
Dynamic Edge User Allocation with User
Specified QoS Preferences

Subrat Prasad Panda, Kaustabha Ray, and Ansuman Banerjee(B)

Advanced Computing and Microelectronics Unit, Indian Statistical Institute,
Kolkata, India

subratprasad.mail@gmail.com, {kaustabha r,ansuman}@isical.ac.in

Abstract. Mobile Edge Computing (MEC) policies that bind user ser-
vice requests to edge servers, seldom take into account user preferences of
Quality-of-Service (QoS) and the resulting Quality-of-Experience (QoE).
In this paper, we design a novel user-centric optimal allocation policy
considering the QoS preferences of users, with an attempt to maximize
the overall QoE. Additionally, we propose a real-time mobility aware
user-centric heuristic algorithm to solve the allocation problem by accom-
modating the time varying QoS demands of users. Experimental results
on real data sets demonstrate the efficiency of our allocation scheme and
a comparison with state-of-art approaches in MEC literature.

Keywords: Edge computing · Server allocation · User migration

1 Introduction

In recent times, Mobile Edge Computing (MEC) [1] has emerged as a new
paradigm that allows service providers to deploy services on MEC servers located
near base stations. As users move around, their application service invocations
are routed to proximate MEC servers to curtail the high latencies of cloud com-
munication networks. A service allocation policy is designed to determine the
user-service-server binding, i.e. which service requests from which users are pro-
visioned by which MEC servers in their vicinity, as they move around. In recent
years, several allocation policies, static and dynamic, considering different opti-
mization metrics have been proposed in literature [3,4,6–8].

The general philosophy of service allocation policies is to design and optimize
a user-mobility aware service-server-user binding that optimizes some quantita-
tive metric (e.g.. latency, energy, throughput) to cater to user application service
needs and ensure seamless usage experience. A recent work [6] has proposed a
novel view of considering qualitative QoS level offerings by service providers in
designing the service bindings. Additionally, the authors have quantitatively cor-
related QoS values with overall Quality-of-Experience (QoE) of users to demon-
strate the existence of thresholds, beyond which, enhancing QoS values no longer
enhances a user QoE. This work, however, does not consider a user’s QoS pref-
erences when deciding these bindings. Moreover, the binding is static, in other
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 187–197, 2020.
https://doi.org/10.1007/978-3-030-65310-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65310-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-65310-1_15

188 S. P. Panda et al.

words, once an allocation is decided for a user service invocation to a specific QoS
level at an edge server, he is continued to be served at the same level throughout,
oblivious to the fact that the user may not be in a position to enjoy services at
a higher QoS level always due to battery or other constraints. Also, the policy is
not adaptive, in the sense that user movements, joining or leaving of users, and
user QoS preferences and preference changes in terms of the required QoS lev-
els, are not accounted for. This motivated us to design a dynamic self-adaptive
allocation policy that can address these variations.

Designing an allocation that considers user preferences of QoS levels is chal-
lenging due to the dynamics of MEC systems, the stochastic nature of service
invocation patterns and the large space of user-service-server binding configura-
tions. In our view, allocation policies in literature are more catered towards the
perspective of service providers [5,6], aiming to optimize quantitative metrics,
often ignoring users’ qualitative preferences of QoS levels when making allocation
decisions. QoS levels typically translate to a monotonically increasing footprint
on the resource consumption for both the user and the provider, at the server
end where the service is provisioned, and at the user end where a communication
latency depending on the size of transferred data is incurred. Policies like [6],
being user agnostic, may allocate QoS levels to users leading to an added aggra-
vation. In such scenarios, a service provider may also suffer a degradation in
throughput since the high QoS levels translate to more resources allocated at
the server end which could have been otherwise allocated to other users. In the
worst case, an overtly aggressive user-agnostic QoS allocation can lead to new
service requests being needlessly denied service.

