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Preface

Welcome to the proceedings of the 18th International Conference on Service-Oriented
Computing (ICSOC 2020). ICSOC 2020 took place virtually, during December 14–17,
2020. Its aim is to bring together academics, industry researchers, developers, and
practitioners to report and share ground-breaking work in the area of Service Oriented
Computing (SOC). The objective of ICSOC 2020 was to foster cross-community
scientific excellence by gathering experts from various disciplines, such as Web ser-
vices, business-process management, distributed systems, mobile computing,
cloud/edge/fog computing, security/privacy and trust for services, cyber-physical
systems, Internet of Things (IoT), scientific workflows, services science, data science
and services, and software engineering. This edition of ICSOC built upon a history of
successful series of previous editions in Toulouse (France), Hangzhou (Zhejiang,
China), Malaga (Spain), Banff (Alberta, Canada), Goa (India), Paris (France), Berlin
(Germany), Shanghai (China), Paphos (Cyprus), San Francisco (California, USA),
Stockholm (Sweden), Sydney (Australia), Vienna (Austria), Chicago (USA), Amster-
dam (The Netherlands), New York (USA), and Trento (Italy).

The conference attracted papers co-authored by researchers, practitioners, and
academics from different countries. We received 137 research and industry paper
submissions from countries across all continents. Each paper submission was carefully
reviewed by at least five members of the Program Committee (PC), followed by
discussions moderated by a senior PC member who made a recommendation in the
form of a meta-review. The PC consisted of 179 world-class experts in service-oriented
computing and related areas (161 PC members and 18 Senior PC members). Based on
the recommendations, and the discussions, 26 papers were accepted (23 research papers
and 3 industry papers) making the acceptance rate 18.9% for full papers. We also
selected 16 short papers (11.6%). A vision track was introduced this year which
attracted 10 submissions. The committee rejected all the submissions as they were not
visionary. This track will be reconducted in the next edition to give the community a
forum for expressing futuristic ideas that can drive and guide ongoing research efforts.

The program we assembled is reflective of the breadth and depth of the research and
applications of SOC, organized into four main focus areas:

– Focus Area-1: Service Oriented Technology Trends
– Focus Area-2: Blockchain Technologies
– Focus Area-3: Industry 4.0 Technologies
– Focus Area-4: Smart services, Smart data and Smart applications

Contributions discuss different topics including, but not limited to, service-oriented
engineering, run-time service operations and management, security, privacy and trust
for services, data science and services, Internet of Things (IoT), and services in
organizations, business, and society. Furthermore, the program includes key notes from
distinguished speakers.



In addition to the technical program consisting of the keynote talks, the main
research track, the industry track, the PhD symposium, and the demo session, the scope
of ICSOC 2020 was broadened by different workshops.

In addition, special thanks are due to the members of the Senior PC, the Interna-
tional PC, and the external reviewers for a rigorous and robust reviewing process.
The ICSOC 2020 Organizing Committee is also grateful to the workshop organizers for
their great efforts to help promote SOC research to broader domains. We are also
grateful to Zayed University, UAE, for supporting the organization of the event, and
the technical support for ensuring a successful online event. We would also like to
acknowledge all the members of the Organizing Committee and all who contributed to
make ICSOC 2020 a successful event. We also acknowledge the prompt and profes-
sional support from Springer, the publisher these proceedings in printed and electronic
volumes as part of the Lecture Notes in Computer Science series. Most importantly, we
would like to thank all authors and participants of ICSOC 2020 for their insightful
work and discussions.

We expect that the ideas that have emerged in ICSOC 2020 will result in the
development of further innovations for the benefit of scientific, industrial, and social
communities.

November 2020 Eleanna Kafeza
Boualem Benatallah

Fabio Martinelli
Hakim Hacid

Athman Bouguettaya
Hamid Motahari
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A Tribute to Florian Daniel’s Contributions
to Service-Oriented Computing

Marcos Baez, Boualem Benatallah, Cinzia Cappiello, Fabio Casati

Florian’s friends and colleagues

Florian Daniel left us abruptly at the age of 42. He left a void that can not be filled,
memories and teachings that will stay with us friends, colleagues, and students forever.
Florian is remembered as an active and prolific member of the ICSOC community,
contributing to the advancement of key areas of service-oriented computing, and
shaping the minds of a new generation of researchers. While it is impossible to con-
dense the impact of a creative, intelligent, and wonderful person like Florian in a few
paragraphs, we try to highlight his main contributions in the following.

Florian’s research in software-oriented computing is marked by the exploration into
a diversity of topics that led to fundamental, practical, and seminal work that benefited
the IC-SOC community and beyond.

This exploration started with contributions to service composition and orchestra-
tion, building on the technological foundation of distributed computing. His research
contributed with techniques, algorithms, and tools to leverage service interactions to
derive service dependencies, protocols, and ultimately service compositions [4, 5, 22,
26]. It helped cement the work on service composition [21] and highlight core concerns
and open questions.

In business process management, his work contributed most notably to process
intelligence, modeling, and compliance. In process intelligence, he focused on the
challenges of low-quality data, introducing the concept of uncertain key indicators, as
well as models and tools to address this problem [26, 24]. The research on process
modeling produced modeling languages (e.g., extensions of BPMN or BPEL) and
runtime environments for project-centered learning [8], resource lifecycle management
[3], user interface orchestration [18, 17], wireless sensor networks [6], and



crowdsourcing [30]. In terms business compliance, it addressed the practical and
conceptual challenges in designing, executing, and evaluating compliance with regu-
lations governing business process, contributing with concepts [29, 28], techniques and
algorithms [27, 26], and tools [12].

His work also looked at challenges and opportunities that emerge at the intersection
of processes and crowdsourcing. It advanced the knowledge in this area with contri-
butions ranging from surveys that brought understanding to the notion of crowd-
sourcing processes [20] and associated quality attributes [15] to new approaches in the
modeling and execution of crowdsourcing processes that seamlessly integrate with
common BPM practice [30]. This line of research also extended to relevant application
areas, such as leveraging crowdsourcing for data mining [23] and activity matching in
BPM [25].

In his continuous exploration for new avenues for service-oriented computing, his
most recent work investigated the feasibility of leveraging blockchain, and particularly
smart contracts, to enable a blockchain-based, service-oriented computing paradigm
[14]. This work and its follow-up [19] are already motivating promising research in this
area.

Another important line of research that he pursued with passion had to do with
assisting the development of software-enabled services. Besides fundamental contri-
butions to the engineering of service-oriented systems, this produced seminal work in
Mashups, UI-computing, and lately chatbot development. The work on mashups
contributed with one of the first mashup frameworks, a universal integration approach
for data, application logic and UIs [11], domain-specific mashups [7], and a complete,
conceptual tool suite for the development of custom mashup platforms [31]. The
experience gained in mashups, led Florian to propose a paradigm shift in end-user
programming, moving away from APIs and Web Services to software artefact end-
users truly knew: the graphical interface. This motivated his work on UI-oriented
computing [10, 13], where the goal was to provide a development environment where

Fig. 1 Florian with friends and colleagues at ICSOC 2009, Stockholm
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end users would leverage existing UI components and data directly from rendered UIs
to build their solutions, without going through APIs and services. Perhaps the final
materialization of this A Tribute to Florian Daniel’s Contributions to Service-Oriented
Computing idea can be seen in his latest work on deriving chatbots directly from
software artefacts, allowing users to engage in dialogs directly with databases [16] and
websites [1, 9], leading to the definition of chatbot integration as an emerging new
problem [2].

Last but not least, Florian represents and embodies the spirit of what the ICSOC
community – and the research community in general – should be. Deep technical
competences, humbleness, enthusiasm, uncompromising professional integrity, focus
on topics that matter, and most importantly a natural propensity to help others in any
way possible, always with a smile and a positive, constructive, make-you-feel-good
attitude. Let’s all remember the lessons he gave us by example to make our community
a great place to be.
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Abstract. A microservice-based system is composed of a set of
microservices that are developed and deployed independently for agile
DevOps. Intensive and iterative adaptations/upgrades of microservices
are essential for such systems to adapt to user requirement changes, and
as a consequence, result in the phenomenon of “multi-version microser-
vice coexistence” in a system. Besides traditional API-based functional
dependencies between different microservices, there appear complicated
dependencies between different versions of difference microservices. The
complicated dependencies dramatically deteriorate the maintainability
of microservice systems, especially when systems evolve to adapt to user
requirement changes. To meet this challenge, a version dependency model
is proposed for describing the complex dependencies between different
versions of microservices, and a greedy-based optimization algorithm
is developed for generating an optimal evolution plan. A programming
framework (MF4MS) and cloud-edge based infrastructure (MI4MS) are
implemented to facilitate microservice systems to automatically execute
the evolution plan. Experiments show that the proposed approach per-
forms well to cope with self-adaptation in the situation where compli-
cated version dependencies exist.

Keywords: Microservice systems · Multi-version coexistence · Version
dependency · Self adaptation · User requirement changes

1 Introduction

As business logics become more and more sophisticated in ubiquitous comput-
ing scenarios like smart city [4], both container technology and microservice
architecture pattern gain much more attentions because of their advantage on
continuous delivery and agile DevOps nowadays [7]. Independent development
and deployment of microservices lead to complex dependencies between them.
Since microservices communicate with each other through APIs, there are call
dependencies between them, which can be represented as a service dependency
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-65310-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65310-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-65310-1_1


4 X. He et al.

graph (SDG) [10]. Once a microservice is upgraded to a new version, the call
dependencies may change, and other microservices that depend on it may fail
to invoke its APIs due to incompatibility caused by the upgrade. Consider-
ing the situation that some users would keep requesting specific older versions,
microservices developers should not update all microservice instances that have
been deployed in the system. As a consequence, there might be multiple versions
of individual microservices that are co-deployed together in the system, which
is called multi-version coexisting. Further, version dependency occurs,
which implies the dependencies between different versions of different microser-
vices in multi-version coexisting system. A simple example is shown in Fig. 1(a).

Due to the enormous amount of users and services in the scenarios of edge
computing, there are lots of changes in user requirements, which leads to the
decline of Quality of Service (QoS). Since the multi-version coexisting leads
to an increase in version dependency complexity, it is a challenge to react to
the user requirement changes with version dependency in such a scenario. The
service system should evolve itself automatically to adapt to the user requirement
changes. So that, it can keep the QoS stable with the consideration of version
dependency in cloud-edge environments [15], as shown in Fig. 1(b).

Fig. 1. Introduction for multi-version coexisting microservice system

In this paper, we consider three research questions (RQs) on multi-version
coexisting microservice system evolution in cloud-edge environment:

RQ1 How to model the version dependency between microservices?
Due to the independent version trees of each microservice, the version
dependency changes over time, and it is essential for the service sys-
tem to model the version dependency at runtime. Moreover, the existing
approaches of describing the call dependency by the SDG cannot cope with
the iterative development of microservices. Microservices should extend
their version dependency dynamically when compatible upgrades happen.
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RQ2 How to generate an optimal evolution plan with version depen-
dency? To satisfy changing user requirements, the cost of the evolution
plan should be concerned since each feasible evolution plan has a specific
cost, like the monetary cost, service downtime, etc. An optimal evolution
plan should be generated in a limited time with the consideration of the
version dependency.

RQ3 How to execute the evolution plan automatically with version
dependency? Due to the complexity of the multi-version coexisting
microservice system, the system should be self-adaptive [17], which means
it should have the ability to monitor the runtime state of the system,
decide when and how to evolve the system and execute the plan automati-
cally. The correctness of request routing should be ensured and the version
dependency should be satisfied in the multi-version coexisting microservice
system during evolution.

The main contributions and innovations are as follows:

– A model named Version Dependency Model (VDM) was proposed for describ-
ing the version dependency for RQ1, which copes well with the iterative
deployment. A programming framework MF4MS was also implemented to
integrate the version dependency into source code, which enables multi-
version coexistence and automatic dependency analysis before deployment.

– A greedy based algorithm was presented to find the optimal evolution plan with
the consideration of the version dependency for RQ2. It aims to find a feasible
solution to improve the QoS with the changes in user requirements. The con-
straints of computing resources and version dependency are concerned.

– An infrastructure MI4MS based on the MAPK-E reference model [8] was
developed for RQ3. It adopts the MAPK-E model and enables the self-
adaptation to user requirement changes with version dependency. The correct-
ness of request routing and the version dependency can be satisfied according
to the collaborative work between MI4MS and MF4MS.

Experiments were conducted at different scenarios that are common in the
real world, and the experiments are conducted in real cloud-edge environment.
The results show that our approach performs well according to user requirement
changes with version dependency, and the QoS keeps stable, meanwhile.

The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 describes the VDM. Section 4 details the optimal problem.
Section 5 presents the programming framework and infrastructure. Section 6
shows the experiments. Section 7 concludes the paper and explores future works.

2 Related Work

The problems in the multi-version coexistence, evolution plan generating, and
self-adaptive service system have been researched in recent years, and some solu-
tions were proposed.
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For the multi-version coexistence, the work [16] explored autonomic ver-
sion management in the microservice system. It considered versioning both at
application and company level to ensure the self-healing ability. The work [13]
presented APP-bisect, which can analyze the dependencies between services
and find the best coexisting patterns to solve the performance problems. The
work [11] proposed a solution named VMAMVS to analyze the dependencies
between microservices, monitor the system, and visualize the dependencies. The
work [2] extended the microservice architecture. The clients and microservices
in the system can request for the specific version of microservices in the multi-
version coexisting system. The work [12] erased the gap between different ver-
sions of the same service by adding adaptor dynamically. Though the work [3]
allowed to deploy services with dependencies automatically, the multi-version
coexistence was missing. Although the microservices dependencies are concerned
in these works, they focus less on the self-adaptive evolution according to the
user requirement changes.

In terms of the evolution plan generating, the work [5] evaluated three algo-
rithms for fog service replacement considering resource usage, service spread,
and latency. The work [6] proposed a optimization policy for service place-
ment to improve network usage and service latency. However, call dependency
is immutable in current works, which is the opposite of the real world. And user
requirement changes are not taken into account. Thus, algorithms should be
extended for the challenge with call dependency and user requirement changes.

For the self-adaptive service system, the work [9] developed MiCADO for sup-
porting horizontal scalability by an orchestration layer according to the network
traffic. The work [14] applied the MAPE-K model to automatically optimize the
deployment according to the performance. The work [1] presented Kubow for
automated management of applications. However, the user requirement changes
are not concerned in those works, and the version dependency is overlooked.

In summary, current studies need to be extended for self-adaptation with vari-
able version dependency between microservices according to user requirement
changes, and it is urgent to solve the problem since the problem is ubiquitous in
the real world.

3 Version Dependency Model

Considering the service dependency graph can only describe the call dependen-
cies between APIs of specific versions of microservices, which is not suitable
to iterative development with changing service dependencies, we propose the
version dependency model based on the service dependency graph.

Definition 1 (Service). A service is defined as s =< I, c,m, v >, s ∈ S, where
S denotes the service set:

– I = {i1, ..., in} is a set of functional interfaces offered by s. Each interface is
denoted by ij =< fj , lj , d

in
j , dout

j >, where fj is the functionality that s can
offer via ij and is in the form of unstructured texts describing the functional
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semantics; lj describes the constraint on quality attributes that ij offers; din
j

and dout
j are estimated sizes of ij ’s input and output parameters (unit: KB).

– c is the computing resource requirement level of s. The execution of a service
requires many types of computing resources such as CPU, RAM, hard disk
storage, and network bandwidth.

– m is the maximum number of users which can be concurrently served by s.
– v =< MAJOR,MINOR,PATCH > is the version number of s. The Seman-

tic Version is adopted: MAJOR changes when incompatible API change hap-
pens, MINOR changes when adding functionality in a backward-compatible
manner, and PATCH changes when making backward compatible bug fixes 1.

Definition 2 (Dependency Categories). There are three kinds of depen-
dency for every service in the microservice system: P = {pv, pi, pf}, where

– pv(s, i, v) =< s, i, V > stands for calling the specific interface i of service s
with versions V , where V = {v1, v2, ..., vn};

– pi(s, i, L) =< s, i, L > stands for calling the specific interface i of service s
with SLAs L, where L = {l1, l2, ..., ln};

– pf (f, L) =< f,L > stands for calling any API of function f with SLAs L;

For the traditional service dependency graph, the API invoking is usually
hardcoded, such as the OpenFeign2. Without the code modification, the depen-
dency between microservices can not be changed if the called microservices are
upgraded due to bug fixes, which can not adapt to iterative development. With
these three kinds of API calls, the service system can route the requests flexibly.

Definition 3 (Version dependency Model). The model is described as
V DM = {< s, v, P > |s ∈ S}, where P = {p1, p2, ..., pn}, pi ∈ P stands for
the calling of the dependency set of service s with version v.

The traditional call dependency in most microservice frameworks like Spring
Cloud can be described as service name and APIs. Once some microservices are
upgraded to new versions with incompatible changes, other services depend on
them need to be modified in code level, which increases the burden on developers.
What’s worse, the developers must be careful about the versions of the services
in the system for correctness of requests routing. Coping VDM with MF4MS
detailed in Sect. 5 allows changing the dependencies without code modification
or rebooting instances at runtime.

VDM extends the traditional SVG with flexible version dependencies between
services by pv. It allows the multiple version dependencies description of the same
microservice, which allows the system to re-direct the requests to the compatible
versions. Besides the traditional call dependency, VDM provides other two new
dependency descriptions pi and pf . pi is used when trying to request the APIs
of a service with specific SLAs. The system can automatically route the requests
with pi to the instances with the target SLAs even there are frequent upgrades for
1 https://semver.org/.
2 https://spring.io/projects/spring-cloud-openfeign.

https://semver.org/
https://spring.io/projects/spring-cloud-openfeign
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the microservices. pf allows the developers request the APIs by functionality and
expected SLAs, and it further decouples the dependencies between microservices.
With pf , the service system can re-direct the requests to the instances with the
best SLAs and performance. And the developers do not need to modify the source
code during the independent iterative development of different microservices.

4 Optimization Algorithm with Version Dependency

To keep QoS stable when user requirements change, the algorithm needs to gen-
erate an optimal plan considering the version dependency and other constraints.
In this paper, the average response time is our main concern.

4.1 Problem Definition

Definition 4 (User Requirement). A user Requirement is defined as d =<
u, p, loc, t > where u is the user, t is the time when d is raised by u, loc is the
location of u at the time t, and p is the Requirement description, where p ∈ P.
The Requirement set is described as D, where d ∈ D.

Definition 5 (Server Node). A server node e =< type, c, loc > where type ∈
{ES,CS} is the type of e ( ES: an edge server, CS: a cloud server), c is the
total computing resources e can offer for service instances deployed on it (defined
by Key-Value pairs, same as Definition 1), and loc is e’s geographic location
(defined by latitude and longitude). The connection between two nodes ei, ej ,
are described by bandwidth (in Mb/s) and time delay (in milliseconds). E stands
for the set of the server node, e ∈ E.

Definition 6 (Microservice Instance). A microservice instance τ(s) =<
s, e >, τ(s) ∈ T , where s is the service that τ belongs to, e is the server node on
which τ(s) is deployed.

Definition 7 (Direction State). A direction state r(d) ∈ DS of a user require-
ment d records a mapping between a service request in d and a microservice
instance that is selected to fulfill the request. r =< τ(s), i >, where i is the
corresponding interface.

Definition 8 (Deployment State). Deployment state of a service system at
time t is denoted by Θ(t) =< S(t), E(t), T (t),D(t),DS(t) >, where the five
components are the sets of services, cloud/edge server nodes, deployed instances,
user requirements, and user requirement direction states, at time t, respectively.

Definition 9 (Evolution operations). There are three evolution operations,
i.e., Switch, Add, and Remove. OP = {Switch, Add, Remove}.

– Switch(d, τi(sm), ijτj(sn), ik) is to switch a user requirement d from interface
ij of service sm’s instance τi to the interface ik of service s’s instance τj . It
is possible that m = n or j = k.
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– Add(τ(s), e) is to create a new instance τ of a service s on server node e;
– Remove(τ(s)) is to stop an existing instance τ of a service s.

Problem Definition. A service system evolves from time t to t + δ by a set of
operations OP = {op|op ∈ OP}, and the δ denotes the time interval from the
last evolution:

Θ(t) OP−−→ Θ(t + δ) (1)

Furthermore, to minimize the average response time and evolution cost, the
optimization problem is described as Eq. 2a, where the rt(.) means the response
time defined as the sum of the delay and the transfer time of in/out data:

min(
∑D

d rt(d)
|D| ), min(

OP∑

op

cost(op)) (2a)

s.t.

⎧
⎨

⎩

Q(τ(s)) >= Q(dj), ∀dj ∈ D(t + θ)∑
τ on ek

r(τ) <= rmax(ek), ∀ek ∈ E(t + δ)
1 ≤ ns(τ) ≤ nsmax(τ), ∀τ ∈ T (t + δ)

(2b)

The first constraint assures that the quality level that each user requirement
expected to get from service can be satisfied by the selected service instance.
The second constraint makes sure that the total computing resources that all
instances consume on one server node do not exceed the maximal resource offer-
ing of the node. The number of users that have been allocated to one service
instance cannot exceed the maximal user number that the instance can serve
concurrently,and it is assured by the last constraint. It should be noticed that
the version dependency should be taken into consideration.

4.2 Optimal Evolution Algorithm

Due to the unknown future, it is impossible that to calculate the DS in the
next status during the optimal plan generation. Thus, the algorithm consists
of two phases: the planning phase and the running phase. The former focuses
on providing new service placement and routing rules during planning, and the
latter concentrates on the requests routing at runtime.

For the planning phase, the output of the algorithm is the deployment changes,
which consists of Add and Remove operations, and a set of rules to help to route
the requests. The rules describe what service should be used to serve a call with
dependency p ∈ P. A greedy based algorithm is proposed as Algorithm 1.

The basic idea of this algorithm is trying to provide the lowest average response
time with as little cost as possible for each edge node. The service serves most
requirements with less resources are chosen by the ratio, as shown on line 6–10. It
is worth pointing out that the getMetDemands function considers the compat-
ibility of versions with MINOR and PATCH version changes. After that, line 11
calls the buildMiniSvcTree to construct the service tree with version dependency.
A breadth-first strategy is used to solve the dependencies of the given services.
For each dependency of every service, the services in the given set will be used if
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Algorithm 1. The greedy based algorithm at planning phase
Require: Last system deployment status os
Ensure: Deployment changes and routing rules
1: S ← getServices(os), N ← getNodes(os), D ← getDemands(os)
2: unDeployedSvc = ∅, rules = ∅
3: ns ← createEmptyDelopStatus()
4: for n in N do
5: Dn ← getNodeDemands(D,n), Sn = ∅
6: while size(Dn) �= 0 do
7: s ← pickOneService(Dn, S)
8: Ds ← getMetDemands(Dn, s)
9: Sn = Sn ∪ {s}, Dn = Dn \ Ds

10: end while
11: Ts ← buildMiniSvcTree(Sn, S)
12: rules ← rules ∪ getRules(Ts)
13: Sn ← getAllServices(Ts)
14: instSizeMap ← calcInstNum(Sn, Dn)
15: while (s ← getNextSvc(Ts)) �= null do
16: if deployInsts(ns, n, s, instSizeMap[s]) = true then
17: Sn ← Sn \ {s}
18: end if
19: Ts ← Ts \ {s}
20: end while
21: unDeployedSvc ← unDeployedSvc ∪ Sn

22: end for
23: for s in unDeployedSvc do
24: if otherNodesCanSupply(s) = false then
25: deployOnMostCloseNode(s, ns)
26: end if
27: end for
28: return calcDiff(ns, os), rules

they satisfy the dependency, or the service that meets most of the requirements is
selected. The routing rules are also returned as tree’s edges.

On line 14, calcInstNum calculates how many instances are needed consid-
ering user capabilities of services and the count of requirements. It should be
noticed that the call coefficient is considered because when calling one service,
it can invoke other services several times instead of once, and the coefficient
presents how many times the dependency is called when calling the API. The
coefficient is calculated with the call history obtained in Sect. 5 on average.

When deploying instances on line 15–20, getNextSvc is used to pick up one
service without parent node in the tree, and it serves more requirements with
lowest resource usage. If the edge node has no sufficient resources for deploying
new instances, the existing instances on other nodes with enough user capabilities
are used instead of deploying new one, otherwise creating new instances on the
closest node with enough resources, as shown on line 23–27.
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For the running phase, the routing rules generated in the planning phase are
used. With the routing rules that describe which service is used to satisfy for
each p ∈ P, the instance with enough user capabilities on the closest server node
to the requester is selected for each request.

5 Infrastructure and Programming Framework with
Version Dependency

To empower the system with self-adaptation, the MAPE-K model is adopted.
However, without a specific programming framework, the system can not analyze
the version dependency and deal with the multi-version coexistence. Both the
infrastructure MI4MS and programming framework MF4MS based on Java and
Spring Cloud are implemented for self-adaptation.

5.1 Overview

The MI4MS aims to empower the microservices with the help of the MAPE-
K model. Therefore, the system can automatically detect the user requirement
changes, generate the evolution plan, and execute the plan automatically. As
shown in Fig. 2, there are five main components in the MI4MS:

Fig. 2. Overview of the MI4MS
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– Control Center: It is the essential part of MI4MS that controls the entire
service system. It implements the self-adaption control loop, which monitors
the system at runtime, analyzes current QoS of system, generates an evolution
plan with the algorithms in Sect. 4.2, and executes the plan.

– Service Analyzer: It aims to analyze the source code of the microservices
integrated with MF4MS to obtain the service information defined in Defini-
tion 1 and extract the dependencies of the service. It works with the Control
Center to build the version dependency model described in Sect. 5.2.

– Cluster Agent: It is responsible for fetc.hing the deployment status about
the edge cluster defined in Definition 6 with the help of Kubernetes API
Server3 and Microservice Registry Server4, and passing it to the Control
Center. Moreover, it accepts the evolution operations from the Control
Center and executes them as detailed in Sect. 5.4.

– Gateway: It aims to route all the requests from the service instances and users
with unified form defined in Definition 2. It copes with the Cluster Agent to
perform the request routing in a multi-version coexisting microservice system,
as shown in Sect. 5.3. The request history is also cached for calculating the
QoS and the call coefficient in Control Center.

– Build Center: It is responsible for packaging the microservices from source
code and building the dockers automatically with Maven5 and Jenkins6.

At the beginning of every time window, the Control Center fetc.hes the
latest deployment state and request history for QoS analyzing and call coeffi-
cient calculating at the monitoring step. After analyzing, an evolution plan is
generated and executed, and the control loop waits for the next execution.

The programming framework MF4MS is implemented based on the annota-
tion in Java. MF4MS takes the responsibility to integrate the microservices with
version dependency support, including loading the version dependency descrip-
tion in application.yaml files detailed in Sect. 5.2 and sending the requests
with version dependency to other instances detailed in Sect. 5.3.

5.2 Version Dependency Model Generation

For the developers, the microservice needs to be integrated with MF4MS at
the source code level. The configuration of version dependency should be inte-
grated into configuration file application.yaml, and three kinds of dependen-
cies defined in Definition 2 are supported, as shown in Fig. 3(a). For the func-
tionality and SLAs description of each API, the MFuncDescription annotation
is needed, as shown in (1) of Fig. 3(b), and developers should annotate each
API function in every controller with it. For other information like the resource
usage, max user capabilities of services, and source code repository should be
included in the service description when the service enters the system.
3 https://kubernetes.io/docs/concepts/overview/components/#kube-apiserver.
4 https://microservices.io/patterns/service-registry.html.
5 https://maven.apache.org/.
6 https://www.jenkins.io/.

https://kubernetes.io/docs/concepts/overview/components/#kube-apiserver
https://microservices.io/patterns/service-registry.html
https://maven.apache.org/
https://www.jenkins.io/
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Once a new service enters the system, the Control Center sends the source
code repository of the new service to the Service Analyzer to analyze the ser-
vice of every version. The tags of the source code are used to distinguish different
versions of the same service. By analyzing each tag of the given repository at
the source code level with JavaParser, the Service Analyzer extracts the ser-
vice information and the version dependency of every version from controller
classes and configuration file, and returns the result to Control Center. Then
the results are saved to the version dependency model, and the Build Center
is called when no docker image exists for the new service.

(a) MF4MS configuration (b) Controller example with MF4MS

Fig. 3. An example of the MF4MS integration

5.3 Version Dependency Based Requesting

The Gateway and Cluster Agent work together to route requests with version
dependency. For all the requests from both instances and users, the developers
need to use the MVerRequestUtils.request provided by MF4MS to send a
request with a unique dependency id defined in the configuration file, as shown
in (2) of Fig. 3(b). Since the data formatting between different APIs is not our
primary concern, the MResponse type, which is a key-value map, is provided to
hold all the parameters or return values.

The requests are sent to the Gateway by MVerRequestUtils.request for re-
directing with version dependency. When there is no routing cache in Gateway
for the requester, the Cluster Agent is called. The Cluster Agent finds an
instance with the running phase algorithm detailed in Sect. 4.2 and returns the
URL to the Gateway. After that, the Gateway re-directs the request according
to the routing info and caches the info.

5.4 Version Coexistence Evolution Plan Executing

There are three kinds of operations: Switch, Add, and Remove. For Switch oper-
ation, the Control Center sends the routing rules to the Cluster Agent. All
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the caches in Gateway are deleted and all the requests need to be re-directed
by the Cluster Agent with the new rules. To execute the Add and Remove, the
Control Center sends the operations to the Cluster Agent, and the operations
are transformed to API calls to Kubernetes API Server since it provides conve-
nient APIs for managing the dockers. The Blue Green Deployment is adopted
here to erase the service down time during evolution.

6 Experiments

6.1 Experiment Setup

The experiments wre conducted in a proto system. Five 8vCPU and 16 GB
RAM AWS EC2 instances with Kubernetes 1.18.2 were used as the edge clus-
ter. The delay between each other was less than 1ms, and the bandwidth was
1000Mb/s. Other two AWS EC2 instances ware used as the cloud servers. The
Control Center, Service Analyzer, and Build Center were deployed on the
cloud server. Cluster Agent was deployed on the master node of the edge clus-
ter, and Gateway was deployed on every edge server.

There were two service sets that we created according to the taxi, shopping,
payment scenarios in the real world. The set 1 contained 6 services, and each
service had 0–2 dependencies. There were no more than two layers of dependency,
i.e., service A depends on service B, and service B has no dependency. The set
2 extended service set 1. It contained 4 new services, and each of them had at
least three layers of dependency. In both service set 1 and 2, every service had
2–3 APIs, and the size of input and output data ranged from 1 to 20 KB. For
each service, they had 2–3 versions, and the dependencies of different versions
of the same service differed from other versions. Thus, service set 2 had more
complex version dependency than set 1. All three kinds of dependency methods
were included in set 1 and 2. The max user number ranged from 100 to 300.

For the users, there were 2000 simulated users in the system, and they were
evenly distributed around five edge servers. All the users sent their requests to
the Gateway on the closest server node every 5–10 seconds. The average response
time and the count of failed user requirements were used as the evaluation indi-
cators. The service availability was also adopted to evaluate the performance
of the system, which is calculated by service down time divides running time.
Only the affected services were included during the calculation of the service
availability.

Since existing algorithms are not suitable for this problem, the performance
of the solution is evaluated in two common scenarios from the real world.

6.2 Scenario 1: Service Upgrade

Scenario 1 was simulated according to the service upgrade situation, which is one
of the most common scenario in the real world, with service set 1 and 2. It was
simulated by dividing users into three groups: upgrading requirements just after
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new version releases, upgrading in 5–10 min after the new release, and keeping
the old version. The time window of the control loop was set to 5 min, and the
experiments 1 and 2 were conducted with service set 1 and 2 respectively. The
results are shown in Fig. 4(a), Fig. 4(b), and Table 1.

The results show that after detecting failed requirements, the system evolved
itself and kept QoS stable with both simple and complex version dependency. The
QoS of both the scenario with simple dependencies (service set 1) and scenario
with complex dependencies (service set 2) were improved after the evolution since
there were no failed user requirements and average response time was stable. It
should be noticed that the average response time increased first then decreased
during evolution. The reason is the recalculation of routing info requires sending
requests from Gateway to Cluster Agent, which increases the average response
time. After caching the routing info, the average response time decreases. The
service availability in Table 1 also shows the system works well with the user
requirement changes in the multi-version coexisting system.

(a) Experiment 1 with service set 1, 5 min time window

(b) Experiment 2 with service set 2, 5 min time window

(c) Experiment 3 with service set 2, 10 min time window

Fig. 4. Average response time and count of failed requirements in scenario 1
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To study the effect of different time windows, experiment 3 was conducted
with a 10 min time window. Experiment 3 had the same settings to experiment 2,
including the time of service upgrades and user settings, except the time window
size. The results in Fig. 4(c) and Table 1 show that the service availability
decreases a lot since the system needs more time to discover the unsatisfied
requirements with a bigger time window than with a smaller one. However,
the bigger time window leads to less system evolution. There were 4 times of
evolution in experiment 3 while 5 times in experiment 2, which means the other
users in the system are less affected by the fluctuations in average response time.

Table 1. Service availability of experiment 1, 2, and 3

Experiment Service down time in total (minute) Service availability (%)

1 3.0 95

2 2.5 95.83

3 28 53.33

6.3 Scenario 2: New User Requirements

This experiment simulates another common scenario in the real world: new ser-
vices are released after users come up with new requirements. This scenario
differs with experiments 1, 2, and 3 because the users ask for new requirements
that the system can not provide. After the appearance of new requirements, new
services that can satisfy the new requirements are released in a random time.
Experiments 4 and 5 were conducted with service set 1 and 2, and the time
window was set to 5 min. Since the service availability is severely affected by
when the new services released, only the average response time and the count of
failed requirements are adopted for evaluation. The results are shown in Fig. 5.

The results show that our solution also evolved itself for new user require-
ments. The system responsed quickly in one time window after the release of new
services that could satisfy the unmet user requirements with both simple and
complex version dependencies between services automatically. New user require-
ments were satisfied after the evolution, which keeps the QoS stable.
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(a) Experiment 4 with service set 1, 5 min time window

(b) Experiment 5 with service set 2, 5 min time window

Fig. 5. Average response time and failed requirements number in scenario 2

7 Conclusion

In this paper, we proposed the version dependency model for describing the com-
plex dependency between microservices. A programming framework MF4MS and
a self-adaptive system infrastructure MI4MS with a greedy based evolution algo-
rithm were implemented for satisfying the user requirement changes automat-
ically with version dependency. The performance of the system was evaluated
in two common scenarios. The results show that MF4MS performs well with
complex version dependency and keeps the QoS stable.

The future work includes detecting the lack of function due to new require-
ments and evolving the system to fill in the functional holes automatically.
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Abstract. Continuous experiments, including practices such as canary
releases or A/B testing, test new functionality on a small fraction of the
user base in production environments. Monitoring data collected on dif-
ferent versions of a service is essential for decision-making on whether to
continue or abort experiments. Existing approaches for decision-making
rely on service-level metrics in isolation, ignoring that new functionality
might introduce changes affecting other services or the overall applica-
tion’s health state. Keeping track of these changes in applications com-
prising dozens or hundreds of services is challenging. We propose a holis-
tic approach implemented as a research prototype to identify, visualize,
and rank topological changes from distributed tracing data. We devise
three ranking heuristics assessing how the changes impact the experi-
ment’s outcome and the application’s health state. An evaluation on two
case study scenarios shows that a hybrid heuristic based on structural
analysis and a simple root-cause examination outperforms other heuris-
tics in terms of ranking quality.

1 Introduction

The ever-increasing need for rapidly delivering code changes to fix problems, sat-
isfy new requirements, and ultimately survive in a highly-competitive, software-
driven market has been fueling the adoption of DevOps practices [2] by many
companies. DevOps promotes the continuous deployment [13] of code to pro-
duction, breaking the traditional barrier between development and operations
teams and establishing a set of software development methodologies heavily
based on tools to automate software builds, tests, configuration, and deploy-
ment. To further increase development agility, companies are frequently following
a microservice-based [10] software architecture style. Microservice-based archi-
tectures are an evolution of the idea of service-oriented architectures [5,20], in
which applications comprise a multitude of distributed services.

The agility facilitated by DevOps practices and microservice-based architec-
tures enables companies to perform continuous experiments [16], which test the
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 19–35, 2020.
https://doi.org/10.1007/978-3-030-65310-1_2
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functionality and performance of new versions of application components under
production load. A common embodiment of continuous experimentation is to
perform canary releases [6]. In this practice, which resembles testing in produc-
tion, one compares the test version (the “canary”) of a microservice against
the current version (the baseline) with respect to performance and correctness.
Initially, the canary is exposed to requests of a small portion of users. If its per-
formance and correctness remains acceptable, it is gradually exposed to more
users until it replaces the baseline. If it fails to perform as expected at any time,
all traffic is shifted to the baseline and the canary is terminated. Crucially, deter-
mining the health of a canary requires (1) collecting and storing the metrics of
interest, and (2) comparatively analyzing the baseline and canary metrics.

Previous work [3,18] on assessing the outcome of continuous experiments
considers the microservice under test in isolation, focusing on service-level met-
rics alone. These approaches ignore the fundamental principle that microservices
communicate with each other and that these interactions affect the overall appli-
cation behavior. For example, performance issues in a canary version of a ser-
vice propagate delays (e.g., higher response times) within the network and when
solely judging on isolated service-level metrics, multiple services could appear
to misbehave. Given the scale of modern microservice-based applications com-
pounded by a myriad of possible inter-service dependency patterns, identifying
the root cause of such issues is challenging, especially when multiple microser-
vices are under experimentation, e.g., running multiple canaries simultaneously.

We contend that continuous experimentation in microservice-based applica-
tions must consider the topology underlying all inter-service calls so as to allow
developers to evaluate new versions holistically as opposed to in isolation. Out
of dozens or even hundreds of identified (topological) changes it is crucial to
assess those in detail that cause effects on the application’s health state. There-
fore, we propose an approach to not only identify and visualize changes between
baseline and canary versions, but also heuristics to rank these changes based on
their potential impact with the ultimate goal to guide developers when assessing
continuous experiments. We implemented our approach as a research prototype
that supports analyses in the context of multiple experiments running in paral-
lel. Our approach starts with inferring interaction graphs for both the baseline
and canary versions from distributed traces collected from microservice-based
applications. We then compare these interaction graphs to identify topological
changes, and rank these changes. A visual frontend allows developers to review
specific changes and associated quality metrics (e.g., response times).

In summary, this paper makes the following contributions: (1) a characteri-
zation of topological changes that occur in microservice-based applications; (2) a
general approach for ranking those observed changes; (3) three concrete ranking
heuristics as embodiments of this approach; (4) a proof-of-concept implementa-
tion; and (5) an evaluation of the quality of the produced rankings.

Our evaluation shows that a heuristic combining principles of both structural
analysis and performance analysis performs best across our evaluation scenarios.
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2 Related Work

Previous research has empirically assessed continuous experimentation practices
and challenges [15,16]. These works analyze reports on continuous experimen-
tation practices by selected companies [8,17], and also present data collected
more broadly using interviews and surveys. They find that software architec-
tures based on components that can be deployed and operated independently
(e.g., microservices) are essential for continuous experimentation, but also attest
that root-cause analysis of observed problems is challenging. Our work attempts
to address these challenges by considering the interactions in which updated
services participate.

Multiple methods and systems have been proposed for continuous experimen-
tation. Kraken is a system proposed by Facebook [19] for traffic routing between
services, servers, or even data centers to identify performance bottlenecks using
actual user traffic. Bifrost [14] formalizes continuous experiments consisting of
multiple phases. Experiments that are specified in a domain-specific language
are automatically executed by a middleware using smart traffic routing. The
MACI framework [4] for management, scalable execution, and interactive anal-
ysis presents an alternative way to express experiments integrating recurring
tasks around experiment documentation and management, scaling, and data
analysis with the goal of reducing specification efforts.

The work by Sambasivan et al. [11] is the closest to our approach. It com-
pares distributed traces to diagnose performance changes, distinguishing between
structural changes and ones in response-time. While Sambasivan et al. assume
similar workloads for the variants, our approach focuses on the topology and on
experimentation settings to assign only a small fraction of users to experimental
variants. Due to our set of change types, the comparison between the experimen-
tation variants is more fine-grained in our approach. This does also apply for
comparing our approach with Kiali1, a tool that helps observing services within
service meshs such as Istio2. While Kiali provides some basic health assessment,
our approach dives deeper by not only analyzing topological differences but also
ranking them to guide developers assessing the overall application’s health state.

Ates et al. [1] proposed Pythia, a framework making use of distributed tracing
to automatically enable instrumentation such as logs or performance counters
on those layers (e.g., application, operating system) that are needed to diagnose
performance problems. Santana et al. [12] investigates how syscall monitoring in
combination with a proxying approach can be used to obtain and inject tracing-
related meta-information with the goal to avoid code changes in the application
to propagate trace information. Our work relies on distributed traces collected
by the Istio service mesh using Envoy3 proxies in combination with Zipkin4 to
infer topologies of microservice-based applications.

1 https://kiali.io/.
2 https://istio.io/.
3 https://www.envoyproxy.io/.
4 https://zipkin.io/.

https://kiali.io/
https://istio.io/
https://www.envoyproxy.io/
https://zipkin.io/
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3 Characterizing Change Types

In the following, we characterize recurring change types we identified when com-
paring service topologies. For this purpose, we derive formal representations of
microservice-based applications and service-interaction graphs that frame our
basis to define topological change types.

3.1 Microservice-Based Application

A microservice-based application A consists of a set of interacting services A =
{s1, s2, . . . , sn}. Services are available in different versions, e.g., stable version
1 of the frontend service and a new experimental canary version 2 depicted
in Fig. 1 (Left). For a service si ∈ A this is represented as a tuple VSi =
〈si,1, si,2, . . . , si,m〉, where si,1 . . . si,m are the corresponding versions j of service
si with 1 ≤ j ≤ m. Note that Fig. 1 (Left) not only represents our running
example, but also depicts a topological difference which we will cover in detail
in later sections when we revisit this example.
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Fig. 1. Topological difference graphs of microservice-based sample applications. Left:
running example (scenario 1). Right: scenario 2. Green depicts added functionality
or calls, red depicts removed functionality or calls, and yellow depicts service version
updates. (Color figure online)

In the context of continuous experiments a microservice-based application is
available in multiple variants VA = 〈va1, . . . , vap〉 at the same time. An applica-
tion variant comprises a combination of services 〈si, . . . , sk〉 with i ≤ j ≤ k and
sj ∈ A. For each of those services sj ∈ A a concrete version u with sj,u ∈ VSj

is selected. In Fig. 1, the baseline variant of the application includes version 1 of
frontend, while the canary variant includes the new version 2 of frontend.

3.2 Interaction Graph

In a microservice-based application, version j of a service si interacts with other
services by calling one or more of their endpoints. In our model, this interaction
is represented by a directed graph G = 〈V,E〉 in which V and E denote sets of
vertices and edges respectively. Every service si,j of an application corresponds
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to a vertex v ∈ V in the graph, referring to version j of si ∈ A, where si,j ∈ VSi.
A directed edge e = si,j → su,v, where e ∈ E, represents a call from a service
si,j (subsequently named caller) to another service su,v (callee).

3.3 Topological Change Types

The presented formal model allows us to construct interaction graphs for every
application variant and to compare them. Comparing interaction graphs of two
or more variants reveals changes at the topological level. For example, in Fig. 1,
when the canary version 2 of frontend is deployed, we observe that a new service
(product) is required while the details service is no longer called.

In the following, we characterize typical change types that surface in the evo-
lution of microservice-based applications. When comparing interaction graphs
G1 and G2, every such change type appears as a certain pattern involving a
subset of the vertices. We distinguish two categories of change types: fundamen-
tal and composed, where a composed change type is a combination of multiple
fundamental change types.

v1

product

v1 v2

frontend

v1
search

v3

details
added call to new endpoint

removed call updated caller version

v2

shipping

v2 v3

orders

v1
payment

added call to existing endpoint

v1 v2

frontend

updated 
version

v2 v3

orders

v1edge updated callee
version

Fig. 2. Topological change types demonstrated on sample application (excerpt). Left:
add call to new service, removed call, and updated caller version. Center: add call to
existing endpoint. Right: updated callee version and updated version.

Fundamental Change Types. Fundamental change types involve calling
newly added services (or service endpoints), calling endpoints of existing ser-
vices, or removing calls to service endpoints.

Calling a New Endpoint. This change type represents new functionality man-
ifesting as a call to a new resource, such as a service or a service endpoint that
was added. In both interaction graphs G1 and G2 there exists a vertex (or node)
representing a service a, but in different service versions: i in case of G1 (i.e.,
sa,i), and j in case of G2 (i.e., sa,j). The interaction graph G2 contains an edge
e ∈ E with e = sa,j → su,v calling a service u in version v that does not exist in
graph G1. Figure 2 (left) depicts this change type in our running example. The
frontend service of the canary variant (version 2) calls a newly added product
service that does not exist in the baseline variant (version 1).

Calling an Existing Endpoint. This change type characterizes reusing func-
tionality, i.e., a new call to an existing service endpoint is made. There are again
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two nodes in the interaction graphs representing the same service a, but in dif-
ferent service versions: sa,i in G1 and sa,j in G2. Graph G2 contains an edge
e ∈ E with e = sa,j → su,v denoting a call to service u that also exists in graph
G1; thus, su,v is represented by a vertex v ∈ V of G1. However, there is no direct
interaction (no edge) between sa,i and su,v in G1. Figure 2 (center) shows this
change type in which the canary variant of orders (version 3) calls shipping. The
shipping service is also part of the baseline variant involving version 2 of orders,
but there is no direct interaction between orders and shipping.

Removing a Service Call. This change type represents the inverse of the pre-
vious one. A previously used resource is no longer used. Revisiting the previous
change type, this time the interaction graph G1 contains an edge e ∈ E with
e = sa,i → su,v representing a call to a service u, but no equivalent edge between
sa,j and su,v exists in G2. However, the service u might still be used in G2 by
other services. Figure 2 (left) represents this change type between the canary
variant of frontend (version 2) which no longer calls details.

Composed Change Types. These change types are constructed from funda-
mental change types and denote updated caller version, updated callee version,
and updated version.

Updated Caller Version. When comparing interaction graphs G1 and G2, the
version of a calling service a is “updated”. This caller-side version update is a
combination of removing a service call and calling an existing endpoint change
types. From the perspective of G2, the service sa,i no longer calls a service
endpoint su,v (i.e., removed service call), but the same service a of the updated
service version (i → j) is adding a call to su,v (i.e., calling an existing service
endpoint). Figure 2 (left) depicts an example. In the canary, the frontend service
is updated to version 2, and both version 1 and version 2 call the search service.

Updated Callee Version. This change type represents the case of a version
change in the service that is called. This callee-side version update combines
removing a service call and calling a new endpoint change types. From the per-
spective of G2, the service sa,i no longer calls a service su,v (i.e., removed service
call), but the same service sa,i calls a new version x of service u (update: v → x,
i.e., calling a new endpoint), hence there exists an edge e = sa,i → su,x. Figure 2
(right) exemplifies this change type when the version of frontend that is called
by edge is updated from version 1 (baseline) to version 2 (canary).

Updated Version. This change type is a combination of updated caller version
and updated callee version change types. There exists a service a and service u in
both interaction graphs G1 and G2. In G1, there is an edge e1 = sa,i → su,v, and
in G2, there is an edge e2 = sa,j → su,x. Hence, in G1 the interaction happens
between versions i and v of the services a and u, and in G2 between versions j
and x. From the perspective of G2, both the caller and the callee versions are
updated. Figure 2 (right) shows this pattern between frontend and orders. While
for the baseline, version 1 of frontend calls version 2 of orders, in the canary,
version 2 of frontend requires version 3 of orders.
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4 Ranking Identified Changes

This section covers (1) the construction of the graph-based topological differ-
ences, (2) a generic algorithm that traverses these differences to produce a rank-
ing of identified changes, and (3) three embodiments of this algorithm in the
form of heuristics to assess the impact of the changes identified.

4.1 Constructing the Topological Difference

Our approach relies on distributed traces of a microservice-based application
to (1) infer interaction graphs for each variant of the experiment and to (2)
construct a graph-based topological difference resulting from their comparison.

Inferring Interaction Graphs. Distributed tracing is a technique used to
collect information about calls between microservices. A trace is a set of data
about the sequence of all inter-service calls resulting from a top-level action
performed by an end user. Each call is associated with timestamped events cor-
responding to sending the request, receiving the request, sending the response,
and receiving the response. In our approach, a developer needs to specify the
application variants of interest, i.e., versions of services for baseline and canary
and the experiment start time. Given the inputs, we then divide collected dis-
tributed traces of baseline and canary variants into clusters, where each cluster
contains multiple interaction graphs (as defined in Sect. 3) with the same root
request. A root request is a service call made to an edge service of the application,
which in turn triggers other inter-service calls within the application, forming
an interaction graph. In each cluster we also compute statistics on metrics for
each inter-service call, namely, duration, timeouts, retries, and errors.

Comparing Interaction Graphs. The next step is to compare corresponding
baseline and canary clusters of interaction graphs to identify topological changes
based on the types described in Sect. 3.3. Once the changes and their types are
identified, the graphs are merged into a single graph forming an “extended”
topological difference (e.g., Fig. 1). The topological difference contains all the
changes identified, their assigned type, and further statistics that were captured
during the interaction graph’s construction. Due to the merge, the difference
graph contains also those structures (services and their interactions) that are
common to the graphs under comparison. Doing so preserves the “big picture”
and enables detailed analyses on the entire service network.

4.2 Traversing the Topological Difference

Once the graph-based topological difference is built, we execute a two-phase
graph-traversal algorithm, consisting of the annotation and the extraction phases.

Basic Algorithm. In a first step, all vertices (or nodes) in the graph without
outbound calls are visited (and marked as such). Then, the algorithm visits those
vertices calling service endpoints that have been flagged as visited, marking them
as visited again. This process is repeated until all nodes in the graph are visited.
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Annotation Phase. In our approach, every node in the graph-based topological
difference has an associated state T , which is used to store any information to
reason about, and ultimately rank changes. In the annotation phase, these states
are set to hold information required for the concrete implementation of the rank-
ing algorithm (i.e., heuristic). During a node’s visit, a wide range of information
is available, including the involved endpoint, outgoing calls and their change
types, statistics (for either one or for both variants) that were computed during
the construction of the interaction graphs, and any other queryable monitoring
information (e.g., from Prometheus5). It depends on the concrete implementa-
tion of a heuristic which information is used and how it is combined.

Extraction Phase. In this phase, every node is revisited with the goal to
extract a score S for each interaction (i.e., outgoing edge). Due to the nature
of our change types, an interaction in the topological difference graph could
comprise two edges in the source interaction graphs. The scoring happens on the
change type level: edges belonging to the same change are merged. Edges that
are common (without any change) in both source interaction graphs are treated
as a special change type. The idea of the extraction phase is to rely on the state
information gained in the annotation phase and to transform it into scalar values.
Formally, this scoring function has the type signature score : change → int.

Ranking. Once scores for all edges in the difference graph are computed, the
scores are sorted in descending order and ranks from 1 to k are assigned, where
k is the number of edges in the graph-based topological difference. The edge
achieving the highest score is ranked on position 1. Equal scores leading to tied
ranks are possible, even though they appear rarely.

In the following we will cover three specific embodiments of our algorithm.
Starting with the Subtree Complexity heuristic, followed by the Response Time
Analysis heuristic, we will cover their joint variant, the Hybrid heuristic.

4.3 Subtree Complexity Heuristic

This heuristic analyzes sub-structures of a topological difference and considers
uncertainty in the context of experiments.

Concept. The graph structure is broken down into multiple subtrees (see Fig. 3
for an example). The fundamental idea of this heuristic is that the more complex
the structure of the (sub-)tree is, the more likely it contains changes that affect
the outcome of the experiment and the application’s health state.

Initially, every node a has an assigned state of Ta = 0. Whenever a node a is vis-
ited during the algorithm’s annotation phase, its state Ta is set to Ta =

∑n
1 Ti+pa,i

being 1 ≤ i ≤ n the (child) nodes of the outgoing calls of a. Thus, the state values
Ti of called nodes i are summed up and weights pa,i representing individual prop-
agation factors for these calls are added. During the extraction phase, for every
interaction of a node a with a node i, the score for this edge e is computed as fol-
lows: Se = Ti + ca,i. Thus, the score is built from the state value Ti of the node
(i.e., service) that is being called and an individual scoring factor ca,i for the edge.
5 https://prometheus.io/.

https://prometheus.io/
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Fig. 3. Example of (topmost) subtrees in a topological difference. a) Basic subtree
complexity (ST) in blue (i.e., counting the number of edges in a subtree). Service s1
has three subtrees. The state value of s4 is 5 (3 subtrees, 5 edges in total). Thus, the
extracted score for the edge between s1 and s4 is 5 + 1 = 6. b) Extended subtree (ST
Ext) in blue, propagation values pa,i based on Utype values assigned to change types.
Extracted score for the edge between s1 and s4 is 10 + 2 + 3 = 15. (3 represents the
performance penalty). (Color figure online)

The distinction between propagation and scoring factors serve the following
purposes. The propagation factor directly influences the state values of the nodes
(and thus the individual scores) when walking up the tree. This is useful if severe
issues within a subtree are detected that should be reflected in the ranking of the
changes. The scoring factor only influences individual scores, e.g., a single change.
It allows expressing fine-grained differences among the changes. Depending on
how propagation and scoring factors are chosen, the subtree complexity heuristic
allows for multiple variations. Within the scope of this paper, we focus on two
variations: Subtree and Subtree Extended.

Subtree (ST). This standard variant of the heuristic analyzes the structural
complexity of the difference graph by counting the number of edges within sub-
trees. Propagation and scoring factors pa,i and ca,i are set to 1 for all edges
independent of their change types. Figure 3a depicts an example in blue.

Extended (ST Ext). This variation introduces the concept of uncertainty.
Calling entirely new services compared to calling a new version of an existing
service leads to a different degree of uncertainty when assessing the application’s
health state. For the former, no information to compare to (i.e., previous calls
or historical metrics) exists, while for the latter calls to the new version can be
compared with previous calls. Deviations in metrics, such as response times or
error rates, can be considered. Similarly, when a new call to an existing endpoint
is made, even though a direct comparison on the interaction-level is not possible,
there are still metrics available that are associated to the called service allow-
ing an assessment whether this added call introduces unwanted effects. In our
approach, we built upon these subtle differences in uncertainty for the identified
change types and assign a weight Utype to each of them.

For the extended subtree heuristic, instead of the number of edges, the uncer-
tainty values Utype associated to the individual edges’ change types are summed
up within a subtree. Hence, individual propagation factors pa,i = Utype are set to
the uncertainty value of the edge’s change type. Figure 3b depicts an example.
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The rationale for this is to emphasize the uncertainty of subtrees involving many
changes. Scoring factors are defined as ca,i = Utype + P . Similar to the propa-
gation factors we use the uncertainty values Utype and we introduce penalties
P that are added to those interactions for which deviations are measured, e.g.,
significant changes in response times. This mechanism allows us to account for
performance issues without running in depth root-cause analyses. Penalization
applies to all interactions for which direct comparisons between the variants on
the edge-level are possible, i.e., composed change types and common calls.

4.4 Response Time Analysis Heuristic

This heuristic tries to identify services and changes that have caused performance
issues by incorporating the notion of uncertainty.

Concept. The intuition here is that in case of performance deviations (e.g.,
response time) spotted at a node, the node’s surrounding changes that add
additional calls (e.g., calling a new endpoint, or calling an existing endpoint)
are potential sources of these deviations. This heuristic focuses on the overall
response time (i.e., how long did the called endpoint take to respond) extracted
from tracing data. However, the concept can be extended to incorporate other
metrics that have similar cascading effects. Further, note that these performance
comparisons are only possible for specific change types, namely composed change
types and common calls.

The state Ta of a node a is extended to keep track of deviations and their
potential sources while traversing the graph. It involves flag, a counter that
keeps track how often a node is considered as the source of a deviation, a map
deviations that stores which outgoing call (i.e., key) causes how much deviation
(i.e., value, in milliseconds), and a list source keeping track which child caused
the deviation. Algorithm 1 illustrates the analysis executed for every outgoing
call in the annotation phase when visiting a node a.

Algorithm 1: Response Time Analysis
Input: node, child, call
if call.hasDeviation() :

node.state.addSource(child)
if len(child.state.deviations) == 0 :

node.state.addDeviation(call=call,deviation=call.deviation)
child.state.flag := 1

else:
flagSources(child)
total := sum(child.state.deviations)
node.state.addDeviation(call=call, deviation=max(call.deviation, total))
if call.deviation > total :

inc(child.state.flag)
for c in child.calls :

if c.type in [call new endpoint, call existing endpoint] :
inc(c.target.state.flag)
child.state.addSource(c.target)

In case of a deviation, the called child is added as a source. If there are no
stored deviations for the child node, then the deviation is added to the node’s
state, and the child’s state flag counter is set to 1. If there are deviations, the
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recursive function flagSources walks through all the stored sources that might
caused the deviation on the child’s side and increases their flag counters. In
the next step, the sum of all stored deviations (i.e., total) is calculated and
the deviation is added to the node’s state. If the call’s deviation is higher than
the total sum of deviations on the child’s side, then it is likely that a change
introduced this new deviation. Therefore, the child’s flag counter is increased
and the child’s surrounding changes are analyzed. This involves all of the child’s
outgoing edges with calling a new endpoint and calling an existing endpoint
change types. The target nodes of these edges are added as potential sources
and their flag counters are increased.

By using different scoring factors in the heuristic’s extraction phase we dis-
tinguish two variations: RTA and RTA Ext. The annotation phase (i.e., flagging)
described in Algorithm 1 is the same for both variations.

Response Time Analysis (RTA). In the extraction phase, for every outgoing
call of a node a to a child node i, the score for an edge e is defined as Se =
Ti.flag. The resulting score corresponds to the final value of the child node’s flag.
Consequently, those services with the highest flag counts are ranked first.

Extended (RTA Ext). For this variation we revisit the concept of uncertainty
and reuse weights Utype as scoring factors. Again, the rationale is that those
interactions with high uncertainty for a change should have higher scores. To
have a mechanism to balance between flag and uncertainty values, we introduce
a penalty constant C. The scoring function for an edge e is defined as Se =
Ti.flag ∗ C + Utype.

4.5 Hybrid Heuristic

More complex (sub-)structures are more likely to contain changes that could
cause problems. This is the strength of the subtree complexity heuristic. How-
ever, in case of performance deviations, the response time analysis heuristic pro-
vides more detailed analyses to identify the origin of problems. The goal of the
hybrid heuristic is to combine the strengths of both, structural and performance
analyses. The underlying mechanics of both heuristics remain untouched for the
hybrid heuristic. During the algorithm’s annotation phase, both the structural
and the performance analyses are conducted. The extraction phase shapes how
the individual results of the heuristics are transformed into a single result. We
distinguish two variants: Hybrid (HYB) and Extended (HYB Ext).

Both variants use the extended subtree heuristic (ST Ext) to determine state
values Ti. To determine state flag values, the standard variant of the heuristic
uses standard RTA, while the extend hybrid variant uses extended RTA. Conse-
quently, the scoring function for an edge e is defined as Se = Ti+Utype+Ti.flag∗C,
being C the penalty constant established in RTA Ext, which is set to 1 in the
case of the standard hybrid variant.
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5 Ranking Quality Evaluation

To demonstrate our (formal) approach we developed a research prototype with the
goal to assist developers on experiment health assessment and decision-making.
The paper’s online appendix6 provides screenshots of the user interface (also
depicting those two scenarios), source code of the heuristics, and a comprehen-
sive replication package.

We evaluated the quality of the produced rankings on two concrete scenar-
ios: (1) revisiting the running example, and (2) dealing with multiple breaking
changes. Before we dive into details of the ranking quality evaluation, we briefly
describe our evaluation’s setup.

5.1 Setup

The setup involves a description of the method we used to assess the quality
of the produced rankings, how we calibrated the parameters the heuristics are
operating on, and how we generated the distributed tracing data.

Method. Normalized discounted cumulative gain (nDCG) [7] is a measure of
ranking quality, widely used in information retrieval. Based on a graded rele-
vance scale of documents in the result list of search-engine queries, DCG (or its
normalized variant nDCG) assesses the usefulness (i.e., the gain) of a document
based on its position in the result list. The gain of each document is summed
up from top to bottom in the ranking, having the gain of each result discounted
the lower the rank, which has the consequence that highly relevant documents
ranked at lower positions are penalized. The DCG accumulated at a particular
rank position p is defined as DCGp =

∑p
i=1(reli/log2(i + 1)).

reli is the relevance of the document at position i. Instead of documents we
rank identified changes. In order to use DCG, the authors assessed the relevance
of every single change of our two scenarios. In total, including sub-scenarios,
6 relevance assessments were conducted rating changes on a scale from 0 (not
relevant) to 4 (highly relevant). We use a normalized DCG (nDCG) producing
relative values on the interval 0.0 to 1.0, this allows for result comparison across
scenarios. 1.0 is the maximum value representing a ranking with the most rele-
vant changes on the top positions. As tied ranks are possible (e.g., changes with
the same score and rank as resulting from a heuristic), we applied the nDCG
adaption proposed by McSherry and Najork [9] considering average gains at tied
positions.

Calibration. To calibrate the heuristics we followed an iterative exploratory
parameter optimization procedure across all scenarios. For nDCG we considered
the top 3, 5, 7, and 10 positions of the ranking to be compared. For the penal-
ties P and C used in the heuristics’ scoring functions we iterated through values
1, 3, 5, 7, and 10. We tested four different mappings of uncertainty values to change
types Utype. Based on more than 9000 calibration results, we determined that

6 https://github.com/sealuzh/topology-experimentation-appendix.

https://github.com/sealuzh/topology-experimentation-appendix
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P = C = 3 and an uncertainty mapping Utype (i.e., change type → uncertainty)
of {‘calling new endpoint’: 3, ‘calling existing endpoint’: 1, ‘removing call’: 1,
’updated caller version’: 2, ’updated callee version’: 2, ’updated version’: 2, ‘com-
mon call’: 0} yielded the most promising results. We determined the nDCG for
the top 5 positions to allow comparison across scenarios of different sizes.

Tracing Data. We implemented the two evaluation scenarios as microservice-
based applications running on top of a Kubernetes cluster in the IBM Cloud.
The Istio service mesh was in place to handle experiment traffic routing between
the application’s variants along with a Zipkin installation keeping track of service
interactions. For every (sub-) scenario 1000 requests were generated.

5.2 Scenario 1: Revisiting the Sample Application

As a first scenario we use the example application shown in Fig. 1. Contrary to
the next scenario, we do not cover a specific evaluation aspect here. However,
this scenario involves all of the change types we identified, hence making it a
useful baseline to assess the proposed heuristics.

Scenario. This scenario involves two sub-scenarios: basic and delayed. Basic
executes the baseline variant of the application without modification, the canary
variant involves added functionality and updated service versions. The delayed
sub-scenario introduces a delay of 100ms at the payment service for the canary
variant. This reflects an abnormally behaving orders service in the canary that
multiplies the traffic towards the payment service causing it to overload, resulting
in higher response times.

Relevance. For the basic scenario, the added calls to product and the updated
versions of frontend and orders were classified as highly relevant (i.e., a relevance
score of 4). For the delayed scenario, in addition, the call between payment and
orders is classified as highly relevant. Relevance ratings for all scenarios are listed
in our online appendix.

Table 1. nDCG5 scores for all variations of the three heuristics across all evaluation
scenarios. Scenario 1 with sub-scenarios basic and delayed (in the canary variant).
Scenario 2 with four sub-scenarios: basic, a delay involving service j (canary), a delay
involving service s (canary), and a combination of both delays (canary).

Scenario 1 Scenario 2

Heuristic Basic Delay Basic Delay j Delay s Combined

ST 0.89 0.93 0.91 0.83 0.87 0.76

ST Ext. 0.96 0.93 0.99 0.85 0.91 0.77

RTA 0.76 0.87 0.64 0.91 0.82 0.90

RTA Ext. 0.93 0.95 0.73 0.91 0.83 0.91

HYB 0.98 0.96 1.00 0.85 0.92 0.81

HYB Ext. 0.96 0.98 0.96 0.93 0.92 0.87



32 G. Schermann et al.

Results. Table 1 (Scenario 1) shows the nDCG scores of the three heuristics in
their 6 variations for the basic and the delayed sub-scenarios. Scores are color-
coded, the higher the score, the more intense the background color. The hybrid
variations outperform the other heuristics, though some other approaches achieve
high scores as well. RTA produces good results for the delayed sub-scenario.
However, it only captures the “relevance” of the delayed fragments and ignores
the high relevance of the added functionality. This is simply because there are no
performance issues associated with these changes. The addition of uncertainty
for the RTA Ext variant helps to compensate this flaw and leads to stronger
scores for both sub-scenarios. Moreover, penalizing as a scoring factor turns out
to have positive effects on the delayed sub-scenario. However, the standard HYB
variant without penalties performs slightly better, though only by a whisker, e.g.,
by 0.005 on the combined score of both sub-scenarios for HYB and HYB Ext.

5.3 Scenario 2: Breaking Changes

The goal of the second scenario is to identify how the heuristics behave when
dealing with more complex, cascading changes resulting in multiple version
updates. This represents deployment scenarios and experiments dealing with
multiple breaking API changes. Figure 1 (right) depicts its topological differ-
ence in which b is the experiment’s target service.

Scenario. We split into multiple sub-scenarios involving simulated performance
issues in the canary variant. In addition to the basic scenario, which contains
multiple version updates and new services, we added two specific performance
deviations: a delay at service h when calling service j (100 ms), and a delay at
service s (200 ms) simulating a more complex request processing compared to
the removed service pairs p, q, and r. As a fourth sub-scenario, we combined
these two delays, making them active at the same time.

Relevance. For the basic sub-scenario, the version updates between b and c, b
and f, f and m, and the added functionality for m calling s are rated as highly
relevant. The delayed variants emphasize the changes introducing performance
deviations.

Results. Similar to the running example, on average across all sub-scenarios, the
hybrid heuristics perform best (see Table 1, Scenario 2). Some individual results
on sub-scenarios provide valuable insights into the single heuristics’ strengths and
weaknesses. Keeping the basic results aside, RTA (in both variations) achieves an
average nDCG score of 0.88, only topped by HYB Ext, which naturally inherited
RTA functionality, with a score of 0.91. For the basic sub-scenario, the standard
HYB performs best, almost reporting the perfect ranking with a score of 0.996,
immediately followed by ST Ext with uncertainty involved (as propagation and
scoring factor). Remarkably, the standard version of ST achieves a score of 0.91,
also due to the fact that changes rated with high relevance are particularly “up
high in the tree” (e.g., between b and f, and b and c) in this scenario. This
enables this simple heuristic to come close to the best rankings.
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5.4 Discussion

Combining the nDCG scores across all evaluation scenarios yields the highest
(average) score of 0.94 for HYB Ext, a heuristic involving both uncertainty and
a penalty mechanism in the scoring function. Interestingly, when diving deeper
and distinguishing between (1) all basic scenarios and (2) all scenarios involving
introduced performance issues we observe HYB Ext being not ranked first for
both (1) and (2). Despite being superior for performance cases (2) with an aver-
age score of 0.93 and a gap of 0.03 to the second-best heuristic (i.e., RTA Ext),
it is ranked third for non-performance cases, lacking a score of 0.03 to its lead-
ing standard HYB counterpart without penalty mechanism. As the performance
cases dominate – 4 versus 2 non-performance cases – HYB Ext clearly benefits
from the evaluation setup. This result is an indication that it would make sense
to let developers or release engineers using our proposed tooling toggle between
multiple (selected) heuristics which provide insights onto the application’s state
from different angles.

6 Limitations

One limitation of our approach is that the ranking quality evaluation was con-
ducted on traces for self-generated scenarios. We mitigated this threat by cov-
ering two complex scenarios and combined them with sub-scenarios including
simulated performance issues. A more thorough evaluation based on multiple
real cases is desirable, and part of our future research. A further threat involves
the relevance classification conducted by the authors of this paper. We classi-
fied all changes for all sub-scenarios on a scale from not relevant (0) to highly
relevant (4). As the relevance is used as baseline for nDCG, these ratings have
a direct effect on the resulting scores. Our online replication package allows
inspecting how results change when relevance ratings are adjusted. Another
threat involves the parameter calibration for the heuristics, which has a strong
influence on the results. We mitigated this threat by performing thorough cali-
bration runs with different parameter settings across all covered scenarios.

One limitation regarding the heuristics is that RTA variations only account
for changes that impact the response time negatively. We focus on the total
response time, ignoring that individual changes can have both positive and neg-
ative effects. However, our heuristics can be extended to cover this case as well.

Our evaluation focused solely on the ranking quality and left aside ques-
tions on how our approach would perform on industry-scale applications. We
conducted a performance evaluation on the heuristic’s execution behavior on
self-generated difference graphs of multiple sizes and with various characteris-
tics. First results are promising and show that the heuristics are able to cope
with graphs consisting of thousands of nodes within seconds. However, detailed
analysis are, also due to space reasons, out of scope for this paper and an eval-
uation on real instead of self-generated graphs is subject of future work.
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7 Conclusion

We proposed an approach that analyzes request traces captured from distributed
tracing systems to identify changes of microservice-based applications in the
context of continuous experiments. Using heuristics, we rank these identified
changes according to their potential impact on the experiment and the applica-
tion’s health state, with the goal of supporting decisions on whether to continue
or abort the experiment. While previous work on experiment health assessment
considers the services under test in isolation, which could skew the assessment
as certain effects are left out, we focus on the topological level. We characterized
a set of recurring topological change types consisting of fundamental patterns
and more complex composed variants. We proposed three heuristics that oper-
ate on top of these characterized changes taking the concept of uncertainty into
account. Our evaluation conducted on two case study scenarios demonstrated
that the rankings produced by the heuristics are promising and could be a valu-
able resource for experiment health assessments. An comprehensive evaluation
on how our approach performs on industry-scale applications is subject of future
work.
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Abstract. Microservice architectures have gained popularity in the last
ten years, based on their intrinsic capabilities of implementing scalable
software architectures. However, understanding a microservice architec-
ture is still a challenging task for software architects. Current state-of-
the-art approaches addressing this challenge focus on exhaustive solu-
tions, working in an all-or-nothing way. These all-or-nothing solutions
rely on heuristics to create one map of a given architecture, using static
and/or dynamic analysis of the existing source code. This is not compat-
ible with the classical approaches used in software comprehension, that
relies on the exploration of a program in an incremental way. In this
paper, we leverage the exploration metaphor and describes the Anaxi-
mander approach to support the incremental definition of a map that
suits the needs of the architect exploring an architecture. Using probes
working at different levels of abstraction and precision, one can incremen-
tally chart a map representing the architecture and leverage the map by
querying it. We applied the Anaximander approach to six reference
microservice architecture published by major actors from the state-of-
practice.

Keywords: Microservice architecture · Software comprehension ·
Software composition

1 Introduction

Microservices are gaining momentum to support the development of com-
plex service architecture. Relying on the promising principles of domain-driven
design [12], microservices architectures provide an excellent answer to tame the
challenge of developing scalable service-based systems. Such architectures are
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decomposed into a set of independent microservices, each of these being dedi-
cated to a given domain. The communication between services is delegated to
reliable communication paradigms, such as messages buses [2]. From a software
engineering point of view, micro-services triggers several maintainability issues,
e.g.,, how to maintain and evolve such systems.

Table 1. Size and technology heterogeneity for each reference architecture

Id. Ref. architecture [1] Technologies Size

Lang. DBs Mess. Depl. #Files #LoCs #Serv.

S1 HipsterShop 5 1 2 2 163 38, 934 10

S2 SockShop 3 4 2 9 222 19, 014 8

S3 eShopOnContainers 1 7 5 3 1, 585 143, 356 8

S4 Vert.x MS Blueprint 1 7 2 1 218 18, 881 9

S5 Shopping Cart 1 7 2 1 396 70, 045 8

S6 Robot shop 4 3 2 1 120 6, 341 7

Total for all arch. 5 5 6 11 2,704 296,580 50

In 2020, Assunçãao et al. described a variability challenge related to microser-
vice engineering [1], where they identified six references open-source microser-
vice architectures. These reference systems (see Sect. 4) demonstrate the high
level of variability related to microservices development (Table 1). This level of
heterogeneity is intrinsic to microservices architectures, and it is necessary to
support developers and architects who have to maintain such systems. Reverse-
engineering approaches typically support this task [9]. However, in the very
case of microservices architecture, the quest for a fully-automated tool that
can reverse-engineer any microservice architecture is pointless by design. On
the one hand, static code analysis approaches will quickly reach a limit consider-
ing the flexibility offered to the developers by the existing technologies, and the
upcoming frameworks that are not yet invented. On the other hand, dynamic
approaches (e.g., analyzing traces of execution) are fragile w.r.t. the scenarios
used as input to capture the dynamic traces.

Instead of targeting an ultra-high-definition description of the architecture,
we propose here to define an incremental and iterative way of creating such a
description. The key idea is to consider such a description as a map, and leverage
the way cartographers addressed the creation of maps in the early days of our
civilization. We named our approach after Anaximander, a Greek philosopher
known to have produced the first map of the world. Based on a source code audit
of the reference architectures, we propose in this paper to describe an incremen-
tal approach to support developers and architects who maintain microservice
architecture.
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2 Related Work

Haitzer and Zdun [4] present a Domain-Specific Language (DSL) to abstract
an application’s architecture in a semi-autonomous way. This approach empha-
sizes that working incrementally is essential. Granchelli et al. [3] present an
approach to recover the architecture of microservice systems called MicroART
from a GitHub repository and a reference to the container engine managing the
application. This approach differs from ours by using a monitoring tool such as
tcpdump to capture the communication log between services without taking into
account the architecture deployment artifacts. Kleehaus et al. [6] provides a tool
called MICROLYZE to recover the infrastructure in real-time of a microservice
architecture. Similar to our approach, MICROLYZE uses both automatic and
manual processes to gather information. Ma et al. [8] propose another approach
to generate service dependency graphs automatically. Those graphs are used to
analyze and visualize the dependencies between the microservices deployed for
the application. Their solutions allow them to select specific test cases in order
to run regression tests on the application. Ma et al. explore similar monitoring
solutions [7] to leverage annotation in Java source code. Those annotations are
used to help build service dependency graphs.

Probe

Architect

Microservice
Architecture

Partial Map

Existing Map

Composition
algorithm

Enriched Map

Fig. 1. Overview of the Anaximander approach

Leveraging the cartography metaphor, all the approaches described in this
can be seen as exploration campaigns of the architecture, trying to create a
complete map out of a single exploration. The maps are dedicated to a sin-
gle objective (e.g., non-regression testing) and cannot inter-operate with each
other. Moreover, the amount of information produced is very detailed, and it
might overwhelm an architect, preventing the approach to answer the architect’s
questions.

3 The Anaximander approach

Taking a different point of view, the key concepts of Anaximander are the
definition of (i) partial maps, obtained as the result of the execution of (ii)
exploration probes applied to the system. This approach tackles by design the
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heterogeneity of micro-services architectures (see Sect. 4), and is complementary
of the approaches already existing in the state-of-the-art that can be considered
as exploration probes. We describe in Fig. 1 the approach for a software architect,
that relies on the classical extract - abstract - present paradigm [10] used in
reverse engineering. The architect selects a probe among the one available off
the shelf, and execute it on the architecture. A probe can rely on static analysis,
or dynamic traces. As a result of its exploration, a probe returns a partial map,
i.e., the information gathered by the probe. The obtained partial map is then
composed with the already existing one (if any), to enrich the knowledge (e.g.,
adding new information, correcting errors).

3.1 Modelling the Map as a Graph

We define an architecture map as a typical graph g = (V,E) ∈ G, where V =
{v1, . . . , vi} ∈ Vi is a set of vertices and E = {e1, . . . , ej} ∈ Ej a set of edges.
A vertex v is defined as an vertex identifier, a type, and a set of associated
properties P . An edge e is defined as a pair of source and target vertex identifiers,
a type, and a set of properties. A property p is a simple key-value pair. To support
the efficient manipulation of the maps, we rely on two constraints that need to
hold in a given map: (i) vertex uniqueness and (ii) edge uniqueness.

To manipulate the map and support its enrichment, we leverage the classical
match and merge algorithm [5]. Each graph element (i.e., graphs, vertices and
edges) defines an equivalence relation (denoted as ≡) for matching purpose (e.g.,
two nodes are considered equivalent when they have the same identifier), and a
merge function (denoted as ⊕) to merge two elements identified as equivalent.
Thus, enriching an existing map m with the result of a probe m′ is simply to
compute m′′ = m ⊕ m′. To correct an error, we rely on the opposite operation
remove (denoted as �), where the following law holds: m = (m ⊕ m′) � m′.

3.2 Modelling Probes as Functions

Exploration probes are the software artifacts used to produce the partial maps.
According to the heterogeneity of the technologies involved in microservices
architectures, it is unrealistic to develop a polyglot framework supporting the
state-of-practice as well as anticipating any upcoming technological trends. As a
consequence, we decided to model a probe as a black-box function p : conf → G,
taking as input its configuration, and producing as output a map, in a tex-
tual format. Adding or removing information to the map relies on the ⊕ and �
operators previously described, e.g., mt+1 = mt ⊕ p(configuration).

The immediate advantage of this black-box representation is that it unifies
the outcome of each exploration while supporting the designers of probes to use
the most appropriate technologies for their very own probes. For example, a
static analysis of Go source code will leverage the compiler capabilities directly
embedded inside the Go language, where a probe dedicated to analyzing Spring
Boot Java services will leverage the reflexivity API available in Java to analyze
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the developed artifacts. Dynamic analysis can leverage classical formal mod-
els such as the Knowledge Discovery Metamodel [11], an international standard
promoted by the OMG to support software modernization. To tame this hetero-
geneity and consider all the probes as equals from the architect point of view, it
is possible to wrap each probe into an image (e.g., using Docker or Singularity
container technologies). The image will contain all the necessary software depen-
dencies (e.g., executable, compiler, libraries, frameworks) for a given probe, and
hide this complexity to the architect into a black-box approach. It emphasizes
the idea of probes’ black-box representation, where the internal implementation
details are hidden inside the container. The probes library available off-the-shelf
is then a set of turn-key images ready to be used by the architect, and creating
a new probe is as simple as publishing a new image inside the library.
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Fig. 2. Anaximander map obtained dynamically using WeaveScope (mi)

4 Exploring a Reference Architecture

In this section, we validate the Anaximander approach based on the reference
architectures used to express the requirements. The source code of the probes is
available on the project repository1. For the sake of concision, it is not possible to
provide here an in-depth analysis of each of the reference architecture. Instead,
we focus on a single one (S2, SockShop[13]), as it is built as a demonstration
showcase by a tool vendor (WeaveWorks), medium-sized concerning the five
others, a representative in terms of heterogeneity (three languages for service
development, three databases technologies, two messaging framework and nine
deployment technologies), and involves 8 services.

As a starting point, we transformed the dynamic map provided by the tool
vendor into an Anaximander artifact (Fig. 2). This first map mi is the com-
position of three different information: (i) the server that host the services, (ii)
the TCP connections that exist between the services and (iii) the kind of service
1 https://github.com/ace-design/anaximander-microservices.

https://github.com/ace-design/anaximander-microservices
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(i.e., database, messaging, service). For the sake of readability, we only kept
the two last ones in the paper version of the map. As the map is obtained by
listening to a runtime infrastructure, it contains noise, i.e., existing containers
in the deployment infrastructure that are not related to the business logic (e.g.,
edge-router, consul).

To remove the noise, we use a probe dedicated to extracting services from a
Kubernetes descriptor. This probe extracts from the deployment descriptors the
services into a map mk, but cannot infer their interconnection. This is where the
composition of multiple probes provided by Anaximander is helpful: to date,
our most useful map is m0 = mi � (mi � mk), i.e.,, the map containing all the
discovered interconnection in mi, without the infrastructure noise (mi � mk).

queue-master

shipping-task-exchange

exchange

shipping

exchange

(a) masync ∈ G

orders

/orders

GET POST

exposes

payment

/paymentAuth

POST

exposes

/health

GET

exposes

(b) mswag ∈ G

orders

/orders

GET POST

exposes

/paymentAuth

POST

calls

(c) mspring ∈ G

Fig. 3. Partial maps used to explore S2 with probes (RabbitMQ, Swagger, Spring)

Based on this initial map, we can start the incremental exploration of the
infrastructure. First, we want to understand the interconnection that uses asyn-
chronous messages (e.g., RabbitMQ exchange topics) in this architecture. A
query to m0 to know all the services exchanging data with RabbitMQ returns
two services: queue-master and shipping. It means that if the message bus
suffers an outage, only the shipping infrastructure will be impacted. To improve
the precision of the map concerning asynchronous communications, we use a
source code analysis probe to identify the exchange topics from the source code,
obtaining a map masync (Fig. 3a).

A critical part of the architecture is the payment of orders, so we decide to
explore the interconnection that exists between the payment and order services.
Without more information, we assume that both services communicate using
an HTTP REST protocol. We first use a probe dedicated to Swagger contracts
identification, identifying the routes exposed by each service (mswag, Fig. 3b).
Then, we use a probe that performs a static analysis of the order service to
identify the control-flow of its Spring implementation (mspring, Fig. 3c). As there
is no other connection between order and payment, we can use this information
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to correct our initial map, and erase the technical tcp link that exists between
the two services and use the proper control-flow instead.
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Fig. 4. Final map for S2, composing mi, mk, masync, mswag & mspring

We describe in Fig. 4 the map obtained after these preliminary explorations.
We used a query to identify the databases and remove them from the map, and
then compose all the partial maps with the initial one to obtain a more precise
picture of the architecture. The map is still shadowed for some services, but the
amount of information inside it was sufficient to answer the questions we were
asking about the architecture.

An immediate threat to validity is related to the lack of validation outside of
the six reference architectures used to defined Anaximander. This is empha-
sized by the difficulty of collecting open-source microservice architecture, as this
paradigm is used to implement business-driven logic. However, we mitigate this
threat by the fact that the six architectures were highly heterogeneous, using dif-
ferent coding styles and technologies, and therefore representative of microservice
development. Moreover, the representativity of these architectures is emphasized
by their selection for a variability study by Asunçãao et al.

5 Conclusions and Perspectives

In this paper, we described a novel approach named Anaximander to support
microservice architecture maintenance, leveraging the idea of gathering incom-
plete information about the architecture and composing this incomplete infor-
mation with the existing ones to enrich the knowledge of the architect incre-
mentally. This approach complements the state-of-the-art ones, which try to
create ultra-precise maps by focusing on particular technological choices, where
Anaximander support a more flexible way of creating such maps. The need
for Anaximander emerged after a careful audit of six references architectures.
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This work opens an interesting perspective concerning uncertainty. As the map
created by Anaximander is imprecise by design and aims to be refined itera-
tively, finding a way to model such imprecision (e.g., with goal modelling from the
requirements engineering community) will help the architect during the explo-
ration of the system.
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Abstract. Aiming to break the software monoliths that traditional
approaches usually produce as artifacts, solutions that are based on
microservices consist of heterogeneous and independent software plat-
forms to manage applications and data. In this scenario, the term poly-
glot persistence has been introduced to characterize software solutions
where the involved microservices rely on different data storage technolo-
gies. Especially in Fog Computing where data are expected to efficiently
flow among nodes – usually from the edge to the cloud – the polyglot
persistence could have a negative impact since a combination of data
replication and transformation is required. The goal of this paper is
to study the challenges in data management in Fog Computing when
microservices are adopted, and to present a solution which combines the
advantages of the physical copy approach performed by network file sys-
tems to provide a fast data movement and the ability of the logical copy
approach to transform the data. The resulting mix is demonstrated to
reduce the time of creating the replica up to 70%.

Keywords: Efficient data management · Data movement

1 Introduction

The microservice architectural style is more and more adopted in software
solutions due to its ability, among the others, to deal with scalability and
ease of maintenance. As discussed in [13], seven main principles constitute
the fundamentals of microservice architectures: fine-grained interface, business-
driven development, cloud-native design, polyglot programming and persistence,
lightweight containers, decentralized continuous delivery, and DevOps lean.

Polyglot programming and the persistence principle aim to enable the pro-
duction of a software solution as a composition of several independent modules,
developed by independent teams, and based on different technologies. This way,
developers can break the classical monolithic solutions and use the most suitable
technology for a given specific task, without the need to agree on a specific plat-
form. The polyglot principle is in line with the need to get rid of the “one-size
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 45–55, 2020.
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fits all” approach [11]. Thus, a microservice-based solution could involve a set
of different DBMSs which could even rely on different models: e.g., relational
DB, noSQL. This is also important when data to be managed by software solu-
tions come from legacy systems but we want to exploit as much as possible new
programming and storage paradigms to properly manage those data. As a con-
sequence, mechanisms are required to keep the alignment of different data stores
in the different nodes in which microservices are running.

The literature already proposes some solutions for the alignment of data
stored in heterogeneous environments which are ready to be adopted also in a
microservice architecture. Conversely, such solutions become no longer useful
when considering the deployment of microservices along the continuum between
the cloud and the edge, i.e., Fog Computing, which introduces additional require-
ments in terms of velocity, polyglot persistence, data transformation, and partial
replication. In fact, Fog Computing [6], a paradigm for managing distributed sys-
tems where nodes, called fog nodes, live in the continuum between the cloud and
the edge, implies: (i) a dynamic environment where fog nodes could easily join
and leave the system, and (ii) a continuous data movement among different nodes
which – due to the polyglot persistence principle – could be based on different
storage technologies. In this context, providing a fast access to the data needed
by a microservice is fundamental and it can be obtained by locating the required
data closer to where the computation is running.

The goal of this paper is twofold. First, to investigate how the adoption of
microservices affects software solutions in Fog Computing with respect to data
management. As discussed in the paper, an efficient and flexible replica mecha-
nism is fundamental and the current approaches – such as physical and logical
copy [10] – either are not able to satisfy all the requirements of Fog Computing
or the time required to create the replica is not acceptable. Second, this paper
proposes a solution to efficiently ensure the creation of replicas on the nodes
which are able to cope with the dynamism of the system and the heterogeneity
of the technologies involved. As demonstrated by the performed tests, the pro-
posed solution is comparable to traditional approaches for small databases but
outperforms them up to 70% when the size of the database becomes significant.

The rest of the paper is organized as follows. Section 2 motivates the require-
ments for replica mechanisms in Fog Computing. Section 3 introduces the pro-
posed solution, of which the evaluation results are presented in Sect. 4. Finally,
Sect. 5 discusses related work and Sect. 6 concludes the paper.

2 Background and Motivation

Fog Computing has recently emerged as a paradigm for improving the perfor-
mance of applications where data are generated on the edge but, due to the
limited capacity in terms of computation and memory, they are processed on
the cloud [2]. As the network can introduce a significant latency, the processing
performed on the cloud may experience an unacceptable delay. For this reason,
Fog Computing aims to create a synergy among resources on the edge, resources
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on the cloud, and even resources that connect the edge and the cloud, where all
these nodes are generically referred to as fog nodes.

In this context, mechanisms for enabling data and computation movements
hold a primary role. When possible, computation should be moved closer to
where data are generated. As not all computation is possible on edge nodes due
to their limited capacity, the data resulting from the initial analysis – which
are less than the generated ones anyway – should be sent or replicated to cloud
nodes. Moreover, especially when considering dynamic contexts, a fog node could
unpredictably join or leave the system. Hence, when a node is part of the system,
it can be a source of data or a place in which the computation can be executed.
Thus, it has to access the data to be processed which could be other than the
data that the node itself is generating.

Data generated at the sensing layer must, therefore, be replicated for the
computation layer, usually organized according to a microservice architecture.
Several challenges must be addressed concerning the creation and the manage-
ment of the database replicas in Fog Computing. R1: fast creation: when a fog
node joins the system, a secondary database should be quickly made available to
the newly deployed microservices. R2: polyglot persistence: fog nodes could be
based on heterogeneous storage technologies. R3: partial replication: for privacy
issues or to reduce the amount of data to be transferred, the secondary database
could contain a projection or a selection of data stored in the primary database.
R4: data transformation: before moving to the secondary database, data could
be transformed for privacy, security, or optimization reasons.

It is worth noticing that the resources available on fog nodes may vary from
few cores and few megabytes of RAM and storage for nodes closer to the edge,
to powerful nodes when considering the cloud. For this reason, the solution must
be lightweight to be deployed in all configurations.

3 Fast Replica for Fog Computing

The replication mechanism proposed to satisfy the requirements introduced
above is based on dynamic replication. Thus, secondary databases are added
dynamically after the deployment of the primary database [12]. Static replica-
tion, where all secondary copies are deployed at the same time of the primary
copy, is indeed not an option in our context, as in Fog Computing all fog nodes
are not known in advance, as they could change dynamically.

The initial load phase of a database is considered in this paper. Such a phase
is required every time a microservice is deployed on a fog node. Depending on the
type of analysis and the amount of data generated by the sensing layer, it might
happen that the replica creation could require to move a significant amount of
data. In the literature [10], (see Fig. 1) two options are commonly considered: i)
logical copy, which refers to the mechanism of extracting data from the primary
copy and importing them onto the secondary copy using queries; and ii) physical
copy, which refers to directly transferring files containing the DBMS data, from
machine to machine, at filesystem level.
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Fig. 1. Comparison of physical and remote copy.

The physical copy is a very fast process (actually the fastest according to our
tests) but it only addresses R1. In fact, only full replication can be achieved as
a physical copy is obtained by copying the entire data directory of the database
onto a remote machine. For the same reason, data cannot be transformed (e.g.,
anonymized) during the replication process. Indeed, it is not possible to distin-
guish between columns, rows, or tables at the filesystem level. Finally, a physical
copy cannot be used in a heterogeneous setup with different DBMSs, since the
data directory, copied onto a remote machine, will be readable only by a DBMS
that uses the same technology of the primary one. An adopted workaround to
allow a polyglot environment with physical copy, consists of a primary node
where data are stored in all the different database technologies that might be
needed. When a replica is required, the physical copy of the database with the
needed technology is performed. However, this approach is extremely space con-
suming, so it is not an acceptable solution, especially when considering fog nodes.

When it comes to logical copy, it allows filtering and transforming the data
since, once rows are extracted from the primary copy, they can be filtered or
transformed before they are sent to the secondary copy (R3, R4), so also different
database technologies can be involved (R2). The main drawback of the logical
copy concerns the time required to complete the copy on the secondary node.
Indeed, as shown in Fig. 1, the performed tests show that the logical copy always
requires more time than the physical one and, with an increasing size of the
database to be replicated, the replica time has an exponential trend which makes
this approach not suitable.

We propose a hybrid approach (see Fig. 2) to perform the initial load, that
exploits the flexibility of the logical copy while maintaining the higher speed of
the physical copy. The hybrid approach consists of four phases:

1. Temporary node creation. A DBMS (of the same technology as the technology
of the secondary database) is deployed on a temporary node near the primary
node (or, if possible, on the same node).

2. Local logical copy. The (partition of the) database to be replicated is copied
into the new DBMS by using a logical copy. This allows to filter and to
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Fig. 2. Proposed hybrid approach

transform the data, and to translate the queries for a DBMS that is different
from the primary DBMS. This operation takes less time than it would take
to perform remotely onto the secondary node since it is performed on a node
that is near (or local to) the primary node. The logical copy is performed by
reading the primary copy and it does not need to lock the primary copy.

3. Remote physical copy. The newly created database is moved to the secondary
machine by using a physical copy which has been demonstrated to be fast.

4. Finalization. The secondary DBMS is started on the secondary node, where it
can access the newly copied database. The temporary node can be destroyed.

The overhead of this approach is given by the time necessary to deploy the
temporary machine and create extra resources (e.g., a temporary DBMS). How-
ever, some technologies (e.g., Docker and Kubernetes) allow to deploy these nec-
essary resources in a few tens of seconds, which is a negligible amount of time if
compared to the overall benefit provided by the proposed approach. Similarly,
the overhead given by the transmission of data between the primary database
and the temporary one is negligible since the temporary machine should be
created near the primary one (or be connected with a fast network connection).

It is worth noting that the usage of a temporary node is a valid approach
in Fog Computing. For nodes located in a cloud environment, the overhead of
the creation of a temporary node is negligible, due to the virtually unlimited
resources available. Edge nodes, are typically IoT devices which produce data,
that are stored in fog nodes. In this case, the temporary node will be created in
fog nodes where resources, even if limited, are usually higher than IoT devices
and the overhead will have a limited, and temporary, impact on the system.

Better performance can be achieved by starting the third phase (i.e., the
remote physical copy) during the second phase (i.e., the local logical copy),
without waiting for the second phase to finish. Using this variation, data is
copied onto the secondary node while it is being written on the temporary node.

This variation (named overlapped hybrid approach) introduces three cases:

No Overlap. If the third phase (i.e., moving the temporary replica to the
secondary node) is performed after the second one has finished, then the overlap
will be minimum, that is, null. In this case, the total necessary time to create a
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copy on the secondary node is equal to the time necessary to create a local copy
on the temporary node plus the time necessary to perform its entire physical
copy onto the secondary node.

Perfect Overlap. If the physical copy is timed perfectly with the logical copy,
the overlap will be maximum, and the two phases will be entirely overlapped.
In this case, the total necessary time to create a copy on the secondary node is
equal to the time necessary to perform a logical copy on the temporary node.
This is an ideal scenario that does not happen in reality for two main reasons.
First of all, the logical copy creates new files on the temporary node, while the
physical copy copies them on the secondary node, and these two processes may
follow different orders. Secondly, the exact times needed for logical and physical
copies are unpredictable in a Fog Computing environment. Therefore, it is not
possible to time the beginning of the physical copy perfectly so that its end
coincides with the end of the logical copy.

Partial Overlap. The best obtainable degree of overlap is a partial overlap. The
best strategy in order to maximize the overlapping of the two phases is to run
the process of the physical copy twice. Keeping in mind that the physical copy
is faster than the logical one, the first execution of the physical copy should be
timed so as to finish approximately when the logical copy finishes. As soon as the
logical copy ends, the second execution of the physical copy should start. This
maximizes the amount of raw data copied by the first physical copy leaving to
the second run of the physical copy only a small portion of the data. Transactions
performed during the first physical copy may lead to integrity problems in the
secondary node, because files are physically copied from the temporary node to
the secondary one, while writes are occurring on the temporary node. This is not
a problem, as the data is initially not accessed on the secondary node. Therefore,
just before the second physical copy, the alignment between the primary and
temporary node is suspended, and then the second physical copy to align and
restore the integrity of the data on the secondary node is performed. Immediately
after that, the alignment between the primary copy and the secondary copy
starts. All the transactions performed after the beginning of the second physical
copy will be propagated to the secondary copy.

3.1 Implementation Details

The proposed hybrid approach (both with and without overlap) has been imple-
mented adopting the most common tools used to deploy and run microservices
(i.e., Docker and Kubernetes) as well as existing software (i.e., SymmetricDS)
that is able to provide a logical copy.

More in detail, Docker1 allows to create isolated virtual environments known
as containers, in which applications can be run. Containers are very lightweight:
they use less space and they also take less time to start up compared to other
virtualization tools. As a result, Docker allows to: (i) deal with fog heterogeneity,

1 https://www.docker.com.

https://www.docker.com
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Fig. 3. Architecture of the approach

as applications are containerized and they do not need to rely on the specific
hardware of the host machine; (ii) deal with fog dynamicity, as applications can
be started in a fast and practical way.

To coordinate multiple nodes, orchestrator tools, such as Kubernetes2, are
involved. More specifically, Kubernetes is an open-source container-orchestration
system for automating deployment, scaling and management of containerized
applications in distributed systems that, amongst others, supports Docker con-
tainers. It provides a container-centric management environment, that orches-
trates computing, networking, and storage infrastructure.

In a Fog environment, a Kubernetes Node is a worker machine, and it may be
a virtual machine or a physical machine that corresponds to a node, a.k.a., Fog
node. A set of Kubernetes Nodes makes up a Kubernetes cluster. A Kubernetes
cluster corresponds to a set of fog nodes. Each microservice can be containerized
and, therefore, it belongs to a single Docker container. A Kubernetes Pod is
a group of containers with shared network and storage, that are always co-
scheduled and co-located.

Finally, SymmetricDS3 is an open source software package for database repli-
cation. It performs a type of replication known as transaction replication [5] as
opposed to statement replication [5] . This means that the secondary copies do
not receive SQL statements to apply, but rather only the changes produced by
SQL statements, known as writesets. As it is built on top of JDBC, Symmet-
ricDS supports a wide range of databases and it can automatically translate
between different SQL dialects. Moreover, SymmetricDS supports filtered repli-
cation (to allow replication of specific tables, columns or rows) and it supports
data transformation (which allows to anonymize or pseudonymize data before it
is replicated).

Figure 3 shows the architecture for the implementation proposed in this
paper. The lower part consists of Docker service, and GlusterFS service4, a
network filesystem we used for the creation of persistent volume where DBMS
data is stored. Both services are installed in every fog node, that provide the

2 https://kubernetes.io.
3 https://www.symmetricds.org.
4 https://www.gluster.org/.

https://kubernetes.io
https://www.symmetricds.org
https://www.gluster.org/
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Table 1. Replica time (in min) for the different approaches

DB Size Physical Hybrid Overlap Logical

Logical
local

Physical
remote

Total Logical
local

Physical
remote

Total

100 MB 0.5 0.45 0.5 1.95 0.48 0.43 1.91 1.27

490 MB 0.87 1.78 0.87 3.65 1.77 0.52 3.29 4.62

900 MB 1.52 3.55 1.52 6.07 3.42 0.6 5.02 9.03

4 GB 5.85 16.32 5.85 22.9 16.65 1.9 19.55 56.93

8 GB 11.57 34.82 11.57 47.39 34.47 2.38 37.85 137.98

primitives for the management of containers. On top of it, Kubernetes provides
the infrastructure that groups Fog nodes into a cluster. Kubernetes manages the
resources provided by Docker and GlusterFS.

Kubernetes works as a central authority. This makes the scheduling of the
resources very efficient since containers, being lightweight, are fast to start (gen-
erally less than 5 s).

4 Evaluation

To evaluate the proposed approach we compare the time needed to a create
a new replica with traditional approaches, i.e., physical and logical copy, with
the time required by the proposed approaches, i.e., the hybrid and overlapped
hybrid copy. To obtain reliable results, primary databases of different sizes are
considered to check how the results change as the size of the primary database
grew. Moreover, to mitigate the influence of the network, the tests were repeated
5 times in each configuration, on different days and different times of the day.

Evaluation Setup and Execution. Three nodes were used to simulate the
Fog nodes: two in the same physical location (Zurich - Switzerland) and one
remote (Miami - USA). The nodes in Zurich were local to each other for the
reasons explained in Sect. 3. We chose the location of the third node purposely
at a great distance from the other two, to simulate a geographically distributed
deployment of the Fog nodes, where the connection could be affected by great
variations of performance. The three nodes are hosted in cloud resources and
share similar characteristics: the two nodes in Zurich have 1 single-core CPU
and 4 GB of RAM, while the node in Miami has 1 single-core CPU and 2 GB
of RAM.

In order to produce significant results, OLTP-Bench5 was used to populate
the primary database with sample data. We used this benchmark defined by the
Transaction Processing Performance Council (TPC) [4] as it emulates transac-
tions of real databases mimicking new observations of the sensing layer.

5 https://github.com/oltpbenchmark/oltpbench.

https://github.com/oltpbenchmark/oltpbench
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Results. Table 1 shows the results of the conducted tests. Here, the logical and
physical copy represent, respectively, the upper and lower bound.

Hybrid and overlapped approaches are decomposed in two execution times:

– Logical local: the execution time of the logical copy in the temporary node.
– Physical remote: the execution time of the physical copy from the temporary

machine to the secondary node.

The difference between the observed total time and the time to perform both
the logical local copy and the remote physical one is related to the rescheduling
time needed to bootstrap the third node.

The results clearly highlight that the proposed approaches have a lower exe-
cution time that the classical one (logical copy). Such a difference is up to 73% in
case of a 8 GB database with the overlap method. The tests show that the time
of the traditional approach grows over twice as faster than that of our proposed
approaches. However, the hybrid approaches are advantageous only beyond a
certain size of the database. Indeed, when the database is small, the traditional
approach of the remote logical copy is faster.

5 Related Work

Database replication has been extensively studied in the literature and, as dis-
cussed in this section, there are solutions which inspired the proposed approach
but that also have limitations which hamper their adoption in Fog Computing.

Among these approaches most of them propose a middleware. Since [3] offers
a read-one/write-all approach, its proposed solution requires a lock of the pri-
mary copy, thus reducing the efficiency of the replica creation. The middleware
proposed in [1] is based on a scheduler accepting transactions from users which
will be sent to replicas with a distributed conflict aware approach. Such an app-
roach parses SQL statements while users must declare at each transaction which
tables are being modified. This approach permits to fine tune the amount of
transactions to be sent on each DBMS, however, it does not support polyglot
persistence. MIDDLE-R [9] is a middleware mainly focused on granting consis-
tency among the copies, but it is unable to deal with dynamic environments, as
it only considers systems with a fixed number of nodes. Moreover, it is unable
to recover nodes after they crash, and, when nodes are falsely suspected to have
crashed, they are forced to commit suicide regardless. In [8], authors propose a
middleware to distribute requests based on the locality of the data and, there-
fore, increasing the likelihood of using the cache of the DBMS. However, this
approach is based on static replication and static content, and so it does not
support updates on the replica, but it rather focuses on the distribution of con-
tent. Finally, [7] compares some peer-to-peer solutions, where data storage and
processing are distributed across completely autonomous peers. These solutions
support a write-anywhere approach, and, consequently, they require reconcilia-
tion algorithms to fix the divergences that arise among the replicas. In dynamic
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environments where data is continuously updated, this can drain a lot of com-
putational power from the nodes. Also, most of these solutions are based on a
weak type of replication, known as passive replication, where a piece of data is
specifically replicated only after the user tries to access it.

