concrete ranking
heuristics as embodiments of this approach; (4) a proof-of-concept implementa-
tion; and (5) an evaluation of the quality of the produced rankings.

Our evaluation shows that a heuristic combining principles of both structural
analysis and performance analysis performs best across our evaluation scenarios.



Topology-Aware Continuous Experimentation 21

2 Related Work

Previous research has empirically assessed continuous experimentation practices
and challenges [15,16]. These works analyze reports on continuous experimen-
tation practices by selected companies [8,17], and also present data collected
more broadly using interviews and surveys. They find that software architec-
tures based on components that can be deployed and operated independently
(e.g., microservices) are essential for continuous experimentation, but also attest
that root-cause analysis of observed problems is challenging. Our work attempts
to address these challenges by considering the interactions in which updated
services participate.

Multiple methods and systems have been proposed for continuous experimen-
tation. Kraken is a system proposed by Facebook [19] for traffic routing between
services, servers, or even data centers to identify performance bottlenecks using
actual user traffic. Bifrost [14] formalizes continuous experiments consisting of
multiple phases. Experiments that are specified in a domain-specific language
are automatically executed by a middleware using smart traffic routing. The
MACI framework [4] for management, scalable execution, and interactive anal-
ysis presents an alternative way to express experiments integrating recurring
tasks around experiment documentation and management, scaling, and data
analysis with the goal of reducing specification efforts.

The work by Sambasivan et al. [11] is the closest to our approach. It com-
pares distributed traces to diagnose performance changes, distinguishing between
structural changes and ones in response-time. While Sambasivan et al. assume
similar workloads for the variants, our approach focuses on the topology and on
experimentation settings to assign only a small fraction of users to experimental
variants. Due to our set of change types, the comparison between the experimen-
tation variants is more fine-grained in our approach. This does also apply for
comparing our approach with Kiali1, a tool that helps observing services within
service meshs such as Istio2. While Kiali provides some basic health assessment,
our approach dives deeper by not only analyzing topological differences but also
ranking them to guide developers assessing the overall application’s health state.

Ates et al. [1] proposed Pythia, a framework making use of distributed tracing
to automatically enable instrumentation such as logs or performance counters
on those layers (e.g., application, operating system) that are needed to diagnose
performance problems. Santana et al. [12] investigates how syscall monitoring in
combination with a proxying approach can be used to obtain and inject tracing-
related meta-information with the goal to avoid code changes in the application
to propagate trace information. Our work relies on distributed traces collected
by the Istio service mesh using Envoy3 proxies in combination with Zipkin4 to
infer topologies of microservice-based applications.

1 https://kiali.io/.
2 https://istio.io/.
3 https://www.envoyproxy.io/.
4 https://zipkin.io/.
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3 Characterizing Change Types

In the following, we characterize recurring change types we identified when com-
paring service topologies. For this purpose, we derive formal representations of
microservice-based applications and service-interaction graphs that frame our
basis to define topological change types.

3.1 Microservice-Based Application

A microservice-based application A consists of a set of interacting services A =
{s1, s2, . . . , sn}. Services are available in different versions, e.g., stable version
1 of the frontend service and a new experimental canary version 2 depicted
in Fig. 1 (Left). For a service si ∈ A this is represented as a tuple VSi =
〈si,1, si,2, . . . , si,m〉, where si,1 . . . si,m are the corresponding versions j of service
si with 1 ≤ j ≤ m. Note that Fig. 1 (Left) not only represents our running
example, but also depicts a topological difference which we will cover in detail
in later sections when we revisit this example.
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Fig. 1. Topological difference graphs of microservice-based sample applications. Left:
running example (scenario 1). Right: scenario 2. Green depicts added functionality
or calls, red depicts removed functionality or calls, and yellow depicts service version
updates. (Color figure online)

In the context of continuous experiments a microservice-based application is
available in multiple variants VA = 〈va1, . . . , vap〉 at the same time. An applica-
tion variant comprises a combination of services 〈si, . . . , sk〉 with i ≤ j ≤ k and
sj ∈ A. For each of those services sj ∈ A a concrete version u with sj,u ∈ VSj

is selected. In Fig. 1, the baseline variant of the application includes version 1 of
frontend, while the canary variant includes the new version 2 of frontend.