Our proposal in this paper is a service allocation policy that caters to both
user and provider views considering individual QoS preference levels to enhance
overall QoE of users in a mobility-aware scenario. The QoS preferences of users
can vary over time, for example, a user initially having high battery levels, and
preferring to stream services at high QoS levels, may sometime later choose to
downgrade his preference depending on the changing battery conditions to alle-
viate energy utilization spent in data communication. We take into account such
user specified adjustments in an attempt to maximize the overall user experi-
ence. Additionally, we cater to mobility of users and changing conditions as well.
We first formulate the problem of dynamic QoS preference aware edge user allo-
cation and propose an Integer Linear Programming (ILP) formulation for the
optimal solution, and a heuristic which produces near optimal QoE allocations.
We use the EUA dataset [4–7], a real-world dataset as edge server locations,
and the PlanetLab and Seattle Latency dataset [10] to generate latencies repre-
sentative of MEC environments to validate our approach. Experimental results
demonstrate the efficiency of our heuristic which produces near optimal alloca-
tions. We compare our results with two state-of-the-art approaches and show
that our proposal outperforms both with respect to QoE.

Dynamic Edge User Allocation with User Specified QoS Preferences 189

2 A Motivating Example

In this section, we present a motivating example to explain the problem context.
Consider the scenario demonstrated in Fig. 1. There are two edge servers E1 and
E2 and six users u1, u2, u3, u4, u5 and u6. The coverage area of a particular
server is marked by a circle, hence any user within the coverage area of a server
can use the services hosted at the particular server. For example, u1 can only
access the services from E1, whereas, u4 can access the services hosted at both
E1 and E2. The resource capacity of each server is represented as a resource
vector 〈vCPUs,RAM, storage, bandwidth〉 [6], where vCPU denotes the num-
ber of virtual CPUs. For the example scenario, assume the resource capacities
of server are denoted by vectors s1 = 〈16, 32, 750, 8〉 and s2 = 〈16, 16, 500, 4〉.
Edge servers host services at different QoS levels. Provisioning a service at a
QoS level consumes a certain amount of server resources. We assume both E1

and E2 host a service P with 3 QoS levels W1,W2 and W3 as in Table 1. Each
QoS level has a resource requirement represented by a 4-element resource vector
W = 〈vCPUs,RAM, storage, bandwidth〉 and an associated QoE value. W3 is
the highest QoS level. Each user when invoking P specifies a desired QoS level,
W1, W2 or W3, at which he wishes to be served, and additionally, a lower tol-
erance threshold QoS level, below which the services are rendered unacceptable
to him. The initial QoS preferences of the users are in Table 2. In the scenario
demonstrated in Fig. 1, u3 follows the trajectory as depicted by the curved line
while all other users remain stationary. While in its trajectory, at time t = 0,
demarcated by a black rectangle, u3 invokes P with QoS preference as W3. Simul-
taneously, u1, u2, u4, and u5 also invoke P at t = 0, while u6 does the same at
t = 5 s. During the course of its trajectory, at t = 5 s, u3 downgrades its QoS
preference from W3 to W2, at the point indicated by the blue diamond.

Table 1. Available QoS levels

QoS level Resource requirement QoE

W1 〈2, 2, 10, 1〉 1.5

W2 〈4, 4, 15, 1.5〉 4

W3 〈8, 4, 20, 2〉 5

Table 2. User QoS details

User QoS QoS Allocation t = 0 s Allocation t = 5 s
level Min [6] Our [6] Our

u1 W1 Any E1, W2 E1, W1 E1, W3 E1, W1

u2 Any Any E1, W2 E1, W2 E1, W2 E1, W3

u3 W3 W2 E1, W3 E1, W3 E2, W3 E2, W2

u4 W2 Any E2, W3 E2, W2 E1, W2 E1, W2

u5 W3 W2 E2, W3 E2, W3 E2, W3 E2, W2

u6 W1 Any Idle Idle NA E2, W1

Fig. 1. Representative MEC scenario
(Color figure online)