6 Conclusion

Due to the provided flexibility and scalability, the microservice architectural
style represents a good approach to developing applications according to the
Fog Computing paradigm. Nevertheless, the dynamicity of fog nodes requires a
data management that is able to quickly react to the re-deployments that may
occur to satisfy the quality of service that the applications have to ensure. In
particular, this paper has identified the need for mechanisms able to quickly
create replicas. As the typical physical copy does not provide the proper support
for fog environments and the logical copy is too slow, this paper proposes a hybrid
approach that is able to exploit both the advantages of the classical solutions.
The performed tests demonstrated how the hybrid approach can save up to 70%
of the time usually required to create replicas for an almost 10 GB database.
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Abstract. A major issue that arises when designing data-analysis
pipelines is that of identifying the services (or what we refer to as modules
in this paper) that are suitable for performing data preparation steps,
which represents 80% of the modules that compose data analysis work-
flows. Such modules are ubiquitous and are used to perform, amongst
other things, operations such as record retrieval, format transformation,
data combination to name a few. To assist scientists in the task of dis-
covering suitable modules, we examine, in this paper, a solution that
utilizes semantic annotations describing the inputs and outputs of mod-
ules together with data examples that characterize modules’ behavior as
ingredients for the discovery of data preparation modules. The discovery
strategy that we devised is iterative in that it allows scientists to explore
existing modules by providing feedback on data examples.

1 Introduction

Despite the impressive body of work in data management on data preparation
tasks, it is recognized that there is not a single generic one-shop-stop solution
that can be utilized by the scientists to prepare their data prior their analy-
sis. Instead, data preparation tasks are numerous, can be difficult to generalize
(e.g., data cleansing, data integration), and tends to vary depending on the pro-
cessing tasks at hand, but also on the semantic domains and the format of the
data subject to processing. As a result, scientists tend to develop their own pro-
gram/script using their favorite language, e.g., Python, R or Perl, to prepare
their data. This operation is time-consuming and recurrent since sometimes the
scientist has to redevelop data preparation scripts that s/he has previously per-
formed on the same or similar data.

To overcome the above problem, a number of researchers have been calling
for the creation of repositories dedicated to data preparation modules with the
view to save the time scientists spend on data preparation to allow them to
focus their effort on the analysis tasks. Examples of such repositories are BigGo-
rilla1, an ecosystem for data preparation and integration, Bio.Tools2, a catalogue

1
https://www.biggorilla.org.

2
https://bio.tools.

c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 56–65, 2020.
https://doi.org/10.1007/978-3-030-65310-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65310-1_5&domain=pdf
https://www.biggorilla.org
https://bio.tools
https://doi.org/10.1007/978-3-030-65310-1_5


On Discovering Data Preparation Modules Using Examples 57

which provides access to, amongst other things, services for the preparation of
bioinformatics data, and Galaxy tools3.

In this paper, we set out to examine the problem of querying data prepara-
tion modules. Specifically, the objective is to locate a module that can be perform
a data preparation task at hand, if such a module exists. Semantic annotations
can be used to reach this objective [9]. A module is semantically annotated by
associating it to concepts from ontologies. Different facets of the module can be
described using semantic annotations, e.g., input and output parameters, task and
quality of service (QoS). In practice, however, we observe that most of semantic
annotations that are available are confined to the description of the domain of
input and output parameters of modules. Annotations specifying the behavior of
the module, as to the task it performs, are rarely specified. Indeed, the number of
modules that are semantically described with concepts that describe the behav-
ior of the module lags well behind the number of modules that are semantically
annotated in terms of the domains of the input and output parameters, e.g., in
BioTools. Even when they are available, annotations that describe the behavior
of the module tend to give a general idea of the task that the module implements,
and fall short in describing the specifics of its behavior. For example, the modules
in BioTools, which is a registry that provides information about data preparation
modules, are described using terms such as merging and retrieving. While such
terms provide a rough idea of what a module does, they do not provide the user
with sufficient information to determine if a it is suitable for the data prepara-
tion at hand. The failure in crisply describing the behavior of scientific modules
should not be attributed to the designers of task ontologies. Indeed, designing an
ontology that captures precisely the behavior of modules, without increasing the
difficulty that the human annotators who use such ontologies may face thereby
compromising the usability of the ontology, is challenging.

To overcome this issue, we examine in this paper a solution that utilizes
semantic annotations describing the inputs and outputs of modules together with
data examples that characterize modules’ behavior as ingredients for the discov-
ery of data preparation modules. Given a module m, a data example provides
concrete values of inputs that are consumed by m as well as the corresponding
output values that are delivered as a result. Data examples are constructed by
harvesting the retrospective provenance of modules’ executions. They provide an
intuitive means for users to understand the module behavior: the user does not
need to examine the source code of the module, which is often not available, or
the semantic annotations, which require the user to be familiar with the domain
ontology used for annotation. Moreover, they are amenable to describing the
behavior of a module in a precise, yet concise, manner. It has been shown in [2]
that data examples are an effective means for characterizing and understanding
the behavior of modules. We show in this paper that data examples can also be
used to effectively and efficiently discover modules that are able to perform a
data preparation task of interest.

3
https://galaxyproject.org/tools.

https://galaxyproject.org/tools
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Fig. 1. Data example.

It is worth noting that a number of systems have been developed recently
to facilitate data preparation tasks, including Trifacta4, NADEEF [3], Tamer [8]
and VADA [6]. These systems come with a number of functionalities that cov-
ers, amongst other things, format transformation, data deduplication and data
repair. They are primarily targeted for end-users (be they domain expert or not),
who would like to use a GUI to clean a single tabular dataset (mainly in relational
form or CSV). In our work, we target scientists who wish to programatically pro-
cess one or multiple datasets, in any format (relational, CSV, text, JSON, etc).

The paper is structured as follows. We start by introducing background infor-
mation regarding data examples and how they are generated for characterizing
modules based on retrospective provenance of modules’ executions (in Sect. 2).
We go on to present our solution for module discovery (in Sect. 3), and close the
paper (in Sect. 4).

2 Background

For the purposes of this paper, we define a data-preparation module by the pair:
m = 〈id, name〉, where id is the module identifier and name its name. A module
m is associated with two ordered sets inputs(m) and outputs(m), representing
its input and output parameters, respectively. A parameter p of a module m is
characterized by a structural type, str(i), and a semantic type, sem(i). The for-
mer specifies the structural data type of the parameter, e.g., String or Integer,
whereas the latter specifies the semantic domain of the parameter using a con-
cept, e.g., Protein, that belongs to a domain ontology [5].

A data example δ that is used to describe the behavior a module m can be
defined by a pair: δ = 〈I, O〉, where: I = {〈i, insi〉} and O = {〈o, inso〉}. i (resp.
o) is an input (resp. output) parameter of m, and insi and inso are parameter
values. δ specifies that the invocation of the module m using the instances in I
to feed its input parameters, produces the output values in O. We use in what
follows Δ(m) to denote the set of data examples that are used to describe the
behavior of a module m.

Example 1. To illustrate how data examples can be used to understand a mod-
ule behavior, consider the module GetRecord, which has one input and one out-
put. Figure 1 illustrates an input instance that is consumed by GetRecord and
4
www.trifacta.com.

www.trifacta.com
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Fig. 2. Fragment of the myGrid Ontology.

the corresponding value obtained as a result of the module invocation. By exam-
ining such a data example, a domain expert will be able to understand that the
GetRecord module retrieves the protein record that corresponds to the accession
number given as input.

2.1 Data Example Generation

Enumerating all possible data examples that can be used to describe a given
module may be expensive or impossible since the domains of input and output
parameters can be large or infinite. Moreover, data examples derived in such a
manner may be redundant in the sense that multiple data examples are likely
to describe the same behavior of the module. A solution that can be used is to
create data examples that cover the classes of behavior of the module in question,
and then construct data examples that cover the classes identified. When the
modules are white boxes, then their specification can be utilized to specify the
classes of behavior and generate the data examples that cover each class (see e.g.,
[1]). If, on the other hand, the modules are black boxes and their specification is
not accessible, then a heuristic such as the one described in [2] can be utilized.
To make our paper self-contained, we will describe the solution presented in [2]
for generating data examples. We stress, however, that our approach for module
discovery is not confined to modules described using the approach presented in
[2]. Instead, it can be applied to potentially any module repository where the
modules are described using data examples that are annotated with semantic
domain concepts.

Using the solution proposed in [2], to construct data examples that character-
ize the behavior of a module m, the domain of its input i is divided into partitions,
p1, p2, . . . , pn. The partitioning is performed in a way to cover all classes of behav-
ior of m. For each partition pi, a data example δ is constructed such that the
value of the input parameter in δ belongs to the partition pi. A source of infor-
mation that is used for partitioning is the semantic annotations used to describe
module parameters. Indeed, the input and output parameters of many scientific
modules are annotated using concepts from domain ontologies [7]. In its simple
form, an ontology can be viewed as a hierarchy of concepts. For example, Fig. 2
illustrates a fragment of the myGrid domain ontology used for annotating the
inputs and output parameters of bioinformatics modules [4]. The concepts are
connected together using the subsumption relationship, e.g., ProteinSequence
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is a sub-concept of BiologicalSequence, which we write using the following
notation: ProtSequence � BioSequence. Such a hierarchy of concepts can be
used to partition the domain of parameters.

To generate data examples that characterize the behavior of a module m, m
is probed using input instances from a pool, the instances of which cover the
concepts of the ontology used for annotations. The retrospective provenance
obtained as a result of the module’ executions are then used to construct data
examples. In doing so, only module executions that terminates without issues
(that is without raising any exception) are utilized to construct data examples
for m. For more details on this operation, the reader is referred to [2].

3 Module Discovery

To discover a module, a user can provide data examples that characterize the
module s/he had in mind. However, specifying data examples that characterize
the desired module can be time-consuming, since the user needs to construct the
data examples by hand. We present in this section a method that allows users to
discover modules by simply providing feedback on a list of data examples they
are presented with.

3.1 Feedback-Based Discovery of Scientific Modules

To identify the modules that meet his/her needs, the user starts by specifying
the semantic domains and the structural types of the inputs and outputs of the
modules s/he wishes to locate. The modules with inputs and outputs that are
compatible with the specified semantic domains and structural types are then
located. Consider, for example, that the user is interested in locating a module
that consumes input values that belong to the semantic domain ci and structural
type ti, and produces output values that belong to the semantic domain co and
structural type to. A module m meets such a query if it has an input (resp.
output) with a semantic domain and structural type that are equivalent to or
subsumed by ci and ti (resp. co and to). Specifically, the set of modules that
meet those criteria can be specified by the following set comprehension:

{m s.t. (∃ i ∈ inputs(m), (sem(i) � ci) ∧ (str(i) � ti))
∧ (∃ o ∈ outputs(m), (sem(o) � co) ∧ (str(o) � to))}

It is likely that not all the modules retrieved based on the semantic domain
of input and output parameters perform the task that is expected by the user.
Because of this, we refer to such modules using the term candidate modules.

To identify the candidate module(s) that perform the task expected by the
user, the data examples characterizing candidate modules are displayed to the
user. The user then examines the data examples and specifies the ones that meet
the expectations, and the ones that do not. To do so, the user provides feedback
instances. A feedback instance uf is used to annotate a data example, and can
be defined by the following pair uf = 〈δ, expected〉, where δ denotes the data



On Discovering Data Preparation Modules Using Examples 61

Fig. 3. Data examples and user feedback.

example annotated by the feedback instance uf, and expected is a boolean that
is true if δ is expected, i.e., compatible with the requirements of the user who
supplied uf, and false, if it is unexpected.

3.2 Incremental Ranking of Candidate Modules

The discovery strategy we have just described can be effective when the number
of candidate modules and the number of data examples characterizing each can-
didate are small. If the number of candidate modules to be annotated and/or
the number of data examples used for their characterization are large, then the
user may need to provide a large amount of feedback before locating the desired
module among the candidates. Moreover, there is no guarantee that the set of
candidates is complete in the sense that it contains a module that implements
the behavior that meets user requirements. Therefore, the user may have to
annotate a (possibly) large number of data examples only to find out that none
of the candidates meet the requirements. Because of the above limitations, we
set out to develop a second discovery strategy with the following properties:

1. Ranking candidate modules: Instead of simply labeling candidate modules
as suitable or not to user requirements, they are ranked based on metrics
that are estimated given the feedback supplied by the user, to measure their
fitness to requirements. In the absence of candidates that meet the exact
requirements of users, ranking allows the user to identify the modules that
best meet the requirements among the candidate modules.

2. Incrementality: The user does not have to provide feedback annotating
every data example characterizing the candidate modules before being pre-
sented with the modules that best meet the requirements. Instead, given
feedback supplied by the user to annotate a subset of the data examples, the
candidate modules are ranked and the obtained list of candidates is shown to
the user. The list of candidates is incrementally revisited as more feedback
instances are supplied by the user.

3. Learning feedback: To reduce the cost in terms of the amount of feed-
back that the user needs to provide to locate suitable modules, new feed-
back instances annotating data examples that the user did not examine are
inferred based on existing feedback that the user supplied to annotate other
data examples.
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Ranking Candidate Modules. To be able to rank candidate modules, we
adapt the notions of precision and recall [10] that are used in information
retrieval, to estimate the fitness of a module to user requirements based on
the feedback supplied by the user. Consider that the user provided the feedback
instances UF to annotate some (not necessarily all) data examples that charac-
terize the candidate modules. We define the precision of a candidate module,
m, relative to the feedback instances in UF as the ratio of the number of true
positives of m given UF to the sum of true positives and false positives of m given
the feedback instances in UF. That is:

precision(m, UF) =
|tp(m, UF)|

|tp(m, UF) + fp(m, UF)|
where tp(m, UF) (resp. fp(m, UF)) is the set of data examples describing the
module m, and that are annotated as expected (resp. unexpected) by feedback
instances in UF, i.e:

tp(m, UF) = {δ ∈ Δ(m) s.t. 〈δ, true〉 ∈ UF}
fp(m, UF) = {δ ∈ Δ(m) s.t. 〈δ, false〉 ∈ UF}

Ranking based on precision only may not be enough: a module may be asso-
ciated with the maximum precision of 1, i.e., all its data examples are true
positives, and yet it may not implement all the classes of behavior expected by
the user. Recall can be used to identify such modules. The recall of a module m
relative to the feedback instances in UF can be defined as the ratio of the number
of true positives of m given UF to the sum of true positives and false negatives of
m given the feedback instances in UF. That is:

recall(m, UF) =
|tp(m, UF)|

|tp(m, UF) + fn(m, UF)|
where fn(m, UF) denotes the false negatives of m given the feedback instances in
UF. To illustrate what we mean by a false negative data example, consider δ′ a
data example that is the user annotated as expected. δ′ is a false negative for
the module m if when invoked using the input values specified by nδ′, the module
m returns output values that are different from the output values specified by δ′.

fn(m, UF) = {δ s.t., < δ, true > ∈ UF ∧ not match(invocation(m, δ.I).O, δ.O)}
where invocation(m, δ.I).O denotes the output values delivered by the module
m when it is invoked using the input values specified by the data example δ.

match(invocation(m, δ.I).O, δ.O) is a boolean that is true if the output values
delivered by the invocation of the module m are the same as the output values
specified by the data example δ.

To rank candidate modules, we use the F-score, which combines precision
and recall using the harmonic mean as illustrated below. The module associated
with the highest F-measure is the candidate that best meets user requirements
given the feedback instances in UF.

F(m, UF) =
2 × precision(m, UF) × recall(m, UF)

precision(m, UF) + recall(m, UF)
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Learning Feedback. Notice that the method for identifying false negatives of
candidate modules that we have just described can be computationally expen-
sive. In particular, every candidate module m may need to be invoked using
all data examples that are not used to characterize m and that are labeled as
expected by the user, i.e., the data examples in expected(UF) − tp(m, UF).

To overcome the above problem, we adopt an approach that not only
reduces the number of times a candidate module needs to be invoked (using
known expected data examples) to identify false negatives, but also allows
learning new feedback instances that the user would give on unannotated
data examples based on existing feedback instances. To illustrate the approach
we adopt for this purpose, consider the candidate module getAccession and
getAccessionOfSimilarProtein (see Fig. 3). These two modules consume a
protein name and output a protein accession, and are characterized by one
data example each because the concepts ProteinName and ProteinAccession
are leaf nodes in the ontology used for annotation. The feedback supplied
by the user to annotate the data examples δ1 and δ2 illustrated in Fig. 3
shows that δ1 is expected and δ2 is unexpected. Therefore, δ1 is a true pos-
itive for the module getAccession, and δ2 is a false positive for the module
getAccessionOfSimilarProtein. Now, to know whether δ1 is a false nega-
tive for the module getAccessionOfSimilarProtein, we will need to invoke
getAccessionOfSimilarProtein using the input value specified in δ1, i.e.,
Chorion protein S36.

Intuition Behind Feedback Learning. Using the solution that we adopt, we do not
need to invoke getAccessionOfSimilarProtein. To do so, we slightly modify
the process by which data examples are constructed to cover the partitions of
input parameters presented in [2] and overviewed in Sect. 2.1. Specifically, when
selecting input values for data examples to cover a given partition, i.e., semantic
domain, c, the same input value v (in c) is used in all those data examples.
For example, using this method, the data examples used to characterize the
two modules getAccession and getAccessionOfSimilarProtein will have the
same input value. Figure 4 illustrates the data examples δ1 and δ3 specified using
this method to characterize such modules.

Consider that the user supplies the feedback instance annotating the
data example δ1 as expected (see Fig. 4). Given this feedback instance, we
do not have to invoke the module getAccessionOfSimilarProtein using
the input value specified in δ1 to know if δ1 is a false negative for
getAccessionOfSimilarProtein. Indeed, the data example δ3 shows that the
output produced by getAccessionOfSimilarProtein using the same input
value as that used in δ1. Given that the output values of δ1 and δ3 are dif-
ferent, we can make the following inferences: i) δ1 is a false negative for
getAccessionOfSimilarProtein, moreover, ii) δ3 is unexpected, and is, there-
fore, a false positive for getAccessionOfSimilarProtein. This last inference
can be made because the modules that we consider are deterministic. Therefore,
the fact that δ1 is expected implies that δ3 is unexpected. Note that if δ3 had
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Fig. 4. Example illustrating feedback inference.

the same output value as δ1, then we would have inferred that δ3 is expected
and is, therefore, a true positive for getAccessionForSimilarProtein.

4 Concluding Remarks

To assess the performance of the discovery strategy described in the previous
section, we ran an experiment to identify the amount of feedback required to
detect the modules that are relevant to users’ needs. We also examined the
error in the F-score estimates computed for candidate modules based on user
feedback. To perform a systematic sweep of the parameters of the experiment, we
use a synthetic dataset that we created for this purpose. We also used real-world
bioinformatic modules.

The result of this experiment showed that users can effectively discover sci-
entific modules using a small number of feedback instances. A particularly inter-
esting result that we empirically showed is that the number of feedback instances
that the user needs to provide to identify the module that meets the require-
ment, and more generally a ranking that meets his/her expectations, is small
even in the cases where the number of data examples describing the behavior of
the modules is large.
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Abstract. To enhance the intelligence of IoT devices, offloading suffi-
cient learning and inferencing down to the edge environment is promising.
However, there are two main challenges for applying the cloud generated
model in the edge environment. On the one hand, the input may vary
on dimensions or cover different situations that the cloud hasn’t met.
On the other hand, the model’s output might not satisfy the given user’s
personalized preference. To make full use of the cloud generated model in
the edge environment for accelerating personalized service provision, we
propose cloud-aided edge learning. Unlike current federated learning and
transfer learning, we focus on knowledge fusion in edge decision making
and try to build the supplement/correction model. We take the person-
alized service provision in a smart lighting system as an example, design
and implement the related deep reinforcement learning model, and take
experiments based on the data generated on the open software DAILux
to show our approach’s effectiveness and performance.

Keywords: Edge intelligence · Edge-cloud collaborated learning ·
Personalized service provision · Smart lighting · Deep Reinforcement
Learning (DRL)

1 Introduction

The Internet of Things (IoT) [3,20] enables all kinds of real-world objects (includ-
ing human beings) to be connected to the cyber world. Considering the char-
acteristics of human-in-the-loop, providing personalized IoT services efficiently
and transparently turns to be essential. Recently, applying machine learning to
speed up personalization becomes a promising way[22,36], which can extract
useful knowledge from interactions happening in the physical world to produce
proper reactions.

To process the continuously generated IoT data efficiently, it needs a pow-
erful data center with enough storage and computing resources. Although cloud
computing is an excellent platform to handle the enormous IoT data, push-
ing all the raw data to the cloud is inefficient in response latency, network
c© Springer Nature Switzerland AG 2020
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bandwidth cost, and possible privacy concerns [8,23]. To solve these problems,
edge computing [28], also known as fog computing [4], is becoming the right solu-
tion and get more attention in both research and industry domain. By offloading
sufficient training and inferencing down to the edge environment, edge intelli-
gence would be enhanced to satisfy users’ personalized needs more efficiently
while protecting privacy [19,27,32,37]. Combining both cloud computing and
edge computing advantages to offer flexible edge-cloud collaboration gets more
attention [5,27,36].

Existing studies usually focus on the underlying mechanisms of edge-cloud
collaboration. However, there are more challenges to accelerate personalized ser-
vice provision through deep learning. For example, data achieved by the edge
node might be different from the generic dataset used to generate the global
model. It does not only refer to the differences in input dimensions but also
other situations occurring in the edge environment. Besides, different preferences
among edge nodes may cause conflicts during knowledge fusing [17,24].

To solve the above problems, we focus on reducing the edge computation
cost as much as possible by making full use of the global model and only learn
to deal with the inapplicable parts. Since the successful application of Deep
Reinforcement Learning (DRL) [6,9,16,30] in playing Atari and Go games, we
adopt DRL to realize efficient online learning. Taking the example of offering
comfortable, personalized illumination in a smart lighting system, we designed
and implemented the corresponding algorithms, generated data based on an
open software platform, DIALux, and tested our approaches’ effect. The main
contributions of this paper are as follows.

– We propose a cloud-aided edge reinforcement learning framework that sup-
ports downloading the global consensus model from the cloud center and fuses
it into the edge learning process.

– To enhance the efficiency and effect by applying the downloaded pre-trained
model, we put forward two integration strategies, i.e., input expansion strat-
egy and output correction strategy.

– We conduct a case study on smart lighting as an example and present the
proposed approach’s effects.

2 Background and Related Work

2.1 Edge-Cloud Collaboration

Among most current studies, virtualizing the resources and services over WAN
networks is the shared premises to combine cloud computing and edge comput-
ing. Researches such as Pcloud [11], CoTware [1], FocusStack [2], etc. emphasize
to virtualize resources of individual devices, edge nodes and cloud to build a dis-
tributed resource pool for supporting resource-limited front-end devices. While,
SpanEdge [26], CloudPath [21], ECHO [25], etc. focus on the data stream pro-
cessing across different layers seamlessly.
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These works establish an elastic data analysis environment. However, most
of them pay attention to leveraging resources on higher layers along the path
from front-end devices to cloud with fewer considerations on how these analy-
sis results will reflect behaviors provided on the front layers. Moreover, as pre-
sented in several works [28,29,34], most existing studies lack information sharing
among multiple stakeholders, while the sharing may help these edge nodes to
make smarter decisions. Thus, it is still challenging to support more diversified,
personalized, and delay-sensitive system behaviors in the edge environment.

2.2 Schemes for Edge-Cloud Collaborated Model Training

At present, research on improving computing power and effects based on edge-
cloud collaboration is still in its early stages [34]. There are three primary
schemes for edge-cloud collaborated training models.

1) Gradient sharing: Reduce the transmission size of a single model by compress-
ing the gradient, so that the model update results are transmitted frequently
and multiple times to make up for the lack of computing power of edge nodes
[10,12]. The training effect in the network is independent of the same and dis-
tributed data. As a result, the sharing effect of multi-edges in heterogeneous
networks with different data sets cannot be guaranteed.

2) Parameter sharing: The edge side conducts preliminary training of the model
and transmits the parameters to the parameter server. The parameter aggre-
gation method in the cloud improves the accuracy of the edge side model
[15,18]. This scheme can reduce the transmission volume. It also protects the
privacy and improves model accuracy, but in scenarios with high personaliza-
tion requirements, parameter aggregation still has challenges.

3) Data sharing: When it is necessary to collect the original data and perform
parameter aggregation or train directly on the parameter server, noise can
be added to the data on the edge side or privacy leakage can be reduced
by preprocessing [35]. Simultaneously, there are some methods to study how
to enhance the processing capabilities of edge nodes through algorithms or
model hardware [14,31].

Existing work focuses more on improving the efficiency of data analysis and
model training and protecting privacy. However, the issue of how to improve the
personalized intelligence at the edge through the edge-cloud collaboration still
needs further studies.

2.3 Fast Personalization by Federated Reinforcement Learning

Personalization aims to understand user behavior and adapting to it, which is cru-
cial for gaming, personal assistants, dialogue managers, etc. It is often time con-
suming, so a critical challenge of personalization is how to adapt to a new situ-
ation quickly. To make robots quickly adapt to the new environment by sharing
their experiences, Liu et al. [17] proposed the Lifelong Federated Reinforcement
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Learning (LFRL) architecture. Each robot learns to avoid some new types of
obstacles in the new environment through reinforcement learning. After obtain-
ing a private Q-network model, the robot will upgrade this model by fusing with
models submitted by other robots through federated learning. This work assumed
all agents make the same decision when they meet the same type of obstacle. How-
ever, different agents might prefer to make other decisions to adapt to their cur-
rent behavior. Zhou et al. [38] proposed a similar federated reinforcement learn-
ing framework by building a Multilayer Perception (MLP) to compute a global
Q-network output with all Q-network results. It also doesn’t consider to enable
agents to make personalized decisions.

Nadiger et al. [22] pay attention to personalization in the context of gaming.
They propose an overall architecture, including the grouping policy, the learning
policy, and the federation policy. By putting forward the grouping policy, this
approach can avoid the risk of adding irrelevant samples, which may increase
the personalization time while guaranteeing the model quality. Unlike the above
works, this approach solves the problem resulting from conflict samples by only
allowing similar agents to share data samples. However, as reinforcement learning
is a typical online learning algorithm, considering the latency of generating a new
shared model, directly updating the private model weights might overwrite some
new knowledge learned during the shared model updating.

To solve these problems, we propose cloud-aided edge learning to fuse shared
knowledge gained at the cloud to the edge. Unlike existing studies, we try to
avoid training the whole shared model by only focusing on different situations
to reduce edge computation as much as possible.

3 System Model for Cloud-Aided Edge Reinforcement
Learning

3.1 Basic Ideas of the Cloud-Aided Edge Reinforcement Learning

To provide satisfactory personalized services, it requires capturing users’ per-
sonalized explicit or implicit requirements by self-learning. Besides, considering
the influences from the external environment and the users’ changing prefer-
ences, the system should be able to adapt to these new situations to provide
better services. We propose a hybrid framework focusing on how to realize and
improve the self-learning and adaptive ability of an edge system. Figure 1 shows
the proposed edge-cloud collaborative framework.

We focus on two key aspects to achieve smarter automation, learning, and
adaptation.

1) How to share knowledge among different edge nodes with cloud assistance:
Single edge environments always face the data sparsity problem. For exam-
ple, lack of various states of weather, season, and system deployment. It is
necessary to share knowledge among different edge systems, which will enable
an edge system to make more smart decisions by taking advantage of the sit-
uations shared by others that haven’t already appeared but might happen in
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Fig. 1. The overview of collaboration for learning and adaptation in smart home sys-
tems between the edge node and the cloud.

the future. The offline learning part in Fig. 1 is in charge of sharing knowledge
among different edge nodes by parameter sharing.

2) How to utilize the historical experiences/knowledge generated on cloud in
making real-time decisions on edge nodes efficiently: Learning performed on
cloud is based on the historical data. Therefore, the resulting knowledge usu-
ally reflects past situations that may be outdated in current states. An appro-
priate mechanism is needed to integrate such historical experiences with fast
rules of the local environment to improve the accuracy of reactions gener-
ated by an edge decision-maker. The online learning part in Fig. 1 aims to
enhance real-time decision making by applying consensus achieved through
offline learning on the cloud.

3.2 Knowledge Fusion Strategies on Edge Nodes

As mentioned above, data achieved by the edge node might be different from the
generic dataset used to generate the pre-trained model, including differences in
either input dimensions or situations occurring in the edge environment. Besides,
different preferences among edge nodes may also be different from each other. To
cope with such various problems, we propose two knowledge fusion strategies to
accelerate edge personalized decision making, i.e., input expansion and output
correction.

The Input Expansion Strategy. As the global model and the local model
are trained based on different data samples, there may be some special states
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emerging in the edge environment that have not met by the cloud. In this case,
the global consensus model only captures part of the knowledge about the edge
environment. To complement the model to provide more accurate decisions, we
propose the input expansion strategy shown in Fig. 2. As shown in Fig. 2, the
current state will be sent to both the global consensus model and the local
private model as input. Then, the decision-maker will produce the final action
by integrating outputs of both the two models. Such fusing can be realized as
follows.

Fig. 2. The input expansion strategy.

H(x) =
N∑

i=1

wi ∗ hi(x) (1)

where, wi is the weight of the output hi(x), and N is the total number of models
participate in fusing.

Under the edge-cloud collaboration framework, both the global and the local
model might have some information not learned by the counterpart model. So
the setting of weights needs to balance the advantages of both parties. Assuming
that the accuracy of both parties is the same, the weights of the two are the same,
and the advantages of both parties can be guaranteed to be balanced. While, if
they have different degrees of accuracy, it is necessary to ensure that the model
with higher accuracy has a higher weight. For reinforcement-learning, we define
accuracy as the proportion of decisions resulted in a reward greater than zero
in all decisions. With this in mind, we define the following equation to compute
the weight wi based on the corresponding accuracy Acci.

wi =
Acci∑N
i=1 Acci

(2)

Considering the simplest situation that there are only one global model and one
local model, the value of N is 2.

On this basis, suppose the accuracy of the private model is Accedge, and the
accuracy of the global model is Acccloud. The corresponding model output value
formula is
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H(x) =
Accedge

Accedge + Acccloud
∗ hedge(x)

+
Acccloud

Accedge + Acccloud
∗ hcloud(x)

(3)

Initially, the edge model has just started training and is still in the process
of exploration. At this time, the accuracy of the local model should be set to
0 while the weight of the cloud model should be set to 1. After training for a
while, as the accuracy of the edge model improves, its weight, i.e. the value of
Accedge/(Accedge + Acccloud) will gradually increase.

The Output Correction Strategy. Because the global consensus model is
achieved by integrating, it contains user consensus with similar characteristics.
However, when the model is delivered to a given edge environment, it may not
be able to meet the preference of a specific user. To satisfy users’ personalized
usage habits and requirements, we need to modify the output of the global model
properly. To this end, we take the output of the global model as an additional
input in training the local personalized model, as shown in Fig. 3.

Fig. 3. The output correction strategy.

The corresponding algorithm is shown in Algorithm 1, which both accelerates
the training of the local model but also improves the effectiveness of the decision
making. Here, we only consider revising the final decision generated by the global
model.

4 Reinforcement Learning for Providing Personalized
Illuminance in Smart Lighting

Lighting plays a significant role in our daily lives. Generally, lighting includes the
use of both natural illumination in the form of daylight and electric illumination
provided by various light sources. Together with the flourishing of IoT, a new
generation of LED lighting systems are emerging, i.e., LED-based intelligent
lighting systems where LEDs are integrated with sensors and actuators to have
intelligence. For example, Philips Hue is a wireless lighting product, which can
cooperate with a range of smart devices such as Amazon Echo, Apple HomeKit,
Google Home, etc. to provide a convenient and comfortable way for occupants
to control and experience light.
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Algorithm 1. Collaborative algorithm by adjusting cloud model’s output.
Require:

The environment state, S =< Bright1, Bright2, Distance, T ime >;
User’s operation on the light, Icontrol

The globel model, Model1
Ensure:

The adjustment action to the light, Action;
1: Set the training episode to n;
2: for i = 1 to n do
3: Achieve the initial state S;
4: Set the max adjustment time to m;
5: for j = 1 to m do
6: Input S to Model1 and get the output o1;
7: Combine S and o1 to a new state S−;
8: Input the state S− into the local model Model2. Train the model and get the

output Action;
9: Perform the generated Action;

10: Achieve the next state S
′
;

11: Achieve use’s operation Icontrol;
12: Compute the Reward based on Icontrol;
13: Perform related iterative formula or loss function to optimize Model2.
14: Update the state to the next iteration, S = S

′
;

15: end for
16: end for

To enhance the quality of user experience, light control strategies need to be
more flexible and automatic. Thus, AI and data-mining technologies are widely
adopted to seek useful information on resident behavior and the state of the envi-
ronment for generating satisfactory reactions [7,13,24,33]. These approaches are
usually storing and analyzing the continuous human-system interactions during
the non-stop system running. Considering the successful application of DRL, we
adopt DRL to realize personalized illuminance setting.

According to the definition of reinforcement learning, we use a quadruple
< S,A, P,R > to represent a reinforcement learning model, where S represents
an environmental state, A represents an action, P represents a state transition
probability, and R represents a reward value.

In reinforcement learning, the state comes from the agent’s observation of
the environment. We suppose there are four sensors around a light, which are
two light sensors, one ultrasonic sensor, and one infrared sensor. Generally, the
infrared sensor is usually used to determine whether there is a person or not
to turn on or turn off the light. Thus, we only use the other three sensors
to construct the current state. Specifically, we define the state as a 4-tuple
< Bfeeling,Bnature,Distance, T ime >. We get the synthesized brightness (i.e.,
Blight) and natural light (i.e., Bnature) by the two light sensors. The distance
data (i.e., Distance) is obtained by the ultrasonic sensor and the Time is when
constructing the state values.
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For an LED, the action represents the adjustment of the lamp output by
the model. For simplicity, we only consider the brightness in this paper. There
should be two kinds of actions. One is a determined value of brightness or a
predefined gear. The other is one of the operations up, down, and hold.

Reinforcement learning needs to construct reward functions for training the
model. To achieve higher user satisfaction, we define the reward function as
follows.

r = α ∗ Rpositive +
∑

γi ∗ Rpositive + Icontrol ∗ Rnegative (4)

When the user moved to another place or the sunlight intensity changed, the
algorithm should generate a proper illuminance and set the light accordingly.
Whether the user adjusts the light manually after running the automated setting
is used as the feedback for training a DQN. In the above equation, Rnegative is the
negative feedback, which is collected if the user adjusts the light manually after
an automated adaptation. In other words, the algorithm didn’t find a satisfactory
brightness for the user. Similarly, if the user didn’t take any action after an
automated adaptation, it means the algorithm meets users expect. α is the times
that there is no user adjustment during an episode. γ is the reward decay rate
to decrease the reward if there is no manual adjustment. i is the continuous
times without manual adjustment in an episode, and Icontrol is the number of
manually adaptions.

5 Experiments

5.1 Dataset

We use the open software DIALux to generate a dataset for simulating the
training and decision making procedure. DIALux is a lighting design software,
which is a useful lighting calculation software. It can use all the lamps and
lanterns provided by the lamp manufacturers and add sunlight to the scene
according to actual calculation requirements. We set a 5.4 m * 3.6 m room in
DIALux with a window, a variable power lamp placed on a table in the center
of the room, as shown in Fig. 4. The light is 1.8 m away from the window and
0.85 m away from the ground. Taking the height of 0.85 m above the ground
as the daily working plane, people can obtain the light intensity of each point
on the working plane under different power under the influence of the current
sunlight.

When we set the present time is 8 am, Fig. 5 shows the brightness in the room.
The red point is the position of the light, and the blue line at the bottom is the
window’s position. We can find that light intensity around the lamp is about
300 lux, while the light intensity near the window is about 1367 lux. Different
conditions of the room can be obtained by adjusting the power of the table
lamp and the sunlight. Based on this basic dataset, we generate sequences to
simulate interaction procedures between different users and lamps under various
environments.
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Fig. 4. Data collection environment
setting in DAILux.

Fig. 5. Brightness value in the room.
(Color figure online)

5.2 Experimental Setup

To verify the effectiveness and performance of the proposed approach, we build
a three-layer neural network, an input layer, a fully connected layer and an
output layer, in which four neuron activation functions are set to Relu in the
input and the fully connected layer. Three neurons are set in the output layer,
and the activation function is linear. The distance, current sunlight intensity,
and current table light intensity are used as input of the neural network. The
three output values represent increasing the lamp power, decreasing the lamp
power, and keeping the power unchanged. The lamp power is adjusted through
the decision output of the neural network.

We ran the experiments on a PC with an Intel Core i7-7700HQ and 16G
RAM. DQN, the algorithm of the input expansion strategy, and the algorithm
of output correction strategy were used for experiments. Each algorithm trained
50 episodes, and each episode carried out 600 network interactions with humans.
It is known that people work in comfortable environments with an illumination
of about 300 lux. If the comprehensive illumination near the lamp does not reach
290 lux or more than 320 lux, the network will receive a negative reward of −1.
Otherwise, it will receive a positive reward of 1. Adjust the network through the
reward value obtained, and the upper limit of the positive reward obtained is
600. Initially, we apply the same network to train both the global model and the
local private model.

5.3 Experimental Results

Lab1: Comparison on Working in the Same Environment. First, we
compared the rewards of the proposed two strategies and a pure DQN model.
In this experiment, we train a DQN model as the global model and then fuse it
with a new private model which is start training from scratch. The results are
shown in Fig. 6.
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We can find that using these three algorithms all quickly obtain a higher
reward value. However, the reward value obtained by using pure DQN and train-
ing 50 episodes alone does not exceed 400. It means there are still some wrong
decisions in these episodes, which result in a low reward. To get a higher reward,
we need more episodes to train the model. On the contrary, both the input expan-
sion strategy and output correction strategy can get a high reward in a short
episode. The output correction strategy is better than the input expansion strat-
egy from the perspective of speed and stability. It’s because the global model is
achieved in the same environment as the private model. Thus, the global model
output can reach high rewards in most of the cases in the edge environment.
However, as initialization of the local model in the input expansion strategy
might bring more influences.

Lab2: Comparison on Satisfying Different Preferences. To compare the
performance of the two proposed knowledge fusion strategies, we first train the
global model with a target brightness between 290–320lux. At the same time,
the user in the local environment prefers the illumination between 350–380lux.
The results are shown in Fig. 7. From the results, we can see both strategies can
get a high reward quickly compared with using pure DQN, as shown in Fig. 6,
even though the global model is trained to get a different target brightness.

Lab3: Comparison on Training in Different Environments. To test the
performance for fusing models trained in a different environment, we train a
global model in the environment of around 8 am. Then, we try to fuse this
model by the proposed two fusion strategies to adapt to the environment of 8
pm. Figure 8 shows the accordingly results. It can be seen from the experimental
results that using the global model to perform auxiliary training on edge, both
the two strategies can achieve perfect results. In the output correction strategy,
the edge node needs to be adjusted briefly to adapt to the current night envi-
ronment. However, the input expansion strategy can get a higher reward in the
initial states.

5.4 Quantitative Comparison of the Performance of Different
Algorithms

We set the condition that if the algorithm gets a reward which greater than
450 within five consecutive episodes, it is stable enough to adapt to the environ-
ment. Then, by running the above experiments, we collect the time cost, average
training time, and memory size, as shown in Table 1.
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We can clearly find that the average iterations of only using DQN, which
is nearly ten times using either of the proposed strategies. In the latter two
groups of experiments, we can see the output correction strategy requires less
time than the input expansion strategy. While, from the perspective of memory
occupation, our strategies need a little more memory than only using DQN as
we need to load the global model.

(a) Pure DQN (b) Output Correction (c) Input Expansion

Fig. 6. Rewards comparison for applying models trained in the same environment.

(a) Output Correction (b) Input Expansion

Fig. 7. Rewards comparison for applying models trained for satisfying different pref-
erences.
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(a) Output Correction (b) Input Expansion

Fig. 8. Rewards comparison for applying models trained in different environments.

Table 1. Quantitative comparison of performance of different algorithms.

Experiment Strategy Average
iterations

Time for
training

Memory
occupation

Lab 1 DQN 186 6 m10 s 0.2281 GB

Output correction 10 28 s 0.2301 GB

Input expansion 24 1 m19 s 0.2296 GB

Lab 2 Output correction 19 56 s 0.2303 GB

Input expansion 24 1 m13 s 0.2303 GB

Lab 2 Output correction 14 41 s 0.2310 GB

Input expansion 14 52 s 0.2307 GB

6 Conclusion

In this paper, we propose a cloud-aided edge reinforcement learning framework
and introduce two edge knowledge fusion strategies. As shown in the experi-
ments, the proposed approach can accelerate personalized service provision while
do not increase the memory occupation obviously. We present a case study on
applying the method in providing personalized illuminance services. The pro-
posed framework and strategies are also suitable for other applications. In our
future work, we will focus on identifying and describing the features of different
edge environments, which would better enhance the inference accuracy.
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Abstract. The blockchain technology has recently proved to be an effi-
cient solution for guaranteeing the security of data transactions in data
trading scenarios. The benefits of the blockchain in this domain have been
shown to span over several crucial security and privacy aspects such as
verifying the identities of data providers, detecting and preventing mali-
cious data consumers, and regulating the trust relationships between
the data trading parties. However, the cost and economic aspects of
using this solution such as the pricing of mining process have not been
addressed yet. In fact, using the blockchain entails high operational costs
and puts both the data providers and miners in a continuous dilemma
between delivering high-quality security services and adding supplemen-
tary costs. In addition, the mining leader requires an efficient mecha-
nism to select the tasks from the mining pool and determine the needed
computational resources for each particular task in order to maximize
its payoff. Motivated by these two points, we propose in this paper a
novel game theoretical model based on the two-sided market approach
that exhibits a mix of cooperative and competitive strategies between
the (blockchain) miners and data providers. The game helps both the
data providers and miners determine the monetary reward and compu-
tational resources respectively. Simulations conducted on a real-world
dataset show promising potential of the proposed solution in terms of
achieving total surpluses for all involved parties, i.e., data providers,
data consumers and miners.

Keywords: Game-based trading · Big data · IoT · Blockchain ·
Two-sided market

1 Introduction

Blockchain technology has lately emerged as a revolutionary paradigm for
addressing the challenges of finding trustworthy third-parties and guaranteeing
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the privacy and security of data trading transactaions in critical domains such
as Internet of Things (IoT), data analytics, mobile crowd-sensing, and machine
learning. Interestingly, recent statistics estimate that the data contained in the
blockchain ledger is expected to worth up to 20% of the global big data market
and to generate up to 100 billion in annual income to the data market that
already hit $203 billion dollar of revenue at the end of 2019 [6,9]. In the con-
text of data trading using blockchain, three players are to be considered: miners,
data providers and data consumers. Miners are responsible for supervising and
regulating the execution of what is known as smart contracts. A Smart contract
is a self-executing computer program that states and organizes the agreed terms
of a certain data transaction such as the desired quality of service clauses and
secure payment mechanism between the data providers and data consumers.
Processing smart contacts by miners entails high (mining) operational costs and
processing time, which might negatively affect the execution time of real-time
and delay-critical applications such as IoT and data analytics. In the literature,
there is lack of attention on the business model that would enable data trading
over blockchain where the main stream research in the general context of data
focuses on developing mechanisms of data resource management such as [14–
16]. Several challenging issues are yet to be addressed, in particular, assigning
optimal amount of computational units to the mining tasks, sustaining optimal
payoffs to involved players and serving data requests on time. In this work, our
objective is to provide a novel contribution to the data trading over blockchain
through proposing a game-theoretic-based business model that helps regulate
the secure data trading of IoT and big data analytics services. In particular, we
aim to address the following two substantial research challenges: 1) how should
the blockchain node distribute the computational resources of the mining pro-
cess among the data providers in such a way to maximize its payoff; and 2) how
should the data providers decide on the optimal monetary reward that needs to
be given to the miners versus their service in such a way to guarantee optimal
execution time of their transactions while avoiding over-payments.

1.1 Motivating Example

We provide in Fig. 1 a motivating example to better clarify the research gap
in the literature and highlight the need of our solution. As explained in the
figure, data consumers request to run real-time data analytics on an edge IoT
server. Following the blockchain technology, the request is deployed as a smart
contract which includes clauses that regulate the relationships between the data
consumers and the edge IoT server in terms of data quality, data size and pro-
cessing speed. The execution of the smart contract is supervised and executed
by the blockchain node, which manages the mining process and the mining com-
putational units. Smart contracts vary in their terms, and hence they differ in
their executions in terms of execution time and required resources. For instance,
in Fig. 1, the hospital server is exposed to more privacy threatens as it stores
patients data, which requires more computational units from the blockchain node
to authenticate only trusted consumers. This creates the need for a distributing
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mechanism that determines the optimal amount of resources for each smart con-
tract. However, the absence of such a mechanism might assign more resources
to less profitable contracts.

Fig. 1. Motivating scenario: run real time data analytics procedures on Edge IoT server
using the blockchain technology.

1.2 Related Work and Problem Statement

The state-of-the-art proposals focus on deploying verification approaches into
the blockchain technology in order to tackle the privacy and security issues such
as preserving the anonymity of the data providers, and preventing imperson-
ation attacks and colluding miners. For instance, the approaches proposed in
[18,22] leverage the blockchain technology to address the problem of user loca-
tion impersonation and re-identification attacks respectively in a crowd-sensing
context. The approaches proposed in [8,11] aim to increase the engagement of the
crowd system participants through capitalizing on the anonymous and reliable
interaction features provided by the blockchain technology.
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The proposals [10,13,19,20] propose game theoretical foundations in the con-
text of mobile blockchain supported by edge computing services. The interactions
between miners and edge computing nodes are modeled using Stackelberg games
and auctions to derive an optimal price for the proof-of-work for offloading allo-
cation tasks. The main limitation of such games is that they result in putting
the miners into an aggressive competition situation between each other from one
side, and with the edge computing services from the other side. This leads to
less efficient outcomes in terms of total surpluses for all these parties. In [21], the
authors propose to deploy blockchain for big data sharing in a collaborative edge
environment. Similar works have also been proposed in [12,23]. The aforemen-
tioned proposals, and the state-of-the-art in general suffer from several problems.
In fact, they 1) do not explain how the mining resources should be distributed
over the existing smart contracts and miners; 2) do not provide any mechanism
to derive the optimal payment that should be given by data providers to min-
ers); and/or 3) propose pricing schemes for the mining process based on pure
competitive games, which entails an aggressive competition among the involved
parties and results in lower payoffs for them.

1.3 Contribution

To address the aforementioned issues, we extend the work in [3,4] by proposing
a novel double two-sided game that models the interactions among the involved
parties (i.e., blockchain node, data providers and data consumers) using the two-
sided market theory [17]. In the proposed game, as shown in Fig. 2, both the data
providers and blockchain node act as a two-sided platform that gets on board
two market sides. Specifically, the blockchain node intermediates the interactions
between the data providers and data consumers, while the data providers inter-
mediate the interactions between the blockchain node and data consumers. As
shown in the figure, the data providers either 1) subsidize the blockchain node
by a higher portion of revenue to motivate it to supply more mining computa-
tional units, which results in attracting more data consumers and increasing the
revenue; or 2) subsidize the data consumers by more data computational units,
which increases the consumers’ demand and hence contributes in attracting the
blockchain node. Similar strategies are set up to the blockchain node as shown
in Fig. 2b. The proposed game combines both strategies as two separate games.
The solution of the games helps derive the equilibrium in terms of shared revenue
among the blockchain node and data providers and amount of mining resources
that each smart contract should be assigned with.
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Data provider as two-sided market Blockchain as two-sided market

Fig. 2. Proposed model: a double two-sided market game

2 Proposed Model for Secure Trading of Data

2.1 Model Description: A Double Two-Sided Game Formulation

Fig. 3. Double two-sided game

The proposed secure data trading model, depicted in Fig. 3, consists of three
entities: Data Service Consumers (SC), Big Data Service Providers (SP ) and
Blockchain node (BC) that consists of a network of miners. In our solution, a
certain big data service provider SPi receives a monetary value of Pi per a data
service consumer’s access to its services. The service provider SPi provides both
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the data and computing resources that are required to execute the data analytics
duties of the data consumers. The interactions between data providers and data
consumers include negotiating the data type, quality of provided services, pay-
ments, and all the associated terms of delivered data services. The blockchain
node BC is in charge of executing the transactions of smart contracts in order
to append a correct block into the blockchain. Executing smart contracts will
also ensure the sustainability of consumers’ access security, verification of the
identities of the data providers and consumers, protection of the privacy of data
providers and enforcement of quality control of data services. In our model, the
blockchain node seeks to distribute and allocate its computing resources for the
mining process among service providers in such a way to maximize its own payoff.

The Consumers’ demand on data service i provided by a service provider SPi

is denoted by Dci and the computing resources allocated by service i to run the
data analytics duties of its consumers is donated by DDi

. DDi
is measured in

terms of the throughput per second of executing the data requests. The relation-
ship between consumers’ demand Dci and supplying service i is modeled using
the two-sided market theory [17] as cross-group externalities φ and ψ. Here, ψ
represents the increase in the number of data consumers obtained when some
new computing and storage resources are added to DDi

. φ represents the amount
of profit that the data service provider earns when one more new consumer is
added to Dci . Similarly, the computing resources allocated by the blockchain
node to regulate the smart contracts of service i is denoted by Dsi

. The rela-
tionship between consumers’ demand and the supply of the blockchain node is
likewise modeled using the two-sided market theory as cross-group externalities
α and β. Here, α represents the increasing of data consumers obtained when
some new computing and storage resources are added to Dsi

and β represents
the amount of benefits that the blockchain node earns when one more new con-
sumers are added to Dci . The parameters α, β, φ, and ψ are dependant on the
service i. However, the variable i is omitted from the notations of these parame-
ters to simplify the equations when the service i is understood from the context.
Thus, instead of using αi for instance, α will be used. The same simplification
is applied for the other parameters that appear as exponents in our equations.

The interaction between SP and BC is modeled as a two-stage game, where
BC acts as the game leader and SP are the followers. In the first stage of the
game, each service provider SPi providing service i observes the amount of money
returns χi requested by BC in order to adjust the supply volume of computing
resources and the price to be charged to service consumers SCi consuming the
service i. In quest of the price specified by SPi, BC determines the optimal amount
of computing resources Dsi

that should be supplied to handle the smart contracts
between SPi and SCi. The model forms a closed loop of dependencies that involves
subsidizing techniques from the two-sided market theory. Thus, SPi may chose to
subsidize BC by an extra amount of payment that exceeds the contribution of BC.
The objective is to keep an optimal level of Dsi

that maximizes the return revenues
Pi ∗ Dci . Alternatively, BC may subsidize SPi with a low portion of the resulting
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revenue to keep an optimal level of Pi. The different parameters and symbols used
in our proposed solution are summarized in Table 1.

2.2 Players Demands and Utility Functions

The consumer’s demand and supply are modeled using the Cobb-Douglas func-
tion, which have the ability to represent the elasticity of the computing and
storage resources supply (Dsi

, DDi
) and its variations depending on the user’s

demand. These demand functions are defined as per Eqs. (1), (2), and (3). By
substituting Eqs. (2) and (3) into Eq. (1), we can express the consumer’s demand
as a function of χi and Pi as described in Eq. (4).

Dci = k1P
−γ
i Dα

si
Dψ

Di
(1)

Dsi
= k2(χiPiDci)

β (2)

DDi
= k3(PiDci)

φ (3)

Table 1. Model parameters

Model parameters Descriptions

SPi Service provider providing service i

BC A blockchain node

SCi Consumers of service i

Dci
SCi’s demand

DDi
IT-infrastructure supply to handle requests of SCi

Dsi
IT-infrastructure supply to handle smart contracts between SPi and SCi

Pi Service i’s price

χi Portion of revenue required by BC from SPi

α The Network effects (externality) on Dci
by Dsi

β The Network effects (externality) on Dsi
by Dci

ψ The Network effects (externality) on Dci
by DDi

φ The Network effects (externality) on Dsi
by Dci

γ Dci
’s elasticity with respect to Pi

k1, k2, and k3 Constant multipliers

fc Associated costs per smart contract

fs Associated costs per service request by a consumer

πi SPi’s payoff

π Blockchain node’s payoff

a1 = −γ + αβ + φψ

a2 = αβ

a3 = 1/(1 − αβ − ψφ)
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Dci = (k1k
α
2 kψ

3 P a1
i χa2

i )a3 (4)

Each big data service provider SPi is subject to a fixed cost fs per each
consumer access. SPi aims to maximize its payoff as described in Eq. (5).

πi = ((Pi)(1 − χi) − fs)Dci (5)

The blockchain node BC is subject to a fixed cost fc per each smart contract
between SPi and a data consumer. As a rational agent, the blockchain node seeks
to maximize its payoff as given in Eq. (6).

π = (Piχi − fc)Dci (6)

2.3 Game Equilibrium

The equilibrium of the above-described game is solved using a backward induc-
tion methodology. Specifically, the followers’ (data service providers) sub-game
is solved first to obtain their optimal response P ∗

i to the service consumers. The
leader’s (blockchain node) sub-game is then computed to obtain the optimal χ∗

i .
The game equilibrium is stated in Theorem 1.

Theorem 1. Under the assumption validated in [4] stating that the cross-group
externalities are not too week and not too strong, (0.1 < αβ < 0.8) and (0.1 <
φψ < 0.8), The equilibrium of our double two-sided game is given by the best
responses of the different players as follows:

1. The best response of the data service provider SPi is given by:

P ∗
i =

a1a3fs

(a1a3 − 1)(χ∗
i − 1)

(7)

if: 1 < (1/a1a3)

2. The best response of the Blockchain node with respect to a service i is given
by:

χ∗
i =

a2a3fc

(a2a3 + 1)P ∗
i

(8)

Proof. From Eq. (5) of the data service provider’s payoff, using log for both sides
of the equation, we obtain:

log πi = log(Pi(1 − χi) − fs) + log Dci (9)

Then, the optimal price P ∗
i is defined by ∂πi/∂Pi = 0 as follows:

1
πi

× ∂πi

∂Pi
=

1 − χi

Pi(1 − χi) − fs
+

1
Dci

× ∂Dci

∂Pi
= 0 (10)

By deriving Eq. (4) with respect to Pi, then:

∂Dci

∂Pi
= a1a3DciP

−1
i (11)



Trading of Big Data and IoT Services: Blockchain as a Two-Sided Market 93

By substituting Eq. (11) into Eq. (10), we get:

Pi =
a1a3fs

(a1a3 − 1)(χi − 1)
(12)

Since Pi > 0, fs > 0, ((χi −1) < 1) then (a1a3/(a1a3 −1) < 0), so the condition.
By considering the acceptable range for γ analysed in [5], 0.2 < γ < 0.3 then
∂πi/∂Pi > 0 when Pi < (a1a3fs)/((a1a3 − 1)(χi − 1)) and ∂πi/∂Pi < 0 when
Pi > (a1a3fs)/((a1a3 − 1)(χi − 1)). Consequently, Pi is the best response.

For the second result of the theorem, we consider and take the log for both
sides of the equation of the blockchain node’s payoff (Eq. (6)) and obtain:

log π = log(Piχi − fc) + log Dci (13)

Then, the optimal χ∗
i is defined by ∂π/∂χi = 0 as follows:

1
π

× ∂π

∂χi
=

Pi

Piχi − fc
+

1
Dci

× ∂Dci

∂χi
= 0 (14)

By deriving Eq. (4) with respect to χi, we get:

∂Dci

∂χi
= a2a3Dciχ

−1
i (15)

By substituting Eq. (15) into Eq. (14), then:

χi =
a2a3fc

(a2a3 + 1)Pi
(16)

∂π/∂χi > 0 when χi < (a2a3fc)((a2a3 + 1)Pi) and ∂π/∂χi < 0 when χi >
(a2a3fc)((a2a3 + 1)Pi). Consequently, χi is the best response, so the theorem.

3 Simulation and Empirical Analysis

3.1 Simulation Setup

Our simulation analysis is grounded on statistical observations from big data
and IoT services from the AWS marketplace [2], BMR [1]—the annual statistical
report that publishes the revenues, payoffs and market growth of the the AWS
marketplace—and a real-world dataset from Google [7]. The price, Pi, of the
data service is chosen from the interval [0.2, 3.2] USD/hour, following the price
distribution of 150 data and IoT services from the AWS marketplace. According
to [1], Amazon Web services (AWS) received 30 billion USD in revenue with a
net income of approx. 12 billion. The gap between the gross and net revenues is
caused by the marginal operating costs which made up approx. 60% of revenue.
The operating costs represents in our model the costs associated with the smart
contracts fc and service requests initiated by data consumers fs. The Google
dataset [7] records statistics on the execution of big data requests executed on
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Google-powered virtual machines, which are similar to the instances of Amazon
cloud infrastructure (EC2). According to these statistics, each virtual machine
takes on average 1.42 to 10 s to complete a data processing request (with a mean
of 5.71 s and standard deviation of 4.29 s). The instances and their average com-
putational power are respectively represented in our model by Dsi

and the exter-
nality factor α. Adding a compute instance has a direct impact on the increase of
the consumers’ demand between 0.1 to 0.7 data request per second. By following
the mathematically proved result in [4] that the cross-group externalities should
not be neither too weak nor too strong, the cross-group externalities should be
bounded by 0.1 < αβ < 0.8. Hence, the externality factor β would range from
0.1/α to 0.8/α. We follow those estimations and set up the cross-group exter-
nalities φ and ψ in the same range of α and β. The price elasticity γ is set to
0.15, which is similar to the sensitivity of mobile/telecommunication services
price estimated in the literature [5]. The simulation takes the aforementioned
parameters as inputs, and then calculates the optimal shared revenue χi from
each service i according to Eq. (8) in Theorem 1. Moreover, the simulation inputs
meet the theoretical condition (1 < 1/a1a3) in Theorem 1. Thus, by substituting
the real ranges of the simulation parameters, the mathematical term represent-
ing the strength of total externalities (a3) is greater than zero (i.e αβ +φψ < 1).
Hence, we demonstrate our three dimensional results in three sets of criteria: 1)
week externalities (0.1 < αβ < 0.4, 0.1 < φψ < 0.4); 2) strong externalities of
αβ - weak externalities of φψ (0.4 < αβ < 0.7, 0.1 < φψ < 0.2); and 3) strong
externalities of φψ - weak externalities of αβ (0.1 < αβ < 0.2, 0.4 < φψ < 0.7).

3.2 Shared Revenues and Computational Costs over Externalities

Fig. 4. Shared revenue over week
externalities

Fig. 5. Shared revenue over strong
externalities αβ
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Fig. 6. Shared revenue over strong externalities φψ

In this section, we study the impact of the cross group externalitie metrics (αβ)
and (φψ) on the shared revenue χi among data providers and blockchain node.
In Fig. 4, we study the percentage of shared revenue received by the blockchain
node for a weak level of externalities between, on one side the data providers
and blockchain node, and on the other side the data consumers. In Figs. 5 and 6,
we study the shared revenue for a stronger level of externalities αβ and φψ
respectively. As shown in these figures, the blockchain node receives a higher
percentage of revenue as the externality factors αβ and φψ become stronger.
Another important observation is that the average of shared revenues increases
at a higher pace over the blockchain node externalities with data consumers (αβ)
than that over data provider and data consumers (φψ). This behavior is clearly
observed in Fig. 5 which shows that the shared revenue reaches 60% over strong
externalities of αβ versus a maximum of 40% over strong externalities of φψ
as shown in Fig. 6. This behavior is interpreted as follows. The demand of data
consumers is positively impacted when its externalities with the blockchain node
(αβ) become stronger. Consequently, the data providers entice the blockchain
node by a higher portion χi of revenues to supply more computational units
with the aim of increasing the consumers’ demand and hence the total revenue.
Nonetheless, the blockchain node faces higher operating costs by increasing its
supply of mining computational units. Consequently, it would ask for a higher
portion of revenue. Moreover, the consumers’ demand is positively impacted as
its externalities with data provider become stronger. Thus, the data providers
would face higher operating costs when they add more computational units in
an attempt to increase the consumers’ demand. This forces the blockchain node
to subsidize data providers with a lower portion χi of revenue to sustain a higher
level Dci of consumers’ demand. In general, increasing the consumers’ demand
adds more computational cost on the blockchain node, which leads to increasing
the portion of blockchain node as the externalities among the data provider
and data consumers become stronger. This explains the slower increase pace of
shared revenues over the externalities φψ compared to the externalities αβ.
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3.3 Data Consumers’ Demand and Computational Unit Supply

In this section, we study the impact of cross-group externalities among all the
involved parties (i.e., data providers, blockchain node, and data consumers) on
the data consumers’ demand. As shown on Figs. 7, 8 and 9, the consumers’
demand is higher under a weak level of externalities than the strong level. Those
observed results are interpreted as follows. A higher externality level among the
market players incurs a higher cost for the two-sided market platform to get
the market players on board. Specifically, under a strong level of externalities
among the blockchain node and data consumers αβ, data providers either (1)
subsidize the blockchain node with a higher portion of revenue to attract more
data consumers (as discussed in Sect. 3.2); or (2) subsidize the data consumers
by supplying higher amounts of data computational units, which in turns, leads
to incentivizing the blockchain node. However, data providers cannot ultimately
subsidize data consumers due to their mutual cross-group externalities (φψ).
To study this phenomenon, we show in Figs. 10 and 11 the amount of data
computational units supplied by data providers as well as the number of data
consumers attracted over the externalities φψ respectively. As shown in Fig. 10,
the amount of supplied computational units increases under weak externali-
ties (φψ ∈ [0.1 − 0.4]) and gradually decreases as the cross-group externalities
become stronger (i.e., φψ ∈ [0.4 − 0.8]). However, as shown in Fig. 11, the num-
ber of attracted data consumers exponentially decreases over the whole range
of externalities. This implies that the subsidizing technique becomes costly as
the externalities become stronger. For instance, data providers attract 2 × 105

data consumers by providing 20 data computational units at an externality level
of 0.2, while they attract a number of data consumers that is 0.1 × 105 less
by providing the same amount of data computational units but with a higher
externality level of 0.5. In both cases (i.e., subsidizing data consumers and data
providers), the data providers would undergo higher costs. Similarly, under a
strong level of externalities between data providers and data consumers, the
blockchain node subsidizes either the data providers (by asking lower portion of
revenues) or the data consumers (by supplying a higher amount of computational
units), which entails higher costs for both cases. Similarly, the blockchain node
cannot ultimately subsidize the data consumers due to their mutual cross-group
externalities represented by αβ. Similar observations are depicted in Fig. 12 in
terms of mining computational units over αβ.

3.4 Data Providers and Blockchain Payoffs

In this section, we investigate the impact of externalities on the payoff of the
data providers and blockchain node. Figure 13 shows the payoff of data providers
under weak externalities, while Figs. 14 and 15 depict providers’ payoff under
strong externalities αβ and φψ respectively. As illustrated in these figures, the
data providers’ payoff gradually decreases as the externalities increase. The rea-
son behind this increasing is that the overall demand of consumers decreases
while computational costs and asked shared revenue increase over externalities
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Fig. 7. Consumers’ demand over week
externalities

Fig. 8. Consumers’ demand over strong
externalities αβ

Fig. 9. Consumers’ demand over strong
externalities φψ

Fig. 10. Data computational units over
φψ

Fig. 11. Number of attracted consumers
over φψ

Fig. 12. Mining computational units over
αβ

as discussed in Sects. 3.2 and 3.3. Similarly, the payoff of the blockchain node
decreases under externalities as shown Figs. 16, 17 and 18.
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Fig. 13. Data providers payoff over weak
externalities

Fig. 14. Data providers payoff over strong
externalities αβ

Fig. 15. Data providers payoff over
strong externalities φψ

Fig. 16. Blockchain payoff over weak
externalities

Fig. 17. Blockchain payoff over strong
externalities αβ

Fig. 18. Blockchain payoff over strong
externalities φψ

4 Conclusion

In this work, we proposed a new game-based business model for data trading
over blockchain. The problem is formulated as a double two-sided game that
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solved the problem of maximizing the players’ payoff by optimally distributing
the mining computational powers over smart contracts. Technically, the game
considered the smart contract characteristics as well as the impact of the mining
computational units on the data service and consumers’ demand. The theoretical
and simulation results proved the efficiency of the proposed game.
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Abstract. The rapid growth of IoT devices and applications with data-
intensive processing has led to energy consumption and latency con-
cerns. These applications tend to offload task processing to remote Data
Centers in the Cloud, distant from end-users, increasing communica-
tion latency and energy costs. In such a context, this work proposes a
dynamic cost model to minimize energy consumption and total elapsed
time for IoT devices in Mobile Edge Computing environments. The solu-
tion presents a Time and Energy Minimization Scheduler (TEMS) that
executes the cost model, validated through simulation, which resulted in
a reduction in energy consumption by up to 51.61% and in task comple-
tion time by up to 86.65%.

Keywords: Mobile Edge Computing · Internet of Things · Cost
minimization model · Energy consumption · Scheduling algorithm

1 Introduction

Billions of smart devices can now connect to the Internet in the form of Internet
of Things (IoT) and applications have evolved, especially those used in artificial
intelligence and computer vision, and require high computing power [7,8]. For
these applications, IoT devices usually rely on task processing offload to remote
Cloud Computing (CC) Data Centers, far away from the end-user, to boost
processing time and reduce battery energy consumption. This results in higher
latency, which became inefficient for high distributed scenarios [1].

Mobile Edge Computing (MEC) is a suitable alternative to CC, as it provides
low latency and better QoS to end-users [3]. It relies on top of high-speed mobile
networks such as 5G to allow fast and stable connectivity for mobile devices
and users. But energy consumption remains an open issue [6,9], because most
IoT devices run on batteries with limited energy capacity and need to handle
c© Springer Nature Switzerland AG 2020
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lots of data, which is energy-consuming. Thus, reducing energy consumption in
networks with IoT devices is a goal worth exploring.

This work tackles these issues by proposing a dynamic cost model to minimize
energy consumption and task processing time for IoT devices in MEC environ-
ments. Also, we propose the TEMS scheduling algorithm that implements the
dynamic cost minimization model, which calculates the cost of different alloca-
tion options and chooses one that yields the lesser cost for the execution of tasks.
Finally, the efficiency of TEMS is evaluated through simulation.1

The main contributions of this work are i) we evaluate tasks with different
profiles such as critical tasks (with a deadline) and non-critical tasks (without a
deadline) in a variety of case scenarios; ii) Our methodology covers a considerable
number of energy and time metrics for task processing and data transmissions,
including the accounting of CPU cores idle energy; iii) The model uses a DVFS
technique aiming to optimize CPU cores processing time and energy consump-
tion; iv) Our model considers three possible processing sites, including processing
in the IoT device itself, in a local MEC server and in a remote Data Center from
CC; v) We develop and adapt experiments based on a well-defined simulation
tool for scenarios with IoT devices, MEC servers, and CC Data Centers.

2 Dynamic Cost Minimization Model

In this section, we introduce a detailed view of our dynamic cost minimization
model. Figure 1 presents the architecture design of the system decoupled in three
layers, following a bottom-up approach:

– IoT Layer (L1): Composed of IoT devices, which generate the application
tasks. They run on batteries and have limited processing power.

– MEC Layer (L2): Composed of MEC servers with a limited number of
CPU cores and mid-range processing power. They are close to the end-users,
providing small communication delays.

– CC Layer (L3): Composed of Data Centers from CC. They are far located
from the end-users, and geographically distributed, with high processing
power and high network latency.

For the system we assume set D to be the mobile IoT devices, S the local
MEC servers, W the wireless communication channels and A the tasks. Each
task Ai is represented by a tuple Ai = (Ci, si, di, ti), where i ∈ A.

For each task Ai, Ci represents the number of CPU cycles required for its
complete execution. si and di represent, respectively, the source code and data
entry sizes. ti represents the deadline of the task, which is the maximum time to
complete its execution. Tasks can be normal or critical if the deadline is positive.

Also, for every task scheduled to MEC or CC, a wireless channel is associated,
which is represented by set H. If a task i is associated with a channel w, then
hi = w, otherwise hi = 0 for computation in the IoT device, where hi is an
element of H. Every hi ∈ W ∪ 0.
1 MEC Simulator available at https://github.com/jlggross/MEC-simulator.

https://github.com/jlggross/MEC-simulator
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Fig. 1. System architecture and task allocation policies.

2.1 Local Computing in the IoT Device

Each mobile device j ∈ D has one or more CPU cores, which is given by
PLj = {plj,1, plj,2, ..., plj,n}. We compute idle energy for vacant CPU cores,
and dynamic energy (Ei,local) for occupied ones. Each core has an operating
frequency (flocal,j,k), an effective commutative capacitance (Clocal,j,k) [11], and
a voltage supply (Vlocal,j,k). Each task i has a total number of CPU cycles (CTi)
for its execution.

The total execution time [11] (Eq. 1), dynamic power (Eq. 2), and dynamic
energy consume [5] (Eq. 3) can be calculated as:

Ti,local =
CTi

flocal,j,k
(1)

Pi,local = Clocal,j,k ∗ V 2
local,j,k ∗ flocal,j,k (2)

Ei,local = Pi,local ∗ Ti,local (3)

The lesser cost for the system, that provides a better relationship between
battery energy consumption and latency, can be expressed by:

Costi,local = ulocalT ∗ Ti,local,total + ulocalE ∗ Ei,local (4)

In Eq. 4 ulocalT and ulocalE ∈ [0, 1], and ulocalT + ulocalE = 1. As mentioned
in [10] these coefficients are used to represent the weight of time and energy, and
work as a trade-off to prioritize the minimization of one of the costs.

2.2 Local Computing in the MEC Server

Every local MEC servers has multiple CPU cores, which is given by PSj =
{psj,1, psj,2, ..., psj,n}. A psj,k core has an operating frequency (fmec,j,k), an
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effective commutative capacitance (Cmec,j,k), and a supply voltage (Vmec,j,k).
Communications between IoT devices and local servers that use the same wireless
channel cause mutual interference between each other (Ii). In this case, the data
transfer rate (ri(hi)) attenuates according to Shannon’s formula [11]:

ri(hi) = W ∗ log2

(
1 +

pm ∗ gj,m
N + Ii

)
(5)

Ii =
∑

n∈A|{i}:hn=hi

pm′ ∗ gj′,m′ (6)

For Eq. 5, W is the channel bandwidth, gj,m is the channel gain between a
mobile device m and a local server j. The variable pm is the transmission power
of m when offloading task i to j. N is the power of the thermal noise of the
wireless channel, and hn the wireless channel for task n.

The time required to send data and source code, and download results from
an IoT device to a local server are shown below. Also, the total time accounts
for these two times plus the task execution time Ti,mec, calculated the same way
as for the IoT devices.

Ti,mec−up(hi) =
si + di
ri(hi)

(7)

Ti,mec−down(hi) =
d′
i

ri(hi)
(8)

Ti,mec,total = Ti,mec−up(hi) + Ti,mec + Ti,mec−down(hi) (9)

The energy consumed by the data transmissions is calculated by the transmis-
sion power (pwireless) times the elapsed time (Ti,mec−up(hi) or Ti,mec−down(hi)),
resulting in Ei,mec−up(hi) and Ei,mec−down(hi), respectively. Finally, the
dynamic energy consumed (Ei,mec) is calculated as Pi,mec ∗Ti,mec, and the total
dynamic energy consumption is given by:

Ei,mec,total = Ei,mec−up(hi) + Ei,mec + Ei,mec−down(hi) (10)

The cost equation for the local server is expressed as follows:

Costi,mec = umecT ∗ Ti,mec,total + umecE ∗ Ei,mec,total (11)

2.3 Remote Computing in the Cloud

CC is assumed to have unlimited resources, which is why cores are not dis-
tinguished, and idle energy not computed. The CC Data Center formulas are
very similar from the MEC server formulas, but with some more components
such as time spent (Ti,cloud−up and Ti,cloud−down) and energy (Ei,cloud−up and
Ei,cloud−down) consumed for transmissions between MEC and CC layers.
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Ti,cloud,total = Ti,mec−up(hi) + Ti,cloud−up + Ti,cloud

+ Ti,cloud−down + Ti,mec−down(hi)
(12)

Ei,cloud,total = Ei,mec−up(hi) + Ei,cloud−up + Ei,cloud

+ Ei,cloud−down + Ei,mec−down(hi)
(13)

Finally, the cost to run a single task i in CC is given by:

Costi,cloud = ucloudT ∗ Ti,cloud,total + ucloudE ∗ Ei,cloud,total (14)

2.4 System Dynamic Cost Minimization Equation

For every task i the minimum cost is chosen between all three allocation options,
one from each layer. The total system cost is equal the sum of all task costs and
idle energy costs.

Costi = min(Costi,local, Costi,mec, Costi,cloud) (15)

Costsystem =
A∑
i=1

Costi + Elocal,idle + Emec,idle (16)

3 Time and Energy Minimization Scheduler (TEMS)

The TEMS heuristic scheduling algorithm executes the dynamic cost minimiza-
tion model with reduced computational cost. It has complexity O(n2).

Algorithm 1: Time and Energy Minimization Scheduler (TEMS)
Result: Task mapping to the processing nodes

1 execute Step 1 - Collection of system information and initialization
2 repeat
3 execute Step 2 - Task allocation
4 execute Step 3 - Task conclusion monitor
5 execute Step 4 - New tasks and device battery level monitor

6 until user decides to keep running ;

In Algorithm 1 are presented the steps of TEMS. Step 1 defines the sets of
the IoT devices, MEC servers, communication channels, and battery levels of the
IoT devices. A Lower Safety Limit (LSL) is set for the battery capacity, which
may not be reached, preventing the device to run out of energy. The algorithm
collects the number of CPU nodes available in each IoT device and MEC server,
their operating frequencies, and supply voltages.
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In step 2, TEMS classifies the tasks between critical and non-critical. Critical
tasks are ordered by deadline and scheduled to the CPU with the minimum total
elapsed time. Then normal tasks are scheduled to the CPU with lesser total cost.

In step 3, tasks are monitored for their completion status, and when com-
pleted, the CPU core resources are released and made available for other alloca-
tions in step 2. The battery level check is performed for the IoT devices. Task
cancellation may occur if the elapsed time is higher than the deadline or if the
IoT device runs out of battery.

Finally, in step 4, the battery level from each IoT device is collected, as well
as newly created tasks. Execution continues as long as tasks are being created.

4 Evaluation

This section explains the simulation details and the different experimental sce-
narios used. The simulated environment was designed with low, mid-range and
high processing power devices for IoT, MEC and CC layers, respectively. For
IoT devices we chose Arduino Mega 2560, with five operating frequencies and
corresponding supply voltages. The MEC servers were simulated on top of 5
Raspberry Pi 4 Model B boards, each board with a Quad-core Cortex-A72
1.5 GHz (ARM v8) 64-bit, summing a total of 20 CPU cores per server. The
CPU cores have three operating frequencies and corresponding supply voltages.
For CC it was chosen Data Centers with Intel Xeon Cascade Lake processors of
2.8 GHz per CPU core, reaching up to 3.9 GHz with Turbo Boost on. The net-
work throughput was configured to achieve up to 1 Gbps speed and latencies to
5ms, for both 5G and fiber optics communications [2]. Moreover, two vehicular
applications were defined [4], one with high processing workload and high task
creation time (Application 1), and another with low processing workload and
low task creation time (Application 2).

a. Number of MEC servers: This experiment used Application 1 in two
different scenarios. Both with 500 tasks distributed to 100 IoT devices, but
one with only a single MEC server (case 1, plot 1) and the second with two
MEC servers (case 2, plot 2). Figure 2 shows the results for the execution of
Application 1.

Fig. 2. Task allocation for Application 1.
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The energy and time coefficients were set, respectively, as 4/5 and 1/5, that
is, a high weight was given to the energy consumed so that it could be minimized.
In Fig. 2, from plot 1 to plot 2, the increase in the number of MEC servers made
fewer tasks be to allocated in the CC layer, reducing total energy consumed for
case 2. Compared to another scenario with the same characteristics, but without
MEC servers, the reduction in energy consumption for case 1 was 42.51%, while
for case 2 it was 44.71%. Thus, the use of MEC servers helps the system to lower
the total energy consumed.

b. Impact on different energy and time coefficients: This experiment
used Application 2 in four different scenarios. Each case with 500 tasks, 100 IoT
devices, and one MEC server. The energy coefficients were set to 1/5, 2/5, 3/5,
4/5 and the time coefficients to 4/5, 3/5, 2/5 and 1/5.

Table 1. Costs for Application 2, varying the cost coefficients for energy and time.

Case ECoeff TCoeff Cost ETotal TTotal Policy

C1 1/5 4/5 0.01859 0.14550 0.03336 MEC

C2 2/5 3/5 0.02597 0.14276 0.03469 MEC

C3 3/5 2/5 0.03318 0.14276 0.03469 MEC

C4 4/5 1/5 0.03544 0.07040 0.25000 IoT

The lowest calculated cost was the same for cases 2 and 3, with MEC as an
offloading option. Case 1 had the lowest calculated cost among all coefficient
pairs. In these three cases the time coefficient had high values, and MEC was
chosen because task execution got the lowest processing times. For case 4, the
allocation took place on the IoT device itself. Now, energy had a high-value
coefficient, which made the scheduler choose the policy that provided the lowest
energy cost, reducing total cost. In case 4 energy consumption reduced up to
51.61% compared to the other cases. To reduce task completion time, coefficients
from cases 1, 2 and 3 are better, with a reduction of up to 86.65% compared to
case 4 (Table 1).

c. Impact of input data size: As the size of data entry increases from
3.6MB to 3.6GB, the calculated costs progresses in the MEC and CC allocation
policies. The cost to execute in the IoT devices remains the same, as no data
transmissions are carried out. When data entry scales, allocation policies that
require data transmissions become very costly, and allocation on the device itself
becomes increasingly advantageous. We observed that with more tasks with less
data per task it is possible to reduce energy and time by up to 29% compared
to a scenario with fewer tasks and lots of data per task. With this approach less
time is spent waiting for data transmission to end, maximizing CPU usage in
the MEC servers.

d. IoT device battery consumption: Battery should stay in healthy levels
to avoid reaching the LSL threshold, avoiding the device to be unavailable for
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processing. Also, adequate task processing workloads may help save battery,
extending the operation time of the IoT device.

e. Deadline for critical tasks: Very low deadlines made tasks to be can-
celed because any given policy could execute the task in a feasible time. There-
fore, the deadline must be properly configured for at least one of the allocation
policies to have enough time to process and conclude the task correctly.

f. Impact on using the DVFS technique: With DVFS activated, the
total energy consumption decreased by 13.74%, while the total time increased
by 28.32% in comparison with DVFS off. This demonstrates the effectiveness of
the proposed model, and the scheduling algorithm in minimizing total energy
consumption. Although the whole time may have been longer in the approach
with DVFS, it is no problem because the tasks were completed within the time
limit imposed by the deadline.

5 Conclusion

In an environment with accelerated generation of large volumes of data and
mobile devices connected to the Internet with restricted QoS requirements and
battery limitations, energy and time reduction are mostly needed. The TEMS
scheduler could choose the best allocation options in the system, reducing both
energy consumption and elapsed time. Experiments show that the adequate
adjustment of the cost coefficients were essential for the final cost perceived by
the scheduling algorithm. Adequate coefficients allowed the energy in the system
to be reduced by up to 51.61% or the total times to be reduced by up to 86.65%,
ending critical tasks before deadline. The system has become more sustainable
and the user experience has not been affected.

The use of MEC servers helped extend the battery life of the IoT devices
and made task execution more agile. Also, using the DVFS technique brought
interesting results, helping to reduce the overall energy consumption. Major
contributions are the TEMS algorithm, the addition of data transmissions to
the model, accounting for idle costs, calculating transmission rate interference,
use of the DVFS technique, and the interaction with the CC layer to provide
resources whenever the local network becomes saturated.

As future works, we can relate the improvement of the system cost model,
with the insertion of new variables and new experiments to explore applications
in new scenarios such as industry, healthcare, aviation, mining, among others.
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Abstract. In the Internet of Things (IoT), billions of physical devices,
distributed over a large geographic area, provide a near real-time state of
the world. By adopting a service-oriented paradigm, the capabilities of
mobile or static devices can be abstracted as IoT services and delivered
to users in a demand-driven way. In service environments, a particular
service provisioning tends to be specified in a service level agreement
(SLA), which can be further used to monitor and guarantee the quality
of service (QoS). Automatic SLA negotiation can be used to resolve
possible conflicts between trading parties, but existing SLA negotiation
approaches do not consider the characteristics of an IoT environment.
In this paper, we present an automated negotiation strategy for multi-
round bilateral negotiation that caters for the level of dynamicity in an
IoT environment. The negotiation strategy makes concessions based on
the artificial bee colony (ABC) optimization algorithm. The simulation
results demonstrate that our proposal provides a better balance between
success rate and negotiation utility, compared to other approaches.

Keywords: Internet of Things · SLA · Automatic negotiation ·
WS-Agreement Negotiation · Artificial bee colony optimization

1 Introduction

The Internet of Things (IoT) envisions a large number of physical objects, con-
necting over the Internet to provide a near real-time state of the world. By
adopting the Service-Oriented Architecture (SOA), a device’s capabilities or
measurements can be abstracted as services [6] and delivered to applications in
a demand-driven way. For mission-critical IoT applications, Service Level Agree-
ments (SLA) are widely used as a contract-like concept to assure the obligations
and guarantees of involved parties [5], but the scale of the IoT makes human
intervention infeasible for SLA negotiation. An automated, dynamic negotiation
process is needed for trading parties to express their preference and resolve possi-
ble conflicts. However, existing negotiation strategies may be insufficient for IoT
SLA negotiation because they do not consider the characteristics of the IoT envi-
ronment. Compared to web and cloud services, the negotiable scope of services
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in the IoT is likely to be more diversified when mobile devices and reconfigurable
resources are considered. IoT services also exhibit time-varying QoS levels [12]
that may be caused by unpredictable workload, an unstable wireless network,
and device malfunction. QoS variability may impact a service provider’s nego-
tiation boundaries or negotiation preferences, which further affects negotiation
efficiency.

In this paper, we propose a negotiation strategy for multi-round bilateral
negotiation, which uses a bio-inspired negotiation tactic to dynamically adjust
concessions based on the opponent’s behaviour. As resources in the IoT environ-
ment are geographically distributed, we assume a negotiation system is deployed
on a set of edge devices, which negotiate with service providers for consumers.
These edge devices are referred to as negotiation gateways. Providers publish
their SLA-supported services to a nearby gateway in the form of SLA templates
(SLAT), and wait for negotiation requests. SLATs are partially completed agree-
ments filling default values relating to negotiable SLA terms that the providers
are expecting to offer, and the constraints that restrict the values of those nego-
tiable terms. Gateways select candidate service providers by matching a request
with registered templates, and send the negotiation request to the candidate
service providers to start a bilateral negotiation [10].

In the remainder of this paper, Sect. 2 summarizes related work on SLA
negotiation in related field. Section 3 describes the negotiation strategy that
uses artificial bee colony optimization to adjust offerings. Section 4 details the
experimental setup and evaluation results. Section 5 concludes the paper with a
discussion about future research directions.

2 Related Work

Generally, a negotiation strategy is a mathematical model used to evaluate pro-
posals and make decisions [15]. Faratin et al. proposed three types of negoti-
ation tactics agents can employ during a negotiation process: time-dependent,
resource-dependent, and behavior-dependent [4]. They concluded that there is
a tradeoff between the number of successful deals and the utility gained. To
increase negotiation utility, Fharna et al. proposed a policy-based negotiation
strategy where agents dynamically adapt decision functions during the negotia-
tion process to comply with an opponent’s preferences according to performance
observations [18]. However, this adaptation may be inefficient when the strat-
egy adopted by the counterpart is unknown. To balance the success rate and
utility for negotiations with incomplete information, Zheng et al. [16] proposed
a game-theory based strategy that combines the concession and tradeoff tactics
to resolve possible conflicts. However, this does not guarantee a solution will be
found when one exists. To optimize negotiation behaviour, some approaches use
machine learning techniques and metaheuristic algorithms to learn opponents’
negotiation models. Faratin et al. used fuzzy similarity to approximate an oppo-
nent’s preference, and a hill-climbing algorithm detects a tradeoff offer that might
be acceptable by the counterpart [3]. Coehoorn et al. assumed that the opponent
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employs a time-dependent tactic, and adopted kernel density estimation to esti-
mate the opponent’s negotiation preference [2]. Narayanan et al. used a Markov
chain to model bilateral negotiations among agents, and Bayesian learning for
agents to learn the optimal strategy [11]. Sim et al. combined Bayesian learning
with genetic algorithms (GA) to search for the optimal strategy [13]. Carbonneau
et al. created a three-layer neural network that exploits information from past
counteroffers to predict opponent’s future proposals [1]. The drawbacks of these
strategies are that they are computationally expensive for multi-issue negotia-
tion, and their assumptions ignore the dynamicity of the opponent’s behaviour.
When using metaheuristic algorithms, the common disadvantage is the multiple
negotiation rounds that are required to find the final solution. Also, GA needs
a coding mechanism to transform each possible offer to a real number, which is
complex for multivariable problems.

3 Negotiation Strategy

The bilateral negotiation session begins when a negotiation gateway sends the
consumer’s preferred values as the initial offer to a candidate service provider.
The purpose of the negotiation is to reach an agreement that has the best possible
utility through a bargaining process. In each round, negotiating parties perform
their own negotiation strategies to evaluate a received offer and make decisions
about whether to accept/reject the offer or propose a counteroffer. A Negotiation
Offer proposed by a service provider p to a gateway g at time t is defined as
xt

p→g, the value of negotiable term j offered in xt
p→g is noted by xt

p→g[j]. Each
negotiable term j (j ∈ 1, ..., k) has a negotiation space noted by Ωg

j , which is the
collection of possible values of term j. In a competitive market, providers may
regard some negotiation spaces as business sensitive data and may not be willing
to disclose them to the negotiation opponent, which means the negotiation may
occur under an assumption of incomplete information.

To measure an offer’s satisfaction level, each negotiable term j in the offer
is normalized and evaluated by gateways using a score value V g

j (V g
j ∈ [0, 1]).

A higher score represents a higher satisfaction. In our previous work, we have
identified four types of negotiable terms for IoT services and defined the scoring
functions V g

j targeting each type [9]. In this paper we assume consumers will not
clearly specify their preferences on each negotiable term, the average utility is
used to quantitatively measure the negotiation utility of a received offer xt

p→g:

Ug(xt
p→g) =

1
k

k∑

j=1

V g(xt
p→g[j]) (1)

Each time a gateway g receives one or more counteroffers Xt
p→g from provider

p, it evaluates the offers using Eq. 1 and selects the offer with the highest util-
ity xt

p→g to make decisions (i.e., accept/reject an offer or propose a counter
offer). The decision-making process is controlled by WS-Agreement Negotiation’s
(WSAN) offer state transition model [14]. The WSAN-based decision-making
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model has been discussed in our previous publication [9]. However, in this paper
we use a modified ABC-based negotiation tactic to generate new counteroffers
rather than using the context-based tactic.

Algorithm 1. Gateway: Perform ABC-based Tactics
Input: Solutions F [10], received offer of last round x

tr−1
p→g , the number of current round

r, loop limit Loopmax, request req, similarity factor α, best solution Fbest

Output: The vector of updated negotiable terms Fbest

1: α ← updateSimilarityFactor(r)
2: if F [n] is null then Initialize solutions and bees

3: Evaluation of solutions (α, req, x
tr−1
p→g )

4: cycle ← 0
5: while cycle ≤ Loopmax do
6: Employed bees phase(α, req, x

tr−1
p→g , F [n])

7: Pr ← Calculate selection probabilities(α, F [n])

8: If Random(0, 1) < Pr then Onlooker bees phase(α, req, x
tr−1
p→g , F [n])

9: if any F [i].Tr > Trmax then Scout bee phase (req, x
tr−1
p→g , Fbest, F [i] )

10: Evaluation of solutions (α, req, x
tr−1
p→g )

11: Fbest ← memorizeBestSolution(F [n])
12: end while

The main goal of designing a negotiation tactic is to find the best possible
agreement for a specific request that not only satisfies all the user’s constraints
but also maximizes the utility. However, if both parties are only concerned with
their individual utility and ignore the opponent’s preference, it is harder to
reach an agreement. Automatic negotiation with incomplete information can be
modeled as an optimization problem, which tries to find a solution that has
the highest possible utility for both parties from all feasible solutions under
the partially known negotiation constraints. The Artificial Bee Colony Optimi-
sation (ABC) algorithm is simple and accurate when addressing multivariable
problems [7], and we use a modified version to seek a win-win solution from the
solution domain. ABC abstracts solutions as food sources and searching for them
is performed by three types of specialized bees: scout bees, employed bees, and
onlooker bees [17]. They work cooperatively to find a food source with maximum
fitness. Algorithm 1 shows how negotiation gateways use the modified ABC to
update the expectations of negotiable terms. Different combinations of negotiable
terms make up the solution domain. A possible solution is modeled as the posi-
tion of a food source, which is evaluated by a fitness function. The ABC-based
negotiation tactic defines each food source as F = {position, beee, beeo, fit, Tr}.
position is a k-dimension vector �Vi = (vi,1, vi,2, ..., vi,k) representing a possible
solution, which contains the expected values of negotiable terms (i ∈ [1, n], n is
the number of food sources, k is the number of negotiable terms), beee and beeo

are the associated employed bee and onlooker bee respectively, fit is the fitness



114 F. Li and S. Clarke

value and Tr is the number of times that a solution has been exploited. Initially,
ten solutions are generated based on a user’s most preferred values and the first
received counter offer xt1

p→g(Line 2). The elements in initial position vector �Vi

are computed using Eq. 2:

vi,j = Min{Max{N

(
vprf,j + xt1

p→g[j]
2

,
∣∣vprf,j − xt1

p→g[j]
∣∣
)

,minj},maxj} (2)

where N (·) denotes a Gaussian distribution with mean (vprf,j +xt1
p→g[j])/2 and

variance
∣∣vprf,j − xt1

p→g[j]
∣∣, vprf,j is the user’s most preferred term value j. maxj

and minj are the upper and lower boundaries of the term’s negotiation space j.
Gaussian distributed values are used rather than randomly distributed values as
in the standard ABC to avoid too many concessions in the early stage when the
maximum number of iterations is limited. The standard ABC algorithm usually
has thousands of iterations, which introduces latency. Reducing the number of
iterations reduces the solution accuracy, but decreases computation complexity.
To make the algorithm more lightweight, in each round, the maximum number
of loops (Line 5) is defined as:

Loopmax = 2(mt + r) (3)

where 2 is the scale factor, r is the current round number, mt is a constant
positive integer, representing the minimum times a solution can be exploited
initially. The sum of mt and r is the limit of exploitation times as the negotiation
processes. Equation 3 shows that more loops is introduced when r is increasing.

Through the next repeated cycles, the ten solutions are modified by the
searching processes of different bees (Line 6–9) and evaluated according to a fit-
ness function (Line 10). The particular mechanism for finding a win-win solution
is that each solution is evaluated by its utility and the absolute cosine similarity
between the current solution and the counteroffer proposed by the opponent.
The fitness function of solution �Vi is defined as:

fit(�Vi) =

{
0, Ug(�Vi

t
) > Ug(�Vi

t−1
)

(1 − α) × Ug(�Vi
t
) + α × sim( �V ′

i , �S′), otherwise.
(4)

where Ug(�Vi
t
) is �Vi’s utility at time t (Eq. 1). �S′ is the normalized1 vector of

an opponent’s expectation, extracted from the optimal counteroffer of the last
round x

tr−1
p→g. �V ′

i is the normalized �Vi. α is the similarity factor for the weight of
making concessions (α ∈ (0, 1)), which gradually increases from C0 to C1:

α = C0 + C1
eβr̂ − 1
eβ − 1

, (0 < C0 + C1 < 1) (5)

where r̂ is the ratio of the current round to the maximum negotiation round. β
is an integer that controls the change rate of α (|β| < 10). A negative β means
1 The values of terms are normalized using the score functions V g

j defined in [9].
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α increases quickly at the start but gets slower as the negotiation proceeds,
while positive β does the opposite. The negotiation is more conservative when
β is positive. Equation 4 and Eq. 5 show that the fitness evaluating criteria
weight dynamically changes as the negotiation proceeds. The fitness is set to zero
when the solution has higher utility than the last proposal since the solution is
likely to be rejected by the opponent. The fitness function illustrates why more
iterations are needed as the rounds increase (Eq. 3). This avoids conservatism
in the early stage, and increases the chance of finding a better solution that has
higher utility when the concession rate increases. In the repeated iteration, the
searching process is performed in three phases: employed bee phase (Line 6),
onlooker bee phase (Line 8), and scout bee phase (Line 9), as follows:

Employed Bee Phase: Each employed bee searches for a new solution depend-
ing on the current one �Vi and another random one �Vm (k ∈ {1, ..., n}, k �= i). For
all elements vi,j in �Vi, new values are generated as follows [17]:

v′
i,j = Min{Max{vi,j + [2Random(0, 1) − 1](vi,j − vm,j),minj},maxj} (6)

where vm,j is the value of term j in �Vm (j ∈ {1, ..., k}), Random(0, 1) is a
uniformly distributed random number (range [0, 1]). If the new solution �V ′

i has
a higher fitness, it replaces the old �Vi. Otherwise the solution exploitation time
increases by 1.

Onlooker Bee Phase: After an employed bee completes its searching process,
the current solution’s information is shared with the associated onlooker bee,
which decides whether to exploit it based on the probability computed by fitness:

Prob(Fi) =
fit(Fi)

Max
l∈n

{fit(Fl)} (7)

Considering the iterations limit, maximum fitness is used as the denominator
instead of the sum of fitness defined in standard ABC to increase the chance
of discovering a better solution. Based on the probability and Roulette-wheel
selection mechanism, the onlooker bee may further modify the current solution
by following the same searching process defined in the employed bee phase.

Modified Scout Bee Phase: After all the onlooker bees are distributed, the
solution whose exploitation time reaches the limit is exhausted, and the corre-
sponding employed bees turn into scout bees to find a new solution. In classic
ABC, the scout bee randomly chooses a solution that satisfies the boundary
constraint (Eq. 9). However, when the number of iterations is limited, a more
efficient searching mechanism that accelerates the convergence process is needed.
Inspired by the bare bones particle swarm algorithm [8], here, a Gaussian bare-
bone searching equation uses the global best solution and received counteroffer.
For all elements vi,j in �Vi, new values are generated as follows:

vi,j = Min{Max{N

(
vbest,j + x

tr−1
p→g[j]

2
,
∣∣vbest,j − xtr−1

p→g[j]
∣∣
)

,minj},maxj} (8)
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where vbest,j is the global best solution’s term j. Solution �V ′
i is further compared

with the random solution (Eq. 9) to select the solution with the higher fitness.

vi,j = minj + Random(0, 1)(maxj − minj) (9)

4 Evaluation

4.1 Experimental Setup

In the simulation experiment, there are two types of providers: static and mobile.
Mobile providers are more likely to provide a service that can satisfy the spa-
tial requirement, while static providers have a limited negotiation space for the
spatial feature. The price for a mobile service linearly depends on the standard
Euclidean distance between the current offering and the requested properties;
while the price for a static service is restricted by a range if the price is negotiable
(PIN), or a static value if it is non-negotiable (PNN). The service providers are
classified based on the service level they can provide: high-performance (HP) ser-
vices, moderate-performance (MP) services, and low-performance (LP) services.
The intersection degree of negotiation space between negotiating parties is set to
0.7, 0.4 and 0.2 for HP, MP and LP providers respectively. We assume the simu-
lation environment is a rectangular area where latitude varies from 53.33385 to
53.35556, and longitude varies from −6.27963 to −6.23328. Static HP providers
have six service instances uniformly distributed in the area, while MP and LP
providers have four and two service instances respectively. For mobile providers,
the probability of satisfying a user’s spatial requirement is set to 0.9, 0.5, 0.2 for
HP, MP and LP providers. If the requested location is not acceptable, a mobile
provider offers a random location within 1 km around the requested location.

In our scenario, a service consumer is randomly distributed in the simulation
area, and requests a hazardous gas monitoring service. Negotiation on price,
sample rate, accuracy, availability and response time is needed to satisfy its
requirements. Two test cases simulate different environments: (i) In test case A,
one mobile provider (MP) and one static provider (MP-PNN) are the negotiation
candidates (i.e., resource-limited environment); (ii) In test case B, six mobile
providers (LP, MP, and HP) and six static providers (LP-PIN, LP-PNN, MPPIN,
MP-PNN, HP-PIN, HP-PNN) are the negotiation candidates (i.e., resource-rich
environment). To reduce chance variation, we repeated the experiment 100 times
under each test case. In each trial, each requested term’s negotiation constraint
is randomly generated based on a pre-defined range. The ABC-based tactic’s
parameters are set as C0 = 0, C1 = 0.9, mt = 5, β = 1. This experiment is
implemented with Java using Eclipse Mars IDE.

4.2 Result

Two metrics are used to evaluate the performance of the ABC-based negotiation
strategy (ABC): average negotiation utility and success rate. The negotiation
utility is the utility of the acceptable offer used to create the final SLA, which
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is computed by Eq. 1. We compare the performance against other four tactics,
which demonstrate a good balance between utility and success rate: the game
theory-based strategy for cloud service negotiation (UMC) [16], the behavior-
dependent relative tit for tat tactic (BDR), the time-dependent linear tactic
(TDL) and the resource-dependent patient tactic (RDP) [4]. In the experiment,
providers play the TDL tactic while the gateway plays the five different tactics.

(a) Success rate in
resource-limited environment

(b) Success rate in
resource-rich environment

(c) Average negotiation utility
in resource-limited

environment

(d) Average negotiation utility
in resource-rich environment

(e) Utility-changing trend
(maxRound=10)

(f) Utility-changing trend
(maxRound=20)

Fig. 1. Negotiation performance of ABC-based negotiation strategy

The results in Fig. 1 show the average negotiation utility and success rate
using different negotiation tactics when the maximum negotiation round R
increases. When R is set to 10, ABC and UMC outperform other tactics in
utility in a resource-rich environment. When the available resources are lim-
ited, ABC has moderate utility, lower than UMC and BDR, but it maintains a
much higher success rate. Figure 1e shows the utility-changing trend of solutions
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under this situation. Each graph shows the mean utility observed in each round
with the error band representing the standard errors. ABC concedes more in
the early negotiation rounds but becomes more conservative as the negotiation
proceeds. Once the negotiation deadline approaches, it becomes more inclined
to concede again, trying to reach an agreement with the service provider. ABC
controls the balance between success rate and negotiation utility by dynam-
ically changing fitness values and restricting the number of search iterations.
From Eq. 4 and Eq. 5, when C0 = 0, C1 = 0.9, the fitness value in the early
negotiation rounds mainly depends on the solution’s utility. Equation 3 shows
that fewer iterations are allowed during the process, which prevents ABC from
being too greedy. As the negotiation proceeds, the fitness value depends more
on the similarity between the detected solution and counter offer proposed by
the negotiation opponent. More search iterations are introduced during the pro-
cess, allowing employed bees and onlooker bees to explore more solutions than
the earlier rounds, which increases the chance of finding a solution more likely
to be accepted by opponents, without losing too much utility. This process is
similar to the negotiation with the tradeoff tactic that the utility remains at a
similar level from round 3 to round 6. In the final negotiation round, ABC makes
the largest possible concession to maximize the likelihood of the last offer being
accepted by the negotiation opponent. Figure 1 also shows that when R is set to
20, ABC demonstrates better and more stable performance in both utility and
success rate. Figure 1f shows the utility change of solutions when more interac-
tions are allowed. Similarly, ABC makes concessions in the early/ending rounds
but is more conservative in the middle rounds than other tactics, which means
it maintains a higher utility than other approaches. Although both ABC and
BDR adjust concessions based on recent counteroffers proposed by the opponent,
BDR only imitates the opponent’s behaviour, while ABC combines the oppo-
nent’s counteroffer with the negotiation deadline and its self utility to search for
a win-win solution acceptable for both parties. This makes ABC more adaptable
to the negotiation environment, achieving higher negotiation utility than BDR.
Also, the irregular utility change in each round makes it hard for the opponent to
predict the concession, therefore the risk of accepting an offer with lower utility
is reduced.

5 Conclusion and Future Work

To enable an agreement-driven service provisioning, a negotiation component is
necessary to resolve possible conflicts on service properties between the trading
parties. In this paper, we proposed a metaheuristic negotiation strategy that
uses the artificial bee colony algorithm to find a win-win solution through a
bargaining process. The proposed strategy demonstrates better and more stable
performance in terms of utility and success rate compared to the other four pop-
ular approaches. This strategy can be used for SLA negotiation with incomplete
information, specially when the user does not specify any negotiation preference
in the request. However, this strategy may be trapped into the current optimum
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for several rounds when the constraint on negotiation deadline is loose. In future
work, we will modify the searching equations and possibly, add an opponent
behaviour learning mechanism to overcome this problem.

Acknowledgment. This work was funded by Science Foundation Ireland (SFI) under
grant 13/IA/1885.
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Abstract. The Internet of Things has emerged as a paradigm in a vari-
ety of application domains where several parties share data to tackle spe-
cific tasks. However, these IoT data can be sensitive and the data subject
wish not share them with other competitor organizations without retain-
ing some level of control. Thus, a privacy-preserving, user-centric, and
transparent solution is needed to deal with the challenges of IoT data
sharing, such as the loss of control over the shared data, the trust need
in data consumer infrastructure, and the lack of transparency in terms
of data handling. Therefore, we propose PATRIoT, a privacy-preserving
PlATfoRm for IoT data sharing using a service-oriented approach. The
latter is proposed based on the blockchain technology, which enforces pri-
vacy requirement compliance according to the General Data Protection
Regulation. For validation purposes, we deploy the proposed solution on
a private Ethereum blockchain and give the performance evaluation.