3.2 Interaction Graph

In a microservice-based application, version j of a service si interacts with other
services by calling one or more of their endpoints. In our model, this interaction
is represented by a directed graph G = 〈V,E〉 in which V and E denote sets of
vertices and edges respectively. Every service si,j of an application corresponds
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to a vertex v ∈ V in the graph, referring to version j of si ∈ A, where si,j ∈ VSi.
A directed edge e = si,j → su,v, where e ∈ E, represents a call from a service
si,j (subsequently named caller) to another service su,v (callee).

3.3 Topological Change Types

The presented formal model allows us to construct interaction graphs for every
application variant and to compare them. Comparing interaction graphs of two
or more variants reveals changes at the topological level. For example, in Fig. 1,
when the canary version 2 of frontend is deployed, we observe that a new service
(product) is required while the details service is no longer called.

In the following, we characterize typical change types that surface in the evo-
lution of microservice-based applications. When comparing interaction graphs
G1 and G2, every such change type appears as a certain pattern involving a
subset of the vertices. We distinguish two categories of change types: fundamen-
tal and composed, where a composed change type is a combination of multiple
fundamental change types.
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Fig. 2. Topological change types demonstrated on sample application (excerpt). Left:
add call to new service, removed call, and updated caller version. Center: add call to
existing endpoint. Right: updated callee version and updated version.

Fundamental Change Types. Fundamental change types involve calling
newly added services (or service endpoints), calling endpoints of existing ser-
vices, or removing calls to service endpoints.

Calling a New Endpoint. This change type represents new functionality man-
ifesting as a call to a new resource, such as a service or a service endpoint that
was added. In both interaction graphs G1 and G2 there exists a vertex (or node)
representing a service a, but in different service versions: i in case of G1 (i.e.,
sa,i), and j in case of G2 (i.e., sa,j). The interaction graph G2 contains an edge
e ∈ E with e = sa,j → su,v calling a service u in version v that does not exist in
graph G1. Figure 2 (left) depicts this change type in our running example. The
frontend service of the canary variant (version 2) calls a newly added product
service that does not exist in the baseline variant (version 1).

Calling an Existing Endpoint. This change type characterizes reusing func-
tionality, i.e., a new call to an existing service endpoint is made. There are again
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two nodes in the interaction graphs representing the same service a, but in dif-
ferent service versions: sa,i in G1 and sa,j in G2. Graph G2 contains an edge
e ∈ E with e = sa,j → su,v denoting a call to service u that also exists in graph
G1; thus, su,v is represented by a vertex v ∈ V of G1. However, there is no direct
interaction (no edge) between sa,i and su,v in G1. Figure 2 (center) shows this
change type in which the canary variant of orders (version 3) calls shipping. The
shipping service is also part of the baseline variant involving version 2 of orders,
but there is no direct interaction between orders and shipping.

Removing a Service Call. This change type represents the inverse of the pre-
vious one. A previously used resource is no longer used. Revisiting the previous
change type, this time the interaction graph G1 contains an edge e ∈ E with
e = sa,i → su,v representing a call to a service u, but no equivalent edge between
sa,j and su,v exists in G2. However, the service u might still be used in G2 by
other services. Figure 2 (left) represents this change type between the canary
variant of frontend (version 2) which no longer calls details.

Composed Change Types. These change types are constructed from funda-
mental change types and denote updated caller version, updated callee version,
and updated version.

Updated Caller Version. When comparing interaction graphs G1 and G2, the
version of a calling service a is “updated”. This caller-side version update is a
combination of removing a service call and calling an existing endpoint change
types. From the perspective of G2, the service sa,i no longer calls a service
endpoint su,v (i.e., removed service call), but the same service a of the updated
service version (i → j) is adding a call to su,v (i.e., calling an existing service
endpoint). Figure 2 (left) depicts an example. In the canary, the frontend service
is updated to version 2, and both version 1 and version 2 call the search service.