User QoS Preference Agnostic Allocation: A user preference agnostic policy such
as [6] does not even take into the account the initial QoS preferences. The alloca-
tion is shown in Column 4 of Table 2 as Ek,Wp pairs indicating the edge server

190 S. P. Panda et al.

Ek and the QoS level Wp to which the user ui is bound. Moreover, at t = 5 s, this
policy continues to provision u3 at W3 as shown in Column 6, agnostic of the
fact that u3 had requested for a downgrade to W2. The QoE value experienced
by u3 is 5. In such a scenario, since the bandwidth requirement of W3 is 2 Mbps,
u3 incurs an additional latency overhead due to increased data transfer. Also, at
t = 5 s, when u6 invokes the service, E2 no longer has the needed resources to
serve him, considering its serving capacity and the resources already consumed.
Given the coverage constraint and the locations shown, u6 cannot be served
by E1. However, had u3’s QoS level been reduced to W2 when u3 changed its
preference level, u6 could be onboarded at E2.

Our Method at Work: Our user preference aware policy considers the initial
preferences, and allocates levels as depicted in Table 2 to the users. Further, at
time t = 5 s, when u3 indicates its change of preference level, we reduce the
QoS level allocated from W3 to W2. In such a scenario, for QoS level W2, the
bandwidth requirement is 1.5 Mbps, hence, the additional latency incurred by
u3 earlier is no longer applicable. When we assign W2 to u3, the QoE index of
u3 is 4, lower than W3. Since u3 requested for a lower QoS level, we consider the
corresponding QoE value is good enough. Additionally, since a lower QoS level
corresponds to lower resource consumption at the server, we can re-distribute
the resources to better serve other users. u6 can now be onboarded at t = 5 s.

The example shows the trade-off between resource consumption, latency and
QoE in user QoS agnostic versus user QoS preference aware provisioning. The
latter is challenging to design considering time-varying user QoS requirements
while catering to user mobility. To the best of our knowledge, this is the first
work towards mobility-aware dynamic user allocation with user QoS preferences.

3 System Model and ILP Formulation

In this section, we first formalize the system model. We consider a discrete time-
slotted model [7]. We denote by U t = {u1, u2 . . . un} the set of active users and
by St = {s1, s2 . . . sm} the set of active edge-servers at time t. Each server sj
has a radius Rj and a capacity vector Ct

j 〈CPU,RAM, storage, bandwidth〉 at

t, denoted as Ct
j = 〈(c1j

)t
,
(
c2j

)t
,
(
c3j

)t
,
(
c4j

)t〉 in that order. We denote by Wl

the demand vector 〈CPU,RAM, storage, bandwidth〉 of QoS level l, denoted as
〈w1

l , w
2
l , w

3
l , w

4
l 〉 in that order. A server can only cater to service requests from

users within the service radius. For user ui, the preferred QoS level is denoted as
Ht

i , and the threshold Lt
i for the lowest QoS level tolerable. A service allocation

policy can choose to serve him at any QoS level between the threshold and
the preferred level (both inclusive), with an attempt to serve maximum number
of users at their preferred levels, thereby, maximizing the overall QoE of all
stakeholders, while keeping in view the capacity of each edge server, and the
coverage constraint induced by the relative separating distance between the user
and the servers. If a user cannot be allocated to any edge-server a suitable QoS
level inside the preference range, he has to wait till the required resources are

Dynamic Edge User Allocation with User Specified QoS Preferences 191

available. We assume a set of q QoS levels. Let Et
il denote the QoE value for

ui at QoS level l, qti the QoS level assigned to ui at time t, dtij the distance
between ui and server sj , Δt

ij the latency experienced by ui allocated to sj at
t. We compute latency Δt

ij as a function of qti and dtij . The latency experienced
in any user-server allocation has to honor a maximum limit denoted by δ. We
formulate an Integer Linear Program (ILP) for the problem below.