Keywords: Privacy · IoT · Blockchain technology · Data sharing

1 Introduction

The Internet of Things (IoT) is a paradigm that improves delivering advanced
services in a wide range of application domains. Indeed, multiple devices col-
lect, exchange, store, and process a large amount of fine-granularity and high-
frequency data in every aspect of life [4]. However, these smart devices have
limited memory and storage capabilities, so they collect and send IoT data to
consumers’ external platforms to be stored and analyzed. Indeed, these external
platforms receive these IoT data and use them to personalize services, optimize
decision-making processes, and predict future trends. However, the produced IoT
data are generally rich in sensitive data and their analysis allows data consumers
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to deduce personal behaviors, habits and preferences of data subjects.1 Indeed,
collecting data in IoT applications increases the data subject’s worries about
the potential uses of these data. Hence, centralizing the storage and analysis
of a huge amount of data poses significant issues in terms of data subject pri-
vacy, such as the loss of control over the externalized data, the need to trust the
consumer platforms, and the lack of data handling transparency. To overcome
the aforementioned issues, various legislative bodies have enacted privacy legis-
lation, such as the General Data Protection Regulation (GDPR) [9] in Europe
that gives data subjects rights to be informed how their personal information
are handled by consumers. However, a user-centric and transparent solution for
ensuring that these rights are respected in the IoT domain is still missing.

Motivated by the limited computing capabilities of smart devices, the sen-
sitive feature of IoT data, and the increasing privacy legislation pressure,
we propose PATRIoT, a preserving privacy PlATfoRm for IoT data sharing
while adapting a service-oriented approach based on the blockchain technology.
PATRIoT provides a set of services, generic enough to be applied to a large vari-
ety of IoT applications. These services can be deployed over a given architecture
to make applications aware of users’ privacy requirements, such as data pur-
pose, disclosure, and retention. The components of PATRIoT are built around
the semantic description of data (e.g., data sensitivity level, data purpose, etc.)
without storing personal data. Furthermore, the reason behind the blockchain
technology use is its immutable nature secured by a peer-to-peer network. It
hosts smart contracts which contain conditions to trigger and actions to execute
if the conditions are satisfied. In our case, the conditions represent the prefer-
ences and requirements of the data subjects concerning their IoT data privacy
that need to be respected by consumers. Thus, the smart contract use prevents
any attempt to violate privacy by ensuring that the shared data are handled as
expected during their lifecycle.

This paper is organized as follows. Section 2 analyses existing solutions that
studied the privacy-preserving issue in the IoT domain. Section 3 describes the
proposed system model. Experiments and results are detailed in Sect. 4. Finally,
Sect. 5 concludes the paper and presents some future endeavors.

2 Related Work

Early attempts to incorporate blockchain technology into IoT proposed new
blockchain systems. For instance, Dorri et al. [8] proposed a custom blockchain,
where the home gateways hold the role of the miners. Such a solution is hard
to be deployed since they require a “critical mass”. As it seems relevant to new
IoT solutions, it is worth building on existing technologies to be compatible with
already available libraries and wallets. More recent attempts are using blockchain
and smart contracts to provide security and access control for IoT. Novo [11] pro-
posed an IoT access control system with gateway nodes, which are responsible for
handling resource requests by taking into consideration the policies stored in the
1 Data subject: any person whose personal data are being collected, held or processed.
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blockchain. For their part, Zhang et al. [12] proposed a smart contract-based
access control system while an IoT gateway handles resource requests. These
solutions encoded statically in smart contracts the actions a specific consumer
can perform to a particular IoT device/data. Furthermore, the blockchain tech-
nology is also used in the healthcare field. For instance, Dagher et al. [7] proposed
a blockchain-based framework for secure access to medical records by several par-
ties, while preserving the patients’ privacy. However, this work cannot perform
data erasure, since it stored some personal data in the blockchain. To overcome
this issue, an off-chain distributed database can be used to store the shared IoT
data to guarantee data subjects’ right to be forgotten as required by the GDPR.

3 System Model Overview

Despite the increasing legislation pressure, several privacy requirements have
been less addressed in the IoT domain. Using a service-oriented approach to
address the GDPR compliance makes it easier to the data consumers to build
new applications or change existing applications while ensuring the enforcement
of the data subject privacy thanks to smart contracts. For this purpose, we
propose the system model that is depicted in Fig. 1. It consists of five involved
parties, namely data producer, blockchain and smart contract, PATRIoT plat-
form, distributed database, and data consumer. The PATRIoT platform aims at
providing an environment that allows data subjects to easily exercise their rights
defined by GDPR and assisting data consumers to meet the GDPR requirements
using a privacy ontology and the blockchain technology. To this end, PATRIoT
has been designed to be an IoT data sharing platform while adapting a service-
oriented approach that provides several components including the privacy pref-
erence matching service and the privacy policy compliance service.

Fig. 1. System model
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In the rest of this section, we first outline the proposed model core compo-
nents, then describe the IoT data sharing process.

3.1 Core Components Description

Figure 1 depicts the model components, which we describe hereafter:
Data producer: it is an IoT device equipped with sensing and communica-

tion capabilities that allow it to collect data, communicate with other devices, or
connect to the Internet. In this work, a mobile phone can provide a user-friendly
environment for data subjects in order to control their shared data and manage
their privacy preferences thanks to the privacy preference matching service.

Privacy preference matching service: it is responsible for matching the
data subjects’ and data consumers’ privacy requirements that are served as
inputs, then generating a common privacy policy, as an output. This privacy
policy consists of several rules that specify why, when, how, to whom and for how
long the requested IoT data are handled. To ensure privacy preference matching,
the PATRIoT platform adopted the data privacy ontology, called LIoPY and the
reasoning process that we have previously proposed in [10]. Indeed, LIoPY ontol-
ogy models the privacy requirements in the IoT environment and the common
privacy policy that will be enforced by the blockchain and smart contracts.

Blockchain and smart contract: blockchain is responsible for trans-
parency, integrity, non-repudiation, and validity of the data handling operations.
Moreover, it hosts a privacy policy as a set of self-enforcing and machine-readable
rules using smart contracts [6]. Therefore, we propose IoTDataSharing, a smart
contract that aims at addressing the data subject’s control enforcement over the
shared data and assisting the data consumers to meet the fundamental GDPR
requirements. The predefined smart contract’s functions can be invoked by the
data producers and consumers by means of the privacy policy compliance service.

Privacy policy compliance service: it is responsible for exposing the
functionality of the deployed smart contract as an application REST interface
for simpler external application interaction with the blockchain. Both POST and
GET methods are provided to push transactions and query for transactions on
the blockchain. These methods can invoke the smart contract’s functions. Indeed,
this service ensures that the data sharing management works properly according
to the access authorizations defined in the smart contract while eliminating the
data producers’ needs to interact directly with the blockchain due to their limited
memory and storage capabilities. Moreover, it verifies the consumer’s permissions
before allowing access to the shared data that are stored in distributed databases.

Distributed database: it is an off-chain database, used to store the
IoT data. It is a peer-to-peer storage system used to overcome the expensive
cost of storing IoT data on the blockchain and to guarantee the right to be for-
gotten defined by the GDPR. Thus, only the hash pointer of the data location
is exchanged by the blockchain’s transactions between the data producers and
the data consumers.

Data consumer: it can be a medical application, an energy substation, or
a traffic routing station that can use the privacy preference matching service
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Fig. 2. The process for IoT data sharing using the PATRIoT platform. Assume that
actors have established a blockchain address prior to this process.

to request data subjects’ consents and the privacy policy compliance service to
handle the requested data transparently and unambiguously.

For more details, we refer the reader to a full description that is available on.2

3.2 Blockchain-Based IoT Data Sharing Process

Figure 2 depicts the process of sharing IoT data between data producers and
consumers using the PATRIoT platform while logging the established commu-
nication on the blockchain. This process begins by registering a new data pro-
ducer using the RegisterNewIoTDevice function to store the producer’s blockchain
address and its sensed data type on the IoTDataSharing smart contract. Once
the privacy preferences are defined, the data consumer asks for getting permis-
sion by specifying its terms of service, such as the requested data type, why,
to whom, and for how long the data are used. Then, the privacy preference
matching service matches the received terms of service with the data subject’s
privacy preferences, off-chain. In case of a match, the service uses the Grant-
Permission function to add the consumer’s blockchain address to the authorized
consumers’ list stored in the smart contract that notifies the producer of the
new consumer. When the data producer collects new data, it sends them to
the distributed database that generates a hash pointer of the file location and

2 https://www.dropbox.com/s/levxfzid1s3o50b/PATRIoT.pdf?dl=0.

https://www.dropbox.com/s/levxfzid1s3o50b/PATRIoT.pdf?dl=0
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returns it to the producer. The latter encrypts the received hash pointer using
the consumer’s public key and sends it to the consumer. Once mined, the con-
sumer receives the transaction, retrieves the encrypted hash pointer, and uses its
private key to decrypt the hash pointer. When the consumer obtains the hash
pointer of the file location, it uses the GetSharedResource function provided by
the privacy policy compliance service to retrieve the data from the distributed
database or invoke one of the IoTDataSharing smart contract functions to han-
dle the data. By using the privacy policy compliance service, the data subject
is periodically informed how the data are handled and can easily add or revoke
authorization to the data consumers.

4 Experiments and Result Analysis

Due to a lack of space, we only show in this section the proposal feasibility
by implementing smart contracts, but the entire proposal is designed for a
service-oriented architecture deployment. As Ethereum is currently the most
common blockchain platform for the development of smart contracts [6], we
implemented our smart contract using the Solidity language [1] and deployed it
to the Ethereum test network using Ganache [2]. Therefore, we created a test
system using Truffle development framework [3], used InterPlanetary File Sys-
tem (IPFS) [5] as an off-chain distributed database, and deployed the PATRIoT
services to Swarm that is a Docker orchestration tool.

4.1 Computation Time Cost

In order to measure the performance of our solution, we conducted some exper-
iments to compute the computational time cost of both addFile and updateFile
functions defined on the IoTDataSharing smart contract. Thus, we performed add
file operation by adding random file contents for 100 repetitions. We measured
the required time to off-chain compute the file content’s hash and execute the
addFile function (see Fig. 3a) and the updateFile function (see Fig. 3b) by making
several tests while increasing the file size from 1KB to 2MB. We observe that the
processing time of updating an existing file that varies from 95 to 180 ms is less
than the processing time of adding a new file that varies from 257 to 390 ms.

4.2 Cost Overhead

To evaluate the PATRIoT efficiency, we conducted an experiment to measure the
gas3 used by a transaction to invoke one of the IoTDataSharing smart contract’s
functions, namely addFile, updateFile, addConsumer, and removeConsumer.

Table 1 illustrates the average gas usage and cost per invoked function. We
observe that the gas used by a transaction changed depending on the function.
This can be explained by the fact that functions that require more computational
resources cost more gas than functions that require few computational resources.
3 gas: it is a measure unit of the cost necessary to perform a transaction on the network.
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(a) addFile function (b) updateFile function

Fig. 3. Average processing time of two functions with different file size

Table 1. Cost overhead

Invoked function Average Gas Usage (gas) Average Gas Cost (USD)

File size = 1KB File size = 2MB

addFile 471959 471959 3,00

updateFile 28946 28946 0,18

addConsumer 332429 332429 2,11

removeConsumer 23456 23456 0,15

Moreover, we used in this experiment two file sizes, namely 1KB and 2MB.
We deduce that the gas used by the transactions is independent of the file size.
This can be explained by the fact that the functions only used the file content’s
hash whose bit length is fixed and equal to 32 bits. Thus, the file size has no
impact on the cost overhead of our proposal. Indeed, this latter can be used in
case of files with a huge amount of data without increasing the cost overhead.

Table 1 also illustrates the average gas cost of the four smart contract’s func-
tions. Currently, 1 gas costs about 20 Gwei (i.e., 20 ∗ 10−9 Ether) and the
exchange rate is about 318 USD for 1 Ether at the time of writing. Thus, we com-
pute the gas cost by multiplying the used gas by the gas price for each function.
Therefore, we can deduce that our solution is not a cost-expensive one.

After evaluating the performance, we analyze below the legal compliance.

4.3 PATRIoT Platform in Legislation Context: GDPR Compliance

PATRIoT aims at achieving the GDPR compliance by meeting several privacy
requirements. First, PATRIoT meets the consent requirement by using the IoT-
DataSharing smart contract that offers to the data subjects the ability to manage
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their consents by easily adding, modifying, and revoking authorizations. More-
over, PATRIoT establishes accountability and transparency of data sharing pro-
cess. Thus, the defined blockchain-based solution helps data consumers to auto-
mate compliance checks and allows for a comprehensible record for auditing. Fur-
thermore, PATRIoT meets the notification obligation by logging all the transac-
tions that prove who has handled data. Thus, any privacy violation attempts can
be detected. Finally, PATRIoT meets the erasure requirement by using the off-
chain data store and only storing the hash of the IoT data on the blockchain.

By meeting the aforementioned privacy requirements, PATRIoT addresses
areas associated with GDPR compliance. On one hand, it enforces the data sub-
ject’s ownership and control over the shared data. On the other hand, it can be
seen as a consumer’s proof of legislation compliance thanks to both transparency
and auditability characteristics.

5 Conclusion

In recent years, several researchers have agreed that the blockchain technology
can be used to improve the data subject privacy in the IoT domain while being
GDPR compliant. In this context, we proposed PATRIoT, an IoT data shar-
ing platform for preserving privacy using a service-oriented approach based on
blockchain. Indeed, we proposed a smart contract that ensures that the shared
data will be handled as expected. Besides, we relied on off-chain database use to
store the shared IoT data. In our future work, we aim at continuing research in
the use of blockchain to meet other privacy legislative standards by deploying a
Blockchain as a Service to be available for all actors in different domains.
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Abstract. Energy optimization for cloud computing services has gained
a considerable momentum over the recent years. Unfortunately, mini-
mizing energy consumption of cloud services has its own unique research
problems and challenges. More specifically, it is difficult to select suitable
servers for cloud service systems to minimize energy consumption due to
the heterogeneity of servers in cloud centers. In this paper, the energy
minimization problem is considered for cloud systems with stochastic
service requests and system availability constraints where the stochastic
cloud service requests are constrained by deadlines. An energy minimiza-
tion algorithm is proposed to select the most suitable servers to achieve
the energy efficiency of cloud services. Our intensive experimental stud-
ies based on both simulated and real cloud instances show the proposed
algorithm is much more effective with acceptable CPU utilization, saving
up to 61.95% energy consumption, than the existing algorithms.

Keywords: Energy minimization · Cloud service · Service request ·
Quality of Service · Rejection probability · System availability

1 Introduction

Energy optimization is not only important for protecting environments because
it mitigates the carbon emission, but also indispensable for the cloud providers
since it reduces the electricity consumption. It is estimated that 70 billion
kilowatt-hours of electricity, i.e., about 1.8% of the total electricity consump-
tion of the United States, is consumed in 2014 alone for cloud services [11].
According to the International Energy Agency’s New Policies Scenario, which
takes account of existing and planned government policies, the world primary
energy demand is projected to be increased by 37% between 2012 and 2040 [23].
Energy consumption is directly proportional to power consumption. To reduce
power consumption in computing systems, there are in general two approaches:
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 133–148, 2020.
https://doi.org/10.1007/978-3-030-65310-1_11
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(a) thermal-aware hardware design and (b) power-aware software design [20].
The thermal-aware hardware design approaches are related to hardware devices,
while on the contrary, the power-aware software design approaches involve com-
puting systems, including operating system-level power management, compiler-
level power management, application-level power management, and cross-layer
adaptations [20]. Our work falls largely as one of the power-aware software design
methods.

In this paper, we take into consideration of the energy consumption mini-
mization problem for stochastic requests with deadlines. Service requests arrive
at the cloud centers both stochastically and dynamically while servers are het-
erogeneous in nature with different configurations. Dealing with stochastically
arriving requests and heterogeneous servers in cloud service systems is a com-
plex problem in its own essence [8,22]. The power consumption of servers and
the response time of service requests are typically negatively correlated. If the
service rate of servers is higher, more power is consumed and the service requests
are processed quicker, thereby leading to a smaller response time. In addition,
it is hard to evaluate the energy consumption with different service rates of
servers in cloud systems. Server selection is a NP-hard problem. This is further
complicated when selecting optimal number of servers from the cloud centers
to minimize the energy consumption, with the needs to satisfy the deadlines of
service requests and the system availability [15] (which defines the probability
that requests can be processed) constraints of the selected servers. The major
contributions of this work are as the following:

– We develop a novel cloud service system model that is based on the queuing
theory to deal with the stochastic property of the cloud service requests. The
model enables the efficient server selection by considering i) service request
arrival rates, ii) service rates of the cloud servers, iii) deadlines of the service
requests, and iv) the system availability constraints.

– The energy consumption of a cloud service system is measured by the power
consumption of the servers based on their response time of the service
requests, which is calculated by a proposed energy evaluation (EE) algorithm.
We further develop an energy minimization (EM) algorithm to select suitable
servers to minimize the energy consumption while meeting the service request
deadlines and system availability constraints.

– We conduct extensive experimental studies using both simulated and real-
life cloud instances and the results show the effectiveness of our proposed
approach on energy optimization of cloud services.

The rest of the paper is organized as follows. In Sect. 2, we discuss the related
work and in Sect. 3, we detail the model and formulate the research problem. The
energy optimization algorithms are presented in Sect. 4. Finally, the experimen-
tal results are reported in Sect. 5, followed by conclusions and future research
directions in Sect. 6.
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2 Related Work

Energy consumption is closely related to power consumption. A stochastic activ-
ity network model was constructed to evaluate the power consumption and per-
formance of servers in cloud computing [3]. By allocating the power to the
servers, the overall quality of service (QoS) of the servers in the data center
was optimized [7]. A heuristic algorithm was presented to minimize the energy
consumption on the condition of location constraint of nodes [21]. A brownout-
based approximate Markov Decision Process approach was proposed to improve
trade-offs between energy saving and discount offered to service users [22]. The
key novelty was to reduce the cumulative power by the dynamic voltage scaling
[1]. A Constrained Markov Decision Process model was built for power man-
agement in web server clusters [18]. The energy consumption was minimized by
optimizing the power consumption of different servers in [1,7,18] while the dead-
line constraint of service requests was not considered. In this paper, we consider
the stochastic service requests with deadline constraint and the suitable servers
are selected to minimize the energy consumption. The dynamic property of the
queue capacity makes the energy consumption minimization problem different
from the existing problems tackled in [1,7,18].

Low energy consumption and high service performance (e.g., response time,
reliability and service level agreement) are usually negatively correlated. Higher
performance implies less response time and faster service rates while lower
energy implies lower allocated power which results in slower service rates and
longer response time. A suitable queuing model was built to satisfy the conflict-
ing objectives of high performance and low power consumption in [10]. Mobile
devices were modeled as a semi-Markov decision process to achieve a good bal-
ance between the application execution time and power consumption [2]. The
balance between higher performance and lower energy was studied in [2,10].
In [19], two novel adaptive energy-aware algorithms were proposed to achieve
energy efficiency while minimizing SLA (service-level agreement) violation rate
in cloud data centers. When balancing the performance and energy consump-
tion, the queue capacity in [2,10] is determined while in our paper, the queue
capacity changes dynamically with different servers.

Energy minimization with heterogeneous cloud servers has been studied in
[6,8,14]. When the servers are heterogeneous, the server sequence has to be cer-
tain for performance analysis since different server sequences lead to different
results. The heterogeneity of servers make problem more difficult. In this paper,
heterogeneous servers in cloud service systems are considered with deadline con-
straint, which is not handled in the existing works [6,8,14].

3 Cloud Service System Model and Problem Description

In this section, the cloud service system model is constructed and then the
research problem is formally defined.
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3.1 Cloud Service System Model

When service requests arrive, cloud providers offer suitable servers to deal with
the requests while minimizing the energy consumption. The arrival rate of the
service requests is assumed to follow a Poisson distribution with parameter λ [9].
Let us assume that there are N heterogeneous servers in the cloud service sys-
tem and the number of selected servers is n (n ≤ N). According to our recent
work [15], the service rates of the servers, which are the speed of requests pro-
cessed by the servers, are assumed to follow exponential rates with μ1, · · · , μN .
The deadline of service requests is denoted as D which implies that requests are
processed before the arriving time plus D. All requests have the same D. The
rejection probability is assumed to be PR and the system availability is ξ.

The model of the cloud service system can be constructed, as illustrated in
Fig. 1. Once the service requests arrive at the cloud system, a dedicated server
is firstly selected to process these requests. If more requests arrive, requests wait
in the queue. Due to the deadline constraint, the maximum number of service
requests is computed by the selected server and if the system availability is
satisfied, no more server will be selected. Requests are executed by the selected
servers. Otherwise, more servers will be considered by iteration in order to meet
the requirement of the system availability.

Fig. 1. Cloud service system model based on the queuing theory.

The queuing theory [13] is adopted in terms of the stochastic property of the
cloud service requests. R[i](i ∈ {1, · · · , n}) is the maximum queue length when
the server with service rates μ[i] is selected to process requests. R[i] is determined
in terms of comparing the response time of requests processed by service rate
with μ[i] to the deadlines. {0, 1, · · · , i, · · · ,

∑n
j=1 R[j]+n} is the state space where

i is the number of service requests in the system. According to the system model
in Fig. 1, states {0, 1, · · · , 1 + R[1]} correspond to the first selected server with
service rate μ[1]. States {∑i−1

j=1 R[j] + i, · · · ,
∑i

j=1 R[j] + i} correspond to the ith
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selected server with service rate μ[i]. When 1 − ξ ≤ P∑n
i=1 R[i]+n, no new server

will be selected. According to the stochastic property of requests and servers,
the cloud service system is a Markov process. For the first selected server, the
arrival rate of requests is λ while the arrival rate of next selected servers is the
rejection probability that requests cannot be processed by the previous selected
server by the arrival rate λ. The state transition process is shown in Fig. 2.

0 1 1+R[1]

2+R[1]+R[2] 3+R[1] 2+R[1]

Fig. 2. State transition process.

According to the state transition process described in Fig. 2, the input rate
of requests is equal to the output rate of requests for each state. Denote Pi(i ∈
{0, 1, · · · , 1 + R[1]}) as the steady state probability for state i. Therefore, the
balance equations for the first server are:

λP0 = μ[1]P1 (1)
(λ + μ[1])P1 = λP0 + μ[1]P2 (2)

· · ·
λPR[1] = μ[1]P1+R[1] (3)

In addition, the steady state probabilities P0, P1, · · · , P1+R[1] satisfy

1+R[1]∑

i=1

Pi = 1 (4)

ρ[1] is denoted as λ
μ[1]

. According to Eq. (1), Eq. (2) and Eq. (3), it is obtained

P1 = ρ[1]P0 (5)

P2 = ρ2[1]P0 (6)

· · ·
P1+R[1] = ρ

1+R[1]

[1] P0 (7)
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P0 is calculated in terms of Eq. (4), (5), (6) and (7):

P0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − ρ[1]

1 − ρ
R[1]+2

[1]

ρ[1] �= 1

1
2 + R[1]

ρ[1] = 1

(8)

The steady state probabilities in different states are calculated according to
Eq. (5), (6), (7) and (8). Based on the steady state probabilities, the rejection
probability Pr[1] is calculated using:

Pr[1] = P1+R[1] (9)

The rejection probability Pr[1] is related to the system availability ξ. When the
nth server is selected, it should meet the requirement of the system availability ξ,
which implies that Pr[n] � 1 − ξ. For minimizing the energy consumption, when
a server is selected, the rejection probability Pr[1] should be as small as possible
so that more service requests can be processed. The relationship between Pr[1]

and R[1] can been proved in Theorem 1.

Theorem 1. Pr[1] decreases with the increase of R[1].

Proof. According to (8), Pr[1] =
(1−ρ[1])ρ

1+R[1]
[1]

1−ρ
2+R[1]
[1]

. The derivative of Pr[1] is calcu-

lated as

DPr[1]

DR[1]
=

((1 − ρ[1])ρ
1+R[1]

[1] )′(1 − ρ
2+R[1]

[1] ) − (1 − ρ
2+R[1]

[1] )′((1 − ρ[1])ρ
1+R[1]

[1] )

(1 − ρ
2+R[1]

[1] )2

=
((1 − ρ[1])ρ

1+R[1]

[1] ) ln ρ[1](1 − ρ
2+R[1]

[1] ) + ρ
2+R[1]

[1] ln ρ[1](1 − ρ[1])ρ
1+R[1]

[1]

(1 − ρ
2+R[1]

[1] )2

=
((1 − ρ[1])ρ

1+R[1]

[1] ) ln ρ[1]

(1 − ρ
2+R[1]

[1] )2
(10)

When 0 < ρ[1] < 1, it is easy to calculate that only ln ρ[1] < 0 which results in
DPr[1]

DR[1]
< 0. Pr[1] decreases with the increase of R[1]. When ρ[1] = 1, according to

Eq. (5), (6), (7) and (8), the steady state probabilities are the same for all states.
Pr[1] decreases with the increase of the number of states which results from the

increase of R[1]. When ρ[1] > 1, only 1 − ρ[1] < 0.
DPr[1]

DR[1]
< 0. Therefore, Pr[1]

decreases with the increase of R[1]. �

Based on the steady state probabilities, it is easy to calculate the number of
requests in the cloud service system. The number of service requests L[1] in the
system is
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L[1] =
1+R[1]∑

i=0

i × Pi (11)

Based on L[1], the response time of requests is determined. The response time
of requests Tr[1] is determined based on the Little theorem [5]:

Tr[1] =
L[1]

λ(1 − Pr[1])
(12)

If Tr[1] ≤ D, compared Pr[1] to 1 − ξ, R[1] is calculated. With the ξ (system
availability) and D (service requests deadline) constraints, servers are selected
to minimize the energy consumption in a cloud system. When the next server
is selected, the arrival rate of requests changes with the current rejection prob-
ability Pr[i] . Similar to the first selected server, the balance equations for the
ith selected server are obtained. The steady state probabilities are computed in
terms of the balance equations. The rejection probability Pr[i] and the expected
response time of requests are calculated by using Eq. (9) and (12).

Energy consumption is measured by the power consumption of servers based
on the response time of requests. According to [8], the power consumption of a
server is determined by W = wCV 2η, where w is the switching activity, C the
electrical capacitance, V the supply voltage and η the clock frequency. For any
physical server with a service rate μ[i], μ[i] ∝ η and η ∝ V φ with 0 < φ ≤ 1.
η ∝ V φ implies V ∝ η1/φ. According to [17], μ[i] ∝ η and V ∝ η imply W[i] ∝ μα

[i]

where α = 1+2/φ ≥ 3, i.e., P can be represented by κμα
[i] where κ is a constant:

W[i] = κμα
[i] + W ∗. (13)

W ∗ is the static power consumption.

3.2 Problem Description

Since the number of servers are dynamic, the expected energy consumption is
calculated in terms of the expected response time of service requests, the power
consumption of servers, and the probability of states calculated by the corre-
sponding servers. The total number of service rates should be not less than λ
to balance the system. Otherwise, the system could break down. The energy
consumption minimization problem is therefore formally described as follows:

min E =(1 − Pr[1])W[1]Tr[1] +
n∑

i=2

i−1∏

j=1

Pr[j](1 − Pr[i])W[i]Tr[i] (14)

λ ≤
n∑

i=1

μ[i] (15)

1 − ξ ≤ P∑n
i=1 R[i]+n (16)

Tr[i] ≤ D i ∈ {1, 2, · · · , n} (17)

n ≤ N (18)
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According to Eq. (12), we can have Tr[i] = L[i]

λ(1−Pr[i] )
. Therefore, the following

equation is obtained:

E = (1 − Pr[1])W[1]Tr[1] +
n∑

i=2

i−1∏

j=1

Pr[j](1 − Pr[i])W[i]Tr[i]

= (1 − Pr[1])W[1]

L[1]

λ(1 − Pr[1])
+

n∑

i=2

i−1∏

j=1

Pr[j](1 − Pr[i])W[i]

L[j]

Pr[j]λ(1 − Pr[i])

=
n∑

i=1

W[i]L[i]

λ
(19)

Therefore, Eq. (14) is transformed equivalently into E =
∑n

i=1
W[i]L[i]

λ .

4 Energy Minimization Algorithm

Energy minimization is closely related to the response time of service requests,
the number of servers and the power consumption in a cloud service system. To
solve the problem, different servers are selected to satisfy the deadline constraint
and minimize the energy consumption. The number of service requests waiting
in the cloud system is determined by the selected servers. The queue capacity
is determined firstly by considering the deadline constraint D and the system
availability ξ by Algorithm 1 according to which the energy consumption is eval-
uated. After energy evaluation, selected servers are determined to minimize the
energy consumption in Algorithm 2.

The Energy Evaluation (EE) algorithm (see Algorithm1) is proposed to eval-
uate the energy consumption of a selected server. μ is assumed as the service
rate of the selected server. With the increase of R, the response time of service
increases while the rejection probability decreases gradually. With the deadline
D and the system availability ξ constraints, the queue capacity R is determined
(lines 3–6). The number of requests in the cloud service system is computed (line
7) and the power consumption for the selected server is calculated (line 8). The
energy consumption E is evaluated (line 9). The time complexity of Algorithm 1
is determined by the queue length R.

Different servers are selected to minimize the energy consumption in the
cloud service system by Algorithm 2. Eo is the energy consumption vector for
the selected servers and Po

r is the rejection probability vector for the selected
servers. U = {μ1, · · · , μN} is the server set. E is the energy consumption vector
for servers. Esum is the total energy for the selected servers. The arrival rates
of service requests for the next server is determined by the current rejection
probability in terms of Fig. 2. During the server selection procedure, N servers
are evaluated firstly (lines 5–6). Since the rejection probability in the cloud
service system and the energy consumption have different ranges and units, we
employ a min-max normalization. We use E′ and Pr

′ to denote the values of
Eo and Po

r after min-max normalization, respectively (line 9). When selecting
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Algorithm 1: Energy Evaluation (EE) Algorithm
Input: μ, ξ

1 begin
2 R ← 0, Tr ← 0,PR ← 1;
3 while Tr < D& PR > 1 − ξ do
4 R ← R + 1;
5 Calculate Tr by Eq. (12) and μ; /* Response time calculation*/

Calculate PR by Eq. (9); /* Rejection probability calculation*/

6 Calculate L by R and μ; /*The number of requests calculation*/
Calculate W by Eq. (13); /*Power consumption calculation*/
E ← LW

λ
; /*Energy consumption evaluation*/

7 return R, PR, E.

more servers, the rejection probability of the system decreases while the energy
consumption increases. We denote r = Pr

′
E ′ as the selection metric (line 9).

A server with the min (r) value is selected to minimize energy consumption
(lines 10–11). With the constraint of system availability ξ, different servers are
selected and the number of servers n is determined (lines 3–13). The nth server
is compared with the rest servers to minimize the energy consumption further
because one of the rest servers may be better than the last selected server with
the system availability ξ and deadline D constraints (lines 15–24). The time
complexity of Algorithm2 is O(NR).

5 Experiments

In the proposed EM algorithm, there are five system parameters and we will
first present our experiments to calibrate the parameters using simulated cloud
instances. We then present experimental results to compare the proposed EM
algorithm against three existing algorithms using both simulated and real-life
instances. All compared algorithms are coded in MATLAB and un on an Intel
Core i7-4770 PC (CPU@3.20 GHz, RAM@8 GBytes).

5.1 Parameter Calibration

For energy minimization in a cloud service system, the commonly tested parame-
ters are: the total number of servers in a cloud service system N , the service rates
of the N heterogeneous servers, the service request arrival rate λ, the request
deadline D, and the system availability ξ. To statistically analyze the effects of
the system parameters on the proposed algorithm framework, we calibrate these
parameters over randomly generated test instances.

Since the values of the calibrated parameters should be as close as possible
to real scenarios, we set the parameter configurations according to the Alicloud1

1 https://github.com/alibaba/clusterdata.

https://github.com/alibaba/clusterdata
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Algorithm 2: Energy Minimization (EM) Algorithm
Input: U, λ, ξ

1 begin
2 Eo ← 0, P o

r ← 0, Us ← ∅;
3 while PR > 1 − ξ do
4 E ← 0, Pr ← 0, r ← 0, Esum ← 0;
5 for i = 1 to N do
6 [R,Ei,Pr i] ← EE(μi, ξ); /*Energy evaluation*/

7 rmin ← 10, Pr
′ ← 0, E ′ ← 0;

8 for i = 1 to N do

9 E ′
i ← E i−min(E )

max(E )−min(E )
, Pr

′
i ← Pr i−min(Pr )

max(Pr )−min(Pr )
,

ri ← Pr
′
i

E ′
i
; /*Normalization*/

10 if ri � rmin then

11 rmin ← ri, k ← i; /*the ith server selection*/

12 U ← U − μk, US ← US ∪ μk, n ← n + 1, N ← N − 1;
13 PR ← Pr k, P o

ri ← Pr k, Eo
i ← Ek, Esum ← Esum + Ek;

14 /*Last server determination*/;
15 for i = 1 to N do
16 R ← 1, TR ← 0;
17 if n > 1 then
18 PR ← P o

r(n−1);

19 else
20 P o

ri ← 1;

21 [R, E1, PR] ← EE(μi, ξ); /*Energy evaluation*/

22 E′ ← Eo
n;

23 if E1 < E′ then
24 Esum ← Esum − E′ + E1, E′ ← E1, P

o
rn ← PR, USn ← μi;

25 return R, Esum.

as: N ∈{10, 20, 30, 40}, λ ∈{{1, . . . , 20}, {21, . . . , 40}, {41, . . . , 60}, {61, . . . ,
80}}(per second), D ∈{0.2, 0.4, 0.6, 0.8, 1}(second), ξ ∈{0.55, 0.65, .75, 0.85,
0.95}. The maximum service rate of cloud servers is assumed to be μ ∈{10, 20,
30, 40}(per second). The service rates of heterogeneous servers are determined by
μi = iμ

N (i ∈ {1, · · · , N}). Therefore, there are 4×4×5×5×4 = 1, 600 parameter
combinations in total. Five instances are generated randomly for each arrival rate
λ, i.e., five instances are generated for each combination, that is, 1, 600×5=8,000
instances in total are tested for calibrating the parameters combinations.

Th experimental results are analyzed by using the multi-factor analysis of
variance (ANOVA) statistical technique [15]. Three main hypotheses (normal-
ity, homoscedasticity, and independence of the residuals) are checked from the
residuals of the experiments. All three hypotheses can be accepted by consider-
ing the well-known robustness of the ANOVA technique. The resulting p-values
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Fig. 3. Means plot of the five studied parameters with 95% confidence level Tukey
HSD intervals.

are less than 0.05, meaning that all studied factors have a significant impact on
the response variables at the 95% confidence level within ANOVA.

The means plot of the five studied factors on the total energy consumption
E with 95% HSD (Tukey’s Honest Significance Differences) intervals is shown in
Fig. 3 and we can observe that:

– λ has a great influence on energy consumption E. With an increase in the
upper bound of λ, E increases with statistically significant differences. E
becomes minimum when λ takes values from {1, . . . , 20}. The reason lies in
that fewer arriving service requests can be processed by servers with small
service rates, which consumes few energy.

– ξ greatly influences energy consumption. E increases with the increase of ξ.
The differences are statistically significant. E becomes the minimum when
ξ=0.55. The reason lies in that a higher ξ implies less rejection probability
which requires more servers.

– Similarly, μ has a great impact on E. E takes the minimum value when μ = 10
because a bigger μ implies more power consumption.

– D has a great influence on E. With an increase in D, the energy E increases.
A bigger D results in an increase in the response time of requests for servers.

– Though the statistical differences of N on E are insignificant, which implies
that the number of servers are satisfied with the stochastic requests, E
becomes maximum when N equals 30.

5.2 Algorithm Comparison

During server selection, the FS (Fastest Server) policy always selects the fastest
server while the Random policy selects servers randomly when the system avail-
ability is not satisfied. To minimize the energy consumption, the rejected requests
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Fig. 4. The mean plots of the interactions between each parameter and the four com-
pared algorithms.

that current server cannot process will be executed by the next selected servers
while in the traditional queuing system (TQS) M/M/N/N + R [13], it implies
that service requests are processed immediately when there are idle servers. In
our experiments, we compare EM with these three methods.

Algorithm Comparison over Simulated Instances. Since there are no
benchmark instances for the considered problem, we first compare the four algo-
rithms across simulated instances. Based on the calibrated results in Sect. 5.1,
the system parameters N=10 and other parameters are the same as Sect. 5.1.
Five instances are randomly generated for each of the 400 combinations, i.e.,
2,000 instances are tested on each of the four algorithms. The results are shown
in Fig. 4.

From Fig. 4, we can see that when the arrival rate λ takes a value from
{61, . . . , 80}, EM obtains the smallest E while TQS obtains the largest. FS and
Random perform similarly. In other words, with an increase in service requests
arrival rate λ, EM becomes more effective than the other three algorithms.

With an increase in ξ from 0.55 to 0.95, EM always results in the smallest
E whereas TQS becomes the largest. FS is always worse than Random with a
larger E. The higher values of ξ demonstrate the superiority of E. Random has
the largest E which is similar to FS. The energy on TQS is smaller than FS. EM
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Fig. 5. Algorithm comparison over real instances.

is much more robust than the other three algorithms, i.e., with an increase in μ,
the performance of EM fluctuates less than the other three. Similarly, with an
increase of D, FS obtains the largest E, while EM gets the smallest E. Random
is a littler larger than TQS.

Table 1. Algorithm comparison

EM TQS FS Random

E 9,398.28 21,220.6 24,705.0 24,659.6

CPU time 0.0043 0.0003 0.0023 0.0021

To further compare the algorithms, the average performance on effectiveness
(the average energy consumption) and efficiency (CPU time) are shown in Table 1.
According to Table 1, we can observe that EM obtains the smallest E, 9,398.28,
followed by 21,220.6 of TQS. FS obtains the largest E 24,705 and for Random,
it is 24,659.6. Comparing to TQS, FS, and Random, EM can save up to 61.95%
energy consumption. Although EM has the longest CPU time of 0.0043 s, it is still
comparable to the other three algorithms and acceptable in practice.

Algorithm Comparison over Real Instances. To evaluate the perfor-
mance in real systems, the real production Cluster-trace-v20182 published by
the Alibaba Group is analyzed, which contains eight-day sample data from one
of the production clusters. By analyzing the start time3 of requests [15], the
arriving time interval is obtained which implies that the arrival rates are Pois-
son distributed. According to start time and end time4, the execution times of

2 https://www.aliyun.com.
3 http://clusterdata2018pubcn.oss-cn-beijing.aliyuncs.com/batch task.tar.gz.
4 http://clusterdata2018pubcn.oss-cn-beijing.aliyuncs.com/batch instance.tar.gz.

https://www.aliyun.com
http://clusterdata2018pubcn.oss-cn-beijing.aliyuncs.com/batch_task.tar.gz
http://clusterdata2018pubcn.oss-cn-beijing.aliyuncs.com/batch_instance.tar.gz


146 S. Wang et al.

all servers are calculated and the execution time of each server is exponential
with different arrival rates and service rates. The arrival rate λ is analyzed by
different types of service requests. The service rates μ[i] (i ∈ {1, . . . , N}) are
evaluated by different types of servers. Similar to the simulated instances, D, ξ
are set to 0.2, 0.95 respectively because the information on these parameters is
not available in the real instances. The service rates are obtained with {14.5,
15.4, 16.9, 17.4, 18.5, 19.4, 20.4, 21.3, 22.8, 23.9} [15] and the number of servers
is already known, i.e., N = 10.

Figure 5 shows the performance of the four compared algorithms. It can be
observed that our proposed EM algorithm always obtains the smallest values as
λ increases. FS, Random and TQS fluctuate as λ is less than 100. TQS is worse
than Random followed by FS when λ is bigger than 100.

From the experiments on both simulated and real instances, we can observe
the similar results in terms of algorithm performance. Our proposed EM algo-
rithm always achieves the best performance on energy consumption.

6 Conclusion

Energy optimization of cloud computing services has been a key challenge due
to their unique characteristics such as dynamic and stochastic service requests
and heterogeneous cloud servers. In this paper, we present a novel approach to
minimize the energy consumption by selecting appropriate cloud servers with
the consideration of the service request deadline and system availability con-
straints. In particular, we develop a new cloud service system model based on
the queuing theory to deal with stochastic service requests. An energy minimiza-
tion (EM) algorithm is proposed to select the most suitable servers to achieve
the energy efficiency while satisfying service request deadlines and system avail-
ability constraints. Our experimental studies show that the EM algorithm saves
up to 61.95% energy consumption than the other algorithms. Ongoing work will
focus on further improving our model by relaxing some constraints, e.g., the
Poisson distribution of service requests.
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Abstract. The Internet of Things has enabled many application sce-
narios where a large number of connected devices generate unbounded
streams of data, often processed by data stream processing frameworks
deployed in the cloud. Edge computing enables offloading processing from
the cloud and placing it close to where the data is generated, whereby
reducing both the time to process data events and deployment costs.
However, edge resources are more computationally constrained than their
cloud counterparts. This gives rise to two interrelated issues, namely
deciding on the parallelism of processing tasks (a.k.a. operators) and
their mapping onto available resources. In this work, we formulate the
scenario of operator placement and parallelism as an optimal mixed inte-
ger linear programming problem. To overcome the issue of scalability
with the optimal model, we devise a resource selection technique that
reduces the number of resources evaluated during placement and paral-
lelization decisions. Experimental results using discrete-event simulation
demonstrate that the proposed model coupled with the resource selec-
tion technique is 94% faster than solving the optimal model alone, and
it produces solutions that are only 12% worse than the optimal, yet it
performs better than state-of-the-art approaches.

Keywords: Data stream processing · Operator placement · Operator
parallelism · End-to-end latency · Edge computing

1 Introduction

A Data Stream Processing (DSP) application is often structured as a directed
graph whose vertices represent data sources, operators that execute a function
over incoming data, and data sinks; and edges that define the data interdepen-
dencies between operators [4]. DSP applications are often deployed in the cloud
to explore the large number of available resources and benefit from its pay-as-
you-go business model. The growth of the Internet of Things (IoT) has led to
c© Springer Nature Switzerland AG 2020
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scenarios where geo-distributed resources at the edge of the network act both
as data sources and actuators or consumers of processed data. Streaming all
this data to a cloud through the Internet, and sometimes back, takes time and
quickly becomes costly [4].

Exploration of computing resources from both the cloud and the Internet
edges is called as cloud-edge infrastructure. This paradigm combines cloud, micro
datacenters, and IoT devices and can minimize the impact of network communi-
cation on the latency of DSP applications. An inherent problem, however, relies
upon deciding how much and which parts of a DSP application to offload from
the cloud to resources elsewhere. This problem, commonly known as operator
placement and shown to be NP-Hard [2], consists in finding a set of resources
to host operators while meeting the application requirements. The search space
can be large depending on the size and heterogeneity of the infrastructure.

When offloading operators from the cloud, the DSP framework needs to
adjust the operators’ parallelism and hence decide how to create the number of
operator instances to achieve a target throughput. The operator placement needs
to address two interrelated issues, namely deciding on the number of instances
for each operator and finding the set of resources to host the instances; while
guaranteeing performance metrics such as application throughput and end-to-
end latency. As an additional level of complexity, the deployment of DSP appli-
cations in public infrastructure, such as a cloud, incurs monetary costs, which
must be considered when deciding on where to place each DSP operator and
how many replicas to create.

This work describes the Cloud-Edge Stream Model (CES), an extension of
an optimal Mixed Integer Linear Programming (MILP) model introduced in
our previous work [16] for the problem of determining the degree of parallelism
and placement of DSP applications onto cloud-edge infrastructure. The model is
enhanced with a heuristic that improves its scalability. We devise a solution for
estimating the number of replicas, and the processing and bandwidth require-
ments of each operator to respect a given throughput and minimize the appli-
cation end-to-end latency and deployment costs. The contributions of this work
are therefore: (i) it presents a MILP model for the joint-optimization of opera-
tor parallelism and placement on cloud-edge infrastructure to minimize the data
transfer time and the application deployment costs (Sect. 2); (ii) it introduces a
resource selection technique to improve the system scalability (Sect. 3); and (iii)
it evaluates the model and the resource selection technique against traditional
and state-of-the-art solutions (Sect. 4).

2 Proposed Model

This section introduces preliminaries, the placement problem and CES.

2.1 System Model

This work considers a three-layered cloud-edge infrastructure, as depicted
in Fig. 1, where each layer contains multiple sites. The IoT layer contains
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numerous geo-distributed computational constrained resources, therefore, often
acting as source or sinks, but with non negligible computational capacity to
support some DSP operators. Micro Datacenters (MDs) provide geo-distributed
resources (e.g., routers, gateways, and micro datacenters), but with less strin-
gent computational constraints than those in the IoT layer. The cloud comprises
high-end servers with fewer resource constraints [13].

Fig. 1. Target infrastructure.

The three-layered cloud-edge infrastruc-
ture is represented as a graph GI = 〈R,P〉,
where R is the set of computing resources
of all layers (RIoT ∪ RMD ∪ Rcloud), and
P is the set of network interconnections
between computing resources. Each k ∈ R has
CPU (CPUk) and memory (Memk) capaci-
ties, given respectively in 100×num of cores,
and bytes. The processing speed of a resource
(Vk) is its CPU clock in GHz. Similar to exist-
ing work [9], the network has a single intercon-
nection between a pair of computing resources
k and l, and the bandwidth of this intercon-
nection is given by Bwk,l and its latency is Latk,l.

The application graph specified by a user is a directed graph GA = 〈O, E〉,
where O represents data source(s) SourceO, data sink(s) SinkO and transforma-
tion operators TransO, and E represents the streams between operators, which
are unbounded sequences of data (e.g., messages, packets, tuples, file chunks) [4].
The application graph contains at least one data source and one data sink. Each
operator j ∈ O is the tuple 〈Sj , Cj ,U j , ARj〉, where Sj is the selectivity (mes-
sage discarding percentage), Cj is the data transformation factor (how much
it increases/decreases the size of arriving messages), Uj is the set of upstream
operators directly connected to j, and ARj is the input rate in Bps that arrives
at the operator. When operator j is a data source (i.e., j ∈ SourceO) its input
rate is the amount of data ingested into the application since Uj = ∅. Otherwise,
ARj is recursively computed as:

ARj =
∑

i∈Uj

ρi→j × DRi (1)

where ρi→j is the probability that operator i will send an output message to
operator j, capturing how operator i distributes its output stream among its
downstream operators. DRi is the departure rate of operator i after applying
selectivity Si and the data transformation factor Ci to the input stream:

DRi = ARi × (1 − Si) × Ci (2)

A physical representation of the application graph is created when opera-
tors are placed onto available resources as depicted in Fig. 2. Operators placed
within the same host communicate directly whereas inter-resource communica-
tion is done via the Data Transfer Service. Messages that arrive at a computing
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resource are received by the Dispatching Service, which then forwards them to
the destination operator within the computing resource. This service also passes
messages to the Data Transfer Service when inter-resource communication is
required. Each operator comprises an internal queue and a processing element,
which are treated as a single software unit when determining the operator prop-
erties (e.g., selectivity and data transformation factor), and its CPU and memory
requirements. Moreover, an operator may demand more CPU than what a single
resource can offer. In this case, multiple operator replicas are created in a way
that each individual replica fits a computing resource.

Fig. 2. Application graph adjusted to the computing resource capacities (placement).

The quality of a placement is guaranteed by meeting the application require-
ments. The CPU and memory requirements of each operator j for processing
its incoming byte stream are expressed as Reqj

cpu and Reqj
mem and they are

obtained by profiling the operator on a reference resource [1]. Ref j
cpu, Ref j

mem

and Ref j
data refers to the reference CPU, memory and processed data of operator

j, respectively. Since CPU and memory cannot be freely fractioned, the reference
values are rounded up and combined with ARj of j in order to compute Reqj

cpu

and Reqj
mem that handle the arriving data stream:

Reqj
cpu =

⌈
Ref j

cpu × ARj

Ref j
data

⌉
and Reqj

mem =

⌈
Ref j

mem × ARj

Ref j
data

⌉
(3)

2.2 Problem Formulation

The problem is modeled as a MILP with variables x(j, l) and f(i, k → j, l).
Variable x(j, l) accounts for the amount of bytes that a replica of operator j can
process on resource l, whereas variable f(i, k → j, l) corresponds to the number
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of bytes that operator replica i on resource k sends to downstream operator
replica j deployed on resource l.

The data ingestion rate in sources is constant and stable. Hence, it is possible
to compute CPU and memory requirements recursively to the entire application
to handle the expected load. Placing an application onto computing resources
incurs a cost. This cost is derived from Amazon Fargate’s pricing scheme1. The
cost of using one unit of CPU and storing one byte in memory at resource l is
given by Ccpu(l) and Cmem(l), respectively. While the cost of transferring a byte
over the network from resource k to l is denoted by Cbw(k, l).

As cloud-edge infrastructure comprises heterogeneous resources, the model
applies a coefficient Ωl = Ref j

V /Vl to adapt the operator requirements to resource
l. Ref j

V is the reference processing speed of the resource for operator j, and Vl is
the clock speed of resource l. The computational cost is given by:

CC =
∑

l∈R

∑

j∈O

Ccpu(l) ×
Req

j
cpu

Ωl
×β×x(j,l)

ARj

max Ccpu(l)
+

Cmem(l) × Reqj
mem×x(j,l)

ARj

max Cmem(l)
(4)

where max Ccpu(l) and max Cmem(l) are the cost of using all the CPU and
memory capacity of resource l. The CPU and memory costs are normalized
using their maximum amounts resulting in values between 0 and 1. β refers to a
safety margin to each replica requirements aiming to a steady safe system. This
margin relies on Queueing Theory premises to avoid an operator reaching the
CPU limits of a given computing resource, which requires a higher queuing time.

The network cost NC is computed as:

NC =
∑

p∈P

∑

a,b∈p

∑

j∈O

∑

i∈Uj

Cbw(a, b) × f(i, ps → j, pd)
max Cbw(a, b)

(5)

where a, b is a link that represents one hop of path p, and a, b can belong to
multiple paths. The resources at the extremities of path p hosting replicas i and
j are given by ps and pd, respectively. NC is normalized by max Cbw(a, b), the
cost of using all the bandwidth available between resources a and b.

The Aggregate Data Transfer Time (ATT) sums up the network latency of
a link and the time to transfer all the data crossing it, and is normalized by the
time it takes to send an amount of data that fills up the link capacity:

ATT =
∑

p∈P

∑

k,l∈p

∑

j∈O

∑

i∈Uj

f(i, ps → j, pd) × (Latk,l + 1
Bwk,l

)

Latk,l + 1
(6)

The multi-objective function aims at minimizing the data transfer time and the
application deployment costs:

min : ATT + CC + NC (7)

The objective function is subject to:
1 https://aws.amazon.com/fargate/pricing.

https://aws.amazon.com/fargate/pricing
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Physical Constraints: The requirements of each operator replica j on resource
l are a function of x(j, l); i.e., a fraction of the byte rate operator j should process
(ARj) with a safety margin (β). The processing requirements of all replicas
deployed on l must not exceed its processing capacity, as follows:

CPUl ≥
∑

j∈O

Reqj
cpu

Ωl
× β × x(j, l)

ARj
and Meml ≥

∑

j∈O

Reqj
mem × x(j, l)

ARj
(8)

To guarantee that the amount of data crossing every link a, b must not exceed
its bandwidth capacity:

∑

j∈O

∑

i∈Uj

f(i, ps → j, pd) ≤ Bwa,b ∀a, b ∈ p;∀p ∈ P (9)

Processing Constraint: The amount of data processed by all replicas of j
must be equal to the byte arrival rate of j:

ARj =
∑

l∈R
x(j, l) ∀j ∈ O (10)

Flow Constraints: Except for sources and sinks, it is possible to create one
replica of operator j per resource, although the actual number of replicas, the
processing requirements, and the interconnecting streams are decided within the
model. The amount of data that flows from all replicas of i to all the replicas of
j is equal to the departure rate of upstream i to j:

DRi × ρi→j =
∑

k∈R

∑

l∈R
f(i, k → j, l) ∀j ∈ O;∀i ∈ Uj (11)

Likewise, the amount of data flowing from one replica of i can be distributed
among all replicas of j:

x(i, k) × (1 − Si) × Ci × ρi→j =
∑

l∈R
f(i, k → j, l)

∀k ∈ R;∀j ∈ O;∀i ∈ Uj

(12)

On the other end of the flow, the amount of data arriving at each replica j of
operator i, must be equal to the amount of data processed in x(j, l):

∑

i∈Uj

∑

k∈R
f(i, k → j, l) = x(j, l) ∀j ∈ O;∀l ∈ R (13)

Domain Constraints: The placement k of sources and sinks is fixed and pro-
vided in the deployment requirements. Variables x(j, l) and f(i, k → j, l) repre-
sent respectively the amount of data processed by j in l, and the amount of data
sent by replica i in k to replica j in l. Therefore the domain of these variables is
a real value greater than zero:

x(j, l) = ARj ∀j ∈ SourceO ∪ SinkO;∀l ∈ R (14)

x(j, l) ≥ 0 ∀j ∈ TransO;∀l ∈ R (15)

f(i, k → j, l) ≥ 0 ∀k, l ∈ R; j ∈ O; i ∈ Uj (16)
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3 Resource Selection Technique

The three-layered cloud-edge infrastructure may contain thousands of computing
resources resulting in an enormous combinatorial search space when finding an
optimal operator placement. This work therefore proposes a pruning technique
that reduces the number of evaluated resources and finds a sub-optimal solution
under feasible time. The proposed solution extends the worst fit sorting heuristic
from Taneja et al. [17] by applying a resource selection technique to reduce the
number of considered computing resources when deploying operators.

The resource selection technique starts by identifying promising sites in each
layer from which to obtain computing resources. Following a bottom-up app-
roach, it selects all IoT sites where data sources and data sinks are placed.
Then, based on the location of the selected IoT sites, it picks the MD site with
the shortest latency to each IoT site plus the MD sites where there are data
sources and data sinks placed. Last, the cloud sites are chosen considering their
latency-closeness to the selected MD sites as well as those with data sources
and data sinks. After selecting sites from each layer, the function GetResources
(Algorithm 1) is called for each layer.

As depicted in Algorithm 1, GetResources has as input the layer name,
the vector of selected sites in the layer and the set of operators. First, it calls
GetResourcesOnSites, to get al.l computing resources from the selected sites,
sorted by CPU and memory in a worst-fit fashion (line 3). Second, it selects
resources that host sources or sinks (lines 4–7). Third, CPU and memory require-
ments from the operators that are neither sources or sinks are summed to
ReqCPU and ReqMem, respectively (line 9). When the evaluated layer is IoT,
ReqCPU and ReqMem are used to select a subset of computing resources whose
combined capacity meets the requirements (lines 18–21). For each operator of
the other two layers, the function selects a worst-fit resource that supports the
operator requirements. Since the goal is just to select candidate resources and
not a deployment placement, if there is no resource fit, it ignores the operator
and moves to the next one (lines 11–16). At last, the combination of resources
evaluated by the model contains those selected in each layer.

4 Performance Evaluation

This section describes the experimental setup, the price model for computing
resources, and performance evaluation results.

4.1 Experimental Setup

We perform an evaluation in two steps as follows. First CES is compared against
a combination of itself with the resource selection technique, hereafter called
CES-RS, to evaluate the effects that the resource pruning has on the quality
of solutions and on resolution time. Second, we compare CES-RS against state-
of-the-art solutions. The evaluations differ in the number of resources in the
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Algorithm 1: Resource selection technique.
1 Function GetResources(layer, Sites, O)
2 Selected ← {}, ReqCPU ← 0, ReqMem ← 0
3 Resources ← GetResourcesOnSites (Sites)

4 foreach j ∈ (SourceO ∪ SinkO) do
5 if j.placement ∈ Resources then
6 Selected ← Selected ∪ j.placement
7 Resources ← Resources − j.placement

8 foreach j ∈ (O − (SourceO ∪ SinkO)) do
9 ReqCPU ← ReqCPU + CPUj , ReqMem ← ReqMem + Memj

10 if layer! = IoT then
11 foreach r ∈ Resources do
12 if CPUr ≥ CPUj and Memr ≥ Memj then
13 selected ← selected ∪ r
14 Resources ← Resources − r
15 break

16 Sort (Resources)

17 if layer == IoT then
18 foreach r ∈ Resources do
19 if CPUr ≤ ReqCPU or Memr ≤ ReqMem then
20 Selected ← Selected ∪ r
21 ReqCPU ← ReqCPU − CPUr, ReqMem ← ReqMem − Memr

22 else
23 break

24 return Selected

infrastructure and the solutions evaluated. Both evaluations are performed via
discrete-event simulation using a framework built on OMNET++ to model and
simulate DSP applications. We resort to simulation as it offers a controllable
and repeatable environment. The model is solved using CPLEX v12.9.0.

The infrastructure comprises three layers with an IoT site, one MD and one
cloud. The resource capacity was modeled according to the characteristics of the
layer in which a resource is located, and intrinsic characteristics of DSP appli-
cations. IoT resources are modeled as Raspberry Pi’s 3 (i.e., 1 GB of RAM, 4
CPU cores at 1,2 GHz). As DSP applications are often CPU and memory inten-
sive, the selected MD and cloud resources should be optimized for such cases.
The offerings for MD infrastructure are still fairly recent and, although there
is a lack of consensus surrounding what the MD is composed of, existing work
highlights that the options are more limited than those of the cloud, with more
general-purpose resources. In an attempt to use resources similar to those avail-
able on Amazon EC2, MD resources are modeled as general purpose t2.2xlarge
machines (i.e., 32 GB of RAM, 8 CPU cores at 3.0 GHz), and cloud servers are
high-performance C5.metal machines (i.e., 192 GB of RAM, 96 CPU cores at
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3.6 GHz). Resources within a site communicate via a LAN, whereas IoTs, MDs,
and cloud are interconnected by single WAN path. The LAN has a bandwidth
of 100 Mbps and 0.8 ms latency. The WAN bandwidth is 10 Gbps and is shared
on the path from the IoT to the MD or to the cloud, and the latency from IoT
is 20 ms and 90 ms to the MD and cloud, respectively. The latency values are
based on those obtained by empirical experiments carried out by Hu et al. [9].

Existing work evaluated application graphs of several orders and intercon-
nection probabilities, usually assessing up to 3 different graphs [4,7,8,10]. To
evaluate CES and CES-RS we crafted five graphs to mimic the behaviour of
large DSP applications using a built-in-house python library. The graphs have
varying shapes and data replication factors for each operator as depicted in
Fig. 3. The applications have 25 operators, often more than what is considered
in the literature [18]. They also have multiple sources, sinks and paths, similar
to previous work by Liu and Buyya [10]. As the present work focuses on IoT
scenarios, the sources are placed on IoT resources, and sinks are uniformly and
randomly distributed across layers as they can be actuators – except for one sink
responsible for data storage, which is placed on the cloud.

Fig. 3. Application graphs used in the evaluation.

The operator properties were based on the RIoTBench IoT application bench-
mark [15]. RIoTBench offers 27 operators common to IoT applications and 4
datasets with IoT data. The CITY dataset is used with 380 byte messages col-
lected every 12 s containing environmental information (temperature, humidity,
air quality) from 7 cities across 3 continents. It has a peak rate of 5000 tuples/s,
which in the experiments is continuous and divided among sources. The remain-
ing properties are drawn from the values in Table 1.

We consider that Ref j
cpu, Ref j

data, the arrival byte rate ARj , probability
that an upstream operator i sends data to j ρi→j , selectivity Sj , and data
transformation pattern Cj , are average values obtained via application profiling,
using techniques proposed in existing work [1]. With Ref j

cpu and Ref j
data we are

able to compute requirements for each operator To create a worst case scenario
in terms of load, ρi→j is set to 1 for all streams in the application request. As the
model creates multiple replicas, ρi→j gets divided among instances of operator
j, hence creating variations on the arrival rate of downstream operators during
runtime. The operator processing requirements estimated by the model may not
be enough to handle the actual load during certain periods, so resulting in large
operator queues. To circumvent this issue we add a small safety margin, the β
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Table 1. Operator properties in the application graphs.

Property Value Unit

Selectivity 0–20 %

Data transformation pattern 70–130 %

Reference CPU 1–26 CPU units

Reference memory 1–27300000 Bytes

Reference data 38–2394000 Bytes

factor, as mentioned in Sect. 2.2, which is a percentage increase in the application
requirements estimated by the proposed model. A β too high results in expensive
over-provisioning. After multiple empirical evaluations, β was set to 10% of each
replica requirement.

Price Model: The price of using resources is derived from Amazon AWS ser-
vices, considering the US East Virginia location. The CPU and memory prices
are computed based on the AWS Fargate Pricing2 under a 24/7 execution.
Regarding the network, we consider a Direct Connection3 between the IoT site
and the AWS infrastructure. Direct Connections are offered under two options,
1 GB/s and 10 GB/s. As DSP applications generate large amounts of data, we
consider the 10 GB/s offer. The data sent from the IoT to AWS infrastructure
uses AWS IoT Core4. Connections between operators on the edge or on IoT
resources to the cloud use Private Links5. Amazon provides the values for CPU,
memory and network as, respectively, fraction of a vCPU, GB and Gbps, but
in our formulation the values for the same metrics are computed in CPU units
(100 ∗ num cores), bytes and Mbps. The values provided by Amazon converted
to the scale used in our formulation are presented in Table 2. As the environment
combines both public and private infrastructure, deployment costs are applied
only to MD and cloud resources, the network between these two, and the network
between these two and IoT resources. As IoT resources are on the same private
network infrastructure, the communication between IoT resources is free.

Evaluated Approaches and Metrics: Five different configurations of deploy-
ment requests are submitted for each application. The reported values for each
application are averages of these five executions. Each deployment request has a
different placement for sources and sinks with sources always on IoT resources
and at least one sink in the cloud. The operator properties such as selectivity
and data transformation pattern vary across configurations.

The performance of DSP applications is usually measured considering two
main metrics, namely throughput, which is the processing rate, in bytes/s, of
all sinks in the application; and end-to-end latency, which is the average time
2 https://aws.amazon.com/fargate/.
3 https://aws.amazon.com/directconnect/.
4 https://aws.amazon.com/iot-core/.
5 https://aws.amazon.com/privatelink/.

https://aws.amazon.com/fargate/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/privatelink/
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Table 2. Computing and network costs.

Resource Unit Cost

CPU CPU/month $0.291456

Memory Byte/month $3.2004e−09

Direct link IoT to AWS 10GB link/Month $1620

Link IoT to AWS Connection/Month $0.003456

KB $0.0000002

Communication IoT to cloud,
IoT to MD, and MD to cloud

GB $7.2 + 0.01 per GB

span from when a message is generated until it reaches a sink. The MILP model
takes the throughput into account in the constraints, and the end-to-end latency
indirectly by optimizing the Aggregate Data Transfer Time.

4.2 Resolution Time Versus Solution Quality

Here we evaluate how much the quality of a solution is sacrificed by reducing the
search space. The simulation, which runs for 220 s, considers 100 IoT devices,
a MD with 50 resources and a cloud with 50 resources. The throughput is the
same in all scenarios since it is guaranteed as a model constraint.

Figure 4 shows the end-to-end latency and deployment costs under CES and
CES-RS. There are some variations regarding the end-to-end latency both on
CES and on CES-RS. Since CES-RS aims to reduce the search space, it might
be counter intuitive to see cases where the resource selection with less options
obtains better end-to-end latency, such as in App3. However, the objective func-
tion considers both latency and execution costs as optimisation metrics. As CES
searches to strike a balance between cost and end-to-end latency, the average
deployment costs obtained with CES-RS for App 3 (Fig. 4(b)) are higher. This
behavior happens because under the limited search space, CES-RS finds sub-
optimal solutions, where the best trade-off resulted in better end-to-end latency.
To do so, it needed to use more edge or cloud devices, which incurs higher com-
putational and network costs.

As CES considers the whole search space, it explores more options and yields
better results. Despite reduced search space CES-RS can produce very similar
results – in the worst case yielding an end-to-end latency � 12% worse, and
deployment costs � 12% higher. The resolution time (Fig. 5), clearly shows that
CES considering the whole infrastructure faces scalability issues. Despite produc-
ing results that sometimes are worse than those achieved under CES, CES-RS
can obtain a solution up to � 94% faster. CES-RS would yield even more simi-
lar results on a larger infrastructure because their search space is limited by the
application size and requirements rather then by the infrastructure size.
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Fig. 4. End-to-end latency and deployment costs under CES and CES-RS.

Fig. 5. Resolution time to obtain a deployment solution.

4.3 Comparing CES-RS Against the State-of-the-Art

CES-RS is compared against two state-of-the-art approaches, namely Cloud-Only
and Taneja’s Cloud-Edge Placement (TCEP). Cloud-Only applies a random walk
considering only cloud resources, and TCEP is the work proposed by Taneja et
al. [17], where all resources (IoT, MD and cloud) are sorted accordingly with
their capacities, and for each operator it s elects a resource from the middle of
the sorted list. This experiment was executed during 120 s and considered 400
IoT devices, 100 resources on the MD and 100 resources on the cloud.

Figure 6 shows the throughput and end-to-end latency for all solutions, with
averages for each application. Since CES-RS guarantees a maximum throughput
through a constraint, on the best case the other approaches would achieve the
same values, and this can be observed on App3, App4 and App5. But under
App1 and App2 Cloud-Only struggles because these applications perform a lot
of data replication, thus producing large volumes of data. The large volume of
messages generated by App1 and App2 has an even bigger effect on the end-
to-end latency for Cloud-Only. When compared to Cloud-Only, TCEP provided
better results, but still � 80% worse than the results provided by CES-RS. CES-
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Fig. 6. Throughput and latency under CES-RS and state-of-the-art solutions.

RS achieves low values because, different from Cloud-Only and TCEP, it creates
several replicas, being able to better explore the IoT resources considering their
computational capacities and even further reducing the amount of data that is
send through the internet, facing less network congestion.

Figure 7 contains the costs results. Beyond better end-to-end latency, CES-
RS provides better computational costs. The reason that makes CES-RS achieve
computational costs at least � 6% better than the traditional approaches is the
creation of replicas. The considered cost model, accounts for an IoT infrastruc-
ture without deployment costs, making such devices very attractive for deploy-
ment. Since IoT devices have constrained computational capacity, it is hard to
deploy on such devices. Due to CES, CES-RS breaks an operator into several
small replicas, allowing the use of IoT resources.

Regarding network costs, CES-RS provides cheaper deployments on most
cases except on App4 and App5. In these two applications, IoT resources support
the operators’ requirements without creating operator replicas allowing TCEP to
exploit it and result in fewer data transfers. TCEP has higher computational costs

Fig. 7. Computational and network costs under CES-RS and state-of-the-art solutions.
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because it cannot split operators into multiple replicas, thus resulting in placing
the whole operator on powerful and expensive computing resources located on the
cloud or a MD. When CES-RS is compared to TCEP, it achieves a lower compu-
tational cost and a shorter end-to-end latency.

5 Related Work

The problem of placing DSP dataflows onto heterogeneous resources has been
shown to be at least NP-Hard [2]. Moreover, most of the existing work neglects
the communication overhead [6], although it is relevant in geo-distributed infras-
tructure [9]. Likewise, the considered applications are often oversimplified, ignor-
ing operator patterns such as selectivity and data transformation [14].

Effort has been made on modeling the operator placement on cloud-
edge infrastructure, including sub-optimal solutions [5,17], heuristic-based
approaches [12,19], while others focus on end-to-end latency neglecting through-
put, application deployment costs, and other performance metrics when estimat-
ing the operator placement [3,4]. Existing work also explores Network Function
Virtualization (NFV) for placing IoT application service chains across fog infras-
tructure [11]. Solutions for profiling DSP operators are also available [1]. The
present work addresses operator placement and parallelism across cloud-edge
infrastructure considering computing and communication constraints by mod-
eling the scenario as a MILP problem and offering a solution for reducing the
search space.

6 Conclusion

This work presented CES, a MILP model for the operator placement and paral-
lelism of DSP applications that optimizes the end-to-end latency and deployment
costs. CES combines profiling information with the computed amount of data
that each operator should process whereby obtaining their processing require-
ments to handle the arriving load and achieve maximum throughput. The model
creates multiple lightweight replicas to offload operators from the cloud to the
edge, thus obtaining lower end-to-end latency.

To overcome the issue of scalability with CES, we devise a resource selection
technique that reduces the number of resources evaluated during placement and
parallelization decisions. The proposed model coupled with the resource selec-
tion technique (i.e., CES-RS) is 94% faster than solving CES alone, it produces
solutions that are only 12% worse than those achieved under CES and per-
forms better than traditional and state-of-the-art approaches. As a future work
we intent to apply the proposed model along with its heuristic to a real-world
scenario.
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Abstract. Various kinds of dynamic routing architectures are used
in today’s service- and cloud-based architectures, including sidecar-based
routing, routing through a central entity such as an event store, or archi-
tectures with multiple dynamic routers. We propose an analytical model
of request loss during router and service crashes, as well as an empirical
validation of that model. The comparison of the empirical data to the
predicted values by our model shows a low enough and converging error
rate for using the model during system architecting. Our model predicts
that, having the same crash probability, decentralized routing results
in losing a higher number of requests in comparison to more central-
ized approaches. To the best of our knowledge, our study is the first to
empirically study the reliability trade-off in such architectural decisions.

1 Introduction

Many distributed system architecture patterns [3,10,15] have been suggested
for dynamic routing [8]. Some dynamic routing architectures require a single
dynamic request routing decision, e.g., when using load balancing. More complex
request routing decisions or combinations of decisions, such as routing to the
right branch of a company or checking for compliance to privacy regulations,
often require multiple runtime checks during one sequence of requests.

In our prior work [1], we studied representative service- and cloud-based sys-
tem architecture patterns for dynamic request routing. A typical cloud native
architecture pattern is the sidecar pattern [10,12] in which the sidecar of each ser-
vice handles incoming and outgoing traffic [6]. In contrast, a central entity, e.g.,
an API Gateway, an event streaming platform [15], or any kind of central service
bus [3], can be used to process the request routing decisions. These two extremes
are often combined and multiple routers are used; this is called dynamic routers
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in this paper. Consider an API Gateway, two event streaming platforms, and a
number of sidecars, all making routing decisions in a cloud-based architecture.

At present, the impacts of such architectures and their different configura-
tions on system reliability have not been studied. More is known about other
qualities relevant for this decision. For instance, our prior work [1] has shown that
more distributed approaches for dynamic data routing offer a better performance
compared to more centralized solutions. As reliability is a core consideration in
service and cloud architectures [14], a reasonably accurate failure prediction for
the feasible architecture design options in a certain design situation would help
architects to better design system architectures considering quality trade-offs.

RQ1: What is the impact of choosing a dynamic routing architecture, in partic-
ular central entity, sidecar-based, or dynamic routers, on system reliability?

RQ2: How can we predict this impact when making architectural design decisions
regarding system reliability?

We model request loss during router and service crashes in an analytical
model based on Bernoulli processes; request loss is used as the externally visible
metric indicating the severity of the crashes’ impacts. The model abstracts cen-
tral entities, dynamic routers, and sidecars in a common router abstraction. To
validate our analytical model, we designed an experiment in which we studied
36 representative experimental cases (i.e., different experiment configurations)
for the three kinds of architectures Our results show that the error is constantly
reduced with a higher number of experimental runs, converging at a prediction
error of 8.1%. Given the common target prediction accuracy of up to 30% in
the cloud performance domain [11] these results are more than reasonable. Our
model predicts and our experiment confirms that more decentralized routing
results in losing a higher number of requests than more centralized approaches.

2 Related Work and Background

2.1 Related Work

Architecture-Based Reliability Prediction. To predict the reliability of a
system and to identify reliability-critical elements of its system architecture,
various approaches such as fault tree analysis or methods based on a continuous
time Markov chain have been proposed [17]. Architecture-based approaches, like
ours, are often based on the observation that the reliability of a system does not
only depend on the reliability of each component but also on the probabilistic
distribution of the utilization of its components, e.g., a Markov model [4].

Empirical Reliability or Resilience Assessment. Today many software
organizations use large-scale experimentation in production systems to assess
the reliability of their systems, which is called chaos/resilience engineering [2].
A crucial aspect in resilience assessment of software systems is efficiency [13].
To reduce the number of experiments needed, knowledge about the relationship
of resilience patterns, anti-patterns, suitable fault injections, and the system’s
architecture can be exploited to generate experiments [18].
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Fig. 1. Dynamic routing architecture patterns (adapted from [1])

Service-Specific Reliability Studies. Some related works introduce service-
specific reliability models, e.g., Wang et al. [19] propose a discrete time Markov
chain model for analyzing system reliability based on constituent services. Grassi
and Patella [7] propose an approach for reliability prediction that considers
the decentralized and autonomous nature of services. However, none of these
approaches studies and compares major architecture patterns in service and cloud
architectures; they are based on a very generic model about the notion of service.

2.2 Background: Dynamic Routing Architecture Patterns

Central Entity (CE). In a CE architecture, as shown in Fig. 1, the central
entity manages all request flow decisions. One benefit of this architecture is
that it is easy to manage, understand, and change as all control logic regarding
request flow is implemented in one component. However, this introduces the
drawback that the design of the internals of the central entity component is a
complex task. CE can be implemented utilizing an API Gateway, an event store,
an event streaming platform [15], or a service bus [3].

Sidecar Architecture (SA). Figure 1 presents an SA example. Sidecars [6,10,
12] offer benefits whenever decisions need to be made structurally close to the
service logic. One advantage of this architecture is that, in comparison to the
central entity service, it is usually easier to implement sidecars since they require
less complex logic to control the request flow; however, it is not always possible
to add sidecars, e.g., when services are off-the-shelf products.

Dynamic Routers (DR). Figure 1 shows a specific dynamic router [8] configu-
ration. One benefit of using DR is that dynamic routers can use local information
regarding request routing amongst their connected services. For instance, if a set
of services are dependent on one another as steps of processing a request, DR
can be used to facilitate the dynamic routing; nonentheless, dynamic routers
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introduce an implementation overhead regarding control logic, deployment and
so on since they are usually distributed on multiple hosts.

3 Model of Request Loss During Crashes

We use the common term router for all request flow control logic.

3.1 Definition of Internal and External Loss

In Fig. 1 routers and services send internal requests amongst one another to
complete the processing of one external request received from clients. In case
of a crash, external requests will not be processed fully. We define external and
internal loss as the number of lost external and internal requests, respectively.

Internal Loss. In case of a crash, per each external loss, the internal loss is the
total number of internal requests (IRT ) minus the ones that have been executed.
Let ILc, ELc and nexec

c be the internal and external loss, and the number of
executed internal requests for the crash of a component c:

ILc = ELc · (IRT − nexec
c ) (1)

Note that IRT and nexec
c need to be parameterized based on the application. An

example of this parameterization is given in Sect. 4.

External Loss. Let dc be the expected average downtime after a component c
crashes and cf the incoming call frequency, i.e., the frequency at which external
requests are received. Then, the external loss per crash of each component c is:

ELc = dc · cf (2)

3.2 Bernoulli Process to Model Request Loss

In this section, we model request loss based on Bernoulli processes [17]. We only
model the crash of routers and services in Fig. 1 because we assume an API
Gateway is stable and reliable. Moreover, a crash of a Client results in external
requests not being generated; as a result, external requests are not lost. Hence,
from now on, we use the common term components for all routers and services.

Number of Crash Tests. During T , all components can crash with certain
failure distributions. Here, T should be interpreted as the time interval in which
these failure distributions are observed (e.g., failure distributions of a day or a
week). We model this behavior by checking for a crash of any of the system’s
components every crash interval CI. That is, our model “knows” about crashes
in discrete time intervals only, as it would be the case, e.g., if the Heartbeat
pattern [9] is used for checking system health. Let ncrash be the number of times
we check for a crash of components during T , i.e., the number of crash tests:

ncrash = � T

CI
� (3)
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Expected Number of Crashes. Each crash test is a Bernoulli trial in which
success is defined as “component crashed”. Assuming CI > dc (justifiable
because when a component crashes it cannot crash again) all ncrash crash tests
of a component c are independent. The binomial distribution of each Bernoulli
process gives us the number of successes. Let Pc be the crash probability of a
component c every time we check for a crash and E[Cc] the expected number of
its crashes, i.e., the expected value of its binomial distribution during T :

E[Cc] = ncrash · Pc (4)

Total Internal and External Loss. The total internal loss (ILT ) is the sum
of internal loss per crash of each component. Let C be the set of all components
that can crash, i.e., routers and services. Using Eqs. (1) to (4):

ILT =
∑

c∈C

E[Cc] · ILc = � T

CI
� · cf ·

∑

c∈C

Pc · dc · (IRT − nexec
c ) (5)

The total external loss (ELT ) is the sum of external loss per crash of each
component. Using Eqs. (2) to (4):

ELT =
∑

c∈C

E[Cc] · ELc = � T

CI
� · cf ·

∑

c∈C

Pc · dc (6)

Total Number of Crashes. The total number of crashes (CT ) is the sum of
the expected number of crashes of each component. Using Eqs. (3) and (4):

CT =
∑

c∈C

E[Cc] = � T

CI
� ·

∑

c∈C

Pc (7)

4 Empirical Validation

4.1 Experimental Planning

Goals. We aim to empirically validate our model’s accuracy with regard to the
number of crashes as well as the total external and internal loss represented
by Eqs. (5) and (6). We realized these architectures using a prototypical imple-
mentation, instantiated and ran them in a cloud infrastructure, measured the
empirical results, and compared the results with our model.

Technical Details. We used a private cloud with three physical nodes, each
having two identical Intel® Xeon® E5-2680 CPUs. On top of the cloud nodes
we installed Virtual Machines (VMs) with eight CPU cores and 60 GB system
memory running Ubuntu Server 18.04.01 LTS. Docker containerization is used to
run the cloud services which are implemented in Node.js. We utilized five desk-
top computers to generate load, each hosting an Intel®Core™i3-2120T CPU @
2.60 GHz, 8 GB of system memory which run Ubuntu 18.10. They generate load
using Apache JMeter which sends HTTP version 1.1 requests to the cloud nodes.
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Specific Model Formulae. In our example configurations each service receives
an internal requests, processes it and sends it back either to a router or the API
gateway, so we can calculate IRT based on the number of services (nserv):

IRT = 2nserv + 1 (8)

In order to calculate nexec
c , we need to differentiate between service and router

crashes. In case of a service crash, all internal requests up until the last router
will be executed. Let scrashed be the label number of the crashed service:

nexec
c = 2scrashed − 1 (9)

In case of a router crash, we need to know the allocation of routers (A) which is
a set indicating the number of directly linked services of each router. Let rcrashed
be the label number of the crashed router :

nexec
c = 2

rcrashed∑

r=1

Ar−1 (10)

Experimental Cases. We chose different levels for cf and nserv to study their
effects on ILT . We selected cf based on a study of related works, e.g., [5,16], as
10, 25, 50, and 100 requests per second. Based on our experience and a survey
on existing cloud applications in the literature and industry [1], the number of
cloud services which are directly dependent on each other in a call sequence is
usually rather low. As a result, we chose 3, 5, and 10 as values for nserv. We
simulated a node crash by separately generating a random number for each cloud
component. If the generated random number for a component was below its crash
probability, we stopped the component’s Docker container and started it again
after a time interval d = 3 s. We chose T = 10 min, during which we checked for
a crash for all components simultaneously every CI = 15 seconds resulting in
ncrash = 40 (Eq. (3)). Each component had a uniform crash probability of 0.5%;
akin to the related works we chose a relatively high crash probability to have a
high enough likelihood to observe a few crashes during T .

Data Set Preparation. For each experimental case, we instantiated the archi-
tectures and ran the experiment for exactly ten minutes (excluding setup time).
We studied three architectures, three levels of nserv and four levels of cf , result-
ing in a total of 36 experimental cases; therefore, a single run of our experiment
takes exactly six hours (36×10 min) of runtime. Since our model revolves around
expected values in a Bernoulli process, we repeated this process 200 times (1200 h
of runtime) and report the arithmetic mean of the results1.

4.2 Results

Experimental Results Analysis. Based on Eq. (5), ILT is a model element
that incorporates crashes of all components and it includes all model views,
1 The data of this study is published as an open access data set for supporting repli-

cability: https://zenodo.org/record/4008041, doi:10.5281/zenodo.4008041.

https://zenodo.org/record/4008041
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e.g., architecture configurations, expected average downtime, etc. Therefore, we
conduct our analysis mainly based on ILT . It can be observed from Table 1 that
when we keep nserv constant, increasing cf results in a rise of ELT (predicted
by Eq. (6)) in all cases, which leads to a higher value of ILT (Eq. (5)).

Table 1. Results of the model and the experiment

Arch. nserv cf CT ELT ILT CT ELT ILT σ(ILT )

Model Experiment

CE 3 10 0.800 24.000 114.000 0.760 23.395 98.960 118.552

25 0.800 60.000 285.000 0.620 47.435 228.975 292.389

50 0.800 120.000 570.000 0.705 106.370 480.235 608.635

100 0.800 240.000 1140.000 0.725 218.130 1045.000 1216.765

5 10 1.200 36.000 246.000 1.165 36.405 236.575 236.536

25 1.200 90.000 615.000 1.110 85.400 608.040 574.267

50 1.200 180.000 1230.000 1.115 172.085 1155.550 1173.295

100 1.200 360.000 2460.000 1.040 317.585 2223.655 2101.272

10 10 2.200 66.000 786.000 1.920 62.000 720.190 616.778

25 2.200 165.000 1965.000 2.125 171.290 2063.305 1711.931

50 2.200 330.000 3930.000 2.160 344.765 4223.665 3458.119

100 2.200 660.000 7860.000 1.960 590.665 6853.500 6567.047

DR 3 10 1.200 36.000 162.000 1.075 32.505 153.045 175.952

25 1.200 90.000 405.000 1.225 92.745 452.160 466.814

50 1.200 180.000 810.000 1.225 182.595 882.695 916.540

100 1.200 360.000 1620.000 1.130 328.925 1477.405 1470.332

5 10 1.600 48.000 306.000 1.670 51.995 319.210 301.989

25 1.600 120.000 765.000 1.760 135.105 816.895 686.709

50 1.600 240.000 1530.000 1.790 270.540 1597.535 1324.199

100 1.600 480.000 3060.000 1.635 490.990 2909.115 2353.168

10 10 2.600 78.000 930.000 2.525 82.255 921.610 495.543

25 2.600 195.000 2325.000 2.355 187.715 2181.590 1275.035

50 2.600 390.000 4650.000 2.205 345.350 4043.070 2508.002

100 2.600 780.000 9300.000 2.375 741.870 8544.700 5022.780

SA 3 10 1.200 36.000 162.000 1.140 34.910 170.265 186.911

25 1.200 90.000 405.000 1.230 93.265 435.685 452.190

50 1.200 180.000 810.000 1.215 181.305 883.510 911.088

100 1.200 360.000 1620.000 1.185 345.950 1634.850 1844.829

5 10 2.000 60.000 390.000 1.795 55.745 350.055 244.898

25 2.000 150.000 975.000 1.795 138.910 891.525 647.402

50 2.000 300.000 1950.000 1.715 261.740 1716.095 1284.733

100 2.000 600.000 3900.000 1.790 528.420 3385.240 2633.592

10 10 4.000 120.000 1380.000 3.900 127.715 1443.040 773.632

25 4.000 300.000 3450.000 3.745 306.745 3477.305 1979.270

50 4.000 600.000 6900.000 3.860 617.375 7140.655 4262.114

100 4.000 1200.000 13800.000 3.870 1232.770 14072.910 8287.361
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Table 2. Prediction error of experimental runs

Number of Runs CT (%) ELT (%) ILT (%)

50 12.919 12.307 13.946
100 9.416 8.492 9.593
150 8.326 7.426 8.731
200 8.081 7.097 8.105

Since in our experiment, we instantiated the DR architecture with three
dynamic routers, it is interesting to consider the experimental case of nserv = 3.
In this case, SA and DR have the same number of components, i.e., routers
and services. Note that SA uses a sidecar per each cloud service; as a result
with nserv = 3, we will also have three sidecars. The difference between the two
architectures in this experimental case is that in DR dynamic routers are placed
on a different VM than their directly linked services, but in SA sidecars are
placed on the same VM as their corresponding cloud services. For this reason,
it can be observed that the reported values for SA and DR closely resemble
each other when we have different values of cf but keep nserv constant at three.
Considering the cases with five or ten cloud services, we almost always observe
higher ILT when we change the architecture from a CE to a DR or from a DR to
an SA but keep the same configurations, i.e., constant nserv and cf . It is because
in our experiment, CE has only one control logic component (the central entity),
DR has three (dynamic routers), and SA has nserv (sidecars). Consequently, the
number of crashes corresponding to control logic components goes up from CE
to DR and then to SA. This increases CT , which results in losing more requests.

5 Discussion and Conclusions

Evaluation of the Prediction Error. We measure the prediction error by
calculating the Mean Absolute Percentage Error (MAPE) [17]. Let modeli and
empiricali be the result of the model, and the measured empirical data for
experimental case i, respectively. ncase is the number of cases (36 in this study).

MAPE =
100%
ncase

·
ncase∑

i=1

∣∣∣∣
modeli − empiricali

empiricali

∣∣∣∣ (11)

Table 2 reports prediction error measurements of our model for a different
number of runs. As the table shows, with a higher number of experimental runs
the prediction error is reduced, which indicates a converging error rate. After 200
runs, the final prediction error regarding ILT is 8.1%. As mentioned before, the
common target prediction accuracy in the cloud performance domain is 30% [11].

Threats to Validity. While injecting crashes is a commonly taken approach
(see Sect. 2.1), a threat remains that measuring internal and external loss based



Reliability of Dynamic Routing Architectures 173

on these crashes might not measure reliability well, e.g., cascading effects of
crashes [14] are not covered in our experiment. We collected an extensive amount
of data to validate our model; however, we did so in limited experiment time
and with injected crashes, simulated by stopping Docker containers. We avoided
factors such as other load on the experiment machines; much of the related
literature takes a similar approach. To increase internal validity we decided not
to run the experiment on a public cloud where, e.g., other load on the experiment
machines might have had a significant impact on the results. As a consequence,
there is the threat that generalization to a public cloud setting might be limited.
As our private cloud setting uses very similar hardware and software stacks as
many public cloud offerings, we believe this threat to be small. As the statistical
method to compare our model’s predictions to the empirical data, we used the
MAPE metric as it is widely used and offers good interpretability in our research
context. To mitigate the threat that this statistical method might have issues
we double-checked three other error measures, which led to similar results.

Conclusions. We investigated the impact of architectural design decisions on
system reliability. Regarding RQ1, our study concludes that more decentralized
routing results in losing a higher number of requests in comparison to more
centralized approaches. Regarding RQ2, we derived an analytical model for
predicting request loss in the studied architectures and empirically validated
this model using 36 representative experimental cases. Our results indicate that
with a higher number of experimental runs the prediction error is constantly
reduced, converging at a prediction error of 8.1%.
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Abstract. In the cloud market, there exist multiple cloud providers
adopting auction-based mechanisms to offer cloud services to users.
These auction-based cloud providers need to compete against each other
to maximize their profits by setting cloud resource prices based on their
pricing strategies. In this paper, we analyze how an auction-based cloud
provider sets the auction price effectively when competing against other
cloud providers in the evolutionary market where the amount of partic-
ipated cloud users is changing. The pricing strategy is affected by many
factors such as the auction prices of its opponents, the price set in the pre-
vious round, the bidding behavior of cloud users, and so on. Therefore, we
model this problem as a Partially Observable Markov Game and adopt
a gradient-based Multi-agent deep reinforcement learning algorithm to
generate the pricing strategy. Furthermore, we run extensive experiments
to evaluate our pricing strategy against the other four benchmark pricing
strategies in the auction-based cloud market. The experimental results
show that our generated pricing strategy can beat other pricing strate-
gies in terms of long-term profits and the amount of participated users,
and it can also learn cloud users’ marginal values and users’ choices of
cloud providers effectively.

Keywords: Auction-based cloud market · Pricing strategy · Markov
games · Multi-agent deep reinforcement learning

1 Introduction

Because of economical, scalable, and elastic access to computing resources, the
development of cloud computing has achieved significant success in the industry.
More and more companies and individuals prefer using computing services over
the Internet. This contributes to the vigorous development of the cloud com-
puting market. In the cloud market, there exist different types of cloud resource
transaction mechanisms, such as pay as you go, subscription-based transaction.
Furthermore, some cloud providers may run auction-based mechanisms to sell
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 175–186, 2020.
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resources to users, such as Amazon’s Spot Instance. In such a context, cloud
providers need to set proper transaction prices for the sale of resources. Moreover,
there usually exist multiple cloud providers offering cloud resources, where cloud
users can choose to participate in one of the auctions to bid for the resources. In
this situation, the resource transaction prices will affect the cloud users’ choices
of cloud providers and bidding behavior significantly, and in turn, affect the
cloud providers’ profits. Furthermore, the competition among providers usually
lasts for a long time, i.e. the providers compete against each other repeatedly.
Therefore, in this paper, we intend to analyze how the cloud provider sets the
auction price effectively in order to maximize long-term profits.

In more detail, in the environment with multiple auction-based cloud
providers, each cloud user needs to determine which auction mechanism to par-
ticipate in according to the choice model and then submits the bid to the cloud
provider. The auction mechanism then determines the auction price. Users whose
bids are not less than the auction prices obtain the resources and pay for it
according to the auction prices, not their bids. In this paper, we analyze how to
design an appropriate pricing strategy to set the auction price to maximize the
cloud provider’s profits in the environment with two cloud providers. First, we
consider the evolution of the market, where the numbers and the preferences of
cloud users are changing. In addition, how cloud users choose the providers and
bidding, and how providers set the auction prices are affected by each other, and
it is a sequential decision problem. Reinforcement learning is an effective way
to solve such problems. Furthermore, this problem involves multiple providers
competing against each other. This is a Markov game, which can be solved
by Multi-Agent Reinforcement Learning. Specifically, we use a multi-agent deep
deterministic policy gradient, named MADDPG to generate the cloud provider’s
pricing strategy [10]. Finally, we run experiments to evaluate our pricing strat-
egy against four typical pricing strategies. The experimental results show that
the pricing strategy generated by our algorithm can not only respond to the
opponents’ changing prices in time but also learn the marginal values of cloud
users and users’ choices on providers. Moreover, the pricing strategy generated
by our algorithm can beat other strategies in terms of long-term profits.

The structure of this paper is as follows. In Sect. 3, we introduce the basic
settings of cloud users and cloud providers. In Sect. 4, we describe how to use
the MADDPG algorithm to generate a pricing strategy. We run extensive exper-
iments to evaluate the pricing strategy in different situations in Sect. 5. Finally,
we conclude in Sect. 6.

2 Related Work

Since cloud computing involves resource provision and consumption, auction-
based mechanisms have been widely used by cloud providers for sale of resources,
such as AmazonEC2′s Spot Instance [8]. In [15], AmazonEC2 Spot Instance
mechanism was investigated from a statistical perspective. The researchers also
considered the proportion of idle time for cloud service instances and proposed
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an elastic Spot Instance method to ensure stable reliability revenues for providers
[3]. In [6], a demand-based dynamic pricing model for Spot Instance was pro-
posed by adopting a genetic algorithm. There also exist some works predicting
the auction prices of AmazonEC2 Spot Instances [2,7]. In [12,14], the authors
analyzed how cloud providers using “pay as you go” set prices in the compet-
ing environment, but did not take into account the auction-based cloud market
and the evolution of cloud users. In [4], the authors proposed a non-cooperative
competing model which analyzed the equilibrium price of a one-shot game, but
ignored the long-term profits and did not consider the auction-based mecha-
nism as well. Actually, to the best of our knowledge, few works have considered
how to set auction prices effectively in the competing environment with multiple
auction-based cloud providers.

3 Basic Settings

In this section, we introduce the basic settings of cloud users and cloud providers.
We assume that there are two cloud providers P1 and P2 in the cloud market,
where they compete with each other to maximize their long-term profits. This
market is constantly evolving, and we use t to denote the time stage. At the
beginning of each stage, each provider publishes its auction price of the last
stage. Then each user chooses to be served by a provider based on its choice
model of the provider (see Sect. 3.1). However, if the user’s expected profit in
both providers is negative, it may not enter any providers. After users select
the cloud providers, they submit their bids. Now two providers determine the
auction prices and obtain the corresponding immediate reward (see Sect. 3.2).
The competition enters into the next stage.

3.1 Cloud Users

In this section, we describe the basic settings of cloud users. The amount of cloud
users participating in the cloud market varies as the market evolves. Therefore,
we model it as a classical logical growth function [11], which is:

N(t) =
N0N∞

N0 + (N∞ − N0) e−δt
(1)

where N(t) is the number of cloud users at stage t, δ is the temporal evolution
rate of the market, and the initial number of cloud users is N0, the market is sat-
urated when the amount of cloud users entering the market becomes stabilized,
then the number of cloud users is N∞.

Users’ Choices of Providers. Cloud users’ choices of providers are mainly
dependent on their expected utilities in the selected provider. The expected
utility of cloud user j choosing to be served by provider i at stage t is:

ut
j,i = mj − pi,t + ηj,i = vt

j,i + ηj,i (2)
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where mj is the marginal value that user j can receive from per-unit requested
resource, pi,t is the auction price set by provider i, and we use vt

j,i = mj − pi,t

to represent the profit that cloud user j can make when choosing provider i at
stage t. ηj,i means that user j has an implicit preference on provider i, which is
an independently, identically distributed extreme value, and the density function
is f (ηj,i) = e−ηj,ie−e−ηj,i .

According to the user’s expected utility in Eq. 2 and the density function, user
j will choose to be served by provider i (i′ �= i) only if its utility is maximized.
The probability of cloud user j choosing to be served by provider i at stage t is
denoted as P t

j,i:

P t
j,i =

evt
j,i

∑
i′ e

vt
j,i′

(3)

Users’ Bidding Model. After each user chooses a provider, it needs to bid for
the cloud resource. We adopt a bidding algorithm based on a feedback control
system, where cloud users utilize a feedback loop to automatically adjust the
submitted bids [1], which is shown in Fig. 1.

Fig. 1. Cloud users’ bidding algorithm

The user’s submitted bid for the next stage is bp:

bp = pl +
pu − pl

π
× arccot(w) (4)

where pl and pu are the lower and upper bound of the cloud service instance
respectively, w is a control signal to adjust the user’s bid appropriately. The
range of arccot(w) is (0, π), and thus the user’s bid bp is constrained in (pl, pu).

Note that w consists of two parts, which is the current proportional error wp,
and the historical accumulated errors wi(t):

wp = kp × er (kp < 0, pl − pu < er < pu − pl) (5)

where kp is the proportional gain of the control signal. er is defined as the
difference between the submitted bid at stage t and the auction price of the cloud
service instance at stage t, i.e. er = ph−bp|h=t. Therefore er is in (pl−pu, pu−pl).
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Since historical errors contain more information to help users to improve
their bidding behavior and win bids, we decide to use an integral controller to
further study the historical errors, which can be expressed as:

wi(t) = ki ×
∫ t

0

e(τ)dτ ≈ ki ×
t∑

h=0

eh (ki < 0, pl − pu < eh < pu − pl) (6)

where ki is the integral gain of the control signal, eh is the historical error at
stage h (0 ≤ h ≤ t). Based on Eq. 5 and Eq. 6, we can calculate the control signal
w, that is: w = wp + wi ≈ kp × er + ki × ∑t

h=0 eh.

3.2 Cloud Providers

In this section, we introduce the basic settings of cloud providers. Cloud providers
incur costs when providing cloud services. Similar to the work in [5], the marginal
cost of provider i in a per-unit cloud service at stage t is:

ci,t = ci,0 ×
⎛

⎝
∑

j∈Ni,t

dj,t

⎞

⎠

−βe−ρt

(7)

This equation indicates that the marginal cost of provider i will decrease when
the number of cloud users Ni,t in demands of cloud services dj,t increase at
stage t, where ci,0 is the initial cost of cloud provider i, β > 0 and ρ > 0 are two
parameters to control the decreased marginal cost when users’ demands increase.
We then compute the provider’s immediate payoff(reward), which is:

ri,t =
∑

j∈Ni,t

dj,t × (pi,t − ci,t) (8)

Its long-term profits, which are the discounted cumulative profits over all stages,
is calculated as: Ri =

∑T
t=0 γtri,t.

4 MADDPG Algorithm

In this section, we describe how to model the issue as a Partially Observable
Markov Game and use MADDPG to solve it to generate a pricing strategy.

4.1 Partially Observable Markov Game

In this paper, two cloud providers repeatedly competing with each other to max-
imize their profits, which is a sequential-decision problem. Furthermore, since
cloud providers and users cannot perceive all information of the world, it is a
partially observable Markov game [9].

In more detail, this Markov game consists of a set of states S describing the
cloud market, a set of pricing actions A1, A2 and a set of the observed states
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O1, O2 for each provider. We use s = (p1avg, p
1
sd, p

2
avg, p

2
sd, b

1
avg, b

1
sd, b

1
max, b1min,

b1mid, b2avg, b
2
sd, b

2
max, b2min, b2mid, n1,t, n2,t, c1,t, c2,t) ∈ S to denote a state. For

cloud provider Pi, the average and standard deviation of its auction prices
over a period of time are pi

avg, p
i
sd respectively. From the cloud users’ bids, we

can compute the average, standard deviation, maximum, minimum, and median
value of the bids, which are bi

avg, b
i
sd, b

i
max, bi

min, bi
mid respectively. We use ni,t

to represent the number of cloud users choosing to be served by provider i
at stage t, and use ci,t to denote the marginal cost of provider i at stage t.
Note that in the realistic cloud market, the cloud providers’ auction prices
over a period of time are usually accessible to users. However, the number
of cloud users choosing to be served by provider i and users’ bids are usu-
ally not public. That is, p1avg, p

1
sd, p

2
avg, p

2
sd are shared public information of

all providers, but bi
avg, b

i
sd, b

i
max, bi

min, bi
mid, ni,t, ci,t are private information hid-

den to the other cloud provider. Therefore, the observation of provider Pi is
oi = (p1avg, p

1
sd, p

2
avg, p

2
sd, b

i
avg, b

i
sd, b

i
max, bi

min, bi
mid, ni,t, ci,t) ∈ Oi.

Then we use πθi
: Oi×Ai → [0, 1] to present the pricing strategy of provider i.

After providers take pricing actions, the state transfers to the next state accord-
ing to the state transfer function Δ : S × A1 × A2 → S′, then each provider can
obtain the immediate reward ri,t : S × Ai → R, and obtain the corresponding
observation oi : S → Oi of the next state. Given the immediate reward made
at stage t, the cloud provider can maximize the long-term profits through an
efficient pricing strategy.

4.2 Multi-Agent Deep Deterministic Policy Gradient

In this section, we introduce how to use MADDPG to generate a pricing strategy
in the competing environment with two cloud providers. MADDPG is a multi-
agent reinforcement learning algorithm based on the Actor-Critic framework
proposed by OpenAI, where Actor is a probability-based actuator, while Critic
evaluates every action of Actor to modify the weight of Actor. When the critic
of MADDPG evaluates the actors’ actions, it not only considers themselves but
also the rest of the agents [10].

Specifically, the two cloud providers whose strategies πθ = {π1, π2} are
parameterized by θ = {θ1, θ2}. Then the gradient of expected return J (θi) =
E[Ri] of cloud provider i is:

∇θi
J (θi) = Es∼pμ,ai∼πi

[∇θi
log πi (ai|oi) Qπθ

i (x, a1, a2)] (9)

where pμ is the state distribution, x = (o1, o2) is the observed value of all cloud
providers. Qπθ

i (x, a1, a2) is a centralized value function and its input contains not
only some observed information x, but also all providers’ actions a1, a2. When
Eq. 9 is extended to a deterministic policy, we use μθi

w.r.t. parameter θi to
represent the provider’s strategy. Then its gradient can be written as:

∇θi
J (μθi

) = Es,a∼D[∇θi
μθi

(ai|oi)∇ai
Qμ

i (x, a1, a2)|ai=μθi
(oi)] (10)
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where D is the experience replay buffer contains tuple (x, a1, a2, r1, r2, x
′), in

which r1, r2 are the immediate rewards, and x′ is the two providers’ observations
in the next stage. The centralized action-value function Qμ

i is updated as:

L (θi) = Ex,a,r,x′
[
(Qμ

i (x, a1, a2) − y)2
]
, y = ri + γQμ′

i (x′, a′
1, a

′
2)

∣
∣
∣
a′

j=μ′
θj

(oj)

(11)
where μ′ = {μθ′

1
, μθ′

2
} is the set of target policies with the delayed parameter θ′

i.
Updating the value function in Eq. 11 requires the pricing strategy of the

opponent provider. However, the opponent’s pricing strategy is usually private
in the realistic environment, and thus hard to be known. Therefore each cloud
provider can only estimate the opponent j’s pricing strategy π̂ϕj

i
with ϕ param-

eter instead. This approximated strategy is learned by maximizing the log prob-
ability of provider j’s actions with an entropy regularizer, which is:

L
(
ϕj

i

)
= −Eoj ,aj

[
log π̂ϕj

i
(aj |oj) + λH

(
π̂ϕj

i

)]
(12)

where H
(
π̂ϕj

i

)
is the entropy of the policy distribution. Now y in Eq. 11 can be

replaced by the approximated value ŷ:

ŷ = ri + γQμ′
i

(
x′, π′

ϕi
(oi) , π̂′

ϕj
i

(oj)
)

, i �= j (13)

where π̂′
ϕj

i

(oj) is the target network of the approximate policy π̂ϕj
i
.

To improve the robustness of agents’ strategies, sub-strategy will be used to
enhance the adaptability of agents. Therefore, in each round of a game, the cloud
provider randomly selects a sub-strategy to execute from a set that contains
K different sub-strategies. For cloud provider i, the goal is to maximize the
ensemble objective, which is:

Je (μθi
) = Ek∼unif(1,K),s∼pμ,a∼μ

θ
(k)
i

[Ri(s, a)] (14)

where μθi
is a set of K different sub-strategies, and μ

θ
(k)
i

represents an element

in this set. Consequently, the gradient of ensemble objective w.r.t θ
(k)
i is:

∇
θ
(k)
i

Je (μθi
) =

1
K

E
x,a∼D

(k)
i

[

∇
θ
(k)
i

μ
θ
(k)
i

(ai|oi) ∇ai
Qμθi (x, a1, a2)

∣
∣
∣
ai=μ

θ
(k)
i

(oi)

]

(15)
where D

(k)
i is the replay buffer for each sub-strategy μ

θ
(k)
i

of agent i.