Updated Callee Version. This change type represents the case of a version
change in the service that is called. This callee-side version update combines
removing a service call and calling a new endpoint change types. From the per-
spective of G2, the service sa,i no longer calls a service su,v (i.e., removed service
call), but the same service sa,i calls a new version x of service u (update: v → x,
i.e., calling a new endpoint), hence there exists an edge e = sa,i → su,x. Figure 2
(right) exemplifies this change type when the version of frontend that is called
by edge is updated from version 1 (baseline) to version 2 (canary).

Updated Version. This change type is a combination of updated caller version
and updated callee version change types. There exists a service a and service u in
both interaction graphs G1 and G2. In G1, there is an edge e1 = sa,i → su,v, and
in G2, there is an edge e2 = sa,j → su,x. Hence, in G1 the interaction happens
between versions i and v of the services a and u, and in G2 between versions j
and x. From the perspective of G2, both the caller and the callee versions are
updated. Figure 2 (right) shows this pattern between frontend and orders. While
for the baseline, version 1 of frontend calls version 2 of orders, in the canary,
version 2 of frontend requires version 3 of orders.
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4 Ranking Identified Changes

This section covers (1) the construction of the graph-based topological differ-
ences, (2) a generic algorithm that traverses these differences to produce a rank-
ing of identified changes, and (3) three embodiments of this algorithm in the
form of heuristics to assess the impact of the changes identified.

4.1 Constructing the Topological Difference

Our approach relies on distributed traces of a microservice-based application
to (1) infer interaction graphs for each variant of the experiment and to (2)
construct a graph-based topological difference resulting from their comparison.

Inferring Interaction Graphs. Distributed tracing is a technique used to
collect information about calls between microservices. A trace is a set of data
about the sequence of all inter-service calls resulting from a top-level action
performed by an end user. Each call is associated with timestamped events cor-
responding to sending the request, receiving the request, sending the response,
and receiving the response. In our approach, a developer needs to specify the
application variants of interest, i.e., versions of services for baseline and canary
and the experiment start time. Given the inputs, we then divide collected dis-
tributed traces of baseline and canary variants into clusters, where each cluster
contains multiple interaction graphs (as defined in Sect. 3) with the same root
request. A root request is a service call made to an edge service of the application,
which in turn triggers other inter-service calls within the application, forming
an interaction graph. In each cluster we also compute statistics on metrics for
each inter-service call, namely, duration, timeouts, retries, and errors.

Comparing Interaction Graphs. The next step is to compare corresponding
baseline and canary clusters of interaction graphs to identify topological changes
based on the types described in Sect. 3.3. Once the changes and their types are
identified, the graphs are merged into a single graph forming an “extended”
topological difference (e.g., Fig. 1). The topological difference contains all the
changes identified, their assigned type, and further statistics that were captured
during the interaction graph’s construction. Due to the merge, the difference
graph contains also those structures (services and their interactions) that are
common to the graphs under comparison. Doing so preserves the “big picture”
and enables detailed analyses on the entire service network.

4.2 Traversing the Topological Difference

Once the graph-based topological difference is built, we execute a two-phase
graph-traversal algorithm, consisting of the annotation and the extraction phases.

Basic Algorithm. In a first step, all vertices (or nodes) in the graph without
outbound calls are visited (and marked as such). Then, the algorithm visits those
vertices calling service endpoints that have been flagged as visited, marking them
as visited again. This process is repeated until all nodes in the graph are visited.
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Annotation Phase. In our approach, every node in the graph-based topological
difference has an associated state T , which is used to store any information to
reason about, and ultimately rank changes. In the annotation phase, these states
are set to hold information required for the concrete implementation of the rank-
ing algorithm (i.e., heuristic). During a node’s visit, a wide range of information
is available, including the involved endpoint, outgoing calls and their change
types, statistics (for either one or for both variants) that were computed during
the construction of the interaction graphs, and any other queryable monitoring
information (e.g., from Prometheus5). It depends on the concrete implementa-
tion of a heuristic which information is used and how it is combined.