Objective:

Maximize :
∑

t∈T

|Ut|∑

i=1

|St|∑

j=1

Ht
i∑

l=Lt
i

xt
ijl × Et

il (1)

where,

xt
ijl =

{
1, If user ui is allocated to server sj at QoS level l at time t

0, Otherwise

Subject to:

1. Coverage Constraint:

dtij ≤ Rt
j (2)

2. Capacity Constraint:

∑|Ut|
i=1

∑Ht
i

l=Lt
i

wk
l × xt

ijl ≤
(
ckj

)t

: ∀t ∈ T,∀j ∈ {
1, . . . |St|} , ∀k ∈ {1, . . . 4} (3)

3. Latency Constraint:

∑|St|
j=1

∑Ht
i

l=Lt
i

Δt
ij × xt

ijl ≤ δ : ∀t ∈ T, ∀i ∈ {
1, . . . |U t|} (4)

4. User-Server Mapping:

∑|St|
j=1

∑Ht
i

l=Lt
i

xt
ijl ≤ 1 : ∀t ∈ T, ∀i ∈ {

1, . . . |U t|} (5)

5. Integer Constraint:

xt
ijl ∈ {0, 1} : ∀t ∈ T,∀i ∈ {

1, ..|U t|} ,∀j ∈ {
1, ..|St|} ,∀l ∈ {

Lt
i..H

t
i

}
(6)

The objective function aims at maximization of the overall QoE of users over
the set of time slots t over a period T . The indicator variable xt

ijl at any time
instant t, encodes all possible server-user-qos preferences. The objective function
implicitly encodes all individual preferences and the threshold in the summation,
hence no additional constraints are needed to specify the minimum threshold
QoS level as required. At any time instant t, a user ui can be allocated to
sj if the user is within radius Rj , as expressed by the constraint in Eq. 2. To

192 S. P. Panda et al.

allocate ui to sj at a QoS level l, the resource requirement at sj is denoted
by Wl. The total resources allocated must honor the capacity constraint of each
server. Equation 3 ensures that the combined requirements of users allocated to a
server remains within the server’s total capacity for each dimension CPU, RAM,
storage and bandwidth of the resource vector. Equation 4 ensures that users are
allocated to servers such that the latency bound is honoured. Equation 5 is used
to express that a single service can only be allocated to a single server at a
QoS level at any t. Equation 6 specifies that xt

ijl variables are Boolean indicator
variables denoting service requests from users, the respective server to which
the requests are allocated and required QoS values. As observed in [6], QoS is
non-linearly correlated with the QoE for any service, and we represent the QoS-
QoE correlation using the logistic function (Eq. (7)) as in [6] with an additional
scaling according to the QoS level preference and threshold specified by a user.
The QoE Et

il experienced by ui at time t for level l is expressed as:

Ei
l =

Emax

1 + exp {−α (γt
il − βt

i)}
(7)

The scaling assists to assign lowest QoE value to lowest QoS level and highest
QoE value to highest QoS level. Et

il depends on the QoS level W t
l , his QoS

preference Ht
i and the threshold level Lt

i at time t. Here, γt
il =

∑4
k=1 wk

l

4
is

the mean computational demand of QoS level Wl of user ui at time t; βt
i =

γt
iHt

i
− γt

iLt
i

2
is the mid-point of QoE value of user ui at t. The value Emax is the

maximum value of QoE and α is the growth factor of the logistics function.
A solution to the ILP gives us for each time slot t, an optimal allocation of

user service requests to QoS levels at edge servers, honoring QoS preferences,
the latency upper bound and radius constraints. If the ILP solver returns unsat-
isfiable, we conclude that the user set cannot be allocated to their proximate
edge servers, given the constraints. To cater to dynamic mobility and preference
changes, we re-evaluate the ILP when any of the following scenarios occur: (a)
any user changes the QoS specification; b) users or edge-servers become inactive;
c) users move in and out of the service zone of servers; and d) new service requests
are placed. However, given the associated computational needs, re-evaluating the
ILP frequently turns out to be a non-scalable strategy, as demonstrated in our
experimental results presented in Sect. 5. To address this, we design a scalable
heuristic to cater to real-world dynamic scenarios, as described in the following.