5 Experiments

5.1 Parameter Settings

In this paper, two cloud providers P1 and P2 can set the auction prices in the
range of [10, 100]. Each round has 200 stages. We set the number of cloud users
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at initial stage t = 0 is N0 = 100, at saturation stage t = 200 is N∞ = 1000,
the temporal evolution rate of the market is δ = 0.07. The users’ marginal
values follows a uniform distribution within [40, 70]. Then we use two queues
Queue1, Queue2 to store the two providers’ historical auction prices, and the
length of the queue is len = 10. The lower bound price of the cloud service
instance equals to the lowest price that the provider can set, i.e. pl = 10, and
the upper bound price of the cloud service instance equals to the marginal value
that cloud user j can obtain from per-unit requested resource, i.e. pu = mj . kp

and ki in the users’ bidding model follow a uniform distribution within (−0.1, 0).
We set β = 0.01, ρ = 0.02 and ci,0 = 8.0, and the users’ demands for cloud
resources follow a uniform distribution of dj,t ∼ U [1, 3].

5.2 Training

In this section, we generate a pricing strategy that can maximize the cloud
provider’s long-term profits in the competing cloud market. The same as the work
done in [13], we consider the fictitious self-playing which can learn the optimal
pricing strategy from scratch. Therefore, we use MADDPG with fictitious self-
playing to train our agents. After training, a pricing strategy based on MADDPG
is shown in Fig. 2. From this figure, we find that the prices set by the two cloud
providers P1, P2 at each stage converge in [10, 30], which is less than the highest
auction price range [40, 70] that cloud users can accept. It further indicates that
the MADDPG algorithm can learn the marginal values of cloud users, and set
the prices a bit lower than the marginal values of most users. By doing this, the
cloud provider can maximize its profits while keeping cloud users.

Fig. 2. MADDPG’s pricing strategy

5.3 Strategy Evaluation

In this section, we run experiments to evaluate our pricing strategy against four
typical pricing strategies, and we evaluate the pricing strategy by using these
metrics: auction price set by the pricing strategy, cloud user ratio which is the
ratio of the number of cloud users entering in the provider to the total number of
users, and cumulative profits which is the long-term profits made by the provider
across all stages.
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Vs. Random Pricing Strategy. In the market, there exist some fresh compet-
ing cloud providers who may explore the market by adopting a random pricing
strategy to obtain more information. Therefore, we first evaluate our pricing
strategy against the competing provider adopting a random pricing strategy of
uniform distribution. The results are shown in Fig. 3, we find that the provider
using the MADDPG pricing strategy can attract more cloud users and obtain
more cumulative profits than the opponent using a random pricing strategy.

(a) Price (b) Cloud user ratio (c) Cumulative profit

Fig. 3. MADDPG vs. Random (uniform distribution)

Vs. Price Reduction Strategy. Some cloud providers may keep reducing the
prices to attract cloud users in the cloud market. We consider two kinds of price
reduction strategies, named Linear Reduction strategy (RecL) and Exponential
Reduction strategy (RecE) where RecL decreases the price linearly while RecE
decreases the price rapidly in the initial stages and then becoming smooth when
approaching the threshold price. The results are shown in Fig. 4 and Fig. 5. From
the experiments, we find that our provider using MADDPG can adjust the price
in time to adapt to the changes of the opponent, and thus make the cumulative
profits at a higher level.

(a) Price (b) Cloud user ratio (c) Cumulative profit

Fig. 4. MADDPG vs. Linear Reduction
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(a) Price (b) Cloud user ratio (c) Cumulative profit

Fig. 5. MADDPG vs. Exp reduction

Vs. Greedy Pricing Strategy. Similarly, some cloud providers may adopt
a greedy pricing strategy, which only focuses on the immediate reward of each
stage, regardless of long-term profits. Therefore, we set the discount factor γ
to 0 in MADDPG. The results are shown in Fig. 6. We find that the price of
the greedy strategy is slightly higher, so the number of cloud users attracted by
the provider using the MADDPG pricing strategy is higher. Again our pricing
strategy can beat the greedy pricing strategy in terms of cumulative profits.

(a) Price (b) Cloud user ratio (c) Cumulative profit

Fig. 6. MADDPG vs. Greedy

Vs. M-MADDPG Pricing Strategy. To further demonstrate the effective-
ness of the pricing strategy generated by MADDPG algorithm, we train a new
pricing strategy against itself, and we name it as M-MADDPG. The results are
shown in Fig. 7. We can see that the provider using the M-MADDPG pricing
strategy has almost the same cumulative profits as that in the MADDPG pric-
ing strategy. This means that even though the opponent can train a particular
pricing strategy against the MADDPG pricing strategy, it still cannot beat our
pricing strategy.
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(a) Price (b) Cloud user ratio (c) Cumulative profit

Fig. 7. MADDPG vs. M-MADDPG

6 Conclusion

In this paper, we use the gradient-based multi-agent deep reinforcement learning
algorithm to generate a pricing strategy for the competing cloud provider. We
also run extensive experiments to evaluate our pricing strategy against the other
four typical pricing strategies in terms of long-term profits. Experimental results
show that MADDPG based pricing strategy can not only beat the opponent’s
pricing strategy effectively but also learn the marginal values of cloud users and
users’ choices of providers. Our work can be used to provide useful insights on
designing practical pricing strategies for competing cloud providers.
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Abstract. Mobile Edge Computing (MEC) policies that bind user ser-
vice requests to edge servers, seldom take into account user preferences of
Quality-of-Service (QoS) and the resulting Quality-of-Experience (QoE).
In this paper, we design a novel user-centric optimal allocation policy
considering the QoS preferences of users, with an attempt to maximize
the overall QoE. Additionally, we propose a real-time mobility aware
user-centric heuristic algorithm to solve the allocation problem by accom-
modating the time varying QoS demands of users. Experimental results
on real data sets demonstrate the efficiency of our allocation scheme and
a comparison with state-of-art approaches in MEC literature.

Keywords: Edge computing · Server allocation · User migration

1 Introduction

In recent times, Mobile Edge Computing (MEC) [1] has emerged as a new
paradigm that allows service providers to deploy services on MEC servers located
near base stations. As users move around, their application service invocations
are routed to proximate MEC servers to curtail the high latencies of cloud com-
munication networks. A service allocation policy is designed to determine the
user-service-server binding, i.e. which service requests from which users are pro-
visioned by which MEC servers in their vicinity, as they move around. In recent
years, several allocation policies, static and dynamic, considering different opti-
mization metrics have been proposed in literature [3,4,6–8].

The general philosophy of service allocation policies is to design and optimize
a user-mobility aware service-server-user binding that optimizes some quantita-
tive metric (e.g.. latency, energy, throughput) to cater to user application service
needs and ensure seamless usage experience. A recent work [6] has proposed a
novel view of considering qualitative QoS level offerings by service providers in
designing the service bindings. Additionally, the authors have quantitatively cor-
related QoS values with overall Quality-of-Experience (QoE) of users to demon-
strate the existence of thresholds, beyond which, enhancing QoS values no longer
enhances a user QoE. This work, however, does not consider a user’s QoS pref-
erences when deciding these bindings. Moreover, the binding is static, in other
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 187–197, 2020.
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words, once an allocation is decided for a user service invocation to a specific QoS
level at an edge server, he is continued to be served at the same level throughout,
oblivious to the fact that the user may not be in a position to enjoy services at
a higher QoS level always due to battery or other constraints. Also, the policy is
not adaptive, in the sense that user movements, joining or leaving of users, and
user QoS preferences and preference changes in terms of the required QoS lev-
els, are not accounted for. This motivated us to design a dynamic self-adaptive
allocation policy that can address these variations.

Designing an allocation that considers user preferences of QoS levels is chal-
lenging due to the dynamics of MEC systems, the stochastic nature of service
invocation patterns and the large space of user-service-server binding configura-
tions. In our view, allocation policies in literature are more catered towards the
perspective of service providers [5,6], aiming to optimize quantitative metrics,
often ignoring users’ qualitative preferences of QoS levels when making allocation
decisions. QoS levels typically translate to a monotonically increasing footprint
on the resource consumption for both the user and the provider, at the server
end where the service is provisioned, and at the user end where a communication
latency depending on the size of transferred data is incurred. Policies like [6],
being user agnostic, may allocate QoS levels to users leading to an added aggra-
vation. In such scenarios, a service provider may also suffer a degradation in
throughput since the high QoS levels translate to more resources allocated at
the server end which could have been otherwise allocated to other users. In the
worst case, an overtly aggressive user-agnostic QoS allocation can lead to new
service requests being needlessly denied service.

Our proposal in this paper is a service allocation policy that caters to both
user and provider views considering individual QoS preference levels to enhance
overall QoE of users in a mobility-aware scenario. The QoS preferences of users
can vary over time, for example, a user initially having high battery levels, and
preferring to stream services at high QoS levels, may sometime later choose to
downgrade his preference depending on the changing battery conditions to alle-
viate energy utilization spent in data communication. We take into account such
user specified adjustments in an attempt to maximize the overall user experi-
ence. Additionally, we cater to mobility of users and changing conditions as well.
We first formulate the problem of dynamic QoS preference aware edge user allo-
cation and propose an Integer Linear Programming (ILP) formulation for the
optimal solution, and a heuristic which produces near optimal QoE allocations.
We use the EUA dataset [4–7], a real-world dataset as edge server locations,
and the PlanetLab and Seattle Latency dataset [10] to generate latencies repre-
sentative of MEC environments to validate our approach. Experimental results
demonstrate the efficiency of our heuristic which produces near optimal alloca-
tions. We compare our results with two state-of-the-art approaches and show
that our proposal outperforms both with respect to QoE.
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2 A Motivating Example

In this section, we present a motivating example to explain the problem context.
Consider the scenario demonstrated in Fig. 1. There are two edge servers E1 and
E2 and six users u1, u2, u3, u4, u5 and u6. The coverage area of a particular
server is marked by a circle, hence any user within the coverage area of a server
can use the services hosted at the particular server. For example, u1 can only
access the services from E1, whereas, u4 can access the services hosted at both
E1 and E2. The resource capacity of each server is represented as a resource
vector 〈vCPUs,RAM, storage, bandwidth〉 [6], where vCPU denotes the num-
ber of virtual CPUs. For the example scenario, assume the resource capacities
of server are denoted by vectors s1 = 〈16, 32, 750, 8〉 and s2 = 〈16, 16, 500, 4〉.
Edge servers host services at different QoS levels. Provisioning a service at a
QoS level consumes a certain amount of server resources. We assume both E1

and E2 host a service P with 3 QoS levels W1,W2 and W3 as in Table 1. Each
QoS level has a resource requirement represented by a 4-element resource vector
W = 〈vCPUs,RAM, storage, bandwidth〉 and an associated QoE value. W3 is
the highest QoS level. Each user when invoking P specifies a desired QoS level,
W1, W2 or W3, at which he wishes to be served, and additionally, a lower tol-
erance threshold QoS level, below which the services are rendered unacceptable
to him. The initial QoS preferences of the users are in Table 2. In the scenario
demonstrated in Fig. 1, u3 follows the trajectory as depicted by the curved line
while all other users remain stationary. While in its trajectory, at time t = 0,
demarcated by a black rectangle, u3 invokes P with QoS preference as W3. Simul-
taneously, u1, u2, u4, and u5 also invoke P at t = 0, while u6 does the same at
t = 5 s. During the course of its trajectory, at t = 5 s, u3 downgrades its QoS
preference from W3 to W2, at the point indicated by the blue diamond.

Table 1. Available QoS levels

QoS level Resource requirement QoE

W1 〈2, 2, 10, 1〉 1.5

W2 〈4, 4, 15, 1.5〉 4

W3 〈8, 4, 20, 2〉 5

Table 2. User QoS details

User QoS QoS Allocation t = 0 s Allocation t = 5 s
level Min [6] Our [6] Our

u1 W1 Any E1, W2 E1, W1 E1, W3 E1, W1

u2 Any Any E1, W2 E1, W2 E1, W2 E1, W3

u3 W3 W2 E1, W3 E1, W3 E2, W3 E2, W2

u4 W2 Any E2, W3 E2, W2 E1, W2 E1, W2

u5 W3 W2 E2, W3 E2, W3 E2, W3 E2, W2

u6 W1 Any Idle Idle NA E2, W1

Fig. 1. Representative MEC scenario
(Color figure online)

User QoS Preference Agnostic Allocation: A user preference agnostic policy such
as [6] does not even take into the account the initial QoS preferences. The alloca-
tion is shown in Column 4 of Table 2 as Ek,Wp pairs indicating the edge server
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Ek and the QoS level Wp to which the user ui is bound. Moreover, at t = 5 s, this
policy continues to provision u3 at W3 as shown in Column 6, agnostic of the
fact that u3 had requested for a downgrade to W2. The QoE value experienced
by u3 is 5. In such a scenario, since the bandwidth requirement of W3 is 2 Mbps,
u3 incurs an additional latency overhead due to increased data transfer. Also, at
t = 5 s, when u6 invokes the service, E2 no longer has the needed resources to
serve him, considering its serving capacity and the resources already consumed.
Given the coverage constraint and the locations shown, u6 cannot be served
by E1. However, had u3’s QoS level been reduced to W2 when u3 changed its
preference level, u6 could be onboarded at E2.

Our Method at Work: Our user preference aware policy considers the initial
preferences, and allocates levels as depicted in Table 2 to the users. Further, at
time t = 5 s, when u3 indicates its change of preference level, we reduce the
QoS level allocated from W3 to W2. In such a scenario, for QoS level W2, the
bandwidth requirement is 1.5 Mbps, hence, the additional latency incurred by
u3 earlier is no longer applicable. When we assign W2 to u3, the QoE index of
u3 is 4, lower than W3. Since u3 requested for a lower QoS level, we consider the
corresponding QoE value is good enough. Additionally, since a lower QoS level
corresponds to lower resource consumption at the server, we can re-distribute
the resources to better serve other users. u6 can now be onboarded at t = 5 s.

The example shows the trade-off between resource consumption, latency and
QoE in user QoS agnostic versus user QoS preference aware provisioning. The
latter is challenging to design considering time-varying user QoS requirements
while catering to user mobility. To the best of our knowledge, this is the first
work towards mobility-aware dynamic user allocation with user QoS preferences.

3 System Model and ILP Formulation

In this section, we first formalize the system model. We consider a discrete time-
slotted model [7]. We denote by U t = {u1, u2 . . . un} the set of active users and
by St = {s1, s2 . . . sm} the set of active edge-servers at time t. Each server sj
has a radius Rj and a capacity vector Ct

j 〈CPU,RAM, storage, bandwidth〉 at

t, denoted as Ct
j = 〈(c1j

)t
,
(
c2j

)t
,
(
c3j

)t
,
(
c4j

)t〉 in that order. We denote by Wl

the demand vector 〈CPU,RAM, storage, bandwidth〉 of QoS level l, denoted as
〈w1

l , w
2
l , w

3
l , w

4
l 〉 in that order. A server can only cater to service requests from

users within the service radius. For user ui, the preferred QoS level is denoted as
Ht

i , and the threshold Lt
i for the lowest QoS level tolerable. A service allocation

policy can choose to serve him at any QoS level between the threshold and
the preferred level (both inclusive), with an attempt to serve maximum number
of users at their preferred levels, thereby, maximizing the overall QoE of all
stakeholders, while keeping in view the capacity of each edge server, and the
coverage constraint induced by the relative separating distance between the user
and the servers. If a user cannot be allocated to any edge-server a suitable QoS
level inside the preference range, he has to wait till the required resources are
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available. We assume a set of q QoS levels. Let Et
il denote the QoE value for

ui at QoS level l, qti the QoS level assigned to ui at time t, dtij the distance
between ui and server sj , Δt

ij the latency experienced by ui allocated to sj at
t. We compute latency Δt

ij as a function of qti and dtij . The latency experienced
in any user-server allocation has to honor a maximum limit denoted by δ. We
formulate an Integer Linear Program (ILP) for the problem below.

Objective:

Maximize :
∑

t∈T

|Ut|∑

i=1

|St|∑

j=1

Ht
i∑

l=Lt
i

xt
ijl × Et

il (1)

where,

xt
ijl =

{
1, If user ui is allocated to server sj at QoS level l at time t

0, Otherwise

Subject to:

1. Coverage Constraint:

dtij ≤ Rt
j (2)

2. Capacity Constraint:

∑|Ut|
i=1

∑Ht
i

l=Lt
i

wk
l × xt

ijl ≤
(
ckj

)t

: ∀t ∈ T,∀j ∈ {
1, . . . |St|} , ∀k ∈ {1, . . . 4} (3)

3. Latency Constraint:

∑|St|
j=1

∑Ht
i

l=Lt
i

Δt
ij × xt

ijl ≤ δ : ∀t ∈ T, ∀i ∈ {
1, . . . |U t|} (4)

4. User-Server Mapping:

∑|St|
j=1

∑Ht
i

l=Lt
i

xt
ijl ≤ 1 : ∀t ∈ T, ∀i ∈ {

1, . . . |U t|} (5)

5. Integer Constraint:

xt
ijl ∈ {0, 1} : ∀t ∈ T,∀i ∈ {

1, ..|U t|} ,∀j ∈ {
1, ..|St|} ,∀l ∈ {

Lt
i..H

t
i

}
(6)

The objective function aims at maximization of the overall QoE of users over
the set of time slots t over a period T . The indicator variable xt

ijl at any time
instant t, encodes all possible server-user-qos preferences. The objective function
implicitly encodes all individual preferences and the threshold in the summation,
hence no additional constraints are needed to specify the minimum threshold
QoS level as required. At any time instant t, a user ui can be allocated to
sj if the user is within radius Rj , as expressed by the constraint in Eq. 2. To
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allocate ui to sj at a QoS level l, the resource requirement at sj is denoted
by Wl. The total resources allocated must honor the capacity constraint of each
server. Equation 3 ensures that the combined requirements of users allocated to a
server remains within the server’s total capacity for each dimension CPU, RAM,
storage and bandwidth of the resource vector. Equation 4 ensures that users are
allocated to servers such that the latency bound is honoured. Equation 5 is used
to express that a single service can only be allocated to a single server at a
QoS level at any t. Equation 6 specifies that xt

ijl variables are Boolean indicator
variables denoting service requests from users, the respective server to which
the requests are allocated and required QoS values. As observed in [6], QoS is
non-linearly correlated with the QoE for any service, and we represent the QoS-
QoE correlation using the logistic function (Eq. (7)) as in [6] with an additional
scaling according to the QoS level preference and threshold specified by a user.
The QoE Et

il experienced by ui at time t for level l is expressed as:

Ei
l =

Emax

1 + exp {−α (γt
il − βt

i )}
(7)

The scaling assists to assign lowest QoE value to lowest QoS level and highest
QoE value to highest QoS level. Et

il depends on the QoS level W t
l , his QoS

preference Ht
i and the threshold level Lt

i at time t. Here, γt
il =

∑4
k=1 wk

l

4
is

the mean computational demand of QoS level Wl of user ui at time t; βt
i =

γt
iHt

i
− γt

iLt
i

2
is the mid-point of QoE value of user ui at t. The value Emax is the

maximum value of QoE and α is the growth factor of the logistics function.
A solution to the ILP gives us for each time slot t, an optimal allocation of

user service requests to QoS levels at edge servers, honoring QoS preferences,
the latency upper bound and radius constraints. If the ILP solver returns unsat-
isfiable, we conclude that the user set cannot be allocated to their proximate
edge servers, given the constraints. To cater to dynamic mobility and preference
changes, we re-evaluate the ILP when any of the following scenarios occur: (a)
any user changes the QoS specification; b) users or edge-servers become inactive;
c) users move in and out of the service zone of servers; and d) new service requests
are placed. However, given the associated computational needs, re-evaluating the
ILP frequently turns out to be a non-scalable strategy, as demonstrated in our
experimental results presented in Sect. 5. To address this, we design a scalable
heuristic to cater to real-world dynamic scenarios, as described in the following.

4 Heuristic Solution

In this section, we present the design of an efficient polynomial time heuris-
tic which generates near-optimal solutions. We use a Red-Black Tree [2] as an
indexing data-structure. The algorithm maintains a Red-Black Tree for each
edge server and uses a metric defined as i-factor for each user in its service zone
as index. This heuristic is used in place of the ILP, and executes whenever any
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of the events mentioned earlier occur, necessitating a reevaluation of the alloca-
tion. However, this being a polynomial time algorithm, is lightweight and can
be executed more efficiently than the ILP. Our heuristic has the following steps.

– We first divide the new users into two classes, single-server class (S-class)
and multi-server class (M-class). The users within the range of only one edge-
server are clustered into S-class and the users withing the range of more than
one edge-server are put into the M-class. For example, in Fig. 1, the users u1,
u2, u3, u5 and u6 are within the range of only one server i.e. E1 and are hence
clustered into S-class. However, u4 can access both E1 and E2, hence is put
into the M-class. This categorization is done once for all users at the start,
and adjusted at every time slot only if there is a change in user locations,
new users join in, or existing users leave.

– The users in both S-class and M-class are allocated an initial QoS level
at their minimum threshold specified. Referring to the scenario in Sect. 2,
u1, u2, u3 u4, and u5 are initially assigned at QoS level W1, W1, W2, W1

and W2 respectively. The increment factor (i-factor), discussed later in this
section, is computed for all the users in both the S-class and M-class. The
i-factor is determined by user’s QoS preference and presently assigned QoS
level (plevel). For determining the allocation, S-class is considered before the
M-class since S-class users are bound to a single edge server. Each user is
assigned to the edge server according to his i-factor. Users with low i-factor
get higher preference to an edge server during the assignment. For M-class
users, the allocation policy tries to assign an user to the nearest server with
required remaining computation resource, with a motivation to serve him with
better latency experience. We examine the users according to their i-factor,
compute an initial assignment and update the Red-Black Tree with i-factor
as key for each server.

– Our heuristic then attempts to enhance the QoS level of each user (upper
bounded by their respective preference levels) and re-evaluates the i-factor
after incrementing the QoS level. This process of incrementing continues till
all users receive their QoS preference levels or the server exhausts its available
resources and we move on to examine the next server in the vicinity of the
user from where he can be served.

– For servers which have exhausted their resources, users from M-class may be
migrated to the other nearby servers having free resources. Once users have
been migrated across nearby servers, the QoS levels have to be re-evaluated.
QoS upgrade is re-performed after migration.

The heuristic selects the user with smallest i-factor and increments the QoS
level of that user. It then proceeds to update the Red-Black Tree with the re-
computed i-factor. Considering our example, at t = 0, on enhancement of QoS
levels, the users u1 . . . u5 are alloted W1, W2, W3, W2 and W3 respectively.

Computation of i-factor: The i-factor helps to determine which user causes more
alterations to QoS values if the QoS level of a user is increased. Users with
lower i-factor values are given higher preferences when the QoS values allocated
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to them are upgraded. Equation 8 determines the i-factor of a certain user ui

having level preference and threshold of Ht
i and Lt

i respectively with presently
assigned QoS level of l at time t. The QoE function Et

i , Emax and α are from Eq. 7
discussed previously. The numerator affects the i-factor by scaling the QoE value
according to the present QoS level, i.e., it assigns a higher i-factor as user’s reach
their preferred QoS levels. The denominator demarcates the difference between
Ht

i and Lt
i, the higher the difference, the lower is i-factor.

ifactor =
Emax × (Et

i + l)
α × max(Ht

i − Lt
i, 1)

(8)

Migrating Users for Improving QoE: Once all the Red-Black trees correspond-
ing to all edge servers have been updated, we find the list of users who can
be migrated from the servers which have exhausted their resource capacities
and hence, no further QoS upgradation for users are possible. Upon successful
migration, our allocation algorithm is re-initiated for possible QoS upgradation.

5 Experiments and Analysis of Results

All experiments were conducted on a machine with Intel Core i5-8250U processor
and 8 GB RAM. The ILP model discussed in Sect. 3 was solved using the Python
Mixed-Integer-Programming library. The results from our heuristic are compared
with the baseline ILP formulated in Sect. 3, the optimal algorithm presented
in [6] and the dynamic mobility aware policy in [7].

Experimental Setup: We use the EUA data-set for edge server locations, which
includes data of base stations and users within the Melbourne Central Busi-
ness District area. The coverage area of edge servers are set randomly to values
between 200-400 m radius. To simulate different attributes of users over time,
we randomly select several users and do the following: a) randomly assign 20%
users with 0 m/s for static users, 30% users with random speed between 1−2 m/s
for walking users, and the remaining 50% users with speed between 10 − 20 m/s
for users in vehicle; b) randomly assign an initial direction between 0◦ to 360◦

which then follows the random way-point mobility model [7]; and c) randomly
assign the users’ high and low QoS preferences.

We generate latencies from the real world PlanetLab and Seattle latency
data-set [10]. Since the PlanetLab and Seattle latency data-set comprises laten-
cies from across the world, which is not fully representative of latencies in an
MEC environment, we cluster the data-set into 400 clusters considering devices
which are in proximity of each other. A cluster is randomly picked and a repre-
sentative latency is assigned according to our latency measure derived based on
the distance and QoS level, as in [9]. We consider the product of distance and
QoS level, which is scaled down according to the number of clusters. A discrete-
time slotted model with each slot of 25 s is considered in which the users move
and change their QoS preferences dynamically. At the end of each time slot,
some user locations are updated, and to 20% of users, we randomly assign new
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preference levels to simulate dynamic QoS preferences. The number of discrete
time slots is kept at 20 for each experiment. To consider various sizes of user
population, we vary the number of users from 50 to 250 at intervals of 50 users,
while keeping the number of servers to 50 and the server resources at 100% of
the cumulative resource requirement of all users at the highest QoS level, dis-
tributed uniformly over all servers. Each experiment is averaged over 50 runs.
For the QoE model, we set Emax = 5, α = 1.5. We compare the results of our
ILP, our heuristic, the static ILP proposed in [6] and MobMig [7], a Mobility-
aware dynamic allocation policy. We consider the ILP in [6] by running it in
each discrete time step since it is a static formulation. We use MobMig by set-
ting the QoS level as highest possible since MobMig does not support dynamic
QoS changes. For comparison, we study the following metrics: a) Average QoE
achieved per time slot; b) Average number of users allocated within their QoS
preference per time slot; c) Average execution time (CPU time) for evaluation
of algorithms; and d) Average latency experienced by users.

Results and Discussion: Figure 2 depicts the average QoE and the average num-
ber of users allocated within their QoS preference on the experimental setup
with varying users. The results show the effectiveness of the heuristic in being
able to generate near optimal solutions comparable with the results from the
optimal ILP for both average QoE and average number of users allocated within
their QoS preferences. The ILP achieves better allocation of users within their
QoS preference having QoE values similar to the ILP in [6]. MobMig [7], being
unaware of user QoS preferences allocates users at highest available QoS level
when used in a variable QoS scenario. Consequently, the policy leads to a vio-
lation in preference levels in a large fraction of users as inferred from Fig. 2b.
However, the ILP [6], which seeks to optimize overall QoE, generates near equiv-
alent QoE and number of allocated users as compared to our ILP and heuristic.

Fig. 2. Varying users experiment results

The average latency per user is depicted in Fig. 3a. As can be inferred from
Fig. 3a, both our optimal and heuristic policies significantly outperform Mob-
Mig and the ILP in [6] in terms of average latency incurred by the users. This
is because our preference aware policies provide the flexibility to dynamically
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Fig. 3. Latency and running time for allocation policies

adapt QoS values depending on user-qos preference levels and hence conserve
resources both at the server end and at the user end. Additionally, at the user-
end, adapting to changing QoS levels, prevents higher communication data trans-
fer latencies. As such, our heuristic, which initially assigns the lowest assignable
QoS value to users, while progressively upgrading the QoS values depending on
resource availability, results in a much lower average latency owing to lower com-
munication overhead. Figure 3b additionally depicts the efficiency of our algo-
rithm in a mobility-driven dynamic scenario where the heuristic takes a frac-
tion of the running time of our ILP. Our heuristic requires lower running times
as compared to the ILP in [6] while requiring similar running times to Mob-
Mig simultaneously taking QoS-preferences into account. For each algorithm,
we consider time-out as 25 s, i.e., the length of each slot. In Fig. 3b, however,
we illustrate the time it would have actually taken by the algorithms for the
allocation to compare effectiveness.

6 Conclusion and Future Work

In this paper, we have proposed a novel approach to the user-centric dynamic
QoS edge user allocation problem. We formulated an optimal ILP and a near
optimal heuristic to aid scalability in mobility driven real-world scenarios. As
future work, we are working on learning based strategies for modeling user move-
ments, QoS preferences, service invocations and migrations.
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Abstract. In the distributed and dynamic edge computing environ-
ment, edge servers are subject to runtime failures. Therefore, edge servers
in an area must be fault-tolerated to ensure the reliability of services
deployed on those edge servers. Server redundancy is an effective fault
tolerance technique and has been widely applied in different distributed
computing environments in the past decade. However, conventional fault
tolerance techniques are not suitable for edge computing which has
unique characteristics, i.e., the constrained coverage areas of individual
edge servers (coverage constraint) and the partial overlapping between
edge servers’ coverage areas (overlapping constraint). In this paper, we
make the first attempt to investigate and tackle the novel edge server
redundancy (ESR) problem. We prove that the ESR problem is NP-
hard. Then, we introduce a novel optimal approach for identifying a
group of edge servers to be redundant. The objective is to maximize
the effectiveness of fault tolerance measured by the harmonic mean of
the scope and strength of fault tolerance given a redundancy budget.
Furthermore, we propose a heuristic approach for finding sub-optimal
fault tolerance strategies efficiently in large-scale ESR scenarios. Exten-
sive experiments are conducted on a widely-used real-world dataset to
evaluate the proposed approaches against three representative baseline
approaches.

Keywords: Edge computing · Fault tolerance · Redundant server
identification · Group degree centrality

1 Introduction

Edge computing is a promising distributed computing paradigm that provides
computation and storage capacity within end-users’ proximity [10]. In such an
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environment, edge servers, typically facilitated by a micro-data center or a small
cluster of servers, usually bind with small base stations to share the compu-
tation burdens of mobile and IoT devices and provide high quality-of-service
(QoS) for end-users [16]. Therefore, edge servers are the critical components in
the edge computing environment. However, edge servers are subject to runtime
failures because of various unexpected reasons such as hardware faults, software
exceptions, and cyberattacks [3], similar to their counterparts in cloud data cen-
ters [22]. In fact, edge servers are more prone to failures and outages than cloud
servers due to their geographical dispersion, limited resources and low scalability
[1]. In addition, unlike cloud servers that are managed in-house, geographically-
distributed edge servers cannot be inspected, repaired or replaced immediately
upon failures. Edge server failures will disconnect users from the edge server net-
work if they are not covered by any other edge servers. Therefore, effective and
efficient techniques are indispensable for fault-tolerating edge servers to ensure
high QoS for end-users served by edge servers. Server redundancy is a promising
solution [8]. A redundant server deployed with and isolated from a primary server
can take over the workloads when the primary server fails. As the coverage areas
of adjacent edge servers usually partially overlap to avoid blank areas, the edge
servers sharing overlapping coverage areas also can take over the workloads of
the end-users located in the overlapping coverage areas upon each other’s failure.

However, it is usually unrealistic for an edge infrastructure provider to make
every edge server redundant in a particular area because it can easily incur
excessive redundancy costs and operational costs. A cost-effective solution is to
identify a group of edge servers to be redundant strategically. In this paper, we
refer to those edge servers as critical edge servers and the others as uncritical
edge servers. Given a redundancy budget, i.e., the percentage of critical edge
servers, there are two goals to achieve when we attempt to identify the critical
edge servers. One is to maximize the fault tolerance scope, measured by the total
number of uncritical edge servers that share overlapping coverage areas with
at least one critical edge server. This way, when an uncritical edge server fails,
its workloads can be (partially) taken over (supported) by at least one critical
edge server, which is fault-tolerated by the redundant edge server. Over an edge
server graph, where a node represents an edge server and an edge represents
whether two edge servers’ coverage areas overlap, the scope of fault tolerance
achieved by a group of critical edge servers is formally measured by their Group
Degree Centrality (GDC) [2], higher the better. Another goal for fault tolerance
is to maximize the fault tolerance strength, measured by the total number of
overlapping areas shared by critical and uncritical edge servers. This way, when
an uncritical edge server fails, its end-users can be (partially) taken over by the
most critical edge servers on average. Over the edge server graph, the strength of
fault tolerance achieved by a group of critical edge servers is formally measured
by their Group Degree Intensity (GDI), which will be defined in Sect. 2.1, higher
the better. There is usually a conflict between the scope and the strength of a
fault tolerance strategy.

Figure 1 illustrates an example area with ten edge servers, i.e., {v1, ..., v10}.
Each edge server covers a particular geographical area. Their coverage areas
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partially overlap. The end-users located in an overlapping area can connect to
one of the edge servers covering them. In Fig. 1, end-user u1 can be served by
either server v1 or server v2. When v1 or v2 fails, u1 is taken over by the other
server. This way, v1 and v2 are mutually and partially fault-tolerated. A fault
tolerance strategy should maximize the number of fault-tolerated edge servers,
i.e., the fault tolerance scope. Similarly, u3 can be served by either v1 or v4,
Thus, v1 and v4 are also mutually fault-tolerated. Servers v2 and v4 together
increase the possibility that v1’s end-users can still be served when v1 fails, i.e.,
the fault tolerance strength.

There might be multiple fault tolerance strategies to optimize the GDC and
GDI of a group of critical servers while fulfilling the redundancy budget con-
straint. In Fig. 1, given a redundancy budget, say 20% of edge servers (i.e.,
two edge servers can be redundant), two possible fault tolerance strategies are
{v1, v2}, which identifies edge servers v1 and v2 as critical servers, and {v6, v7},
which identifies edge servers v6 and v7 as critical servers. Now let us compare
aforementioned two strategies in terms of GDC and GDI. Strategy {v1, v2} allows
servers v1 and v2 to support both v3 and v4 upon their failures. The GDC of
{v1, v2} is 2 and GDI is 4. On the other hand, strategy {v6, v7} allows servers
v6 and v7 to support v8, v9 and v10 upon their failures. The GDC of {v6, v7} is
3 and GDI is 3. Obviously, neither {v1, v2} or {v6, v7} is superior on both GDC
and GDI. Thus, a trade-off is needed for identifying a proper fault tolerance
strategy depending on the edge infrastructure provider’s preferences.

Fig. 1. An example ESR scenario

We refer to the above problem as an edge server redundancy (ESR) problem.
In this research, we make the first attempt to investigate and tackle this new
problem with the aim to maximize their harmonic of GDC and GDI so that both
GDI and GDC are taken into account. Solutions to problems remotely similar to
the ESR problem have been investigated, e.g., the backup virtual machine place-
ment problem in cloud computing [11,30] and the critical edge server placement
problem [26]. However, due to the unique characteristics of edge computing,
including the coverage constraint and overlapping constraint discussed above,
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traditional server redundancy strategies designed for cloud computing are not
applicable for edge computing. Meanwhile, existing studies of edge server place-
ment have not considered the robustness of edge server network. Therefore, a
new approach is needed for solving the ESR problem. In this paper, we model
the ESR problem as a variant of the group degree centrality problem [2] and
propose two approaches for solving it exactly and heuristically, respectively. The
major contributions of this paper are as follows:

– The edge servers in an ESR scenario is modelled as an edge server graph.
Based on this graph, the ESR problem is modelled as a variant of the group
degree centrality problem. The concepts of Group Degree Centrality (GDC)
and Group Degree Intensity (GDI) are introduced to measure the fault tol-
erance scope and the fault tolerance strength, respectively. Their harmonic
mean is employed to evaluate the overall effectiveness of a fault tolerance
strategy.

– We theoretically prove the NP-hardness of the ESR problem.
– An optimal approach is designed for solving the ESR problem optimally based

on the Integer Programming technique.
– A heuristic approach is designed for finding sub-optimal solutions to large-

scale ESR problems efficiently.
– Extensive experiments are conducted on a widely-used real-world dataset to

evaluate the effectiveness and efficiency of the proposed approaches against
three baseline approaches.

The remainder of this paper is organized as follows. Section 2 models and
formulates the ESR problem. Section 3 introduces the proposed approaches.
Section 4 experimentally evaluates the proposed approaches. Section 5 reviews
the related work. Section 6 concludes this paper and points out future work.

2 Problem Statement

2.1 Definitions

In this section, we summarize the notations and give four important definitions
used in this paper. The key notations are described in Table 1.

In this research, we model the edge servers in an ESR scenario as an edge
server graph G = (V,E). A vertex vi ∈ V in the graph corresponds to an edge
server. Vertices vi and vj in G are connected by an edge (vi, vj) ∈ E if their
coverage areas partially overlap. In the remainder of this paper, we will speak
inter-changeably of an edge server and its corresponding vertex in graph G.

The fault-tolerance strategy is defined as follows:

Definition 1 ESR strategy. Given a set of edge servers V = {v1, ..., vn}, an
ESR strategy is a vector X = {x1, ..., xn}, where xi (1 ≤ i ≤ n) denotes whether
edge server vi is a critical server to be fault-tolerated, i.e.,

xi =

{
1, if edge server vi is a critical server
0, if edge server vi is an uncritical server

(1)
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Table 1. Key notations

Notation Description

C = {c1, c2, . . . , ck} Set of critical edge servers, where
C ⊂ V, |C| = k, k = 1, 2, . . . , m, m ≤ n

E Set of edges in G representing the corresponding
overlapping areas between edge servers

fi Number of critical edge servers which support uncritical
edge server vi

G = (V, E) Edge server graph

k Redundancy budget

M(C) Set of edges connecting uncritical edge servers to critical
edge servers, which is a subset of E, i.e. M(C) ⊂ E

N(C) Set of uncritical edge servers connected to critical edge
servers, which is a subset of V, i.e. N(C) ⊂ V

V = {v1, ..., vn} Set of vertices (edge servers) in G

X = {x1, ..., xn} An ESR strategy

xi Whether edge server vi is a critical server (xi = 1) or not
(xi = 0)

yi Whether uncritical edge server vi is supported by at least
one critical server (yi = 1) or not (yi = 0)

Given a group of critical vertices C ⊂ V , the GDC and GDI of C are defined
as follows:

Definition 2 Group Degree Centrality (GDC). The GDC of C, denoted by
gdc(C), is the size of set N(C), i.e., gdc(C) = |N(C)|, where N(C) is the set of
uncritical edge servers that are connected to any critical edge server in C, i.e.,
N(C) = {vi ∈ V \ C | (vi, vj) ∈ E, vj ∈ C}.
Definition 3 Group Degree Intensity (GDI). The GDI of C, denoted by gdi(C),
is the size of set M(C), i.e., gdi(C) = |M(C)|, where M(C) is the set of
edges connecting uncritical edge servers to critical edge servers, i.e., M(C) =
{(vi, vj) ∈ E | vi ∈ N(C), vj ∈ C}.

Take strategy X1 = {1, 1, 0, 0, 0, 0, 0, 0, 0, 0} for Fig. 1 for example, which
identifies edge servers v1 and v2 as critical servers. We can obtain that C =
{v1, v2}, N(C) = {v3, v4}, M(C) = {(v1, v3), (v2, v3), (v1, v4), (v2, v4)}. There is
gdc(C) = 2 and gdi(C) = 4.

The effectiveness of a fault tolerance strategy is positively correlated with
both its GDC and GDI. However, there is a conflict between maximizing GDC
and GDI. In general, a high GDC is achieved by distributing fault tolerance
while a high GDI requires concentrated fault tolerance. Thus, there is a trade-
off between GDC and GDI. This trade-off can be managed domain-specifically,
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depending on the edge infrastructure provider’s preference. In this research, we
employ the harmonic mean [6] of GDC and GDI to evaluate the overall effective-
ness of a fault tolerance strategy. This is inspired by the widely-used F1-score
which is the harmonic mean of precision and recall.

Definition 4 Harmonic mean (HM). Given a set of critical vertices C, the har-
monic mean of its GDC and GDI, denoted by HM(C), is expressed as follows:

HM(C) =
2 × Ngdc(C) × Ngdi(C)

Ngdc(C) + Ngdi(C)
(2)

where Ngdc(C) = gdc(C)
(n−k) is the normalized GDC and Ngdi(C) = gdi(C)

k×(n−k) is the
normalized GDI.

2.2 ESR Model

According to Definition 2, GDC in essence represents the number of uncritical
edge servers which share at least one overlapping area with one of critical edge
servers. It is also the total number of uncritical edge servers supported by critical
edge servers. This is the first optimization goal of the ESR problem, i.e., to
maximize gdc(C):

maximize gdc(C) (3)

According to Definition 3, GDI indicates the number of overlapping coverage
areas between uncritical edge servers and critical edge servers. It is also the total
number of supports that uncritical edge servers can be obtained from critical
edge servers upon runtime failures. This is the second optimization goal, i.e., to
maximize gdi(C):

maximize gdi(C) (4)

Additionally, the total redundancy cost incurred is quantified by the redun-
dancy budget k, i.e.,

|C| = k (5)

Finally, as explained in Sect. 2.1, the overall optimization objective of an ESR
problem is to maximize the harmonic mean of normalized GDC and GDI, i.e.,
to maximize HM(C):

maximize HM(C) (6)

2.3 Problem Hardness

In this section, we demonstrate that the ESR problem is NP-hard by proving
the following theorem.

Theorem 1. The ESR problem is NP-hard.
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Proof. To prove the hardness of the ESR problem, we introduce the maximum
k facility location (MKFL) problem. The MKFL problem is a known NP-hard
problem [19] and it can be defined as follows. Let G′ = (V ′, E′) denote a complete
graph, and p′(i, j) ∈ N is the profits of function p′ between vertex i and j, where
i, j ∈ V ′. The formulation of MKFL problem is displayed below:
objective: ∑

v∈V ′
max
f∈F

p′(v, f) (7)

s.t.
F ⊂ V ′ with |F | = k (8)

To prove that the ESR problem is NP-hard, we prove that the MKFL prob-
lem can be reduced to an instance of the ESR problem. The reduction can be
done as follows:

1) add |C| nodes as critical edge servers into the edge server graph G = (V,E)
of the ESR problem, i.e., V ←− C

⋃
V ;

2) given a set of critical edge servers C, the profit p(vi, vj), vi ∈ V, vj ∈ C equals
to HM(C)/|M(C)| iff edge (vi, vj) ∈ M(C) and 0 otherwise, where |M(C)|
is the number of edges in M(C); Given an instance MKFL(G′, p′), we can
construct an instance ESR(G, p) with the reduction above in polynomial time
where |G′| = |G| and p′ = p; For the constraint (8), it is easy to see C ⊂ V
of the ESR problem, and k is a special case of the ESR problem. In terms of
the objective of the ESR problem (Eq. (6)),

∑
v∈V maxc∈C p(v, c) is the total

profits between a set of critical edge servers C and the edge server graph
G, which is the same as the objective calculated from Definition 4, and the
profit function p equals to p′ of MKFL problem. In this case, any solution Q
satisfied objective (7) and constraint (8), also satisfies the objective (6) and
constraint (5).

In conclusion, solution Q satisfies the reduced ESR problem if Q satisfies the
MKFL problem. Thus, the ESR problem is reducible from the MKFL problem
and it is NP-hard.

3 Approach Design

3.1 Optimal Approach

To solve the ESR problem exactly, ESR-IP, our optimal approach, models it as
an Integer Programming (IP) problem that consists of a set of variables X =
{x1, ..., xn} with a domain Di = {0, 1}, i = 1, ..., n, listing the possible values
for each variable xi ∈ X, and a set of constraints τ over V . A solution to an
IP problem is an assignment of a value to each variable xi ∈ X from Di such
that all the constraints τ are fulfilled. To facilitate the calculation of gdc(C) and
gdi(C), in the IP model, we define two additional sets of variables yi (1 ≤ i ≤ n)
and fi (1 ≤ i ≤ n) as follows:

yi = 1 iff vi ∈ N(C) (9)
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fi =

{∑
vj :(vi,vj)∈E xj , xi = 0

0, xi = 1
(10)

where yi indicates that edge server vi is an uncritical server connected to a critical
server over G and fi is the number of critical servers supporting uncritical server
vi, Take strategy X1 = {1, 1, 0, 0, 0, 0, 0, 0, 0, 0} for Fig. 1 as an example. We can
obtain that y3 = 1, y5 = 0, f3 = 2 and f5 = 0. Please note that fi = 0 when
xi = 1 in Eq. (10) ensures that the number of edges between each pair of critical
edge servers is not accumulated into GDC and GDI.

Based on N(C) and M(C), we can utilize yi and fi to measure the sizes
of N(C) and M(C). This way, we can rewrite gdc(C) and gdi(C): gdc(C) =∑

vi∈V yi, gdi(C) =
∑

vi∈V fi. Now, the IP model of the ESR problem can be
formulated as follows:

objective: maximize
2
∑

vi∈V fi
∑

vi∈V yi

(n − k)(
∑

vi∈V fi + k
∑

vi∈V yi)
(11)

s.t.

yi ≤
∑

vj :(vi,vj)∈E
xj ,∀vi ∈ V (12)

xi + yi ≤ 1,∀vi ∈ V (13)

xi + yi ≥ 1
Γi

∑
vj :(vi,vj)∈E

xj ,∀vi ∈ V (14)

∑
vi∈V

xi = k, (15)

fi = (1 − xi)
∑

vj :(vi,vj)∈E
xj ,∀vi ∈ V (16)

Equation (11) is obtained by applying yi and fi to Eq. (6). Constraint (12)
ensures that if yi = 1, there is at least one critical server sharing the overlapping
coverage area with edge server vi, i.e., Eq. (9). Constraint (13) ensures that edge
server vi cannot be both a critical server and an uncritical server. Constraint
(14) ensures that if xi = 0 and yi = 0, none of the edge servers sharing the
overlapping coverage area with server vi is a critical server. Γi is a sufficiently
large constant for the tightness of IP relaxation. Here, it is set to k1. Constraint
(15) rewrites constraint (5) and ensures that the number of critical servers is k.
Constraint (16) rewrites the piece-wise function fi as one expression.

The solution to this IP problem is the vector X = {x1, ..., xn} that achieves
(6) while fulfilling (5). Based on X, the edge infrastructure provider can fault-
tolerate the identified critical edge servers to maximize the harmonic mean
1 In Constraint (14), there are three possible pairs of values for (xi, yi), i.e., (1, 0), (0, 1)

and (0, 0). If (xi, yi) = (1, 0),
∑

vj :(vi,vj)∈E xj ≤ k − 1, Γi can be set to a value

greater than or equals to k − 1 to satisfy Constraint (14). If (xi, yi) = (0, 1),∑
vj :(vi,vj)∈E xj ≤ k, Γi can be set to a value greater than or equals to k. If

(xi, yi) = (0, 0),
∑

vj :(vi,vj)∈E xj = 0, Γi can be set to any value except 0. In this

paper, Γi is set to k to fulfill the most tightness of IP relaxation.
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of the produced GDI and GDC. For example, given the budget k = 2, the
optimal solution to the ESR problem presented in Fig. 1 is Ck=2 = {v4, v7},
i.e., Xk=2 = {0, 0, 0, 1, 0, 0, 1, 0, 0, 0}, with gdi(Ck=2) = 7, gdc(Ck=2) = 7
and HM(Ck=2) = 0.58. Given k = 4, there is Ck=4 = {v1, v2, v7, v8}, with
gdi(Ck=4) = 11, gdc(Ck=4)= 6 and HM(Ck=4) = 0.63.

3.2 Heuristic Approach

As proven in Sect. 2.3, the ESR problem is NP-hard. The scales of some real-
world ESR scenarios, e.g., city-scale ESR, are very large in the future 5G envi-
ronment with base station density reaching up to 50 base stations per km2 [7].
Finding the optimal solutions in such large-scale scenarios may be intractable
even in an offline manner. Therefore, we design a heuristic approach named ESR-
H for finding sub-optimal solutions to large-scale ESR problems effectively and
efficiently. Since the harmonic mean is employed to measure the overall effec-
tiveness of a fault tolerance strategy, the proposed heuristic always selects the
vertex v from the remaining edge servers that maximizes the harmonic mean of
the GDI and GDC produced by all the selected critical servers and v as a group.

The pseudo code of ESR-H is presented in Algorithm 1. First, the group of
selected critical servers, denoted by C, is initialized as empty (Line 1). Then,
the edge server vi is selected from the set of remaining edge servers V that
maximizes the harmonic mean HM(C ∪ {vi}) of the candidate group of critical
servers C ∪ {vi} (Line 3). The edge server vi included into C (Line 4). In the
meantime, edge server vi is removed from V (line 5). This process is repeated
until k critical servers have been selected. In the worst-case scenario, the running
time of function HM() is O(n). Iterating through all the n edge servers takes
O(n) time. Thus, to find a group of k critical servers, the overall computational
complexity of ESR-H is O(kn2).

Algorithm 1. Heuristic for edge server redundancy (ESR-H )
Input: Edge server graph G, number of critical servers k
Output: A group of critical servers C
1: Initialization: C ← ∅ ;
2: repeat
3: select vi ∈ V that maximizes the harmonic mean HM(C ∪{vi}) of the candidate

group of critical servers C ∪ {vi}
4: C ← C ∪ {vi}
5: V ← V − {vi}
6: until |C| = k
7: return C

4 Experimental Evaluation

In this section, we experimentally evaluate the performance of our approaches,
i.e., the ESR-IP optimization approach and ESR-H, against three representative



Fault-Tolerating Edge Computing with Server Redundancy 207

baseline approaches. All the experiments are conducted on a Windows machine
equipped with Intel SkyLake6151 (3.0 GHz) and 8 GB RAM. The IP problem
discussed in Sect. 3.1 is solved with IBM’s CPLEX Optimizer. All the other
approaches are implemented with Python 3.6.

4.1 Baseline Approaches

Our approaches are compared with three baseline approaches, namely Random,
Greedy-GDC and Greedy-GDI :

– Random: This approach randomly picks up a total of k servers as critical edge
servers.

– Greedy-GDC (Greedy-C): This approach always picks up the edge server with
the greatest GDC as the next critical server until there are k critical edge
servers.

– Greedy-GDI (Greedy-I): This approach always picks up the edge server with
the greatest GDI as the next critical server until there are k critical edge
servers.

4.2 Experimental Setup

Experiment Data. The experiments are conducted on a subset of the widely-
used EUA dataset2 [12,13]. The subset contains the locations of 125 real-world
base stations (edge servers) within the Melbourne CBD in Australia.

Experimenting Settings. We conduct two sets of experiments, i.e., Set #1
and Set #2. Set #1 is a set of small-scale experiments, where we run all five
approaches. Set #2 is a set of large-scale experiments, where we run only our
heuristic approach and three baseline approaches because the optimal approach
cannot find a solution within a reasonable amount of time due to the NP-
hardness of the ESR problem.

In both Set #1 and Set #2, we vary three setting parameters to simulate
different ESR scenarios:

– Number of edge servers (n). We select different numbers of edge servers,
i.e., n = 10, 20, . . . , 100, to generate different sizes of edge server graphs.
Specially, we randomly select the first edge server from the dataset. Then,
we select its nearest neighbor edge server. After that, the next edge server to
be selected is the nearest neighbor among the neighbors of the first and the
second edge servers. This process is iterated until a total of n edge servers
are selected.

– Coverage of edge servers (r). In order to generate edge server graphs
with different densities, the coverage radius of each edge server increases from
0.1 km to 0.28 km. A larger r will allow more edge servers’ coverage areas to
overlap. Thus, a larger r produces more edges in G.

2 https://github.com/swinedge/eua-dataset.

https://github.com/swinedge/eua-dataset
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– Redundancy budget (k). The redundancy budget is measured by the per-
centage of critical edge servers in total edge servers. It changes from 10% to
90%.

The corresponding setting are described in Table 2. Under each setting, we
select a different first edge server out of the 125 edge servers. This way, we sim-
ulate a total of 125 different ESR scenarios, run the experiment for 125 times
and average the results every time the value of a parameter varies.

Performance Metrics. We employ two metrics to evaluate the performance of
the approaches: 1) effectiveness: measured by HM(C) (abbr. as HM hereafter),
higher the better; 2) efficiency: measured by the computation time taken to find
a solution, lower the better.

4.3 Experimental Results

Figures 2, 3 and 4 show the results obtained from the experiment sets #1.1, #1.2
and #1.3 respectively. Overall, ESR-IP outperforms the other four approaches
with the best average effectiveness (0.719) at the expense of the most average
computation time (47.114 s on average) across all the cases in Set #1. ESR-
H is second to ESR-IP with an average effectiveness of 0.702 and outperforms
Greedy-C, Greedy-I and Random by 11.76%, 4.53% and 17.97% respectively.

Figure 2 shows that in Set #1.1, as the number of edge servers (n) increases
from 10 to 30, the effectiveness of ESR-IP decreases from 0.859 to 0.630 while
that of ESR-H decreases from 0.845 to 0.619. However, in terms of the compu-
tation time, Random, Greedy-C, Greedy-I and ESR-H outperform ESR-IP by
99.99% each on average. The reason for this is that with the increase in n, the

Table 2. Experiment settings

Factor Number of edge servers (n) Coverage of each edge server (r) Redundancy budget (k)

Set #1.1 10, 11, . . . , 30 0.18 30%

Set #1.2 20 0.10, 0.12, . . . , 0.28 30%

Set #1.3 20 0.18 10%, 20%, . . . , 90%

Set #2.1 40, 50, . . . , 100 0.18 30%

Set #2.2 40 0.10, 0.12, . . . , 0.28 30%

Set #2.3 40 0.18 10%, 20%, . . . , 90%

Fig. 2. Results of Set #1.1 Fig. 3. Results of Set #1.2
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number of uncritical servers that can be supported by critical servers decreases.
Thus, the effectiveness of all approaches goes down. At the same time, the scales
of edge server graphs become larger. It spends more time to pick up the critical
servers. Therefore, the efficiency of all approaches decreases dramatically.

Figure 3 shows the results of Set #1.2, where the coverage radius of each edge
server (r) increases from 0.10 to 0.28. As depicted in Fig. 3(a), the effectiveness of
ESR-IP increases from 0.527 to 0.816 while that of ESR-H increases from 0.518
to 0.806. The rationale for this is that the edge server graph is densified with the
extension of the edge server’s coverage area. More overlapping areas appear and
the opportunities for uncritical servers to be supported by critical ones increase.
Figure 3(b) shows that the computation time taken by ESR-IP increases from
2.556 s to 4.051 s, longer than that of the other four approaches by over 99.8%
each on average. These results show that the density of the edge server graph
does not impact the efficiency of ESR-IP significantly. This conclusion applies
to the other four approaches as well.

Figure 4 shows the results of Set #1.3. As depicted in Fig. 4(a), the effective-
ness of all approaches fluctuate slightly at first. When the redundancy budget (k)
exceeds a certain number, 60% for both ESR-IP and ESR-H, 70% for Greedy-C
and 80% for Greedy-I, the effectiveness of all approaches except Random start to
increase steadily. This is due to more critical edge servers caused by the increase
in k. Then, more uncritical servers can obtain support from critical servers. We
notice that in Fig. 4(b), when k rises, the computation time taken by ESR-IP
first increases and then decreases. The reason is that the objective function of
the IP model, i.e., Eq. (11), is symmetric at the k of 50%.

Fig. 4. Results of Set #1.1 Fig. 5. Results of Set #1.2

Figures 5, 6 and 7 show the results obtained from the large-scale sets #2.1,
#2.2 and #2.3, respectively. Overall, ESR-H outperforms Random, Greedy-C
and Greedy-I in terms of effectiveness by 84.17%, 11.09% and 11.32% on average,
respectively. Comparing with Random, the high effectiveness of ESR-H comes
at the price of higher computation time. In terms of Greedy-I and Greedy-C,
ESR-H ’s computation time is between that of Greedy-I and that of Greedy-C.
Let us analyze the results on large-scale scenarios in detail to show ESR-H ’s
superiority.

As illustrated in Fig. 5(a), the effectiveness of ESR-H is greater than that of
Greedy-C first. With the increase in n, the gaps between these two approaches’
effectiveness are narrowed gradually and almost the same (0.329 versus 0.327)
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when n achieves 100. The reason is that larger n yet a certain r and k leads to
less supports for uncritical servers. Therefore, both GDC and GDI will decrease,
but GDI will drop faster than GDC. Then, GDI’s impact on the effectiveness
will be weakened. When GDI’s impact is too small to affect the HM , ESR-H is
almost equivalent to Greedy-C. Thus, the effectiveness of these two approaches
are similar to each other. This conclusion is also reinforced by the effectiveness of
Greedy-I depicted in Fig. 5(a). Furthermore, the similar conclusion can be found
in Fig. 5(b). The efficiency of ESR-H and Greedy-C merge to close values (1.313
versus 1.284). Additionally, Greedy-I ’s efficiency trends to be closer to that of
ESR-H and Greedy-C. However, its effectiveness is always the lowest one among
four approaches, even 31.96% lower than that of Random on average. Moreover,
the value of Greedy-I ’s effectiveness decreases continuously to 65.88% lower than
that of ESR-H when n is 100. As to Random, although the efficiency is lowest,
the effectiveness is always lower than that of ESR-H and Greedy-C. Therefore,
ESR-H and Greedy-C are dominant in this experiment.

Figure 6 and Fig. 7 depict similar trends on both effectiveness and efficiency
of four approaches. As can be seen in Fig. 6(a) and Fig. 7(a), the effectiveness of
ESR-H and Greedy-I are very close on average (0.549 s versus 0.541 s in Fig. 6(a)
and 0.557 s versus 0.545 s in Fig. 7(a)). On the other hand, the effectiveness
of Greedy-C and Random are always lower than that of ESR-H and Greedy-I
(37.20% at the worst case). In Fig. 6(a), the larger r of each edge server raises the
number of overlapping areas between adjacent servers. In Fig. 7(a), the number
of critical edge servers will be ascended when k rises. In both aforementioned
cases, each uncritical server will obtain more supports from different critical
servers. As a result, GDI will increase more rapidly than GDC does. GDI will
have a greater impact on the value of HM . Then, ESR-H is similar to Greedy-I.
In addition, an interesting result is observed in Fig. 7(a). We can found that
Greedy-C ’s effectiveness descends gradually and lower than that of Random at
last. This result validates our analysis of the trends of the effectiveness of ESR-H
and Greedy-I. In terms of efficiency, as shown in Fig. 6(b) and Fig. 7(b), ESR-H ’s
computation time is slightly better than that of Greedy-I on average (0.0633 s
versus 0.0657s in Fig. 6(b) and 0.152 s versus 0.160 s in Fig. 7(b). Therefore, ESR-
H is dominant in these two experiments.

Fig. 6. Results of Set #1.1 Fig. 7. Results of Set #1.2

According to all experimental results obtained from sets #2.1, #2.2 and
#2.3, ESR-H is overall better than three baseline approaches in large-scale
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scenarios considered in this paper. Moreover, the results also justify that the
trade-off between GDC and GDI can be managed, as we have mentioned in
Sect. 2.1.

5 Related Work

Edge computing is a new and promising distributed computing paradigm. It
offers many opportunities and raises a variety of problems, e.g., edge user allo-
cation [9,12], edge data caching [23–25], edge application placement [14], edge
server placement [4,5], etc. However, it has been commonly assumed that the
edge computing environment is always reliable. This assumption is in fact not
realistic due to the high geographic distribution of edge servers and the lack of
centralized reliability management. Thus, it is necessary and critical to investi-
gate the reliability issue in the edge computing environment.

Redundancy is an effective technique for implementing fault tolerance in
various distributed environments, such as distributed database systems [18], dis-
tributed storage systems [15], wireless sensor networks [27], web environment
[20], cloud computing [11,17,29,30] and edge computing [1,3], to guarantee high
QoS for end-users [21,28].

In the past decade, redundancy in cloud computing has been extensively
investigated. The authors of [29] improve the reliability of cloud applications by
tolerating faults of a small part of the most significant components. In [17], Matt
et al. utilize monitored data access patterns and take user-defined Quality of Ser-
vice requirements into account to optimize the placement of data on cloud-based
storage services in a redundant, cost- and latency-efficient way. Different from
building fault-tolerant cloud applications or utilizing data replication techniques
in the aforementioned studies, we employ server redundancy to enhance the
reliability of the edge computing environment. Zhou et al. [30] design three algo-
rithms to minimize network resource consumption in the service recovery stage.
The authors of [11] propose a redundancy-aware virtual machine (VM) scheduler
to optimize the placement and activation of standby VMs while assuring applica-
tions’ resource entitlements. Obviously, backup VM placement is a popular and
effective technique to improve the reliability of cloud-based services. However,
existing approaches designed for the conventional cloud computing environment
are not suitable for fault-tolerating edge servers because of the unique charac-
teristics of edge computing, i.e., coverage constraint and overlapping constraint.
While normal VMs deployed in the cloud computing environment are available
to all end-users, redundant edge servers are only accessible to end-users located
in the coverage areas of those edge servers. Therefore, the effective strategies
proposed in the cloud computing environment cannot be used directly in the
edge computing environment.

Recently, researchers are starting to implement redundancy in edge comput-
ing. Aral et al. [1] exploit the failure dependencies between edge servers and
infer the joint failure probability of a given service deployment. They propose
two replica scheduling algorithms to optimize the failure probability and the
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cost of redundancy, respectively. While their approaches replicate edge services,
our approaches deploy redundant edge servers over the edge server network to
accommodate server failures. In [3], Chantre et al. address the optimal place-
ment of edge devices for reliable broadcasting services in 5G network functions
virtualization-based small cells. However, their optimization objectives are com-
pletely different from ours, which are to minimize the costs of service provision-
ing, service processing time, and loss probability.

Service placement or service redundancy rely on a fault-tolerated edge server
network. To the best of our knowledge, our work is the first to tackle the ESR
problem in the edge computing environment. The proposed optimal approach
achieves high effectiveness and the proposed heuristic approach offers high effi-
ciency for finding sub-optimal solutions to large-scale ESR problems.

6 Conclusion

In the distributed edge computing environment, redundancy-based fault toler-
ance is challenged with new constraints. To tackle this problem, we modelled
the edge servers in an edge server redundancy (ESR) scenario as an edge server
graph and formulated the ESR problem as a variant of the group degree cen-
trality problem, an NP-hard problem. We designed an optimal approach that
solves the ESR problem with the Integer Programming technique. It find the
optimal fault tolerance strategy that trade off between two optimization objec-
tives, i.e., to maximize the fault tolerance scope and to maximize the fault tol-
erance strength. We also developed a heuristic approach for finding sub-optimal
solutions to large-scale ESR problems efficiently. We conducted extensive exper-
iments in different ESR scenarios simulated on a widely-used real-world dataset.
The experimental results show that our approaches significantly outperform the
baseline approaches.

This research has established a basic foundation for the ESR problem. In our
future work, we will take into account the impact of the estimated number of
end-users located in overlapping coverage areas, as well as the impacts of the
dependency among failed servers and failure probability of each server on fault
tolerance strategies. In addition, edge servers’ capacities will be considered.
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Abstract. The edge user allocation (EUA) problem has attracted a lot
of attention recently. EUA aims at allocating edge users to nearby edge
servers strategically to ensure low-latency network connection. Exist-
ing approaches assume that a users’ request can only be served by an
individual edge server or cannot be served at all. They neglect the fact
that a user’s request may be decomposable and partitioned into multi-
ple tasks to be performed by different edge servers. To tackle this new
task-decomposable edge user allocation (TD-EUA) problem, we model
it as an optimization problem. Two novel approaches named TD-EUA-O
and TD-EUA-H are proposed, one for finding the optimal solution based
on Integer Linear Programming that maximizes users’ overall Quality
of Experience (QoE), and the other for efficiently finding a sub-optimal
solution in large-scale EUA scenarios. Extensive experiments based on a
widely-used real-world dataset are conducted to evaluate the effective-
ness and efficiency of our approaches. The results demonstrate that our
approaches significantly outperform the baseline and the state-of-the-art
approach.

Keywords: Edge computing · Edge user allocation · Task
decomposition · Quality of Experience · QoE optimization

1 Introduction

The rapidly increasing popularity of mobile and Internet-of-Things (IoT) devices,
including mobile phones, wearables, sensors, etc., has promoted the growth of
versatile computational-intensive applications, such as face recognition, machine
vision, intelligent furniture [6]. Due to the limited computing capabilities and
battery power of mobile and IoT devices, their computing tasks are often
c© Springer Nature Switzerland AG 2020
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offloaded to app vendors’ servers in the cloud. Nevertheless, with the exponen-
tial growth in the number of mobile and IoT devices, it is becoming difficult
for cloud computing to handle the huge workload and network congestion. This
makes it difficult to provide a low-latency and reliable connection to end-users,
especially those that desire real-time responses from applications. For exam-
ple, delays caused by the traditional centralized computing paradigm may cause
operation failures on autopilot and endanger passengers’ lives.

To tackle this issue, edge computing, has been proposed as a new dis-
tributed computing paradigm [1,15]. In the edge environment, each base station
is equipped with a certain amount of computing resources, allowing computing
power to be provided to mobile users at the Internet access level. Compared to
cloud computing, edge computing places storage and computing resources (such
as CPU, memory, bandwidth, etc.,) closer to end-users. An edge server usually
cover a specific geographical area [10]. Typically, edge servers are geographically
distributed to offer diverse services for different areas. To avoid the existence
of an area that is not covered by any edge server, there are overlapping areas
between adjacent edges. A user located in the overlapping area can connect to
one of the edge servers covering them (proximity constraint) that has sufficient
computing resources (resource constraint) such as CPU, storage, bandwidth, or
memory [8,10,11].

While offering new opportunities, edge computing also raises many new chal-
lenges, such as the problem of edge user allocation (EUA). As an intermediate
supply station, an edge server has limited computing resources. Hence, an app
vendor’s users in an area must be allocated to edge servers properly to utilize
the computing resources hired by the app vendor on the edge servers. Exist-
ing research treat each user as a resource request, and each user can only be
assigned to one edge server to achieve certain specific optimization objectives,
e.g., to minimize the number of edge servers needed [8,10], to maximize the
overall user satisfaction measured by their Quality of Experience (QoE) [11] and
to increase the ratio of user allocation [14]. However, they ignore the real-world
application scenarios where user needs may be decomposable and a user’s needs
may be satisfied collectively by multiple collaborative edge servers. In a real-
world application, a user’s request may be composed by multiple tasks, which
may need to be performed different edge severs with different resources [20].
Consider a typical game streaming service for example. Players talk to their
teammates a lot while playing a game, generating different types of tasks to be
performed by edge servers.

The need to handle users’ decomposable requests significantly complicates the
EUA problem. The fundamental limitation of current EUA approaches assume
that a user’s needs for computing resources are either fulfilled by an individual
edge server nearby, or cannot be fulfilled at all. In this study, we focus on more
realistic EUA scenarios where a user’s needs may be satisfied by several collab-
orative edge servers nearby by decomposing its request to a set of tasks to be
performed by individual edge servers.
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We refer to this problem as a task-decomposable edge user allocation (TD-
EUA) problem. To tackle this problem, we model it as an optimization problem
and propose two novel approaches, one for finding the optimal solution that
maximizes users’ overall QoE, and the other for efficiently finding a sub-optimal
solution to large-scale TD-EUA problems. To the best of our knowledge, it is the
first attempt to tackle the EUA problem where users’ requests are decomposable.
Our main contributions are as follows:

– We formally define and model the TD-EUA problem, and prove its NP-
hardness.

– We propose an optimal approach based on integer linear programming (ILP)
for solving the TD-EUA problem that aims to maximize users’ overall QoE.

– We propose a heuristic approach for finding a sub-optimal solution to large-
scale TD-EUA problems.

– Extensive experiments based on a widely-used real-world dataset are carried
out to demonstrate the effectiveness and efficiency of our approaches against
a baseline approach and a state-of-the-art approach.

The remainder of the paper is organized as follows. Section 2 provides a moti-
vating example for our research. Section 3 defines and formulates the TD-EUA
problem. Section 4 models TD-EUA problem as an optimization problem and
presents our approaches in detail. Section 5 shows the experimental evaluation.
Section 6 reviews the related work. Finally, we conclude the paper and point out
future work in Sect. 7.

2 Motivating Example

A typical example of a task-decomposable EUA application scenario is shown
in Fig. 1. In the edge computing environment, there are nine users, u1, · · · , u9,
four edge server s1, · · · , s4, and ten tasks t1, t2, · · · , t10, where each task can
be performed by a corresponding service deployed on an edge server. Each
edge server covers a specific geographical area and has a specific amount of
different types of resources available to serve users within its coverage. Edge
servers’ resource capacities and tasks’ resource demand are denoted as a vector
〈CPU,RAM, storage, bandwidth〉. Each user has a list of tasks and each task
may require different amounts of computing resources.

For example, user u2 has a task list {t2, t4, t7, t8}. If the resources available
on edge servers s1, s2 or s3 are not limited, user u2 can be served by any of the
three edge servers. Otherwise, the need of u2 can be partitioned. For example,
its tasks t2, t4, t7, t8 can be served by multiple edge servers. Assume that user u1

has all the resources it needs from edge server s2, users u3 and u6 are assigned
to server s3, and the workload generated by each task is 〈1, 1, 1, 1〉. As a result,
the remaining resources on edge server s2 or s3 cannot fulfil the demand of user
u2. Existing EUA approaches cannot handle such case and will allocate user
u2 to the cloud for task processing. However, if the user’s requirements can be
partitioned, this issue can be addressed. Note that user u2 is in the overlapping
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Fig. 1. An example task-decomposable EUA problem.

area of edge servers s1, s2, s3. Tasks t2 and t4 can be offloaded to edge server s2
and task t7 can be performed by edge server s3. Then, task t8 can be performed
by edge server s1. This way, the total workload of the tasks allocated to edge
server s2 is 〈5, 5, 5, 5〉, which not exceed the its remaining capacity (〈7, 5, 11, 13〉).
In the meantime, server s3 has abundant resources for the tasks assigned to it.
What’s more, users u4, u5, u7 can be allocated to server s1 and user u9 can be
allocated to server s4. Then, user u8 can allocate its task t2 to server s1, tasks
t4 and t5 to server s4. While fulfiling the proximity and capacity constraint, this
solution allocates all the users’ tasks to edge servers, none to the cloud.

There may be other solutions that can also allocate all the users’ tasks to
edge servers. Finding the optimal one that maximizes users’ overall QoE is not
trivial, especially in large-scale scenarios. Thus, there is a need for an effective
and efficient approach for finding TD-EUA solutions.

3 Problem Formulation

This section defines the TD-EUA problem. The notations and descriptions used
in this paper are summarized in Table 1. With the consideration of task decom-
position in EUA problem, we give a set of definitions.

Given a finite set of m edge servers S = {s1, s2, . . . , sm}, and n edge users
U = {u1, u2, . . . , un} in a particular area, each user has a task list for a request,
defined as follows.

Definition 1. (User Task Decomposition) Given an edge user u, u’s request r
is composed of a set of tasks, T (ui) = {t1, t2, . . . }, where each task tk can be
performed by an edge server.

From the app vendor’s perspective, a TD-EUA solution should allocate as
many user requests as possible to edge servers, so that the users’ overall QoE is
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maximized. A user ui can only offload one or multiple tasks to an edge server sj

under the condition that it is located within sj ’s coverage area cov(sj).

Definition 2. (Distance-Aware User Coverage) Given an edge user ui and a
set of edge servers S = {s1, s2, ..., sn}, only the edge servers that cover user ui

may serve ui, denoted as S(ui). The edge servers in S(ui) fulfil the proximity
constraint with respect to user ui:

dij ≤ cov(sj),∀i ∈ 1, 2, . . . , n;∀j ∈ 1, 2, . . . ,m (1)

Table 1. Notations

Notation Description

D = {CPU,RAM, storage, bandwidth} A set of computing resource
types

S = {s1, s2, . . . , sm} A set of edge servers
U = {u1, u2, . . . , un} A set of edge users
T = {t1, t2, . . . , tq} A set of tasks decomposed from

users’ service requests
cj =

〈
c1j , c

2
j , . . . , c

d
j

〉
Computing capacity of edge
server sj

wk =
〈
w1

k, w2
k, . . . , wd

k

〉
Computing resources demanded
for the task tk

Wi =
〈
W 1

i ,W 2
i , . . . ,W d

i

〉
Computing resource that the
user ui gets from the edge server

T (ui) A set of tasks which user ui

needs in a service request,
T (ui) ⊆ T

T (sj) A set of tasks allocated to server
sj

U(sj) A set of users that edge server sj

covers, U(sj) ⊆ U

S(ui) A set of user ui’s candidate
servers - edge servers that cover
user ui, S(ui) ⊆ S

cov(sj) Coverage radius of edge server sj

dij Geographical distance between
user ui and server sj
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Take Fig. 1 as an example. User u4 can be served by servers s1 or s3. Server
s3 can serve users u2, u3, u4, and u6 as long as it has adequate resources.

The total workload generated by all the tasks allocated to an edge server
must not exceed its current capacity. Otherwise, the server will be overloaded.

Definition 3. (Server Capacity Constraint) Given an edge server sj and its
covered users Uc =

{
u1

c , u
2
c , ...

}
, where each user in Uc has a set of tasks. We

denote T (sj) =
{

t1sj
, t2sj

, ...
}
as the tasks allocated to server sj, the total resource

demand of which must not exceed its current computing capacity:

∑

tksj
∈T (sj)

wk ≤ cj ,∀sj ∈ S (2)

Take Fig. 1 for an instance, as the workload generated by each task is
〈1, 1, 1, 1〉, the aggregate workload incurred by users u3 and u6 is 〈6, 6, 6, 6〉.
It does not exceed the current capacity of server s3 〈9, 11, 7, 17〉. Therefore, it is
a valid allocation. However, if we allocate users u1 and u2’s tasks t2, t4, t7 to
server s2, it will be overloaded since the aggregate task workload is 〈6, 6, 6, 6〉,
exceeding server s2’s current computing capacity 〈7, 5, 11, 13〉.

Through allocating users’ tasks to edge servers, an QoE value can be calcu-
lated for each user. In this study, we measure a user’s QoE in the same way as
[11], which depends on the Quality of the Service (QoS) delivered to the user.
As stated in [7,9], QoS is non-linearly correlated with QoE. Generally, it starts
to increase slowly at first, then speeds up, and finally converges. Many studies
model the correlation between QoE and QoS with the sigmoid function [11].
In [11], the authors use a logistic function, a generalized version of the sigmoid
function, to model the QoE-QoS correlation, which is represented as follows:

E0
i =

L

1 + e−α(xi−β)
(3)

where L is the maximum value of QoE, β is a domain-specific parameter that
controls the QoE growth should be, or the mid-point of the QoE function, α,
another domain-specific parameter, controls the growth rate of the QoE level,
i.e., how steep the change from the minimum to maximum QoE level is, E0

i

represents the QoE level given user ui’s QoS level Wi, and xi =
∑

l∈D W l
i

|D| . There
is E0

i = 0 if user ui is not allocated to any edge servers.
Now, we measure the QoE of a user in a TD-EUA scenario, where the its

tasks may be allocated to multiple edge servers:

Ei =
∑

l∈D W l
i∑

l∈D

∑
tk∈T (ui)

wl
k

E0
i (4)

Next, we formally define the TD-EUA problem:

Definition 4. (TD-EUA) The TD-EUA problem can be represented by a four
tuple TD − EUA =< U,S, T,W >,where
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(1) U = {u1, u2, ..., un} is a set of edge users and each user has a request;
(2) S = {s1, s2, ..., sm} is a set of edge servers, each server has a coverage

radius;
(3) T = {t1, t2, ..., tq} is a set of tasks decomposed from a user’s request;
(4) W = {w1, w2, ..., wq} is a set of resource demands from a task in T .

The solution to a TD-EUA problem is a user-task-server assignment, where
the each user’s tasks are fully or partially allocated to their nearby edge servers.
Based on the assignment, a QoE value can be calculated for each user based on
its QoS level. From the app vendor’s perspective, its objective is to maximize
the users’ overall QoE.

4 Approaches

To solve a TD-EUA problem, we first model it as an integer linear programming
(ILP) problem to find its optimal solution. To solve large-scale TD-EUA prob-
lems efficiently, we propose a heuristic approach named TD-EUA-H that finds a
sub-optimal TD-EUA solution.

4.1 Optimal Approach

The optimization objective of TD-EUA is to maximize the users’ overall QoE,
while satisfying the capacity constraint and proximity constraint. In this section,
we present TD-EUA-O, our approach for finding the optimal solution to a TD-
EUA problem. It models the TD-EUA problem as an ILP problem as follows:

objective function: max
n∑

i=1

Ei (5)

s.t.:

xi,j,k = 0 ∀i, j ∈ {i, j|dij > cov(sj)} ,∀k ∈ {1, 2, . . . , |T (ui)} (6)

n∑

i=1

q∑

k=1

wkxi,j,k ≤ cj ∀j ∈ {1, . . . ,m} (7)

m∑

j=1

xi,j,k ≤ 1 ∀i ∈ {1, . . . , n} ,∀k ∈ {1, . . . , q} (8)

where xi,j,k is a binary variable indicating that,

xi,j,k =
{

1, if user ui’s task tk is allocated to server sj

0, otherwise.

The objective (5) maximizes the users’ overall QoE. In (5), QoE level Ei

depends on the ratio of the resources Wi the user ui obtains over the total
resources requested by ui. Constraint (6) enforces the proximity constraint.
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A user may be located within the overlapping coverage area of multiple edge
servers. Constraint (7) makes sure that the aggregate resource demands of all
tasks allocated to an edge server must not exceed that server’s current comput-
ing capacity. Constraint (8) ensures that each task can be allocated to at most
one edge server.

The above ILP problem can be solved by an ILP problem solver, e.g., CPLEX
or Gurobi. The outcome is the optimal solution to the TD-EUA problem.

4.2 Problem Hardness

Based on the optimization model, we now prove that the TD-EUA problem is
NP-hard.

Theorem 1. Knapsack ≤p TD-EUA. Therefore, TD-EUA problem is NP-hard.

Proof. We prove that the TD-EUA problem is NP-hard by reducing the NP-
hard Knapsack problem to a specialization of the TD-EUA problem.

Definition 5. (Knapsack Problem) Given n items and their corresponding
weights and values, the aim of a Knapsack problem is to select a group of items
so that the total price of the items is the highest within the total weight limit. It
can be formally defined as follows:

objective function:max
n∑

i=1

vixi (9)

s.t.:
n∑

i=1

wixi ≤ W (10)

xi ∈ {0, 1} (11)

where W is the total weight limit and xi indicates whether the i-th item is
selected.

Based on the definition of the Knapsack problem, we now prove that it can
be reduced to a special instance of the TD-EUA problem. For ease of exposition,
we make the following assumptions: 1) For each task tk, its requirements for
different types of computing resources are the same, i.e., w1

k = w2
k = . . . = wd

k;
2) For any edge server sj , its computing capacities in different dimensions are
equal, i.e., c1j = c2j = . . . = cd

j ; 3) The coverage of each edge server is infinite,
i.e., a task can be allocated any of the edge server in the area.

Based on the above assumptions, we can obtain a simplified special case of
the TD-EUA problem. For the simplified special case, constraints (6)(8) can be
combined and projected to (11), because any task can be allocated to any edge
server. Moreover, constraint (7) can be projected to objective function (10), since
the computing capacities of all the edge servers can be aggregated as an overall
resource limit. Clearly, there is a solution to the TD-EUA problem if and only
if there is a solution to the corresponding Knapsack problem. Thus, TD-EUA
problem is NP-hard.
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4.3 Heuristic Approach

Due to the NP-hardness of TD-EUA problem, finding its optimal solution is
intractable in large-scale scenarios. This is demonstrated in our experimental
results presented in Sect. 5. Thus, we propose a heuristic approach named TD-
EUA-H for finding a sub-optimal solution to a TD-EUA problem efficiently.
Algorithm 1 presents its pseudo code.

TD-EUA-H goes through three main steps: 1) it employs the skyline algo-
rithm to partition the tasks decomposed from users’ requests into two categories,
including a group of tasks T1 requiring more computing resources than any task
in the other group T2; 2) it sorts the tasks within each group according to their
required computing resources from high to low; 3) when orderly assigning each
task in T1 to an edge server, for each candidate edge server, it calculates the
ratio of the remaining computing resources on that edge server over the number
of unallocated tasks covered. Then, it finds the edge server sj with the highest
ratio (Line 15), then allocates the task to that edge server (Lines 13–17). In the
same way, it orderly allocates each task tk in T2 to an edge server.

The time complexity of TD-EUA-H consists of: 1) using the skyline algorithm
to partition q tasks takes O(q2) time; 2) labeling and sorting the tasks for each
user which depends on the total number of tasks takes O(n ∗ q) time, where n
and q are the number of edge users and tasks, respectively; 3)calculating and

Algorithm 1. TD-EUA-H
Input: edge servers S; edge users U ; tasks T .
Output: task-server allocation f : T → S.
1: T

skyline−→ Good(T ), Bad(T );
2: for each ui ∈ U do
3: for each tk ∈ T(ui) do
4: if tk ∈ Good(T ) then
5: T1 ← (tk, ui)
6: else
7: T2 ← (tk, ui)
8: end if
9: end for

10: end for
11: sort(T1)key = wk, sort(T2)key = wk

12: for each (tk, ui) in T1 do
13: S(ui) ← {sj ∈ S|ui ∈ cov(sj)};
14: if S(ui) �= φ then

15: j = argmax cj/unallocated
(
|∑ui∈U(sj)

∑
tk∈T (ui)

tk|
)

16: end if
17: f ← f ∪ {tk, sj}
18: end for
19: Perform task-server allocation for T2



224 G. Zou et al.

ranking m candidate edge servers for each task takes O(m log m), and O(n ∗ q ∗
m log m) time for all the tasks. Thus, the overall time complexity of TD-EUA-H
is O(q2) + O(n ∗ q) + O(n ∗ q ∗ m log m). Its complexity indicates that it is an
efficient heuristic algorithm with polynomial time for task-decomposable edge
user allocation. Thus, it can handle large-scale TD-EUA scenarios.

5 Experiments

5.1 Experimental Setup and Dataset

We conduct a series of experiments to evaluate the effectiveness and efficiency of
our approaches. All the experiments are conducted on a machine equipped with
an Intel(R) Xeon(R) Gold 6130 CPU@2 and 192 GB RAM. The ILP model in
Sect. 4.1 is solved with Gurobi.

The experiments are conducted on the public and widely-used EUA dataset1.
It contains the locations of the 125 edge servers (base stations) in the Melbourne
central business district area in Australia. Following the Gaussian distribution
N(u, σ), users are distributed in different ways in this area to simulate six differ-
ent real-world TD-EUA scenarios with different user distributions, as illustrated
in Fig. 2, where each black point represents an edge server and each orange point
represents a user. Accordingly, six datasets are synthesized with data extracted
from the EUA dataset, each corresponding to a specific type of the six user
distribution in Fig. 2.

5.2 Competing Methods and Evaluation Metrics

To evaluate the performance of TD-EUA-O and TD-EUA-H, we compare them
with two other approaches, including a random baseline and a state-of-the-art
approach for solving the EUA problem.

– Random: each task is allocated to a random edge server that has sufficient
computing resources to accommodate the task, as long as the user of the task
is located within the edge server’s coverage area.

– VSVBP [10,11]: it models the EUA problem as a variable sized vector bin
packing (VSVBP) problem and aims at maximizing the number of allocated
users, while minimizing the number of edge servers needs to be used. This
approach treats each user request as a whole, i.e., one user can either be
allocated to only one edge server, or cannot be allocated to any edge server
at all.

Three widely-used performance metrics are employed in the experiments.

– QoE: it is measured by users’ overall QoE, the higher the better.
– Allocation Rate: it is measured by the percentage of users allocated to edge

servers of all, the higher the better.
– CPU Time: it is measured by the computation time consumed to find a solu-

tion, the lower the better.
1 https://sites.google.com/site/heqiang/eua-repository.

https://github.com/swinedge/eua-dataset.

https://sites.google.com/site/heqiang/eua-repository
https://github.com/swinedge/eua-dataset
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Fig. 2. EUA experimental datasets with different user distributions.

Table 2. Experimental results on different datasets

Methods
Dataset one Dataset two Dataset three
QoE AR CPU TimeQoE AR CPU TimeQoE AR CPU Time

VSVBP 4,479 0.56 22.512 5,319 0.66 24.312 5,189 0.65 23.145
Random 5,105 0.63 0.014 6,377 0.79 0.016 6,102 0.76 0.015
TD-EUA-H 6,002 0.66 0.034 7,121 0.82 0.046 6,9710.80 0.041
TD-EUA-O 6,357 0.72 2.591 7,416 0.87 3.241 7,261 0.85 2.756

Methods
Dataset four Dataset five Dataset six
QoE AR CPU TimeQoE AR CPU TimeQoE AR CPU Time

VSVBP 5,606 0.70 26.235 5,725 0.71 29.324 5,609 0.56 28.165
Random 6,964 0.87 0.018 7,385 0.92 0.018 6,952 0.86 0.018
TD-EUA-H 7,500 0.90 0.045 7,665 0.94 0.048 7,507 0.90 0.047
TD-EUA-O 7,622 0.93 3.212 7,737 0.95 2.234 7,658 0.93 2.946
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5.3 Experimental Results and Analysis

In the experiments, the parameters for existing approaches are tuned to achieve
optimal performance. The coverage radius of edge servers obeys a Gaussian
distribution with u = 150 and the number of tasks per user follows a Gaussian
distribution with u = 3. Further, we set the number of users to 400, the number
of edge servers to 125 and the edge server’s available computing capacities follow
the Gaussian distribution N(35, 1).

Table 2 summarizes the experimental results, where the best and second-best
values in each column are marked in dark and light grey, respectively. The results
demonstrate that TD-EUA-O achieves the highest overall QoE and allocates
the most users. Specifically, TD-EUA-O outperforms VSVBP, Random and TD-
EUA-H by 41.92%, 24.52% and 5.91%, respectively, in QoE. In allocation rate,
TD-EUA-O is superior to VSVBP, Random and TD-EUA-H with an advantage
of 28.57%, 14.28% and 9.09%, respectively. The main reason of the advantage of
TD-EUA-O lies in its consideration of task decomposition and pursuit of global
optimization. The computation time of TD-EUA-O is much less than that of
VSVBP. Compared to Random and TD-EUA-H, TD-EUA-O takes more time,
which is expected because of the NP -hardness of the TD-EUA problem as proved
in Sect. 4.2.

Our heuristic approach TD-EUA-H also achieves high performance, with an
advantage of 34.00% and 17.57% over VSVBP and Random in QoE, and 17.85%
and 4.76% in allocation rate. Surprisingly, we can see that the performance of the
Random approach is higher than VSVBP, in terms of both QoE and allocation
rate. This is because VSVBP either allocates a user request to an edge server as
a whole or does not allocate at all, whereas Random can partition a user request
into a set of tasks to be allocated. Overall, the results indicate that decomposing
users’ requests into tasks can significantly improve the allocation rate and users’
overall QoE.

(a) QoE (b) Allocation Rate (c) CPU Time

Fig. 3. Performance comparisons on the variations of edge users.
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(a) QoE (b) Allocation Rate (c) CPU Time

Fig. 4. Performance comparisons on the variations of edge servers.

(a) QoE (b) Allocation Rate (c) CPU Time

Fig. 5. Performance comparisons on the variations of server’s available capacity.

5.4 Performance Impacts of Parameters

To evaluate the performance of our approaches in various TD-EUA scenarios,
we vary the following three parameters in the experiments. Each experiment is
repeated 100 times to obtain 100 different user distributions so that the impacts
of extreme cases, such as overly sparse or dense distributions, are neutralized.

– Number of edge users (n): We random distribute 100, 200, . . . , 1,000 edge
users in the Melbourne CBD.

– Number of edge servers (m): A certain percentage of the all of the edge
servers (10%, 20%, . . . , 100%) in the Melbourne CBD are included in the
experiments.

– Server’s available resources (c): Edge servers’ overall capacity is gener-
ated following a Gaussian distribution with σ = 1. The average capacity of
each edge server ranges from u = 15, 20, . . . , to 60 in each dimension, e.g.,
CPU, RAM, storage and bandwidth.

Three sets of experiments #1, #2 and #3 are conducted. In each experiment
set, we vary one parameter and fix the other two. The results are shown in Figs. 3,
4, and 5.

Figure 3 compares the performance in experiment set #1, where the number
of edge users (n) varies from 100 to 1,000 in steps of 100. Figure 3(a) shows
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that as n increases, users’ overall QoE achieved by different approaches increase.
TD-EUA-O achieves the most improvement from 1,989 to 12,559 by 10,570,
outperforming TD-EUA-H’s 9,244, Random’s 6,737, and VSVBP’s 6,905. At
the beginning, the overall QoE of the four approaches are not that different,
because edge servers can provide sufficient computing resources to serve a small
number of user requests. As n increases, edge servers’ overall computing capacity
becomes inadequate, making it hard to achieve high QoE and allocation rate.

The impact of n on allocation rate is shown in Fig. 3(b). Obviously, TD-
EUA-O outperforms other approaches again. More specifically, compared with
Random and TD-EUA-H, the allocation rate of TD-EUA-O declines more slowly.
VSVBP achieves the lowest allocation rate, because it also needs to minimize the
number of edge servers hired. Furthermore, as n gradually increases, it is harder
to allocate all the users, lowering the allocation rates, from 99.86 % to 52.33 %
by 47.33% for TD-EUA-O, from 99.88% to 44.27% by 55.61% for TD-EUA-H,
from 99.40% to 43.48% by 55.92% for Random and from 73.01% to 41.96% by
31.04% for VSVBP.

As shown in Fig. 3(c), the average computation time of TD-EUA-O fluctu-
ates slightly and it takes significantly less time consumption than VSVBP. As
the problem scales up in n, VSVBP’s computation time increases quickly. How-
ever, when n exceeds 700, the computation time of VSVBP starts to decrease
quickly before it converges. The reason is that the complexity of the TD-EUA
problem increases as n increases, producing more possible solutions for VSVBP
to inspect. Considering the multi-objective optimization of VSVBP, its solution
is not unique, in which it needs to compromise among multiple optimization
objectives. Nevertheless, after the turning point, the edge servers cannot accom-
modate the excessive user requests. Most users are directly allocated to the cloud
without further decisions. The computation time of TD-EUA-H is similar to that
of Random, slightly less than TD-EUA-O. Thus, TD-EUA-H can accommodate
TD-EUA scenarios with large numbers of users.

Figure 4 shows the performance in experiment set #2, where the percentage
of the number of edge servers (m) varies from 0.1 to 1.0. As demonstrated, the
overall QoE follows a similar trend as in experiment set #1, where TD-EUA-O
and TD-EUA-H achieve much higher QoE than Random and VSVBP. As m
increases from 10% to 40%, Random achieves performance similar to VSVBP in
the resource-scarce situations. Figure 4(b) shows that as m increases, TD-EUA-O
and TD-EUA-H continue to achieve high allocation rates. It is worth noting that
when m reaches a specific level, the allocation rate achieved by Random is close
to that of the TD-EUA-H because the overall computing resources is sufficient
to accommodate all the user requests. Figure 4(c) presents the rising trend of
the computation time of TD-EUA-O as m keeps increasing. VSVBP takes much
more time to find a solution than the other approaches. Its computation time
fluctuates. The reason is that VSVBP needs to frequently reselect edge servers to
achieve the optimization goal. As for TD-EUA-H and Random, the computation
time is always at a low level, similar experiment set #1.
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Figure 5 shows the performance comparison in experiment set #3. As the
server’s available capacity (c) varies from 15 to 60, the overall QoE and allocation
rates follow a similar trend as in experiment set #2. In Fig. 5(a), TD-EUA-O and
TD-EUA-H outperform the Random and VSVBP in terms of the overall QoE.
Especially, With the increase in c, the overall QoE achieved by VSVBP grows
slowly, from 3,799 to 6,265 by 2,466, compared with the growth of TD-EUA-O’s
3,259 from 5,765 to 9,015, Random’s 3,822 from 3,714 to 7,536, and TD-EUA-
H’s 3,907 from 4,844 to 8,751. Figure 5(b) shows the same trend as Fig. 4(b) on
allocation rate as experiment set #2. In Fig. 5(c), compared to other approaches,
VSVBP takes the most time to find a solution.

The experimental results show that by considering the task decomposition of
service’s request, TD-EUA-O and TD-EUA-H outperform the random baseline
and the state-of-the-art approach in both QoE and allocation rate with relatively
low computation time. In general, TD-EUA-O is the best approach for finding
solutions in small-scale instances. In large-scale scenarios, TD-EUA-H is the best
option for its second-highest effectiveness of all and its high efficiency.

6 Related Work

With the advances in mobile devices and the Internet of Things, cloud centers
may easily be overwhelmed by excessive workloads, causing network latency and
congestion. Cisco coined the fog computing, or edge computing, paradigm in 2012
to overcome the major drawback of access latency in cloud computing [1]. Edge
computing is an open paradigm that integrates network, computing, storage, and
application core capabilities close to end-users to provide low-latency services.
Applications deployed and running on the edge can provide fast responses to
users’ request, meeting their needs for low latency. Service providers can deploy
resources on edge servers that are closer to end-users in the edge computing
environment. However, an edge server only has a limited computing capacity,
making it difficult or sometimes impossible to serve all of the users within its
coverage area. Offering many new opportunities, edge computing has also raised
a variety of new problems, e.g., edge user allocation (EUA) problem [5,8,10–
12,14], edge service placement [2,13,19], edge data management [16–18], edge
server placement [3,4], etc.

Recently, the EUA problem as one of the new challenges in the edge com-
puting environment has attracted a lot of attention. Lai et al. [10] made the
first attempt to tackle the EUA problem. They modeled the EUA problem as a
variable sized vector bin packing problem, and developed an optimal approach
for solving the EUA problem with the aim to maximize the number of users
allocated and minimize the number of edge servers needed. Then, they further
applied user satisfaction as the criterion to measure whether the user allocation
is cost-effective, considering that users’ resource demands may be differentiated
[11]. He et al. [8] proposed a game-theoretic approach for solving the EUA game
in a distributed manner. They seek to find the Nash equilibrium of the game as
the EUA solution. Peng et al. [14] tackled the EUA problem in an online manner
with mobility consideration.
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However, existing studies simply assume that a user’s demands of computing
resources can either be fully fulfilled by a single edge server or cannot be fulfilled
at all. In many real-world scenarios, an edge user’s request can actually be par-
titioned into multiple tasks that can be performed by different edge servers. In
this paper, we studied the EUA problem with task decomposition and proposed
two approaches, TD-EUA-O for finding optimal solutions and TD-EUA-H for
finding sub-optimal solutions.

7 Conclusion and Future Work

In this paper, we studied the TD-EUA problem. Instead of serving an user’s
request as a whole, we consider task decomposition and partition a user’s request
into individual tasks, which can be performed by different edge servers. To solve
the TD-EUA problem, we modeled it as an optimization problem with multiple
constraints, and proposed two novel approaches to find TD-EUA solutions that
maximize users’ overall QoE. The results of experiments conducted on a widely-
used real-world dataset demonstrated that our approaches significantly outper-
form the baseline approach and the state-of-the-art approach. In the future, we
will consider the mobility of users and tasks.
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Abstract. In mobile edge computing (MEC) environments, the task
offloading towards nearby edge servers usually occurs when local
resources are inadequate for computation-intensive applications. While
the MEC servers benefit from the close proximity to the end-users to pro-
vide services at reduced latency and lower energy costs, they suffer from
limitations in computational and radio resources, which calls for smart,
timely, and efficient offloading methods and strategies. In this paper, we
consider an arbitrary request arrival pattern and formulate the MEC-
oriented task offloading problem as an online multi-dimensional inte-
ger linear programming. We propose a decentralized reactive approach
by adopting a dynamic-learning mechanism to yield online offloading
decisions upon request arrivals. Experiments based on real-world MEC
environment datasets show that our method outperforms state-of-the-art
ones in terms of offloading responsiveness and efficiency.

Keywords: Mobile edge computing · Task offloading · Reactive
scheduling · Decentralized scheduling

1 Introduction

Due to restricted battery power, storage, and computational capacity, mobile
devices face challenges in executing delay-sensitive and resource-hungry mobile
applications such as augmented reality and online gaming [6]. As a newly emerg-
ing computing paradigm, edge computing shows great capability in supporting
and boosting such computation-intensive mobile applications. In the mobile edge
computing (MEC) environments, the mobile edge is enhanced with computation
resources and storage capabilities, possibly by the dense deployment of compu-
tational servers or by strengthening the already-deployed edge entities such as
small-cell base stations. Consequently, mobile devices are able to offload their
c© Springer Nature Switzerland AG 2020
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computationally intensive tasks to the edge servers to alleviate the insufficiency
of local computing power and capacity [4].

In practice, MEC-oriented offloading requests can be dynamically submitted
in real-time by end-users and specified with timing constraints. They require
both logical and temporal correctness of computations. Due to the dynamic
nature in MEC environments and the heterogeneity of both real-time tasks and
edge servers, traditional centralized offloading strategies, where an offloading
decision for a batch of requests is made at the centralized scheduler and per-
formed simultaneously, can lead to bad user-perceived Quality-of-Service (QoS)
and long waiting time of end-users. Intuitively, such long waiting time and low
system responsiveness are usually caused by the fact that asynchronous requests
have to gather at the scheduler first before the synchronous offloading decisions
for a batch of such requests are made and carried out.

Fig. 1. System architecture comparison between ours and traditional ones.

In this paper, instead of considering centralized and batch-processing-based
offloading decision-making, we propose a decentralized reactive approach to yield
online offloading decisions upon request arrivals. Figure 1 shows the differences
between ours and the traditional ones. It can be seen in the traditional solu-
tion that a centralized scheduler requires a global view of system status and all
offloading requests are forwarded to it before offloading decisions are made and
performed. Consequently, in addition to low system responsiveness, the central-
ized scheduling pattern can be susceptible to single-point-of-failures (SPOFs)
[16] that affect all server nodes when the central one crashes and cause high
communication overhead among the central scheduler and edge servers. There
are also some studies, e.g., [10,17,23], that proposed distributed solutions by
utilizing the parallelism feature of game-theory or alternating direction method
of multipliers (ADMM). However, they still need a centralized coordinator to
exchange sub-decisions to reach the final decision. In contrast, our approach is
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completely decentralized, where the online offloading decisions are locally made
by and applied to individual mobile users themselves instead of a centralized
scheduler. Moreover, in our work, a significant difference exists from the tradi-
tional system architectures, namely, our proposed architecture is empowered by
a learning unit which is responsible of continuously learning scheduling policies
and pushing them to end-users, the dynamicity (e.g., the fluctuation of offloading
request arrival rates and uneven geographical distribution of requests) of MEC
environments is thus captured and tackled.

The main contributions of this work are as follows: 1) we propose a completely
decentralized architecture for MEC-oriented online task offloading problem by
devolving the offloading decision-making power from a centralized scheduler to
end-users themselves; 2) instead of assuming the request arrival rates are pre-
given or follow certain distributions, we consider an arbitrary request arrival pat-
tern, which is more in line with the practical application scenarios; 3) we present
an efficient reactive dynamic-learning-based [1] approach which is capable of
continuously learning and updating scheduling policies. We conduct a series of
case studies based on two well-known real-world edge environment datasets and
the experimental results have demonstrated the proposed approach clearly out-
performs traditional ones in terms of average end-to-end offloading delay and
decision-making time.

2 Related Work

Mobile task offloading aims at executing the computation-intensive and latency-
sensitive mobile tasks with the help of external resources [16]. Recently the
MEC-oriented mobile task offloading problem has attracted a lot of research
interests and extensive efforts are devoted to it.

Some studies focus on the static optimization of multiple-server multiple-user
task offloading problems during a request arrival batch window. For example,
Chen et al. [4] formulate the task offloading problem at a certain time point as
a mixed-integer-programming (MIP) problem, then they decompose and convert
it into two convex optimization ones and develop a Lagrange-multiplier-based
algorithm to solve them. Alameddine et al. [2] take the offloading request admis-
sion rate as the target and propose a Logic-Based-Benders-Decomposition-based
method to reduce the searching space of the MIP problem. Yang et al. [23] consider
both energy consumption and latency as offloading targets, they formulate the
offloading problem as a potential game and present a distributed game-theoretical
approach to solving it. Dai et al. [5] propose a two-tier computation offloading
framework to cope with the heterogeneous networks and multiple mutually depen-
dent mobile tasks, then the semi-definite-program and linear-convex-program are
employed to yield user association plan and offloading decisions, respectively. Yang
et al. [22] formulate the offloading decision problem as a classification one and pro-
pose a feedforward neural network model to optimize the offloading decisions.

There are also some studies considering the long-term offloading QoS as target
and present the corresponding online solutions. For example, Liu et al. [14] and Du
et al. [7] assume the task arrivals are i.i.d. over time and their average arrival rates
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are pre-given. Chen et al. [3] and Xu et al. [21] consider that task arrivals follow a
Poisson process and they both use random arrival rates to capture the temporal
variation of task arrival pattern at different time. While Zhao et al. [24] assume the
offloading demands of mobile users follow a binomial distribution with a pre-given
probability. Based on these assumptions, they all build a local-edge two-tier queue
model and utilize a Lyapunov optimization technique to maintain the stability of
the system to achieve an online optimization. Huang et al. [11] present a deep-
reinforcement-learning-based method to get online offloading decisions. However,
their approach is a centralized one and they only consider one edge server in their
system model.

A careful investigation into the aforementioned studies shows that they are
still limited in three ways: 1) most of the existing studies base themselves upon
centralized architecture that needs a central scheduler to yield offloading solu-
tions, which may suffer from SPOFs and low system responsiveness; 2) the batch-
processing scheduling mode of some static studies, e.g., [4,10], may result in
additional waiting time, which may lead to bad user-perceived QoS and long
waiting time; 3) some online studies, e.g., [3,14,24], are based on the assump-
tions that the offloading request arrival rates are pre-given or follow certain dis-
tributions. However, these assumptions are unrealistic in real-world application
scenarios where offloading requests could arrive at an arbitrary time and their
arrival rates fluctuate over time. Therefore, a decentralized reactive approach
that adapts to a more general application scenario is in high demand.