Extraction Phase. In this phase, every node is revisited with the goal to
extract a score S for each interaction (i.e., outgoing edge). Due to the nature
of our change types, an interaction in the topological difference graph could
comprise two edges in the source interaction graphs. The scoring happens on the
change type level: edges belonging to the same change are merged. Edges that
are common (without any change) in both source interaction graphs are treated
as a special change type. The idea of the extraction phase is to rely on the state
information gained in the annotation phase and to transform it into scalar values.
Formally, this scoring function has the type signature score : change → int.

Ranking. Once scores for all edges in the difference graph are computed, the
scores are sorted in descending order and ranks from 1 to k are assigned, where
k is the number of edges in the graph-based topological difference. The edge
achieving the highest score is ranked on position 1. Equal scores leading to tied
ranks are possible, even though they appear rarely.

In the following we will cover three specific embodiments of our algorithm.
Starting with the Subtree Complexity heuristic, followed by the Response Time
Analysis heuristic, we will cover their joint variant, the Hybrid heuristic.

4.3 Subtree Complexity Heuristic

This heuristic analyzes sub-structures of a topological difference and considers
uncertainty in the context of experiments.

Concept. The graph structure is broken down into multiple subtrees (see Fig. 3
for an example). The fundamental idea of this heuristic is that the more complex
the structure of the (sub-)tree is, the more likely it contains changes that affect
the outcome of the experiment and the application’s health state.

Initially, every node a has an assigned state of Ta = 0. Whenever a node a is vis-
ited during the algorithm’s annotation phase, its state Ta is set to Ta =

∑n
1 Ti+pa,i

being 1 ≤ i ≤ n the (child) nodes of the outgoing calls of a. Thus, the state values
Ti of called nodes i are summed up and weights pa,i representing individual prop-
agation factors for these calls are added. During the extraction phase, for every
interaction of a node a with a node i, the score for this edge e is computed as fol-
lows: Se = Ti + ca,i. Thus, the score is built from the state value Ti of the node
(i.e., service) that is being called and an individual scoring factor ca,i for the edge.
5 https://prometheus.io/.

https://prometheus.io/
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Fig. 3. Example of (topmost) subtrees in a topological difference. a) Basic subtree
complexity (ST) in blue (i.e., counting the number of edges in a subtree). Service s1
has three subtrees. The state value of s4 is 5 (3 subtrees, 5 edges in total). Thus, the
extracted score for the edge between s1 and s4 is 5 + 1 = 6. b) Extended subtree (ST
Ext) in blue, propagation values pa,i based on Utype values assigned to change types.
Extracted score for the edge between s1 and s4 is 10 + 2 + 3 = 15. (3 represents the
performance penalty). (Color figure online)

The distinction between propagation and scoring factors serve the following
purposes. The propagation factor directly influences the state values of the nodes
(and thus the individual scores) when walking up the tree. This is useful if severe
issues within a subtree are detected that should be reflected in the ranking of the
changes. The scoring factor only influences individual scores, e.g., a single change.
It allows expressing fine-grained differences among the changes. Depending on
how propagation and scoring factors are chosen, the subtree complexity heuristic
allows for multiple variations. Within the scope of this paper, we focus on two
variations: Subtree and Subtree Extended.

Subtree (ST). This standard variant of the heuristic analyzes the structural
complexity of the difference graph by counting the number of edges within sub-
trees. Propagation and scoring factors pa,i and ca,i are set to 1 for all edges
independent of their change types. Figure 3a depicts an example in blue.

Extended (ST Ext). This variation introduces the concept of uncertainty.
Calling entirely new services compared to calling a new version of an existing
service leads to a different degree of uncertainty when assessing the application’s
health state. For the former, no information to compare to (i.e., previous calls
or historical metrics) exists, while for the latter calls to the new version can be
compared with previous calls. Deviations in metrics, such as response times or
error rates, can be considered. Similarly, when a new call to an existing endpoint
is made, even though a direct comparison on the interaction-level is not possible,
there are still metrics available that are associated to the called service allow-
ing an assessment whether this added call introduces unwanted effects. In our
approach, we built upon these subtle differences in uncertainty for the identified
change types and assign a weight Utype to each of them.