4 Heuristic Solution

In this section, we present the design of an efficient polynomial time heuris-
tic which generates near-optimal solutions. We use a Red-Black Tree [2] as an
indexing data-structure. The algorithm maintains a Red-Black Tree for each
edge server and uses a metric defined as i-factor for each user in its service zone
as index. This heuristic is used in place of the ILP, and executes whenever any

Dynamic Edge User Allocation with User Specified QoS Preferences 193

of the events mentioned earlier occur, necessitating a reevaluation of the alloca-
tion. However, this being a polynomial time algorithm, is lightweight and can
be executed more efficiently than the ILP. Our heuristic has the following steps.

– We first divide the new users into two classes, single-server class (S-class)
and multi-server class (M-class). The users within the range of only one edge-
server are clustered into S-class and the users withing the range of more than
one edge-server are put into the M-class. For example, in Fig. 1, the users u1,
u2, u3, u5 and u6 are within the range of only one server i.e. E1 and are hence
clustered into S-class. However, u4 can access both E1 and E2, hence is put
into the M-class. This categorization is done once for all users at the start,
and adjusted at every time slot only if there is a change in user locations,
new users join in, or existing users leave.

– The users in both S-class and M-class are allocated an initial QoS level
at their minimum threshold specified. Referring to the scenario in Sect. 2,
u1, u2, u3 u4, and u5 are initially assigned at QoS level W1, W1, W2, W1

and W2 respectively. The increment factor (i-factor), discussed later in this
section, is computed for all the users in both the S-class and M-class. The
i-factor is determined by user’s QoS preference and presently assigned QoS
level (plevel). For determining the allocation, S-class is considered before the
M-class since S-class users are bound to a single edge server. Each user is
assigned to the edge server according to his i-factor. Users with low i-factor
get higher preference to an edge server during the assignment. For M-class
users, the allocation policy tries to assign an user to the nearest server with
required remaining computation resource, with a motivation to serve him with
better latency experience. We examine the users according to their i-factor,
compute an initial assignment and update the Red-Black Tree with i-factor
as key for each server.

– Our heuristic then attempts to enhance the QoS level of each user (upper
bounded by their respective preference levels) and re-evaluates the i-factor
after incrementing the QoS level. This process of incrementing continues till
all users receive their QoS preference levels or the server exhausts its available
resources and we move on to examine the next server in the vicinity of the
user from where he can be served.

– For servers which have exhausted their resources, users from M-class may be
migrated to the other nearby servers having free resources. Once users have
been migrated across nearby servers, the QoS levels have to be re-evaluated.
QoS upgrade is re-performed after migration.

The heuristic selects the user with smallest i-factor and increments the QoS
level of that user. It then proceeds to update the Red-Black Tree with the re-
computed i-factor. Considering our example, at t = 0, on enhancement of QoS
levels, the users u1 . . . u5 are alloted W1, W2, W3, W2 and W3 respectively.

Computation of i-factor: The i-factor helps to determine which user causes more
alterations to QoS values if the QoS level of a user is increased. Users with
lower i-factor values are given higher preferences when the QoS values allocated

194 S. P. Panda et al.

to them are upgraded. Equation 8 determines the i-factor of a certain user ui

having level preference and threshold of Ht
i and Lt

i respectively with presently
assigned QoS level of l at time t. The QoE function Et

i , Emax and α are from Eq. 7
discussed previously. The numerator affects the i-factor by scaling the QoE value
according to the present QoS level, i.e., it assigns a higher i-factor as user’s reach
their preferred QoS levels. The denominator demarcates the difference between
Ht

i and Lt
i, the higher the difference, the lower is i-factor.

ifactor =
Emax × (Et

i + l)
α × max(Ht

i − Lt
i, 1)

(8)

Migrating Users for Improving QoE: Once all the Red-Black trees correspond-
ing to all edge servers have been updated, we find the list of users who can
be migrated from the servers which have exhausted their resource capacities
and hence, no further QoS upgradation for users are possible. Upon successful
migration, our allocation algorithm is re-initiated for possible QoS upgradation.