3 Preliminary

In this section, we present our system model and give the problem formulation
of online task offloading in MEC environments. Table 1 lists the notations used
in our system model.

Table 1. List of notations

Notation Description Notation Description

aj Arrival time of task tj . qi Maximum size of the task queue of edge

server ei.

bi Maximum total size of tasks that server ei
can handle in period P .

qji Instantaneous task queue size of server ei
when task tj arrivals.

ci, cj Computing capability of edge server ei,

requester of task tj .

ri Radius of edge server ei’ signal coverage.

dji Distance between server ei and user who

invokes task tj .

rji Uplink data rate between edge server ei
and the requester of task tj .

ei The i-th edge server in E. Rji Response time of offloading tj to ei.

E The set of edge servers. sj Data content size of tj .

fji Transmission delay of uploading the data

of task tj to server ei.

tj The j-th task in T .

hji Execution time of task tj on the ei. T The set of offloading requests.

li, lj Real-time geographic location of server ei,

requester of task tj .

ui Utility value of server ei that has been

learned.

m The count of edge servers in E. vj Earliest start time of task tj on server ei.

n The count of Offloading requests in T . xji An indicator to identify whether task tj is

scheduled to server ei.

oj The count operations in task tj . ε Decision repository length factor
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3.1 System Model

As shown in Fig. 1, in the MEC environments, base stations are equipped with a
certain amount of computing resources (i.e., edge servers) to fulfill users’ offload-
ing demands. Suppose that there are m edge servers in total in the MEC environ-
ments, and we use a set E = {e1, e2, ..., em} to represent them. Each edge server
can be described by a 4-tuple (li, ri, ci, qi), where li is the geographic location of
server ei, ri its radius of signal coverage, ci its computing capability (e.g., CPU
cycles per second [2,14]), and qi its task queue length.

Mobile users in MEC environments who act in this region are allowed to
offload their computational tasks to nearby available edge servers, and we use
a set T = {t1, t2, ..., tn} to represent the set of n tasks offloaded by users in a
period P . Each task can be described by a 5-tuple (aj , lj , oj , sj , cj), where aj is
the arrival time of task tj , lj the location of the user who offloaded tj , oj the
computation amount (i.e., the CPU cycles needed to complete the task) of tj , sj
the size of data contents of tj , and cj the computing capability of the requester
of tj itself.

Fig. 2. Offloading request processing flow
at edge server.

In this paper, we consider that
mobile users’ computational tasks can
be executed by both signal reach-
able edge servers [10,12,13] and local
mobile devices [2,5,23]. We use dji to
identify the distance between server
ei and the requester of task tj . Like
various well-known data processing
and AI service engines (e.g., Apache
Spark1, Flink2, and Tensorflow Serv-
ing [8]) do, edge servers in our model
have multiple computing units and
handle incoming tasks on a First-Come-First-Service (FCFS) basis as shown
in Fig. 2. Therefore, given the status of server ei at time aj , the end-to-end delay
of offloading task tj to server ei can be estimated as:

Rji =

⎧
⎨

⎩

fji + (vj − aj) + hji, dji ≤ ri, i = 1, 2, ...,m

hji, i = 0
(1)

where fji is the data transmission delay, hji is the task execution delay, vj is the
earliest start time of tj on ei, and thus (vj − aj) is the waiting time of tj at ei’s
task queue. If there are no available edge servers around the requester of tj , the
offloading request tj is declined and it will be executed by users’ local devices,
we use i = 0 to represent this situation. It can be seen that the end-to-end delay
of offloading a mobile task to an edge server (i.e., i �= 0) consists of three parts:

1 https://spark.apache.org/docs/latest/job-scheduling.html.
2 https://ci.apache.org/projects/flink/flink-docs-stable/internals/job scheduling.

html.

https://spark.apache.org/docs/latest/job-scheduling.html
https://ci.apache.org/projects/flink/flink-docs-stable/internals/job_scheduling.html
https://ci.apache.org/projects/flink/flink-docs-stable/internals/job_scheduling.html
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task uploading delay fji, waiting time (vj − aj), and the execution delay hji.
The task execution delay hji can be estimated as [2,4,22]:

hji =

⎧
⎨

⎩

oj/ci, dji ≤ ri, i = 1, 2, ...,m

oj/cj , i = 0
(2)

And the data transmission delay fji can be estimated as fji = sj/rji, where rji
is the user’s uplink data rate and it can be calculated as [4]:

rji = β log2
(
1 +

pjgji
δ2

)
, (3)

where β is the channel bandwidth, pj the transmission power of the requester of
task tj , gji the channel gain between the server ei and the requester of tj , and
δ2 the background noise power.

3.2 Problem Formulation

Based on the above system model, we have great interest to know: for a given
region where m edge servers are deployed with heterogeneous resource configu-
rations and n offloading requests asynchronously raised in a period P , how to
appropriately respond and take offloading actions with optimized offloading effi-
ciency in terms of end-to-end offloading delay. The problem can be formulated
as follows:

Min :
1
n

( n∑

j=1

m∑

i=0

Rjixji

)
(4a)

s.t : dji ≤ ri, ∀xji �= 0 (4b)
sj + qji ≤ qi, ∀j = 1, 2, ..., n, ∀i = 1, 2, ...,m (4c)

∑n

j=1
ojxji ≤ bi, ∀i = 0, 1, ...,m

∑m

i=1
0 ≤ xji ≤ 1, ∀j = 1, 2, ..., n

where xji ∈ {0, 1} is the offloading decision that indicates whether task tj is
going to be scheduled to server ei (e0 represents local device), which is made
in real-time upon tj arrivals. bi is the maximum computation amount that ei
can process within the period P , which can be estimated as ci × P , and qji the
instantaneous task queue size of ei when tj arrives.

As shown in (4a), the objective is to minimize the average end-to-end delays
of offloaded tasks arriving in a period P . (4b) and (4c) are the constraints of
offloading distance and task queue capacity. (4d) indicates that an edge server
is feasible to an offloading requester only if it has enough computation amount.

Note that in this paper, we consider users’ offloading requests could arrive
at an arbitrary time and we aim at yielding online offloading decision in a reac-
tive manner upon request arrivals. The specifications of individual offloading
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requests are unknown before being raised and thus the problem can be formu-
lated as an Online-Multidimensional-Integer-Linear-Programming with no opti-
mal online solutions [1,9].

4 Proposed Dynamic-Learning-Based Approach

For the problem formulated above, in this section, we adopt a dynamic-learning
mechanism [1] and propose a decentralized reactive approach, shorts for DRA,
to yield reactive and online offloading decisions. Figure 3 shows the process of
the proposed approach.

Knowledge-based Scheduling Policy

Learn the utility value of edge serversDecision 
Repository

collect decisions

co
lle

ct
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Update 
Scheduling
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Repository full triggers 
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Startup Phase Production Phase
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making 
life cycle
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update
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C
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p
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Random 
Scheduling 

Policy

For the rest               tasks(n− s)s

Fig. 3. The process of proposed DRA approach.

It can be seen that at the startup phase, a random scheduling policy is
performed for the first s requests to collect training data to start the dynamic-
learning procedure. The initial length of the decision repository is set to s and
a dynamic-learning procedure is triggered to learn the scheduling policies when
the repository is full. After that, our approach moves forward into the production
phase, where the offloading decisions are made by the learned knowledge-based
scheduling policies. Note that, due to the high dynamicity of the MEC environ-
ments, scheduling policies in this phase are evolvable and our learning procedure
keeps updating and pushing them to end-users.

The knowledge-based scheduling policies are learned by reviewing the effect
of past decisions. We use σj to denote the reward (i.e, end-to-end delay) of the j-
th decision, and yj ∈ {0, 1} to determine the correctness of the j-th decision from
the reviewing perspective. The above determination problem can be formulated
to a linear programming (LP) as shown in (5).
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Primal-LP

Min :
1
n

( s∑

j=1

σjyj

)

s.t :
s∑

j=1

ojyj ≤ (1 − ε)
s

n
bi, ∀i

0 ≤ yj ≤ 1, ∀j

i = 1, 2, ...,m, j = 1, 2, ..., n

Dual-LP

Max :
m∑

i=1

(1 − ε)
s

n
biui +

s∑

j=1

zj

s.t :
m∑

i=1

ojui + zj ≥ σj , ∀j

ui, zj ≥ 0, ∀i, j

i = 1, 2, ...,m, j = 1, 2, ..., n

We also present its dual problem in (6), let (û, ẑ) be its optimal solution,
where vector û indicates the utility value for all edge servers and it can be
used to evaluate the gains of offloading decisions. We use a function G(û, tj) to
represent the knowledge-based scheduling policy in the production phase:

G(û, tj) =

⎧
⎪⎨

⎪⎩

0, if (Rji − ∑m
i=1 uioj) ≤ 0

argmin
i

(Rji − ∑m
i=1 uioj), otherwise

(5)

where i = 1, 2, ...,m and dji ≤ ri.
Algorithm 1 shows the specific steps of the proposed approach. It can be

seen that DRA starts with initializing the decision repository R with ∅ and
setting its length to s = nε (as shown in lines 1–2), where ε ∈ (0, 1). Then, it
performs a random scheduling policy to schedule the first s tasks and collects the
corresponding decisions to R (as shown in lines 3–12). If the length of R equals
s, it begins to learn the utility value of each edge server by solving the dual
problem defined in (6). After that, for the rest incoming tasks, a knowledge-based
scheduling policy is performed to reactively yield online offloading decisions (as
shown in lines 13–25). Note that, once the decision repository is full, the learning
procedure is triggered and the length of the repository is doubled to collect more
decisions to realize dynamic learning (as shown in lines 15–17).

For the startup phase of our approach, the time complexity of getting nearby
edge servers and filtering out unavailable ones (i.e., edge servers without enough
computing power or full task queues) is O(m), the time complexity of making a
random offloading decision is O(1). Thus, the total time complexity of making an
offloading decision in the startup phase is O(m). For the production phase, the
time complexity of getting nearby available servers is also O(m), but the time
complexity of making an offloading decision by a knowledge-based scheduling
policy, i.e., G(û, tj), is O(m log m). Thus, the total time complexity of making
an offloaded decision in the production phase is O(m log m).

Competitive ratio analysis is a useful way to evaluate the optimality of online
algorithms. An online algorithm is c-competitive if its expected performance
could reach at least c factor of the optimal solution of the problem form the
offline perspective. As proved by Agrawal et al. [1], the proposed DRA achieves
a 1 − O(

√
m log n/B) competitiveness, where B = min(bi).
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Algorithm 1: DRA
Input: Edge server count m; Offloading request count n; Edge server set E;

Task set T ; decision repository length base factor ε
1 Initialize offloading decision repository R ← ∅

2 Set the length of repository s ← nε
3 foreach tj in the first s tasks of T do
4 Initialize offloading decision xj ← [0, 0, ..., 0]

5 E
′ ← Get all available edge servers around the invoker of tj from E

6 if E
′
= ∅ then

7 xj0 ← 1

8 else
9 i ← Randomly select an edge server ei in S and record i

10 xji ← 1

11 Schedule task tj according to offloading decision xj

12 Add xj to decision repository R

13 foreach tj in the rest tasks of T do
14 Initialize decision xj ← [0, 0, ..., 0]
15 if length(R) = s then
16 (û, ŷ) ← Solve the dual problem defined in (6)
17 s ← s × 2

18 E
′ ← Get all available edge servers around the invoker of tj from E

19 if E
′
= ∅ then

20 xj0 ← 1

21 else
22 i ← G(û, tj)
23 xji ← 1

24 Schedule task tj according to offloading decision xj

25 Add xj to decision repository R

5 Experiments and Analysis

In this section, we conduct a series of case studies based on two real-world edge
environment datasets to evaluate the performance of our proposed approach in
terms of offloading responsiveness and efficiency.

5.1 Experiment Settings

EUA [12] and Telecom [18–20] are two well-known edge environment datasets,
where EUA dataset3 includes the geographic positions of edge servers and users
in a CBD area in Melbourne, Australia, and Telecom dataset4 contains the
geographic positions of edge servers and the arrival time of edge users in the
3 https://github.com/swinedge/eua-dataset.
4 http://www.sguangwang.com/TelecomDataset.html.

https://github.com/swinedge/eua-dataset
http://www.sguangwang.com/TelecomDataset.html
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Table 2. The details of two test cases in our experiment

Settings Case

EUA [12] Telecom [20]

Location CBD area, Melbourne, AU Central Urban area,
Shanghai, CN

Upper-left coordinate (−37.813134, 144.951300) (31.233580, 121.423307)

Lower-right coordinate (−37.815240, 144.974820) (31.196371, 121.494572)

Area 2.04 km2 32.67 km2

Base station count 125 190

Edge user count 4000 ∼ 8000 10000 ∼ 20000

Experimental duration 2 h (7200 s) 2 h (7200 s)
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Fig. 4. Geographic distribution and arrival time probability density of offloading
requests during a day.

urban area of Shanghai, China. In our experiments, we consider the whole region
of the EUA dataset and the central region of the Telecom dataset as test cases,
and Table 2 shows the details of them. As for the request arrival time data of
the EUA case and user position data of the Telecom case, we use Uber request
arrival time and Shanghai’s taxi trajectories to make a supplement as illustrated
in Fig. 4. It can be seen that users’ offloading requests are distributed unevenly in
different geographical areas and the arrival rates fluctuate over time. We choose
the requests which arrive from 8 AM to 10 AM (i.e., P equals to 2 h) to conduct
our case studies.

In this paper, we consider both heterogeneous edge servers configurations
and offloading requests. Table 3 shows the configurations of edge servers, users’
mobile devices, and offloading requests in our experiments [4,5]. We scale the
computing capability of edge servers from 75% to 125% to evaluate the perfor-
mance of our approach and baselines under different edge resources. We also
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Table 3. Experiment configuration

Parameters Value Parameters Value

Computing capabilities
of edge servers

2.2 ∼ 3.8 GHz Computing units
count of edge servers

4 ∼ 12

RAM size of edge
servers

16 GB ∼ 2 TB Computing
capabilities of mobile
devices (equivalent)

0.8 ∼ 1.2 GHz

Computation amount
of offloading requests

50 ∼ 100 cycles/bit Data amount of
offloading requests

5 ∼ 100 MB

Communication
channel gain

127 + 30 × log d Transmission power 0.5 W

Bandwidth of mobile
devices

20 MHz Background noise
power

2 × 10−13 W

Radius of edge servers’
signal coverage

300 ∼ 600 m Decision repository
length factor ε

0.01

scale the number of offloading requests from 4000 to 8000 for EUA cases and
10000 to 20000 for Telecom cases to evaluate the performance of ours and its
peers under different offloading request loads.

5.2 Baseline Approaches

We consider a conventional approach (OLA [9]) and three state-of-the-art ones
(MobMig [15], GD [13], and SO [12]) as baselines, where OLA and MobMig are
online approaches while GD and SO are static ones. OLA is an online method that
is able to learn the scheduling policy like ours by adopting a one-time-learning
mechanism, but its scheduling policy is non-renewable once determined; Mob-
Mig is also an online best-fit-decreasing-based method that always schedules the
offloaded mobile tasks to their nearby available edge servers with the shortest
expected end-to-end delay; while GD is a static method that employs a greedy
heuristic to schedule the offloaded mobile tasks to their nearby available edge
servers with the highest remaining computation capability; and SO is a static
method that employs IBM CPLEX Optimizer to solve the integer linear pro-
gramming (ILP) problem of multiple-user multiple-server allocation in a batch-
processing way.

Our approach and baselines are all implemented by Matlab R2020b, and the
LP and ILP problems in our approach and its peers are solved by the Matlab
built-in linprog and intlinprog functions. The experiments are conducted on
a personal computer with macOS Catalina, 3.6 GHz Quad-Core Intel Core i3
processor, 8 GB memory, and 256 GB storage.

5.3 Responsiveness Evaluation

Results: Figure 5 compares the average end-to-end delays of our approach and
baselines under different edge resources and request loads. It can be seen that
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Fig. 5. Average end-to-end delay comparison.

our proposed DRA approach gets the lowest average end-to-end delay in the
most of the cases of two datasets. More specifically, the proposed DRA can
achieve a 35.72%, 32.89%, 42.26%, and 59.79% lower end-to-end delay on average
compared with OLA, SO, MobMig, and GD respectively in EUA cases, and it
can also achieve a 50.43%, 64.41%, 51.12%, 74.86% lower end-to-end delay on
average than them in Telecom cases.
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Analysis: DRA beats MobMig and GD because it is a learning-based approach
that is capable of learning scheduling strategies continuously from past decisions,
while the scheduling strategies of MobMig and GD are invariable regardless of the
changes of the MEC environments. Though OLA is also a learning-based method,
its one-time-learning mechanism can not capture the changes in the utility value
of edge servers when faced with a highly dynamic MEC environments. While
in our approach, the scheduling policies are continuously updated by a dynamic
learning mechanism, the dynamicity of MEC environments are thus captured
and that is why DRA outperforms OLA. SO method also shows an advantage
over some baselines (e.g., MobMig and GD) in some cases, that is because it is a
static method that always gets the optimal offloading decisions from the global
view at the end of a batch window. However, its batch-processing mode may
result in additional waiting time and it suffers from the decision time explosion
problem when faced with an increasing number of requests.

5.4 Efficiency Evaluation
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Fig. 6. Offloading decision time comparison.

Results: We also evaluate the efficiency of our approach and baselines by com-
paring their average decision time of each request. As shown in Fig. 6, DRA
achieves the lowest decision time than other methods (on average, 9.59% lower
than MobMig; 26.98% lower than OLA; 96.83% lower than GD; and 99.88% lower
than SO). It can be seen that the average decision time of three online meth-
ods (i.e., DRA, OLA, and MobMig) keeps steady with the increasing of request
count, while that figures for GD and SO methods show a rapidly increasing trend.
Besides, the average decision time of all online methods is around 0.015 ms, while
that figures for GD and SO methods are around 0.7 ms and 15 ms, which are two
and three orders of magnitude higher than online ones, respectively.

Analysis: The time complexity of making an offloading decision of DRA, OLA,
and MobMig methods are all O(m log m), where m is the number of edge servers,
thus they are not sensitive to the increasing request count. The reason why the
DRA method achieves a lower decision-making time than other online methods
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lies in that its a decentralized approach where offloading decisions are made
by end-users themselves locally instead of a centralized scheduler, the request
forwarding delays are thus avoided and offloading decision time is shortened.
The time complexity of GD is O(n′m log m), where n′ is the number of requests
that arrive in the same batch window, thus its decision time shows a growth
trend with the increasing of request count. Similarly, the SO method also shows
such a trend, but its global optimization strategy consumes more time.

6 Conclusion and Further Work

This paper targets at the online mobile task offloading in MEC environments.
We consider the arbitrary arrival pattern of offloading requests and formulate the
online MEC-oriented task offloading problem as a multi-dimension online integer
linear programming problem. We employ a dynamic-learning mechanism and
propose a decentralized reactive approach to solve it, the proposed approach is
capable of continuously learning and updating scheduling policy to cope with the
highly dynamic MEC environments. Case studies based on two real-world edge
datasets have verified the effectiveness and efficiency of the proposed approach.

In our further studies, the following concerns will be addressed: 1) some
time-series prediction and trajectories prediction methods could be utilized to
predict the future request arrival rates and the request densities in different areas,
which can be used to perform a load-balance and task-migration in advance to
serve more users; 2) we only consider CPU tasks in this paper, GPU and CPU-
GPU hybrid task offloading problem will be investigated in our future works;
3) more QoS metrics such as offloading monetary cost, reliability, and energy
consumption of mobile devices will be considered, evaluated, and added to our
system model.
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Abstract. In the era of Internet-of-Things (IoT), both the number of
web services and the number of users invoking them are increasing every-
day. These web services utilize a cloud server for access to sufficient com-
pute resources for service delivery. A disadvantage of cloud computing is
that it is known to have a high latency because of its large distance (both
physical distance as well as number of hops) from the end user device. A
key technique of enabling low-latency web services, called edge comput-
ing, brings the compute resources closer to the end device. Edge comput-
ing enables better resource utilization and it reduces latency. However,
since there are numerous compute resources or ‘edge resources’, deter-
mining where the services should be placed becomes a new challenge.
In this paper, we consider the case of public transport vehicles utiliz-
ing edge computing to reduce latency while providing such web services.
We first model the dynamic service placement problem considering user
mobility. We then propose two algorithms to solve this problem. The
first algorithm utilizes an Integer Linear Programming (ILP) to obtain
an optimal solution, albeit at the cost of scalability. We then propose a
heuristic algorithm to achieve a low latency, while also scaling to large
problem instances. We validate the performance of both the techniques
through extensive trace-driven simulations.

1 Introduction

With the recent improvement of wireless connectivity, services are generally
delivered by software vendors from data centers. This paradigm of delivering
services, called cloud computing [17], has made it easier for software vendors to
provide new services or upgrade their existing ones. However, cloud computing
being inherently centralized, fails to deliver low latency to users [2]. With latency
becoming a major factor in satisfying users, multiple works have proposed using
a more decentralized architecture, that complements the existing data centers.
This decentralized architecture is known as edge computing [17]. In edge com-
puting, data is placed in locations that are physically and logically closer to the
user. This could be either mini-data centers associated with the network base
c© Springer Nature Switzerland AG 2020
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stations [18], or compute resources provided by a third party [13]. Edge comput-
ing promises to deliver low-latency services, while maintaining the advantages
of data centers.

However, utilizing edge computing to deliver services in practice has a number
of challenges. For example, it is possible for users to move around in vehicles.
Such movement of users makes it challenging to decide the edge device where
data and state of services should be placed that are sought by users [24]. While a
number of works have studied this problem of service placement, most of them do
not consider the mobility of users [2,16]. Works that have looked at the mobility
of users either focus on a single user [1,10] or depend on more compute-intensive
techniques like path prediction or other forms of learning [3,9,10,14,25]. Many
of them also do not consider the memory constraints imposed by edge devices.

In this paper, we study the service placement problem in a dynamic environ-
ment considering user mobility, viz., physical mobility of users while accessing
said services. We consider the case of users situated in moving vehicles, from
which they are accessing a set of services at different points of time. This also
includes the possibility of the vehicles themselves accessing services, in partic-
ular, in the case of autonomous or semi-autonomous vehicles. The objective
therefore is to dynamically place/re-place the services either on the cloud or on
an edge device to minimize the overall latency felt by the users. Here, we first
model the service placement problem in a dynamic environment. We then pro-
pose an optimal (oracle) algorithm to solve this problem using Integer Linear
Programming (ILP). Though the optimal algorithm gives a solution, it assumes
that information about the entire trajectory of the vehicle is available a priori.
We show that it also suffers from scalability issues, i.e. for a large dataset, it is
incapable of generating results in real-time.

To circumvent this problem, we utilize the ILP to solve the problem in stages.
We utilize the fact that although the entire trajectory of the vehicles is usually
not known in advance, users tend to know their next few destinations. This
information is usually available from location-based applications such as Google
Maps. Using this information, we are able to repeatedly run the ILP to obtain
solutions for different time windows. Finally, we also propose a heuristic called
First Come First Serve (FCFS) that utilizes information about only one desti-
nation to solve the service placement problem.

Our evaluation utilizes traces of publicly available datasets. We show that
our technique reduces latency significantly (around 6.76 times better) compared
to multiple baseline techniques. We also show that the FCFS heuristic in most
cases performs close to the optimal solution given by ILP. Finally, we also show
that the execution overhead of our heuristic is negligible compared to the amount
of reduction in latency.

We summarize our contributions as follows:

1. We model the dynamic service placement problem considering user mobility
and formulate it as a ILP to minimize the overall latency.

2. We propose two techniques of obtaining a realistic solution. The first tech-
nique solves the ILP in multiple time windows. The second technique uses a
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heuristic algorithm called FCFS using information about the next destination
of the vehicle.

3. We perform extensive experiments based on real dataset to compare the opti-
mal and FCFS algorithms with multiple baseline techniques. We show that
FCFS provides on average 6.76 times lower latency than the best baseline,
while adding an overhead of only order of tens of milliseconds.

2 Problem Formulation

In this section, we design a mathematical model of the dynamic service placement
problem (DSPP). We consider our model as dynamic since here we assume that
the location of the trajectory changes over time. In other words, the relative
position between the user and each edge device keeps on changing over time. We
begin with describing our system under consideration. We model our system as
eight tuples M = (C, E ,N ,R, T ,H,S):

1. A set of n execution platforms Ex = C ∪ E , where
(a) C = {C1, C2, . . . , Ck} is a set of cloud servers.
(b) E = {Ek+1, Ek+2, . . . , En} is a set of edge devices.

2. A set of network parameters N .
3. A vehicular road route map R.
4. A set of vehicular trajectories T = {T1, T2, . . . , Tm}.
5. A set of handheld devices H = {H1,H2, . . . ,Hm}, where each Hi ∈ H is

associated with a unique Ti ∈ T .
6. A set of services S = {S1,S2, . . . ,Sr}.

We now discuss the characterization of each of the components of M in details.

1. Each execution platform Exi ∈ Ex is characterized by three tuples
(Ui,Di, TCi), where Ui,Di and TCi refer to the uplink speed, downlink speed
and the total memory capacity of Exi, respectively. We assume each cloud
server to have sufficient memory, i.e., ∀Ci ∈ C, TCi is infinite, so that the
execution of the web services is not constrained by the memory capacity of a
cloud server. This assumption is true for most commercial cloud servers.

2. The set of network parameters N contains an average propagation delay
PDi,j of an execution platform Exi ∈ Ex from a location Lj .

3. The route map R = (L, E) is given as a graph, where
– L is the set of vertices of the graph. Each vertex Li ∈ L of R represents

a location.
– E is the set of links of the graph. Each link eij = (Li,Lj) ∈ E indicates

the existence of a vehicular road between locations Li and Lj .
4. Each trajectory of a vehicle Ti is modeled as the tuple of the following tuples:

Ti = ((Li1, TSi1, TS′
i1, Ŝi1), (Li2, TSi2, TS′

i2, Ŝi2), . . . , (Lix, TSix, TS′
ix, Ŝix)),

where
(a) The vehicle passes through the locations Li1,Li2, . . . ,Lix.
(b) At timestamp TSij the vehicle reaches the location Lij and at timestamp

TS′
ij the vehicle leaves Lij .
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(c) Ŝij is the set of services invoked by Ti at location Lij .
Since we target services invoked on public transport vehicles, we expect the
timestamps and the routes taken to be known in advance.

5. Each handheld device Hi ∈ H is characterized by two tuples (Uh
i ,Dh

i ), where
Uh

i and Dh
i refer to the uplink and downlink speeds, respectively.

6. S is the set of services invoked by the vehicles. The data requirement of
each service varies across the trajectories. Therefore, each service Si ∈ S of a
trajectory Tj ∈ T is defined as 3-tuple: Si = (Ipi,j , Opi,j , PMi,j), where
(a) Ipi,j is the average input file size required to be uploaded to an execution

platform from the handheld device of the trajectory Tj to invoke the
service Si.

(b) Opi,j is the average output file size generated by Si and to be downloaded
from the respective execution platform to the handheld device of Tj .

(c) PMi,j is the worst case peak memory required by Si to be executed when
invoked from Tj .

Our model is generic enough to handle interactive services as well. An interactive
service can be divided into multiple blocks, where each block can be represented
by a service as defined above. Therefore, an interactive service, in our model,
can be treated as multiple atomic services.

We now define the notion of latency for Si of Tj . Consider Si being invoked
from Hj from TSx to TSx+k′ while traveling through Ll0,Ll1, . . . ,Llk′ . Also
consider in each TSk, for k ∈ {x, x+1, . . . , x+k′}, Si is executed in Expk ∈ Ex.
The latency for Si of Tj is computed as:

1. Initial Upload: At the initial timestamp TSx, when Si of Tj starts its execu-
tion, the input file (i.e., IPi,j) of Si of Tj is uploaded to Exp0 from location
Ll0.

2. Final Download: At the final timestamp TSx+k′+1, when Si of Tj finishes its
execution, the output file (i.e., OPi,j) of Si of Tj is downloaded from Expk′

to Hj at Ll(k′+1).
3. Intermediate Transfer: In an intermediate timestamp TSk, for x < k ≤

(x + k′), when Si of Tj continues its execution, the state of Si of Tj may
be transferred from Exp(k−1) to Expk through the handheld device Hj at
location Llk. The state size of a service is represented by its peak memory,
i.e., PMi,j .

The uploading/downloading latency for Si of Tj has two key components:
(a) transmission delay and (b) propagation delay. The service upload-
ing/downloading is associated with three different events: (i) data uploading
from the sender device, (ii) data propagation from a sender device to the receiver
device, (iii) data downloading to the receiver device. While (i) and (iii) together
determine the transmission delay, (ii) decides the propagation delay. Mathemat-
ically, the latency is defined as:
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⎛
⎜⎜⎜⎜⎜⎝

IPi,j

Uh
j︸ ︷︷ ︸

uploading

+ PDl0,p0︸ ︷︷ ︸
propagation delay

+
IPi,j

Dp0︸ ︷︷ ︸
downloading

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Initial Upload

+

⎛
⎝ OPi,j

Upk′
+ PDpk′,l(k′+1) +

OPi,j

Dh
j

⎞
⎠

︸ ︷︷ ︸
Final Download

+

k′∑
k=1

(( PMi,j

Up(k−1)
+ PDp(k−1),lk +

PMi,j

Dh
j

)

︸ ︷︷ ︸
download from

Exp(k−1) +
( PMi,j

Uh
j

+ PDlk,pk +
PMi,j

Dpk

)

︸ ︷︷ ︸
upload to

Expk

)
Ip(k−1),pk

︸ ︷︷ ︸
Intermediate Transfer

(1)

where, Ip(k−1),pk is an indicator variable, indicates if state of Si of Tj is trans-
ferred from one execution platform to another in the intermediate timestamps.
Formally:

Ip(k−1),pk =

{
1, if Exp(k−1) �= Expk

0, otherwise
(2)

The key objective of this work is to reduce the overall latency across all services
of all trajectories. Since the edge compute resources available are usually fixed,
this requires us to design an algorithm to decide where to place each of the
services. We model this objective as that of reducing the sum of latencies across
all the services and all the users.

3 Detailed Methodology

In this section, we present our methodology to solve DSPP. We first propose the
optimal solution for DSPP, followed by a heuristic solution based on First Come
First Serve (FCFS).

3.1 Optimal Algorithm

Our optimal solution is based on the Integer Linear Programming (ILP) formu-
lation. We first define a set of Boolean variables B as follows:

yi,j,k,l,p,u =

{
1, if Si of Tj is uploaded to Exp from Ll at TSk

0, otherwise

yi,j,k,l,p,d =

{
1, if Si of Tj is downloaded from Exp at Ll at TSk

0, otherwise

zi,j,k,p =

{
1, if Si of Tj is executing in Exp at TSk

0, otherwise

We now design the objective function and the set of constraints required
to formulate the ILP using B. It may be noted that in this formulation, the
objective is to minimize the overall latency across all services of all trajectories,
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which is obtained by choosing the appropriate value of each Boolean variables in
B by the ILP solver. Therefore, the objective function is formulated by summing
up the latency of all services of all trajectories. However, the latency expression
of Si of Tj , which is used in the objective function of ILP, is different from
Expression (1). In the definition of the latency of Si of Tj , we consider that the
execution platform, where Si of Tj to be placed in each timestamp is known to
us. However, in the objective function of this formulation, the execution platform
is to be decided by the ILP solver itself. Therefore we need to reformulate the
latency expression for each service of each trajectory. We now discuss the three
cases again, which we discussed earlier to define the latency.

Let the execution time span of Si of Tj from timestamp TSx to TSx+k′ be
denoted by Γij = {TSx+0, TSx+1, . . . , TSx+k′}, while Tj is at location Llk at
TSx+k ∈ Γij .

– Initial Upload : At the initial timestamp (i.e., at TSx), Si of Tj is uploaded to
an execution platform to be decided by the ILP solver, and captured by the
following.

λ1
ij =

∑
Exp∈Ex

(
IPi,j

Uh
j

+ PDl0,p +
IPi,j

Dp

)
yi,j,x,l0,p,u (3)

We note that in Expression (3), only one Boolean variable corresponding to
the execution platform, where Si of Tj is to be uploaded initially, is set to 1
by the ILP solver. We ensure this by adding a constraint, which is discussed
later.

– Intermediate Transfer : In each intermediate timestamp, Si of Tj has two
options: either Si of Tj continues its execution in the same platform executing
in the previous timestamp, or it gets downloaded from the previous execution
platform and uploaded to some other execution platform. Mathematically,

λ2
ij =

k′∑
k=1

( ∑
Exp∈Ex

(PMi,j

Up
+ PDp,lk +

PMi,j

Dh
j

)
yi,j,k,lk,p,d

+
∑

Exq∈Ex,
Exp �=Exq

(PMi,j

Uh
j

+ PDlk,q +
PMi,j

Dq

)
yi,j,k,lk,q,u

)
(4)

– Final Download : In this case, Si of Tj has to be downloaded from its last
execution platform, which is expressed by the following expression.

λ3
ij =

∑
Exp∈Ex

(
OPi,j

Up
+ PDp,l(k′+1) +

OPi,j

Dh
j

)
yi,j,(k′+1),l(k′+1),p,d (5)
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We now formulate the objective function of the ILP as follows:

Minimize:
∑

Tj∈T

∑
Si∈Tj

(
λ1

ij + λ2
ij + λ3

ij

)
(6)

We now discuss the set of constraints required for this formulation. First, the
number of times each Si of Tj has been uploaded to an execution platform Exp

has to be equal to the number of times the same has been downloaded from Exp.

∀Tj ∈ T and ∀Si ∈ Tj ; ∀Exp ∈ Ex
∑

T Sx≤T Sk≤T S
k′

yi,j,k,lk,p,u =
∑

T Sx≤T Sk≤T S
k′+1

yi,j,k,lk,p,d

(7)

where, the execution time span of Si of Tj is from TSx to TSx+k′ , while Tj passes
through location Llk at TSk.

Each Si of Tj continues its execution on Exp at TSk if Si of Tj has been
uploaded to Exp, but not yet downloaded from Exp. We have the following
constraint to capture this fact:

∀Tj ∈ T and (∀Si ∈ Tj) ; ∀TSk ∈ Γij ; ∀Exp ∈ Ex

zi,j,k,p =
∑

TSψ≤TSk

yi,j,ψ,lψ,p,u −
∑

TSψ≤TSk

yi,j,ψ,lψ,p,d
(8)

where, Tj passes through location Llψ at TSψ.
The following constraint ensures that each Si of Tj must execute on exactly

one execution platform in each timestamp throughout its time span.

∀Tj ∈ T & (∀Si ∈ Tj) ; ∀TSk ∈ Γij ;
∑

Exp∈Ex

zi,j,k,p = 1 (9)

Our final constraint is related to the memory capacity of each edge device.
At each timestamp TSk, the memory constraint of each edge device has to be
satisfied. An edge device cannot accept any service, if it does not have residual
memory capacity to satisfy the service’s memory requirement.

∀TSk ∈ T ; ∀Exp ∈ E ;
∑

Tj∈T

∑

Si∈Tj

PMi,j ∗ zi,j,k,p ≤ TCp (10)

where TCp is total capacity of Ep.
Although the ILP provides an optimal solution to DSPP that minimizes

total latency, it does not scale for large problem instances. Moreover, we may
not always have complete knowledge about all the trajectories in advance. Thus,
we propose a window-based optimal strategy to overcome this problem.

3.2 Window-Based Optimal Algorithm

The crux of the window-based optimal strategy is that we do not require to have
complete information about all the trajectories in advance. However, if we have
prior knowledge of the next few timestamps, say ω number of timestamps, then
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also we can apply the same optimal algorithm on each sub-part of the trajecto-
ries. The main idea of this algorithm is to divide the entire set of timestamps
into multiple windows of size ω and solve the problem optimally for each win-
dow individually. We note that we need to transfer the previous state of the
system (i.e., which service of which trajectory is executing on which execution
platform) to its next state to obtain the optimal solution for the next window.
Clearly, when ω is the total number of timestamps across all trajectories, the
window-based optimal algorithm generates the optimal solution. For a smaller
value of ω, although this approach does not produce an optimal solution, this
approach increases the scalability as compared to the optimal algorithm, since
it handles a smaller set of variables at a time.

In case of large number of timestamps, the window-based optimal algorithm
scales better compared to the optimal approach. Therefore, we can use this
approach as an online technique. However, for a large number of trajectories,
edge devices, or the number of services per timestamp per trajectory in one
window, the window-based optimal algorithm does not scale as well in real-time.
This can increase the computation overhead of running it online. Therefore, in
the next subsection, we propose a scalable heuristic algorithm, which can solve
the placement problem dynamically in real-time.

3.3 Heuristic Using FCFS

We now discuss our heuristic algorithm, which solves DSPP by first come first
serve (FCFS) scheduling. In FCFS, if a service Si of a trajectory Tj starts its
execution earlier on an execution platform Exp than another service Si′ of Tj′ ,
Si of Tj gets higher priority over Si′ of Tj′ on Exp. In case of tie, it gets resolved
arbitrarily. The FCFS algorithm is an online algorithm as it runs on each times-
tamp. Therefore, this algorithm does not require the trajectory information in
advance.

If a service Si of a trajectory Tj executes at timestamp TSk, we have three
possibilities. Analyzing each of the possibilities, the service placement decision
is taken. We now discuss the principle of the FCFS algorithm.

1. Si of Tj is placed to the fastest execution platform accessible from the cur-
rent location having the residual capacity to accommodate the service for
processing at TSk, if Si of Tj starts its execution at TSk.
The fastest execution platform is the one having latency equal to
minExq∈Ex

( IPi,j

Uh
j

+PDlk,q +
IPi,j

Dq

)
.

2. If Si of Tj starts its execution before TSk and it is already on the fastest edge
device accessible from the current location or on the cloud, no action needs
to be taken.

3. If Si of Tj starts its execution before TSk and it is neither on the fastest edge
device accessible from the current location nor on the cloud, Si of Tj may
need to be transferred from the current edge device to the fastest execution
platform accessible from the current location having capacity to accommo-
date it. However, this decision is taken based on a look-ahead in the next K
timestamps, where K is an input to this algorithm, as discussed below.
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Consider the execution time span of Si of Tj is up to TSx+k′ , while Tj passes
through location Llk at TSk. Also consider Si of Tj executed on Exq at TSk−1.
We first define a transfer latency Tr(Exq, TSψ,Llψ) from Exq to the fastest
execution platform accessible from Llψ at TSψ as:

Tr(·) =

(
PMi,j

Uq

+ PDlψ,q +
PMi,j

Dh
j

)
+ min

Exp∈Ex

(
PMi,j

Uh
j

+ PDlψ,p +
IPi,j

Dp

)
(11)

The execution platform chosen Exc for Si of Tj at TSk is:

Exc =

{
Exq, if Tr(Exq, TSk, Llk) ≥ minT Sψ

Tr(Exq, TSψ, Llψ)

Exp, otherwise
(12)

where, TSk ≤ TSψ ≤ min(TSk+K , TSx+k′), Exp is the fastest platform acces-
sible from Llk and has residual capacity to accommodate Si of Tj . The above
equation checks whether the total time required to transfer Si of Tj at TSk from
Eq to Ep is less than the time required to transfer it in the later timestamps. If
that is the case, Si of Tj is transferred at TSk. Otherwise, Si of Tj continues its
execution on Exq.
We make the following observations about FCFS:

1. Since FCFS is an online algorithm, it is executed in each timestamp in each
handheld device, which adds an additional overhead in the overall latency.
Experimentally, we have shown that the overhead incurred due to the execu-
tion of this algorithm is very small.

2. Whenever an edge device accepts any service for execution, it broadcasts its
own residual capacity. Therefore, computation of residual capacity of edge
devices does not have any impact on the latency computation.

3. The quality of this algorithm depends on the value of K. In general, with an
increase in the value of K, the solution quality, i.e., the latency monotonically
improves. However, after certain value of K, this improvement stagnates. We
also note that with an increase in the value of K, the computation time of
the FCFS algorithm increases up to a certain value of K. Unless mentioned
otherwise, we consider the value of K as 1. However, in the experimental
section, we have shown the trade-off between the computation time and the
solution quality in terms of the latency for different values of K.

Time Complexity: The FCFS algorithm iterates over each timestamp, and in
one timestamp, the algorithm iterates over each trajectory to find out what all
services are executed in that timestamp. It accordingly places the services on
an appropriate execution platform to obtain a low latency. Therefore, the com-
plexity of the FCFS algorithm is polynomial in the size of the set of trajectories.
More specifically, the worst-case time complexity of the FCFS algorithm is the
order of the size of the set of trajectories, i.e., O(|T |), since each trajectory is
defined as the set of services accessed across all timestamps.
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4 Experimental Results

In this section, we present our experimental results with analysis. We imple-
mented our proposed framework in Python. All experiments were performed on
a system with the following configuration: AMD Ryzen 5 3550H with Radeon
Vega Mobile Gfx, 2100 MHz, 4 Cores(s), 8 logical processor(s) @ 2.10 GHz with
8 GB DDR4 RAM. We used Gurobi [5] as the ILP solver. We begin with a
discussion of the datasets used for our evaluations.

4.1 Dataset Generation

We conducted our experiments on a real dataset, which we generated for the
evaluation and a set of synthetically generated datasets. We now discuss these
two datasets in detail.

Real Dataset Generation. We could not find any real benchmark dataset
that can be used directly to evaluate the performance of our proposed framework.
Therefore, we designed our own dataset by combining multiple datasets to model
various dimensions of our problem model. We now demonstrate each component
of M = (C, E ,N ,L,R, T ,H,S) below.

In our real dataset, we considered only one cloud server. We used the Pan-
theon1 dataset to generate the uplink and downlink speeds of the cloud. We
assumed one edge device per location and generated the uplink and down-
link speeds of each edge device randomly between 3 MBps to 10 MBps.
We obtained these values by observing actual transmission speeds using a
Wi-Fi dongle connected to a Raspberry Pi. The size of the memory of
each edge device was generated randomly between 512 MB to 4 GB con-
sidering the configuration of Raspberry Pi. The propagation delay from a
location to an edge device was generated randomly following a distribution,
which was obtained from our collected ping latency data. We conducted an
experiment to collect the ping latency of our institute server from different loca-
tions. The propagation delay from a location to the cloud was generated from
the distribution obtained from our collected data containing the ping latency
of Amazon and Google servers from different locations. The set of locations,
route map and the set of vehicular trajectories were constructed from gatech2

dataset. The gatech dataset contains 10 different user trajectories, where the
positions of the vehicles were captured in terms of latitude and longitude pairs.
We first extracted the latitude-longitude pairs from the dataset. We then used
K-means [8] algorithm with Haversine distance [20] function to discretize the
set of locations. The route map was generated from the vehicular trajectories of
gatech dataset. To obtain the set of services and their duration of invocations per
user, we used Carat3 dataset. The uplink and downlink speeds of each handheld
1 https://www.pantheon.stanford.edu/summary/?page=1.
2 https://www.crawdad.org/gatech/vehicular/20060315/.
3 https://www.cs.helsinki.fi/group/carat/data-sharing/.

https://www.pantheon.stanford.edu/summary/?page=1
https://www.crawdad.org/gatech/vehicular/20060315/
https://www.cs.helsinki.fi/group/carat/data-sharing/
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device were estimated from a distribution, obtained from the uplink and down-
link speeds of a set of cell phones. Finally, we generated the input, output and
the worst case memory requirement of each service by random sampling from
our collected dataset. We performed an experiment on publicly available service
APIs to obtain the input, output and the worst case memory requirement.

Synthetic Dataset Generation. To show the performance scalability of our
framework, we extended our experiments on synthetically generated dataset,
which we discuss below. For each instance of the dataset, externally, we provided
the number of edge devices and clouds, the number of trajectories, the total
number of services, the number of timestamps, and the number of services per
trajectory per timestamp. For each dataset, we first randomly generated the
graph representing the route map. The number of vertices in the graph was
equal to the number of edge devices. We used a probability p following the
uniform distribution to generate a link between each pair of vertices. We note
that a trajectory of our system is nothing but a path of the graph, which was
chosen randomly. Finally, for each trajectory tuple, we randomly assigned two
timestamps. The first timestamp shows the time to enter into the location, while
the second timestamp shows the time to leave the location. The rest of the part
of each dataset were generated similarly, as described above.

4.2 Comparative Methods

We compared our methods with three baseline techniques:
1) Proactive method: This method assumes that if a service of a tra-

jectory is uploaded to any execution platform, it continues the execution until
the execution platform becomes inaccessible from the current location of the
vehicular trajectory. In this approach, a service of a trajectory is uploaded, if
required, to the fastest execution platform accessible from the current location
of the trajectory having the residual capacity to accommodate the service. The
inaccessibility of an execution platform is measured in terms of its propagation
delay. A service of a trajectory is transferred from one execution platform to
another when the propagation delay of the former execution platform is more
than a given threshold value from the current location of the trajectory.

2) Reactive method: In this method, each service of a trajectory changes
the execution platform along with the vehicular trajectory across the span of
the service. Here, in each location of a trajectory, a service of the trajectory is
uploaded to the fastest execution platform accessible from the current location
of the trajectory having the residual capacity to accommodate the service.

3) Cloud-based method: In this method, each service of each trajectory
is uploaded to the cloud. The service continues its execution in the cloud until
it finishes. Finally, the service gets downloaded from the cloud to the handheld
device.
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Table 1. Comparative study on the real dataset (all in seconds)

Network parameters

|T | |S| |E| |TS| #S/T , TS

10 121 10 10 2 to 5

Comparative study with different algorithms

Subject Optimal FCFS Proactive Reactive Cloud

Lat – 12.52 12.52 17.37 291.11

CT – 0.01 0.02 0.024 0.02

FCFS with K-look ahead

K 2 3 5 7 10

Lat 8.61 6.14 6.07 6.07 6.07

CT 0.01 0.01 0.01 0.02 0.02

**note: #S/T , TS the number of services per trajectory per timestamp

4.3 Analysis on Real Dataset

In this section we briefly discuss our experimental analysis. We begin with ana-
lyzing the results obtained on the real dataset. Table 1 shows the results on the
real dataset. From the table we have the following observations:

1. Performance of FCFS: The proposed First Come First Serve (FCFS) algo-
rithm (with look-ahead 1) was as good as the proactive technique and better
than the reactive and cloud-based techniques in terms of latency.

2. Performance of Optimal: The optimal algorithm was unable to produce
any result due to the size of the dataset.

3. Execution time of FCFS: Our FCFS algorithm was able to generate the
results in the order of tens of milliseconds.

4. Impact of look-aheads on FCFS: As we increased the number of look-
aheads K, the latency monotonically reduced. However, this improvement
stagnates beyond K = 5. This is because for our available dataset, the entire
set of decision parameters can usually be obtained by FCFS when K ≥ 5. As
is evident from Table 1, the execution timespan of any service is bounded by
5 timestamps.

To generalize the overall characteristics of our proposed optimal and FCFS algo-
rithms, we further extended our experiments on synthetically generated datasets.

4.4 Analysis on Synthetically Generated Dataset

In this analysis, we varied different network parameters, i.e., the number of
trajectories (|T |), the number of edge devices (|E|), the number of timestamps
(|TS|), the number of services (|S|), and the number of services per trajectory
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per timestamp (#S/T , TS), to analyze the performance of different algorithms.
At a time we varied only one parameter while keeping the rest of the parameters
constant.

We first performed an experiment with a smaller dataset. Figures 1(a)–(e)
shows the comparative study between different algorithms. We have the following
observations:

1. Performance of Optimal Algorithm: As evident from Figs.1(a)–(e), the
optimal algorithm produced the best results in terms of latency. However,
the optimal algorithm was quite expensive in terms of computation time. For
a relatively large dataset, the optimal algorithm was, therefore, unable to
produce any result.

(a) (b)

(c) (d)

(e)

Fig. 1. Comparative study between different methods by varying the number of (a)
trajectories (|S| = 10; |E| = 5; |TS| = 5; #S/T , TS = 2−5); (b) edge devices (|T | = 5;
|S| = 10; |TS| = 5; #S/T , TS = 2 − 5); (c) services per trajectory per timestamp
(|T | = 5; |S| = 20; |E| = 5; |TS| = 5); (d) timestamps (|T | = 5; |S| = 10; |E| = 5;
#S/T , TS = 2 − 5); (e) services (|T | = 5; |E| = 10; |TS| = 5; #S/T , TS = 2 − 5)

2. Comparison between FCFS and Optimal Algorithms: On average, the
optimal algorithm was 2.43 times better than the FCFS algorithm in terms



Mobility-Aware Service Placement 261

of latency, while the FCFS algorithm was 306 times faster than the optimal
algorithm. This signifies the purpose of the FCFS algorithm.

3. Comparison between FCFS and baseline techniques: In few cases, the
FCFS algorithm was worse than the proactive or cloud-based techniques. As
apparent from Figs. 1(a)–(e), in only 1 out of 27 cases, the proactive technique
and the cloud-based technique had 1.5 times and 1.6 times lower latency than
the FCFS, respectively. However, on average, the FCFS algorithm had 6.76
times lower latency than the best algorithm among proactive, reactive, and
cloud-based techniques (in each case).

4. Variation of network parameters: As observed from Figs. 1(a)–(e), with
the increase in the number of trajectories, edge devices, timestamps or services
per trajectory per timestamp, the computation time of both the optimal
and the FCFS algorithms monotonically increased. However, the number of
services did not influence the computation time. While the number of services
increases the variation of services to be invoked, it does not increase the total
number of services invoked from each trajectory.

As discussed earlier, for a large dataset, the optimal algorithm was not able to
produce any result. However, our FCFS algorithm is scalable enough to generate
results in a reasonable time limit. Figures 2(a)–(e) show the results on larger

Fig. 2. Comparative analysis on large datasets by varying the number of (a) trajecto-
ries; (b) edge devices; (c) services per trajectory per timestamp; (d) timestamps; (e) ser-
vices; Unless otherwise mentioned, the general configuration of the network parameters
for this experiment are: |T | = 100; |S| = 100; |E| = 100; |TS| = 10; #S/T , TS = 5−10
(Color figure online)
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datasets. A similar trend was observed from the larger datasets as well. Here,
in Figs. 2(a)–(e), we reported the overall time taken by the FCFS algorithm
across all trajectories across all timestamps (as shown by the blue line graph in
Fig. 2). However, in each case, we also reported the latency overhead (i.e., the
computation time of the FCFS algorithm in each trajectory in each timestamp)
added due to the computation time of the FCFS algorithm. We note that for
the larger dataset, the latency overhead generated due to the computation time
of the FCFS algorithm was significant, as shown in Figs. 2(a)–(e). However,
the FCFS algorithm was still 2.57 times better than the best technique among
proactive, reactive, and cloud-based methods (in each case) in terms of latency.
We further note that only in 3 out of 26 cases, the proactive technique was 1.5
times better than the FCFS in terms of latency.

4.5 Impact of Tunable Parameters

We now discuss the impact of two tunable parameters on the trade-off between
solution quality and computation time.

Impact of Window Size (ω): We first discuss the impact of window size
in case of window-based optimal algorithm. We compared the solution quality
(i.e., latency) of the window based optimal algorithm for different window sizes
with the optimal algorithm. Figure 3(a) shows the latency and overhead due
to the computation time of the algorithm across different window sizes for five
different datasets (i.e. Cases 1–5), where each dataset represents a different set
of parameter configurations. As evident from Fig. 3(a), on average, with the
increase in the size of window, the solution quality improved. This is expected,
as with an increase in the window size, in general the window-based optimal
algorithm gradually approaches the optimal solution.

Impact of Lookaheads (K): We now discuss the impact of K in the case of the
K-look-ahead FCFS algorithm. We compared the solution quality (i.e., latency)

Fig. 3. Trade-off between computation delay and latency for (a) window-based optimal
algorithm; (b) FCFS with K-look ahead. For (a), the darker colors (labels ending with
a suffix ‘-L’) denote latency, while the lighter colors (labels ending with a suffix ‘-O’)
denote overhead.
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of the K-look-ahead FCFS algorithm for a specific value of K with the 1-look-
ahead FCFS algorithm. Figure 3(b) shows the means and standard deviations
of latency improvement and computation time degradation. While the latency
improvement was calculated as the ratio between the latency obtained by 1-
look-ahead FCFS and K-look-ahead FCFS, the computation time degradation
was determined by the ratio between the time taken by K-look-ahead FCFS
and 1-look-ahead FCFS. As evident from Fig. 3(b), with the increase in the
value of K, the solution quality monotonically improved, and computation time
degraded. However, we note that after a certain limit, the solution quality did not
improve significantly with an increase in the value of K. The trade-off between
the solution quality and the computation time gets captured by the value of K.

In summary, FCFS provides a good balance between the solution quality
(i.e., latency value) and computation time. The solution quality can be improved
further at the cost of computation time using K-look-ahead FCFS.

5 Related Work

The rise of low-latency applications for the Internet of Things has made it neces-
sary to utilize edge devices, instead of depending only on cloud services [2,7,14].
Multiple studies have appeared in the literature about providing such low-latency
services. The first category deals with service placement in an edge-cloud environ-
ment, whereas the second category handles service requests for users of vehicles.

Service Placement in Edge-Cloud Environment: The problem of ser-
vice placement in edge-cloud environment has received attention recently
[11,16,19,23]. One of the earliest solutions to the service placement problem was
proposed in [16], where the authors first provided an (IoT) model along with the
Quality of Service (QoS) requirement of the services and formulates Fog Service
Placement Problem (FSPP) based on QoS requirements. In [4,6,15,19,23], the
authors model the application placement problems and then propose a solution
based on the different changing dynamics of the network and requests. None of
these studies focus on user mobility. Our work builds on these ideas to propose
an algorithm that considers the mobility of users.

Edge Service for Vehicular Users: The authors in [24] identified the require-
ment of the mobility problem, highlighted the advantages of mobility and dis-
covered open challenges in this direction. In [1] and [25], the authors considered
an application with multiple components to be placed on the set of edge devices
across multiple timestamps for a moving user. Finally, [3] utilized a simulation
tool to benchmark the performance of various algorithms. In contrast, our objec-
tive is to minimize the overall latency while multiple mobile users access different
services at various points of time of their journey.

A number of works also consider optimizing service placement for moving
user devices [3,9,10,21,22]. Mobmig [12] focused on solving the service place-
ment problem in the context of edge users from moving vehicles by looking at the



264 R. Mudam et al.

direction of its movement. However, its primary focus is on load balancing, and
not on minimizing overall latency. References [21] and [22] model the problem of
service placement as an Markov Decision Process (MDP). Unlike our work, these
analytical model do not consider multiple users and multiple services to reduce
the complexity of their model. Reference [10] utilized Thompson Sampling to
handle the uncertainties inherent in placing services on edge clouds. However,
it considers the response time of only a single user at a time, and considers a
much simpler service model without considering the diversity of data require-
ments for different services. Moreover, these studies [9,10] do not consider the
dimension of memory requirement and availability, preferring to focus only on
optimizing latency. In contrast, our work focuses on optimizing service latency
while adhering to the memory constraint imposed by edge devices.

6 Conclusion

In this paper, we study the dynamic service placement problem in a distributed
edge-cloud environment with emphasis on user mobility. We first model the prob-
lem and propose an optimal solution to this. To improve its scalability, we further
propose a heuristic algorithm considering FCFS scheduling. The experimental
results on real and synthetic datasets show the effectiveness of our proposal. One
limitation of this work is the assumption of having prior knowledge of the service
invocation logs. In the future, we will utilize techniques shown by prior studies
to predict services invoked to relax this assumption.

Acknowledgment. We would like to acknowledge Dr. Ansuman Banerjee, Indian
Statistical Institute and Dr. Nanjangud C Narendra, Ericsson Research Bangalore for
their initial discussions on this project.
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Abstract. A self-adaptive service can maintain its QoS requirements in
the presence of dynamic environment changes. To develop a self-adaptive
service, service engineers have to create self-adaptation logic encoding
when the service should execute which adaptation actions. However,
developing self-adaptation logic may be difficult due to design time uncer-
tainty; e.g., anticipating all potential environment changes at design time
is in most cases infeasible. Online reinforcement learning addresses design
time uncertainty by learning suitable adaptation actions through interac-
tions with the environment at runtime. To learn more about its environ-
ment, reinforcement learning has to select actions that were not selected
before, which is known as exploration. How exploration happens has an
impact on the performance of the learning process. We focus on two
problems related to how a service’s adaptation actions are explored: (1)
Existing solutions randomly explore adaptation actions and thus may
exhibit slow learning if there are many possible adaptation actions to
choose from. (2) Existing solutions are unaware of service evolution, and
thus may explore new adaptation actions introduced during such evolu-
tion rather late. We propose novel exploration strategies that use feature
models (from software product line engineering) to guide exploration in
the presence of many adaptation actions and in the presence of service
evolution. Experimental results for a self-adaptive cloud management
service indicate an average speed-up of the learning process of 58.8% in
the presence of many adaptation actions, and of 61.3% in the presence
of service evolution. The improved learning performance in turn led to
an average QoS improvement of 7.8% and 23.7% respectively.
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1 Introduction

A self-adaptive service is capable of modifying its own structure and behavior at
runtime based on its perception of the environment, of itself and of its require-
ments [9,20,28]. As an example, take a self-adaptive web service. Faced with a
sudden increase in workload, the web service may reconfigure itself by deacti-
vating optional system features. An online store, for instance, may deactivate its
resource-intensive recommender engine in the presence of a high workload. By
adapting itself at runtime, the web service is able to maintain its QoS require-
ments (here: performance) under changing workloads.

To develop a self-adaptive service, service engineers have to develop self-
adaptation logic that encodes when and how the service should adapt itself.
Among other concerns, this requires anticipating the potential environment
states the service may encounter at runtime to define when the service should
adapt itself. However, anticipating all potential environment states at design time
is in most cases infeasible due to design time uncertainty [8,10]. In addition, due
to simplified design assumptions, the precise effect of an adaptation action may
not be known and thus accurately determining how the service should adapt
itself is difficult [10]. As an example, while service engineers may know in prin-
ciple that activating more features will have a negative impact on performance,
exactly determining the performance impact is more challenging [30].

Online reinforcement learning (RL) is an emerging approach to address
design time uncertainty of self-adaptive services by employing RL at runtime
(see existing solutions discussed in Sect. 6). In general, RL aims to learn suit-
able actions via an agent’s interactions with its environment [31]. The agent
receives a reward for executing an action. The reward expresses how suitable
that action was. The goal of RL is to optimize cumulative rewards.

1.1 Problem Statement

RL faces the exploration-exploitation dilemma [31]. To optimize cumulative
rewards, actions should be selected that have shown to be suitable, which is
known as exploitation. However, to discover such actions in the first place, actions
that were not selected before should be selected, which is known as exploration.
How exploration happens has an impact on the performance of the learning pro-
cess [4,13,31]. We focus on two problems related to how a service’s set of possible
adaptation actions, i.e., its adaptation space, is explored.

Random Exploration of Adaptation Space. Existing online RL solutions for
self-adaptive services propose randomly selecting adaptation actions for explo-
ration (see Sect. 6). The effectiveness of exploration therefore directly depends
on the size of the adaptation space, because each adaptation action has an equal
chance of being selected. Some RL algorithms can cope with a large space of
actions, but require that the space of actions is continuous in order to generalize
over unseen actions [23]. Self-adaptive services may have large, discrete adapta-
tion spaces; e.g., if their adaptation actions entail changes of service compositions
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[22] or reconfigurations of service features [19]. A simple example is a service com-
position consisting of eight abstract services that may allow dynamically binding
2 concrete services each. Assuming no temporal or logical constraints on adap-
tation, this constitutes 28 = 256 possible adaptation actions. In the presence of
such large, discrete adaptation space, random exploration thus may lead to slow
learning at runtime [4,13,31].

Evolution-Unaware Exploration of Adaptation Space. Existing online RL
solutions are unaware of service evolution [16,29]. They do not consider that a
self-adaptive service – like any service – may undergo evolution [25]. In contrast
to self-adaptation, which refers to the automatic modification of the service by
itself, evolution refers to the modification of the service by humans [20]. During
evolution, service engineers may modify the service to correct bugs, remove no
longer used features, or introduce new features. Service evolution means that the
adaptation space may change, e.g., existing adaptation actions may be removed or
new adaptation actions may be added. Some RL algorithms can cope with envi-
ronments that change over time, so called non-stationary environments [23,31].
However, a change of the adaptation space cannot be determined by observing
the environment, as the adaptation space is an intrinsic property of the RL agent.
As a result, existing solutions may explore new adaptation actions only with low
probability (as all adaptation actions have an equal chance of being selected). It
may thus take quite long until the new adaptation actions have been explored.

1.2 Contributions

We introduce exploration strategies for online RL that address (1) a service’s
potentially large adaptation space, and (2) changes of its adaptation space due
to evolution. Our exploration strategies use feature models [21] to give structure
to the service’s adaptation space and thereby leverage additional information
to guide exploration. A feature model is a tree or a directed acyclic graph of
features, organized hierarchically. An adaptation action is represented by a valid
feature combination specifying the target run-time configuration of the service.

Our strategies traverse the feature model to select the next adaptation action
to be explored. By leveraging the structure of the feature model, our strate-
gies guide the exploration process. In addition, our strategies detect added and
removed adaptation actions by analyzing the change of the feature model due
to evolution. Adaptation actions removed as a result of evolution are no longer
explored, while added adaptation actions are explored first.

We implement our strategies as part of the Q-Learning RL algorithm [31]
widely used in the related work (see Sect. 6). We experimentally assess our strate-
gies using an actual cloud resource management service and compare the learning
performance with that of the widely used ε-greedy random exploration strategy.

In what follows, Sect. 2 explains fundamentals and a running example. Sect. 3
describes our exploration strategies and how they are integrated with RL algo-
rithms. Sect. 4 presents the design and results of our experiments. Sect. 5 pro-
vides a critical discussion. Sect. 6 analyzes related work.
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2 Fundamentals

Feature Models and Self-adaptation. A feature model is a tree of features
organized hierarchically [21]. A feature can be decomposed into mandatory,
optional or alternative sub-features. A mandatory sub-feature has to be acti-
vated if its parent feature is activated. While an optional sub-feature may or
may not be activated, at least one of the alternative sub-features has to be
activated if their parent feature is activated. Additional constraints, such as
“excludes” or “requires”, express inter-feature dependencies. Thereby, a feature
model describes the possible and allowed feature combinations.

Feature models are traditionally used in software product line engineering to
define the set of system variants at design time [21]. Dynamic software product
lines extend the use of feature models to describe possible run-time configura-
tions of a system [14]. A feature model thereby can be used to define a self-
adaptive system’s adaptation space, where each adaptation action is expressed
in terms of a possible runtime configuration, i.e., feature combination [12].

Figure 1 shows the feature model of a self-adaptive web service as an example.
The DataLogging feature is mandatory (which means it is always active), while the
ContentDiscovery feature is optional. The DataLogging feature has three alternative
sub-features, i.e., at least one data logging sub-feature must be active: Min,
Medium or Max. The ContentDiscovery feature has two optional sub-features Search

and Recommendation. The constraint Recommendation ⇒ Max ∨ Medium specifies
that a sufficient level of data logging is required to collect enough information
about the web service’s users and transactions to make good recommendations.

Fig. 1. Feature model and adaptation of example web service

Let us consider the above web service should adapt to changing number of
concurrent users to keep its response time below 500 ms. A service developer
may express an adaptation rule for the web service such that it turns off some
of the features in the presence of more users, thereby reducing the resource
needs of the service. The right-hand side of Fig. 1 shows a concrete example for
such an adaptation. If the service faces an environment state of more than 1000
concurrent users, the service self-adapts by deactivating the Search feature.

Reinforcement Learning (RL). RL aims to learn suitable actions via an
agent’s interactions with its environment [31]. At a given time step t, the agent
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selects an action a (from its adaptation space) to be executed in environment
state s (see Fig. 2). As a result, the environment transitions to s′ at time
step t + 1 and the agent receives a reward r for executing the action. The
reward r together with the information about the next state s′ are used to
update the knowledge of the agent. The goal of RL is to optimize cumulative

Fig. 2. RL concept

rewards. As mentioned in Sect. 1, a
trade-off between exploitation (using
current knowledge) and exploitation
(gathering new knowledge) must be
made. For a self-adaptive service,
“agent” refers to the self-adaptation
logic of the service and “action” refers
to an adaptation action [24].

3 Feature-Model-Guided Exploration

As motivated in Sect. 1, our exploration strategies use feature models (FM) to
guide the exploration process. We first explain how our FM-guided exploration
strategies can be integrated into an existing RL algorithm and then introduce
the realization of these strategies.

3.1 Integration into Reinforcement Learning

Algorithm 1 shows how our FM-guided strategies can be integrated into RL
by using the well-known Q-Learning algorithm as basis. We chose Q-Learning
because it is the most widely used algorithm in the related work (see Sect. 6).

Algorithm 1. Q-Learning with FM-guided Exploration
1: function FMQ-Learning(FeatureModel M; Double α, γ, ε, δ)
2: Initialize Q(s, a) for all s ∈ S (state space) and a ∈ A (adaptation space);
3: Determine current state s;
4: repeat
5: Set<Feature> a = getNextAction(M, s); // Action Selection
6: Adapt service to configuration a; Observe reward r; Observe new state s′;
7: Q(s, a) ← Q(s, a) + α[r + γmaxa′∈AQ(s′, a′) − Q(s, a)]; // Knowledge Update

8: s ← s′;
9: until last time step
10: end function
11:
12: function getNextAction(FeatureModel M, State s)
13: Set<Feature> a ← argmaxaQ(s, a); // Exploit existing knowledge
14: InitFMExploration(M, a); // initialize the FM-guided strategies, see Algorithm 2
15: if random() < ε then // Explore new actions
16: if random() < δ then return getRandomConfiguration(M);
17: else
18: return getNextConfiguration(); // see Algorithm 2
19: end if
20: end if
21: return a;
22: end function
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Q-Learning employs a value function for representing the learned knowledge.
The value function Q(s, a) gives the expected cumulative reward when perform-
ing a particular action a in a given state s [31]. Q-Learning offers two hyper-
parameters: the learning rate α, which defines to what extent newly acquired
knowledge overwrites old knowledge, and the discount factor γ, which defines
the relevance of future rewards (see knowledge update in line 7).

Our strategies are integrated into RL within the getNextAction function,
which selects the next adaptation action while trading off exploration and
exploitation. To make this trade-off we use the ε-greedy strategy as a base-
line, as it is a standard action selection strategy in reinforcement learning and
the most widely used strategy in the related work (see Sect. 6). With probability
1− ε, ε-greedy exploits existing knowledge by selecting the action a that has the
highest Q value and thus highest expected reward (line 13). With probability ε,
ε-greedy randomly explores a new action. In contrast to this random exploration,
we use our FM-guided exploration strategies by calling the getNextConfigu-

ration function (line 18). The different realizations of getNextConfiguration

are explained below. To prevent FM-guided exploration from prematurely con-
verging to a local minimum, we follow the literature and use a small amount of
randomness [26], i.e., we perform random exploration with probability δ · ε.

3.2 Leveraging the Feature Model Structure for Exploration

Incremental Exploration Strategy. This strategy takes advantage of the
semantics typically encoded in the structure of feature models. Non-leaf features
in a feature model are usually abstract features used to better structure variabil-
ity [36]. These abstract features often do not have an impact at implementation
level, but delegate their realization to their sub-features. Sub-features thus may
offer different realizations of their abstract parent feature. The sub-features of
a common parent feature, i.e., sibling features, can thus be considered seman-
tically connected. In the example from Sect. 2, the ContentDiscovery feature has
two sub-features Search and Recommendation offering different concrete ways how
a user may discover online content. The idea behind the Incremental strategy is
to exploit the information about these potentially semantically connected sibling
features and explore them first before exploring other features. Note that this
entails a random selection of the order of sub-features. Table 1 shows an excerpt
of a typical exploration sequence of the Incremental strategy with the step-wise
exploration of sibling features highlighted in gray.

Table 1. Example exploration via Incremental strategy (excerpt)

Logging Min Medium Max Content Disc. Search Recommend.
1    
2    
3     
4     
5    
6    
7 ... … … … … ... …
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The Incremental strategy is realized by Algorithm 2, which starts by ran-
domly selecting an arbitrary leaf feature f (i.e., a feature with no sub-features)
among all leaf features that are part of the current configuration (lines 5– 6).
Then, the set of configurations Cf containing feature f is computed, while the
sibling features of feature f are gathered into a dedicated siblings set (line 7).

Algorithm 2. Incremental Strategy
1: Set<Feature> leaves, configuration, siblings;
2: Set<Set<Feature>> Cf ; Feature f ;
3:
4: function InitFMExploration(FeatureModel M, Set<Feature> currentConfiguration)
5: leaves ← getLeaves(currentConfiguration);
6: f ← randomSelect(leaves);
7: Cf ← getConfigurationsWithFeature(f); siblings ← siblings(f);
8: end function
9:
10: function getNextConfiguration()
11: if Cf �= ∅ then
12: configuration ← randomSelect(Cf ); Cf ← Cf \ {configuration};
13: return configuration;
14: else
15: if siblings �= ∅ then
16: f ← randomSelect(siblings);
17: siblings ← siblings \ {f}; Cf ← getConfigurationsWithFeature(f);
18: else
19: if parent(f) �= ∅ then
20: f ← parent(f); siblings ← siblings(f);
21: Cf ← getConfigurationsWithFeature(f);
22: else // Root feature reached
23: return ∅;
24: end if
25: end if
26: return getNextConfiguration();
27: end if
28: end function

While Cf is non-empty, the strategy explores one randomly selected config-
uration from Cf and removes the selected configuration from Cf (lines 11–13).
If Cf is empty, then a new set of configurations containing a sibling feature of
f is randomly explored, provided such sibling feature exists (lines 15–17). If no
configuration containing f or a sibling feature of f is found, then the strategy
moves on to the parent feature of f , which is repeated until a configuration is
found (line 13) or the root feature is reached (line 22).

Feature Degree Exploration Strategy. Even though the Incremental strat-
egy makes use of the structure of the feature model, it still randomly determines
the order in which leaf and sibling features are explored. To better guide the
decision about which of these features to explore, we make use of the concept of
feature degree. We define the feature degree for a given feature f as the num-
ber of configurations that contain f . The intuition here is that there may be a
higher probability of finding a suitable configuration when considering features
with high feature degrees, as they are present in more configurations.

In our example, the feature degree of Search is 5, while of Recommendation

it is only 4 (due to the constraint requiring at least the Medium logging level).



276 A. Metzger et al.

The Feature Degree strategy thus first explores all configurations involving the
Search feature before exploring other configurations. Table 2 shows an excerpt of
a typical exploration sequence of the Feature Degree strategy (the exploration
of the sibling feature with highest feature degree highlighted in gray).

Table 2. Example exploration via Feature Degree strategy (excerpt)

Logging Min Medium Max Content Disc. Search Recommend.
1    
2     
3     
4    
5    
6 … … … … … … …

The Feature Degree strategy is realized by modifying Algorithm 2 to make
use of the feature degree as shown in Algorithm 3. On the one hand, the feature
degree is used to determine which leaf feature to start exploring from. Instead
of randomly selecting a leaf feature as done in Algorithm 2 (line 6), the Feature
Degree strategy selects a leaf feature with the highest feature degree. On the
other hand, instead of randomly choosing sibling features as done in Algorithm 2
(line 16), the Feature Degree strategy explores the sibling in descending order of
their feature degrees. To realize the featureDeg function, existing feature model
analysis tools, such as [35], can be used to efficiently compute the number of
possible configurations containing f .

Algorithm 3. Feature Degree Strategy
5: leaves ← getLeaves(currentConfiguration);
6: f ← argmaxf∈leaves(featureDeg(f));

[...]
16: if siblings �= ∅ then
17: f ← argmaxf∈siblings(featureDeg(f));

3.3 Leveraging Feature Model Differences for Exploration

To capture changes in the service’s adaptation space due to evolution, we pro-
pose analyzing the differences in feature models before (M) and after (M′) an
evolution step. Following the product line literature, we consider two main types
of changes of feature models [34]:

Added configurations (feature model generalization). New configurations may be
added to the adaptation space by (i) introducing new features to M′, or (ii)
removing or relaxing existing constraints (e.g., by changing a sub-feature from
mandatory to optional, or by removing “requires” or “excludes” constraints).
In the example from Sect. 2, a new sub-feature Optimized might be added to
the DataLogging feature, providing a more resource efficient logging implemen-
tation. Thereby, new configurations are added to the adaptation space, such as
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{DataLogging, Optimized, ContentDiscovery, Search}. As another example, the Rec-

ommendation implementation may have been improved and it now can work with
the Min logging feature. This removes the constraint shown in Fig. 1, and adds
new configurations such as {DataLogging, Min, ContentDiscovery, Recommendation}.

Removed configurations (feature model specialization). Symmetrical to above,
configurations may be removed from the adaptation space by (i) removing fea-
tures from M, or (ii) by adding or tightening constraints in M′.

To determine these changes of feature models, we compute a set-theoretic
difference between valid configurations expressed by feature model M and fea-
ture model M′. Detailed descriptions of feature model differencing as well as
efficient tool support can be found in [1,5]. The feature model differences pro-
vide us with adaptation actions added to the adaptation space (M′ \ M), as
well as adaptation actions removed from the adaptation space (M \ M′).

Our evolution-aware strategies thus first explore the configurations that were
added to the adaptation space, and then explore the remaining configurations
if needed. The rationale is that added configurations might offer new opportu-
nities for finding suitable adaptation actions and thus should be explored first.
Configurations that were removed are no longer executed and thus the learning
knowledge can be pruned accordingly. In the Q-Learning realization (Sect. 3.1),
we remove all tuples (s, a) from Q, where a represents a removed configuration.

Such evolution-aware exploration can also be introduced to ε-greedy. Instead
of randomly exploring the whole new adaptation space, exploration is limited to
first randomly exploring the set of new configurations.

4 Experiments

We experimentally assess our FM-guided exploration strategies and compare
them with ε-greedy as the strategy used in the related work (see Sect. 6).

Research Questions. We aim to answer the following research questions:
RQ1: How does learning performance using FM-guided exploration compare

to using ε-greedy and how does it impact on QoS?
RQ2: How does learning performance using evolution-aware exploration

strategies compare to evolution-unaware exploration and how does it impact
on QoS?

Experiment Setup. We use a self-adaptive cloud resource management ser-
vice, CloudRM1, as subject system [17]. CloudRM controls the allocation of
computational tasks to virtual machines (VMs) and the allocation of virtual
machines to physical machines in a cloud data center. CloudRM can be adapted
by reconfiguring it to use different allocation algorithms, and the algorithms
can be adapted by using different sets of parameters. We implemented a sepa-
rate adaption logic for CloudRM by using the extended Q-Learning algorithm
as introduced in Sect. 3.1. In total, CloudRM provides 344 possible adaptation

1
https://sourceforge.net/p/vm-alloc/task vm pm.

https://sourceforge.net/p/vm-alloc/task_vm_pm 
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actions. These are structured in a feature model that is four levels deep and
includes 65 different features. The feature model together with the code of our
algorithms and the data of our experiments are available online2.

Our experiments are based on a real-world workload trace with 10,000 tasks,
in total spanning over a time frame of 29 days [18]. The CloudRM algorithms
decide on the placement of new tasks whenever they are entered into the system
(as driven by the workload trace). To allow sufficient time in the experiment
to observe the impact of an adaptation, CloudRM is allowed to run one hour
before the next adaptation action is executed. For RQ2, the same workload was
replayed after each evolution step to ensure consistency among the results.

We define the reward function for online RL as r = −(ρ · e + (1 − ρ) · m),
with e being the energy consumption and m being the number of VM manipu-
lations (i.e., migrations and launches), each normalized to be on the same scale.
We use ρ = 0.8, meaning we give priority to reducing energy consumption,
while still maintaining a low number of VM manipulations. If several adaptation
actions show similar energy consumption, the one that achieves this with less
VM manipulations receives a higher reward.

To determine suitable hyper-parameter values (see Sect. 3.1), we performed
hyper-parameter tuning (via grid search). We used the best performing learning
rate α = 0.85 and discount factor γ = 0.2 for ε-greedy and used this also for
our FM-guided strategies. To facilitate convergence of the learning process, we
used an ε decay approach. This is a typical approach in RL, meaning that ε
starts at 1 and diminishes with a predefined rate after each time step. We used
an ε decay rate of 0.97 (i.e., ε < 1% after time step 150), as this led to fastest
convergence with highest asymptotic rewards for ε-greedy. For the FM-guided
strategies we used a δ decay rate of 0.9 (i.e., δ < 1% after time step 45). Due
to the stochastic nature of the learning strategies (both ε-greedy and to a lesser
degree our strategies involve random decisions), we repeated the experiment 100
times and averaged results.
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Fig. 3. Learning curves (RQ1)

2
https://git.uni-due.de/online-reinforcement-learning/icsoc-2020-artefacts.

https://git.uni-due.de/online-reinforcement-learning/icsoc-2020-artefacts
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Results for RQ1. Figure 3 visualizes the learning process for the different
exploration strategies by showing how rewards develop over time. As visible,
the FM-guided exploration strategies (Incremental and Feature Degree) more
quickly reach maximum rewards than ε-greedy (our baseline).

Table 3 characterizes the learning process of the different strategies by using
the metrics presented in [32]: Asymptotic performance (maximum reward at end
of learning process, here: average rewards of time steps 200–250), total reward
(area between reward curve and asymptotic reward), time to threshold (time
step when x% of asymptotic reward is reached for first time, here: x = 90),
jumpstart (rewards at beginning of learning process, here: at time step 10). In
addition, the table shows how the learning performance of the different strategies
impact on the QoS characteristics of CloudRM.

Results indicate that our FM-guided exploration strategies lead to a con-
sistent improvement of the learning process. In addition, the Feature Degree
strategy performs better than the Incremental strategy, suggesting that con-
sidering additional information about the service’s features has an effect. Our
FM-guided strategies perform better when compared with ε-greedy wrt. total
reward (58.8% on average), time to threshold (48.6% on average), and jump-
start (1.3% on average), while performing comparably wrt. asymptotic perfor-
mance. Considering the impact on QoS, FM-guided learning consistently leads
to less VM manipulations and sightly lower energy consumption. While savings
in energy are rather small (less than 1%), FM-guided learning reduces the num-
ber of virtual machine manipulations by 7.8% on average. This is caused by
the different placement algorithms having a rather small difference wrt. energy
optimization, but having a much larger difference wrt. optimizing the number
of virtual machine manipulations.

Table 3. Comparison of exploration strategies (RQ1)

Learning performance QoS impact

Asymptotic

performance

Time to

threshold

Jumpstart Total

reward

Energy (kWh) Number VM

manipulations

ε-greedy −0.6873 74 −0.7474 −2.0110 2511 761

Incremental −0.6868 47 −0.7407 −0.9946 2507 713

Improvement 0.1% 36.5% 0.9% 50.5% 0.1% 6.2%

Feature Degree −0.6878 29 −0.7351 −0.6644 2508 690

Improvement −0.1% 60.8% 1.7% 67.0% 0.1% 9.3%

Avg. improvement 0.0% 48.6% 1.3% 58.8% 0.1% 7.8%

Results for RQ2. We compare three evolution-aware strategies (evolution-
aware ε-greedy, evolution-aware Incremental, and evolution-aware Feature
Degree) with their respective evolution-unaware counterparts (i.e., the strategies
used for RQ1). It should be noted that even though we provide the evolution-
unaware strategies with the information about the changed adaptation space (so
they can fully explore it), we have not modified them such as to differentiate
between old and new adaptation actions.



280 A. Metzger et al.

We use a 3-step evolution scenario incrementally adding features and thus
adaptation actions to CloudRM. Initially, CloudRM offers the Simple placement
feature (creating a dedicated virtual machine for each task) and Multiple place-
ment features (allowing a given number of tasks to be deployed on a virtual
machine), offering 26 adaptation actions. In evolution step #1, the Maxsize place-
ment feature is added, which creates virtual machines of a fixed capacity and
selects virtual machines using the First-Fit (FF) heuristic, adding 30 adaptation
actions. In evolution step #2, the Maxsize placement feature is enhanced by
allowing different VM capacities and adding two new virtual machine selection
heuristics: Best-Fit (BF) and Worst-Fit (WF), adding 72 adaptation actions. In evo-
lution step#3, the Consolidation Friendly placement feature is added, which selects
a physical machine that can accommodate the given task, and then selects a vir-
tual machine hosted on the physical machine, adding 216 adaptation actions.

Like for RQ1, Fig. 4 visualizes the learning process for the different explo-
ration strategies. After each evolution step, we observe the learning process for
250 time steps, before moving to the next step of the evolution scenario.
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Fig. 4. Learning curves across evolution steps (RQ2)

Table 4 shows the results of learning performance and QoS impact across
all three evolution steps. We computed the metrics separately for each of the
evolution steps and report their averages.

The evolution-aware strategies consistently perform better than their
evolution-unaware counterparts wrt. total reward (61.3% on average), time to
threshold (51.0% on average), jumpstart (5.1% on average), and asymptotic per-
formance (0.4% on average). With respect to the impact on QoS, the evolution-
aware strategies reduce the number of virtual machine manipulations by 23.7%
on average, while keeping energy consumption around the same as the non-
evolution-aware strategies. As can be seen, the evolution-unaware FM-guided
strategies (from RQ1) may perform much worse than any of the evolution-aware
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Table 4. Comparison of exploration strategies across evolution steps (RQ2)

Learning performance QoS impact

Asymptotic

performance

Time to

threshold

Jumpstart Total

reward

Energy (kWh) Number VM

manipulations

ε-greedy

Evo.-aware −0.6964 35.33 −0.7645 −1.2623 2616 1028

Evo.-unaware −0.7012 75.00 −0.8437 −4.8926 2615 1482

Improvement 0.7% 52.9% 9.4% 74.2% −0.1% 30.6%

Incremental

Evo.-aware −0.6997 32.33 −0.8027 −1.5256 2611 1054

Evo.-unaware −0.7013 59.33 −0.8161 −3.0479 2618 1316

Improvement 0.2% 45.5% 1.6% 49.9% 0.3% 19.9%

Feature Degree

Evo.-aware −0.6996 39.00 −0.8098 −2.1185 2614 1033

Evo.-unaware −0.7013 85.67 −0.8455 −5.2652 2616 1301

Improvement 0.3% 54.5% 4.2% 59.8% 0.1% 20.5%

Avg. Improvement 0.4% 51.0% 5.1% 61.3% 0.1% 23.7%

ones. This is because they again explore old adaptation actions, many of which
were not suitable. Finally, it can be observed that evolution-aware ε-greedy may
even outperform the other evolution-aware strategies. This suggests that, dur-
ing evolution, considering the changes of the adaptation space has a much larger
effect than considering the structure of the adaptation space.

5 Discussion

Validity Risks. We used an actual cloud resource management service and a
real-world workload trace to measure learning performance and the impact of
the different exploration strategies on QoS characteristics. Still results are only
for a single system, which limits generalizability.

We purposefully chose ε-greedy as a baseline, because it was the exploration
strategy used in existing online RL approaches for self-adaptive services (see
Setc. 6). Alternative exploration strategies were proposed in the field of machine
learning. Examples include Boltzmann exploration, where actions with a higher
expected reward (e.g., Q value) have a higher chance of being explored, or
UCB action selection, where actions are favored that have been less frequently
explored [31]. Another alternative is to use policy-based RL, which in contrast
to value-based RL such as Q-Learning, directly represents the policy as a neural
network, and thus intrinsically exhibits stochastic action selection behavior [24].
A comparison among those alternatives is beyond the scope of the current paper,
because a fair comparison would require the careful variation and analysis of a
range of many additional hyper-parameters.

We focused on evolution steps that increase the size of the adaptation space
to assess to what extent our strategies are able to capture adaptation spaces
of increasingly larger size. Our experiments may be complemented by analyzing
how the different strategies compare to each other when the size of the adaptation
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space is reduced. Even though in an adaptation space of reduced size, fewer
configurations have to be explored – thus leading in principle to faster learning
– there still may be differences in the way these fewer configurations are explored.

Limitations and Assumptions. We assume that feature models are complete
with respect to the coverage of the adaptation space and that during an evolution
step they are always consistent and up to date. A further possible change during
service evolution can be the modification of a feature’s implementation, which is
currently not visible in the feature models. Encoding such kind of modification
thus could further improve our online learning strategies.

One aspect that impacts FM-guided exploration is the depth of the feature
models. On the one hand, if the feature model has only few levels, the FM-guided
exploration strategies behave very similar to random exploration, because such
models do not provide enough structure. On the other hand, based on initial
experiments with the RL approach in [24], providing an RL agent with too struc-
tured knowledge might in fact hinder learning an optimal policy. How to define
feature models at the right level of detail thus deserves further investigation.

In the realization of the exploration strategies (both ε-greedy and FM-
guided), we assumed we can always switch from a configuration to any other
possible configuration. We were not concerned with the technicalities of how to
reconfigure the running service (which, for example, is addressed in [7]). We also
did consider constraints concerning the order of adaptations. In practice, only
certain paths may be permissible to reach a configuration from the current one.
To consider such paths, online RL may be enhanced by building on work such
as [27].

6 Related Work

The following authors applied online RL to self-adaptive services and considered
different approaches to improve the performance of the learning process. Yet,
they did not consider large adaptation spaces nor service evolution. Tesauro
et al. use Q-Learning for autonomic resource allocation in data centers [33]. Xu
et al. employ Q-Learning (with ε-greedy) for the automatic configuration of cloud
virtual machines and applications [39]. Both suggest offline learning to increase
the jumpstart at runtime. Barrett et al. propose using Q-Learning with ε-greedy
for autonomic cloud resource allocation [3]. They propose parallel learning to
speed up the learning process. Caporuscio et al. propose using two-layer hier-
archical RL for multi-agent service assembly [6]. They observe that by sharing
monitoring information, learning happens faster than when learning in isolation.
Arabnejad et al. apply fuzzy RL with ε-greedy to learn fuzzy adaptation rules [2].
They also demonstrate that transfer learning may speed up learning [15]. Wang et
al. use Q-Learning (using ε-greedy) together with function approximation. They
use neural networks to generalize over unseen environment states and thereby
facilitate learning in the presence of many environment states, i.e., they address
large state spaces but not large action spaces [38]. Moustafa and Zhang propose
multi-agent Q-Learning with ε-greedy for adaptive service compositions [22].
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To speed up learning, they use collaborative learning, where multiple systems
simultaneously explore the set of concrete services to be composed. Zhao et al.
propose using RL (using ε-greedy) combined with case-based reasoning to gener-
ate and update adaptation rules for web applications [40]. Their approach may
take as long to converge as learning from scratch, but it may offer a higher
jumpstart.

Bu et al. explicitly consider large adaptation spaces [4]. They employ Q-
Learning (using ε-greedy) for self-configuring cloud virtual machines and appli-
cations. They reduce the size of the adaptation space by splitting it into coarse-
grained sub-sets for each of which they find a representative adaptation action
using the simplex method. Their experiments indicate that their approach indeed
can speed up learning. Yet, they do not consider service evolution.

Dutreilh et al. explicitly consider service evolution [11]. They employ Q-
Learning for autonomic cloud resource management and speed up learning by
providing a good initial estimate for the Q-function, as well as by using sta-
tistical estimates about the environment behavior. They indicate that system
evolution may imply a change of system performance and sketc.h an idea on
how to detect such drifts in system performance. Yet, they do not consider that
evolution may also introduce or remove adaptation actions. As explained in
Sect.1, such a change in the adaptation space cannot be determined by observ-
ing the environment, as the adaptation space is an intrinsic property of the RL
agent.

In our previous work, we used online RL for a self-adaptive cloud service [24].
We addressed the problem of large environment spaces (similar to Wang et al.)
but did neither consider large action spaces nor service evolution. In earlier work,
we sketc.hed the principal dependencies between learning and evolution, but did
not provide concrete technical solutions [29].

A different line of work uses supervised machine learning to reduce the size of
the adaptation space. As an example, Van Der Donckt et al. use deep learning to
determine a representative and much smaller subset of the adaptation space [37].
Supervised learning requires sufficient labeled training data representative of the
service’s environment, which may be challenging due to design time uncertainty.

7 Conclusion

We introduced feature-model-guided exploration strategies for online reinforce-
ment learning that address potentially large adaptation spaces and the change
of the adaptation space due to service evolution. Experimental results for an
adaptive cloud management service indicate a speed up of the learning process
and an improvement of QoS characteristics.

As part of our future work, we will perform additional experiments, consid-
ering further types of services and the comparison with alternative exploration
strategies. We also aim to integrate our strategies with more advanced rein-
forcement learning algorithms, such as policy-based reinforcement learning. In
addition, we aim to address the current limitations of our strategies and will, for
instance, also consider feature modifications during evolution.
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36. Thüm, T., Kästner, C., Erdweg, S., Siegmund, N.: Abstract features in feature
modeling. In: 15th International Conference on Software Product Lines, SPLC
2011, pp. 191–200 (2011)

37. Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt, J., Michiels, S.: Apply-
ing deep learning to reduce large adaptation spaces of self-adaptive systems with
multiple types of goals. In: 15th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2020. ACM (2020)

38. Wang, H., Gu, M., Yu, Q., Fei, H., Li, J., Tao, Y.: Large-scale and adaptive service
composition using deep reinforcement learning. In: 15th Intl Conference on Service-
Oriented Computing (ICSOC 2017), pp. 383–391 (2017)

39. Xu, C., Rao, J., Bu, X.: URL: A unified reinforcement learning approach for auto-
nomic cloud management. J. Parallel Distrib. Comput. 72(2), 95–105 (2012)

40. Zhao, T., Zhang, W., Zhao, H., Jin, Z.: A reinforcement learning-based framework
for the generation and evolution of adaptation rules. In: International Conference
on Autonomic Computing, ICAC 2017, pp. 103–112 (2017)



FAST: A Fairness Assured Service
Recommendation Strategy Considering

Service Capacity Constraint

Yao Wu1, Jian Cao1(B), and Guandong Xu2

1 Shanghai Jiao Tong University, Shanghai, China
{wuyaoericyy,cao-jian}@sjtu.edu.cn

2 University of Technology Sydney, Sydney, NSW, Australia
Guandong.Xu@uts.edu.au

Abstract. An excessive number of customers often leads to a degra-
dation in service quality. However, the capacity constraints of services
are ignored by recommender systems, which may lead to unsatisfactory
recommendation. This problem can be solved by limiting the number
of users who receive the recommendation for a service, but this may be
viewed as unfair. In this paper, we propose a novel metric Top-N Fair-
ness to measure the individual fairness of multi-round recommendations
of services with capacity constraints. By considering the fact that users
are often only affected by top-ranked items in a recommendation, Top-N
Fairness only considers a sub-list consisting of top N services. Based on
the metric, we design FAST, a Fairness Assured service recommenda-
tion ST rategy. FAST adjusts the original recommendation list to provide
users with recommendation results that guarantee the long-term fairness
of multi-round recommendations. We prove the convergence property of
the variance of Top-N Fairness of FAST theoretically. FAST is tested on
the Yelp dataset and synthetic datasets. The experimental results show
that FAST achieves better recommendation fairness while still maintain-
ing high recommendation quality.

Keywords: Fairness · Service recommendation · Capacity constraints

1 Introduction

In service recommendation, a user’s degree of satisfaction with an item is affected
by many factors. Capacity constraints, which affect many service recommenda-
tion scenarios like dining, accommodation, fitness, haircuts, massages, medical
services and so on, is a special factor that decides how many customers can
receive a service with an assured level of quality. For example, a restaurant
often has a capacity constraint on the number of customers who can be served
during their dining hours. If too many customers arrive at a restaurant, their
dining experience will be unpleasant or in the worst case, some customers will
be very disappointed. However, recommender systems make recommendations
c© Springer Nature Switzerland AG 2020
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to customers which only align with their preferences, and this may lead to dis-
satisfaction.

The solution of previous studies about recommendation with capacity con-
straint was to recommend the service to a limited number of users, or to penalize
the service’s relevant score when the recommended users exceeded the service’s
capacity [9], making it less likely to be recommended. But such an approach
brings a new problem, namely it is unfair to those users who may also like this
restaurant according to their preference information.

Fairness is already a concern in recommendation algorithm design [22]. At
present, the research on recommendation fairness mainly considers group fair-
ness [25], trying to eliminate the influence of specific group attributes on the
recommendation results, or removing the difference in recommendation results
between groups caused by data bias, such as ensuring that gender or national-
ity does not affect the recommended results. Unlike these studies, the fairness
we consider here is individual fairness [24], which ensures the same quality of
recommendation for different users when capacity constraints are considered. To
the best of our knowledge, we are the first to formalize the fairness ensured rec-
ommendation problem for services with capacity constraints. The contributions
of this paper are as follows:

– We propose a metric Top-N Fairness to measure the fairness of recommen-
dation under capacity constraint.

– We design a strategy named FAST (Fairness Assured service recommenda-
tion ST rategy) to ensure the long-term fairness of multi-round recommen-
dations. We also prove the convergence property of the variance of Top-N
Fairness of FAST theoretically.

– Experiment results on a real-world dataset and synthetic datasets show FAST
can achieve higher fairness compared with baseline methods while still pre-
serving high recommendation quality.

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 formalizes the fairness assured multi-round recommendation problem
for services with capacity constraints. Section 4 presents the fairness assured ser-
vice recommendation strategy. The experiment results are illustrated in Sect. 5.
We conclude the paper in Sect. 6.

2 Related Work

Many researchers have begun to focus on metrics other than recommendation
accuracy to measure the performance of recommender systems [10,19], and fair-
ness is one of the important metrics.

Currently, the research on fairness in recommender system can be roughly
divided into two categories: group fairness and individual fairness. Ensuring
group fairness requires that the attributes of a specific group will not affect
the recommendation results so the disadvantaged group can be given the same
opportunities as the superior group [3,4,23,25,26]. Geyik et al. [11] proposed a
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re-ranking algorithm that reorders the results based on the recommended scores
so that the distribution of the results meets the proportion of specific parame-
ters; and Bose et al. [6] tried to remove information about protected sensitive
attributes in graph embedding by learning a series of adversarial filters. These
approaches designed to ensure group fairness usually can only guarantee fair
treatment in terms of one or a few attributes. However, when fairness in terms
of some attributes is guaranteed, the unfairness related to other attributes may
not be avoidable.

Our approach focuses on the individual fairness level, which has been consid-
ered by very few researchers. This metric puts emphasis on the view that similar
users should be treated similarly [5,11]. Rastegarpanah et al. [21] improved fair-
ness by generating antidote data. The individual fairness to be maintained by
the recommender system in their work was inspired by [24], and is defined as the
equality of users’ prediction accuracies. Our definition of individual fairness is
similar to theirs, but our interpretation of equal quality is different, which is the
extent to which the final recommendation results considering fairness match the
initial recommendation results considering a user’s preference should be equal
between users.

Some research classifies approaches considering fairness from other perspec-
tives. [7] divided fairness-related criteria into consumers (C-fairness), providers
(P-fairness) [17,20], and both (CP-fairness) [18] according to the stakeholders
that systems consider; [24] classified approaches from the perspective of the time
that the mechanism works in the system, and divided the fairness mechanism into
pre-processing [8,14], in-processing [2,6] and post-processing [15,16] approaches.
Our study considers consumer fairness and proposes a post-processing approach
that further processes the existing recommendation results to obtain results that
ensure individual fairness.

3 Fairness Assured Multi-round Recommendation
Problem for Services with Capacity Constraints

We suppose that there is a conventional recommendation algorithm in the sys-
tem, which provides a predicted rating matrix R and the original recommenda-
tion lists L for all users based on R. If we push L directly to users, there is a high
possibility that it will break the capacity constraints C of services. To solve this
problem, we design a strategy to adjust L and generate new recommendation
lists LT which can make recommendations as fair as possible without breaking
capacity constraints while still preserving recommendation quality.

3.1 Notations

We use the following notations:

– S = {s1, s2, ..., sm} is a set of recommended services.
– C = {c1, c2, ..., cm} is a set of services’ capacity constraints.
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– U = {u1, u2, ..., un} is a set of users.
– R = [r1,1, r1,2, ..., rn,m] is a relevant rating matrix produced by the original

recommendation algorithm of the system.
– L = {l1, l2, ..., ln} is a set of original recommendation lists based on R.
– LT = {lT1 , lT2 , ..., lTn } is a set of recommendation lists finally outputted to users

in the T th round recommendation.
– δTi is a variable to indicate whether user ui uses the recommender system

in the T th recommendation or not, where δTi = 1 denotes yes and δTi = 0
denotes no.

3.2 Capacity Constraints

We suppose each recommended service sj has a capacity constraint cj . When
there are multiple customer channels for a service, we only consider customers
from the recommender system under discussion, as do the capacity constraints.
In order to simplify the representation, unless otherwise specified, the capacity
constraint of a service in our paper refers to the limited number of users to
whom the recommendation system can recommend this service. This data can
be obtained by dividing the allowed service capacity for the recommender system
by the conversion rate of recommendation, which is the attendance ratio of users
who are recommended a service.

3.3 Recommendations on Top-N Services

In practice, the recommendation results are shown in a limited space, such as web
pages or APPs. Although longer lists can be shown to customers by pagination,
research on user behaviors shows that most users only look at a few results
before deciding, and they are more likely to notice highly ranked results [12].
According to some reports, even an item at position 5 is largely ignored [13].
Therefore, we choose to ignore the influence of services in lower positions. To be
more specific, we only consider the influence of a service’s capacity constraint or
a user’s fairness when this service appears in the user’s original top-N service
recommendation list.

We denote the sub-list of the top N services of user ui’s original recommen-
dation list as l(N)i. At the same time, for each recommended service sj , users
whose l(N)i include sj are denoted as a user set Uj , and the number of users in
Uj is often greater than the capacity constraint of sj .

3.4 Measuring the Fairness of Recommendations

Based on intuition, we divide the fairness status of a recommender system into
three levels, and the fairness metric we design should be able to express these
three levels of fairness:

1. Perfect Fair Status: At this level, every service in a user’s recommendation
list is fairly recommended. Each user reaches an absolutely fair status on
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every service in his recommendation list and also an absolutely fair status of
the whole top-N service recommendation list.

2. Individual Level Fair Status: Each service is not necessarily allocated fairly,
but each user can reach a fair status according to the top-N service recom-
mendation list. In this case, a user may lose the chance of being allocated some
services in his recommendation list, but he has more chance than the others
on other services, and the summation of the fairness degree on the top-N ser-
vice recommendation list offsets these deviations against each other, thereby
achieving a fair status at an individual level.

3. Relatively Fair Status: The system cannot ensure that every user reaches an
absolutely fair status, but the degree of unfairness among the users is the
same, thus achieving a relatively fair status at an individual level.

Obviously, for a single round recommendation, it is unlikely to ensure fair-
ness for all users due to capacity constraints. Instead, we measure the long-term
fairness in the multi-round recommendation process in which users’ fairness can
accumulate over recommendations. We define two kinds of appearance probabil-
ities of service to measure the chance of a service being allocated to users.

Definition 1 (Overall Appearance Probability). The probability of a ser-
vice sj appearing in the recommendation lists of all users in Uj up to T th round
recommendation is:

pTj =

∑
ui∈Uj

∑T
t=0 δti · In tn(sj , lti , N)

∑
ui∈Uj

∑T
t=0 δti

(1)

In tn(sj , list,N) =

{
0 if sj is not in the top N sub-list of list

1 if sj is in the top N sub-list of list
(2)

Definition 2 (Actual Appearance Probability). The probability of a ser-
vice sj appearing in the recommendation lists of user ui up to T th round recom-
mendation is:

pTi,j =
∑T

t=0 δti · In tn(sj , lti , N)
∑T

t=0 δti
(3)

If ui receives a fair recommendation on sj , the Actual Appearance Probability
of sj to ui should be equal to the Overall Appearance Probability of sj . Thus,
the difference between the above two appearance probability values represents
the fairness degree of user ui on service sj . Furthermore, we divide the difference
by Overall Appearance Probability to smooth the difference in capacity conflicts
between different services and obtain the following definition:

Definition 3 (Service Fairness Degree). Fairness degree of user ui on ser-
vice sj up to T th round recommendation:

FT
i,j =

pTi,j − pTj
pTj

(4)
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If FT
i,j is greater than zero, it means ui is allocated to service sj more fre-

quently than the others in Uj ; If FT
i,j is less than zero, service sj appears in his

recommendation lists with fewer opportunities than the others; If FT
i,j is equal

to zero, it means ui receives a fair recommendation for sj . At the same time,
we can add the service fairness degrees of all the services in user’s l(N)i list and
obtain the overall fairness degree at an individual level. We call it the fairness
degree of Top-N recommendation(or Top-N Fairness for short):
Definition 4 (Top-N Fairness). Overall fairness degree of user ui up to T th

round recommendation:
FT
i =

∑

sj∈l(N)i

FT
i,j (5)

With the measurement of fairness, we can represent three levels of fairness
in a formalized way:
1. Perfect Fair Status: ∀ui ∈ U and ∀sj ∈ l(N)i, FT

i,j = 0.
2. Individual Level Fair Status: ∀ui ∈ U,FT

i = 0.
3. Relatively Fair Status: ∀ui, uj ∈ U,FT

i = FT
j .

These three fairness statuses share the same feature, the variance of Top-N
fairness among users is equal to zero. Therefore, we use the variance among
users’ Top-N Fairness D(FT

i ) as a measure of the fairness of recommender
systems, where the smaller the variance, the fairer the recommender system.

3.5 Quality of Recommendations

When the original recommendation lists L are adjusted to generate new recom-
mendation lists LT , those services whose capacity is constrained are removed
from the list, hence the recommendation list cannot fully meet the users’ pref-
erences, and the quality of the recommendation list decreases.

Following the idea in Sect. 3.3, we only consider the quality of l(N)i. In the
new list lTi , quality declines when a service is removed, and we use the predicted
rating score of the service as a measure of the degree of decline. Therefore, the
quality of a new recommendation list lTi will be the sum of the rating scores of
all the services belonging to l(N)i and lTi at the same time. Taking into account
that users may have different rating habits, i.e., some users like to give positive
reviews while others prefer bad reviews, we use the highest rating of l(N)i as the
denominator to normalize the quality score. Moreover, the positions of services
in the recommendation lists also reflect their importance to a user. The quality
measurement can be extended by giving each service a logarithmic discount
based on its position in l(N)i. The quality of the recommendation lists of the
entire system can be obtained by adding the recommendation list quality of each
user.