For the extended subtree heuristic, instead of the number of edges, the uncer-
tainty values Utype associated to the individual edges’ change types are summed
up within a subtree. Hence, individual propagation factors pa,i = Utype are set to
the uncertainty value of the edge’s change type. Figure 3b depicts an example.
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The rationale for this is to emphasize the uncertainty of subtrees involving many
changes. Scoring factors are defined as ca,i = Utype + P . Similar to the propa-
gation factors we use the uncertainty values Utype and we introduce penalties
P that are added to those interactions for which deviations are measured, e.g.,
significant changes in response times. This mechanism allows us to account for
performance issues without running in depth root-cause analyses. Penalization
applies to all interactions for which direct comparisons between the variants on
the edge-level are possible, i.e., composed change types and common calls.

4.4 Response Time Analysis Heuristic

This heuristic tries to identify services and changes that have caused performance
issues by incorporating the notion of uncertainty.

Concept. The intuition here is that in case of performance deviations (e.g.,
response time) spotted at a node, the node’s surrounding changes that add
additional calls (e.g., calling a new endpoint, or calling an existing endpoint)
are potential sources of these deviations. This heuristic focuses on the overall
response time (i.e., how long did the called endpoint take to respond) extracted
from tracing data. However, the concept can be extended to incorporate other
metrics that have similar cascading effects. Further, note that these performance
comparisons are only possible for specific change types, namely composed change
types and common calls.

The state Ta of a node a is extended to keep track of deviations and their
potential sources while traversing the graph. It involves flag, a counter that
keeps track how often a node is considered as the source of a deviation, a map
deviations that stores which outgoing call (i.e., key) causes how much deviation
(i.e., value, in milliseconds), and a list source keeping track which child caused
the deviation. Algorithm 1 illustrates the analysis executed for every outgoing
call in the annotation phase when visiting a node a.

Algorithm 1: Response Time Analysis
Input: node, child, call
if call.hasDeviation() :

node.state.addSource(child)
if len(child.state.deviations) == 0 :

node.state.addDeviation(call=call,deviation=call.deviation)
child.state.flag := 1

else:
flagSources(child)
total := sum(child.state.deviations)
node.state.addDeviation(call=call, deviation=max(call.deviation, total))
if call.deviation > total :

inc(child.state.flag)
for c in child.calls :

if c.type in [call new endpoint, call existing endpoint] :
inc(c.target.state.flag)
child.state.addSource(c.target)

In case of a deviation, the called child is added as a source. If there are no
stored deviations for the child node, then the deviation is added to the node’s
state, and the child’s state flag counter is set to 1. If there are deviations, the



Topology-Aware Continuous Experimentation 29

recursive function flagSources walks through all the stored sources that might
caused the deviation on the child’s side and increases their flag counters. In
the next step, the sum of all stored deviations (i.e., total) is calculated and
the deviation is added to the node’s state. If the call’s deviation is higher than
the total sum of deviations on the child’s side, then it is likely that a change
introduced this new deviation. Therefore, the child’s flag counter is increased
and the child’s surrounding changes are analyzed. This involves all of the child’s
outgoing edges with calling a new endpoint and calling an existing endpoint
change types. The target nodes of these edges are added as potential sources
and their flag counters are increased.

By using different scoring factors in the heuristic’s extraction phase we dis-
tinguish two variations: RTA and RTA Ext. The annotation phase (i.e., flagging)
described in Algorithm 1 is the same for both variations.

Response Time Analysis (RTA). In the extraction phase, for every outgoing
call of a node a to a child node i, the score for an edge e is defined as Se =
Ti.flag. The resulting score corresponds to the final value of the child node’s flag.
Consequently, those services with the highest flag counts are ranked first.

Extended (RTA Ext). For this variation we revisit the concept of uncertainty
and reuse weights Utype as scoring factors. Again, the rationale is that those
interactions with high uncertainty for a change should have higher scores. To
have a mechanism to balance between flag and uncertainty values, we introduce
a penalty constant C. The scoring function for an edge e is defined as Se =
Ti.flag ∗ C + Utype.