5 Experiments and Analysis of Results

All experiments were conducted on a machine with Intel Core i5-8250U processor
and 8 GB RAM. The ILP model discussed in Sect. 3 was solved using the Python
Mixed-Integer-Programming library. The results from our heuristic are compared
with the baseline ILP formulated in Sect. 3, the optimal algorithm presented
in [6] and the dynamic mobility aware policy in [7].

Experimental Setup: We use the EUA data-set for edge server locations, which
includes data of base stations and users within the Melbourne Central Busi-
ness District area. The coverage area of edge servers are set randomly to values
between 200-400 m radius. To simulate different attributes of users over time,
we randomly select several users and do the following: a) randomly assign 20%
users with 0 m/s for static users, 30% users with random speed between 1−2 m/s
for walking users, and the remaining 50% users with speed between 10 − 20 m/s
for users in vehicle; b) randomly assign an initial direction between 0◦ to 360◦

which then follows the random way-point mobility model [7]; and c) randomly
assign the users’ high and low QoS preferences.

We generate latencies from the real world PlanetLab and Seattle latency
data-set [10]. Since the PlanetLab and Seattle latency data-set comprises laten-
cies from across the world, which is not fully representative of latencies in an
MEC environment, we cluster the data-set into 400 clusters considering devices
which are in proximity of each other. A cluster is randomly picked and a repre-
sentative latency is assigned according to our latency measure derived based on
the distance and QoS level, as in [9]. We consider the product of distance and
QoS level, which is scaled down according to the number of clusters. A discrete-
time slotted model with each slot of 25 s is considered in which the users move
and change their QoS preferences dynamically. At the end of each time slot,
some user locations are updated, and to 20% of users, we randomly assign new

Dynamic Edge User Allocation with User Specified QoS Preferences 195

preference levels to simulate dynamic QoS preferences. The number of discrete
time slots is kept at 20 for each experiment. To consider various sizes of user
population, we vary the number of users from 50 to 250 at intervals of 50 users,
while keeping the number of servers to 50 and the server resources at 100% of
the cumulative resource requirement of all users at the highest QoS level, dis-
tributed uniformly over all servers. Each experiment is averaged over 50 runs.
For the QoE model, we set Emax = 5, α = 1.5. We compare the results of our
ILP, our heuristic, the static ILP proposed in [6] and MobMig [7], a Mobility-
aware dynamic allocation policy. We consider the ILP in [6] by running it in
each discrete time step since it is a static formulation. We use MobMig by set-
ting the QoS level as highest possible since MobMig does not support dynamic
QoS changes. For comparison, we study the following metrics: a) Average QoE
achieved per time slot; b) Average number of users allocated within their QoS
preference per time slot; c) Average execution time (CPU time) for evaluation
of algorithms; and d) Average latency experienced by users.

Results and Discussion: Figure 2 depicts the average QoE and the average num-
ber of users allocated within their QoS preference on the experimental setup
with varying users. The results show the effectiveness of the heuristic in being
able to generate near optimal solutions comparable with the results from the
optimal ILP for both average QoE and average number of users allocated within
their QoS preferences. The ILP achieves better allocation of users within their
QoS preference having QoE values similar to the ILP in [6]. MobMig [7], being
unaware of user QoS preferences allocates users at highest available QoS level
when used in a variable QoS scenario. Consequently, the policy leads to a vio-
lation in preference levels in a large fraction of users as inferred from Fig. 2b.
However, the ILP [6], which seeks to optimize overall QoE, generates near equiv-
alent QoE and number of allocated users as compared to our ILP and heuristic.