Definition 5 (Quality of Recommendation List). Quality of outputted rec-
ommendation list lTi of user ui on T th round recommendation:

qTi =

∑
sj∈l(N)i∩l(N)ti

ri,j
log2(pT

i,j+1)

ri,l(N)i[0]
(6)
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where l(N)i[0] represents the subscript index of the service appearing at the top
position of l(N)i, and pTi,j is the position of service sj in l(N)i.

Our problem is to generate Lt based on a strategy so that the capacity
constraint will not be violated while the fairness of the recommendation quality
of each user can be assured along with an increase in recommendation times.

4 A Fairness Assured Service Recommendation Strategy

When only fairness is considered, the problem can be reduced to a Knapsack
problem which has been proven to be a non-deterministic polynomial complete
problem. We analogize the capacity constraint of services as the capacity of the
knapsack, the users’ recommendation lists as the items put in the knapsack, and
fairness as the objective. When further taking the quality of recommendation
lists into consideration, the problem becomes more complicated. So we choose
heuristic strategies to solve the problem.

In practical applications, service recommendations can be divided into two
scenarios. The first is service recommendation for a fixed user set where the list
of users receiving recommendations remains basically unchanged for a period
of time, like an active advertising push, recommendations for members, high-
end service recommendations, etc. This ensures the recommendation process
in a stable environment, and the fairness of users is fully accumulated. The
second is for a dynamic user set in which not all users receive recommendations
each round or new users join, like recommendations for dining, movies to watch,
medical services, etc. By considering the above situations, we design two versions
of FAST, F-FAST for a fixed user set and D-FAST for a dynamic user set.

4.1 Fairness Assured Service Recommendation Strategy for a Fixed
User Set - F-FAST

In order for users to reach a fair state as soon as possible, users with lower Top-N
Fairness should get more opportunities than users with higher Top-N Fairness.
Under the premise of limited service capacity, we preferentially meet the needs
of recommendation list for users with lower Top-N Fairness. To maintain a high
level of recommendation list quality, when adjusting the original recommenda-
tion list L, we choose not to change the order of services in the list, and only
delete from the list several services with insufficient capacity, and keep higher
ranked services. Based on the above ideas, we design a heuristic algorithm based
on greedy ideas.

The algorithm works as follows. Users are sorted according to their Top-
N Fairness from the lowest to the highest. The user with the lowest Top-N
Fairness will be recommended first. For a user ui, a service with the highest
rating score in l(N)i will be recommended as long as its capacity is still sufficient.
If a service reaches its capacity constraint, the next best service in l(N)i will be
recommended. After a service is recommended, the user’s Top-N Fairness and
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the capacity of the recommended service are updated. Then all users’ Top-N
Fairness are sorted from the lowest to the highest again, and the next service
is recommended in turn. This process ends when an attempt has been made
to recommend every service in all users’ l(N)i (regardless of whether they are
actually recommended to the user or not) or the capacities of all services have
been exhausted. Finally, the algorithm fills the remaining empty positions in
each user’s recommendation list with services whose positions are larger than
N in his original list li in sequence. The pseudo-code of F-FAST is shown in
Algorithm 1.

Algorithm 1. Fairness Assured Service Recommendation Algorithm for A Fixed
User Set
Input: N : Parameter Top-N ;

l1, l2,..., ln: Original recommendation list of n users;
l(N)1, l(N)2,..., l(N)n: Original top-N recommendation list of n users;
R: Rating matrix;
c1, c2,..., cm: Capacity constraints of m services;
U1, U2,..., Um: Uj list of m services;
FT−1
1 , FT−1

2 ,..., FT−1
n : Top-N Fairness of n users up to last recommendation.

Output: lT1 , lT2 ,..., lTn : Recommendation list for n users in T th round;
1: for time = 0 → n × N − 1 do
2: Sort users according to FT−1

i from lowest to highest
3: rec user ← user with the lowest FT−1

i

4: for sj in l(N)rec user do
5: if cj > 0 then
6: insert sj into lTrec user;
7: cj = cj − 1;
8: Update FT−1

rec user;
9: break;

10: end if
11: end for
12: end for
13: Fill lTi whose positions are larger than N in li in sequence;
14: return lT1 , lT2 ,..., lTn ;

F-FAST also has three properties, and for the relevant proofs of THEO-
REM 1,2 refer to Appendix A.

Theorem 1. The sum of Top-N Fairness of all the users in each round is equal
to zero,

∑
ui∈U FT

i = 0.

Theorem 2. Variance among Top-N fairness of all users D(FT
i ) converges to

0 with the recommended round T .

Theorem 3. The system can reach the Individual Level Fair Status, ∀ui ∈
U,FT

i = 0.
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Theorem 1 indicates that the sum of Top-N Fairness is stable, and Theorem2
indicates F-FAST can ensure long-term fairness for multi-round recommenda-
tions. By combining Theorem 1 and Theorem 2, we can conclude that FT

i of each
user in the system will eventually converge to 0, so that the system can reach
the Individual Level Fair Status which is Theorem 3.

4.2 Fairness Assured Service Recommendation Strategy for a
Dynamic User Set - D-FAST

D-FAST is applied to the situation where the user set receiving recommendations
changes from time to time. In this situation, we cannot guarantee the validity of
Theorem 1. The average fairness of users receiving recommendations is different
in each round, which leads to changes in the baseline of Top-N Fairness.

Therefore, before generating the recommendation lists, the user’s Top-N Fair-
ness needs to be calculated again to make up for the baseline change. The strat-
egy works as follows: the average Top-N Fairness of users is recorded after each
round, and at the beginning of a new round, the user’s Top-N Fairness is updated
by adding the difference between the average Top-N Fairness in his last round
and the average Top-N Fairness in this round. In addition, for a new user, his
Top-N Fairness and the average Top-N Fairness of the last round will both be
set to zero. The remaining operations are the same as Algorithm 1.

4.3 Time Complexity

The time complexity of F-FAST is analyzed as follows. When recommending a
service, F-FAST first sorts users according to their Top-N Fairness. The com-
plexity of sorting n users will be O(nlog(n)) when using the Quick Sort Algo-
rithm or the Merge Sort Algorithm. Then F-FAST recommends a service to the
user with the lowest Top-N Fairness. These are operations with a single instruc-
tion, so the complexity of recommending an item is O(nlog(n)+1). In a round of
recommendations, we need to recommend a maximum of n × N services, where
N is a small constant. So, in a round of recommendations, the worst case time
complexity of F-FAST is O(n2log(n)).

There is only one additional step for D-FAST which is at the beginning of
each round, that is, to update the Top-N Fairness of all users, and its time
complexity is also O(n2log(n)).

5 Experiments

Datasets and Metrics. We conduct experiments on a real-world dataset and
a synthetic datasets. Our code and datasets are released on Zenodo1.

Yelp Dataset. The data is provided by the Yelp Dataset Challenge [1]. We select
two cities with the largest number of businesses, i.e., Phoenix and Toronto. After
1 https://zenodo.org/record/3661863#.XkJGb2gzZPY.

https://zenodo.org/record/3661863#.XkJGb2gzZPY
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filtering out users less than 10 reviews and businesses less than 30 reviews, we
obtain the dataset for Phoenix, which contains 11,252 users, 3774 businesses and
194,188 reviews. The Toronto dataset contains 8867 users, 3,505 businesses, and
1,190,64 reviews.

Synthetic Datasets. We generate synthetic datasets to test the performance of
the algorithms under different parameter settings. For this purpose, we generate
4 synthetic datasets with different situations of capacity conflicts when N is set
to 5:

– Very Popular Services: the number of users in Uj is more than 2 times its
capacity.

– Popular Services: the number of users in Uj is 1–2 times its capacity.
– Ordinary Services: the number of users in Uj is 0.9–1.0 times its capacity.
– Unpopular Services: the number of users in Uj is 0.9 times its capacity.

The capacity of each service is a random number from 50 to 100. Each dataset
contains 800 users and 50 services.

Metrics. We measure the total quality of the recommendations of each user and
the variance of the Top-N Fairness of all users at the same time.

5.1 Compared Approaches

This is the first time that the fairness assured multi-round recommendation
problem for services with capacity constraints is defined and there is no existing
algorithm for this problem. Thus, we compare our approach against the following
three baseline methods.

Integer Linear Programming. We use Integer Linear Programming (ILP) to
maximize the quality of recommendations. We take the capacity constraints as
the limitations and the quality of recommendations as the target.

Greedy Algorithm to Maximize Quality of Recommendation. The size
of the problem that can be solved by ILP is limited, so when processing the
Yelp dataset, we replace the ILP method with a greedy heuristic algorithm. The
idea of the algorithm is to recommend services that ensure the best quality of
recommendation each time as long as the capacity constraint of a service is not
violated.

Random Strategy. For a service sj , we randomly select a number of users
which equals sj ’s capacity constraint from its Uj list in each round. Obviously,
this strategy can also ensure the Top-N Fairness in the long run.

5.2 Results on Yelp Dataset

We perform 50 rounds of recommendations on a fixed user set on the Yelp
dataset. Since recommendations are pushed to a fixed user set, F-FAST is exe-
cuted to generate the recommendations. In this experiment, we set N to 5, and
Fig. 1 shows the results.
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(a) Phoenix (b) Phoenix (c) Toronto (d) Toronto

Fig. 1. Quality of recommendation and variance of Top-N Fairness on Yelp dataset

From the figure, we can draw two conclusions. First, F-FAST makes the
system reach a relatively balanced state (variance of Top-N Fairness approaches
zero) faster, and the degree of fairness is also the highest. Although the random
strategy can also achieve a relatively fair situation, compared to F-FAST, the
speed at which it arrives at a stable status of fairness is much slower. Second,
regarding recommendation quality, F-FAST has a small loss while the random
strategy leads to significant losses. F-FAST loses 7% of recommendation quality
compared with the ILP method but it is nearly 20% higher than the random
strategy.

5.3 Results on Synthetic Datasets

Comparisons Between Different Levels of Capacity Constraints. We
conduct 100 rounds of recommendations on a fixed user set on four synthetic
datasets. In four groups of experiments, N is uniformly set to 5, and results
are shown in Fig. 2. It can be seen from Figs. 2a, b, c and d that as capacity
conflict being more intense, the quality of recommendations tends to decrease.
The reason for this is when capacity conflict becomes more intense, users have
less chances of being assigned one of the top-N services in his original list, which
in turn leads to a decrease in quality. Figures 2e, f, g and h show that as the
capacity conflicts become more intense, the total fairness of ILP and the random
strategy basically show a downward trend, while the F-FAST is not affected by
the intensity of capacity conflicts. At the same time, F-FAST arrives at a stable
status of fairness faster than the random strategy in all scenarios.

Comparisons Between Different N . Figure 3 shows the performance of algo-
rithms under different N . This experiment is performed on Synthetic Dataset
2 under the premise of users being fixed, and a total of 100 rounds of recom-
mendations are carried out for each experiment.

As can be seen from the figures, as N rises, the overall recommendation
quality improves, but the rate of growth continues to decrease. It is worth noting
that when N is greater than 10, the quality of ILP and F-FAST virtually does
not increase and the quality of the random strategy even starts to decline. The
reason for this is the impacts of the services in the lower positions in the original
recommendation list is smaller. It can be noted that as N rises, the variance
of Top-N Fairness rises instead. This shows that for F-FAST, a longer top-N
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 1 (f) Dataset 2 (g) Dataset 3 (h) Dataset 4

Fig. 2. Recommendation quality and variance of Top-N Fairness under different levels
of capacity constraints

(a) N = 3 (b) N = 5 (c) N = 10 (d) N = 15 (e) N = 20

(f) N = 3 (g) N = 5 (h) N = 10 (i) N = 15 (j) N = 20

Fig. 3. Recommendation quality and variance of Top-N Fairness under different N

recommendation list will be of benefit to recommendation quality but will impair
fairness.

Comparisons Between Different Degrees of User Dynamics. We simu-
late the performance of the algorithms under different user dynamics by changing
the proportion of recommended users in each round. Figures 4 shows the results
of the experiment on Synthetic Dataset 2.

It can be seen that both F-FAST and D-FAST perform very well on the
dynamic user set with little loss of recommendation quality, and the variance of
Top-N Fairness is still close to zero. It is worth noting that D-FAST can achieve
lower fairness variance and higher recommendation quality than F-FAST, which
validates the measure of updating the Top-N Fairness of each user according to
their actual situations in D-FAST which indeed improves the performance.
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(a) 20% (b) 40% (c) 60% (d) 80%

(e) 20% (f) 40% (g) 60% (h) 80%

Fig. 4. Recommendation quality and variance of Top-N Fairness under different
degrees of user dynamics

Fairness of New Users. We compare how quickly the approaches can ensure a
new user reaches a relatively fair state. We add a new user to a stable recommen-
dation environment on Synthetic Dataset 2 after 100 rounds of recommen-
dations. We apply these four methods to the new recommendation environment
after adding a new user, and compare the performance of the four methods on
the Top-N Fairness of the new user. The results are shown in Fig. 5. Since the
user set remains the same after adding new users, the process and results of
F-FAST and D-FAST are the same, so we only show the results of D-FAST.

Fig. 5. Trend of Top-N Fairness for a new user

As can be seen, D-FAST ensures the new user reaches a relatively fair state
(Top-N Fairness being close to 0) in about 30 rounds of recommendation and
this status is maintained. In contrast, although the random strategy can also
ensure the Top-N Fairness of a new user continues to approach 0, it is much
slower. The ILP method cannot improve the fairness of new users.
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6 Conclusions

This paper discusses the contradiction between the quality of recommendations
and the fairness of users under the constraints of service capacity. We mainly
consider fairness at the individual level, that is, to provide users with recommen-
dations of equal quality, and propose a novel fairness measure Top-N Fairness
under the premise of capacity constraints. Based on this new metric, we design
two heuristic algorithms for different user situations to resolve the contradiction.
Through theoretical proofs and experiments, we verify that the proposed algo-
rithms can ensure users reach a fair state while only sacrificing a small degree
of recommendation quality. Going ahead, We want to extend individual fairness
to group fairness and carry out relevant experimental and theoretical research.

Acknowledgement. This work is partially supported by National Key Research and
Development Plan (No. 2018YFB1003800).

A Properties of F-FAST

THEOREM 1. The sum of Top-N Fairness of all the users in each round is
equal to zero,

∑
ui∈U FT

i = 0.

PROOF. According to Eq. (4), the sum of Top-N Fairness can be formulated
as:

∑

ui∈U

FT
i =

∑

ui∈U

∑

sj∈l(N)i

pTi,j − pTj
pTj

=
∑

sj∈S

∑

ui∈Uj

pti,j − pTj
pTj

(7)

Since all users will receive recommendations in every round, δti will all be
equal to 1, and according to Eq. (1) and Eq. (3), pTj and pti,j can be re-expressed
as:

pTj =

∑
ui∈Uj

∑T
t=0 In tn(sj , lti , N)

∑
ui∈Uj

T
, pTi,j =

∑T
t=0 In tn(sj , lti , N)

T
(8)

Then the sum of Top-N Fairness will be:

∑

ui∈U

FT
i =

∑

sj∈S

∑

ui∈Uj

∑T
t=0 In tn(sj ,l

t
i,N)

T
∑

ui∈Uj

∑T
t=0 In tn(sj ,lti,N)

∑
ui∈Uj

T

−
∑

sj∈S

∑

ui∈Uj

1 (9)

After reducing Eq. (9), we can get:

∑

ui∈U

FT
i =

∑

sj∈S

⎛

⎝

∑
ui∈Uj

T

T
−

∑

ui∈Uj

1

⎞

⎠ = 0 (10)

THEOREM 2. Variance among Top-N fairness of all users D(FT
i ) converges

to 0 with the recommended round T .
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PROOF. According to THEOREM 1, we can get the mean of Top-N Fairness
of all users equals to zero, and the variance can be formulated as:

D(FT
i ) =

∑
ui∈U

(
FT
i

)2

n
(11)

According to Eq. (4), we know that:

∑

ui∈U

(
FT
i

)2
=

∑

ui∈U

⎛

⎝
∑

sj∈l(N)i

pTi,j − pTj
pTj

⎞

⎠

2

(12)

Since every user receives a recommendation in each round, pTj of each service
should be a constant. We discuss this issue in the following two cases.

For services without capacity conflicts: cj � len(Uj). Each service sj can be
assigned to every user in its Uj in each round. So pTj and pTi,j will always be 1.
So the addends in summation formula of Top-N Fairness are always equal to 0
and can be ignored in this discussion.

For services with capacity conflicts: cj < len(Uj). Each service sj will always
be assigned to cj users, so pTj will be a constant less than 1, and we call it
Constj :

pTj = cj/len(Ui) = Constj < 1 (13)

Then, Eq. (12) will be:

∑

ui∈U

(
FT
i

)2
=

∑

ui∈U

⎡

⎣
∑

sj∈l(N)i

(
pTi,j

Constj
− 1

)⎤

⎦

2

(14)

The only variable in Eq. (14) is pti,j , and according to Eq. (8), we can get:

pT+1
i,j =

∑T
t=0 In tn(sj , lti , N)

T + 1
+

In tn(sj , lT+1
i , N)

T + 1
(15)

According to THEOREM 1, we can divide users into two groups, users with
low Top-N Fairness(FT

i < 0) and users with high Top-N Fairness(FT
i � 0).

For users with low Top-N Fairness, addends with pTi,j < Constj occupy
the main influence factor in the summation formula of Top-N Fairness in this
situation. As designed in our strategy, users with low Top-N Fairness will always
be allotted first, that:

1 > Constj > PT+1
i,j =

∑T
t=0 In tn(sj , lti , N) + 1

T + 1
>

∑T
t=0 In tn(sj , lti , N)

T
= PT

i,j

(16)
According to Eq. (14), we know that

∣
∣FT+1

i

∣
∣ <

∣
∣FT

i

∣
∣ , (FT+1

i )2 < (FT
i )2 (17)
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For users with high Top-N Fairness, addends with PT
i,j � Constj occupy the

main influence factor in the summation formula of Top-N Fairness in this situ-
ation. Also, according to our recommendation strategy, these users will always
be assigned last and will most likely not be assigned under the condition that
service capacity is limited, so that:

Constj � pT+1
i,j =

∑T
t=0 In tn(sj , lti , N)

T + 1
<

∑T
t=0 In tn(sj , lti , N)

T
= PT

i,j

(18)
According to Eq. (14), we can also get:

∣
∣FT+1

i

∣
∣ <

∣
∣FT

i

∣
∣ , (FT+1

i )2 < (FT
i )2 (19)

In both cases, (FT
i )2 becomes smaller as the round of recommendation

increases. When a user’s FT
i is not equal to the average FT

i of users, F-FAST
will continue to work until FT

i of all users is equal, and we can get that D(FT
i )

will converge to 0, thus THEOREM 2 is true.
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Abstract. Manufacturing systems contain a large number of parame-
ters, and a proper configuration of parameters is very important to ensure
the stability of product quality. Traditional configuration methods rely
heavily on manual tuning, which is labor-intensive, time-consuming, and
poor performance. In this paper, we propose to build deep learning mod-
els on the vast amount of industrial data collected by IIoT devices for
automatic configuration tuning. In order to address key challenges such
as high data redundancy, limited device capacity, latency-sensitivity, and
system heterogeneity, we propose a two-level federated deep learning
framework. We first extract representative features from redundant data,
and reduce network traffic and latency through joint training on plants
and the cloud. Timely configuration tuning is made through local mod-
els of plants, and the tuning accuracy is improved through the global
model in the cloud. We have deployed and evaluated the performance of
the proposed model in real-world smart manufacturing systems, and the
experimental results confirm its effectiveness.

Keywords: Configuration tuning · Smart manufacturing · Industrial
Internet of Things · Deep learning · Federated learning

1 Introduction

With the recent advancements in Internet of Things (IoT) technology, the man-
ufacturing industry is evolving from conventional automated manufacturing to
smart manufacturing. Under this new paradigm, Industrial Internet of Things
(IIoT) becomes an critical technology which connects a massive number of manu-
facturing IoT devices (e.g., sensors, actuators, controller, robots, machines, etc.)
in production lines and manufacturing processes with computing platforms (e.g.,
edge nodes, cloud servers, etc.) through communication links [21]. The contin-
uously monitoring, measurement and sensing of IoT devices produces unprece-
dented volume of industrial data, which has the following characteristics: high
volume, high heterogeneity, high redundancy, high velocity, and high value. The
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analytics of IIoT data can potentially enhance decision efficiency, improve prod-
uct quality, and increase productivity.

Manufacturing configuration refers to adjusting a large number of param-
eters in the production line to achieve the desired performance of the smart
manufacturing systems. Optimizing configuration is particularly important to
ensure product quality [6,18]. Generally, there are a large number of configura-
tion options that control the behavior of various aspects of the manufacturing
system. For example, the target manufacturing system studied in this paper is
one of the largest cigarette production systems in the world, with tens of thou-
sands of adjustable production line parameters. Under this complexity, tuning
a larger number of configuration parameters requires in-depth understanding of
the target manufacturing system, professional domain knowledge and extensive
experience. The traditional manufacturing configuration mainly relies on man-
ual tuning, which has become a labor-intensive, time-consuming and error-prone
task due to the complex and high-dimensional configuration space, the instabil-
ity of raw material quality, and the time constraint for configuration tuning. It
is still an arduous task to make real-time automatic configuration adjustment to
ensure the stability of product quality.

Big data analytics on a large amount of valuable IIoT data provides a viable
way to realize the intelligent model of automated manufacturing process control.
In recent years, deep learning techniques has been widely used in the IoT for
big data-driven modeling [14] and analysis [8,12] of the underlying interactions
between parameters. However, due to the extremely complex and highly dynamic
nature of smart manufacturing systems, general deep learning models are not
suitable to be directly applied in IIoT. Specifically, there are four main challenges
in automatic configuration and tuning of smart manufacturing systems:

– Data redundancy: Different from traditional IoT data generated mainly by
personal devices, the raw data in IIoT is generated at extremely high rates
from various manufacturing devices. The large amount of original time series
data has excessively spatial and temporal redundancy information, which will
seriously affect the effectiveness and efficiency of the deep learning model.
Managing and extracting valuable features from the massive redundant data
is crucial for effective real-time data analysis.

– Device capability: Conventional deep learning approaches require consider-
able number of samples and multiple rounds of training to achieve promising
results. In order to analyze the huge amounts of data with high dimension
and high dynamic natures, deep learning models put forward extremely high
demands on the computation power and storage capacity of the devices. How-
ever, due to the capability and energy limitations of IIoT devices, the con-
ventional deep learning models might be too complicated to be executed on
the IIoT devices.

– Time sensitivity: Due to the high-speed transmission and processing of raw
materials on the assembly line, even misconfiguration in a short period of time
may cause thousands of defective products to be produced. Real-time con-
figuration tuning make the task of IIoT data analysis latency-sensitive. It is
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infeasible to train and deploy a deep learning model on a remote cloud server
with powerful computing capacity, because transmitting a large amount of
data to a remote cloud server will cause severe delays. Network Congestion
caused by massive data transmission will further increase the latency. In addi-
tion, deep learning models require a long time for multiple rounds of training,
which makes the results of data analysis can not be transmitted in a timely
manner.

– System Heterogeneity: In order to facilitate automatic configuration,
diverse data from different settings are needed to train deep learning models.
For example, different batches of raw materials have different characteristics,
and specific configuration is required even in the same manufacturing sys-
tem. Raw materials with similar characteristics from the same supplier need
different configurations in different manufacturing systems. However, smart
manufacturing systems are heterogeneous even in the same industrial sector.
How to use data from different manufacturing systems in the same industrial
sector to improve model effectiveness is a very challenging task.

To address these challenges, we propose a federated deep learning model,
named REACT, for REal-time Automatic Configuration Tuning of smart man-
ufacturing systems. Specifically, the deep learning model is jointly trained on the
edge servers and cloud servers by leveraging edge computing and federated learn-
ing techniques. In order to mitigate data redundancy and reduce network traffic,
we extract several features from the original time series data generated by IIoT
devices. Deep learning process is offloaded from cloud to edge on small local
datasets so that network congestion can be mitigated and response latency can
be reduced. The parameters of local models are sent to the remote cloud server
and aggregated to generate a more powerful federated model, which is then sent
back to each edge server for precise and timely local configuration tuning. In
order to facilitate the federated deep learning among heterogeneous smart man-
ufacturing systems in the same industrial sector, we design a two-level learning
framework for configuration tuning at different granularities.

To evaluate the effectiveness of our model, we collected a large-scale real-
world manufacturing dataset from one of the largest cigarette manufacturing
group in the world. The dataset includes raw material product data, product
quality data, equipment and process configuration parameters, and workshop
environment data in the cigarette production process. Given the raw material
product data, product quality data, and workshop environment data, we evaluate
the accuracy of configuration tuning by comparing the proposed configuration
of our model with the actual configuration. Our experimental results shows that
REACT significantly outperforms the baseline methods. We have also deployed
our model in real-world manufacturing process, and comparing the quality of
the product with other baseline methods. The evaluation results indicate that
REACT can significantly improve the quality stability of products produced in
a complex and highly dynamic production environment.

In summary, the main contributions of this paper are as follows:
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Fig. 1. Configuration tuning problem.

– To the best of our knowledge, we are among the first to identify and formally
define the tuning problem of real-time automatic configuration in the smart
manufacturing process for the stability of product quality.

– We propose a novel two-level federated deep learning framework that
enables collaborative modeling among heterogeneous manufacturing systems
for timely configuration tuning.

– We have deployed and conducted extensive experiments to validate the effec-
tiveness of REACT in real-world smart manufacturing systems.

The rest of this paper is organized as follows. Section 2 introduces and
formally describes the configuration tuning problem in smart manufacturing.
Section 3 presents the details of our proposed model. Section 4 describes our
experimental setup and the quantitative evaluation results. Related work and
final remarks are discussed in Sect. 5 and Sect. 6, respectively.

2 Problem Statement

In this paper, we study the problem of configuration tuning of smart manufac-
turing systems. As shown in Fig. 1, the goal of the tuning problem is to find
the optimal configuration to maximize system output under a given production
condition. Specifically, there are five major factors in the problem:

– Smart Manufacturing System (S): The target system is a smart manu-
facturing system consisting of many production lines and processes that are
used to produce a specific product. It usually provides a large number of
configurable parameters.

– Raw Material (I): The input to a manufacturing system is usually the
raw material with many quality parameters that are used to describe its
characteristics and state, including category type, numerical type, etc. These
parameters can be given or measured during the production process.

– Stability of Product Quality (O): The output of a manufacturing system is
the performance. The stability of product quality is usually a more important
indicator for measuring the performance of a manufacturing system than
product quality, productivity and other indicators. The stability of product
quality is generally measured by statistical characteristics such as variance of
product quality.
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– Configuration (C): Configuration refers to the setting of various parameters
such as machine parameters, process parameters, etc. It can be set up before
production or tuned timely during production.

– Constraints (CS): In practice, the configuration of a manufacturing sys-
tem is subject to many constraints, such as time constraints, equipment con-
straints, network constraints, etc.

The configuration tuning problem can be formally defined as follows:

max
C

O(S, I, C), s.t. CS (1)

Without losing generality, in this paper we study the problem of configuration
tuning using cigarette manufacturing systems as an example. Figure 2 illustrates
a typical cigarette manufacturing architecture. Multiple plants belonging to one
or more companies are usually distributed in different geographical locations.
Each plant has one or multiple production lines. A production line consists
of many processes. Due to differences in equipment and brands, the process
sequence is not exactly the same for different production lines. There are many
common processes between production lines. The input to a production line
is the raw material, which has different characteristics for each batch. Specific
manufacturing parameters for each batch of raw material are required according
to the quality requirements of the final product.

3 REACT: Real-Time Automatic Configuration Tuning

In this section, we present the design of REACT. We first introduce the architec-
ture of the two-level federated deep learning in Sect. 3.1. We extract time series
features from the IIoT raw data to reduce redundancy in Sect. 3.2. The detailed
line level and process level federated configuration tuning models are described
in Sect. 3.3 and Sect. 3.4, respectively.

3.1 Two-Level Federated Deep Learning Framework

Figure 2 illustrates the framework of federated configuration tuning model. Each
production line has a capacity limited server (e.g., edge server) on which real-
time data streams from the line are processed. Line servers in the same plant are
all connected to one plant server, and process level federal learning takes place
first within the plant. Different plant servers are linked to a parameter server in
the cloud, where line level and process level model parameters learned within the
plant are aggregated to produce a better global model. Optimized global model
parameters are then sent to each plant server for configuration tuning. Process
level model parameters are further sent to the line server to update the local
model on each line server. To avoid the impact of unreliable model parameters
uploaded by plants with malicious behavior on the global model, we assign a
reputation value to each plant that represents the credibility of the data from
this plant. The global model is also aggregated with reputation values as weights.
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Fig. 2. Framework of federated configuration tuning.

3.2 Feature Extraction

IIoT data is generated at extremely high rates with overly redundant infor-
mation. It is typically expressed as a time series with temporal dependencies
between data points. In order to reduce data redundancy and incorporate the
contextual relevance of configuration parameters into the model, we extracted
features related to time series to retain contextual information and temporal
information [20]. These features can be categorized into two groups: statistical
features and temporal features.

In order to facilitate the feature extraction process in the following algo-
rithms, we define w as the size of the sliding window. w can be calculated from
the most dominant frequency p of the time series, which can be estimated by
the Discrete Fourier Transform (DFT).

Statistical Features. Statistical features describe the basic characteristics of a
time series. They can describe the characteristics specific to different parameters,
and are used to represent the status of the machines, products, or workshop
environments. For example, if the average temperature in a time window is
higher during baking, it may indicate that the moisture content of the product
is lower. The statistical features we extracted are listed in Table 1. They are
calculated every other window of size w. The short-term characteristics of the
time series represented by these statistical features are mean, median, quartile
deviation, standard variance, autocorrelation, etc.

Temporal Features. Temporal features describe the changes of a time series
over time. They can be used to detect the changes in the status of raw materials,
machines, workshop environments, etc. We extract temporal features by com-
paring the data in two consecutive windows. We also calculated the difference dw
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Table 1. Statistical features

Feature Description

Mean Mean

Median Median

Standard variance Standard variance

Quartile deviation The absolute measure of dispersion

ACF1 First order of autocorrelation

ACFremainder Autocorrelation of remainder

Trend Strength of trend

Linearity Strength of linearity computed on trend of STL decomposition

Curvature Strength of curvature computed on trend of STL decomposition

Entropy Spectral entropy

ARCHtest.p P value of Lagrange Multiplier (LM) test for ARCH model

GARCHtest.p P value of Lagrange Multiplier (LM) test for GARCH model

between two windows with a distance of 2p, 4p, and 8p. The temporal features
we extracted are listed in Table 2.

Table 2. Temporal features

Feature Description

MaxLevelShift Max trimmed mean between two consecutive windows

MaxVarShift Max variance shift between two consecutive windows

MaxKLShift Max shift in Kullback-Leibler divergence between two consecutive windows

Lumpiness Changing variance in remainder

d2p The differences between two windows with a distance of 2p

d4p The differences between two windows with a distance of 4p

d8p The differences between two windows with a distance of 8p

3.3 Federated Configuration Tuning in Line Level

Since the smart manufacturing systems of different plants are diverse, their
parameters are not exactly the same. It is not feasible to conduct federated
learning directly for configuration tuning on all parameters. To facilitate the
collaborative modeling among plants, we divide the parameters into two levels:
line level and process level. Line level parameters (e.g., quality parameters for
intermediate products) are commonly shared among plants in the same indus-
trial sector. The federated configuration tuning learning consists of three steps:

1. The cloud parameter server delivers the global model to all plants, and each
production line server (i.e. the edge server corresponding to a production line)
get a local copy of the global model.
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2. Each line trains the model on local data and uploads the model updates rather
than local data to the cloud parameter server.

3. The cloud parameter server aggregates the updates from all lines to get an
updated global model, and then sends the updated global model to all plants.

Let Di be the local data on the i-th line, D = ∪iDi represent the data on
all L lines. Di = {xj ,yj}|Di|

j=1, where xj is the features (e.g., time series features,
categorical features, etc.) of the j-th sample (i.e., time series data of several
parameters in the j-th time window), and yj is the corresponding label (i.e.,
line level parameters in the specific time window). |Di| represents the number
of data samples of Di. wi is the parameters of a deep learning model for con-
figuration tuning in the i-th line. f(xj ,yj ,wi) is the loss function of the j-th
data sample, which reflects the prediction error of the model for the j-th data
sample. Examples of the loss function are mean square error, cross-entropy, etc.
For simplicity, we denote f(xj ,yj ,wi) by fj(wi) to hereafter. The training pro-
cess in a line is to learn an optimal wi with the local data to minimize the loss
function. The loss function of the i-th line is defined as:

Fi(wi) =
1

|Di|
∑

j

fj(wi). (2)

In a deep learning model, wi can be leaned through an iterative process of
gradient descent. Denote η as the learning rate, and in the k-th iteration, the
model parameters are updated as:

wk
i = wk−1

i − η∇Fi(wk−1
i ). (3)

Accordingly, the loss function of the global model in the cloud parameter
server can be calculated as a weighted average of the local loss functions, as
follows:

F (w) =
∑

i |Di|Fi(wi)
|D| (4)

FAVG algorithm [11] is widely used to aggregate the local gradient descents
from lines to form a global gradient descent. The aggregation is performed after
every κ iterations of gradient decent on each line. Within a certain time con-
straints (e.g., latency restriction, energy restriction, etc.), this learning process
can be repeated several rounds for a higher accuracy rate. For the k-th iteration,
the model parameters on the i-th line is updated as follows:

wk
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wk−1
i − η∇Fi(wk−1

i ) k mod κ �= 0,

∑
i |Di|(wk−1

i − η∇Fi(wk−1
i ))

|D| k mod κ = 0.

(5)

The GRU model [3] is an effective approach for time series prediction. In
general, the GRU models aims at generating a output sequence y = (y1,y2, ...)



312 Y. Zhang et al.

MLP

m
e
q

GRU GRU GRU GRU

m
e
q

m
e
q

m
e
q

Fig. 3. Structure of the GRU model in line level.

given the input sequence x = (x1,x2, ...). In this paper, we extends the GRU
model for solving the configuration tuning problem.

Figure 3 illustrates the over architecture of the GRU model. The input xj

consists of three types of features: material quality features, shop environment
features, and desired product quality features. We denote the features of material
quality, shop environment, and product quality as xm

j , xe
j , and xq

j , respectively.
To incorporate these features into GRU, we first represent the categorical fea-
ture values into feature embedding via multilayer perceptions (MLPs), i.e., fully
connected layers. The embedding of material quality categorical features m is
defined as:

xmc
j = tanh(WMEmb(m)),∀m = 1, 2, .., Nm, (6)

where WM is the trainable weight matrix in the MLP, and xmc
j are the embed-

ding vectors of all categorical material quality features. Emb(m) ∈ R
NM is the

vector representation of m, and Emb(·) indicates one general embedding layer
to obtain the latent representation of m. xm

j is then represented by:

xm
j = [xmt

j ;xmc
j ], (7)

where xmt
j is the time series feature vector, and [; ] is the concatenation of two

vectors.
Similarly, we can obtain the categorical feature vectors of shop environment

and product quality by:

xec
j = tanh(WEEmb(e)),∀e = 1, 2, .., Ne, (8)

xqc
j = tanh(WQEmb(q)),∀q = 1, 2, .., Nq, (9)

and represent xe
j , x

q
j by:

xe
j = [xet

j ;xec
j ]. (10)

xq
j = [xqt

j ;xqc
j ]. (11)
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We then concatenate xm
j , xe

j , and xq
j to obtain the input vector xj by:

xj = [xm
j ;xe

j ;x
q
j ]. (12)

3.4 Federated Configuration Tuning in Process Level

A production line consists of multiple processes. Due to the heterogeneous of
smart manufacturing systems in different plants, production lines have different
process sequences. Even process sequences for multiple production lines in the
same plant are not identical. Therefore, we conduct independent federated con-
figure tuning for each process. Directly applying federated learning between lines
and cloud server for a large number of processes will introduce high communica-
tion cost and lead to high latency. Therefore, the federated learning is conducted
in a hierarchical manner. We first conduct federated learning with data from the
same process on different production lines within a plant. The local models from
different plants are then further aggregated in the cloud parameter server. It is
worth noting that if a process is exclusive to a particular production line, then
the configuration of that process cannot be learned through federated learning,
which is obviously acceptable.

Specifically, we consider P plants indexed by p, with disjoint Line sets {Lp}p,
and Dp

i denotes the local data within the i-th line in the p-th plant. Dp = ∪iDp
i

denotes the aggregated dataset in plant p. After every κ1 iterations of local
learning in each line, the plant parameter server aggregates models from local
lines. Then after every κ2/κ1 aggregations on each plant, the cloud parameter
server aggregates all the models of plants. For the k-th iteration, the local model
parameters on the i-th line of plant p is updated as follows:

wk
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk−1
i − η∇Fi(wk−1

i ) k mod κ1 �= 0
k mod κ2 �= 0,∑

i∈Lp

|Dp
i |(wk−1

i − η∇Fi(wk−1
i ))

|Dp| k mod κ1 = 0,

∑
i |Di|(wk−1

i − η∇Fi(wk−1
i ))

|D| k mod κ2 = 0.

(13)

Similarly, we extends the basic GRU model to solve the configuration tun-
ing problem in process level. The input xj consists of three types of features:
incoming material quality features, machine inner environment features, and
outgoing material quality features. We denote the features of incoming material
quality, machine inner environment, and outgoing material quality as xmi

j , xem
j ,

and xmo
j , respectively. The output yj represents the process level configuration

parameters (e.g., machine parameters). After concatenating the categorical fea-
ture vector and the time series feature vector, we obtain the input vector xj

by:
xj = [xmi

j ;xem
j ;xmo

j ]. (14)
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Table 3. Descriptions of manufacturing dataset

Attribute Value

#Plants 7

#Cities 5

#Manufacturing Systems 3

#Brands 2

#Lines 12

#Distinct Processes 26

#Distinct Configurable Parameters 105

#Distinct Features. 536

4 Experiments

We have deployed REACT model in cigarette manufacturing systems and col-
lected a real-world dataset. In this section, we conduct experiments to evaluate
the effectiveness of REACT on the dataset. We also evaluated the performance
of real manufacturing systems where REACT was deployed.

4.1 Experimental Settings

We collected a dataset from one of the largest cigarette manufacturers in the
world. This dataset is collected during the production process from leaf to
cigarette, with a total of 7 cigarette plants of the manufacturer located in 5 dif-
ferent cities. There are 3 different manufacturing systems that involve 2 brands
of cigarettes. There are 12 lines in total with 26 distinct processes. The distinct
configuration parameters and distinct features are 105 and 536, respectively.
Note that on a particular line, the configuration parameters is a subset of the
total parameters. The descriptions of the dataset are summarized in Table 3.

4.2 Metrics

We assess the accuracy of REACT in comparison with other approaches by MAE
(Mean Absolute Error):

MAE =
1

|Dt|
∑

j∈Dt

||yj − ŷj ||, (15)

where yj is the real configuration vector of the j-th sample, ŷj is the REACT
generated configuration vector. Dt is the set of testing samples. Note that all the
parameters are normalized before training. Given the features x, MAE assesses
how accurate the model is in generating the configurations compared to the
real configurations. In other words, the MAE evaluates how well the model cap-
tures the relationship between incoming materials, configurations, and outgoing
products.
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4.3 Accuracy

To evaluate the performance of REACT, we compare it with general deep learn-
ing models:

– GRU [3]: This is the extended version of basic GRU model as introduced in
Sect. 3.3. It is trained only on the local data of a line.

– REACT: Federated configuration tuning model proposed in this paper.

We used the data from the first d% of the time windows to train the model,
and test the model with data from the remaining time windows. We vary d
from 10 to 30 with a step of 5. We randomly set two plants (i.e., 28% of the
plants) as untrustworthy , and add random noise to the corresponding data. The
comparison is carried out 10 times. Figure 4 shows the average accuracy of the
compared models. The results show that federated learning framework leveraging
more useful information from larger volume of data significantly improve the
accuracy results.

5% 10% 15% 20% 25% 30%
Percentage of Training Data

1.2

1.5

1.8
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M
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GRU REACT

Fig. 4. Accuracy results.

4.4 Case Study

To evaluate the effectiveness of REACT, we deploy REACT into real-world
manufacturing systems and compared the performance of these systems with and
without running the REACT model. We also deploy the general deep learning
model (i.e., extended version of basic GRU) into the manufacturing systems.
The performance of a manufacturing system is evaluated in terms of product
yield rate.

The performance results are shown in Fig. 5. We observe that compared with
the manual configuration, which is not conducted in a timely manner, real-time
automatic configuration tuning achieves significant improvements. GRU achieves
an average of 3.3% improvement over manual method. REACT achieves an aver-
age of 7.8% improvement over manual method. REACT outperforms GRU on all
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Fig. 5. Product yield rate.

production lines, meaning that Federated Learning can use data from different
manufacturing systems in multiple plants to gain a deeper understanding of the
production process.

5 Related Work

5.1 Smart Manufacturing and Configuration

IIoT plays a important role of connecting the physical environment of manu-
facturing to the computing platforms and decision-making models in the smart
manufacturing paradigm [4]. The big data analytics on tremendous volume of
real-time data generated by IIoT devices provides a feasible way to realized
intelligent models of automated manufacturing decision making. Bui et al. [2]
proposed dynamic decision making approach for vehicles in IoT. Wang et al. [15]
IIoT data analytics for flexible manufacturing.

Optimal Configuration have widely studied in manufacturing systems to
improve productivity [6,7,18]. Most of the configuration selection methods [18]
rely on simulation to emulate the operations in digital twin [13], which is a digital
copy of real systems. Due to the large volume of IIoT data and tight time con-
straint, these methods can not provide optimal configuration parameters in time.
Different from existing studies, we focus on automating configuration tuning in
a timely manner for smart manufacturing.

5.2 Deep Learning

The key to IIoT intelligence is data analysis. In recent years, deep learning tech-
niques are widely used in smart manufacturing [14] for solving detection [12],
prediction [8], and other problems. While a deep learning model can capture the
underlying correlations between variables, the massive training data, time, and
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high capacity devices it requires makes it difficult to use directly in manufactur-
ing. In contrast to previous studies that have focused on improving model accu-
racy, our goal is to facilitate deep learning models in complex, resource-limited
smart manufacturing environments through a federated modeling framework.

5.3 Federated Learning

Federated learning techniques have been used by major service providers [1] for
train models over remote devices. In federated learning, a star network, where a
central server is connected to a network of devices, is the main communication
topology [16]. The decentralized training has been demonstrated to be effective
when operating on networks with low bandwidth or high latency [5]. Federated
learning techniques have been widely used for communication efficiency [9], pri-
vacy [10,19] and security [17] issues in IIoT. Different from these studies, we
focus on collaborative modeling among heterogeneous systems, and propose a
novel two-level federated learning framework.

6 Conclusion

In smart manufacturing systems, real-time configuration tuning is critical to
ensure the stability of product quality. In this paper, we propose a novel two-
level federated deep learning approach to enable collaborative modeling among
heterogeneous manufacturing systems on the massive IIoT data. The model is
trained in a plant-cloud collaboration manner, and can make accurate configu-
ration tuning in time. We have deployed the proposed model in real-world smart
manufacturing systems, and conducted extensive experiments to evaluate the
effectiveness of the model. The experimental results show that our model can
significantly improve the stability of product quality compared to the conven-
tional methods.
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Abstract. Federated learning is a revolutionary machine learning app-
roach whose main idea is to train the machine learning model in a dis-
tributed fashion over a large number of edge/end devices without having
to share the raw data. We consider in this work a federated learning
scenario wherein the local training is carried out on IoT devices and the
global aggregation is done at the level of an edge server. One essential
challenge in this emerging approach is scheduling, i.e., how to select the
IoT devices to participate in the distributed training process. The exist-
ing approaches suggest to base the scheduling decision on the resource
characteristics of the devices to guarantee that the selected devices would
have enough resources to carry out the training. In this work, we argue
that trust should be an integral part of the decision-making process
and therefore design a trust establishment mechanism between the edge
server and IoT devices. The trust mechanism aims to detect those IoT
devices that over-utilize or under-utilize their resources during the local
training. Thereafter, we design a Double Deep Q Learning (DDQN)-
based scheduling algorithm that takes into account the trust scores and
energy levels of the IoT devices to make appropriate scheduling deci-
sions. Experiments conducted using a real-world dataset (https://www.
cs.toronto.edu/∼kriz/cifar.html) show that our DDQN solution always
achieves better performance compared to the DQN and random schedul-
ing algorithms.

Keywords: Federated learning · Edge computing · Internet of Things
(IoT) · Double Deep Q-Learning (DDQN) · Trust · IoT Selection

1 Introduction

With the increasing reliance on Internet of Things (IoT) applications and social
media platforms, the volume of data that need to be stored and processed is
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becoming enormous. Cloud computing has long been a great solution to deal
with this challenge, owing to the wide array of benefits it has proved to offer for
data providers [3,6,19,21,22]. These benefits include multi-tenancy, elasticity,
virtualization and reduced storage and processing costs. Consequently, instead
of acquiring and continuously maintaining expensive hardware equipment to
store and analyze big data, companies can now migrate these duties to the
cloud to be done in a more efficacious and cost-efficient manner. The increasing
data privacy and network communication concerns play against the adoption
of a centralized cloud-based data storage and analytics approach. First, data
owners often feel reluctant to share their data with the cloud platform [2]. This
is because these owners will no longer have any control on their own data and
hence are not sure which other (possible unauthorized) parties will have access
to their sensitive data. Moreover, the cloud data centers are mostly located in
geographical areas that are quite far from the IoT devices. This entails high
communication cost and delay to transmit data to the cloud for processing and
receive back the insights from the cloud for decision-making. These factors have
pushed the research community to design distributed data analytics approaches
that are executed either by the end devices or at the edge of the network [7,26].

1.1 Problem Statement

Inspired by this idea, the concept of Federated Learning (FL) has recently been
proposed to allow end devices to collaboratively train a single machine learn-
ing model without having to share their raw data. FL consists of two main
phases, i.e., local training and global computation. In the local training phase,
a parameter server (e.g., edge node) initializes the machine learning model and
then shares initial parameters with the end devices. These devices then use the
shared parameters to train the model on their own data. Finally, they share the
updated parameters obtained through training the model on their data with the
parameter server. In the global computation phase, the parameter server aggre-
gates all the received updates to reconstruct a global machine learning model.
This process repeats until a certain accuracy level is attained.

One substantial challenge in federated learning is how to select the end
devices that will participate in the collaborative training. Several approaches
have been proposed to tackle this challenge [15,24,25]. Most existing approaches
rely on the devices’ resource characteristics when taking their decisions. Despite
the importance of the resource factor, we argue in this work that the reliability
of the devices cannot be overlooked. In fact, the presence of unreliable devices in
the federated training might lead to performance degradation and even security
hazards. Unreliable devices might, for example, use bogus data to do their local
training. To address this problem, we propose in this paper a scheduling solution
for federated learning that takes into account both the resources availability (in
terms of energy level) and trustworthiness of the IoT devices. The considered
scenario consists of an edge server which plays the role of the parameter server
that is responsible for the global computation phase and IoT devices that are
responsible for the local training phase. A fundamental challenge in federated
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learning is the uncertainty that the edge server faces regarding the resource and
trust levels of the IoT devices. We address this challenge by proposing a Double
Deep Q-Network (DDQN) reinforcement learning-based algorithm. Compared
to the traditional reinforcement learning approaches, DDQN has the advantage
of reducing the overestimation of Q values and thus helps us achieve a faster
training and have a more stable learning. Moreover, as argued in [11,13,23],
DDQN reveals better performance compared to classic optimization methods
such as Monte-Carlo search, swarm intelligence, genetic algorithms and Bayesian
methods.

1.2 Contributions

The main contributions of the paper can be summarized as follows:

– We propose a trust establishment technique for the IoT devices. The algo-
rithm monitors the CPU and memory consumption of the IoT devices and
employs a modified Z-score statistical method to identify the IoT devices
that exhibit any abnormal behavior in terms of over-consumption or under-
consumption. This is of prime importance to detect those devices that do
not dedicate enough resources to serve the federated learning tasks as well
as those that carry out additional computations to achieve some malicious
objectives. The modified Z-score is more robust than the standard Z-score
technique since it relies on the median (instead of the mean) for calculating
the Z-score. It is thus less influenced by the outliers. Moreover, compared to
classification techniques such as Support Vector Machine (SVM) and decision
tree, the modified Z-score technique needs less training time and can hence
be executed with less overhead.

– We propose a DDQN algorithm which enables the edge servers to find the
optimal scheduling decisions in terms of energy efficiency and the trustworthi-
ness. In particular, we first formulate a stochastic optimization problem that
seeks to derive to set of IoT devices that, by sending the federated learning
tasks to them, the edge server can maximize the trust and at the same time
minimize the energy cost. Then, a DDQN algorithm is designed to solve the
optimization problem while modeling the uncertainty that the server faces
regarding the resource and trust levels of the IoT devices.

– We study the proposed solution experimentally in an image recognition sce-
nario using a Convolutional Neural Network (CNN). The experimental results
reveal that our solution shows a better performance compared to the DQN
and random scheduling algorithms.

1.3 Organization

The rest of the paper is organized as follows. In Sect. 2, we conduct a literature
review on the existing task scheduling approaches in cloud and edge computing
settings, and in the context of federated learning. We also survey the main deep
and reinforcement learning-based resource management approaches. In Sect. 3,
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we describe the details of the proposed task scheduling approaches. In Sect. 4, we
explain the experimental environment, evaluate the performance of our schedul-
ing solution, and present empirical analysis of our results compared to other two
existing scheduling approaches. In Sect. 5, we conclude the paper.

2 Related Work

In this section, we survey the main task scheduling approaches in federated
learning as well as in edge computing environments.

2.1 Task Scheduling with Federated Learning

In [4], the authors study the problem of training FL algorithms over a realis-
tic wireless network. To do so, the authors formulate an optimization problem
that jointly considers user selection and resource allocation to minimize the
value of the loss function. To solve this problem, a closed-form expression of
the expected convergence rate of the FL algorithm that considers the wireless
factors is derived. In [1], the authors adopt a DQN algorithm that allows the
server to learn and find optimal decisions without any a priori knowledge of
the network dynamics. The authors employ Mobile Crowd-Machine Learning
(MCML) to address data privacy issues of traditional machine learning. In [8],
the authors propose a segment-level decentralized federated learning to improve
the efficiency of network capacity utilization among client nodes. In particular,
the authors propose a segmented gossip approach, which not only makes full
utilization of node-to-node bandwidth, but also achieves good training conver-
gence. In [16], the authors present FedCS, a protocol that aims to improve the
efficiency of FL in a mobile edge computing environment with heterogeneous
clients. FedCS proposes to solve a client selection problem with resource con-
straints, which allows the server to aggregate as many client updates as possible
and to accelerate the training convergence rate. In [15], the authors present
DQN algorithm for resource allocation in a mobility-aware federated learning
network. The authors propose to employ the DQN to enable the model owner to
find the optimal decisions in terms of energy and channels without any a priori
knowledge about the network. The authors formulate the energy and channel
selection decision of the model owner as a stochastic optimization problem. The
optimization problem aims to maximize the number of successful transmissions
of the model owner while minimizing the energy and channel costs.

2.2 Task Scheduling in Cloud and Edge Computing

In [18], the authors propose a trust-aware scheduling solution called
BigTrustScheduling that is particularly useful for big data tasks. The solution
consists of three stages: VMs’ trust level computation to derive a trust value for
each VM based on its underlying performance, task priority level determination
based on resource requirements and prices, and trust-aware scheduling that min-
imizes the makespan and cost of task execution. In [12], the authors propose a
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smart manufacturing factory framework based on edge computing and investi-
gates the Job Shop Scheduling (JSP) under such a setting. Moreover, the authors
adjust the DQN with an edge computing framework to solve the JSP. In [5], the
authors consider the characteristics of autonomous-driving tasks to select more
suitable mobile edge computing (MEC) servers for task migration. To improve
the earliest deadline first algorithm through the replacement and recombination
of tasks, the authors propose a Best Fit Replacement Scheduling (BFRS) tech-
nique that enables more tasks to be executed at every stage, while considering
the time constraints of tasks, the urgency difference among them and their vul-
nerability to environmental impacts. In [9], the authors aim to reach an optimal
revenue for edge service providers in the contexts of dynamic task scheduling
and resource management in MEC environment. Moreover, the authors prove
to achieve a favorable property called total unimodularity. This property fur-
ther helps in designing an equivalent linear programming problem which can be
efficiently and elegantly solved with polynomial computational complexity.

Overall, the existing scheduling approaches in federated learning, cloud and
edge computing focus on the resource characteristics of the participant devices,
but overlook the reliability of these devices. In this work, we consider both
the resource and trust components to guarantee high-quality and reliable per-
formance of the federated training. Moreover, different from the scheduling
approaches that employ traditional deep Q learning approaches, we formulate
in this paper the scheduling problem as a double deep Q learning model. This
is important to consider the uncertainty that the server faces about the trust
and resource characteristics of the IoT devices, while avoiding the problem of
overoptimism when choosing the scheduling actions.

3 Trust-Aware IoT Scheduling for Federated Learning

3.1 Trust Establishment Mechanism

In Algorithm 1, we propose a statistical trust establishment method for IoT
devices based on monitoring the CPU and RAM consumption of the devices to
identify the ones that exhibit some abnormal resource consumption behavior,
and the devices whose consumption goes down the normal minimal habitual
consumption (e.g., failed IoTs). This is important to detect those devices that
do not dedicate enough resources to serve the FL tasks as well as those that
exhibit some overly high consumption which could be an indication of some
malicious behavior. For example, some malicious devices might optimize for a
malicious objective that aims to generate targeted misclassification. Such devices
are expected to spend more resources than the regular devices that only try to
optimize for the underlying federated task. Note that, every edge server moni-
tors IoT devices that are located within its range. Thus, Algorithm 1 is executed
by each edge server. The proposed method capitalizes on the modified Z-score
statistical technique. Modified Z-score is a standardized score that measures
outlier strength, i.e., how much a particular score differs from the typical score
by checking the dependability of a particular score on a certain typical score.
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This method shows a greater robustness to outliers compared to some other sta-
tistical techniques (e.g., traditional Z-Score, Tukey method, etc.) since it capi-
talizes on the median x̄ instead of the mean μ. In our algorithm, this method
approximates the difference of a certain score from the median using the median
absolute deviation MADz

j (t) of a metric z (e.g., CPU, RAM) consumed by a
device j during a time window [t − δ, t] (Algorithm 1 line 6).

Algorithm 1. IoT Trust
Inputs:

1: j: an IoT being monitored by the edge computing server
2: M = {CPU, memory}: the set of IoT ’s metrics to be analyzed by the edge server
3: δ: size of time window after which the algorithm is to be repeated

Variables:
4: Mz

j (t): a table recording xz
j (i) (i = t − δ, t − δ + 1, . . . , t), the amounts of z ∈ M consumed by

j during the time interval [t − δ, t]
5: x̄z

j (t): the median of Mz
j (t) (median consumption of z ∈ M by j during the time interval [t−δ, t])

6: MADz
j (t): the median absolute deviation of Mz

j (t), i.e., MADz
j (t) = median

{∣∣∣xz
j (i) − x̄z

j (t)
∣∣∣
}

for all t − δ ≤ i ≤ t
7: αz

j (i, t): the modified Z-score of xz
j (i) ∈ Mz

j (t)

8: AbnormalMetricsz
j : sum of unusual consumption of z ∈ M by j

9: CountAbnormalMetricsz
j : a counter enumerating the occurrence of unusual consumption of

z ∈ M by j
10: AvgAbnormalMetricsz

j : j’s average unusual consumption of z ∈ M

11: PropAbnormalMetricsz
j : j’s unusual consumption of z ∈ M proportionally to the upper and

lower consumption limits of this z
12: AbnormalMetricsj : the number of abnormal usages of all the metrics by j.

Output:
13: Γj : trust value of j

14: Initialize AbnormalMetricsj to 0
15: for each metric z ∈ M do
16: Initialize AbnormalMetricsz

j and CountAbnormalMetricsz
j to 0

17: Initialize AvgAbnormalMetricsz
j and PropAbnormalMetricsz

j to 0

18: Compute the median x̄z
j (t) of Mz

j (t)

19: Compute the MADz
j (t) of Mz

j (t)

20: Compute αz
j (i, t) =

�(xz
j (i) − x̄z

j (t))

MADz
j (t)

21: for each data point xz
j (i) ∈ Mz

j (t) do

22: if αz
j (i, t) ≥ ϕ then

23: AbnormalMetricsz
j = AbnormalMetricsz

j + xz
j (i)

24: CountAbnormalMetricsz
j = CountAbnormalMetricsz

j + 1

25: end if
26: end for
27: if CountAbnormalMetricsz

j > 0 then

28: AvgAbnormalMetricsz
j = AbnormalMetricsz

j /CountAbnormalMetricsz
j

29: PropAbnormalMetricsz
j = ϕ

AvgAbnormalMetricsz
j

30: AbnormalMetricsj = AbnormalMetricsj + 1
31: end if
32: end for
33: if AbnormalMetricsj = 0 then
34: Γj = 1
35: else

36: Γj =

∑
z∈M P ropAbnormalMetricsz

j
AbnormalMetricsj

37: end if
38: return Γj
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More specifically, the modified Z-score αz
j (i, t) is calculated through dividing

the difference between the consumption xz
j (i) of the device j in terms of the

resource metric z at time moment i ∈ [t − δ, t] and the median consumption
of that device in terms of that metric within the time interval [t − δ, t] by the
median absolute deviation of the metric z (Algorithm 1 line 20). The constant
� = 0.6745 is needed because E(MADz

j (t)) = 0.6745σ for a large number n of
samples. Observations will be labeled outliers when αz

j (i, t) ≥ ϕ, where ϕ = 3.5
as argued in [10]. This limit quantifies the patterns of maximal and minimal
habitual utilization of each IoT device within a certain time interval. Thus,
any future consumption that exceeds or falls under this limit is deemed to be
unusual. The Algorithm then checks for any future consumption of the IoT to
determine whether there exists any consumption that exceeds or falls under the
computed abnormal limit (Algorithm1 - lines 22–23). If such a case is encoun-
tered, this observation is added to a table that registers each IoT’s unusual
consumption (if any) (Algorithm1 - line 24). The average unusual consumption
for each metric is then computed (Algorithm 1 - line 28). The Algorithm then
computes the trust value of each IoT by dividing the sum of the proportional
abnormal consumption over all the metrics by the number of metrics that the
device has overused/underused (if any) (Algorithm1 - line 36). If no metric has
been overused/underused, the initial trust in the IoT’s trustworthiness would be
set to 1 (Algorithm 1 - line 34), which represents a full trust in that device.

3.2 DDQN Scheduling Policy

Reinforcement learning [14,17] is an active research and application area of
machine learning that has been applied to solve uncertainty-driven problems
wherein exact models are often infeasible. It aims at guiding a certain agent
on how to react to the changes that take place in the environment. The agent
performs the appropriate actions that maximize its cumulative reward according
to the current state of the environment. In this work, we propose a trust and
energy-aware dynamic Double Deep Q Network (DDQN) scheduling method.
The proposed method consists of a multi-layered neural network that, for a
given state outputs a vector of actions given a set of parameters of the network.
The problem is formulated as a global Markov Decision Process (MDP) where
the system global states and global actions are formulated as the combination
of IoT devices local states and actions. It is defined by the tuple

〈
S,A, T,R, γ

〉
,

where:

– S: the set of global states of the system.
– A: the set of joint actions of all the IoT devices.
– T : the transition probability function defined as: T (s, a, s′) = Pr(s′|s, a),

where s, s′ ∈ S and a ∈ A.
– R : S × A × S �→ R: the reward function of the model.
– γ: a discount factor that decreases the impact of the past reward.

Let Sj be the set of local states of the IoT device j and J the set of all the
devices. The global state space S is obtained through the Cartesian product of
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IoT devices local states: S =
∏

j∈J

Sj . Each local state sj ∈ Sj is as follows:

sj = (Γj , χj); Γj ∈ [0, 1], χj ∈ {0, 1, . . . , χmax} (1)

where Γj is the trust value of the IoT device j computed in Algorithm 1 and
χj is the energy state of j. Trust and energy state are dynamic, so they could
change from state to state. The global action space of the parameter edge server
is the joint action space of each device: A =

∏

j∈J

Aj where Aj is the set of local

actions of j. A local action aj ∈ Aj is as follows:

aj = (σj , l
χ
j , ξj); σj ∈ {0, 1} , lχj ∈ {0, 1, . . . , χmax} , ξj ∈ R (2)

where σj = 1 means the parameter server assigns a training task to the IoT
device j; σj = 0 otherwise, lχj refers to the amount of energy needed by the
IoT device j to download, train and upload the model, and ξj is the cost of
transmitting the model from the parameter server to the device j and running
the model. For an action to be feasible from a global state s to s′, the following
condition should hold:

lχj (s′) ≤ χj(s) ∀j ∈ J (3)

where lχj (s′) refers to lχj in the action leading to s′ and χj(s) is χj in s. Finally,
to define the reward function R, the objective of maximizing the selection of
trusted IoT devices having enough energy to receive and perform the training
task is considered. The cost ξj is also considered proportional to the maximum
cost ξmax. The reward ψj for the device j is a function of state s ∈ S and action
a ∈ A as follows:

ψj(s, a) =

{
Γj .χj − ξj

ξmax , if lχj ≤ χj .

− ξj

ξmax , otherwise.
(4)

Thus, along with the trust scores of the IoT devices, the edge server accounts
for the available energy level of the devices to make sure that these devices have
enough battery capacity to download, train and upload the model.

The global reward of the parameter server is as follows:

R(s, a) =
∑

j∈J

ψj(s, a) (5)

The parameter edge server determines the optimal policy π∗ : S → A that
indicates the actions to be taken at each state to maximize the cumulative
reward. The essential goal of the Q-learning (QL) algorithm used to find π∗ is to
update the Q-value of a state-action pair, Q(s, a), which encodes the expected
future discounted reward for taking action a in state s. The optimal action-value
function Q∗(s, a) is Q∗(s, a) = max

π
Qπ(s, a). This optimal value function can be

nested within the Bellman optimality equation as follows:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

Pr(s′|s, a).max
a′∈A

Q∗(s′, a′) (6)
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Depending on the Q-table that results from updating the Q(s, a) values, the
parameter server determines the optimal action from any state to maximize the
cumulative reward. The QL algorithm is practical for networks with small state
and action spaces only, but when the number of network participants increases
(which is the case of IoT networks that consist of a large number of devices), the
problem of assigning training tasks to the IoT devices becomes high dimensional.
The Deep QL (DQL) algorithm (a combination of QL and deep neural network
DNN) comes into play to solve the high dimensionality problem. The input of
the DNN is one of states of the online network, and the outputs are the Q-values
Q(s, a; θ) of all the possible actions, with θ being the weight matrix of the DNN.
The DNN needs to be trained by using experiences (s, a,R(s, a), s′) to obtain the
approximate values Q∗(s, a). We use the Mean Square Error (MSE) to define the
loss function and DNN uses the Bellman equation to minimize this loss function
as follows:

L(θi) = E[(R(s, a) + γ arg max
a′∈A

Q(s′, a′; θ′
i) − Q(s, a; θi))2] (7)

where θi represents the parameters of the online network at the ith iteration,
θ′

i represents the parameters of the target network at the ith iteration, and E[.]
denotes the expected value. Note that the action a is selected based on the ε-
greedy policy. By using the max operator (which uses the same Q-values to select
and to evaluate an action in standard QL and DQN), we observe that it is more
likely that this operator selects overestimated values, resulting in overoptimistic
estimates. To prevent such a problem, we should decouple the action selection
from the evaluation by employing the Double Deep Q-network (DDQN) [20]. The
main feature of DDQN is the use of two separate DNNs, i.e., an online network
with weight set θ and a target network with weight set θ′′. The DDQN employs
two valuation functions for two autonomous DNNs learned through randomly
assigning experiences to update one of the two value functions, resulting in two
sets of weights θ for the first DNN and θ′′ for the second DNN. At each iteration,
the weights of the online network are updated, while those of the target network
are kept constant to determine the greedy policy. The target function of the
DDQN error is defined by:

TDDQN (s, a, s′) = R(s, a) + γQ(s′, arg max
a′∈A

Q(s′, a′; θ); θ′′) (8)

To compute the optimal value Q(s′, a′; θ), the weight θ of the online network
uses the next state s′ to select an action, while the target network θ′′ uses the
next state s′ to evaluate the action. Then, a stochastic gradient descent step is
performed to update the weights of the online networks θ based on the loss

3.3 DDQN-Based Federated Learning Model

In this section, we describe how the FL process can be executed after inte-
grating our trust establishment and scheduling mechanisms. A DNN model
is distributed over the IoT devices to be collaboratively trained following the
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FL framework. Let Dj be a local dataset collected by the IoT device j,
Dj = {(x1j

, y1j
), . . . , (xnj

, ynj
)}, where xij

is the ith training sample and yij

represents the corresponding ground-truth label. In this work, we take a gen-
eral Convolutional Neural Network (CNN) model for analysis. The edge server
receives the local gradient vectors from the trusted IoT devices and then aggre-
gates (averages) them to obtain the global gradient using Eq. (9):

g [ν] =
1

∑

j∈J

|ϑj |
∑

j∈J

|ϑj |gj [ν] (9)

where ϑj is a subset of local data collected from the IoT device j for a training
period ν, with ϑj ⊆ Dj , and gj [ν] being the local gradient which is computed
as per Eq. (10).

gj [ν] = ∇wj
Lj (wj , ϑj) (10)

where wj is the local parameter set of the CNN model, Lj is the local loss
function on the IoT device j to measure the training error and ∇wj

Lj(.) is the
gradient of the loss function Lj with respect to wj .

Algorithm 2. DDQN-based Federated Learning Algorithm for IoT Selection
1: Initialize the global parameter set of the CNN model
2: for each round τ = 1, 2, . . . do
3: Use Algorithm 1 to compute the trust scores of all the IoT devices
4: Use DDQN to select a subset E ⊆ J of IoT devices to participate in the training
5: Send Wτ to each selected IoT
6: for each IoT device j ∈ E do % E = {1, 2, . . . , E}
7: Execute IoTLocalUpdate(Wτ ) % See Algorithm 3
8: end for

9: Wτ = 1
n

E∑
j=1

njwj

10: end for

In Algorithms 2 and 3, we describe the federated learning process after
embedding our proposed trust establishment mechanism and DDQN schedul-
ing policy to improve the selection of IoT devices. In Algorithm 2, nj is the data
size available on IoT j, n is the size of the whole data across all devices, E is the
total number of selected devices, τ is the training communication round index
and Wτ is the global parameter set at round τ .

Algorithm 3. IoT Local Training
1: IoTLocalUpdate(Wτ )
2: wj = Wτ

3: for each local iteration t = 1 to T do
4: wj = wj − η∇wj

Lj(wj , ϑj) % η is the learning rate

5: end for
6: return wj to the edge server
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Each IoT device runs the stochastic gradient descent (SGD) algorithm based
on the received global gradient. The local loss function on each device j is defined
as per Eq. (11):

Lj (wj) =
1

Nj

∑

(x,y)∈Dj

� (wj , x, y) (11)

where � (wj , x, y) is the sample-wise loss function that quantifies the predic-
tion error between the learning output (via input x and parameter wj) and the
ground-truth label y, and Nj is the number of data samples of the device j. Each
device seeks to minimize the local loss function defined in Eq. (11) to minimize
the training error. On a global level, the main target of the training task at the
edge server is to optimize the parameters towards minimizing the global loss
function L(W ) via the SGD algorithm expressed as follows:

L(W ) =
1

∑E
j=1 Nj

E∑

j=1

NjLj(wj) (12)

4 Implementation and Experiments

4.1 Experimental Setup

To carry out our experiments, we use TensorFlow Federated (TFF), which is an
open-source framework for machine learning on decentralized data. TFF sup-
ports a variety of distributed learning scenarios executed on a large number of
heterogeneous devices having diverse capabilities. We train a CNN model on
the CIFAR-10 dataset1 to evaluate the performance and efficiency of our solu-
tion. The dataset consists of 50, 000 training images and 10,000 testing images
divided across 10 object classes. The employed CNN model consists of six 3 × 3
convolution layers as follows: 32, 32, 64, 64, 128, 128. Each layer is activated by
a Rectified Linear Unit (ReLU) and batch normalized. Every pair of convolution
layers is followed by a 2×2 max pooling layer, followed by three fully-connected
layers (where each fully connected layer takes a 2D input of 382 and 192 units)
with ReLU activation and another 10 units activated by soft-max. The model
is trained on IoT devices using the Stochastic Gradient Descent (SGD) algo-
rithm with a batch size of 128 rows. The training dataset was distributed over
a set of 1000 IoT devices (i.e., |J | = 1000) of 4 types: type-1 with 1 CPU core
and 1.75 GB RAM, type-2 with 2 CPU cores and 3.5 GB RAM, type-3 with 4
CPU cores and 7 GB RAM, and type-4 with 8 CPU cores and 14 GB RAM. At
each iteration, the edge server selects the top 50 IoT devices returned by the
scheduling algorithm (i.e., E = 50).

We evaluate the performance of the proposed DDQN solution with the tra-
ditional DQN [15] which has lately been used for client selection in federated
learning and with the random scheduling approach, the default approach in
federated learning. The proposed DDQN model consists of two Deep Neural
1 https://www.cs.toronto.edu/∼kriz/cifar.html.

https://www.cs.toronto.edu/~kriz/cifar.html
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Networks (DNNs), where each DNN has a size of 32 × 32 × 32. The Adam opti-
mizer is used to adjust the learning rate during the training. The learning rate
η is initially set to 0.01 to avoid losing the local minima. In general, the deep Q
learning approach prefers the long-term reward; therefore, we set the value of the
discount factor γ to 0.9. We use the ε-greedy policy with ε = 0.9 that balances
between the exploration and exploitation. During the training phase, ε is lin-
early reduced to zero to move from exploration to exploitation. Our application
is written in Python, version 3, and executed in a 64-bit Windows 7 environment
on a machine equipped with an Intel Core i7-6700 CPU 3.40 GHz Processor and
16 GB RAM.

4.2 Experimental Results

In Figs. 1, 2 and 3, we measure the accuracy of the CNN that was trained by
IoT devices selected by the DDQN (Fig. 1), DQN (Fig. 2), and random schedul-
ing (Fig. 3) approaches. We ran the experiments over 2000 iterations to study
the scalabilty of the different considered solutions. The accuracy obtained by
the DDQN approach is higher than that obtained by the DQN and random
approaches. In particular, the accuracy levels obtained by the DDQN, DQN,
and random approaches are of 87%, 71%, and 35% respectively. Moreover, we
notice from the figures that the DDQN approach convergences faster than the
DQN and random approaches to a stable accuracy level. The improvements with
regard to the random scheduling approach mainly stem from the fact that our
solution leverages the trust energy values of the IoT devices when selecting the
devices that will participate in the training. Compared to the traditional DQN,
our solution improves the accuracy since it relies on a double Q learning model
that provides a better estimate of the potential actions due to its second Q-
function approximator, which helps avoid overoptimism. In DQN, on the other
hand, the Q values are noisy; thus when we take the maximum over all the
actions, there is a considerable risk of obtaining an overestimated value.

In Fig. 4, we provide experimental comparisons in terms of cumulative
reward. We ran the experiments over 10,000 iterations. The reward obtained
by the DDQN is much higher than those obtained by the DQN and random
approaches. In particular, the rewards obtained by the DDQN, DQN, and ran-
dom approaches are 175, 115, and 60, respectively. This means the proposed
DDQN approach enables the edge server to better learn the scheduling policy
that best maximizes the reward.

In the random approach, the edge server randomly selects IoT devices, which
increases the risk of selecting unreliable devices or devices that have insufficient
energy levels. This endangers the whole collaborative training process and makes
the performance unstable. Moving to the traditional DQN approach, its overes-
timation of the future actions leads to a natural reduction in the overall reward
that results from the chosen actions.
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Fig. 1. Performance of the trained
CNNs with DDQN scheduling
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Fig. 2. Performance of the trained
CNNs with DQN scheduling
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Fig. 3. Performance of the trained CNNs with random scheduling
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Fig. 4. Reward values in DDQN, DQN, and Random scheduling policies

5 Conclusion

We designed and formulated a trust and energy-aware FL scheduling approach in
IoT environments using DDQN. Experiments conducted on the CIFAR-10 real-
world dataset reveal that our solution outperforms, in terms of accuracy and
cumulative reward, the most commonly used scheduling approaches in FL, i.e.,
DQN and random scheduling. Our solution accurately selects the appropriate
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set of IoT devices whose participation in the federated training improves the
machine learning model’s accuracy. We study the accuracy of the three studied
models by implementing a CNN model in a federated fashion on the IoT devices.
The results suggest that our solution yields an accuracy of 87% compared to
71% and 35% for the DQN and random scheduling approaches respectively.
Besides, our DDQN-based approach convergences faster to a stable accuracy
levels. Finally, the results reveal that our proposed scheduling solution maximizes
the reward (with a reward of 175) compared to the DQN (with a reward of
115) and random (with a reward of 60) scheduling approaches. In the future,
we plan to extend this work by investigating and formulating the scheduling
approach using Dueling Double Deep Q Network (DDDQN), which could help
better reduce the overhead and time complexity of the scheduling process by
avoiding unnecessary computations.
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Abstract. Modern software systems are often built using service-
oriented principles. Atomic components, be that web- or microservices,
allow constructing flexible and loosely coupled systems. In such systems,
services are building blocks orchestrated by business processes the system
supports. Due to the complexity and heterogeneity of industrial soft-
ware systems, implemented processes may deviate from those initially
designed. In this paper, we propose a spectrum of conformance mea-
surements. The spectrum results from a generalization of the recently
introduced entropy-based approaches for measuring precision and recall
between observed process executions and designed process models. The
new generalized measures of precision and recall inherit the desired for
this class of measures properties and provide analysts with flexible con-
trol over the sensitivity for identifying commonalities and discrepancies in
the compared processes and performance of the techniques. The reported
evaluation based on our implementation of the measures over real-world
event logs and automatically discovered models confirms the feasibility
of using the approach in industrial settings.

1 Introduction

In a service-oriented architecture (SOA), business processes can be implemented
as compositions of loosely coupled services that interact to achieve concrete
business goals [10]. The historical data on executions of such processes are
often recorded in event logs. These logs can be subsequently analyzed to dis-
cover, check, and improve service compositions [1] using process mining tech-
niques. Process mining combines studies of inferences from data in data mining
and machine learning with process modeling and analysis to tackle the prob-
lems of discovering, monitoring, and improving real-world processes [2]. One of
the core problems in process mining is conformance checking [5], which stud-
ies relationships between processes recorded in an event log and described by a
process model to characterize and/or measure commonalities and discrepancies
between the observed real-world and designed processes. Two core measures in
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 337–354, 2020.
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conformance checking are precision and recall. A precise process model should
not allow for behavior unrelated to what was seen in the event log, while a model
with good recall should allow for the behavior seen in the event log.

In our previous work, we devised two approaches for measuring recall and
precision between process models and event logs [19,21] founded on the notion
of topological entropy [6] of the behaviors, i.e., collections of traces, that they
describe. The measures presented in [21] have been recently recognized in [23]
as the only recall and precision measures, among the evaluated state-of-the-art
measures, that satisfy all the desired properties. For example, they are determin-
istic, depend only on the underlying behaviors and not on their representations,
and are monotone, i.e., the more common behavior the model and log have, the
greater the recall and precision values are. These measures can be computed for
behaviors that describe arbitrary, including infinite, collections of traces. How-
ever, they rely on the exact matching of traces, i.e., two different traces are always
treated as totally dissimilar, even if they differ only in a single task. In [19], we
extended the measures to account for partially matching traces. Instead of mea-
suring the original collections of traces, the new measures quantify and compare
the “diluted” behaviors, where the diluted version of a behavior consists of all the
traces obtained from original traces by skipping an arbitrary number of tasks;
note that once a task is skipped the order of the remaining tasks in the resulting
trace does not change. These new measures inherit the properties of the original
measures and enjoy some further properties specific to the partial matching of
traces. For example, the more common subtraces the model and log describe,
the greater the recall and precision values are.

The two approaches for measuring recall and precision presented in [19,21]
address two extremes, i.e., no support for partial matching of traces and abil-
ity to detect and quantify any partial similarity between traces. Such extreme
approaches are doomed for limitations. The former approach may overlook the
commonalities in traces, while the latter may miss the discrepancies. This calls
for a compromise approach.

In this paper, we present a novel technique for measuring precision and recall
between two (not necessarily finite) collections of partially matching traces that
can be configured as to when two different traces should be considered similar.
The configuration consists of two non-negative integers that specify the maxi-
mum numbers of tasks that can be skipped in traces in each of the two compared
collections to arrive at the same trace and, consequently, accept the compared
traces as similar. For example, traces 〈a, b, c〉 and 〈b, d, c, e〉 are dissimilar if one
is allowed to skip only one task in each trace. However, they can be accepted as
similar if one is allowed to skip two tasks in the latter trace. Indeed, one arrives
at the trace 〈b, c〉 by skipping task a in the former trace and tasks d and e in
the latter trace. Hence, two traces are said to be similar if they have a common
subtrace that can be constructed by skipping up to the configured number of
tasks in each trace. Such common subtrace captures the common behavior of
the compared traces. The technique then proceeds by measuring the amount of
all common subtraces in both collections as per the supplied configuration.



A Spectrum of Entropy-Based Precision and Recall Measurements 339

submit
(s)

approve
(a)

validate
(v)

cancel
(c)

no fy
(n)

Fig. 1. A BPMN model of a loan application process.

The new technique results in a discrete spectrum of recall and precision mea-
surements induced by all the configurations in the Cartesian square of the natu-
ral numbers (N0 ×N0). In this spectrum, the (k,m) configuration suggests that
up to k and m skips are allowed in the traces of log and model, respectively.
The recall and precision measures for the (0, 0) configuration correspond to the
exact matching measures from [21]. Using a formal proof, we show that measures
for the (k,m) configurations approach the partial matching measures from [19]
when k,m → ∞, allowing for a gradual adjustment of the analysis between the
two extremes.

Process analysts can rely on our new technique to (in a flexible way) adjust
the “sensitivity” of the measured recall and precision values to mismatches in
the compared behaviors. Such an adjustment may, for instance, be guided by
domain knowledge. An analyst may know that logs are recorded with noise, e.g.,
a sequence of initialization tasks at the start of each trace, and, thus, adjust the
allowed skips in log traces accordingly. In addition, the new measures demon-
strate good runtime characteristics for the practically relevant range of config-
urations. The most computationally demanding step of the partially matching
approach from [19] is the construction of a deterministic version of the automa-
ton that encodes the completely diluted version of the original behavior. This
step has exponential worst-case time complexity and, unfortunately, close-to-
worst cases manifest often for industrial datasets [19]. However, as confirmed
through our evaluations, for configurations (x, y), where x, y ≤ 10, the worst-
case complexity manifests only for sub-problems of small sizes, or not at all.

Section 2 motivates the problem addressed in this paper and demonstrates
our approach for solving the problem by means of an intuitive example. Next,
Sect. 3 introduces the basic notions used in the discussions of the subsequent
sections. Then, Section 4 presents our approach and discusses several its prop-
erties. Sect. 5 presents the results of our evaluations of the new measures. Sect. 6
positions our work among the state-of-the-art results in conformance checking.
Sect. 7 concludes the paper.

2 Motivating Example

Consider the example loan application process in Fig. 1. First, the client submits
an application. Then, the submitted application is reviewed by a bank analyst
and either approved or canceled. If the application is approved, it is then vali-
dated. In both cases, the client is eventually notified. The BPMN model in Fig. 1
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Table 1. The spectrum of the entropy-based precision and recall measurements
between the model in Fig. 1 that describes set of traces M = {〈s, a, v, n〉, 〈s, c,
n〉} and event log L = {〈s, a, n〉} calculated for different numbers of skipped tasks in
traces of M and L.

L(0) L(1) L(2) L(3)

M (0) 0.000 0.000 0.000 0.000

M (1) 1.000 0.793 0.568 0.464

M (2) 1.000 1.000 0.908 0.741

M (3) 1.000 1.000 1.000 1.000

(a) Recall

L(0) L(1) L(2) L(3)

M (0) 0.000 0.000 0.000 0.000

M (1) 0.549 0.670 0.670 0.670

M (2) 0.382 0.589 0.745 0.745

M (3) 0.299 0.459 0.642 0.785

(b) Precision

describes the expected process behavior. This behavior can be described by the
set of traces M = {〈s, a, v ,n〉, 〈s, c,n〉}, which contains the two traces that the
model supports.1

Suppose that the corresponding event log L contains only one trace t =
〈s, a, n〉. Then, the model and log have no common traces, i.e., M ∩ L = ∅.
Consequently, precision and recall measures founded on the exact matching of
traces, e.g., the entropy-based approach presented in [21], are equal to zero,
suggesting no similarity between the behaviors of the model and log. Despite
different, the traces in M and L show some similarity. For example, it holds that
t and traces in M contain subtrace 〈s, n〉.

The partial matching approach from [19] addresses the above issue by com-
paring collections of diluted traces. For example, the diluted versions of L and
M are {〈s, a, n〉, 〈s, a〉, 〈s, n〉, 〈a, n〉, 〈s〉, 〈a〉, 〈n〉, 〈〉} and {〈s, a, v, n〉, 〈a,
v, n〉, 〈s, v, n〉, 〈s, a, n〉, 〈s, a, v〉, 〈s, c, n〉, 〈v, n〉, 〈a, n〉, 〈a, v〉, 〈s, n〉, 〈s,
v〉, 〈s, a〉, 〈s, c〉, 〈c, n〉, 〈s〉, 〈a〉, 〈v〉, 〈n〉, 〈c〉, 〈〉}, where 〈〉 is the empty trace.
We denote the former set and the latter set as L∞ and M∞, respectively. The
diluted traces can be used to identify commonalities and discrepancies between
the original traces. For example, it holds that 〈s, n〉 ∈ L∞ ∩ M∞ and 〈s, c,
n〉 ∈ M∞ \ L∞. The partial matching precision and recall measures between
a model and log quantify the commonalities and discrepancies in their diluted
traces. Since L∞ ⊂ M∞, such diluted recall is equal to 1.0, suggesting that the
model allows for the behavior seen in the log perfectly. As M∞ �⊆ L∞, such
diluted precision is not perfect. The particular precision value obtained using
the technique from [19] is 0.785; note that the absolute value is of less interest
here as these are the relations between the measurements that allow comparing
different behaviors.2

The above examples highlight the limitations of the two extreme approaches
mentioned in the Introduction. The approach founded on the exact matching

1 We use short task names to specify traces, while the corresponding full names are
in Fig. 1.

2 In general, precision and recall measure of one suggest perfect conformance, while
the values of zero suggest no behavioral similarities between the compared model
and log.
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of traces overlooks the existing partial commonalities in traces, while the app-
roach that relies on the arbitrary skips of tasks in traces misses to identify the
discrepancies, cf. recall of 1.0.

Consider two sets L(1) and M (1) with all the traces constructed from the
traces in L and M , respectively, by skipping at most one task in a trace from the
original set, i.e., L(1) = {〈s, a, n〉, 〈a, n〉, 〈s, n〉, 〈s, a〉} and M (1) = {〈s, a, v, n〉,
〈a, v, n〉, 〈s, v, n〉, 〈s, a, n〉, 〈s, a, v〉, 〈s, c, n〉, 〈c,n〉, 〈s, n〉, 〈s, c〉}. It holds that
L(1)∩M (1) = {〈s, a, n〉, 〈s, n〉}, L(1) \M (1) �= ∅, and M (1) \L(1) �= ∅. Hence, sets
L(1) and M (1) contain information about commonalities and discrepancies of log
and model. The entropy-based recall and precision computed based on the traces
in L(1) and M (1) are equal to 0.793 and 0.670, respectively, and, thus, confirm
that the behaviors are neither completely different, nor are in the subsumption
relation. Again, the absolute values of precision and recall are irrelevant, as they
indeed satisfy the monotonicity properties discussed later. Importantly, these
measure neither suggest perfect match nor the complete dissimilarity of the
compared behaviors.

Tables 1a and b demonstrate the spectrum of precision and recall values cal-
culated for the traces in L and M . Given a set of traces X, by X(k), k ∈ N0,
we denote the set of all traces obtained from the traces in X by skipping up to
k arbitrary tasks in the original traces. Thus, it holds that M (0) = M and
L(0) = L. For this example, it also holds that M (m) = M∞ and L(m) = M∞,
where m ≥ 3.

Note that the recall values do not decrease when more skips are allowed in
the model traces, i.e., recall (k ,m)(M,L) ≤ recall (k+1 ,m)(M,L), k,m ∈ N0; here,
k and m refer to the numbers of allowed skips in M and L, respectively, used to
compute the conformance values (refer to Sect. 4 for details). Indeed, by extending
the behavior of the model more, we can use it to cover more of the traces in the log.
On the other hand, precision values do not decrease when more skips are allowed
in the log traces, i.e., prec(k ,m)(M,L) ≤ prec(k ,m+1)(M,L), k,m ∈ N0, as by
extending the behavior of the log we can use it to cover more behavior of the model.
These properties of precision and recall measures are formally proved in Sect. 4.3.

3 Basic Notions

This section introduces basic notions and definitions used in the remainder of
the paper.

3.1 Sequences, Languages, and Event Logs

Let X be a set of elements. The power set of X, denoted as P(X), is the set of
all subsets of X. By 〈x1, x2, . . . , xk〉, where x1, x2, . . . , xk ∈ X, k ∈ N, we denote
a sequence of elements from X of length k. The empty sequence of zero length
is represented by 〈〉. By X∗, we denote the set of all finite sequences over X. A
concatenation of two sequences 〈x1, x2, . . . , xk〉 and 〈y1, y2, . . . , yl〉 is denoted by
〈x1, x2, . . . , xk〉 · 〈y1, y2, . . . , yl〉 and is the sequence 〈x1, x2, . . . , xk, y1, y2, . . . , yl〉.
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Given a sequence x and a set K, by x|K , we denote a sequence obtained from
x by removing all elements of x that are not members of K without changing the
order of the remaining elements, e.g., it holds that 〈a, c, b, a, d, c〉|{c,d} = 〈c, d, c〉.

An alphabet is any nonempty finite set. The elements of an alphabet are
its labels. A language L over an alphabet Σ is a (not necessarily finite) set of
sequences, or words, of labels from Σ, i.e., L ⊆ Σ∗. By Cn(L), we denote the
set of all words in L of length n. By Ξ, we denote a universe of all possible
observable labels, while τ , τ /∈ Ξ, denotes a special silent label. Let L1 and L2

be two languages. Then, their concatenation is the language L = {l1 · l2 | l1 ∈
L1, l2 ∈ L2}, denoted by L1 ◦L2. Given a language L, L∗ is the language defined
by

⋃∞
n=0 Ln, where L0 = {〈〉}, Ln = Ln−1 ◦ L.

Let E be a finite nonempty set of tasks, or events. A finite language L ⊂ E∗

is an event log and its words are called traces [2].

3.2 Finite Automata

A nondeterministic finite automaton (NFA) is a 5-tuple (Q,Λ, δ, q0, A), where Q
is a finite nonempty set of states, Λ ⊆ Ξ is a set of labels, δ : Q × (Λ ∪ {τ}) →
P(Q) is the transition function, q0 ∈ Q is the start state, and A ⊆ Q is the set
of accept states.

An NFA induces a collection of computations. A computation of an NFA B =
(Q,Λ, δ, q0, A) is either the empty word or a word σ = 〈a1, . . . , an〉, n ∈ N, where
ai ∈ Λ ∪ {τ}, i ∈ [1 .. n], and exists a sequence of states 〈q0, q1, . . . , qn〉, such that
for every k ∈ [1 .. n] it holds that qk ∈ δ(qk−1, ak). We say that σ leads from q0 to
qn. By convention, the empty word leads to the start state. NFA B accepts a word
w ∈ Λ∗ iff exists a computation σ ∈ (Λ ∪ {τ})∗ that leads to one of its accept
states and it holds that w = σ|Λ. The language of B is denoted by lang(B) and is
the set of all words B accepts. We also say that B recognizes lang(B).

A deterministic finite automaton (DFA) is an NFA (Q,Λ, δ, q0, A), where
for every q ∈ Q it holds that δ(q, τ) = ∅, and for every q ∈ Q and every
a ∈ Λ, |δ(q, a)| ≤ 1. For a language L recognized by an NFA, exists a DFA that
recognizes L [12].
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(a) A DFA that recognizes M .
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(b) A DFA that recognizes L.

Fig. 2. Two DFAs that recognize languages M and L.

Figures 2a and b present DFAs that recognize, respectively, languages M and
L discussed in Sect. 2. States are shown as circles, start states are marked with
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incoming arrows, transitions are encoded as arcs, and accept states are shown
with double border.

A DFA (Q,Λ, δ, q0, A) is ergodic if its underlying graph is strongly irreducible,
i.e., for all (q, p) ∈ Q × Q, q �= p, there is a sequence of states 〈q1, . . . , qn〉 ∈ Q∗,
n ∈ N, such that q1 = q, qn = p, and for every k ∈ [1 .. n − 1] there exists λ ∈ Λ
such that qk+1 ∈ δ(qk, λ). A language L is regular iff there exists a DFA that
recognizes L. A regular language L is irreducible iff it is a language of an ergodic
DFA [6].

3.3 Topological Entropy

Let Σ be an alphabet and let L ⊆ Σ∗ be an irreducible language over Σ. The
topological entropy of L, which estimates the cardinality of L by measuring the
ratio of the number of distinct words in L to the length of these words, is given
below [6]:

ent(L) = lim sup
n→∞

log |Cn(L)|
n

. (1)

The languages recognized by automata and event logs are regular ; note that
an event log can be encoded as a DFA, cf. Fig. 2b. But, not all such languages

Fig. 3. A DFA that recognizes
language (M ◦ {〈χ〉})∗ ◦ M .

are irreducible. Given a regular language L,
in [21], the authors proposed to compute the
short-circuit topological entropy of L, denoted
by ent•(L), as the topological entropy of the
irreducible language (L ◦ {〈χ〉})∗ ◦ L, χ /∈ Σ,
i.e., ent•(L) = ent((L ◦ {〈χ〉})∗ ◦ L). Note that
one can always construct a DFA that recognizes
(L ◦ {〈χ〉})∗ ◦ L from a DFA B that recognizes

L by adding fresh transitions in B that are labeled with χ and connect the
accept states of B with its start state. For example, the short-circuit topological
entropy of the language recognized by the automaton in Fig. 2a is equal to the
topological entropy of the language recognized by the automaton in Fig. 3.3

Finally, this result follows immediately from the definition of the short-circuit
topological entropy and Lemma 4.7 in [21]:

Corollary 3.1 (Topological entropy). Let L1 and L2 be two regular lan-
guages.

1. If L1 = L2, then ent•(L1) = ent•(L2);
2. If L1 ⊂ L2, then ent•(L1) < ent•(L2).

4 Comparing Designed and Observed Processes

This section describes existing entropy-based conformance checking techniques
and proposes a new approach that can control the number of skipped tasks.
3 The topological entropy of an ergodic DFA is given by the logarithm of the Perron-

Frobenius eigenvalue of its adjacency matrix [6].
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4.1 Existing Entropy-Based Conformance Checking Techniques

Conformance checking techniques [5] measure the discrepancies and commonali-
ties between the behaviors described in process models and event logs. Precision
estimates the share of the common model and log behavior with respect to the
overall model behavior, while recall assesses the share of the log behavior cap-
tured by the model.

The exact matching conformance checking approach for measuring precision
and recall proposed in [21] relates two regular languages of a process model (M)
and event log (L) with their intersection; note that the intersection of M and L
is also a regular language [12]. The measurements of the behaviors encoded in
these languages are carried out using the short-circuit topological entropy. The
entropy-based precision (prec) and recall (recall) values between the model and
log are then defined as shown below [21]:

prec(M,L) = ent•(M∩L)
ent•(M) , recall(M,L) = ent•(M∩L)

ent•(L) .

As follows from Corollary 3.1, for any two regular languages M and L, it holds
that prec(M,L) and recall(M,L) values belong to the interval [0, 1]. In contrast
to other conformance checking techniques, this approach is trace monotone [23],
i.e., the higher the share of the model traces that are presented in the log, the
higher the precision value, and similarly, the higher the share of the log traces
that are captured by the model, the higher the recall value. As shown in Sect. 2,
this approach can be too restrictive and in case M ∩ L = ∅, prec(M,L) =
recall(M,L) = 0.

The partial matching precision and recall measures described in [19] compare
regular languages that allow for arbitrary skips within the model and log behav-
iors. First, for regular languages M and L that encode the model behavior and
the log behavior, respectively, M∞ and L∞ are constructed. NFAs that recognize
languages M∞ and L∞ for the example behaviors discussed in Sect. 2 are shown
in Fig. 4. Then, these NFAs are converted to equivalent DFAs [12] and, finally,
the precision and recall values for these “diluted” languages are calculated:

prec(∞,∞)(M,L) = ent•(M∞∩L∞)
ent•(M∞) , recall (∞,∞)(M,L) = ent•(M∞∩L∞)

ent•(L∞) .

Such conformance checking technique assesses the share of the common log
and model behavior, including all the shared subtraces. In contrast to the origi-
nal exact matching approach, the partial matching technique is not restrictive.
Moreover, it “dilutes” the initial languages by adding extra behavior that, in
some cases, results in too many matches, which hampers analysis. Recall that
for the languages discussed in Sect. 2, it holds that recall (∞,∞)(M,L) = 1.0, as
L∞ ⊂ M∞, while recall(M,L) = 0.0, because M and L do not have common
traces, i.e., M ∩ L = ∅.
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Fig. 4. Two NFAs that recognize languages M∞ and L∞ discussed in Sect. 2.

4.2 k-Skips Conformance Checking

The primary task of the proposed technique is to assess the log and the model
similarities assuming that some predefined numbers of steps can be skipped.
Suppose the event log contains traces with additional steps not presented within
the original model. In that case, this approach can still consider these traces,
because a limited number of skips within the log is allowed. Similarly, the behav-
ior of the model with a controlled number of skips can match some of the event
log traces that skip the model’s tasks.

Let M and L be two regular languages capturing the behavior of a process
model and event log, respectively. Suppose that M (l) and L(k), where l, k ∈ N0,
are languages obtained from M and L by allowing up to l and k skips in the
original traces of M and L. Then, we define the precision and recall measures
for these allowed skips as follows:

prec(l,k)(M,L) = ent•(M(l)∩L(k))
ent•(M(l))

, recall (l,k)(M,L) = ent•(M(l)∩L(k))
ent•(L(k))

.

Again, according to Corollary 3.1, these precision and recall values belong to
the interval [0, 1]. While the entropy calculation techniques [6,21] and the set
operations over regular languages [12] are well-defined, we still need to build
M (l) and L(k) languages. Without loss of generality, we consider language L(k)

and define it constructively using Algorithm1 by building a DFA that recognizes
L(k).

Firstly, this algorithm constructs an NFA BNFA that recognizes language
L(k). To that end, k + 1 copies of the DFA that recognizes L and referred to as
layers are added to the NFA (Lines 1 and 5). The start state of BNFA is the
start state of the first layer (Layer 0). The transition function δ is considered as
a relation (a set of pairs) in this algorithm. As suggested in Line 10, for each
transition (qi−1, a) of Layer i − 1, a transition (qi−1, τ) leading to the only state
in the set δ(qi, a), where qi−1 and qi are copies of the same state at Layers i − 1
and i, respectively, is added.

The NFA constructed by Algorithm 1 for the language M (2), where M is the
language discussed in Sect. 2, is presented in Fig. 5a. This automaton contains
three layers connected by additional transitions labeled by τ . The layers of BNFA
correspond to the number of skips made. For instance, visiting a state at Layer 1
means that one skip has been made in the computation and, hence, it is still
possible to make one more skip by visiting a state at Layer 2.



346 A. Kalenkova and A. Polyvyanyy

Once the NFA has been constructed, it is converted to an equivalent DFA
using the approach from [12] (Line 14). Figure 5b shows the minimal DFA con-
structed from the NFA in Fig. 5a. The states of this DFA correspond to sets of
the NFA states, i.e., S0 = {A, B′, C ′′, D′′}, S1 = {D, D′, E′, E′′}, S2 = {E, E′,
E′′}, S3 = {C ′,D′′}, S4 = {D′′}, S5 = {B,C ′,D′,D′′,E′′}, and S6 = {C,D′,E′′}.
NFA states A′, A′′, and B′′ (highlighted in gray in Fig. 5a) are dead, because
they cannot be reached from the start state A and, thus, are not represented in
the resulting DFA.

Algorithm 1: Construct a DFA that recognizes language L(k)

Input: A DFA B0 = (Q0, Λ, δ0, q00 , A
0) that recognizes language L and k ∈ N.

Output: A DFA BDFA that recognizes language L(k).

1 Q ← Q0; δ ← δ0; q0 ← q00 ; A ← A0;
2 BNFA ← (Q, Λ, δ, q0, A); /* Initialize an NFA BNFA */

3 for i ← 1 to k do
4 Qi ← Q0; δi ← δ0; Ai ← A0; /* Clone states and transitions */

5 Q ← Q ∪ Qi; δ ← δ ∪ δi; A ← A ∪ Ai; /* Add next layer */

6 /* Connect layers */

7 foreach qi−1 ∈ Qi−1, a ∈ Λ do
8 if δ(qi−1, a) �= ∅ then
9 /* qi−1, qi are copies of the same state from Q0 */

10 δ ← δ ∪ {((qi−1, τ), δ(qi, a))};

11 end

12 end

13 end
14 BDFA ← Determinize(BNFA);
15 return BDFA;

4.3 Formal Properties

According to Algorithm 1, for any regular language L, it holds that L(0) = L,
and for any k ≥ 1, by construction, it holds that L(k−1) ⊆ L(k). From the
monotonicity of ent• measure, refer to Corollary 3.1, it holds that ent•(L(k−1)) ≤
ent•(L(k)), for any k ≥ 1. This leads to the following two propositions.

Proposition 4.1. Let M and L be two regular languages.
Then, it holds that prec(l,k)(M,L) ≤ prec(l,k+1)(M,L), where l, k ∈ N0.

Proof. By definition, it holds that prec(l,k)(M,L) = ent•(M(l)∩L(k))/ent•(M(l)) and
prec(l,k+1)(M,L) = ent•(M(l)∩L(k+1))/ent•(M(l)). Since it holds that (M (l)∩L(k)) ⊆
(M (l) ∩ L(k+1)), then ent•(M(l)∩L(k))/ent•(M(l)) ≤ ent•(M(l)∩L(k+1))/ent•(M(l)). ��

Proposition 4.2. Let M and L be two regular languages.
Then, it holds that recall (l,k)(M,L) ≤ recall (l+1 ,k)(M,L), where l, k ∈ N0
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Fig. 5. Two automata that recognize languages M (2) and L(2).

The proof of Proposition 4.2 is similar to that one of Proposition 4.1.
Propositions 4.1 and 4.2 confirm the monotonicity of the k-skips measures.

The next result states that the k-skips measures tend to the partial measure
extreme as k approaches the infinity.

Theorem 4.1. Let L be a regular language over Σ.
Then, it holds that lim

k→∞
ent•(L(k)) = ent•(L∞).

Proof. By definition, limit superior of {log |Cn((L
∞◦{〈χ〉})∗◦L∞)|/n}, χ /∈ Σ, when

n tends to ∞, is equal to ent•(L∞). Let xn = log |Cn((L
∞◦{〈χ〉})∗◦L∞)|/n. Suppose

that {xnl
}∞

l=1, where n1 < n2 < . . . , is a subsequence, such that xnl
→ ent•(L∞),

as l → ∞. By the definition of limit, ∀ ε > 0∃N(ε) ∀ l ≥ N , where N is a
number that depends on ε, it holds that |xnl

− ent•(L∞)| < ε. Consider a large
enough K(l) such that ∀ k > K, |Cnl

((L(k) ◦ {〈χ〉})∗ ◦ L(k))| = |Cnl
((L∞ ◦

{〈χ〉})∗ ◦ L∞)|. Let yk
n be a sequence log |Cn((L

(k)◦{〈χ〉})∗◦L(k))|/n. Then, ∀ ε >
0∃N(ε) ∀l ≥ N holds that ∃K(l), such that ∀k > K : |yk

nl
− ent•(L∞)| < ε.

Since yk
nl

→ ent•(L(k)), as l → ∞, it holds that ∀ε > 0∃K(ε), such that ∀k >

K : |ent•(L(k)) − ent•(L∞)| < ε. Therefore, lim
k→∞

ent•(L(k)) = ent•(L∞). ��

Similarly to Theorem 4.1, the following theorem can be formulated and proved.

Theorem 4.2. Let M and L be two regular languages over Σ. Then, it
holds that lim

k→∞
ent•(M (k)∩L) = ent•(M∞∩L) and lim

k→∞
ent•(M (k)∩L(k)) =

ent•(M∞∩L∞).

The next corollary follows immediately from Theorems 4.1 and 4.2.

Corollary 4.1. Let M and L be two regular languages over Σ. Then, it holds
that:
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– lim
k,l→∞

prec(l,k)(M,L) = prec(∞,∞)(M,L), lim
k,l→∞

recall (l,k)(M,L) = recall (∞,∞)(M,L);

– lim
l→∞

prec(l,k)(M,L) = prec(∞,k)(M,L), lim
l→∞

recall (l,k)(M,L) = recall (∞,k)(M,L); and
– lim

k→∞
prec(l,k)(M,L) = prec(l,∞)(M,L), lim

k→∞
recall (l,k)(M,L) = recall (l,∞)(M,L).