4.5 Hybrid Heuristic

More complex (sub-)structures are more likely to contain changes that could
cause problems. This is the strength of the subtree complexity heuristic. How-
ever, in case of performance deviations, the response time analysis heuristic pro-
vides more detailed analyses to identify the origin of problems. The goal of the
hybrid heuristic is to combine the strengths of both, structural and performance
analyses. The underlying mechanics of both heuristics remain untouched for the
hybrid heuristic. During the algorithm’s annotation phase, both the structural
and the performance analyses are conducted. The extraction phase shapes how
the individual results of the heuristics are transformed into a single result. We
distinguish two variants: Hybrid (HYB) and Extended (HYB Ext).

Both variants use the extended subtree heuristic (ST Ext) to determine state
values Ti. To determine state flag values, the standard variant of the heuristic
uses standard RTA, while the extend hybrid variant uses extended RTA. Conse-
quently, the scoring function for an edge e is defined as Se = Ti+Utype+Ti.flag∗C,
being C the penalty constant established in RTA Ext, which is set to 1 in the
case of the standard hybrid variant.
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5 Ranking Quality Evaluation

To demonstrate our (formal) approach we developed a research prototype with the
goal to assist developers on experiment health assessment and decision-making.
The paper’s online appendix6 provides screenshots of the user interface (also
depicting those two scenarios), source code of the heuristics, and a comprehen-
sive replication package.

We evaluated the quality of the produced rankings on two concrete scenar-
ios: (1) revisiting the running example, and (2) dealing with multiple breaking
changes. Before we dive into details of the ranking quality evaluation, we briefly
describe our evaluation’s setup.

5.1 Setup

The setup involves a description of the method we used to assess the quality
of the produced rankings, how we calibrated the parameters the heuristics are
operating on, and how we generated the distributed tracing data.

Method. Normalized discounted cumulative gain (nDCG) [7] is a measure of
ranking quality, widely used in information retrieval. Based on a graded rele-
vance scale of documents in the result list of search-engine queries, DCG (or its
normalized variant nDCG) assesses the usefulness (i.e., the gain) of a document
based on its position in the result list. The gain of each document is summed
up from top to bottom in the ranking, having the gain of each result discounted
the lower the rank, which has the consequence that highly relevant documents
ranked at lower positions are penalized. The DCG accumulated at a particular
rank position p is defined as DCGp =

∑p
i=1(reli/log2(i + 1)).

reli is the relevance of the document at position i. Instead of documents we
rank identified changes. In order to use DCG, the authors assessed the relevance
of every single change of our two scenarios. In total, including sub-scenarios,
6 relevance assessments were conducted rating changes on a scale from 0 (not
relevant) to 4 (highly relevant). We use a normalized DCG (nDCG) producing
relative values on the interval 0.0 to 1.0, this allows for result comparison across
scenarios. 1.0 is the maximum value representing a ranking with the most rele-
vant changes on the top positions. As tied ranks are possible (e.g., changes with
the same score and rank as resulting from a heuristic), we applied the nDCG
adaption proposed by McSherry and Najork [9] considering average gains at tied
positions.

Calibration. To calibrate the heuristics we followed an iterative exploratory
parameter optimization procedure across all scenarios. For nDCG we considered
the top 3, 5, 7, and 10 positions of the ranking to be compared. For the penal-
ties P and C used in the heuristics’ scoring functions we iterated through values
1, 3, 5, 7, and 10. We tested four different mappings of uncertainty values to change
types Utype. Based on more than 9000 calibration results, we determined that

6 https://github.com/sealuzh/topology-experimentation-appendix.

https://github.com/sealuzh/topology-experimentation-appendix
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P = C = 3 and an uncertainty mapping Utype (i.e., change type → uncertainty)
of {‘calling new endpoint’: 3, ‘calling existing endpoint’: 1, ‘removing call’: 1,
’updated caller version’: 2, ’updated callee version’: 2, ’updated version’: 2, ‘com-
mon call’: 0} yielded the most promising results. We determined the nDCG for
the top 5 positions to allow comparison across scenarios of different sizes.