Fig. 2. Varying users experiment results

The average latency per user is depicted in Fig. 3a. As can be inferred from
Fig. 3a, both our optimal and heuristic policies significantly outperform Mob-
Mig and the ILP in [6] in terms of average latency incurred by the users. This
is because our preference aware policies provide the flexibility to dynamically

196 S. P. Panda et al.

Fig. 3. Latency and running time for allocation policies

adapt QoS values depending on user-qos preference levels and hence conserve
resources both at the server end and at the user end. Additionally, at the user-
end, adapting to changing QoS levels, prevents higher communication data trans-
fer latencies. As such, our heuristic, which initially assigns the lowest assignable
QoS value to users, while progressively upgrading the QoS values depending on
resource availability, results in a much lower average latency owing to lower com-
munication overhead. Figure 3b additionally depicts the efficiency of our algo-
rithm in a mobility-driven dynamic scenario where the heuristic takes a frac-
tion of the running time of our ILP. Our heuristic requires lower running times
as compared to the ILP in [6] while requiring similar running times to Mob-
Mig simultaneously taking QoS-preferences into account. For each algorithm,
we consider time-out as 25 s, i.e., the length of each slot. In Fig. 3b, however,
we illustrate the time it would have actually taken by the algorithms for the
allocation to compare effectiveness.

6 Conclusion and Future Work

In this paper, we have proposed a novel approach to the user-centric dynamic
QoS edge user allocation problem. We formulated an optimal ILP and a near
optimal heuristic to aid scalability in mobility driven real-world scenarios. As
future work, we are working on learning based strategies for modeling user move-
ments, QoS preferences, service invocations and migrations.

References

1. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: MCC, pp. 13–16. ACM (2012)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

3. Guo, H., Liu, J., Qin, H.: Collaborative mobile edge computation offloading for
IoT over fiber-wireless networks. IEEE Network 32(1), 66–71 (2018)

Dynamic Edge User Allocation with User Specified QoS Preferences 197

4. He, Q., et al.: A game-theoretical approach for user allocation in edge computing
environment. IEEE TPDS 31, 515–529 (2020)

5. Lai, P., et al.: Optimal edge user allocation in edge computing with variable sized
vector bin packing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018.
LNCS, vol. 11236, pp. 230–245. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03596-9 15

6. Lai, P., et al.: Edge user allocation with dynamic quality of service. In: Yangui, S.,
Bouassida Rodriguez, I., Drira, K., Tari, Z. (eds.) ICSOC 2019. LNCS, vol. 11895,
pp. 86–101. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33702-5 8

7. Peng, Q., et al.: Mobility-aware and migration-enabled online edge user allocation
in mobile edge computing. In: ICWS, pp. 91–98 (2019)

8. Wang, C., Liang, C., Yu, F.R., Chen, Q., Tang, L.: Computation offloading and
resource allocation in wireless cellular networks with mobile edge computing. IEEE
TWC 16(8), 4924–4938 (2017)

9. Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., Shen, X.S.: Delay-aware
microservice coordination in mobile edge computing: a reinforcement learning app-
roach. IEEE TMC, pp. 1–1 (2019)

10. Zhu, R., Liu, B., Niu, D., Li, Z., Zhao, H.V.: Network latency estimation for per-
sonal devices: a matrix completion approach. IEEE/ACM ToN 25(2), 724–737
(2016)

https://doi.org/10.1007/978-3-030-03596-9_15
https://doi.org/10.1007/978-3-030-03596-9_15
https://doi.org/10.1007/978-3-030-33702-5_8

	Dynamic Edge User Allocation with User Specified QoS Preferences
	1 Introduction
	2 A Motivating Example
	3 System Model and ILP Formulation
	4 Heuristic Solution
	5 Experiments and Analysis of Results
	6 Conclusion and Future Work
	References