In practice, the results of Corollary 4.1 allow balancing smoothly between
the two extremes of the exact and partial measures. Starting with the exact
measurements when k = 0 and l = 0, we can gradually approach the partial
measurements by increasing parameters k and l. As discussed in [12], the number
of states can grow exponentially when an NFA is converted to a DFA that
recognizes the same language. The following theorem defines a condition under
which the number of states is polynomially bounded.

Theorem 4.3. Let B = (Q,Λ, δ, q0, A) be a DFA and let k ∈ N such that
lang(B) = L and for any symbol a ∈ Λ, any state q ∈ Q, and any two (possibly
empty) sequences of transitions of length less than or equal to k, one leading
from q to q′ ∈ Q and the other leading from q to q′′ ∈ Q and enabling a in q′ and
q′′, i.e., δ(q′, a) �= ∅ and δ(q′′, a) �= ∅, it holds that q′ = q′′. Then, there exists a
DFA Bk = (Qk, Λ, δk, qk

0 , Ak) such that lang(Bk) = L(k) and |Qk| ≤ (k+1) · |Q|.
Proof. Consider NFA BNFA constructed from B at lines 1–13 of Algorithm 1.
Let closure(q) denote the set of all states that can be reached from a state q
of BNFA via τ -transitions, including q. By induction, we prove that each state
of the resulting DFA Bk obtained by determinization [12] of BNFA is a closure
of one state from BNFA. Basis of induction: According to the determinization
algorithm [12], qk

0 = closure(q0), and hence, we say qk
0 corresponds to q0. Step of

induction: Let qk ∈ Qk be a closure of a state q̂1, i.e., qk = {q̂1, q̂2, q̂3, . . . , q̂m},
where q̂1, q̂2, q̂3, . . . , q̂m are some states of BNFA. By construction (see
Algorithm 1), states q̂1, q̂2, q̂3, . . . , q̂m may belong to different layers of the NFA
and for each state q̂i, i ∈ [1 ..m], there exists a (possibly empty) sequence of
τ -transitions with a maximum length of k leading from q̂1 to q̂i. Again, by
construction, states q̂1, q̂2, q̂3, . . . , q̂m correspond to some states q1, q2, q3, . . . , ql,
l ≤ m, of B and each sequence of τ -transitions with a maximum length of k in
the NFA corresponds to some sequence of transitions with a maximum length of
k in B. Suppose that for some q̂j , j ∈ [1 ..m], exists b ∈ Λ such that δ(q̂j , b) �= ∅;
transition δ(q̂j , b) corresponds to a DFA transition and can contain not more
than one NFA state. Let δ(q̂j , b) = {q̂∗}, where q̂∗ is a state of the NFA. Then,
for any q̂p, p ∈ [1 ..m], p �= j, it holds that δ(q̂, b) = ∅; otherwise, there is more
than one transition labeled by b within corresponding sequences of states belong-
ing to {q1, q2, q3, . . . , ql} in DFA B, and since the length of these sequences is less
or equal to k, we obtain a contradiction to the conditions of the theorem. Hence,
according to the determinization algorithm in [12], δk(qk, b) = closure(q̂∗), i.e.,
the next state of Bk is a closure of a state from BNFA. Thus, each state of
Bk corresponds to a closure of some state of BNFA. Since BNFA has at most
(k + 1) · |Q| states, it holds that |Qk| ≤ (k + 1) · |Q|. ��

This theorem proves that if the original DFA that recognizes language L
does not contain occurrences of the same symbol within k-length sequences of
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transitions, the size of the DFA recognizing language L(k) is bounded linearly
by the size of the NFA constructed by Algorithm1. Real-life logs and models
can contain task repetitions and this, as shown in [12], can potentially lead
to the state space explosion in DFAs modeling event log languages with skips.
However, as shown in the next section, such cases manifest rarely in practice
and pose practical limitations only for large values of k.

5 Evaluation

This section presents results of applying our approach to computing the spectrum
of entropy-based precision and recall measurements on the real-world event data.
All the experiments were carried out using Intel Xeon Gold 6154 CPU @3.00 GHz
with 128 GB RAM and can be reproduced with our publicly available tool [18].

To perform the experiments, we used logs of real-world IT-systems made
publicly available by the IEEE Task Force on Process Mining.4 Prior to the
analysis, we filtered out infrequent events that appear in less than 80% of traces
using the “filter log using simple heuristics” Process Mining (ProM) plug-in [9].
Hence, we used the same logs as in [19]. Table 2 summarizes characteristics of the
filtered logs by showing the total number of unique traces (# Traces), size of the
alphabet (# Ev. Classes), and the total number of event occurrences (# Events).
Next, we applied the Inductive miner [13] to automatically construct Petri nets
from the logs. For each Petri net, its reachability graph, represented as a DFA,
was constructed. The event logs were also encoded as DFAs. Finally, these DFAs
and Algorithm 1 were used to compute the precision and recall values presented
in Sect. 4.2 for different parameters.

Table 2. Characteristics of event logs.
No. Event log # Traces # Ev.

Classes

# Events

1 BPIC’12 2,320 18 164,144

2 BPIC’13 closed 111 3 5,179

3 BPIC’13 open 45 3 1,403

4 BPIC’13 incid. 832 4 44,607

5 WABO 1 709 64 25,823

6 WABO 2 449 85 20,420

7 WABO 3 756 56 28,482

8 WABO 4 580 61 21,848

9 WABO 5 704 68 29,513

Table 3 presents the numbers of
states in DFAs that encode the
behaviors of process models (M (k)),
event logs (L(k)), and their intersec-
tions (M (k)∩L(k)) for different val-
ues of k, k ∈ {0, 1, 2, 5, 10, 20,∞},
and the times (in milliseconds)
taken to construct the DFAs; we
used the technique from [19] to con-
struct DFAs with arbitrary skips
(k = ∞). If no DFA was con-
structed (using 128 GB of mem-
ory), the corresponding values are
not provided. The results show that the numbers of states and the times start
to grow as k increases (up to k of 5 for event logs 2 and 3, and k ∈ {10, 20} for
the other logs), and then drop. The non-linear growth of states with increasing
k (see, for example, event log 4 and the corresponding log DFAs for k = 5 and
k = 10) can be explained by the fact that for large k, events are more likely to
be repeated in k-length subsequences and, thus, Theorem 4.3 does not apply.
4 https://data.4tu.nl/repository/collection:event logs real.

https://data.4tu.nl/repository/collection:event_logs_real
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The decreases in the numbers of states relate to the cases when allowing too
much behavior leads to DFAs with less number of states; indeed, the fully per-
missive flower model that recognizes all possible traces over a given alphabet
contains only one state [2]. Note that all the results for parameters k ≤ 10
were computed and are suitable for practical applications. Indeed, the precision
and recall values computed for up to ten skips are sufficient for many practical
scenarios. Note also that all the (not shown in the table) eigenvalues of the cor-
responding adjacency matrices were computed fast, always under two minutes
and often within couple of seconds.

Table 4 presents (parts of) the corresponding spectrums of the precision and
recall values. Using such spectrums, one can smoothly balance between the two
extremes of the exact matching (k = 0) and the partial matching (k = ∞). Note
that the values also confirm the result of Theorem4.2, which states that prec(k,k)

and recall (k,k) approach prec(∞,∞) and recall (∞,∞) when k approaches infinity.

6 Related Work

Over the past decade, a plethora of conformance checking methods [5] have been
developed and proven to be effective in analyzing real-world process data. These
methods vary in types of process models and event logs being analyzed, as well
as in types of results being produced. Conformance checking techniques can
produce a single number assessing the behavioral similarities of process models
and event logs (quantitative conformance checking) or can provide rich diagnos-
tic information highlighting deviations in model and log behaviors (qualitative
conformance checking). In this paper, we develop and investigate a novel quan-
titative conformance checking technique.

Existing quantitative conformance checking techniques include such meth-
ods as Projected conformance checking [14], k-order Markovian abstractions [4],
Escaping edges [17], Set difference [11], Negative events [7], Anti-alignments [8],
and Entropy-based exact [21] and partial matching [19]. Several quantitative
stochastic conformance checking approaches have been recently proposed [15,
16,20]; these account for the relative likelihoods of traces described in models
and recorded in logs. Finally, methods that combine quantitative and qualitative
conformance checking techniques visualize the conformance diagnostics over the
process model and are based on alignment, token replay, or footprint matrices,
refer to [3,22], and [2], respectively.

In [23], the authors propose various properties that precision and recall
measures need to fulfill. Among precision and recall measures [2,3,7,8,11,
14,17,21,22,24] being analyzed in [23], only the entropy-based exact match-
ing [21] fulfills all the formal properties. The entropy-based exact and par-
tial matching techniques were also compared to other conformance checking
techniques [3,4,7,8,11,14,17] during a qualitative analysis provided in [19]. As
demonstrated in [19], the entropy-based methods [19,21] prove their applicabil-
ity to accurately rank models by their precision values in accordance with the
share of behavior not present in the analyzed event log. Although the existing
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Table 4. Precision and recall values.

Event log prec(k,k)/recall(k,k)

k = 0 k = 1 k = 2 k = 5 k = 10 k = 20 k = ∞
1 0.147/1.000 0.194/1.000 0.241/1.000 0.386/1.000 0.547/1.000 0.650/1.000 0.709/1.000

2 0.918/0.797 0.981/0.856 0.990/0.918 0.959/0.997 0.946/1.000 0.961/1.000 0.960/1.000

3 0.903/1.000 0.950/1.000 0.955/1.000 0.974/1.000 0.980/1.000 0.980/1.000 0.980/1.000

4 0.575/0.824 0.679/0.952 0.763/0.988 0.936/1.000 0.973/1.000 − 0.995/1.000

5 0.025/1.000 0.034/1.000 0.046/1.000 0.087/1.000 0.145/1.000 − −
6 0.016/0.991 0.023/0.979 0.031/0.877 0.072/0.830 0.791/1.000 − −
7 0.030/1.000 0.043/1.000 0.057/1.000 0.095/1.000 0.137/1.000 − 0.393/1.000

8 0.027/1.000 0.037/1.000 0.048/1.000 0.090/1.000 0.135/1.000 − −
9 0.020/1.000 0.025/0.861 0.032/0.386 0.083/1.000 0.859/1.000 − −

entropy-based measures have advantages over other conformance checking tech-
niques, they present two different extreme measures. The exact entropy-based
matching technique is too restrictive, while the partial entropy-based technique
substantially extends the log and the model behaviors prior to the comparison.
This paper presents an approach that gradually balances between these two
different measures.

7 Conclusion and Future Work

This paper proposes a spectrum of conformance measurements for finding devi-
ations between designed and observed processes. The new conformance values
inherit properties of the recently proposed entropy-based techniques and pro-
vide flexible control over the sensitivity for identifying differences in the com-
pared processes. We prove that with the new conformance measures, one can
smoothly balance between the two existing extreme entropy-based techniques.
Additionally, we analyzed the new methods’ performance characteristics and
showed their scalability for analyzing real-world event data. In future work, we
plan to extend the techniques by providing qualitative information on differ-
ences between designed and observed processes, including the identification and
visualization of deviations.
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Abstract. With the rapid prevalence of mobile devices and the dra-
matic proliferation of mobile applications (apps), app recommendation
becomes an emergent task that would benefit both app users and stock-
holders. How to effectively organize and make full use of rich side informa-
tion of users and apps is a key challenge to address the sparsity issue for
traditional approaches. To meet this challenge, we proposed a novel end-
to-end Knowledge Graph Convolutional Embedding Propagation Model
(KGEP) for app recommendation. Specifically, we first designed a knowl-
edge graph construction method to model the user and app side infor-
mation, then adopted KG embedding techniques to capture the factual
triplet-focused semantics of the side information related to the first-order
structure of the KG, and finally proposed a relation-weighted convolu-
tional embedding propagation model to capture the recommendation-
focused semantics related to high-order structure of the KG. Extensive
experiments conducted on a real-world dataset validate the effectiveness
of the proposed approach compared to the state-of-the-art recommenda-
tion approaches.

Keywords: Mobile app recommendation · Knowledge graph ·
Knowledge graph embedding · Graph convolutional network ·
Embedding propagation

1 Introduction

Recent years, people have witnessed a rapid prevalence of smart mobile devices
and a dramatic proliferation of mobile applications. The large number and high
variety of apps are posing a great challenge for users to choose appropriate ones.
As a consequence, app recommendation has attracted more and more attention
these years. On the one hand, it can help users find their desired or interested
apps more easily and quickly. On the other hand, it will benefit developers and
stockholders of apps to get more profits in the mobile app ecosystem.
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However, sparsity is a typical characteristic of app usage data. For instance,
as of May 2020, there are over 2.9 million apps on Google Play [1], but most
of billions of users only install at most hundreds of apps. To address the spar-
sity problem of user-app interactions, researchers usually turn to feature-rich
scenarios, where side information of users and apps is used to compensate for
the sparsity and improve the performance of recommendation. As detailed in
Sect. 5, most of them [2–10] only exploited limited types of side information.
In addition, they usually treated different kinds of side information as isolated
features of users and apps, and neglected the relations and semantics of them.
Consequently, how to effectively organize and make full use of side information
of users and apps is a great challenge to make successful app recommendation.

To meet the above challenge, we proposed a KG based app recommendation
approach. A KG is a type of directed heterogeneous graph in which nodes cor-
respond to entities and edges correspond to relations [11]. Among various types
of side information, the KG contains much more fruitful facts and introduces
semantic relatedness among apps, which can help find their latent connections.
Beyond that, the KG consists of relations with various types, which is help-
ful for exploring a user’s interests reasonably. To be specific, we proposed a
KG convolutional embedding propagation model (KGEP) for app recommenda-
tion. First, a KG construction method is designed to organize different kinds of
side information effectively. Then, a translation based KG embedding model is
adopted to capture the general semantics of side information from the perspective
of general KG facts. Finally, a relation-weighted KG convolutional embedding
propagation model is designed to further capture the recommendation-focused
semantics from the perspective of recommendation. We evaluated the proposed
model on a real dataset crawled from Google Play. The experimental results
verify the effectiveness of our method for app recommendation when compared
to the state-of-the-art methods.

The major contributions of this paper are summarized as follows.

1. It is the first work, to the best of our knowledge, that incorporates a KG
to organize and take full advantage of diverse side information for app
recommendation.

2. We proposed a novel end-to-end app recommendation model KGEP, which
can capture the semantics of rich side information related to both the first-
order and high-order structures of the constructed KG, by utilizing KG gen-
eral embedding techniques and convolutional propagated embedding tech-
niques respectively.

3. We conducted extensive experiments using a real app dataset. The compara-
tive results demonstrate that our approach achieves higher performance com-
pared to the state-of-the-art recommendation methods.

The remainder of this paper is organized as follows. Section 2 formulates the
app recommendation problem. Section 3 presents the proposed model in detail.
Section 4 discusses the experimental results. Section 5 introduces related works.
Finally, we concluded the paper and indicated some future directions in Sect. 6.
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2 Notations and Problem Formulation

The app recommendation scenario contains a set of users U = {u1, u2, . . . , u|U|},
a set of apps A = {a1, a2, . . . , a|A|}, and their historical interactions. In addi-
tion, we have rich side information for users and apps (e.g., app attributes and
description texts). Typically, such auxiliary data consists of real-world entities
and relationships among them to profile a user or an app. We organized the side
information in the form of KG.

App Recommendation Knowledge Graph (ARKG), denoted as G, is a
directed graph composed of entity-relation-entity triples (h, r, t), where h ∈ E ,
r ∈ R and t ∈ E are the head, relation, and tail of a knowledge factual triple,
and E and R are the set of entities and relations in G, respectively. For example,
the triple (Facebook, OfferedBy, Facebook) states the fact that the company
“Facebook” offers the app “Facebook”. According to the side information which
we can crawl and their importance for recommendation, we defined the following
13 types of entities for the ARKG.

Definition 1 (Content-Topic Entity). Considering Readme texts of apps
provided by developers contain rich app profiles and are crucial to the efficacy
of the ARKG to do recommendation, We used probabilistic topic modeling to
incorporate them into the ARKG. A Content-Topic entity is a distribution over
terms, which can be used to explore users’ preference on specific topics. The
number of Content-Topic entities involved in the ARKG is a hyperparameter
and can be configured by recommender service users.

Due to space limitations, the definitions of the other 12 types of enti-
ties (i.e., User, App, Category, Provider, Popularity, Age-Restriction, Ads, Fee,
Interactive-Elements, Quality, Updated-Time, Size) involved in the ARKG are
not listed any more. Based on these kinds of entities, 18 relations were defined
for the ARKG, the detailed information of which is listed in Table 1.

The relation INTERACT denotes historical user-app interactions. The next
11 relations denote that an app has some specific profiles. The last 6 relations
denote that one entity is similar to another with the same entity type. Based on
the above definitions, how to extract factual triplets and construct the ARKG
will be presented in Sect. 3.1.

We formulated the KG-based app recommendation problem as follows. Given
the sets of users and apps, and their side information, we aim to construct an
ARKG G. Then taking G as an input, we aimed to predict whether user u has
a potential interest in app a with which she has had no interaction before. Our
task can be formulated to learn a prediction function ŷu

a = F(u, a|θ, G), where
ŷu
a denotes the probability that user u will engage with app a, and θ denotes the

model parameters of function F .

3 Methodology

The framework of our app recommendation model KGEP was presented in Fig. 1,
which consists of four main components: 1) ARKG constructing, which aims to
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Table 1. Relations involved in the ARKG

Relation Head entity Tail entity Related side information

INTERACT User App User-app interaction data

HAVINGCT App Content-Topic Apps’ Readme texts

HAVINGC App Category Apps’ category data

OFFEREDBY App Provider Apps’ provider data

CONTENTR App Age-Restriction Apps’ content rating data

HAVINGA App Ads No ads or not of an app

HAVINGF App Fee Free or not of an app

HAVINGIE App Interactive-Elements Apps’ interactive-elements data

HAVINGQ App Quality Users’ review grades of apps

HAVINGP App Popularity Apps’ install numbers

HAVINGUT App Updated-Time Apps’ updated time

HAVINGS App Size Apps’ size data

USIMILAR User User User-app rating matrix

CTSIMILAR Content-Topic Content-Topic Content-Topic entity data

QSIMILAR Quality Quality Quality entity data

PSIMILAR Popularity Popularity Popularity entity data

UTSIMILAR Updated-Time Updated-Time Updated-Time entity data

SSIMILAR Size Size Size entity data

construct an ARKG for app recommendation; 2) general KG embedding, which
parameterizes each entity or relation as two vectors by preserving the semantic
relatedness among the ARKG; 3) recommendation focused convolutional embed-
ding propagation, which recursively propagates embeddings from a node’s tail
neighbors to update its representation; 4) prediction and learning, which out-
puts the predicted matching scores by the final representations of users and apps,
and learns the model parameters. We presented them in detail in the following
subsections respectively.

3.1 ARKG Construction

ARKG construction mainly involves 2 sub-tasks, i.e., entity identification and
relation extraction.

Entity Identification. Except Content-Topic entities, the other kinds of enti-
ties listed in the above section can be explicitly identified from the side infor-
mation of users and apps. So we just described the identification method of
Content-Topic entities here.

We adopted an LDA model to identify Content-Topic entities. Its basic idea
is that documents are represented as random mixtures over latent topics, where
each topic is characterized by a distribution over words. The process of Content-
Topic entity identification can be summarized as follows.



KG Based Mobile App Recommendation 359

Fig. 1. Framework of the proposed Model KGEP

1. Text preprocessing and hyperparameter setting. Taking the Readme
text of each app as a document, we can get a corpus, i.e., a collection of |A|
documents. We first preprocessed the corpus, i.e., conducting tokenization,
stop words removing, stemming, lemmatization and typo corrections. NLTK
and Spacy packages of Python were used for these tasks. Then, we set the
number of topics and other hyperparameters.

2. LDA model learning. Given a preprocessed corpus of documents, we used
variational EM algorithm to estimate parameters in LDA model. Then for
each app a, let Z = z1, z2, . . . , zK be the set of latent topics, we can obtain
the parameters θa = θa1, θa2, . . . , θaK of its Dirichlet distribution over Z.

3. Content-Topic entity identifying. For each app a, given its inferred
Dirichlet distribution parameters θa = θa1, θa2, . . . , θaK over Z, it is defined
that app a has Content-Topic zk if and only if !∃θai|θai > θak, (1 ≤ i ≤ K).
Namely, an app has one and only Content-Topic entity.

Relation Extraction. Due to space limitations, we only detailed the triplet
extraction methods for relations CTSIMILAR and USIMILAR, which are more
complex than the methods for other relations.

The relation CTSIMILAR represents the similarity among Content-Topic
entities in the ARKG. Let W = {w1, w2, . . . , wV } be the set of words and Z =
{z1, z2, . . . , zK} be the set of latent topics, we can get the probability distribution
Φk = {φk1, φk2, . . . , φkV } of each topic zk(1 ≤ k ≤ K) over W using variational
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EM algorithm. Then, for any two Content-Topic entities zi and zj , we used
Hellinger distance to measure their similarity.

similarity ct(zi, zj) =
1√
2

√
√
√
√

V∑

l=1

(
√

φil − √

φjl)2 (1)

Given the Content-Topic-Similarity threshold cts(0 < cts < 1), there will be
a relation (zi, CTSIMILAR, zj) if similarity ct(zi, zj) ≥ cts.

The relation USIMILAR represents the similarity among User entities. We
used a user-app rating matrix to extract this kind of relations. For typical app
recommendation scenario, a user can rate an app from “1 star” to “5 star”, where
we transformed the rating grades from 0.2 to 1.0, and “none rating” to 0. Then,
for each user ui(1 ≤ i ≤ |U|), we can get a rating vector ri = {ri1, ri2, . . . , ri|A|}.
The similarity between any two users ui and uj are modeled as their Tanimoto
coefficient.

similarity u(ui, uj) =
ri · rj

‖ri‖2 + ‖rj‖2 − ri · rj

=
∑|A|

l=1 rilrjl
∑|A|

l=1 r2il +
∑|A|

l=1 r2jl − ∑|A|
l=1 rilrjl

(2)

Given the User-Similarity threshold us(0 < us < 1), we can extract a triplet
(ui, USIMILAR, uj) if similarity u (ui, uj) ≥ us for ui and uj .

3.2 General KG Embedding

General KG embedding was then performed on the constructed ARKG to embed
its entities and relations into continuous vector spaces, while preserving its inher-
ent structure. For the ARKG mainly consists of N-to-1 and N to N relations, we
employed TransD [12], which is suitable for dealing with such complex relations
and at the same time has relatively high efficiency, to embed the ARKG.

To be more specific, for each triplet (h, r, t) in the ARKG, it learns two vec-
tors for the head entity h, tail entity t and relation r respectively, denoted as h,
hp, t, tp, r and rp, where h,hp, t, tp ∈ R

m and r, rp ∈ R
n. We set the hyper-

parameters m = n = d for the convenience of the learned vectors’ application
in recommendation. The prior vectors h, t and r represent the meaning of the
entities and relation. The other ones (i.e., hp, tp, rp) are called projection vectors
representing the way that how to project the entity embeddings h and t into
the relation vector r’s space. Specifically, they were used to construct mapping
matrices, which are defined as follows.

Mrh = rph�
p + Id×d

Mrt = rpt�
p + Id×d

(3)
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where Mrh, Mrh ∈ R
d×d are mapping matrices, and I denotes the identity

matrix of size d × d. With the mapping matrices, the projected vectors of h and
t are defined as follows.

h⊥ = Mrhh, t⊥ = Mrth (4)

To learn embeddings of each entity and relation by optimizing the translation
principle h⊥ + r ≈ t⊥, the plausibility score (aka energy score) of a given triplet
(h, r, t) was formulated as follows.

g(h, r, t) = −‖h⊥ + r − t⊥‖22 (5)

where a higher score of g(h, r, t) suggests that the triplet is more likely to be
true, and vice versa.

The training of TransD uses the following margin-based ranking loss to
encourage discrimination between golden triplets and incorrect ones.

LKG =
∑

(h,r,t)∈S

∑

(h′,r,t′)∈S′
max

(

0, γ + g(h′, r, t′) − g(h, r, t)
)

(6)

where max(x, y) aims to get the maximum between x and y, γ is the margin,
S = {(h, r, t)} is the set of golden triples contained in the ARKG. Corrupting
each golden triplet (h, r, t) ∈ S by replacing the head entity or the tail entity,
the set of negative triples S′ = {(h′, r, t′)} can be generated. The process of
minimizing the above objective was carried out with stochastic gradient descent
(SGD) in mini-batch mode.

This component embeds the entities and relations on the granularity of
triples. After getting its outputs, we can use them to make app recommendation
directly and roughly by Eq. 5.

3.3 Convolutional Embedding Propagation

Next, focused on app recommendation, we built upon the architecture of graph
convolution network to further capture both high-order structure and seman-
tic information in the ARKG to make more precise recommendation. Here we
started by describing a single layer, and then discussed how to generalize it to
multiple layers. As illustrated in Fig. 2 (a), one single layer mainly involves 2
steps: 1) for each entity, aggregating information from its neighbors to form its
neighbors’ aggregated vector; 2) integrating with its own current latent vector
to update its embedding for the next layer.

Aggregating Information from Neighbours. In the real ARKG, head enti-
ties are causally determined by tail entities (e.g. the apps should be profiled by
their attributes, and users’ preference should be influenced by apps). So infor-
mation is aggregated from tail entities to head entities in our model. In addition,
to characterize both semantic information of the ARKG and users’ personalized
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Fig. 2. Illustration of our convolutional embedding propagation approach. (a) an exam-
ple of how an entity aggregates information from its neighbours. (b) an example of how
the model propagates information between two layers. (Color figure online)

interests in relations, neighbours are weighted dependent on the connecting rela-
tion and specific user while calculating the neighbours’ aggregated vector for a
given entity. Specifically, given a user u and a node v in the ARKG (G), we
use Nv = {(h, r, t)|(h = v) ∧ (h, r, t) ∈ G} to denote the set of triplets where v
is the head entity. Then the neighbours’ aggregated vector of v specific to u is
computed as follows.

vNv
u =

∑

(h,r,t)∈Nv

wr
ut (7)

where t ∈ R
d is the vector of tail entity t, and wr

u is the weight between user u
and relation r, which characterizes the importance of relation r to user u and
be computed as follows.

wr
u =

exp(π(u, r))
∑

(h,r,t)∈Nv
exp(π(u, r))

(8)

where u ∈ R
d and r ∈ R

d are the embeddings of user u and relation r. π :
R

d ×R
d → R

d is a weight score function (e.g.., we adopted inner product in this
paper).

Generally, vNv
u not only characterizes the local proximity structure of node

v, but also exploits the personalized interests of user u in relations.

Updating Embeddings for the Next Layer. To update the embedding of
each node v as its representation in the next layer, we concatenated its cur-
rent representation vu with its neighbours’ aggregated vector vNv

u , and fed this
concatenated vector through a fully connected layer with nonlinear activation
function σ to transform it to the new representation of v. It can be formulated as:

v′
u = σ

(

W · (vu‖vNv
u ) + b

)

(9)
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where v′
u (i.e., the output of this layer) is the new representation of node v

specific to user u, and W and b are transformation weight and bias, respectively.
“‖” denotes the concatenation operation.

Note that not all entities are updated because some of them in the ARKG
have no tail neighbours.

Information Propagating Among Layers. Through a single layer, we can
capture 2-order entity connectivity, taking the general KG embedding as the
1-order connectivity. However, exploiting higher-order connectivity is of impor-
tance to perform high-quality recommendation. It is intuitive to propagate infor-
mation between different layers to capture higher-order structural proximity
among entities. As illustrated in Fig. 2(b), given the brown entity, its embed-
ding is updated by aggregating information from its neighbours (i.e., the green
nodes), while the embeddings of the green nodes are updated by aggregating
information from their neighbours (i.e., the blue ones).

More formally, we stacked K − 1 propagation layers and used Eq. 9 to prop-
agate embeddings along higher-order connectivity. For notational convenience,
we denoted the representation of node v specific to user u at depth k−1 as v(k)

u .
Generally speaking, v(k)

u is a mixture of initial representations of node v and its
neighbors up to k hops away.

3.4 Model Prediction and Learning

After performing K − 1 layers, we obtained the final representation v(K)
u of

node v specific to user u, which characterizes v’s high-order entity dependencies
up to K hops and captures u’s potential long-distance interests. In addition, the
outputs of the general KG embedding characterize the distance between head
entity h and tail entity t in the space of relation r for a triplet (h, r, t). So for
user u and app a, we concatenated the representations of the two components
into a single vector to do prediction as follows.

u∗ = (u⊥ + rINTERACT )‖u(K), a∗
u = a⊥‖a(K)

u (10)

where rINTERACT is the vector of relation “INTERACT”, u⊥ and a⊥ are the
vectors of user u and app a in the rINTERACT space. They are all the outputs of
the general KG embedding component, while u(K) and a(K)

u are the final outputs
of the convolutional embedding propagating component.

Finally, we computed the inner product of user and app representations, so
as to predict their matching score:

ŷu,a = u∗�a∗
u (11)

To learn the parameters of our app recommendation model, we adopted neg-
ative sampling strategy, and the objective function was defined as binary cross-
entropy loss with L2 norm regularization:

LCEP =
∑

u∈U

∑

v∈Trnu

( − log ŷu,v +
∑

i∈Negu
v

− log(1 − ŷu,i)
)

+ λ‖θ‖22 (12)
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where Trnu = {v|yu,v = 1} is the set of user u’s all training instances. For each
training instance (u, v), we randomly sampled x negative apps, denoted as Neguv .
λ is coefficient for the regularization and θ denotes all model parameters. The
model was trained via Adam optimizer.

4 Empirical Study

In this section, we compared our approach with several state-of-the-art recom-
mendation methods using real-world app usage data and studied the impact of
parameters on the performance of our model.

4.1 Dataset Description

We collected our dataset from Google Play. We crawled each app relevant meta-
data that the ARKG constructing needs. To bypass the cold start, we first omited
apps with less than 10 users and then excluded users with less than 10 apps.
After this preprocessing step, our dataset contains 12802 users, 4539 apps, and
198077 rating observations. The user app rating matrix has a sparsity as high
as 0.341%.

4.2 Comparing Methods

To evaluate the performance of the proposed model, we compared it with the
following representative baselines.

1. UserCF: A user-user similarity matrix can be obtained while extracting
USIMILAR relations for the ARKG. Then, we used the classic user-based
collaborative filtering as a baseline.

2. BPR-MF [13]: The Bayesian Personalized Ranking based matrix factoriza-
tion, is a representative algorithm designed for implicit feedback, adopting a
pairwise ranking loss to optimize the latent factor models.

3. FISM [14]: This is representative item-based collaborative filtering Top-N
recommendation model, used to verify the effectiveness of our recommenda-
tion model.

4. NFM [15]: This is a state-of-the-art factorization model, which seamlessly
combines FM and neural network in modelling feature interactions.

5. TransDR: This is a simplified translation-based recommendation version of
our approach, which takes the representation learned by TransD as inputs of
a one hidden layer neural network to make recommendation directly.

4.3 Experiment Setup

We divided the preprocessed dataset into three subsets: training, validation, and
test. For every user, we randomly selected 70%, 10% and 20% interacted apps
into the training set, the validation set and the test set respectively.
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For ARKG construction, we set the number of Content-Topic entities to
50, the Content-Topic-Similarity threshold cts to 0.9, and the User-Similarity
threshold us to 0.98, and then we extracted 406044 triplets for the ARKG.

We implemented our KGEP model in Tensorflow. The hyper-parameters were
optimized on the validation set, which are listed as follows. The embedding size is
16, the number of propagation layers is 1, dropout is 0, epoch is 80, and learning
rate is 0.02. All the experiment results of our model are corresponding to the
above hyper-parameter values, except a specific hyper-parameter may vary while
preserving the values of the other hyper-parameters when we analyzed our model
sensitivity on the given hyper-parameter. For all the baselines, we set respective
optimal parameters either according to corresponding references or based on our
experiment results. We adopted learner Adam for the models: BPR-MF, FISM,
NFM and KGEP, and adopt learner SDG for TransDR.

We adopted three widely used metrics for performance evaluation: Recall@K,
Precision@K and mean average precision (MAP@K), where K indicates rec-
ommending top K ranked apps. For all the metrics, the larger the value, the
better the performance.

4.4 Performance Comparison with Baseline Methods

The performance comparison results are presented in Table 2. We had the follow-
ing observations: (1) KGEP consistently yields the best performance on all the
metrics and K values. In detail, KGEP improves much more over the strongest
baselines on the metric MAP than the other 2 metrics, and when K is smaller;
(2) BPR-MF achieves better performance than the other baselines in most cases;
(3) TransDR sometimes achieves better performance than all the baselines, indi-
cating that just general KG embedding has efficacy to some extent to make app
recommendation.

4.5 Model Analysis and Discussion

To get deep insights on the proposed model KGEP, we investigated its sensitiv-
ity on some core hyper-parameters. Figure 3 illustrates the effect of embedding
size. Due to the computational cost, we can not train TransD model after the
embedding size is larger than 16. So, we used xavier initializer to initialize the
propagation embeddings after the dimensionality is larger than 16, and concate-
nated the 16-dimensional embeddings of TransD to make recommendation. From
Fig. 3, we can see, our model KGEP can achieve the best performance when the
embedding size is set to 16.

Figure 4 shows the influence of layer numbers. It illustrates that our model
achieves the best performance just with one embedding propagation layer on
the basis of general ARKG embeddings. We also conducted the experiments
to analyze the effects of dropout and learning rate. Due to space limitations,
the corresponding figures are not presented any more. The results are that the
performance of KGEP would be the best when the learning rate equals to 0.02
among {0.0001, 0.0005, 0.001, 0.05, 0.02, 0.1, 0.5}, and would be better when
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Table 2. Performance comparison on the Google Play dataset. The best results are
starred, and the second-best results are listed in bold.

Top-K Metrics UserCF BRP-MF FISM NFM TransDR KGEP

10 Precision (%) 0.155 0.458 0.209 0.301 0.315 1.000*

Recall (%) 0.254 1.159 0.521 0.763 0.567 2.461*

MAP (%) 0.361 1.309 0.656 0.859 0.871 3.853*

20 Precision (%) 0.144 0.440 0.199 0.277 0.390 0.600*

Recall (%) 0.341 2.187 0.997 1.352 1.151 3.061*

MAP (%) 0.398 1.516 0.769 1.001 1.285 3.996*

30 Precision (%) 0.145 0.426 0.200 0.265 0.430 0.567*

Recall (%) 0.452 3.183 1.491 1.864 1.749 4.256*

MAP (%) 0.428 1.616 0.821 1.069 1.510 4.177*

40 Precision (%) 0.145 0.413 0.191 0.258 0.461 0.475*

Recall (%) 0.550 4.034 1.864 2.450 2.385 4.839*

MAP (%) 0.450 1.667 0.848 1.103 1.599 4.232*

Fig. 3. Effect of embedding size

Fig. 4. Effect of embedding propagation layer numbers
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the dropout equals to 0 or 0.2 than other values {0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9}.

5 Related Work

Knowledge Graph Based Recommendation. Recommender systems are
now indispensable in many Web applications, such as App stores. The matrix
factorization algorithm BPR-MF [13], the item-based collaborative filtering algo-
rithm FISM [14], and the factorization model algorithm NFM [15] are arguably
the most representative among the large number of recommendation algorithms
developed. Recently, KG, as one of the most effective data modelling techniques,
has been spotlighted in recommender systems. In general, existing KG-aware
recommendation can be classified into three categories. The first category is
embedding-based methods, such as CKE [16], DKN [17], which preprocess a
KG with knowledge graph embedding algorithms and incorporates the learned
entity embeddings into a recommendation framework. However, these methods
are usually more suitable for in-graph applications such as link prediction than
for recommendation. The second category is path-based methods, such as PER
[18], KPRN [19], which explore the various patterns of connections among items
in KG to provide additional guidance for recommendations. However, they rely
heavily on meta-paths, which is hard to optimize in practice, so that has a
large impact on the final recommendation performance. The third category is
embedding propagation methods, such as RippleNet [20], KGAT [21], KGCN
[22], which combine embedding-based and path-based methods in KG-aware
recommendation, so as to address the limitations of the above two categories.

Different from the above KG-aware recommendation models, we leverage the
general embeddings and the propagated embeddings simultaneously to make app
recommendation.

Mobile App Recommendation. Mobile app recommendation has attracted
much attention these days. By focusing on different kinds of side informa-
tion, researchers proposed the following representative app recommendation
approaches. Focusing on the privilege data of apps, The studies [2–4] mainly
considered privacy leak and security risk issues to perform personalized app
recommendations. Focusing on geographical information of users, Zhu et al. [5]
proposed a novel location-based probabilistic factor analysis mechanism to help
people get an appropriate mobile app. Focusing on version information of apps,
Cao et al. [6] proposed a novel version-sensitive mobile app recommendation
framework by jointly exploring the version progression and dual-heterogeneous
data. Focusing on app usage patterns of users, Xu et al. [7] proposed a neural
network based approach to leverage the predictive power of app usage context
patterns to do effective app recommendation. Focusing on category information
of apps, Guo et al. [8] proposed an app recommendation model based on deep
factorization machine, which can make use of categorical and textual informa-
tion of apps. Further considering the interactions of categories and other side
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information of apps, Liang et al. [9] utilized a tensor-based framework to effec-
tively integrate app category information and multi-view features of users and
apps to do context-aware app recommendation. Focusing on the complex seman-
tics among different kinds of side information, Xie et al. [10] exploited weighted
meta-graph and heterogeneous information network for mobile app recommen-
dation, mainly considering user review information. However, it is not an end-to-
end method. Meta-graphs are hard to be designed optimally, which will further
influence the efficacy of recommendation.

Differed from the above state-of-the-art app recommendation methods, we
proposed an end-to-end framework and leveraged KG to recommend apps for
users. It can model complex semantics among diverse side information more
explicitly to make better recommendation.

6 Conclusion and Future Work

This paper proposed a novel KG based mobile app recommendation approach.
We first designed a KG construction method to organize rich side information
of users and apps, then adopted a translation based KG embedding method to
capture the semantics of side information related to first-order structure of the
constructed KG, and proposed a convolutional embedding propagation model to
capture the semantics related to high-order structure of the KG. By incorporat-
ing KG into app recommendation, our approach can effectively model and take
full advantage of rich side information to alleviate the sparsity issue and improve
recommendation performance. The comparative experimental results show that
our approach outperforms the competing recommendation methods in terms of
precision, recall and MAP.

In the future, we will attempt to apply our model to other recommendation
application scenarios, such as general Web service recommendation or Web API
recommendation for Mashups, to further validate it and find and improve its
limitations.
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Abstract. Efficient and appropriate online customer service is essen-
tial to large e-commerce businesses. Existing solution recommendation
methods for online customer service are unable to determine the best
solutions at runtime, leading to poor satisfaction of end customers. This
paper proposes a novel intelligent framework, called ICS-Assist, to rec-
ommend suitable customer service solutions for service staff at runtime.
Specifically, we develop a generalizable two-stage machine learning model
to identify customer service scenarios and determine customer service
solutions based on a scenario-solution mapping table. A novel knowl-
edge distillation network called “Panel-Student” is proposed to derive
a small yet efficient distilled learning model. We implement ICS-Assist
and evaluate it using an over 6-month field study with Alibaba Group.
In our experiment, over 12,000 customer service staff use ICS-Assist to
serve for over 230,000 cases per day on average. The experimental results
show that ICS-Assist significantly outperforms the traditional manual
method, and improves the solution acceptance rate, the solution cover-
age rate, the average service time, the customer satisfaction rate, and
the business domain catering rate by up to 16%, 25%, 6%, 14% and 17%
respectively, compared to the state-of-the-art methods.

Keywords: Intelligent customer service · Natural language
processing · Deep learning · Distilled learning

1 Introduction

Large e-commerce businesses such as Alibaba and Amazon provide hundreds of
thousands of customer services to end customers via conversations every day,
and these customer service conversations contain several topics, such as refunds,
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 370–385, 2020.
https://doi.org/10.1007/978-3-030-65310-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65310-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-65310-1_26


ICS-Assist 371

delivering inquiries, and instructions for using lucky money [23]. When end cus-
tomers make inquiries through online customer service, they usually demand
their requirements and intentions be addressed as fast as possible [14]. These
requirements and intentions are usually versatile. As such, customer service solu-
tions should be provided at runtime and should be able to correctly and timely
address customers’ requirements and intentions. For instance, when a customer
calls in to complain about the poor quality of her newly bought shoes, we must
recognize her intention of “returning the shoes” and provide her with the solution
of how to return the shoes and apply for the refund [14].

Customer service solutions can be determined either manually or automat-
ically. Determining customer service solutions manually is flexible and human-
centric, and the representatives need to have enough expert knowledge to handle
all types of customer problems [18]. Several existing automated mechanisms have
required expert knowledge learned from rich transaction history data to target
most customer requirements. However, these approaches are inaccurate, inef-
ficient and unsatisfactory, and most critically they are unable to generalize for
diverse business domains [20]. As such, end customers’ satisfaction will be signif-
icantly affected, and business quality and profits will also be further influenced.

In this paper, we propose a novel machine learning-based approach, called
ICS-Assist, to facilitate customer service staff to identify ideal customer service
solutions at runtime. ICS-Assist uses a two-stage learning model, coarse-grained
learning and fine-grained learning, to identify the proper service scenario of each
query made by the end customer. Moreover, ICS-Assist uses multi-aspect fea-
tures (i.e. multi-round conversations, customer profiles, staff profiles, and order
details) as the inputs to train a deep learning model for fine-grained service sce-
nario recognition. Then ICS-Assist further determines the final solutions based
on the “scenario-solution” mapping table constructed by business operators.
The main differences between our approach and existing methods are: 1) Our
approach can achieve accurate customer service scenario recognition at runtime
(i.e., while customer service staff are servicing end-customers); 2) We use a novel
“Panel-Student” learning scheme to derive a much smaller yet efficient learning
model which can recognize service scenario at a finer granularity, a significant
improvement over the traditional “Teacher-Student” model [11]; 3) Our app-
roach uses multi-aspect features instead of the commonly used language feature
to train the “Panel-Student” learning scheme and recognize service scenarios.

We implement ICS-Assist and evaluate it using a real-world field study with
Alibaba Group. The experiments are conducted for over 6 months. On aver-
age, over 12,000 customer service staff handle over 230,000 cases per day. We
compare the performance of ICS-Assist with existing semantic and relevance
matching methods, including HCAN [20], ESIM-seq [2], DAM [30], and DIIN
[8]. The experimental results are two-fold: 1) Our method increases the solution
acceptance rate by up to 16%, increases solution coverage rate by up to 25%,
reduces average service time by up to 6%, increases customer satisfaction rate by
up to 14%, and increases business domain catering rate by up to 17%, compared
to the state-of-the-art methods; 2) Our method increases the solution acceptance
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rate by 24%, increases solution coverage rate by 34%, reduces average service
time by 8%, increases customer satisfaction rate by 19%, and increases business
domain catering rate by 22%, compared to the traditional manual method.

The research contributions of this paper are 1) We propose a novel intelligent
framework to recognize customer service scenarios and further determine appro-
priate customer service solutions at runtime. In this way, we extend the idea of
the “Teacher-Student” model to propose a generalizable “Panel-Student” dis-
tilled learning method that determines suitable customer service scenarios and
solutions for multiple e-commerce business domains. 2) We show a real-world
field study to demonstrate the efficacy and validity of our proposed approach.

The remainder of this paper is as follows: Sect. 2 introduces the background;
Sect. 3 illustrates our proposed approach; Sect. 4 describes the experimental
evaluation; Sect. 5 discusses threats to validity; Sect. 6 provides related work;
Sect. 7 provides the conclusion and future work.

2 Background

2.1 Intelligent Customer Service in E-Commerce

E-commerce customer service plays a significant role in business profit-making
and customer satisfaction [23]. In contrast to traditional customers’ service
involving huge human efforts, organizations use intelligent customer service
to promote effortless customers experiences and improve productivity. Specif-
ically, the state-of-the-art intelligent customer service is not just multi-channel
but omnichannel, which allows the organizations to facilitate effective interac-
tions between them and their customers by unifying the experience across self-
assisted and field-service channels [16]. In large e-commerce corporations, such
as Alibaba, JD.Com and Amazon, intelligence customer service has been suc-
cessfully used to save their customer service costs by over 20%. With these suc-
cessful stories, many small to medium-sized e-commerce companies are starting
to develop their intelligent customer service systems [14].

2.2 Business Requirements for Customer Service

As a critical component of the business chain, customer service has been regu-
larized by standardized business requirements, which are formulated by several
popular e-commerce corporations based on over 20 years’ business exploration
[5]. These requirements are 1) Customer service solutions should be correctly
determined; 2) The customer service system should cover as many customer ser-
vice solutions as possible; 3) The time spent on customer service dialogues should
be minimized; 4) The satisfaction rate of end customers should be maximized;
5) The Customer service system should be able to cater for as many business
domains as possible. Hence, the e-commerce industry uses the following busi-
ness metrics to evaluate the quality of customer service: 1) Solution Acceptance
Rate (SAR), which refers to the percentage of solutions that are accepted by
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end customers; 2) Solution Coverage Rate (SCR), which refers to the propor-
tion of the solutions that can be recalled from the overall solutions; 3) Average
Service Time (AST), which refers to the average time spent on customer service
conversations; 4) Customer Satisfaction Rate (CSR), which refers to the percent-
age of the customers who are satisfied with the customer service; 5) Business
Domain Catering Rate (BCR), which refers to how many business domains can
be catered for by the customer service system.

3 Our Proposed Method

Our approach is based on the following design decisions: 1) Service solutions
should be mapped from recognized service scenarios based on the well-established
“scenario to solution” mapping rules defined by the e-commerce business; 2)
Customer service scenarios must be determined in a runtime manner; 3) The
model can utilize a multi-stage paradigm in order to recognize the optimal cus-
tomer service scenarios to determine the optimal service solutions. The overview
of our proposed approach, named ICS-Assist, is shown in Fig. 1. When a cus-
tomer inquires, the system selects an available customer service staff to start
the conversation. After the customer makes each query, ICS-Assist recognizes
the relevant service scenarios based on the two-stage machine learning (coarse-
grained learning and fine-grained learning) scenario recognition model proposed
by us. If scenarios are not found, the customer service staff responds to the
customer on her own expert experience; otherwise, ICS-Assist determines the
solutions based on the scenario-solution mapping table maintained by the busi-
ness itself, and the customer service staff confirms and provides the solutions to
the customer. If the problem of the end customer is solved, the customer service
ends; otherwise, ICS-Assist waits for the end customer to make another query,
and the aforementioned procedure repeats until the problem is solved.

3.1 Data Preparation and Preprocessing

The data processing pipeline for the service scenario recognition in ICS-Assist is
shown in Fig. 2. The input data is generated from the historical customer service
log, which contains customer utterances and staff operations (e.g. clicking, hov-
ering and querying) in a service session. The service scenarios clicked or searched
by the staff are paired with the customer utterances to form the positive samples
in the dataset. We also manually check these automatically generated pairs.

However, the training set is imbalanced as some regular service scenarios
have millions of cases, such as inquiries about a delivery, refunding, while others
may only contain a few thousand. Thus the corpus of customer utterance can be
too sparse to learn a well-generalized model. To address this, we apply the data
augmentation method of up-sampling on the scarce cases to expand their original
size to 100 times. Finally, we combine the augmented rare cases with the regular
cases as the positive samples, and also randomly choose an equal number of
irrelevant pairs of service scenarios and customer utterances as negative samples.
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Fig. 1. Overview of ICS-Assist

The data structure for each training sample is a triplet consisting of the cus-
tomer utterance U , the description of standard service scenario S and label
y, where y ∈ {0, 1}, both U and S are text, U = (wu

1 , wu
2 , wu

3 , ...),S =
(ws

1, w
s
2, w

s
3, ...), wi is the i-th word in the sequence.

The model learning follows a two-stage procedure that contains the coarse-
grained ranking and the fine-grained ranking. At the coarse-grained ranking
stage, we use a simple approach that narrows down the search range in the
candidate set to filter out the irrelevant scenarios. At the fine-grained ranking
stage, we propose a Panel-Student knowledge distillation approach to train a
lighter model that is able to find out the most suitable service scenarios.

3.2 Coarse-Grained Learning Model

We describe the process for the coarse-grained model. First, we compute the
representation u, s for U , S:

∑

i

tf idf(wi) × word2vec(wi) (1)

where u, s ∈ R
d {wv}, d {wv} is the dimensionality for Word2Vec [17]. The

representation is exactly the weighted average of the word vector for the corre-
sponding words in the text, where the weight we use here is tf-idf.



ICS-Assist 375

We get the top-K suitable scenarios by comparing cosine similarity
cos sim(u, sk), where sk is the representation for a scenario in the candidate
set. After that, the top-K candidates would be fed into the fine-grained model.

Fig. 2. Training process for service scenario recognition model

3.3 Fine-Grained Learning Model

The fine-grained model learns complicated semantic relationships between cus-
tomer utterances and service scenario descriptions and finds out the most suit-
able service scenarios. In our case, the ranking model requires very high precision.
To achieve this goal, the simplest way is that we train a model as large as pos-
sible with strong fitting capacities, but by doing so the inference time would be
slower, which is unfriendly for online recommendation at runtime.

Knowledge distillation [11,29] is an effective way to distill the knowledge
learned from the teacher model and builds an accurate lightweight student
model. The teacher model is usually a large neural network or an ensemble of
networks containing millions parameters. Hence, the state-of-the-art large-scale
pre-trained language models, such as ELMO [19], BERT [4] and XLNet [28], can
serve as the teacher network. These models are millstones in natural language
processing filed and significantly improve the performance of many downstream
tasks such as question answering, textual entailment, and text classification etc.
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However, among the aforementioned pre-trained language models, using only
one of them as a teacher network seems to be unable to completely train a
generalizable student model that can achieve as good performance as the teacher
network in diverse business domains. Besides, our empirical studies show that
ELMO has the best performance and is slightly better than BERT in the business
domain of Alibaba Movie (which is an Alibaba business portal for watching
online movies), while in the business domain of Tmall Global (is an Alibaba
web portal for selling imported commodities), ELMO’s performance is the worst
among the three pre-trained language models. Thus, in order to cater for all
types of business domains, we explore a Panel-Student knowledge distillation
approach that combines all the three teachers to form a generalizable panel.

The full details of the fine-tuning “Panel-Student” learning scheme are illus-
trated in Fig. 3, which can be divided into four layers:

1. the input layer that maps the raw text data into the word embeddings;
2. the representation learning layer that encodes the word embeddings into a

comprehensive contextualized representation;
3. the interaction learning layer that further processes the representation and

extracts both semantic-oriented and relevance-oriented matching signals
between the input utterance and service scenario;

4. the output layer that generates the final matching scores.

Fig. 3. Fine-grained “Panel-Student” learning model
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Panel-Student Framework. We use three high-capacity pre-trained language
models in our panel, including ELMO [19], BERT-LARGE [4], and XLNet [28].
As the core task of our ICS-Assist is to match the customer utterance with a
suitable service scenario by leveraging semantic-oriented and relevance-oriented
matching signals in the text pairs, we follow the fine-tuning setting of the text-
entailment task described in each corresponding teacher model (text-entailment
can be viewed as a special case of text match [20]). After the fine-tuning stage,
we train the student model under the panel’s supervision with the soft target loss
(shown in Fig. 3) and the hard target loss with ground truth labels. We choose
TextCNN [24] as the student model due to its lightweight and fast inference.

The input layer maps the words within U and S into the corresponding
embeddings U = [wu

1 ;wu
2 ;wu

2 ; ...wu
N ] and S = [ws

1;w
s
2;w

s
2; ...w

s
N ], where wi ∈

R
d is the corresponding embedding given a word wi, U, S ∈ R

N×d. We pad the
variable length sequence to fixed-length N .

At the representation learning stage, we first apply 1-d convolution over U
with k different kernel size:

Ūk = σ(W k
f ∗ U + bk), (2)

where W k
f is the parameter for k-th convolution kernel, bk is the bias, σ

is the activation function, the output channel number for convolution is do,
Ūk ∈ R

N×do . Then we take the maximum and average values over the sequence
length dimension and concatenate them to form an overall representative seman-
tic signal. Taking the maximum value can effectively extract the features for the
occurrence of some keywords and taking the average can be more robust to the
noise in the corpus.

ūk
max = max(Ūk), (3)

ūk
mean = mean(Ūk), (4)

ũ = [ū1
max; ...; ūk

max; ū1
mean; ...; ūk

mean], (5)

where ūk
max, ūk

mean ∈ R
do , ũ ∈ R

2kdo . The representation s̃ for S is obtained in
a similar way.

At the interaction learning stage, we enhance the interaction between U and
S by applying more complicated arithmetic operations on the original signal
obtained in the previous stage. The original signals ũ, s̃, the element-wise multi-
plication of the original signals, the element-wise square of the difference between
the two signals are concatenated together and fed to an MLP to generate the
final matching feature m:

x = [ũ; s̃; ũ ⊗ s̃; (ũ − s̃)◦2], (6)
m = MLP(x), (7)

where x ∈ R
8kdo . After the student model is trained, the model can make

the following prediction:

gs = σ(Wm + b), (8)
ŷs = sigmoid(gs), (9)
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where σ is the activation function, and ŷs is a real number between 0 and 1,
which represents the probability of standard service scenario S matching the
given utterance U .

Final Hybrid Model for Service Scenario Recognition. As shown at the
rightmost side in Fig. 3, we also use multi-aspect features m̄ learned by a DNN
model based on the customer profiles, the log of historical customer behavior and
customer service staff. The intermediate multi-aspect feature m̄ will be combined
with m (see Eq. 7) generated by the student TextCNN, and then fed to an MLP
to make the final prediction as follows:

gh = MLP([m; m̄]), (10)

ŷh = sigmoid(gh). (11)

The training of the final hybrid model which utilizes the output from our
student model has three phases. The first two phases are used for training the
student model alone, and the third phase is used for training the hybrid model:

1. Each teacher model in the panel is fine-tuned;
2. The student model (i.e., TextCNN) is trained within the “Panel-Student”

scheme using the loss function below:
∑

i∈Panel

λibinary cross entropy(ŷi, ŷs) + binary cross entropy(y, ŷs), (12)

The lost function consists of two types of loss: 1) the soft-target loss between
the student model’s predictions ŷs and each teacher model’s predictions ŷi;
2) the hard target loss between the predictions of the student model ŷs and
the ground truth labels y.

3. All layers within TextCNN up to the MLP are extracted and combined with
the output from the MLP layer within the DNN model at the rightmost in
Fig. 3 to construct the final hybrid model for scenario prediction. The hybrid
model is trained using this loss function:

binary cross entropy(y, ŷh), (13)

where ŷh is the prediction for the hybrid model.

3.4 Scenario Recognition and Solution Mapping

Customer service scenarios are determined by our two-stage scenario recognition
model, which are represented as the “parameters” for determining solutions.
It matches the customer utterance with the best service scenario by solving a
pairwise text-match task. Taking the case of “complaining the bought shoes” as
an example, the recognized best scenario is “returning the commodities (shoes)”.

Given a determined customer service scenario determined by our two-stage
scenario recognition framework, the customer service solution can be determined
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and selected based on the scenario-solution mapping table formulated by the
e-commerce company itself according to its business strategies. The customer
service solution can be a customized one-to-one mapping from the customer
service scenario. Specifically, the solution can be a standard service manual,
a road-map, or just a predefined answer. For instance, the above-determined
scenario is mapped to the solution of how to apply for the refund of the shoes.

4 Experimental Evaluation

Our experiment was conducted in the real customer service of Alibaba Group.
We implemented ICS-Assist as an enterprise-level service system. Over 12,000
customer service staff use ICS-Assist to serve for over 230,000 cases per day on
average, and this procedure lasted for over 6 months. In our experimental envi-
ronment, the queries made by end customers are dispensed to dedicated query
processing servers by the query router. Each query processing server encapsulates
and passes the query to the service scenario recognition model in our ICS-Assist
to predict the service scenarios. The recognized scenarios are then mapped with
the service solutions, which are sent to customers by customer service staff.

4.1 Experimental Procedure

The experimental procedure consists of three parts:

1. We apply our proposed “Panel-Student” model and the baseline models [2,8,
20,30] on the public dataset Quora [13], and compare the performance among
them. For the baseline models, we reproduce them according to their best
hyper-parameter settings. For our proposed model, we set the convolution
kernel widths from 2 to 5, and the output channel numbers are all 64. The
layer number of the MLP module in Eq. 7 is 3. The dropout rate is 0.2 and
the L2 regularization coefficient is 0.05. The activation function for all the
layers is ReLu. The optimizer is Adam [15] with a constant learning rate of
1e−4, decay rate β1 of 0.9, and β2 of 0.999.

2. We also conduct similar experiments on our historical dataset. The only dif-
ference is that, for our proposed model, we use an additional neural model
to handle the handcrafted multi-aspect features to construct the final hybrid
model, we adopt a similar architecture like a Wide-Deep model [3], and com-
bine it with the text-based features from the TextCNN model. The training
for the final model follows a two-stage paradigm: 1) We freeze the parameters
within TextCNN model and train the DNN with a constant learning rate of
1e−3 until convergence; 2) We make TextCNN’s parameters trainable and
restart the training phase with an exponential decay learning rate (initial
learning rate: 1e−4; decay rate: 0.95; decay step: 10000).

3. Since the purpose of the two steps above is to demonstrate the superiority of
our proposed “Panel-Student” model, we replace this hybrid model in ICS-
Assist with each of the state-of-the-art baseline models [2,8,20,30] to create
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several variants of ICS-Assist and compare our proposed ICS-Assist (with the
“Panel-Student” model) with these ICS-Assist variants as well as the manual
method against the 5 business evaluation metrics (SAR, SCR, AST, CSR,
and BCR) mentioned in Sect. 2.2.

4.2 Experimental Results

Table 1 shows the comparison between the performance (accuracy, precision,
recall, f1-score, and latency) of our proposed Panel-Student model (PS model
henceforth) and the other existing models on the Quora dataset. Due to the
less execution complexity of our proposed model compared to other models, the
accuracy, precision, recall and f1-score of our PS model are slightly less than
hcan-hybrid, hcan-only rm [20], dam [30], diin [8] and esim-seq [2], and slightly
better than hcan-only sm [20], but our PS model’s latency is much lower than
these models. We also implement the panel-student model with a single teacher
(i.e. BERT, XLNet, and ELMO), and obtain three Teacher-Student models (TS
models henceforth). The performance of these three TS models is also worse
than our PS model. As such, our model is the best one among all the models.

Table 1. Model performance comparison on quora dataset

Model Accuracy Precision Recall F1 Latency (ms)

hcan - hybrid 0.831 0.832 0.830 0.831 81

hcan - only sm 0.791 0.791 0.791 0.791 73

hcan - only rm 0.821 0.824 0.817 0.820 21

dam 0.855 0.856 0.854 0.855 109

diin 0.873 0.877 0.867 0.872 151

esim - seq 0.843 0.846 0.839 0.842 95

TS - BERT 0.791 0.783 0.792 0.787 15

TS - XLNet 0.807 0.795 0.809 0.802 15

TS - ELMO 0.781 0.769 0.759 0.764 13

our PS model 0.811 0.807 0.819 0.813 11

Table 2 shows the comparison between the performance of our proposed PS
model and the existing state-of-the-art models using our dataset. Again, our
PS model outperforms all the baseline models in terms of the overall model
performance due to the less execution complexity of our model than others.

Table 3 shows the improvement rate of the business metrics of our proposed
ICS-Assist (ICS-Assist (PS)) over the manual method and the variants of ICS-
Assist with state-of-the-art models, including the teacher-student model using
each single teacher model in our panel. Our ICS-Assist (PS) performs better
than all the other variants of ICS-Assist by up to 16%, 25%, 6%, 14%, and 17%,
in terms of SAR (Solution Acceptance Rate), SCR (Solution Coverage Rate),
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Table 2. Model performance comparison on our dataset

Model Accuracy Precision Recall F1 Latency (ms)

hcan - hybrid 0.878 0.876 0.879 0.877 198

hcan - only sm 0.845 0.847 0.841 0.844 186

hcan - only rm 0.850 0.848 0.852 0.850 53

dam 0.914 0.914 0.914 0.914 265

diin 0.894 0.899 0.887 0.893 387

esim - seq 0.930 0.932 0.928 0.930 241

TS - BERT 0.871 0.874 0.877 0.875 28

TS - XLNet 0.878 0.884 0.889 0.886 26

TS - ELMO 0.853 0.851 0.861 0.856 25

our PS model 0.894 0.892 0.895 0.893 25

AST (Average Service Time), CSR (Customer Satisfaction Rate) and BCR
(Business Domain Catering Rate). Although our PS model’s performance (e.g.
f1-score) is slightly worse than other models (e.g. dam and esim-seq), our app-
roach still performs better in the business metrics. This is because our PS model
has lower latency than other models, and it enables customer service staff to
timely utilize the recommended solutions. ICS-Assist (PS) increases SAR by
24%, increases SCR by 34%, decreases AST by 8%, increases CSR by 19%, and
increases BCR by 22%, compared to the manual method.

Table 3. Business performance improvement results

ICS-Assist (PS) vs. SAR SCR AST CSR BCR

manual 24% 34% 8% 19% 22%

ICS-Assist (dam) 13% 19% 4% 5% 7%

ICS-Assist (hcan) 16% 25% 6% 14% 17%

ICS-Assist (diin) 12% 19% 7% 12% 15%

ICS-Assist (esim) 10% 15% 6% 11% 14%

ICS-Assist (TS-BERT) 3% 2% 3% 3% 5%

ICS-Assist (TS-XLNet) 1% 2% 2% 2% 7%

ICS-Assist (TS-ELMO) 7% 6% 4% 9% 10%

From the experimental results, we can conclude that our approach outper-
forms other automated state-of-the-art methods as well as the manual method in
all the business metrics. The main reasons are as follows: 1) Our method assem-
bles the three pre-trained language models (i.e. BERT, XLNet and ELMO) to
distill a more generalizable model that creates better language representations
for multiple business domains; 2) Our method takes multi-aspect features as the



382 M. Fu et al.

inputs for the scenario recognition model; 3) Our method employs a two-stage
learning approach to maximize the validity of the recommended results, and it
makes a reasonable prepossessing on the historical data to address its inevitable
drawbacks related to quality, volume, and noise.

5 Threats to Validity

The threats to validity are as follows: 1) The historical customer service data
provided by Alibaba Group largely focus on the east Asian and southeast Asian
countries, and the countries from other continents are relatively few. 2) The
model training parameters with the PS model can be further tuned. The current
parameters may not yield an optimized deep learning model because they may
cause a local minimum instead of a global minimum. 3) The three representation
learning-oriented models (BERT, XLNet, and ELMO) constitute the Panel, but
more pre-trained language models could have been investigated.

6 Related Work

6.1 Neural Text Matching Techniques

One line of work related to our system is Neural Text Matching. Text Matching is
a core task in many NLP and information retrieval applications, the mainstream
of which can be divided into Semantic Matching (SM) and Relevance Matching
(RM). Although both SM and RM are modelling similarities between two pieces
of texts, SM emphasizes the semantic understanding and reasoning while RM
focuses more on keyword matching signals. Typical SM tasks includes ques-
tion answering [1], paraphrase identification [27], and natural language inference
[2,8]. RM models, such as DRMM [9], Co-PACRR [12] and MP-HCNN [21] are
frequently used in IR applications like search engines to rank documents by rel-
evance given a user query. In our work, both semantic and relevance matching
technologies are involved in our model to enable more comprehensive language
understanding and identify suitable service scenarios.

6.2 Collaborative Filtering Techniques

Because our system aims to recommend suitable service scenarios and solutions
to the customer service staff, in this way the research work on recommendation
Systems is also related to our work. Most recommendation systems are based on
collaborative filtering, which learns a representation of user and item based on
the rating matrix, and then predict the rating assigned a user given an unseen
item. Currently, many recommendation systems adopt neural networks [6,10,
26] to learn a good dense representation and the interaction between the user
and item and achieve the state-of-the-art performance. However in our scope,
mechanically matching the user and service scenario would ignore the customer’s
intention and requirement thus impair our service quality.
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6.3 Knowledge Distillation Techniques

Researchers from the University of Waterloo try to transfer deep language rep-
resentation like BERT to a lightweight neural network such as single-layer BiL-
STM [25]. But they do not employ multiple teachers’ knowledge to distil a sim-
ple student model. This experience motivates our multiple knowledge distilling.
In addition, The model Fitnets [22] is proposed by A. Romero. This model has
extended the model compression idea and introduces the intermediate-level hints
techniques to simplify a deeper and thinner student network with fewer param-
eters and better generalization. The new loss function is imported in hidden
layers’ feature maps, which helps to reduce parameters in our work. Recently,
the IBM researchers have proposed to train the student model from an ensemble
of multiple teachers [7]. They implemented different deep neural networks to
train convolutional neural network acoustic models on a medium-sized speech
corpus. The experimental results highlight that the proposed training techniques
could increase a significant amount of knowledge to the student. Hence, our work
also follows the idea of distilled learning by proposing a “Panel-Student“ model.

7 Conclusion and Future Work

Identifying proper customer service solutions is critical to e-commerce businesses.
Existing service solution determination methods are usually unsatisfactory to
end customers. This is because they are of low efficiency and unable to achieve
runtime solution determination. Hence, this paper proposes an innovative frame-
work, called ICS-Assist, to determine customer service solutions at runtime. We
designed a novel two-stage learning model to identify customer service scenarios,
which are mapped to end solutions. We implemented ICS-Assist and evaluated it
in a 6-month real-world field study at Alibaba Group. The experimental results
show that ICS-Assist improves the five business evaluation metrics (solution
acceptance rate, solution coverage rate, average service time, customer satisfac-
tion rate and business domain catering rate) by up to 16%, 25%, 6%, 14%, and
17% respectively, compared to the state-of-the-art methods, and it outperforms
the manual method by 24%, 34%, 8%, 19%, and 22% respectively, in terms of
the five business evaluation metrics. Our future work includes: 1) Explore more
representation learning models for determining the members in the panel; 2)
Design robust light-weight pre-trained models for customer services; 3) Investi-
gate different customer service application areas such as finance.
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Abstract. Detecting users’ significant intentions (e.g., new features
wanted) timely and precisely is crucial for developers to update and
maintain their apps in the competitive mobile app market. Sentiment and
preference mining from crowd reviews provide an opportunity to proac-
tively collect app users’ intentions, e.g., bug fixing and feature refine-
ment. However, users’ sentiment and preferences often change over time
due to either internal factors (e.g., new bugs) or external factors (e.g.,
new competitors). This makes it difficult for app developers to grasp
users’ sentiment and preferences in time. In this paper, we propose a
novel and automated framework named DSISP for detecting users’ sig-
nificant intentions effectively via sentiment-preference correlation analy-
sis. DSISP first employs sentiment analysis and NLP (Natural Language
Processing) techniques to obtain sentence-level sentiment scores and fine-
grained user preference features from app reviews in different time slices.
Then, the temporal correlation between user sentiment and preferences
is analyzed, which can be used to monitor users’ sentiment tendency
and preferences in time. Finally, DSISP identifies users’ dramatically-
changing sentiment (e.g., sentiment valley) to detect users’ significant
intentions. We evaluate the feasibility and performance of DSISP by
using real-world app reviews and app official changelogs. The experi-
mental results show that DSISP can detect users’ significant intentions
effectively and efficiently, with a precision of 0.962 on average. It can help
app developers keep track of how their users’ intentions evolve over time
so that they can improve their apps correspondingly and continuously.
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1 Introduction

App stores are digital distribution platforms that allow users to submit ratings,
feedback and comments on apps, which explicitly or implicitly expresses their
potential sentiment and preferences for apps [1,2], e.g., their satisfaction with
particular features, the vulnerabilities encountered or requests for new features.
Sentiment represents a user’s approval of an app, and preference indicates its
intention of the app. Users’ preferences can be obtained by mining crowd review
features that reflect users’ opinions. Keeping track of users’ sentiment and pref-
erence features timely and precisely can help app developers update and improve
their apps, e.g., in terms of fixing bugs, or adding new features, etc. [3,4].

User reviews are direct feedback from users that have experienced the apps.
In recent years, researchers have proposed several approaches to extract useful
information from crowd reviews for maintaining and evolving mobile apps [3,5].
These approaches are mainly designed for user reviews classification [6,7], clus-
tering [8,9], and summarization [1,3,10]. The extracted information represents
crowd-sourced knowledge from the users’ perspective and can be used to identify
users’ intention [11] or detecting app emerging issues [12], etc.

The abovementioned studies are mainly focused on reducing the effort in
extracting software aspects or user preferences without considering the changes
in users’ sentiment and preference over time. In fact, due to app updates or
changes in the external environment (e.g., new competitors), users’ sentiment
and preferences will change dynamically over time. For example, when an app
crashes, is injected with ads, or breaches users’ privacy, users’ complaints will
increase immediately. Their sentiment will also turn negative rapidly.

Users’ up-to-date sentiment and preferences indicate their instant experiences
with apps in use. When the users’ sentiment and preferences are not grasped by
app providers in time, it may lead to the loss of users and reduce the users’
stickiness. For example, Facebook Messenger lost a large number of users in
August, 2014 because it was found to contain severe privacy issues (e.g., accessing
the photos and contact numbers on users’ phones)1. Such issues had already been
pointed out by users in their reviews a few months ago before that. Therefore,
detecting and understanding of users’ intentions timely is necessary and critical.
However, the problem of how to effectively and timely detect users’ significant
intentions from app reviews have not been studied systematically.

In this paper, we propose a novel framework named DSISP (Detecting users’
Significant Intentions via Sentiment and Preference analysis) for detecting users’
sentiment and preferences by analyzing their reviews. DSISP takes user reviews as
input and employs sentiment analysis technique [13] to calculate users’ sentiment
scores within different time slices. Then, it employs NLP and collocation finding
technology [14] to mine fine-grained preference features from user reviews. After
that, it analyzes the temporal correlation between users’ sentiment and prefer-
ences. Finally, DSISP uses a SVI (Sentiment Valley Identification algorithm) and

1 http://www.businessinsider.com/facebook-messenger-app-store-reviews-
arehumiliating-2014-8.

http://www.businessinsider.com/facebook-messenger-app-store-reviews-arehumiliating-2014-8
http://www.businessinsider.com/facebook-messenger-app-store-reviews-arehumiliating-2014-8
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Twitter-LDA [15] to identify users’ significant sentiment and detect their signif-
icant intentions, respectively. In summary, the contributions of this paper are as
follows.

– We present a method for aggregating crowed users’ sentiment for each prefer-
ence with automated sentiment analysis on app reviews. Then, we analyzed
how these preferences are temporal correlation to users’ sentiment.

– We propose a framework named DSISP to automatically detect users’ signif-
icant intentions by analyzing the temporal correlation between users’ senti-
ment and preferences. The source code of DSISP and review data are pub-
lished on GitHub2.

– We verify the effectiveness of DSISP based on the changelogs of six apps
(include three open-source Android apps) in different app categories.

The remainder of the paper is structured as follows. Section 2 introduces the
related work. Section 3 outlines the overall picture of DSISP and details each step
involved in its procedure. Section 4 reports the experimental results. Section 5
concludes this paper and points out the future work.

2 Related Work

Currently, a number of approaches have been proposed to mine and analyze
app reviews with the goal of deriving important information to help developers
update their apps [7,8,16]. For example, Pagano et al. [16] investigated the corre-
lation between app reviews and ratings. Harman et al. [17] proposed the concept
of app store mining and identified the correlation between user ratings and app
download rankings. These studies provide a basis for developers to understand
user behaviors and adjust their app deployment strategies. However, there are
several limitations which prevent app developers from using the information in
the reviews effectively. For example, an app store generates a lot of app reviews
every day - the Facebook app receives more than 10,000 reviews on Google Play
every day3. Besides, reviews vary in quality. Manual analysis of a large number
of such reviews is time-consuming and labor-intensive. To address this issue,
automatic feature extraction is proposed to mine user needs [3,8,10].

Chen et al. [18] devised AR-MINER, an approach for filtering and rank-
ing informative reviews using a semi-supervised learning based approach. They
demonstrated that, on average, 35% of reviews contain informative contents.
Based on AR-MINER, L. Villarroel et al. [7] proposed a method named CLAP,
which employs classification and clustering algorithms to automatically prioritize
the user reviews to be implemented when planning the subsequent app release.
Palomba F et al. [8] proposed a method named CHANGEADVISOR to analyze
the structure, semantics and sentiment of sentences in user reviews, extract use-
ful information from user reviews and suggest changes to software components for

2 https://github.com/ztxjm123/DSISP.
3 App Annie. https://www.appannie.com/en.

https://github.com/ztxjm123/DSISP
https://www.appannie.com/en
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developers. Zhou Y et al. [9] proposed an automated method named RISING that
supports continuous integration of user feedback through classifying, clustering,
and linking user reviews to the source code. Their experimental results show that
RISING outperforms CHANGEADVISOR in clustering and positioning accuracy,
thus producing more reliable results.

To better understand users’ review contents and reduce the information gap
between developers and users, most studies tend to artificially customize specific
rules or concepts for mining user review features. Guzman E et al. [19] proposed
a method for classifying app reviews into several categories related to software
maintenance. Specifically, they divided user reviews into bug reports, functional
advantages, functional defects, user requests, etc., which can provide developers
with a detailed suggestion based on user reviews. Di Sorbo et al. [3,10] proposed
a user intention classification method SURF to systematically define specific
aspects of an app (such as UI, file download, etc.) that need to be maintained.
It can effectively help developers plan app update tasks in the future.

Compared with directly extracting or clustering user review topics, the above-
mentioned approaches further refined user review information and partitioned
it into specific categories. However, little attention has been paid to how to
mine users’ significant intentions from app reviews in a timely manner, which
are essential for developers to update and maintain their apps. To this end, this
paper focuses on extracting users’ sentiment and preference features in a con-
tinuous period. This will allow app developers or app vendors to track users’
behaviors timely, and alert them to users’ significant intentions promptly.

3 Methodology

DSISP aims to help developers to keep track of users’ significant intentions which
may be considered in app maintenance and improvement tasks for developers.
It employs data mining and sentiment analysis techniques to automatically ana-
lyze users’ sentiment and preferences for apps over a period of time. Figure 1
overviews the framework of DSISP. First, DSISP extracts users’ sentiment and
fine-grained preferences from their reviews through sentiment analysis and NLP,
respectively. This obtains the user sentiment and produces a list of fine-grained
preference features. Then, the review sentiment and preference evolution are ana-
lyzed based on time series. Afterwards, DSISP establishes the temporal correla-
tion between sentiment and preference features. Finally, it employs a sentiment
valley identification algorithm to detect users’ significant intentions.

Fig. 1. Overview of the DSISP
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3.1 Review Preprocessing

App reviews are generally submitted via mobile terminals and written using
mobile keyboards. They often contain lots of noise data, such as misspelled
words, non-English words and non-informative words, etc. Such noise data
impacts the fine-grained preference feature extraction from user reviews. The
review data needs to be preprocessed first.

Multi-language Filtering and Lemmatization. We use the Langid tool4

to filter non-English comment information from user reviews. Then, we use the
Wordnet5 lemmatizer from NLTK6 to achieve word stem for reducing the number
of features that need to be inspected later.

Noun, Verb, and Adjective Extraction. We use the part of speech (POS)
tagging functionality of NLTK to extract the nouns, verbs, and adjectives in
the reviews as these parts of a speech are most likely to express the users’ fine-
grained preference features. We manually inspected 1,040 reviews to validate
this assumption.

Noise Word Filtering. This step aims to reduce the non-informative words
from user reviews, such as emotional words (e.g., “bad” and “nice”), abbrevia-
tions (e.g., “asap”), and useless words (e.g., “someone”), etc. We use wordMap-
per [20], a dictionary of nearly 300,000 vocabularies related to app reviews, to
reduce the impact of non-information words. It contains common spelling errors,
abbreviations and abbreviated words in user reviews and their corrections. Based
on this dictionary, we add extra words related to app reviews to the dictionary,
such as“you’re→you are”, “app”, “developer names”, etc., summarized by two
researchers from 1,040 user reviews. These predefined stop words are filtered out
together with the stop words provided by NLTK.

After the preprocessing, most of the noise data has been removed from the
user reviews. However, the preprocessing also shortens the length of the review
texts at the same time. Thus, some of the review texts may contain too little
information to be useful for extracting preference features. Therefore, in our
work, we select reviews with rich vocabulary information - reviews with 4 words
or fewer are discarded.

3.2 Review Sentiment Extraction

Sentiment analysis is the process of assigning a positive or negative quantita-
tive value for each review [21]. We use SentiStrength [13], a sentiment analysis
tool, to perform user review sentiment analysis. Compared with other tools,
SentiStrength provides several advantages: it is designed for short informal texts
with abbreviations and slang (features commonly observed in app review). It
employs linguistic rules for negations, amplifications, booster words, emotions,
which are particularly well suited for processing user reviews.
4 https://github.com/saffsd/langid.py.
5 https://wordnet.princeton.edu/.
6 http://nltk.org/.

https://github.com/saffsd/langid.py
https://wordnet.princeton.edu/
http://nltk.org/


Detecting User Significant Intention via Sentiment-Preference 391

With SentiStrength, we assign each user review a positive RS+ and negative
RS− sentimental score, both ranging from 1 (neutral) to 5 (extremely positive
or negative). The higher absolute value of the sentence score is taken as the
final score of the review sentence, because the larger absolute value can reflect
the actual sentiment of the sentence more accurately. In addition, it is worth
noting that the emoticons, polarity words, etc., in user reviews would impact
their sentiment. For instance, “love” is assigned a score of [3, −1] and “!” a
[1, −1] score. Therefore, we analyze the user review sentiment scores directly
without data preprocessing discussed in Sect. 3.1.

3.3 Fine-Grained Preference Extraction

Compared with ratings provided by users, user reviews offer finer-grained infor-
mation and have become a rich source to help detect users’ preferences [22].
Most of the reviews contain users’ opinions on various aspects of the app (i.e.,
user preference), such as functional features or app security. For example, let us
consider the review sentence “Uploading pictures with the app is necessary!”.
The functional feature (i.e., user preference feature) “Uploading picture” in this
sentence expresses the user’s intention directly.

We use the collocation search algorithm of NLTK to extract the fine-grained
features in user reviews. Collocation can be expressed as a set of words that
often co-occur [23]. It can include two or more words [14], but does not require
words that are always adjacent. In user reviews, preference features can often
be described as collocation phrases since they usually appear more frequently
and represent a specific meaning about the app, e.g., app features or used expe-
rience. Given a set of collocation phrases, we use the grammatical relationship
collocation extraction algorithm based on n-gram distance to find a collocation
of two words in user reviews. Assume a collocation phrase (wi, wj), wi is the base
word, and wj is the collocation word. Both wi and wj belong to the review corpus
after the preprocessing discussed in Sect. 3.1. We evaluate whether the review
collocation phrase is reasonable based on the following three conditions [24]:

strength = freqi−f̄
σ ≥ k0, (C1)

spread ≥ U0, (C2)
pi

j ≥ p̄i +
(
k1 × √

Ui

)
, (C3)

(1)

where freqi represents the frequency of collocation phrase (wi, wj) appear in user
reviews, f̄ is the average frequency of all collocation phrases in review corpus.
In addition, let us define

spread = Ui =

∑10
j=1

(
pj

i − p̄i

)2

10
(2)

where pj
i is the appearance times of the collocation phrase (wi, wj) in the distance

j, the distance range of English words is defined as [−5, 5], similar to [24],
p̄i = 1

10

∑5
j=−5 p

j
i (j �= 0) is the average appearance times of collocation phrase
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(wi, wj) in all distances. k0, k1, and U0 are custom thresholds. In our work, we
set k0 = 1, k1 = 1, and U0 = 10, similar [24].

In fact, the strength in C1 of formula (1) is to calculate the z−score of freqi,
so as to filter out collocation phrases that appear less frequently in users reviews.
The spread in C2 is the variance of collocation phrases at various distances, the
greater the spread, the more reasonable the collocation phrase. The C3 further
filters out collocation phrases that are k1 times of pi based on the distance
distribution of collocation (wi, wj). So as to get the most reasonable collocation
phrase.

A large number of collocations can be mined from user reviews, since users
might use different words to express the same preference feature, i.e., the col-
location phase has a synonym phenomenon. Therefore, we use the synonym
dictionary Wordnet to merge different collocations. For example, if we have the
following collocation phrases, <picture view>, <view photographs> and <see
photo> with a frequency of 20, 10, and 5 respectively, we will select the most
frequent occurrence collocation phrase (i.e., <picture view>) as the final merged
preference feature. After implementing synonym merging, the top 10 colloca-
tion phrases with the highest frequency are selected as the final fine-grained
preference features.

Preference Feature Score Acquisition. We compute the sentiment score for
a preference feature based on the following principles: 1) If preference feature
PFi appears in review sentence j, its sentiment score is equal to the positive
or negative score of the sentence in which it is located; 2) If there are both
positive Po+ and negative Ne− scores in review sentence j, the preference feature
sentiment score PFSi is calculated as:

PFSi =
{
Po+, |Po+| > |Ne−|
Ne−, else (3)

That is, the largest absolute value is selected as the feature score since it best
expresses the user’s sentiment toward the preference feature.

3.4 Sentiment and Preference Evolution

Time Series Sentiment Evolution. Assuming the users have made n reviews
on an app during time slice Ti. A total of sentiment scores can be obtained,
denoted as RS( score ) = {RSi1, RSi2, . . . , RSin}. It is worth noting that at a
fixed time, the number of user reviews for the same app is not fixed. Therefore,
we take the average sentiment score ARS(score) as the users’ sentiment score
calculated as follows:

ARS( score ) =
1
n

n∑

j=1
i∈T (T1,T2,...,Tm)

RSi,j (4)

where T (T1, T2, . . . , Tm) represents m consecutive but non-overlapping time
slices with equal length. For example, each Ti is 5 days or a week, RSi,j is
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Fig. 2. Sentiment evolution of Uber and PPSSPP-PSP

the jth review sentiment score of the app in the Ti, n is the number of reviews
within Ti.

Figure 2 shows the sentiment evolution trends of Uber and PPSSPP-PSP. The
history of users’ sentiment score changes from Dec. 2018 to Jan. 2019 is visualized
by line charts. We can see that the users express various changing trends for
different apps over time. This phenomenon also validates our assumption above
- users’ sentiment changes over time. In addition, apart from a stable sentiment
trend, users’ sentiment often rises or falls rapidly during different time slices,
resulting in peaks and valleys, e.g., Uber.

Time Series Preference Evolution. To calculate fine-grained preference fea-
ture score during different time slices and grasp the tendency of different prefer-
ence features over time, for each app, we construct a TSPFS (Time-Series Prefer-
ence Feature Score) matrix to represent the distribution of fine-grained preference
feature scores by all the users on each feature within different time slices.

Table 1. Time-series preference feature score matrix (TSPFS)

T1 T2 . . . Tm

PF1 PFS1,1 PFS1,2 . . . PFS1,m

PF2 PFS2,1 PFS2,2 . . . PFS2,m

. . . . . . . . . . . . . . .

PFn PFSn,1 PFSn,2 . . . PFSn,m

Table 1 presents a TSPFS matrix. A row of the matrix indicates that n fine-
grained preference features (i.e., PF1, PF2, . . . , PFn), and columns are m con-
secutive but non-overlapping time slices with equal lengths (i.e., T1, T2, . . . , Tm).
Ti represents the ith time slice. PFSi,j is the overall score of preference feature
j within the ith time slice, and is calculated as follows:

PFSi,j =
n∑

k=1
i∈T (T1,T2,...,Tm)

FRSi,j,k (5)
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where n indicates the frequency that feature j appears within the ith time slice,
FRSi,j,k is the score of preference feature j in review k in slice Ti.

Figure 3 shows the evolution of users’ preference features toward Uber, which
includes the preference features and its proportions, feature scores. Take “cus-
tomer service (−19): 38.45%” in Fig. 3 for example. It is a preference feature,
where −19 is the preference feature score, and 38.45% is the proportion of pref-
erence features “customer service” of all the preference features at that time.
Given a larger proportion of the feature and the absolute value of the feature
score, the preference feature can better reflect the user’s intention within that
time slice.

As we can observe from Fig. 3, users’ preferences are constantly changing
across different time slices. For example, users’ preferences include features “cus-
tomer service”, “waiting time” and “credit card”. Their scores are −19, −6 and
4, respectively between December 12, 2018, and December 15, 2018. However,
from December 16, 2018, to December 19, 2018, users’ preference feature “credit
card” disappeared, and the feature scores of “customer service”, “waiting time”
changed. This means that the degree of preference changed. The similar can be
observed in other time slices. Here, we mainly focus on the new features with
low feature scores since they are more likely to indicate users’ real intention.

Fig. 3. Time series preference feature evolution of Uber

3.5 Sentiment-Preference Feature Correlation Analysis

As discussed before, users’ sentiment change over time due to the app updates,
security issues, etc. Accordingly, peaks and valleys appear in users’ sentiment
trend. Figure 4 shows the temporal correlation between users’ sentiment and pref-
erence features. (T1, T2, T3, . . . , Tm) represents consecutive but non-overlapping
time slices with equal lengths. During different time slices, we can mine users’
preference features based on users’ sentiment (e.g., valley or peak) and imple-
ment sentiment-preference correlation analysis. In this study, we focus on the
users’ sentiment in valleys since they are more likely to indicate users’ prefer-
ence features. (t1, t2, t3, . . . , tm) represents the corresponding sentiment valley
time points in each time slice. Through these valley time points, we can mine
users’ preference features and obtain their significant intentions.
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Fig. 4. Temporal correlation between user sentiment and preference features

3.6 User Significant Intention Detection

Users’ intentions are in association with their sentiment. In order to detect users’
significant intentions, the first step is to identify their significant sentiment (i.e.,
valley). Given the review sentiment scores and fine-grained preference features
obtained with the methods discussed in Sects. 3.2 and 3.3, we partition a fixed
time slice vt, such as 5 or a week, etc., and find the sentiment valleys during that
time slice. The specific process for identifying user sentiment valleys is shown in
Algorithm 1.

We detect users’ significant intentions around sentiment valleys. Similar to
twitter texts, user reviews are short texts. Pagano and Maalej [16] found that
80.4% of users’ reviews contain 160 characters or fewer, making Twitter-LDA [15]
a good candidate for analyzing topics in user reviews. Therefore, we use Twitter-
LDA to summarize the fine-grained preference features (i.e., collocation phrases)
during the sentiment valley time slice as users’ significant intentions (i.e., high-
level preference features, referred to as HLpf hereafter). Table 2 shows three
most common HLpf topic distribution of Uber app with their sentiments under
sentiment valley within the time slices December 12–15, 2018. We can observe
that these topics mainly represent the users complain about the worst customer
service, credit card and waiting for time problems of Uber. These can well reflect
the users’ significant intentions.

Table 2. Topic distribution within the sentiment valley of Uber

Topic PFSi,j

customer service, customer disgusting, service sometimes,
service worst, contact customer

−19

credit card, credit cost, card adding, card discounted,
card inconvenient

4

waiting time, waiting outside, amount time,
driver waiting, driver outside

−6
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Algorithm 1. User Sentiment Valley Identification (SVI)
Input: D: the set of user reviews which include sentiment score and date

vt: the number of days in a time slice
Output: valley list: the list of valleys

1: initialization : status ← unknown
2: for each d ∈ D do
3: if d.status ← unknown then
4: if d.sentiment score >d+1 then
5: status ← downhill
6: else
7: status ← uphill
8: end if
9: end if

10: if d.status ← downhill then
11: if d.sentiment score<(d+1).sentiment score then
12: if d.date valley list[−1].date<vt then
13: if valley list [-1].sentiment score>d.sentiment score then
14: valley list[-1]← d
15: else
16: add d to valley list
17: end if
18: end if
19: end if
20: end if
21: end for
22: return valley list

4 Experiments and Results

4.1 Experiment Preparation

Review Dataset. We select the testing apps based on the following three cri-
teria: i) there are adequate user reviews; ii) they are from different categories to
ensure the generalization of the testing apps; iii) there are detailed changelogs.

Finally, we select six testing apps from Google Play and collected their
changelogs from App Annie. Table 3 lists the testing apps with app name, cat-
egory, total reviews and review time, etc. Overall, we obtain 48,278 reviews
between November, 2018 and April, 2019 for all testing apps. Among them, they
are include 3 open-source apps, because we want to verify whether DSISP can
detect the users’ significant intentions when the app with fewer user reviews
but more modifications than closed-source apps. In addition, the review time is
before the app update time. This can judge whether the user intentions detecting
by DSISP are processed by the developer in time, thereby verifying the feasibility
and efficiency of DSISP.

Changelogs. We evaluate the performance of DSISP using apps’ official changel-
ogs as ground truth. The changelogs reflect the actual modifications made by
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Table 3. The subject apps

AppName Category Reviews Review time Changelog version Update time

YouTube Music Music & Audio 5,875 2018.11.9–

2019.1.24

2019.04.01 2019.4.1

Uber Maps & Navigation 7,890 2018.12.12–

2019.1.6

3.332.10005 2019.1.9

Facebook Social 33,288 2018.12.19–

2019.1.7

2019.01.08 2019.1.8

PPSSPP-PSP

emulator (open)

Action 1,100 2018.12.6–

2019.3.17

1.8.0 2019.3.18

AnySoftKeyb

oard (open)

Tools 59 2018.12.12–

2019.3.21

2019.03.22 2019.03.22

Tutanota (open) Communication 66 2018.12.22–

2019.4.4

3.50.11 2019.4.25

the developer when maintaining and updating an app. Table 4 shows several
changelogs of PPSSPP-PSP emulator under version 1.8.0. As we can see that
the changelog records include bugs fixing (e.g., Graphics fixes), or new feature
added (e.g., Allow putting PSP storage on custom paths like SD cards), etc.
Although the changelogs may not cover all the modifications to the releases,
they represent a lower bound and the prominent part of the changes [12]. Hence,
It is suitable for validating the users’ significant intentions detected by DSISP.

Table 4. The Changelog of PPSSPP-PSP emulator under V1.8.0

Performance Metrics. We employ the following three performance metrics
to verify the effectiveness of DSISP. The PrecisionSI indicates the precision of
detecting users’ significant intentions. RecallSI indicates whether the detected
significant intentions reflect the changes mentioned in the changelogs. Fhybrid

balances between PrecisionSI and RecallSI .

PrecisionSI =
S(C ∩ SI)

S(C)
, RecallSI =

S(C ∩ SI)
S(SI)

Fhybrid = 2 × PrecisionSI × RecallSI

PrecisionSI + RecallSI

(6)

S(C) represents the changelog records, S(SI) is the users’ significant inten-
tions detected by DSISP, and S(C ∩ SI) represents the number of detected
significant intentions which mentioned in changelogs. During our evaluation, we
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experimentally set the parameters of topic k = 10 by empirically, vt = 5. More
other vt values will be discussed in Sect. 4.2.

4.2 User Significant Intention Detection Result

Table 5 reports the results of PrecisionSI , RecallSI , and Fhybrid achieved by
DSISP. We can observe that DSISP has obtained a very high PrecisionSI with
an average value of 0.962, while its RecallSI reaches 0.629 (Fhybrid = 0.755).
For the closed-source apps, the PrecisionSI has reached 1.0, indicating that the
users’ significant intentions detected by DSISP cover all changelog information,
i.e., the users’ preferences in the sentiment valley are genuinely reflect the users’
significant intentions.

Furthermore, we also found that except for YouTube Music (RecallSI =
0.313) and Uber (RecallSI = 0.398) app, the RecallSI of other apps is higher
than 0.7. We manually analyzed the reviews of YouTube Music and Uber app,
and found that this is due to the fact that there are much more reviews for
popular apps under the sentiment valley. As a result, the users’ significant inten-
tions mined by DSISP not only cover the changelogs but also include some other
modification information which not mentioned in changlogs. Therefore, it led to
a lower RecallSI . For open-source apps, due to the more frequent modifies and
updates by developers, the modify records contained in changlog are also more,
so the RecallSI value is higher than the closed-source apps as a whole, which
indirectly proves that DSISP can efficiently mine users’ significant intentions.

In addition, we also analyzed the effect of different vt on the efficiency of
DSISP. vt indicates the size of time slice during the sentiment valleys are mined.
Table 5 shows the results of DSISP when vt = 5, 10 and 15, we can observe that
with vt increases, the PrecisionSI , RecallSI and Fhybrid are showing diversi-
fied changes, such as increasing, decreasing, or unchanged, this indicates that
different time granularities will have a direct impact on mining users’ signifi-
cant intentions by DSISP. The average optimal PrecisionSI (i.e., 0.962) and
Fhybrid (i.e., 0.755) are achieved while vt = 5. This is also the value that we set
in our experiment for detecting users’ significant intentions mentioned above.
More over, the developers can also dynamically set other vt values as needed.

Table 5. PrecisionSI , RecallSI , and Fhybrid achieved by DSISP

AppName vt = 5 vt = 10 vt = 15

PrecisionSI RecallSI Fhybrid PrecisionSI RecallSI Fhybrid PrecisionSI RecallSI Fhybrid

YouTube Music 1.000 0.313 0.606 1.000 0.333 0.500 1.000 0.338 0.506

Uber 1.000 0.398 0.569 1.000 0.398 0.569 1.000 0.398 0.569

Facebook 1.000 0.717 0.835 1.000 0.717 0.835 1.000 0.717 0.835

PPSSPP-PSP

emulator (open)

1.000 0.710 0.830 1.000 0.761 0.864 1.000 0.761 0.864

AnySoftKey-

board (open)

1.000 0.785 0.880 0.750 0.750 0.750 0.750 0.750 0.750

Tutanota (open) 0.772 0.850 0.809 0.409 0.818 0.545 0.272 0.857 0.413

Average 0.962 0.629 0.755 0.859 0.629 0.677 0.837 0.637 0.656
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Efficient detection performance can provide reliable suggestions for developers
to update and maintain their apps in future.

5 Conclusion and Future Work

Timely and effectively detecting users’ sentiment and preferences is crucial to
capturing users’ significant intentions, which is paramount for app developers
and app vendors in mobile app maintenance and evolution. In this paper, we
proposed DSISP, a framework for automatically detecting users’ significant inten-
tions from users’ reviews. DSISP produces two summaries at different granularity
levels about app reviews. These summaries can help app developers to analyze
and quantify users’ intentions about individual app features and to use this infor-
mation to identify new requirements or to plan future releases. Moreover, DSISP
can keep track of users’ up-to-date sentiment and preferences and analyze how
these preference features are temporally correlated with users’ intentions. The
experimental results show that DSISP can effectively and efficiently detect users’
significant intentions, with a precision of 0.962 and a Fhybrid of 0.755 on average.

In the future, we will leverage multi-dimensional user feedback information to
enhance DSISP, such as email records between users and developers, app reviews
on social media, etc. We will also employ the app issues and commits to mining
whether users’ feedback bugs can be reflected at the source code level with the
aim to help app developer maintain and improve their apps.
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Abstract. To enhance the comprehensive research on the distribution sensing
tasks in Mobile Sensor Networks (MSNs) nowadays, we proposed Task Distribu-
tion algorithm based on Relationships of Agents (TDRA) in this paper. First, the
score and feature factors of the mobile agents are considered comprehensively in
the direct correlation model, and it constructs the correlation model by combin-
ing the direct and indirect correlation samples. Second, we introduce a Mobility
Model based on the Exponential Distribution (MMED), and obtain the calculation
method of probability parameter λ according to the analysis in this paper. At last,
we integrate the constructed correlationmodel andmobility model; then, we apply
to the algorithm of task distribution. By the experiments on the algorithms, it indi-
cates that the proposed algorithm improves the performance of task distribution
significantly, and offers a more accurate and reliable service.

Keywords: Mobile Sensor Network · Correlation · Mobile agent · Task
distribution

1 Introduction

To make better use of the smart devices’ sensing, computing and storing abilities, a new
type of sensing computing model called mobile crowdsensing computing [1–3] (MCSC)
has emerged. Generally speaking, mobile crowdsensing (MCS) uses the sensing func-
tionality of mobile agents (MAs), to accomplish various sensing tasks by collaboration,
which cannot be easily done by one single mobile agent. The function of an agent is
explained as follows. First, it is an entity with high autonomy (a system, machine, com-
puter software program, etc.) running in a dynamic environment. Its fundamental goal
is to accept the commission from another entity (a user, computer program, system,
machine, etc.), and to provide the service or assistance. Second, the agent can make an
appropriate reaction by actively learning, communicating and social interaction from
the environment. Besides, through collaboration, these intelligent agents can solve the
complex problems which are challenging for some traditional ways to accomplish.
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The various theories and applications [4] of MCS are gradually being enhanced and
can be applied to traffic congestion analysis [5], environmental pollution map identifi-
cation [6], sound pollution monitoring [7], free parking space detection [8], residents’
health index measurement [9], etc. In the process of participating in sensing tasks, the
collaboration among MAs, or between MA andMCS platforms need to interact through
data transmission and communication, so mobile sensor networks (MSNs) is formed.
Compared to wireless sensor networks, MSNs in crowdsensing have various remark-
able characteristics. In these traditional networks, nodes are typically equipped with the
sensors that only have limited functions, and are statically deployed [10]. In contrast,
MAs are able to carry sensors with various sensing functions and are therefore able to
participate in a variety of complex, difficult sensing tasks [1]. Moreover, the carriers of
smart devices are generally mobile users, and MAs have strong capabilities of intelli-
gence, mobility and flexibility; they can offer assistance to people in daily life. Also,
MAs can be repeatedly recruited through reward and incentive mechanisms based on
collaborative group approaches in MSNs to participate in the sensing task. Therefore, it
has excellent reusability and extensibility [4].

In MSNs, the distribution of sensing tasks is a critical part. Task distribution means
that allocates the sensing tasks to the qualified MAs, as the requirements of the tasks,
and achieves the goals initially set. Therefore, for the MCS, we believe that it is critical
to design an efficient task distribution method to facilitate MA’s to access to sensing
tasks in a low-consumption and fast way.

2 Related Work

Sensing tasks are constrained by the specific space-time, which make MAs to be limited
by the task releasing time, the task shortest completion time, and the task completion
deadline. Meanwhile, if MAs are not in the task sensing execution area, it may take
time to reach there, and a specific amount of resources will be consumed. To address
this problem, Xiao et al. [11] have proposed an offline and an online task distribution
algorithm, to reduce the additional cost caused by communication. These algorithms
use a short-distance connection (i.e. Wi-Fi, Bluetooth) for data transmissions. In online
task distribution method, the platform distributes functions according to the sequence
in which MAs enter the sensing area until all tasks are distributed to qualified MAs.
Furthermore, Xiao et al. studied MAs’ historical mobility data to predict their future
traces. The sensing tasks are divided into two categories, independent and collaborative
types [12]. An online task distribution method based on the maximum completion task
time is proposed, it can minimize the maximum task completion time.

In [13], the water filling algorithm is proposed that the latest completion time of the
tasks took bymultiple agents, is regarded as the quality of service.However, the sequence
of the task completion by the agents is neglected. Zhang [14] et al. use the agents’ time
and space coverage range to represent the service quality of sensing tasks. In [15], a
hybrid heuristic algorithm is proposed, which combines the ideas of a genetic and greedy
algorithm. This can ensure the quality of service while meeting the conditions of real-
time requirements of sensing tasks, andminimizing the delays due to data transmissions.
During the task distribution phase, the task quality of service is determined mainly by
the MAs.
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InMSNs, to minimize anMA’s cost while executing a task, or to maximize the social
benefits of theMCSplatform is themost commonly considered factor of task distribution.
In [16], two kinds of task distribution methods, online and offline on polynomial time
are designed to ensure the sensing platform provides the maximum social benefit, in the
condition that the task completion cost is already determined. It can ensure the sensing
platform provides the maximum social benefit. Besides, to ensure stable space-time
coverage, [17] proposes a hybrid method based on a greedy algorithm and bee colony
algorithm. This algorithm can confirm the quality of service, while minimizing the cost,
and maximizing the sensing platforms’ profit during task distribution. Messaoud et al.
[18] designed a task distribution algorithm based on the tabu search. It can distribute
tasks to appropriate MAs, while satisfying information quality and energy constraints.
It maximizes the information quality and minimize the MAs’ task completion cost. In
an in-depth study, [19] adds the principle of fairness to the task distribution. It designed
the multi-objective optimization function, which can not only achieve fairness, but is
also able to ensure the maximization of service quality and the MSN platform’s profit.

Therefore, we believe it is necessary to enhance the research comprehensively when
distributing tasks. Take these limitations into account, a new task distribution model is
needed. This newmodel needs to consider a number of factors including the geographical
location of MAs, the profit of the platform, time of the task completion, fairness, and
the order of task execution progress.

3 Algorithm Design

3.1 Task Distribution

In MSNs, the behavior of MAs can be described as two-factor group (A, T ). It shows
influence of agent, A, on the task T, and it can be indicated by a bipartite graph. G is a
bipartite graph of Agent-Task, G = (V, E), V means the vertices, E is the edge. It is an
undirectedmodel. The vertices of the graph are divided into two disjoint and independent
sets, and the two vertices connected by each edge belong to two different sets. Figure 1
shows the mapping of MAs and sensing tasks, A represents MAs, T represent sensing
tasks. A bipartite graph G indicates the relationship between agents and sensing tasks,
in the process of dynamic tasks distribution. V = VA ∩ VT, and it represents the nodes
set of MAs and tasks. If there is a connection between A and T, an edge, E(A, T ), is
formed between A and T.

In MSNs, the agent collaborations can be reflected as a collaborative network graph,
and the relationship betweenMAs and sensing tasks can be described as a bipartite graph.
To do the further analysis, a new diagram is formed by integrating these two [22]. There
is one edge connecting these two agents in the diagram, if they are in a collaboration.
According to the above descriptions, the correlation betweenMAs and sensing tasks can
be indicated by a diagram. In other words, the dynamic process of tasks distribution of
MAs can also be reflected in the diagram. Through it, we can obtain the evaluation on the
correlation between the node VA ofMA and the node VT of the sensing task, which there
is no edge directly connect between them.Webelieve if the correlation coefficient is high,
it is more probable that VT will be distributed. Therefore, the issue of task distribution
is regarded as the issue of correlation between entities. Therefore, the quantification of
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correlation coefficient and mobility characteristics of MAs plays a significant role in the
task distribution research. We introduce the correlation and mobility models, and work
out the quantification of correlation coefficient and mobility.