Tracing Data. We implemented the two evaluation scenarios as microservice-
based applications running on top of a Kubernetes cluster in the IBM Cloud.
The Istio service mesh was in place to handle experiment traffic routing between
the application’s variants along with a Zipkin installation keeping track of service
interactions. For every (sub-) scenario 1000 requests were generated.

5.2 Scenario 1: Revisiting the Sample Application

As a first scenario we use the example application shown in Fig. 1. Contrary to
the next scenario, we do not cover a specific evaluation aspect here. However,
this scenario involves all of the change types we identified, hence making it a
useful baseline to assess the proposed heuristics.

Scenario. This scenario involves two sub-scenarios: basic and delayed. Basic
executes the baseline variant of the application without modification, the canary
variant involves added functionality and updated service versions. The delayed
sub-scenario introduces a delay of 100ms at the payment service for the canary
variant. This reflects an abnormally behaving orders service in the canary that
multiplies the traffic towards the payment service causing it to overload, resulting
in higher response times.

Relevance. For the basic scenario, the added calls to product and the updated
versions of frontend and orders were classified as highly relevant (i.e., a relevance
score of 4). For the delayed scenario, in addition, the call between payment and
orders is classified as highly relevant. Relevance ratings for all scenarios are listed
in our online appendix.

Table 1. nDCG5 scores for all variations of the three heuristics across all evaluation
scenarios. Scenario 1 with sub-scenarios basic and delayed (in the canary variant).
Scenario 2 with four sub-scenarios: basic, a delay involving service j (canary), a delay
involving service s (canary), and a combination of both delays (canary).

Scenario 1 Scenario 2

Heuristic Basic Delay Basic Delay j Delay s Combined

ST 0.89 0.93 0.91 0.83 0.87 0.76

ST Ext. 0.96 0.93 0.99 0.85 0.91 0.77

RTA 0.76 0.87 0.64 0.91 0.82 0.90

RTA Ext. 0.93 0.95 0.73 0.91 0.83 0.91

HYB 0.98 0.96 1.00 0.85 0.92 0.81

HYB Ext. 0.96 0.98 0.96 0.93 0.92 0.87
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Results. Table 1 (Scenario 1) shows the nDCG scores of the three heuristics in
their 6 variations for the basic and the delayed sub-scenarios. Scores are color-
coded, the higher the score, the more intense the background color. The hybrid
variations outperform the other heuristics, though some other approaches achieve
high scores as well. RTA produces good results for the delayed sub-scenario.
However, it only captures the “relevance” of the delayed fragments and ignores
the high relevance of the added functionality. This is simply because there are no
performance issues associated with these changes. The addition of uncertainty
for the RTA Ext variant helps to compensate this flaw and leads to stronger
scores for both sub-scenarios. Moreover, penalizing as a scoring factor turns out
to have positive effects on the delayed sub-scenario. However, the standard HYB
variant without penalties performs slightly better, though only by a whisker, e.g.,
by 0.005 on the combined score of both sub-scenarios for HYB and HYB Ext.

5.3 Scenario 2: Breaking Changes

The goal of the second scenario is to identify how the heuristics behave when
dealing with more complex, cascading changes resulting in multiple version
updates. This represents deployment scenarios and experiments dealing with
multiple breaking API changes. Figure 1 (right) depicts its topological differ-
ence in which b is the experiment’s target service.

Scenario. We split into multiple sub-scenarios involving simulated performance
issues in the canary variant. In addition to the basic scenario, which contains
multiple version updates and new services, we added two specific performance
deviations: a delay at service h when calling service j (100 ms), and a delay at
service s (200 ms) simulating a more complex request processing compared to
the removed service pairs p, q, and r. As a fourth sub-scenario, we combined
these two delays, making them active at the same time.

Relevance. For the basic sub-scenario, the version updates between b and c, b
and f, f and m, and the added functionality for m calling s are rated as highly
relevant. The delayed variants emphasize the changes introducing performance
deviations.

Results. Similar to the running example, on average across all sub-scenarios, the
hybrid heuristics perform best (see Table 1, Scenario 2). Some individual results
on sub-scenarios provide valuable insights into the single heuristics’ strengths and
weaknesses. Keeping the basic results aside, RTA (in both variations) achieves an
average nDCG score of 0.88, only topped by HYB Ext, which naturally inherited
RTA functionality, with a score of 0.91. For the basic sub-scenario, the standard
HYB performs best, almost reporting the perfect ranking with a score of 0.996,
immediately followed by ST Ext with uncertainty involved (as propagation and
scoring factor). Remarkably, the standard version of ST achieves a score of 0.91,
also due to the fact that changes rated with high relevance are particularly “up
high in the tree” (e.g., between b and f, and b and c) in this scenario. This
enables this simple heuristic to come close to the best rankings.
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5.4 Discussion

Combining the nDCG scores across all evaluation scenarios yields the highest
(average) score of 0.94 for HYB Ext, a heuristic involving both uncertainty and
a penalty mechanism in the scoring function. Interestingly, when diving deeper
and distinguishing between (1) all basic scenarios and (2) all scenarios involving
introduced performance issues we observe HYB Ext being not ranked first for
both (1) and (2). Despite being superior for performance cases (2) with an aver-
age score of 0.93 and a gap of 0.03 to the second-best heuristic (i.e., RTA Ext),
it is ranked third for non-performance cases, lacking a score of 0.03 to its lead-
ing standard HYB counterpart without penalty mechanism. As the performance
cases dominate – 4 versus 2 non-performance cases – HYB Ext clearly benefits
from the evaluation setup. This result is an indication that it would make sense
to let developers or release engineers using our proposed tooling toggle between
multiple (selected) heuristics which provide insights onto the application’s state
from different angles.

6 Limitations

One limitation of our approach is that the ranking quality evaluation was con-
ducted on traces for self-generated scenarios. We mitigated this threat by cov-
ering two complex scenarios and combined them with sub-scenarios including
simulated performance issues. A more thorough evaluation based on multiple
real cases is desirable, and part of our future research. A further threat involves
the relevance classification conducted by the authors of this paper. We classi-
fied all changes for all sub-scenarios on a scale from not relevant (0) to highly
relevant (4). As the relevance is used as baseline for nDCG, these ratings have
a direct effect on the resulting scores. Our online replication package allows
inspecting how results change when relevance ratings are adjusted. Another
threat involves the parameter calibration for the heuristics, which has a strong
influence on the results. We mitigated this threat by performing thorough cali-
bration runs with different parameter settings across all covered scenarios.

One limitation regarding the heuristics is that RTA variations only account
for changes that impact the response time negatively. We focus on the total
response time, ignoring that individual changes can have both positive and neg-
ative effects. However, our heuristics can be extended to cover this case as well.

Our evaluation focused solely on the ranking quality and left aside ques-
tions on how our approach would perform on industry-scale applications. We
conducted a performance evaluation on the heuristic’s execution behavior on
self-generated difference graphs of multiple sizes and with various characteris-
tics. First results are promising and show that the heuristics are able to cope
with graphs consisting of thousands of nodes within seconds. However, detailed
analysis are, also due to space reasons, out of scope for this paper and an eval-
uation on real instead of self-generated graphs is subject of future work.
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7 Conclusion

We proposed an approach that analyzes request traces captured from distributed
tracing systems to identify changes of microservice-based applications in the
context of continuous experiments. Using heuristics, we rank these identified
changes according to their potential impact on the experiment and the applica-
tion’s health state, with the goal of supporting decisions on whether to continue
or abort the experiment. While previous work on experiment health assessment
considers the services under test in isolation, which could skew the assessment
as certain effects are left out, we focus on the topological level. We characterized
a set of recurring topological change types consisting of fundamental patterns
and more complex composed variants. We proposed three heuristics that oper-
ate on top of these characterized changes taking the concept of uncertainty into
account. Our evaluation conducted on two case study scenarios demonstrated
that the rankings produced by the heuristics are promising and could be a valu-
able resource for experiment health assessments. An comprehensive evaluation
on how our approach performs on industry-scale applications is subject of future
work.
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