3.2 Correlation Model

The central part ofMSNs isMAs, they have a stable correlation coefficient if theMAs are
intimately connected. At present, for the correlation coefficient calculation, most stud-
ies only consider the immediate, non-directional relationship among MAs. However,
this is limited in the real MSNs; only instant, non-directional features cannot obtain the
accuracy measure of the correlation coefficient. In this paper, the direct and indirect rela-
tionships between MAs are fully considered, and the directivity of the link is measured,
a new method of correlation coefficient calculation is given as below.

1) Direct Correlation. When two MAs participate in the same sensing task, they
have an intimate relationship due to their interactions. The value of which is the direct
correlation coefficient between them,where it reflects oneMA’s comprehensive behavior
evaluation of another MA.

In MSNs, an effective way to compute the direct correlation coefficient is to involve
both the target MA and the MAwhich is waiting for the task to be distributed. The direct
correlation coefficient measurement can be based on the number of interactions between
them. The initial direct correlation coefficient is as follows:

INITDR(i, j) = Min
(
Nij, β

)

β
(1)

Where INIT_DR means the initial direct correlation coefficient, and Nij represents
the number of interactions between MAi and MAj, and the threshold β indicates the
minimum interaction amount between the MAs in the intimate correlation. If the num-
ber of interactions between MAs does not reach the set threshold β, the initial direct
correlation coefficient is measured by the weight ratio of interactions amount over β. If
the number of interactions between the two is greater than the set threshold, then the
weight value is 1. If the correlation coefficients among MAs are measured only by the
number of interactions, it is not appropriate with the reality. As time goes by, the corre-
lation coefficient changes, which makes it possible for the direct correlation coefficient
to become meaningless after a while. Therefore, the logistic function [20] is introduced
to describe the phenomenon of the reduced correlations with time. The time attenuation
function is as follows:

f (ti, j) = 1

1 + e−ti,j
(2)

where, ti, j represents the difference between the time when MAi interacts with MAj

and the system time, and f (t) is a monotonically increasing function, the value is in the
interval (0, 1). To effectively depict the process of correlations varies with time, the value
of the logistic function is varying with time, too. Furthermore, the evaluation criteria are
added to characterize the weighted difference. The evaluation criteria are as follows:

S =
{
1, |ri,j × f (ti,j) − rj,i × f (tj,i)| ≤ ε

0, |rii,j × f (ti,j) − rj,i × f (tj,i)| > ε
(3)
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where ε represents an evaluation factor. ri,j indicates theMAi’s evaluationMAj, and rj,i
indicates the MAj’s evaluation of MAi. If the time-weighted score difference between
the two MAs is less than or equal to the value of ε, then it means the interaction is suc-
cessful and the number of successful interactions is accumulated. The direct correlation
coefficient is calculated as follows:

DR(i, j) = INITDR(i, j) × SUMsuccess(i, j)

SUMtotal(i, j)
× S (4)

where SUMsuccess(i, j) indicates the number of successful interactions between MAi

and MAj that have occurred, SUMtotal(i, j) indicates the total amount that they have
interacted with. However, in Formula (4), the weight assigned to MAs are either 1 or 0,
when the interaction is successful or not. In fact, there are always differences in MAs’
characteristics ofMSNs. Therefore, this article refers toMAs’ characteristics to describe
the weight. When describing an MA’s feature, it varies according to different working
duration. Therefore, the influence of its working duration factor on feature also needed
to be considered. The working duration (age) weight is calculated as follows,

ωage(i, j)=
{
1, |MAtime(i) − MAtime(j)| ≤ ρ

ρ
|MAtime(i)−MAtime(j)| , |MAtime(i) − MAtime(j)| > ρ

(5)

where, ρ represents a duration benchmark, MAtime(i) indicates the work duration of
MAi, and MAtime (j) indicates the work duration of MAj. When the duration difference
between two MAs is less than or equal to the benchmark ρ, then these two are not
considered to be affected by the working duration, and the weight is 1. Otherwise, work
duration (age) weights are calculated as a percentage of the benchmark ρ to the duration
difference, therefore it makes an effective portrayal of the features between MAs in
different duration. As Formula (5) shows, when the duration difference is greater, the
weight of the duration is smaller; conversely, smaller differences results in a greater
weight of the duration [21]. An MA’s feature is quantified as the following formula:

F(i, j) =

∑

j∈U
Sim(i, j) × ωage(i, j)

|U| (6)

whereU indicates the set of all MAs in the sensing task, i and j representMAi andMAi in
U. Sim(i, j) indicates the similarity ofMAi andMAj. The calculation of similarity is key
to the task distribution, it gives a quantification among MAs. Through the calculation,
we can obtain the agent set which are similar to this MA, and the result is significant to
the accuracy of task distribution. So far, there are various calculation models on the MA
similarity, Pearson correlation coefficient is a superior example, and also widely used.
It is shown as follows [29],

Sim(i, j) =

∑

u∈Ui,j

(
ri,u − r̄i

)(
rj,u − r̄j

)

√
∑

u∈Ui,j

(
ri,u − r̄i

)2
√

∑

u∈Ui,j

(
rj,u − r̄i

)2
(7)
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where, −1 ≤ sim(i, j) ≤ 1, MAi and MAj have a higher degree of similarity, if sim(i,
j) is larger. ri,u and rj,u represent the evaluation score of the MA on the sensing task i
and j. r̄i and r̄j represent the mean evaluation score of i and j. ωage(i, j) represents the
work duration weight of the different MAs calculated by Formula (5). Among them, the
higher the similarity between MAi and MAj in the set Ui,j, the greater the correlation
coefficient between the MAs, and also the duration weight value is higher. Therefore, a
direct correlation is constructed according to the difference weight came from different
sense tasks. Its calculation method is as follows:

DR(i, j) = INITDR(i, j) •
∑

s∈SUC
F(i, j)

∑

a∈ALL
F(i, j)

(8)

where, F(i, j) indicates theMAi’s preference onMAj, SUC indicates the set of successful
interactions of MAs in sensing task, and ALL represents a set of the total interactions in
sensing tasks.

2) Indirect Correlation.When there is no direct interaction between MAs, an inti-
mate correlation is required through the transmission of several indirect connections
among them, and the quantified value is called indirect correlation coefficient. Given
a correlation network G among MAs, Fig. 1 illustrates the initial correlation network
diagram, the calculation of the indirect correlation coefficient among the current MAi

and other MAs [22] are shown as follows. First, makeMAi as the starting point, all MAs
that have a direct intimate relationship with MAi are arranged around MAi. Then, the
other MAs which has directly intimate between the previous MAs are arranged in the
second layer withMAi as the center, and so on. This forms a series of concentric circles
with MAi as the center. To obtain the shortest path, only the connection edges between
different layers of nodes are preserved. The intimate network G’ of the target node is
obtained as Fig. 2. It illustrates the target node’s network, at which point the Layer 1
nodes (MA1, MA2, MA3, MA4) are the direct intimate nodes ofMAi, and Layer 2 nodes
(MA5, MA6, MA7, MA8) are intimate nods of MAi’s intimate relationship nodes (MA1,
MA2, MA3, MA4) [23]. The following formula obtained by the above analysis is applied
to calculate the indirect correlation coefficient between the current MAi and the second
layer agent MAj of G’.

IR(i, j) = 1

2Lj−1 × 1

1+e− n
2

(9)

where IR(i, j) indicates the indirect correlation coefficient betweenMAi andMAj,Lj is the
MAj’s layer, and nmeans that there are n paths fromMAi toMAj. This approach considers
both the length of the path and the multiple combinations of paths. For example, as node
MA7 , it is at Layer 2, so L7 = 2; there are 2 paths fromMAi toMA7 (MAi —>MA2 —>

MA7 and MAi —> MA4 —> MA7 ), so that n = 2. The indirect correlation coefficient
of MAi toMA7 is (1/21)(1/(1 + e1)) ≈ 0.37.

3) Integrated correlation. The integrated correlation coefficient of MA includes
two parts, which are direct and indirect correlation model, respectively. If the correlation
coefficient of MAi to MAj needs to be calculated. It is necessary to consider not only
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Fig. 2. Schematic diagram of a target node
correlation network

the direct correlation coefficient betweenMAi andMAj, but also the indirect correlation
coefficient of other MAs in the MSNs with the target MAj, therefore,

RD(i, j) = d × DR(i, j) + (1 − d) × IR(i, j) (10)

where RD is integrated correlation, the i and j respectively represent MAi and MAj.
When calculating the correlation coefficient of the target MAi, it also needs to consider
the actual interactions in the MSNs. When the direct interactions betweenMAi andMAj

reach a specific benchmark,MAi mainly depends on its own, and when the interactions
ofMAi are less,MAi relies on the recommended information from other MAs in MSNs.
Therefore, it is crucial to use adynamicweight factord and1-d to calculate the correlation
of the target MAi. Dynamic weighting factor d is defined as follows:

d = min

(
1,

|Ni, j|
Zmin

)
(11)

where, |Ni,j | is the number of direct interactions between MAi and MAj. If it is able to
use only direct interactions to calculate the correlation coefficient, Zmin is the amount
of minimum direct interactions. Zmin has different values for different interactions, and
the value is based on the direct correlations’ dependence on the indirect correlations.

3.3 Mobility Model

InMSNs, MAs are the main elements. Suppose thatMAi has some specific sensing tasks
that must be accomplished. However, thework effort required exceeds its own capability,
so another MA’s is required to offer collaboration. In order to reduce the communication
cost, the communication between them adopts the short-distance wireless communi-
cation mode in the progress. This mode of communication mainly depends on MAs’
encountering one another, so the essential study of mobility model is to depicts the
encountering characteristics. During the progress,MAi meetsMAj, andMAi distributes
a task to MAj. Once this is done, MAi and MAj work collaboratively to complete the
sensing task. MAi can be called a task publisher and MAj can be called a task receiver.
The meaning of the encounters in this paper is that movement within a close range can
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be communicated directly through Bluetooth, or the MAs can enter the communication
range of some Wi-Fi access and be indirectly connected over the Wi-Fi network.

We assume that when the communication duration and bandwidth are sufficient for
each MA to receive tasks, the meeting time of the task publisher and receiver in a model
called Mobility Model based on an Exponential Distribution (MMED). The probability
parameter of the model is λ. Reports in the literature [24–26] have proven in detail that
the encounter time among MAs in MSNs follows the power law, which also supports
the exponential distribution approximately. For the above reasons, MMED model has
been widely used, and it has been described in the literature [27, 28]. In MMED model,
the calculation of the probability parameter λ is critical. Literature [12] proposed that∫ ∞
0 tλie−λi tdt = 1

λi
. Incorporate to this paper, the probability parameter λ calculation is

that λ is the reciprocal of the estimated time that the task publisher and receiver encounter
one another. This is calculated as follows:

λi, j = m
∑

c∈S
∑

(i,j)meet
duration(i, j)

(12)

where, m is the number of times thatMAi encounterMAj during sensing tasks, S is a set
of sensing tasks, c is the sensing task for each successful interaction, and the duration(i,
j) is the duration of the encounter betweenMAi andMAj. According to the formula, it can
be known that when the value of the probability parameters λi, j is smaller, the longer the
duration of the meet between MAi and MAj, the data transmission and communication
between them is better.

4 Task Distribution Algorithms

4.1 Algorithm Description

In order to improve the efficiency and accuracy of task distribution, a correlation model
is built to research the collaboration among MAs, and to do the distribution firstly. The
calculation on correlation coefficient is divided into two models, direct and indirect
ways. Integrate the two models into the comprehensive correlation coefficient. While
calculating direct correlation coefficient, the factors of time and preference are con-
sidered. Secondly, Mobility Model based on an Exponential Distribution (MMED) is
employed for the analysis of MA mobility characteristics, and the calculation of proba-
bility parameter λ is already provided in this paper. At last, correlation coefficient and
mobility model are integrated to do the tasks distribution in MSNs. The specific steps
of the algorithm are described as follows:

(1) According to Pearson Formula (7), calculate the similarity Sim(i, j) between the
target agent MAi and MAj;

(2) Calculate the direct correlation DR(i, j) and the indirect correlation IR(i, j) of MAi

and MAj according to Eq. (8) and (9);
(3) Calculate the integrated correlation RD(i,j) of MAi and MAj according to Eq. (10)

and (11);
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(4) Obtain the comprehensive similarity by the integrated correlation and similarity of
MAi and MAj, and calculate the comprehensive similarity CSim(i, j). The specific
calculation method is as follows:

CSim(i, j) = ηRD(i, j) + (1 − η)Sim(i, j) (13)

where, η represents theweight of correlation, 1-η represents theweight ofMA similarity.

(5) According to Formula (12), calculate MA mobility probability parameter λ. Then,
combine the mobility probability parameter λ and the comprehensive similarity
into the Sim_Mob(i, j). The specific calculation method is as follows:

Sim_Mob(i, j) = ϕCSim(i, j) + (1 − ϕ)λi, j (14)

where ϕ represents the weight of the comprehensive similarity, and 1-ϕ represents the
weight of the MA mobility encounter probability;

(6) Distribute the sensing tasks that have no MA involved, and calculate the predictive
score of agent u on task i, P(u, i). The calculation method is as follows:

P(u, i) = Ru +
∑

n∈NCu
Sim_Mob(u, n) × (

Rn, i − Rn
)

∑

n∈NCu
(|Sim_Mob(u, n)|) (15)

where, Sim_Mob(u, n) represents the comprehensive similarity of MA u and n, Rn, i

represents the score of the mobile agent n on the sensing task i, Ru indicates the average
score of the sensing task by the mobile agent u and n;

(7) Calculate MA predictive score according to (6), and continue the task distribution.

4.2 Evaluation Criteria

Evaluating the accuracy of the proposed algorithm on task distribution is very important.
This paper uses the mean absolute error (MAE) as one crucial distribution quality mea-
surement [30, 31]. The accuracy of the algorithm is measured by the average error value
between the predicted scoring value and the actual scoring value. When the MAE value
is smaller, the accuracy of the algorithm in the task distribution is higher. The MAE is
calculated as follows:

τMAE =
∑

i∈Utest
|pi − qi|
n

(16)
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where, pi represents the predictive score for the target task, qi represents the actual score
of the target task, Utest represents the MA test set, and n represents the amount of MA
test sets. We use Precision and Recall as the measurement index of the accuracy on
task distribution [32]. The data is divided into training set and test set. MAs’ behavior
prediction model is established on the training set, and the behavior can be estimated.
Furthermore, the contact ratio of the predicated results in test set and actual behavior
data can be obtained, and we use it as the index of task distribution accuracy. Therefore,
Precision and Recall are shown as follows,

Precision =
∑ |R(a) ∩ T (a)|

∑ |R(a)| (17)

Recall =
∑ |R(a) ∩ T (a)|

∑ |T (a)| (18)

where, R(a) represents the task distribution list of the test set, and T(a) is the task
distribution list of the training set.

5 Experimental Analysis

5.1 Experiment Design

In this paper, we use MIT’s Reality Mining as an experimental dataset [33]. It contains
more than 80,000 records with nearly 100 users’ interaction data in Bluetooth network,
for approximately 9 months. For some reasons, some user interactions in this dataset
produce a relatively small amount of valid data. This part of the user dataset is excluded;
we select 80 users with a large amount of data as the experimental object. The data
from the experimental dataset for a 12-week period (September 27, 2004 to December
21, 2004) is used. The dataset on the first 8 weeks is used as a training and the data
from last 4 weeks are used in the test. The dataset for these 80 users is selected, and
the time interval is set as 14 natural days. The data during this period are more active
than other time periods. We employ data from the experiment to analyze the correlation
among users, and process the task distribution based on the proposed algorithm (TDRA).
Six groups of experiment are designed. The first five groups are used to determine five
unknown parameters. The last one is used to compare the accuracy of the task distribution
algorithms, among the proposed algorithm and others.

5.2 Results and Analysis

1) Experiment 1. In Formula (1), set the threshold value β is 30 –100, its effect on the
distribution accuracy of the sensing task measurement τMAE is shown in Fig. 3.

According to Fig. 3, it can be observed that as the value of β becomes larger, the
τMAE initially decreases and subsequently increases gradually. When of β = 80, τMAE

is the lowest, which means the distribution accuracy has the best behavior.
2) Experiment 2. When the evaluation factor ε according to Formula (3) is 1, 2

and 3, the effect τMAE, reflects the accuracy of the sensing task distribution, is shown
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Fig. 3. Effects of different β values on τMAE Fig. 4. Effect of different ε values on τMAE

in Fig. 4. It can be observed that under the number of collaborators, when ε is 2 (i.e.
the score difference on of any two MA interactions is 2), the distribution accuracy of
the proposed algorithm is optimal. The reason is that while ε is higher, the successful
interactions between MAs is greater, and the opposite is also true. As a result, the
correlation coefficient will be very different from the mean value.

3) Experiment 3. When the duration benchmark ρ, obtained from Formula (5) is
in the range of 5–15, the effect on the accuracy τMAE of the task distribution is shown
in Fig. 5. It indicates that when the value of ρ is too large or too small, the proposed
algorithm does not achieve the best task distribution accuracy.When ρ is 10, the value of
τMAE is the lowest, indicating that the distribution accuracy of the algorithm is optimal
when the work duration benchmark is 10. While the work duration benchmark is too
low or too high, it makes the deviation of MA’s feature becomes large. As a result, the
correlation coefficient will be very different from the mean value.

Fig. 5. Effect of different ρ values on τMAE Fig. 6. Effect of different d values for τMAE

4) Experiment 4. In Formula (9), the value weight factor d is 0–1, and the effect on
the accuracy τMAE of the task distribution is shown in Fig. 6. When the value of d is too
large or too small, the proposed algorithm is not optimal in terms of task distribution
accuracy. However, when d is 0.7, the τMAE is minimal, indicating that when the value
of correlation weight is 0.7, the distribution accuracy of the algorithm is optimal. If d
is 0, the integrated correlation is just indirect, it means the relationship between task
publisher and receiver is not intimate, the result deviates the mean value. If d is 1, the
integrated correlation is all direct. When there are mistakes occurred in some MAs, the
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influence on the whole distribution is large, and the eventual result also deviates the
mean value.

5) Experiment 5. In Formula (14), the weight of the comprehensive similarity (the
correlation and mobility proportional parameter) ϕ is 0 –1, and the influence on the
accuracy τMAE of the task distribution is shown in Fig. 7. When ϕ is too large or too
small, the proposed algorithm is not optimal in terms of task distribution accuracy.When
the value of ϕ is 0.6, the τMAE is the smallest, it indicates that the distribution accuracy
of the algorithm is optimal. Both comprehensive similarity and mobility model of MAs
need to be taken into account to achieve the best result. If only consider the similarity,
neglect the movement, the result will not be satisfied. In the same way, the efficiency
and service quality will be affected if only consider the mobility of MAs.

Fig. 7. Effect of different ϕ values on τMAE Fig. 8. Comparison of different algorithms
on τMAE

6) Experiment 6. In order to verify the accuracy of the proposed task distribution
algorithms, some parameters, identified in Experiments 1–5, are set as β = 80, ε = 2,
ρ = 10, d = 0.7 and ϕ = 0.6 in this experiment. The algorithms include Recommenda-
tions Based on Collaborative Filtering (Sequential MF) [34], and Fine-grainedMultitask
Allocation Framework (MTPS) [35]. The experimental results are shown in Fig. 8. We
can see that τMAE decreases and task distribution accuracy increases with an increasing
number ofMAswith collaborative relationships. However, the task distribution accuracy
starts to decrease when the number of MAs with collaborative relationships is too large.
When the number of MAs is 60, the accuracy of the proposed algorithm performance
task distribution is optimal.

Table 1. Optimal τMAE values of different algorithms

Task distribution algorithm Best τMAE

MTPS 0.833

Sequential MF 0.782

TDRA 0.760
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The proposed algorithm (TDRA) is compared with the other two for the optimal
τMAE value. The optimal τMAE values of each algorithm are shown in Table 1. As it can
be seen in this table, compared with the other two task distribution algorithms, the τMAE

value of the algorithm proposed in this paper is the smallest, that is, the accuracy of its
task distribution is the best.

According to the experiments above, the correlation among MAs and MAs’ pref-
erence on the sensing tasks have a huge influence on the algorithms. Furthermore, we
believe that the valuable information mining from MSNs through these characteristics,
and apply it to the algorithms, brings a positive effect on the sensing tasks distribution.

6 Conclusion

We had taken a research to improve the efficiency and accuracy of the sensing task
distribution algorithms. The correlation model and mobility model are constructed, and
a new task distribution algorithm is proposed in this paper. Furthermore, several com-
parative experiments have verified the superiority of the proposed algorithm. By the
experiments on three algorithms, It indicates that the proposed algorithm improves the
performance of task distribution significantly, and offers a more ac-curate and reliable
service. In the future, it is necessary to further study the influencing factors affecting the
task distribution, and to improve the efficiency and service quality.
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1 Università di Bologna, Bologna, Italy
2 INRIA, Sophia-Antipolis, France

3 University of Southern Denmark, Odense, Denmark
mauro@imada.sdu.dk

Abstract. Serverless computing is a Cloud development paradigm where
developers write and compose stateless functions, abstracting from their
deployment and scaling. In this paper, we address the problem of function-
execution scheduling, i.e., how to schedule the execution of Serverless func-
tions to optimise their performance against some user-defined goals. We
introduce a declarative language of Allocation Priority Policies (APP)
to specify policies that inform the scheduling of function execution. We
present a prototypical implementation of APP as an extension of Apache
OpenWhisk and we validate it by i) implementing a use case combining
IoT, Edge, and Cloud Computing and ii) by comparing its performance
to an alternative implementation that uses vanilla OpenWhisk.
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1 Introduction

Serverless computing [1], also known as Functions-as-a-Service, is a new devel-
opment paradigm where programmers write and compose stateless functions,
leaving to Serverless infrastructure providers the duty to manage their deploy-
ment and scaling. Hence, although a bit of a misnomer—as servers are of course
involved—the “less” in Serverless refers to the removal of some server-related
concerns, namely, their maintenance, scaling, and expenses deriving from their
sub-optimal management (e.g., idle servers). Serverless computing was first pro-
posed as a deployment modality for Cloud architectures [1] that pushed to the
extreme the per-usage model of Cloud Computing, letting users pay only for the
computing resources used at each function invocation. However, recent industrial
and academic proposals, such as platforms to support Serverless development in
Edge [2] and Internet-of-Things [3] scenarios, confirm the rising interest of neigh-
bouring communities to adopt the Serverless paradigm.
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Fig. 1. Example of function-execution scheduling problem.

While Serverless providers have become more and more common [4–10] the
technology is still in its infancy and there is much work to do to overcome
the many limitations [1,9,11,12] that hinder its wide adoption. One of the main
challenges to address is how should Serverless providers schedule the functions on
the available computation nodes. To visualise the problem, consider for example
Fig. 1 depicting the availability of two Workers—the computation nodes where
functions can execute. One Worker is in Italy (Site 1) and the other in Greece
(Site 2). Both Workers can execute a function that interacts (represented by the
dashed green lines) with the Private Data storage located at Site 1. When the
Load Balancer (acting as function scheduler) receives a request to execute the
function, it must decide on which Worker to execute it. To minimise the response
time, the Load Balancer should consider the different computational loads of
the two Workers, which influence the time they take to execute the function.
Also, the latency to access the Private Data storage plays an important role in
determining the performance of function execution: the Worker at Site 1 is close
to the data storage and enjoys a faster interaction with it while the Worker at
Site 2 is farther from it and can undergo heavier latencies.

In this paper, we address the problem of function-execution scheduling opti-
misation [9] by proposing a methodology that provides developers with a declar-
ative language, called Allocation Priority Policies (APP). Developers can use
APP to specify a scheduling policy for their functions that the scheduler later
uses to find the worker that, given the current status of the system, best fits the
constraints specified by the developer of a given function. To substantiate our
proposal, we extended the scheduler of OpenWhisk [5], a well-known open-source
distributed Serverless platform, to use APP-defined policies in the scheduling of
Serverless functions. In Sect. 3 we detail the APP language and present our proto-
typical implementation as an extension of Apache OpenWhisk [5]—in Sect. 2 we
provide some introductory notions of the Serverless paradigm and an overview
of the OpenWhisk platform. To validate our extension, in Sect. 4, we present
a use case combining IoT, Edge, and Cloud Computing and we contrast an
implementation of the use case using our APP-based prototype with a näıve one
using three coexisting installations of the vanilla OpenWhisk stack to achieve
the same functional requirements. We present the data on the performance of the
two deployments, providing empirical evidence of the performance gains offered
by the APP-governed scheduling. We conclude comparing with related work in
Sect. 5 and discussing future and concluding remarks in Sect. 6.
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2 Preliminaries

In this section, we give some preliminary information useful to better understand
the motivations and technical details of our contribution. First, we outline the
problems that motivate our research—as found in the literature. Then, we give
an overview of the OpenWhisk Serverless platform, which we use in Sect. 3 to
implement a prototype of our solution to the function scheduling problem.

Serverless Function Scheduling. The Serverless development cycle is divided in
two main parts: a) the writing of a function using a programming language
supported by the platform (e.g. JavaScript, Python, C#) and b) the definition
of an event that should trigger the execution of the function. For example, an
event is a request to store some data, which triggers a process managing the
selection, instantiation, scaling, deployment, fault tolerance, monitoring, and
logging of the functions linked to that event. A Serverless provider—like IBM
Cloud Functions [10] (using Apache OpenWhisk [5]), AWS Lambda [4], Google
Cloud Functions [7] or Microsoft Azure Functions [6]—is responsible to schedule
functions on its workers, to control the scaling of the infrastructure by adjusting
their available resources, and to bill its users on a per-execution basis.

When instantiating a function, the provider has to create the appropriate exe-
cution environment for the function. Containers [13] and Virtual Machines [14]
are the main technologies used to implement isolated execution environments
for functions. How the provider implements the allocation of resources and the
instantiation of execution environments impacts on the performance of the func-
tion execution. If the provider allocates a new container for every request, the
initialisation overhead of the container would negatively affect both the per-
formance of the single function and heavily increase the load on the worker. A
solution to tackle this problem is to maintain a “warm” pool of already-allocated
containers. This matter is usually referred to as code locality [9]. Resource allo-
cation also includes I/O operations that need to be properly considered. For
example, the authors of [15] report that a single function in the Amazon server-
less platform can achieve on average 538 Mbps network bandwidth, an order of
magnitude slower than single modern hard drives (the authors report similar
results from Google and Azure). Those performance result from bad allocations
over I/O-bound devices, which can be reduced following the principle of ses-
sion locality [9], i.e., taking advantage of already established user connections to
workers. Another important aspect to consider to schedule functions, as under-
lined by the example in Fig. 1, is that of data locality, which comes into play
when functions need to intensively access (connection- or payload-wise) some
data storage (e.g., databases or message queues). Intuitively, a function that
needs to access some data storage and that runs on a worker with high-latency
access to that storage (e.g., due to physical distance or thin bandwidth) is more
likely to undergo heavier latencies than if run on a worker “closer” to it. Data
locality has been subject of research in neighbouring Cloud contexts [16,17].

Apache OpenWhisk. Apache OpenWhisk [5] is an open-source Serverless plat-
form initially developed by IBM—at the core of the company’s Serverless offer
[10]—and subsequently donated to the Apache Software Foundation. It is a



Allocation Priority Policies 419

production-ready Serverless platform and it supports the execution of functions
written in many programming languages, including JavaScript, Python, Java,
Go, and C#.

OpenWhisk is an event-driven system that runs code in response to events
(e.g., changes to a database, an HTTP request or IoT sensors readings) or direct
invocations. To pick up an event from a source, OpenWhisk defines a feed that
activates triggers linked to a set of rules and actions to be executed.

OpenWhisk systems include one controller and a pool of invokers. The con-
troller is a load balancer that, given an action to be executed, forwards the
execution request to one selected invoker. The invokers execute actions using iso-
lated Docker containers. Invokers are the OpenWhisk equivalent of the Workers
mentioned in our presentation. Latency-wise, container instantiation is by far
the most relevant overhead endured by the invokers. One of the most effective
mechanisms to reduce such overhead is to reuse containers, i.e., when a function
is invoked multiple times, the system can reuse the container of a terminated
invocation of that function rather than creating a fresh one.

The load balancing policy followed by the controller aims at maximising
reuse. When the controller needs to schedule the execution of a function, a
numeric hash h is calculated using the action name. An invoker is then selected
using the remainder of the division between h and the total number of invokers
n. The controller checks if the invoker is overloaded. If the chosen invoker is
overloaded, the index is incremented by a step-size, which is any of the co-prime
numbers smaller than the amount n of available invokers.

When no invoker is available after cycling through the entire invoker pool,
the load balancer randomly selects an invoker from those that are considered
“healthy”—able to sustain the workload. This happens when there are invokers
that are healthy but have no capacity available when the scheduling algorithm was
searching for an invoker. When there are no healthy invokers, the load balancer
returns an error stating that no invokers are available for executing the function.

Motivation. As discussed, at least three aspects related to function schedul-
ing affect the performances of function execution in Serverless platforms: code,
session, and data locality. Load balancing policies adopted by state-of-the-art
Serverless platforms like Apache OpenWhisk take advantage only of code local-
ity, but they currently have no way to integrate also information on other types
of locality. To take advantage of other forms of locality, the load balancer should
have knowledge on the way functions access external resources, like I/O-bound
devices or databases, whose usage depends on the implementation of functions.

Our work aims at bridging that information gap, presenting a language that
any Serverless platform can use in its scheduling policies to consider those factors.
Our approach is conservative: with its default settings (explained in the next
section) it can capture the status of current Serverless platforms. Then, more
advanced Serverless users and platform providers can use the features offered by
our proposal to optimise the execution of functions.

Moreover, optimised scheduling policies could be the outcome of automatic
heuristic/inference systems applied to the functions to be executed. Automatic
synthesis of optimized scheduling policies is the long-term objective of our research
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and this paper addresses the first fundamental step, i.e., showing the feasibility of
Serverless platforms instructed with customized load balancing rules. Given this
objective, we narrow the current exposition to manually-defined configurations
and we leave the exploration of automatic configuration to future work.

Fig. 2. The APP syntax.

3 The APP Language

Current serverless platforms, like OpenWhisk, come equipped with hard-coded
load balancing policies. In this section, we present the Allocation Priority Policies
(APP) language, intended as a language to specify customised load balancing
policies and overcome the inflexibility of the hard-coded load balancing ones.
The idea is that both developers and providers can write, besides the functions
to be executed by the platform, a policy that instructs the platform what workers
each function should be preferably executed on. Function-specific configurations
are optional and without them the system can follow a default strategy.

As an extension of the example depicted in Fig. 1, consider some functions
that need to access a database. To reduce latency (as per data locality principle),
the best option would be to run those functions on the same pool of machines
that run the database. If that option is not valid, then running those functions
on workers in the proximity (e.g., in the same network domain) is preferable
than using workers located further away (e.g., in other networks). We comment
below an initial APP script that specifies the scheduling policies only for those
workers belonging to the pool of machines running the database.

couchdb_query:

- workers:

- DB_worker1

- DB_worker2

strategy: random

invalidate: ↩

capacity used: 50 followup::

fail

At the first line, we define the policy tag,
which is couchdb query. As explained below,
tags are used to link policies to functions.
Then, the keyword workers indicates a list of
worker labels, which identify the workers in
the proximity of the database, i.e., DB worker1

and DB worker2. As explained below, labels are
used to identify workers. Finally, we define
three parameters: the strategy used by the

scheduler to choose among the listed worker labels, the policy that invalidates
the selection of a worker label, and the followup policy in case all workers
are invalidated. In the example, we select one of the two labels randomly, we
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invalidate their usage if the workers corresponding to the chosen label are used
at more than the 50% of their capacity (capacity used) and, in case all workers
are invalidated (followup), we let the request for function execution fail.

The APP Syntax and Semantics. We report the syntax of APP in Fig. 2. The
basic entities considered in the APP language are a) scheduling policies, identi-
fied by a policy tag identifier to which users can associate their functions—the
policy-function association is a one-to-many relation—and b) workers, identified
by a worker label—where a label identifies a collection of computation nodes.
An APP script is a YAML [18] file specifying a sequence of policies. Given a
tag, the corresponding policy includes a list of workers blocks, possibly closed
with a followup strategy. A workers block includes three parameters: a collection
of worker labels, a possible scheduling strategy, and an invalidate condition. A
followup strategy can be either a default policy or the notification of failure.

We discuss the APP semantics, and the possible parameters, by commenting
on a more elaborate script extending the previous one, shown in Fig. 3. The
APP script starts with the tag default, which is a special tag used to specify the
policy for non-tagged functions, or to be adopted when a tagged policy has all
its members invalidated, and the followup option is default.

In Fig. 3, the default tag describes the default behaviour of the serverless
platform running APP. The wildcard "*" for the workers represent all worker
labels. The strategy selected is the platform default (e.g., in our prototype in
Sect. 4 the platform strategy corresponds to the selection algorithm described in
Sect. 2) and its invalidate strategy considers a worker label non-usable when its
workers are overloaded, i.e., none has enough resources to run the function.

Besides the default tag, the couchdb query tag is used for those functions that
access the database. The scheduler considers worker blocks in order of appear-
ance from top to bottom. As mentioned above, in the first block (associated to
DB worker1 and DB worker2) the scheduler randomly picks one of the two worker
labels and considers a label invalid when all corresponding workers reached the
50% of capacity. Here the notion of capacity depends on the implementation (e.g.,
our OpenWhisk-based APP implementation in Sect. 4 uses information on the
CPU usage to determine the load of invokers). When both worker labels are
invalid, the scheduler goes to the next workers block, with near DB worker1 and
near DB worker2, chosen following a best first strategy—where the scheduler con-
siders the ordering of the list of workers, sending invocations to the first until it
becomes invalid, to then pass to the next ones in order. The invalidate strat-
egy of the block regards the maximal number of concurrent invocations over
the labelled workers—max concurrent invocations, which is set to 100. If all the
worker labels are invalid, the scheduler applies the followup behaviour, which is
to fail.

Summarising, given a policy tag, the scheduler considers the corresponding
workers blocks starting from the top. A block includes three parameters:

– workers: contains a non-empty list of worker labels or the "*" wildcard to
encompass all of them;
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Fig. 3. Example of an APP script.

– strategy: defines the policy of worker label selection. APP currently supports
three strategies:
● random: labels are selected in a fair random manner;
● best first: labels are selected following their order of appearance;
● platform: labels are selected following the default strategy of the serverless

platform—in our prototype (cf. Sect. 4) the platform option corresponds
to the algorithm based on identifier hashing with co-prime increments
explained in Sect. 2.

– invalidate: specifies when to stop considering a worker label. All invalidate
options below include as preliminary condition the unreachability of the cor-
responding workers. When all labels in a block are invalid, the next block or
the followup behaviour is used. Current invalidate options are:
● overload: the corresponding workers lack enough computational resources

to run the function;1

● capacity used: the corresponding workers reached a threshold percentage
of CPU load (although not being overloaded);
● max concurrent invocations: the corresponding workers have reached a

threshold number of buffered concurrent invocations.
– followup: specifies the policy applied when all the blocks in a policy tag are

considered invalid. The supported followup strategies are:
● fail: stop the scheduling of the function;
● default: follow what is defined in the default tag.

1 The kind of computational resources that determine the overload option depends on
the APIs provided by a given serverless platform. For example, in our prototype in
Sect. 4 we consider a worker label overloaded when the related invokers are declared
“unhealthy” by the OpenWhisk APIs, which use memory consumption and CPU
load.
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Fig. 4. Use case architecture representation.

4 Implementation in Apache OpenWhisk

We have implemented a serverless platform in which load balancing policies
can be customised using the APP language. This implementation (available at
https://github.com/giusdp/openwhisk) was obtained by modifying the Open-
Whisk code base. Namely, we have replaced the load balancer module in the
OpenWhisk controller, with a new one that reads an APP script, parses it, and
follows the specified load balancing policies when OpenWhisk invokers should
be selected2.

To test our implementation, we used the Serverless use case depicted in Fig. 4
encompassing three Serverless domains: i) a private cloud with a low-power
edge-device Worker at a first location, called Site 1; ii) a private cloud with the
Worker at Site 1 and a mid-tier server Worker at a second location, called Site
2; iii) a hybrid cloud with the two Workers at Site 1 and Site 2 and a third
mid-tier server from a Public Cloud. Site 1 and Site 2 are respectively located
in Italy and Greece while the Public Cloud is located in northern Europe.

Site 1 is the main branch of a company and it runs both a data storage of
Private Data and the IoT Devices used in their local line of production. Site
1 also hosts the scheduler of functions, called the Load Balancer. The Worker
at Site 1 can access all resources within its site. Site 2 hosts a Worker which,
belonging to the company virtual private network (VPN), can access the Private

2 In this paper we chose to associate one worker label with one invoker. Future devel-
opments can use labels to identify pools of resources, following, e.g., recent proposals
to change OpenWhisk invokers with Cluster Managers https://bit.ly/3cxYnTB).

https://github.com/giusdp/openwhisk
https://bit.ly/3cxYnTB
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Data at Site 1. The company also controls a Worker in a Public Cloud and a
data storage with Public Data accessible by all Workers.

In the use case, three different function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located
Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results. We compare the differences on the architecture and
performance of the use case above as implemented using our APP-based Open-
Whisk prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—
in Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:

- workers:

- worker_site1

followup: fail

Function_S:

- workers:

- worker_site2

- worker_site1

strategy: random

followup: fail

Function_B:

- workers:

- worker_public_cloud

- worker_site2

- worker_site1

strategy: best_first

followup: fail

https://okeanos.grnet.gr
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Commenting the code above, we have function E represented by Function E,
where the only invoker available is the one at Site 1 (worker site1). Since we do
not allow other invokers to handle E , we set the followup value to fail. For S
we have Function S, where the invokers available are the ones at Site 1 and Site
2 (worker site2). We let the two invokers split evenly the load of invocations,
assigning random as routing strategy. Also here we let the invocation fail since
we do not have other invokers able to access the Private Data storage within
the company VPN. Finally, the policy for B (Funcion B) includes all workers
(hence also worker public cloud besides the ones at Site 1 and Site 2) selected
according to the best first strategy. As for S , also here we let the invocation
fail since no other invokers are available.

For the APP-based deployment, we locate the Load Balancer at Site 1 reg-
istering to it the three Workers/invokers from Site 1, Site 2 and the Public
Cloud. For the näıve implementation, we use the same cluster but we install
three separate but co-existing vanilla OpenWhisk instances. The three separate
instances are needed to implement the functional requirements of limiting the
execution of function E only on the Italian Worker, of S only on the Italian
and Greek Workers, and of B on all Workers.

To implement the databases (both Private and Public ones) we used a
CouchDB instance deployed at Site 1 and another in the Public Cloud. To
simulate the access to IoT devices at Site 1 (function E ) we implemented a
JavaScript function that, queried, returns some readings after a one-second delay.
We followed a similar strategy for S and B , where two JavaScript functions
perform a (respectively lighter and heavier) query for JSON documents.

Architectural Evaluation. An evident problem that arises with the triple-
deployment combination is the increased consumption of computational and
memory resources to host 3 copies of all the components, most importantly the
Controller and the Invoker. A partial solution to this is to deploy separately
the Kafka, Redis, and CouchDB components used by OpenWhisk, configuring
them to be used by the three different installations simultaneously. However, we
did not perform such optimisation to minimise the differences between the two
tested architectures.

Quantitative Evaluation. To have statistically relevant figures to compare the
two setups (the APP-based and the vanilla one), we fired a sequence of 1000
requests for each function in each setup. We report the results of the tests of the
APP-based implementation in Table 1 and those of the vanilla one in Table 2.
In both tables, the first column on the left reports the tested function. The
three following columns report the number of requests served by the respective
Workers at Site 1, Site 2, and in the Public Cloud. The last two columns report
the time passed from sending a request to the reception of its response: the
second-to-last column reports the average time (in ms) and the last one reports
the average time (in ms) for the fastest 95th percentile of request-responses.

We comment on the results starting from E (first row from the header in
both tables). As expected, all requests for E are executed at Site 1. The slight
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Table 1. 1000 invocation for each function in the APP-based OpenWhisk deployment.

Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1096.53 1019.03

S 466 534 0 149.18 90.86

B 0 90 910 105.18 64.62

Table 2. 1000 invocations for each function in the vanilla OpenWhisk deployment.

Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1159.90 1025.52

S 19 981 0 385.30 302.08

B 185 815 0 265.69 215.793

difference in the two averages (APP ca. 5.6% faster than vanilla) and the two
fastest 95th percentile (APP ca. 0.6% faster than vanilla) come from the heavier
resource consumption of the vanilla deployment.

As expected, the impact of data locality and the performance increase
provided by the data-locality-aware policies in APP become visible for S
and B . In the case of S , the Load Balancer of the vanilla deployment elected
Site 2 as the location of the main invoker (passing to it 98.1% of the invoca-
tions). We remind that S accesses a Private Data storage located at Site
1. The impact of data locality is visible on the execution of S in the vanilla
deployment, being 88.35% slower than the APP-based deployment on average
and 107.5% slower for the fastest 95th percentile. On the contrary, the APP-
based scheduler evenly divided the invocations between Site 1 (46.6%) and Site
2 (53.4%) with a slight preference for the latter, thanks to its greater availability
of resources. In the case of B , the Load Balancer of the vanilla deployment
elected again Site 2 as the location of the main invoker (passing to it 81.5% of all
the invocations) and Site 1 as the second-best (passing the remaining 18.5%).
Although available to handle computations, the invoker in the Public Cloud
is never used. Since B accesses a Public Data storage located in the Public
Cloud, also in this case the effect of data locality is strikingly visible, marking
a heavy toll on the execution of B in the vanilla deployment, which is 86.5%
slower than the APP-based deployment on average and 107.8% slower for the
fastest 95th percentile. The APP-based scheduler, following the preference on
the Public Cloud, sends the majority of invocations to the Public Cloud (91%)
while the invocations that exceed the resource limits of the Worker in the Public
Cloud are routed to Site 2 (9%), as defined by the Function E policy.

As a concluding remark over our experiment, we note that these results
do not prove that the vanilla implementation of OpenWhisk is generally worse
(performance-wise) than the APP-based one. Indeed, what emerged from the
experiment is the expected result that, without proper information and software
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infrastructure to guide the scheduling of functions with respect to some opti-
misation policies, the Load Balancer of OpenWhisk can perform a suboptimal
scheduling of function executions. Hence, there was a chance that the Load Bal-
ance of OpenWhisk could have performed some better scheduling strategies in
our experiment, however that would have been an occasional occurrence rather
than an informed decision. Contrarily, when equipped with the proper informa-
tion (as it happens with our APP-based prototype) the Load Balancer can reach
consistent results, which is the base for execution optimisation.

5 Related Work

While the industrial adoption of Serverless is spreading [19], it is a hot research
topic due to its “untapped” potential [1,9,11,12].

Regarding the optimisation of Serverless function scheduling, Kuntsevich
et al. [20] present an analysis and benchmarking approach for investigating
bottlenecks and limitations of Apache OpenWhisk Serverless platform, while
Shahrad et al. [21] report on the performance implications of using a Serverless
architecture (over Apache OpenWhisk), showing how its workloads go against
the locality-preserving architectural assumptions common in modern processors.

One of the main approaches explored in the literature to improve Server-
less performance through function scheduling comes from improving the warm-
vs cold-start of functions [1,12]. Those techniques mainly regard containers re-
utilisation and function scheduling heuristics to avoid setting up new contain-
ers from scratch for every new invocation. However, other techniques have been
recently proposed in the literature. Mohan et al. [22] present an approach focused
on the pre-allocation of network resources (one of the main bottlenecks of cold
starts) which are dynamically associated with new containers. Abad et al. [23]
present a package-aware scheduling algorithm that tries to assign functions that
require the same package to the same worker. Suresh and Gandhi [24] present
a function-level scheduler designed to minimise provider resource costs while
meeting customer performance requirements.

Besides resource re-utilisation, other approaches tackle the problem of opti-
mising function scheduling with new balancing algorithms. Steint [25] and Akkus
et al. [26] proposed new algorithms for Serverless scheduling, respectively using a
non-cooperative game-theoretic load balancing approach for response-time min-
imisation and a combination of application-level sandboxing with a hierarchical
message bus. Sampé et al. [27] present a technique to move computation tasks
to storage workers with the aim to exploit data locality with small, stateless
functions that intercept and operate on data flows.

Baldini et al. [19] focus on the programming of compositions of Serverless
functions. In particular, they demonstrate that Serverless function composition
requires a careful evaluation of trade-offs, identifying three competing constraints
that form the “Serverless trilemma”, i.e., that without specific run-time support,
compositions-as-functions must violate at least one of the three constraints. To
solve the trilemma, they present a reactive core of OpenWhisk that enables the
sequential composition of functions.
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Other works explored how to apply the Serverless paradigm to contexts like
Fog/Edge and IoT Computing. The work presented in [28] studies the emergence
of real-time and data-intensive applications for Edge Computing and proposes
a Serverless platform designed for it. The work in [29] introduces instead a
framework for supporting Multi-Provider Serverless Edge Computing to schedule
executions across different providers.

Hall et al. [30] show how containers introduce an overhead unsuitable for
Edge applications (requiring low-latency response or with hardware limitations),
proposing a Serverless platform based on WebAssembly as a lighter environment
to run Serverless applications in Edge scenarios. In [31] the authors present a
variant of Edge Computing called “Deviceless” Edge Computing, where a proto-
typical architecture supports the distributed pooling and scheduling of geograph-
ically sparse devices with a high tolerance to network disruption and location-
aware scheduling of functions.

Besides optimising Serverless scheduling, a common denominator of the works
described above is that many extend or experiment with Apache OpenWhisk,
which is also the technology we used to implement our prototype. Indeed, a line
of future work on APP can test its expressiveness by capturing and implementing
the policies presented in those works, so that users can choose to use them in
their function deployments. In this context, APP is an encompassing solution i)
able to let Serverless providers offer those scheduling strategies as options to their
users, who can then choose which of them best suit their needs and ii) able to let
different scheduling policies coexist in the same platform, while now researchers
and implementors provide them as ad-hoc, incompatible implementations.

Recent work tackled the problem of formally reasoning on Serverless archi-
tectures. Gabbrielli et al. [32] present a core calculus for Serverless, combining
ideas from both the λ-calculus (for functions, equipped with futures) and the
π-calculus (for communication), paired with a repository of function definitions.
On a similar research direction, Jangda et al. [33] present a formal model for
Serverless architectures, also inspired by the λ-calculus, equipped with two
semantics: a more involved one that captures the low-level details of function
implementations and a simpler one that omits low-lever details of computation to
ease reasoning on the interactions among Serverless functions. These two works
offer formalisms that can be used to automatically reason on the properties of
APP-defined function deployments. Future works can explore new policies that,
through static analyses, capture details of function execution able to optimise
their scheduling.

6 Conclusion

We addressed the problem of function-execution scheduling optimisation, propos-
ing a methodology that provides developers with a declarative language called
APP to express scheduling policies for functions. We extended the scheduler of
OpenWhisk to use APP-defined policies in the scheduling of Serverless func-
tions and empirically tested our extension on a use case that combines IoT,
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Edge, and Cloud Computing, contrasting our implementation with a näıve one
using the vanilla OpenWhisk stack to achieve the same functional requirements.
We believe that APP can be seamlessly integrated in other Serveless platforms.

Besides the future investigations centred around the exploration of locality
principles (e.g., code and session locality) as outlined in Sect. 5, an interest-
ing line of work is to evolve APP to be able to express the definition of in-
policy elements—such as scheduling strategies (strategy) and invalidation rules
(invalidate)—directly in the source APP configuration, next to the ones given
as “primitives” by the scheduler (e.g., platform or best first strategies).

We are also interested in studying heuristics that, based on the monitoring of
existing serverless applications, can suggest to its developer optimising schedul-
ing policies. A starting point for this are configurator optimisers such as [34] that
can be extended to automatically generate policies based on developer require-
ments.

Finally, we would like to investigate the separation of concerns between devel-
opers and providers, trying to minimise the information that providers has to
share to allow developers to schedule functions efficiently, while, at the same
time, hide the complexity of their dynamically changing infrastructure.
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Abstract. Nowadays, Database-as-a-Service (DBaaS) plays a more and
more important role in the era of big data due to its convenience and
manageable capacity. However, with increasing complexity of data-driven
applications, the management of database systems becomes intractable.
To achieve the self-management of resources, forecasting the workload
turns out to be essential. In this paper, we propose a novel machine
learning based model, named Adaptive Recollected Recurrent Neural
Network (AR-RNN) to help DBaaS managers better capture historical
information and predict future workload with a recollection mechanism
based multi-encoder and an attention mechanism based decoder archi-
tecture. Experiments on two real-world datasets show that our model
outperforms both traditional and other machine learning methods for
workload prediction.

Keywords: Database-as-a-service · Self-driving dbms · Workload
forecast · Adaptive Recollected Recurrent Neural Network

1 Introduction

In the era of big data, users’ demand for Database-as-a-Service (DBaaS) [9] is
soaring sharply since it allows users to easily install their own database soft-
ware, or manage the database themselves in the clouding without purchasing
any hardware. On one hand, DBaaS provides end-users with access to abstract
resources and on-demand service. It also ensures the scalability of underlying
data so that service providers can manage fluctuations in the workload. How-
ever, with increasing complexity of data-driven applications and end-users, the
management of database systems becomes more and more intractable. Many
database administrators (DBAs) spend about 25% time to tune the database
system for better performance [11], which is time-consuming and leads to high
manpower costs.
c© Springer Nature Switzerland AG 2020
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In order to achieve self-management of resources, the core step is to accurately
forecast system workload, which can be formulated as a time-series analysis
problem. Figure 1 shows typical workloads of Alibaba Cluster Workload Traces 1

collected from real-world production. As we can see, the CPU workloads in
Fig. 1(a) are non-stationary but relatively periodical. By contrast, the memory
workload in Fig. 1(b) is more stationary. In this case, if we find the pattern
of users’ demand, service providers can provide quality-ensured service with
minimal resource redundancy and improve energy utilization. However, it is not
a straight-forward problem since non-periodic bursts may occur from time to
time, making the curve in Fig. 1 not that smooth.

(a) CPU Workload

(b) Memory Workload

Fig. 1. Part of Records From Alibaba Cluster Workload Traces

Many works have been done in designing a model for workload forecast-
ing [10]. Autoregressive Integrated Moving Average model (ARIMA) [2] is one
of the most typical traditional schemes. it uses statistical equations to give the
explicit predictions but fails short in a number of real world situations. Recent
years, with the development of machine learning technologies, some schemes
leverage neural network based models to solve this problem, such as Multi-
layer Perceptron (MLP) [1], Recurrent Neural Network (RNN), Long Short-term
Memory (LSTM) [8], etc. While these models can achieve high performance given
enough training data, they also suffer from feature selection and vanishing gra-
dient problems. A novel architecture encoder-decoder network built on double
RNNs along with attention mechanism achieves better results in time series, like
Encoder-Decoder [4], POS-RNN [5], and STANN [3]. However, these models still
fail to express the temporal patterns in some complex situations, since they do
not consider the relevant information between inputs.

1 https://github.com/alibaba/clusterdata.

https://github.com/alibaba/clusterdata
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To overcome the above issues, in this paper, we propose Adaptive Recol-
lected Recurrent Neural Network (AR-RNN) model to predict future workload
in DBaaS. Inspired by human recollection [6], which will first recall and collect
the related history information when facing new situations, we design a spe-
cific k-dimension tree (k-d tree) to adaptively recollect the information from
past periods in AR-RNN, named recollection mechanism. Besides, the AR-RNN
system is built on the encoder-decoder framework [4] to get better expression
capacity and we deploy the halting units inspired by Adaptive Computation
Time (ACT) [7] to control its recollection depth. Compared to other traditional
or machine learning methods, the AR-RNN model gets better performance on
two real-world workload datasets.

The rest of the paper is organized as follows. In Sect. 2, we introduce some
notations and formulate the problem into a time series prediction form. Section 3
and Sect. 4 present our model architecture and provide details for its training
phrase. Experimental evaluations will be shown in Sect. 5. At last, We will con-
clude this paper in Sect. 6.

2 Problem Statement

Given a workload series (x1, x2, . . . , xT−1) ∈ RT−1 from time 1 to T − 1, our
goal is to predict the workload at time T , i.e. xT . Adapting the sliding window
algorithm, we use this workload series as the training set to train a network
designed to do prediction by using the most recent l workloads as Eq. (1) shows:

x̂t = F (xt−l, xt−l+1, . . . , xt−1) (1)

where F is the network to learn. The total loss can be expressed as Eq. (2).

T−1∑

i=s

Loss(x̂i, xi) (2)

where s (s � l) is the start time of the prediction and Loss is the loss function
to measure the difference between ground truth and prediction. Parameters in
the network will be updated by standard back-propagation algorithm, until the
network performs well enough, i.e., until the total loss shown in Eq. (2) is small
enough. Then we can use this trained network to predict x̂T using Eq. (1).

3 Adaptive Recollected RNN

Following the encoder-decoder architecture, our proposed Adaptive Recollected
Recurrent Neural Network (AR-RNN) contains a k-dimension multi-encoder
module and an attention mechanism based decoder module, as shown in Fig. 2.
More details will be discussed in following part in this section.
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Fig. 2. An overview of AR-RNN

3.1 Recollection Mechanism Based Multi-encoder Module

Inspired by human’s recollection [6], similar temporal patterns in historical
information can assist us to more accurately forecast future workload series.
To better capture the relevant patterns in history, we propose a k-Recollection
Information Retrieval Algorithm shown in Algorithm1, whose basic data struc-
ture is a k-d tree built in time axis. Suppose we are predicting x̂t. Let xt =
(xt−l, xt−l+1, . . . , xt−1) be the sliding window of the most recent l workloads and
Ht = (x1, x2, . . . , xt−l−1) be the history. Leaves of the k-d tree are all sequences
of length l in Ht. Our algorithm tries to find k sequences of length l that are
most similar to xt.

Algorithm 1: k Recollection Information Retrieval Algorithm
Input: history series Ht = (x1, x2, . . . , xt−l−1) and xt = (xt−l, xt−l+1, . . . , xt−1)
Output: k nearest sequences (x1

t ,x
2
t , . . . ,x

k
t ) in the history series Ht to xt

1 kdTree ← createKDTree(Ht);
2 searchPath ← find the closest path in kdTree that leads to xt;
3 kNNList ← find k nodes in searchPath that are closest to xt;
4 while searchPath is not empty do
5 backNode ← searchPath.pop();
6 maxNode ← farthest node in kNNList from xt;
7 if |xt[split] − backNode[split]| < computeDist(maxNode, xt) then
8 tmpNode ← backNode.fartherChild;
9 if tmpNode then

10 dist ← computeDist(tmpNode, xt);
11 if dist < computeDist(maxNode, xt) then
12 kNNList.swap(tmpNode, maxNode);

13 searchPath.append(tmpNode);

14 return kNNList;
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For convenience, let x0
t = (x0

t−l, x
0
t−l+1, . . . , x

0
t−1) be the original input xt,

and xi
t = (xi

t−l, x
i
t−l+1, . . . , x

i
t−1) (i = 1, 2, . . . , k) be its i-th nearest (most sim-

ilar) sequence. For each i, an encoder LSTM unit will encode xi
t ∈ Rl into its

context vector ci
t ∈ Rm with computing the state sequence (si

t,0, s
i
t,1, . . . , s

i
t,l) by

iterating the following equation from j = 0 to l − 1:

si
t,j+1 = fe(si

t,j , x
i
t−l+j) (3)

where fe is the encoder LSTM unit and si
t,j ∈ Rm is the hidden state in LSTM

at the j-th iteration. We choose the last state si
t,l to be the context vector ci

t

of input sequence xi
t. The initial hidden state si

t,0 can be any random vector in
Rm. The reader is referred to [8] for an excellent introduction to LSTM.

The encoder will encode the initial input xt, together with its k most similar
recollection sequences, into a list of context vectors (c0t , c

1
t , . . . , c

k
t ).

3.2 Attention Mechanism Based Decoder Module

The attention mechanism based decoder module is inspired by the ACT algo-
rithm proposed in [7]. The number of similar sequences k is a hyperparameter
which may largely reduce the accuracy without a careful choice. Therefore, we
add extra sigmoidal “halting” units hi

t for each ci
t (i = 0, 1, · · · , k):

hi
t = σ(Whci

t + bh) (4)

where weight matrix Wh ∈ R1×m and bias bh ∈ R are parameters needed to
learn, and σ is the sigmoid function. hi

t ∈ [0, 1] shows the importance of ci
t.

Then we calculate a weighted sum dt =
∑k

i=0 wi
tc

i
t, named the hidden vector,

where the sum of all weights wi
t, called the attention weights, is 1.

If
∑k

i=0 hi
t ≥ 1 − ε, we determine the attention weight wi

t as follows:

wi
t =

⎧
⎨

⎩

Rt, if i = Nt

hi
t, if 0 ≤ i < Nt

0, if Nt < i ≤ k
(5)

where ε > 0 is a small constant which allows only using c0t when h0
t ≥ 1 − ε,

Nt = min{n :
∑n

i=0 hi
t ≥ 1− ε}, and Rt = 1−∑Nt−1

i=0 hi
t. We try to use hi

t as the
weight of ci

t until the sum is larger than 1 − ε, then let the remainder Rt be the
weight of the last vector cNt

t and abandon vectors with index larger than Nt.
If

∑k
i=0 hi

t < 1 − ε, the idea above may lead to a large weight for ck
t if

all hi
t are rather small. We turn to use the softmax function in this case, i.e.,

wi
t = exp(hi

t)/
∑k

j=0 exp(hj
t ). Note that if k is large enough, this case can hardly

occur. Here we just handle it for rigor and it is not important in practice.
Once we get the hidden vector dt = (d1, d2, . . . , dm), we send it into the

decoder LSTM unit with a new state sequence (s0, s1, . . . , sm) to decode the
hidden vector into the prediction value, by iterating the following equation:

sj+1 = fd(sj , dj+1) (6)

where j is an iterator with j = 0, 1, . . . ,m− 1, fd is the decoder LSTM unit. We
choose x̂t = sm to be the output prediction of the AR-RNN model.
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4 Training Procedure

Apart from the halting units, the AR-RNN model is differentiable, whose param-
eters can be learned by a standard back-propagation algorithm. Let L(x̂t, xt) be
the difference between x̂t and xt, where L is a differentiable loss function.

For the loss at the halting unit for xt, we apply a ponder loss Pt [7]:

Pt = Nt + Rt (7)

where Rt and Nt are defined in Sect. 3.2. The ponder loss Pt provides an upper
bound on total recollection times [7]. It is also what we want to minimize, so the
final loss function for xt is designed as follows:

Loss(x̂t, xt) = L(x̂t, xt) + λPt (8)

∂Loss(x̂t, xt)
∂hi

t

=
∂L(x̂t, xt)

∂hi
t

+ λ
∂Pt

∂hi
t

(9)

where λ is a penalty used to consider the ponder loss. Recall that in the training
procedure, we need to minimize the total loss, as Eq. (2) shows.

The largest challenge is to calculate the gradients at the halting units. Obvi-
ously, if Nt < i ≤ k , the gradient is 0, because such halting units are not really
used. Therefore, we only need to consider i ≤ Nt. Since the halting units only
influence L via their effect on attention weights, by the chain rule, we have

∂L(x̂t, xt)
∂hi

t

=
k∑

j=1

∂L(x̂t, xt)
∂wj

t

∂wj
t

∂hi
t

(10)

Notice that if Nt ≤ j ≤ k, we have wj
t = 0. By definition of dt, we get

∂L(x̂t, xt)
∂wj

t

=
∂L(x̂t, xt)

∂dt
· ∂dt

∂wj
t

=
∂L(x̂t, xt)

∂dt
· cj

t (11)

∂wj
t

∂hi
t

=

⎧
⎨

⎩

1, if 0 ≤ j = i < Nt

−1, if j = Nt and 0 ≤ i < Nt

0, otherwise
(12)

Then the gradient at the halting units can be approximated as following:

∂Pt

∂hi
t

=
{−1, if 0 ≤ i < Nt

0, if i = Nt
(13)

Finally, by Eqs. (9), (10), (11) and (12), the gradient at the halting units can be
shown as:

∂Loss(x̂t, xt)
∂hi

t

=
{

∂L(x̂t,xt)
∂dt

· (ci
t − cNt

t ) − λ, if 0 ≤ i < Nt

0, if Nt ≤ i ≤ k
(14)

Now we can use the standard back-propagation algorithm and train the network
with gradient descent.
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5 Experimental Evaluation

In this section, we will introduce two real-world datasets to experiment with the
AR-RNN model and against other 6 baseline methods of different time intervals.

Alibaba Cluster Trace is derived from one of Alibaba Open Cluster Trace
Program. It contains batch workloads colocated in every machine in the cluster.
Bus Tracker Trace is a mobile phone database application for live-tracking of
the public transit bus system [11]. We generate our two real world datasets by
sampling at random seconds and smoothing with different time intervals.

To demonstrate the effectiveness of the AR-RNN, we compare our model
with 6 existing approaches as our baselines: ARIMA, MLP, LSTM, Encoder-
Decoder, POS-RNN, and STANN. To be fair, we set al.l hyperparameters
in baselines for the best after a grid search, and we apply RMSE as our metric.

Figure 3 shows the result of all models with different time intervals over two
datasets. The ARIMA model has a relative worse performance than machine
learning models, since it tries to find a stationary process with differencing steps,
which is hard to explain the complex temporal patterns of real-world data. RNN
and Encoder-Decoder based models generally perform better due to their inter
connection between temporal inputs. We can see that attention based methods
outperform other baseline models, and this suggests focusing on more important
historical information makes accurate predictions. the AR-RNN gets the best
accuracy respectively on two dataset, benefiting from the recollection mecha-
nism extracting the historical workload patterns. Besides, the AR-RNN model
performs more robustly with different time intervals than the other methods,
since it can adaptively choose the useful information and discard the rest.

(a) Alibaba Cluster Trace (b) Bus Tracker Trace

Fig. 3. Models’ Comparison of Different Time Intervals Over Two Datasets

6 Conclusion and Future Work

DBaaS plays a more and more important role in the era of big data. In this paper,
to help DBaaS better forecast the system workload, we propose a novel machine
learning based model, named AR-RNN. It consists of a recollection mechanism
based multi-encoder to capture historical information and an attention mecha-
nism based decoder to predict future workload. We evaluate our model on two
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typical kinds of workloads and the results show it achieves the best performance
over both traditional and other machine learning methods.
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Abstract. In the context of business process management, predictive
analytics has been applied to making predictions about the future state
of an ongoing business process instance, for example, when will the pro-
cess instance complete and what will be the outcome upon completion.
Machine learning models can be trained on event logs of historical process
execution to build the underlying predictive models. Multiple techniques
have been proposed so far which encode the information available in
an event log and construct input features required to train a predictive
model. While accuracy has been a dominant criterion in the choice of
various techniques, these techniques are often applied as a black-box in
building predictive models. In this paper, we derive explanations using
interpretable machine learning techniques to compare the suitability of
multiple predictive models of high accuracy. The explanations allow us
to gain an understanding of the underlying reasons for a prediction and
highlight scenarios where accuracy alone may not be sufficient in assess-
ing the suitability of techniques used to encode event log data to features
used by a predictive model. Findings from this study further motivate
the need to incorporate interpretability in predictive process analytics.

Keywords: Predictive process analytics · Interpretable machine
learning · Prediction explanation

1 Introduction

Modern predictive analytics underpinned by machine learning techniques has
become a key enabler to the automation of data-driven decision making. In
the context of business process management, predictive process analytics is a
relatively new discipline that aims at predicting future observations of a business
process by learning from event log data of process execution history. A vast
majority of work over the past decade has used supervised machine learning
algorithms to construct models for predicting outcomes of a business process
instance (or a case) [1], the next activity in a case [2], or the remaining time for
a case to complete [3]. Evaluation of a predictive model has so far been assessed in
terms of the quality of the model and thus evaluated using conventional metrics
in machine learning (such as accuracy, precision, recall, F1 score).
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As an important branch of state-of-the-art data analytics, predictive process
analytics is also faced with a challenge regarding the lack of explanation to the
reasoning and outcome of its predictive models. While more and more complex
machine learning techniques are used to build advanced predictive capabilities
in process analytics, they are often applied and recognised as a ‘black-box’.
The recent body of literature in machine learning has emphasised the need to
understand and trust the predictions (e.g., [4,5]). This has led to an increasing
interest in the research community on interpretable machine learning [6]. Having
an interpretable model is a necessary step towards obtaining a good level of
understanding about the rationale of the underlying ‘black-box’ machinery.

In this paper, we derive interpretation of the predictive models trained with
various input features representations of the event logs. We review the tech-
niques that have been evaluated in the benchmark studies on business process
monitoring benchmarks for predicting process outcomes and remaining time.
By applying interpretable machine learning techniques to two existing bench-
marks [1,3], we derive global explanations that present the behaviour of the
entire predictive model as well as local explanations describing a particular pre-
diction. Based on these explanations, we are able to analyse the importance and
relevance of certain features used by a predictive model in forecasting process
behaviour, which may serve as an valuable input for reviewing the suitability of
the model. Findings drawn from this work further motivate the need to incorpo-
rate interpretability in predictive process analytics. To the best of our knowledge,
the closest study to this work is an illustration of the potential of explainable
models for a manufacturing business process [7].

2 Background

Two studies [1,3] that evaluate various techniques used in the context of pre-
dictive process monitoring are considered in our work. Taking event log data
as the input, the benchmark of [1] predicts the outcome of a case defined by
using a labelling function, and the one of [3] forecasts the remaining time for a
case to complete. A trace is a sequence of events of the same case. During the
training phase, prefixes are generated for each trace and grouped into buckets
based on their similarities (e.g., trace length or process state) using a bucketing
mechanism. The prefixes in each bucket are encoded as feature vectors using
an encoding mechanism. The buckets of feature vectors are then used to train
a predictive model underpinned by a learning algorithm. During the test phase,
the future state for a running trace is predicted by identifying the appropriate
bucket, using an appropriate encoding, and finally applying the above trained
predictive model. Existing predictive process monitoring methods are built on
different combinations of bucketing, encoding and learning algorithms. These
methods are evaluated using the following quality measures [1,3]:

– Accuracy : for outcome-oriented prediction, this is measured by the area under
the ROC curve (AUC) metric; and for remaining time prediction, this is
measured by the mean absolute error (MAE) metric.
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– Earliness: in both predictions, this is defined as the smallest prefix length
with the desired level of accuracy.

Recently, the topic of interpretable or explainable machine learning has gained
attention. To avoid ambiguity, we apply the terms interpretability and explain-
ability as discussed in the machine learning literature [6,8]. A well adopted app-
roach to address model interpretability is via post hoc interpretation. Here, expla-
nations are extracted from a learned model, i.e., after the model has been trained.
A typical class of techniques, known as surrogate models, use the input data and
prediction of a black box model (i.e., a trained machine learning model) to emu-
late the model. In other words, they are approximation models that use inter-
pretable models to approximate the predictions of a black box model, enabling
a decision-maker to draw interpretations about the black box [9]. Interpretable
machine learning algorithms, such as linear regression and decision trees, are
often used to learn a function using the predictions of the black box model. This
means that this regression or decision tree will learn both well classified exam-
ples and misclassified ones. The explanations derived from the surrogate model
reflect a local and linear representation of the black box model.

3 Interpreting Predictive Models for Process Monitoring

With the two existing process monitoring benchmarks, we first derive global and
local explanations of selected predictive models using model interpretation tech-
niques, and then conduct several analyses of the derived interpretations about
these predictive models. Our detailed analysis and the source code are avail-
able at https://git.io/Je186 (for interpreting process outcome prediction) and
https://git.io/Je1XZ (for interpreting process remaining time prediction).

3.1 Design and Configuration

Combinations of various bucketing, encoding, and supervised learning algorithms
have been evaluated for predicting process outcome [1] and remaining time [3],
respectively. In this study, we decide to choose the following techniques, because
the methods built upon a combination of these techniques have better perfor-
mance (i.e. high AUC values or low MAE values) as compared to others.

Bucketing Techniques: i) single bucket, where all prefixes of traces are considered
in a single bucket, and a single classifier is trained; and ii) prefix length bucket,
where each bucket contains partial traces of a specific length, and one classifier
is trained for each possible prefix length.

Encoding Techniques: i) aggregation encoding, where the trace in each bucket
is transformed by considering (only) the frequencies of event attributes (e.g.,
activity, resource) and computing four statistical features for the numeric event
attributes (max, mean, sum and standard deviation). This way the order of the

https://git.io/Je186
https://git.io/Je1XZ
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events in a trace is ignored; ii) index encoding, where each event attribute of an
executed event can be represented as a feature, and this way the order of a trace
in each bucket can be maintained by encoding each event in the trace at a given
index; and iii) static encoding, where the trace attributes carrying the same value
in a trace is added as a feature. The categorical attributes are one-hot encoded,
where each attribute value is represented as a feature (with value 0 or 1).

Machine Learning Algorithms: We choose Gradient boosted trees [10] (specifi-
cally XGBoost), which is used in both benchmarks and outperformed the other
machine learning techniques (e.g., random forest, support vector machines, logis-
tic regression). Note that this study focuses on machine learning algorithms and
hence Long Short Term Memory (LSTM) [3], which is used for predicting the
remaining time of running cases, is not considered.

Interpretation Techniques: To make sure that the output and performance of
a predictive method being studied remain intact, we apply post-hoc interpre-
tation to derive explanations for the predictive methods built upon the above
techniques and algorithms in both benchmarks. We choose a representative local
surrogate method, known as Local Interpretable Model-Agnostic Explanations
(LIME) [11], which can explain the predictions of any classification or regres-
sion algorithm, by approximating it locally with a linear interpretable model.
We use LIME to generate local explanations that interpret the prediction for a
particular trace. In addition, we also conduct permutation feature importance
measurement supported by gradient boosted trees to gain certain global explana-
tions about a predictive method. More specifically, the feature importance value
generated by XGBoost is used to explain the impact of different features to the
overall predictions made by a given predictive method.

3.2 Datasets

We present the results on the following three real-life event logs from the Business
Process Intelligence Challenge (BPIC), available in 4TU.ResearchData reposi-
tory (https://data.4tu.nl/portal). The logs were used for performance evaluation
of predictive methods in both process monitoring benchmarks [1,3].

BPIC 2011 contains cases from the Gynaecology department of a Dutch
hospital. For interpreting the outcome prediction, the outcome labelling function
based on the occurrence of activity “histological examination - big resectiep” is
used (i.e., bpic2011 4 ). In the log preprocessing, the trace for each case is cut
exactly before this event occurs. For interpreting the remaining time prediction,
the log is used as-is without any truncation (bpic2011 ).

BPIC 2012 records a loan application process at a Dutch financial institu-
tion. For the outcome prediction, each trace in the log is labelled as “accepted”,
“declined”, or “cancelled” (based on whether the trace contains the occurrence of
activity O ACCEPTED, O DECLINED or O CANCELLED). The log concerned with loan
acceptance is considered for generating model explanations (bpic2012 1 ). For the
remaining time prediction, three logs are generated depicting loan application,

https://data.4tu.nl/portal
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loan offers and loan processing by human workers, respectively. Explanations are
presented for the model trained on the loan offers (bpic2012o).

BPIC 2015 has five event logs recording the traces of a permit application
process at five Dutch municipalities, respectively. For the outcome prediction,
the rule stating every occurrence of activity 01 HOOFD 020 is eventually followed
by activity 08 AWB45 020 1 is used to label the trace as positive. Explanations
are derived for one of the municipalities (bpic2015 5 ).

3.3 Interpretations and Analyses

Analysis 1: Data Encoding. In both process outcome and remaining time
predictions, the aggregation and index encoding techniques further apply one-
hot data encoding to represent the activities, resources and other categorical
data from the event log to feature vectors as input for machine learning models.
The purpose of this analysis is to understand the impact of one-hot encoding on
the predictive methods being studied.

In principle, one-hot data encoding increases the size of a dataset exponen-
tially, because each attribute value of a feature becomes a new feature by itself
with the possible value of 0 or 1. For instance, a feature F with three attributes
values f1, f2 and f3 will be represented as three new binary features. This
data encoding method generates very sparse datasets, which impacts negatively
both the performance metrics of the prediction model and the ability to generate
interpretations. Below we discuss the findings that were obtained from analysing
the explanations derived from applying single bucket and aggregation encoding
(single agg) with XGBoost model to process remaining time prediction using
bpic2011 event log as an example.

Figure 1 depicts certain impact of one-hot encoding in the context of bpic2011
log. The original dataset increased from approximately 20 features to 823 features
with this representation (see a snapshot of feature matrix in Fig. 1(a)). Further,
a majority of the local explanations can be represented as the follows: if feature
X is absent (value ≤ 0), then it influences the remaining time prediction. When
a dataset is so sparse, it is reasonable to expect such type of explanations.
However, the question that may arise from this finding is: To what extent can
this provide a meaningful understanding of why the predictive model made a
certain prediction?

Analysis 2: Feature Relevance. The purpose of this analysis is to reason
the relevance of the features identified important for process prediction. Feature
importance in global explanations and feature impact to predictions of traces
in local explanations are valuable inputs to interpreting feature relevance. To
derive such interpretation a good understanding of the business process is often
needed. Below, we discuss two examples of applying single agg with XGBoost to
remaining time prediction using bpic2011 and bpic2012o event logs, respectively.

For bpic2011 log, it can be observed that, from the local explanation shown in
Fig. 1(c), the predictive model relies on features such as Diagnosis Treatment
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Fig. 1. Interpreting remaining time prediction for bpic2011 event log using single agg
with XGBoost: (a) data sparsity as result of one-hot encoding; (b) global explanation;
(c) local explanation for trace of prefix length of 12; and (d) normalised elapse time
for a specific diagnosis code.

Combination ID, Treatment code and Diagnosis code in order to determine
the remaining time of the case. For a regression problem, like time prediction, this
explanation indicates that the model is relying mostly on static features, which
are the features that do not change throughout the lifetime of a case. The usage of
static features for regression suggests that the process execution does not rely on
the executions of activities or cases (i.e., sequences of activities following different
control-flow logics) and that the model uses attributes that do not change during
the case execution when making a prediction. Another interesting observation
is from the global explanation shown in Fig. 1(b), which indicates that the most
significant feature for remaining time prediction is Diagnosis code = DC822.
By applying statistical analysis on the event log, as depicted in Fig. 1(d), we
discovered that 82% of the events associated with this diagnosis code had the
feature elapsed time = 0, which means that the corresponding activity starts
and ends immediately. To this end, lack of relevant knowledge about the business
process limits our ability to derive further insights about the relationship between
these static diagnosis codes, with 0-valued elapsed times and its relation with
the remaining time of a running case of the process.

For bpic2012o log, the analysis leads to different observations. As shown
in Fig. 2, the global explanation and the local explanation for trace of prefix
length 12 indicate the resource perspective of the business process are the impor-
tant features used by the predictive model and have a positive impact on the
remaining time prediction. The features identified as highly relevant may be
case-related (such as agg opencases), resource-related (such as agg resource),
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Fig. 2. Interpreting remaining time prediction for bpic2012o event log using single agg
with XGBoost: (a) global explanation and (b) local explanation for prefix length 12.

or time-dependent (such as agg elapsed time). It is worth noting that the fea-
tures like agg opencases and agg elapsed time, which have a positive impact
on the performance of the predictive model, are not among the data attributes
of the original event log and are introduced during feature encoding. These fea-
tures are known as engineered features. One potential problem with introducing
engineered features is that they might contribute to the loss of interpretability of
a regression model [8]. However, the features that are engineered in a meaningful
way may be aligned with understanding of the business process, in which case,
it is likely that they may be interpretable given relevant process knowledge.

Analysis 3: Data Leakage. We investigate the predictive models trained for
outcome prediction of bpic2015 5 event log using single agg and prefix agg (pre-
fix bucket and aggregation encoding), respectively, with XGBoost. Both models
have a high accuracy and hence are of interest for deriving interpretations.

Figure 3(a) depicts the global explanation for the model using sin-
gle agg method, which indicates the occurrences of activities 08 AWB45 010,
08 AWB45 020 2 and 08 AWB45 020 1 are three of the important features for out-
come prediction. However, the occurrence of 08 AWB45 020 1 is the outcome to
be predicted (as described in Sect. 3.2). Statistical analysis of the event log shows:
i) activity 08 AWB45 020 2 is executed after 08 AWB45 020 1 in 68% of the cases,
and ii) activity 08 AWB45 010 occurs at the same time as 08 AWB45 020 1 in 50%
of the cases. These observations reveal that the predictive model of single agg
with XGBoost exhibits a problem of data leakage [12], “where information about
the label of prediction that should not legitimately be available is present in the
input”. The features that occur along with or after the activity used as the label
influence the model predictions.

Similarly, Fig. 3(b) depicts the global explanation of bucket length 10 when
using the model of prefix agg method with XGBoost, from which we observe
activity 08 AWB45 020 2 as an important feature used for prediction. This also
reveals data leakage as 08 AWB45 020 2 occurs after 08 AWB45 020 1. In both
scenarios, model explanations along with the knowledge of the business process
can be used to identify potential issues with a predictive model.
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Fig. 3. Interpreting outcome prediction for bpic2015 5 event log with XGBoost: (a)
global explanation when using single agg method; and (b) global explanation for bucket
of prefix length 10 when using prefix agg method.

4 Conclusions

In this paper, we have reviewed two existing benchmarks in predictive process
monitoring and presented model interpretations as examples to demonstrate
that it is not enough to judge predictive methods by solely relying on their
performance measures. As learned from our analyses, model interpretations make
it possible to reason about the relevance of features used for predictions and help
avoid potential issues such as data leakage that may incur to predictive models,
and also reveal the use of one-hot data encoding technique can lead to very
sparse feature dimensions impacting the explainability of predictive models in the
context of process prediction. Hence, we suggest to incorporate interpretability in
addition to the evaluation of predictive models using conventional performance
measures (such as accuracy). As a first step into future work, it is important
to develop a systematic approach for incorporating model interpretability in
predictive process analytics.
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Abstract. The design and implementation of Robotic process automa-
tion (RPA) requires an architecture where there is seamless coordina-
tion between humans, robotic agents, and intelligent agents automat-
ing information acquisition tasks and decision-making tasks. Effective
coordination of agents would need to consider the efficiency of differ-
ent types of resources in completing tasks, the quality when handling
complex tasks, and the cost of resources executing the task. In this
work, a novel approach for generating an optimal architecture consider-
ing distinct types of resources that include human, intelligent and robotic
agents is proposed. An optimal architecture is the optimal enactment
of process instances executed by a combination of human and automa-
tion agents based on their characteristics. The architecture considers
resources, resource types, and their characteristics that meet multiple
objectives of process execution.

Keywords: Robotic process automation · Multi-objective
optimization · Genetic algorithm · Optimal resource architecture

1 Introduction

The idea of Robotic Process Automation, where some (or all) tasks in a busi-
ness process are automated by deploying software agents, intelligent agents or
conversational agents (chatbots) to execute tasks which would have traditionally
been executed by human operators, has steadily grown in popularity over the
recent past. By various accounts, the size of the global market for RPA products
runs into the billions of dollars.

One of the problems that has been highlighted by researchers in this space
is that of identifying which tasks to automate [15]. This assumes a simple
dichotomy in the available agent types: human agents and robotic agents. The use
of only the former type of agents would represent the old approach to executing
processes while the use of the latter would represent an emphasis on automa-
tion. More recently, the repertoire of available agent types has expanded to also
include intelligent agents which are endowed with the ability to learn from past
experience and make more complex decisions.
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This greater variety of resource/agent types also leads to greater diversity in
performance characteristics. Human agents tend to be expensive and are typ-
ically slower than robotic agents or intelligent agents. Intelligent agents some-
times turn out to be not adept at taking certain decisions (for instance due to
limitations in their machine learning routines), necessitating the deployment of
human agents to cross-check their decisions. Robotic and intelligent agents take
very little time to complete their tasks, relative to human agents. We can also
sometimes assume that there is an unlimited supply of robotic and intelligent
agents, while we have to contend with a fixed number of expensive-to-deploy
human agents. There are clearly, at the very least, three non-functional factors
at play: time, cost, and performance (i.e., the extent to which an agent is able
to deliver correct outcomes, measured on a numeric scale). We aim to minimize
time and cost and maximize performance. It is important to note that all of these
factors are measurable and easily monitored. We rate agent types on these factors
for different task types for simplicity in this paper, although our approach could
easily be extended to agent instances. Rating would involve assessing agents’
time, cost, and performance on a comprehensive set of benchmark problems.

This leads us to the problem of identifying an optimal RPA architecture.
Recall that the traditional notion of a software or system architecture involves
the specification of how system components connect and interact to realize over-
all system functionality. In our setting, an RPA architecture specifies how the
various agents involved in the execution of a (partially or fully) automated pro-
cess connect and interact to realize overall process functionality. An RPA archi-
tecture specifies, for each process task in each process instance, the agent (type)
allocated for executing that task. There is a vast space of possible allocations,
each of which leads to different outcomes in terms of overall time taken, overall
cost incurred, and performance (or quality of work) achieved in each of the tasks.
This suggests a multi-criteria optimization problem where there are at least three
distinct (and incommensurable) objective functions at play: cost minimization,
time minimization, and performance maximization.

In the next section, we provide a background of the over-arching problem.
Section 3 provides details of the multi-criteria optimization problem and motives
the problem with an example. Section 4 presents related work. We present our
conclusions and discuss future work in Sect. 5. It is instructive to take a step
back and observe that the solution we have presented also solves the more gen-
eral problem of devising process architectures (i.e., deciding which resource will
execute each task in all process instances).

2 Background

An RPA implementation would require human agents and robotic agents work-
ing together with suitable coordination. The coordination between agents has
been suggested in prior human-automation [12,21] and RPA [19] studies. Such a
coordination between the agents can generally be broken down into three broad
categories: (i) levels where the task is primarily performed by a human, (ii) levels
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where the human-agent interaction is high during task execution, and (iii) levels
with low human involvement.

Agents executing tasks can be broadly categorised as: (i) Human Agent (HA)
capable of executing all types of (manual) tasks of the process, (ii) Robotic Agent
(RA) or specialised software program, that automates information acquisition
tasks or information gathering tasks, and (iii) Intelligent Agent (IA) that auto-
mates information analysis or decision-making tasks and improves its perfor-
mance through learning [17].

Agents can have distinct resource characteristics such as performance, expe-
rience or suitability when executing different tasks [19]. For example, an IA may
have good performance when performing a task to verify the details of the loan
application document, but may have low performance in computing the credit
risk of the applicant having large number of financial transactions in a different
country. In such scenarios, an HA would be required to validate the task done
by an IA. Thus, in certain scenarios referred to as a lower level of automation,
an HA would often be required to execute the task again after its completion
by an IA or RA. At higher levels of automation, HAs exercise a supervisory
role intervening only if necessary (failures, errors, or poor execution quality), or
further have tasks fully executed by an IA or RA. Human verification tasks may
be added dynamically during process execution based on resource characteristics
of the IAs or RAs.

The ability of distinct types of resources to automate various tasks of a pro-
cess leads to increased execution alternatives. The choice of alternatives available
needs to account for multiple and often conflicting objectives such as: i) minimiz-
ing the cost of execution as each of these types of resources have a cost associated
with each type of agent executing a task, ii) maximizing the performance or qual-
ity of the work done by the resource, and iii) minimizing the makespan or the
shortest possible time for all the process instances to complete execution. For
example, an HA can be expensive and may take longer to complete the tasks
but will be able to handle any task with minimal errors (or high quality). An IA
or RA can take lower time to complete tasks but may execute certain tasks with
lower quality. Choosing the right types of resources and the tasks executed by
the resources results in a trade-off between different objectives. Hence, selecting
an RPA architecture that considers resources, resource types, resource charac-
teristics, and the necessary objectives is complex, time consuming, and crucial
to avoid sub-optimal and error prone process executions.

3 Problem Formulation of an Optimal RPA Architecture

In this section we describe the optimization model to enable decisions on the
suitability of an RPA solution that meets the required objectives. In this paper,
we consider three important objectives. However, our approach is generic and can
support multiple and additional objectives. The objectives are to minimize the
cost and the overall time taken to execute the process instances (or makespan)
while maximizing the performance. The optimization problem is formalized.
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The inputs are as follows:

– W , be the maximum number of tasks, i ∈ {1, . . . , W}
– M , be the maximum number of resources j ∈ {1, . . . , M}
– C, be the maximum number of process instances, k ∈ {1, . . . , C}
– φj , the type of resource j where φj ∈ {HA, IA,RA}
– πj , the cost of a resource of type φj

– σij , is 1 if the the resource of type φj is suitable to perform task i match and
zero otherwise

– αij , the effort on task i by a resource of type φj

– βij , the performance of resource of type φj on task i
– τperfi , an acceptable performance threshold for task i
– dii′ , is one if there is sequential dependency and tasks i precedes i′

The key inputs to the model are the resources and their characteristics such as
suitability, performance, and cost.

Suitability is the inherent quality of a resource j to perform a task i. The suit-
ability of a resource is considered tobe abinaryvalue. Suitability canbedetermined
based on agent specification and implementation, or can be determined based on
the organization model attributes such as role or department of the resource.

Performance: Automation agents are more susceptible to resource specific errors
i.e. errors made by resources when performing a task [16]. Performance measure
of an IA can be computed based on the algorithms implemented such as F1-score,
root mean square error, precision, or precision@k [20]. These measures can be
computed during the training and testing of the algorithms. The performance
resource types φj , on task i can be computed using the measure specific to the
implemented algorithms. A threshold τperfi indicates an acceptable performance
necessary for any agent. If the performance of an agent is below this threshold,
the task is either re-executed by an HA or verified by an HA.

Effort: The time taken to complete a task i varies for different resource types.
An IA or RA has higher processing power and hence takes significantly lower
effort as compared to an HA.

The process model provides inputs on the dependencies between the tasks
represented by dii′ specifying that to execute task i′, the task i needs to be
executed before.

The decision variables are as follows:

– xij , which is true if task i is assigned to resource j, and false otherwise
– ei, the end date of task i
– si, the start date of task i

This leads to the following optimization objectives.

min(max(ei) − min(si′)) ∀i, i′ (Minimize makespan)

min
∑

i,j

πjxij (Minimize cost)

max
∑

i,j

βijxij (Maximize performance)
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The following constraints are also imposed.

s.t.
∑

j

xij = 1 ∀i where βij ≥ τperfi
(one task to one resource if performance is high)

∑

j

xijxij′ = 1 ∀i where βij < τperfi
, φj′ = HA

(one task is supervised by HA if performance is low)
∑

j

xij(ei − si) ≥ αij for all i (planned end time of task considers effort)

∑

j

(xijxi′j = 1) ⇒ (ei < si′ ∨ si > ei′ ) for all i �= i
′ (one task at a time)

∑

i,j

xijσij > 0 (task suitable by resource)

∑

ii′jj′
dii′ (xijxi′j′ = 1) ⇒ ei < si′ (sequential dependency)

xij ∈ {0, 1}

Running Example. We illustrate the need for such an optimization architec-
ture with the help of a simple example. Figure 1 (a) presents a business process
with 3 tasks to process a claim application. The three types of resources HA, IA,
and RA have different resource characteristics on each of these three tasks. An
HA has highest performance but requires higher effort and comes with a higher
cost. An IA can support the decision making task of evaluating a claim having
lower performance than an HA but better cost and effort parameters. An RA
can perform the task of notifying the status of the application with high perfor-
mance but is incapable of performing the first two tasks of the process (namely
checking the claim application and evaluating the claim). In this example, we
consider all resources of a given resource type with the same resource character-
istics. However, our problem formulation does not make any such assumption.
The values for effort (αij), performance(βij), and cost (πj) considered for the
three tasks and three resource types is presented in Fig. 1 (a).

The allocation of task to resources that meets multiple objectives while sat-
isfying the constraints can result in multiple solutions. One such solution of task
allocation with 3 process instances and 6 resources (2 HA, 2 IA, and 2 RA) is
shown in Fig. 1 (b). Solutions that meet multiple objectives form a Pareto front
of minimum cost, minimum makespan, and maximum performance. A solution
on a Pareto front does not dominate another solution on the same front, i.e. by
moving along the curve, you could minimize makespan at the expense of reducing
performance or maximize performance at the expense of increasing makespan.
For example, in Fig. 1 (c) the three solutions on the blue line are non-dominating
solutions. The solutions vary with the performance threshold set for the super-
visory control of an HA (τperfi = 5 for the blue line), i.e. if the performance of
an agent is lower than the threshold, it needs to be followed by another task
that is performed by an HA to validate or supervise the task executed by an IA
or an RA. If the performance threshold is lower (e.g. τperfi = 3, orange line),
then an IA or RA can do the task without HA supervision. Thus, the makespan
reduces, and so does the performance of the entire allocation. Similarly, if the
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Fig. 1. (a) Example process with resource characteristics, (b) Optimal Solution to
execute 3 process instances, (c) Performance vs. Makespan for different performance
thresholds (τperfi), and (d) Cost Vs. Makespan for different performance thresholds.
(Color figure online)

performance threshold is set to a higher value (e.g. τperfi = 6), then most tasks
performed by IA or RA will be supervised by an HA, resulting in increased
performance and increased makespan. Figure 1 (d) presents the makespan and
cost for the non-dominating solutions when different performance thresholds are
set. The example motivates the need for considering distinct resources, their
characteristics, multiple objectives, and constraints for selecting a suitable RPA
architecture.

4 Related Work

Prior studies on RPA have focused on the design phase presenting techniques to
identify candidate tasks for automation [15]. Studies have explored an increase
in the scope of automation by the agents supported by Artificial Intelligence
(AI) and Machine learning to do complex tasks [1,18]. Recent work has further
distinguished types of resources and their characteristics in terms of suitability
for execution of different types of tasks and presented a declarative specification
to enable different levels of automation [19]. This work considers such a spec-
ifications as input where tasks can be executed by distinct types of resources
permitting the generation and selection of an RPA architecture optimizing mul-
tiple objectives that are necessary for an effective implementation.

There have been extensive studies focusing on resources and their character-
istics [2,7,9,13]. Resource characteristics are used for the allocation of tasks to
resources [6,10,11]. The focus of these studies has been human participants and



454 G. Mahala et al.

their use for effective resource allocation. The need for robots and human par-
ticipants to collaboratively work forms an important part of human-automation
studies [12,21]. The need for such interactions has been discussed in BPA [1,19].
In this work, we consider distinct types of resources and their characteristics and
their interactions with human participants to support effective automation and
allocation.

Optimal allocation of tasks to human participants has been widely studied
in different domains such as IT service delivery [4,5]. Task allocation to human
participants supporting multiple objectives has been an important area of work
for flexible business process executions [8,14]. In many of the previous studies,
multi-objective optimization uses simulation or conventional constraint based
optimization. In this work, we have defined our solution approach to account
for the crucial interplay between human and automation agents. Further, we
have explored the use of genetic algorithm to support optimization of multiple
objectives.

5 Conclusion and Future Work

We offer a solution to the difficult problem of devising an RPA architecture.
An approach based on genetic algorithms can be effective in generating useful
design alternatives for an RPA architect. Evolutionary search can be employed
to find optimal RPA architectures which simultaneously satisfies all objectives
and constraints discussed in Sect. 3. Central to genetic algorithms is the rep-
resentation of the solution. For example, binary representation can be used to
constitute an RPA solution as a genotype of bit strings. This string represents
a complete RPA setting, including all process instances, tasks in each process
instance, and all resources including HA, IA, and RA. Assuming that we use
non-dominated sorting algorithm (NSGA-II) [3] as evolutionary search at each
generation, NSGA-II would sort the current population into a number of non-
dominated fronts. The evolution process would continue until it would arrive at
a specified number of generations. In the final generation, NSGA-II would return
a set of Pareto optimal solutions as optimal RPA architectures. We also note
that our approach is general enough to compute optimal process architectures
(an allocation of resources to each task in a pool of process instances), but a
detailed evaluation requires search through a somewhat different search space.
This remains high on our list of priorities for future work.
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Abstract. Automated testing approaches for RESTful web APIs typi-
cally follow a black-box strategy, where test cases are derived from the
API specification. These techniques show promising results, but they
neglect constraints among input parameters (so-called inter-parameter
dependencies), as these cannot be formally described in current API
specification languages. As a result, black-box tools rely on brute force
to generate valid test cases, i.e., those satisfying all the input constraints.
This is not only extremely inefficient, but it is also unlikely to work for
most real-world services, where inter-parameter dependencies are com-
plex and pervasive. In this paper, we present RESTest, a framework for
automated black-box testing of RESTful APIs. Among its key features,
RESTest supports the specification and automated analysis of inter-
parameter dependencies, enabling the use of constraint solvers for the
automated generation of valid test cases. This allows to detect more
faults, and faster, through a deeper evaluation of valid and invalid input
parameters’ combinations and the use of novel test oracles. Evaluation
results on 6 commercial APIs show that RESTest can efficiently generate
up to 99% more valid test cases than random testing techniques, 60% on
average. More importantly, RESTest revealed 2K failures undetected by
random testing, uncovering bugs in all the services under test.

Keywords: REST · Black-box testing · Constraint-based testing ·
Web services

1 Introduction

Web APIs allow systems to interact over the network, typically using web services
[18]. Modern web APIs typically adhere to the REpresentational State Transfer
(REST) architectural style [5], being referred to as RESTful web APIs. RESTful
web APIs are comprised of one or more RESTful web services, each of which
implements one or more create, read, update, or delete (CRUD) operations to
access and manipulate a resource, e.g., a video in the YouTube API. RESTful
APIs are commonly described using languages like the OpenAPI Specification
(OAS) [15], originally created as a part of the Swagger tool suite [22]. OAS is
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designed to provide a structured description of a RESTful web API that allows
both humans and computers to discover and understand the capabilities of a
service without requiring access to the source code or additional documentation.

Web APIs often impose dependency constraints that restrict the way in which
two or more input parameters can be combined to form valid calls to the ser-
vice, these are often called inter-parameter dependencies (or simply dependencies
henceforth). For example, in the Google Maps API, when searching for places,
if the location parameter is set, then the radius parameter must be set too,
otherwise a 400 status code (“bad request”) is returned. In a recent study, we
reviewed more than 2.5K operations from 40 industrial APIs and found that
dependencies are extremely common and pervasive—they appear in 4 out of
every 5 APIs across all application domains and types of operations [11]. Unfor-
tunately, current API specification languages like OAS provide no support for the
formal description of this type of dependencies, despite being a highly demanded
feature by practitioners1. Instead, users are encouraged to describe dependen-
cies among input parameters informally, using natural language, which leads
to ambiguities and makes it hardly possible to interact with services without
human intervention2. To address this problem, in previous work we proposed
a domain-specific language for the formal specification of dependencies, called
Inter-parameter Dependency Language (IDL), and a tool suite for the automated
analysis of IDL using constraint programming [12] (c.f. Sect. 2). In this paper,
we show the potential of IDL and its tool suite in the context of testing RESTful
APIs.

The validation of RESTful web APIs is critical as they play a key role in
modern software integration. A faulty API can have a huge impact in the many
applications using it. The automated detection of bugs in RESTful web APIs is
an active research topic [2–4,9,19,23]. Most contributions in this context follow
a black-box strategy, where the specification of the API under test (described
using the OAS language) is used to drive the generation of test cases [3,4,9,23].
Essentially, these approaches exercise the API under test using (pseudo) random
test data. Test data generation strategies include using default values [4], input
data dictionaries [3], test data generators [9] and data observed in previous calls
to the API [23]. Failures are detected when the observed output deviates from
the specification, e.g., unexpected HTTP status codes.

Problem: Current black-box testing approaches for RESTful web APIs do not
support inter-parameter dependencies since, as previously mentioned, these are
not formally described in the API specification used as input. As a result, existing
approaches simply ignore dependencies and resort to brute force to generate valid
test cases, i.e., those satisfying all input constraints. This is not only extremely
inefficient, but it is also unlikely to work for most real-world services, where inter-
parameter dependencies are complex and pervasive. For example, the search

1 This is reflected in an open feature request in OAS entitled “Support interdepen-
dencies between query parameters”, with over 290 votes and 55 comments from 33
participants. https://github.com/OAI/OpenAPI-Specification/issues/256.

2 https://swagger.io/docs/specification/describing-parameters/.
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operation in the YouTube API has 31 input parameters, out of which 25 are
involved in at least one dependency: trying to generate valid test cases randomly
is like hitting a wall. This was confirmed in our evaluation, where 98 out of every
100 random test cases for the YouTube search operation violated one or more
inter-parameter dependencies (c.f. Sect. 4.3).

Contribution: In this paper, we present RESTest, an open-source and black-
box automated testing framework for RESTful web APIs. RESTest follows a
model-based approach enabling its integration with different test case genera-
tors and testing frameworks. As its most distinctive feature, RESTest supports
the specification and automated analysis of inter-parameter dependencies using
the IDL tool suite. This allows to exploit constraint solving as a part of the test
generation process, a testing technique generally known as constraint-based test-
ing [8]. Constraint-based testing enables a better coverage of the program under
test through the systematic generation of valid and invalid input combinations,
as well as the use of novel output assertions, i.e., test oracles. For the evaluation
of RESTest, we tested 9 operations from 6 commercial APIs, including Tum-
blr, GitHub and YouTube. Specifically, we compared random testing—state-of-
the-art technique for black-box testing of RESTful APIs—and constraint-based
testing. As expected, random testing struggled to generate valid test cases: 60%
of the generated test cases violated inter-parameter dependencies (about 99%
in the APIs of Stripe and YouTube). In contrast, constraint-based testing gen-
erated 100% valid test cases for all the services under test, keeping the test
case generation time in milliseconds. More importantly, constraint-based testing
detected more failures than random testing (4K vs 3K), in more services (9 vs
5), showing the potential of RESTest in practice.

This work includes the following original contributions in the context of auto-
mated testing of RESTful web APIs:

1. An open-source and model-based framework for automated black-box test
case generation and execution.

2. A new constraint-based approach for improving test case generation tech-
niques, including two novel automated test oracles.

3. Experimental evidence on the limits of using random testing in real-world
services with inter-parameter dependencies.

4. A comparison of random testing and constraint-based testing on 6 commercial
APIs, showing the potential of both techniques, and especially constraint-
based testing, to uncover real bugs.

The remainder of the paper is organised as follows: Sect. 2 introduces the
IDL tool suite, used for the automated analysis of inter-parameter dependen-
cies in RESTful web APIs. Section 3 presents RESTest, our testing framework
for RESTful APIs. Section 4 explains the evaluation performed and the results
obtained. Section 5 outlines threats to validity. Section 6 describes related work.
Finally, Sect. 7 draws conclusions and discusses future lines of research.
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2 IDL Tool Suite

RESTest relies on the IDL tool suite for the automated management of inter-
parameter dependencies in RESTful APIs [12]. Inter-parameter Dependency Lan-
guage (IDL) [21] is a domain-specific language for the specification of inter-
parameter dependencies in web APIs. It is based on a thorough study of more
than 2.5K operations in 40 real-world APIs [11]. Specifically, it provides support
for eight different types of dependencies among input parameters consistently
found in practice. Listing 1 shows an example of each type of dependency taken
from commercial APIs. The syntax is self-explanatory. For example, the Requires
dependency in line 1, observed in the API of YouTube, states that, when using the
parameter videoDefinition, the parameter type must be set to ‘video’. IDL
specifications can be integrated into OAS documents using the IDL4OAS exten-
sion [12]. This allows to enrich API specifications with an accurate, not ambiguous
and machine-readable description of the dependencies among input parameters.
We refer the reader to the supplementary material of the paper for examples of
API specifications using the OAS language and the IDL4OAS extension [21].

1 IF videoDefinition THEN type=='video'; // Requires
2 Or(query , type); // Or
3 ZeroOrOne(radius , rankby=='distance '); // ZeroOrOne
4 AllOrNone(location , radius); // AllOrNone
5 OnlyOne(amount_off , percent_off); // OnlyOne
6 publishedAfter >= publishedBefore; // Relational
7 limit + offset <= 1000; // Arithmetic
8 IF intent=='browse' THEN OnlyOne(ll AND radius , sw AND ne); // Complex

Listing 1. Examples of IDL dependencies from real-world APIs.

IDLReasoner [21] is an open-source Java library for the automated analysis
of IDL specifications [12]. Given an OAS specification and a set of IDL depen-
dencies (e.g., using IDL4OAS), the tool translates them into a constraint satis-
faction problem (CSP) expressed in MiniZinc [14], a constraint solving language
designed for modelling optimisation problems in a high-level, solver-independent
way. Then, several analysis operations can be invoked on the resulting CSP, for
instance, to know whether a given API request satisfies all the inter-parameter
dependencies. Section 3.2 describes the analysis operations used to support test
case generation in RESTest.

3 RESTest

In this section, we present RESTest, our framework for automated black-box
testing of RESTful web APIs. RESTest follows a model-based approach, where
test cases are automatically derived from the specification of the API under test.
No access to the source code is required, which makes it possible to test APIs
written in any programming language, running in local or remote servers.

Figure 1 shows how RESTest works. It takes as input the OAS specifica-
tion of the API under test, considered the system model. The specification can
optionally describe inter-parameter dependencies using the IDL4OAS extension.
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Fig. 1. Test case generation and execution in RESTest.

Then, a so-called test model is automatically generated from the system model
including test-specific configuration data. The default test model can be manu-
ally enriched with fine-grained configuration details such as test data generation
settings. Then, both the system and the test models are leveraged for the gener-
ation of abstract test cases following user-defined test case generation strategies
such as random testing. In parallel, inter-parameter dependencies, if any, are fed
into the tool IDLReasoner, providing support for their automated analysis dur-
ing test case generation, for instance, to check whether an API call satisfies all
the inter-parameter dependencies defined in the specification. Finally, abstract
test cases are transformed into platform-specific executable test cases and they
are executed. In the following sections, we detail the main steps of the process.

3.1 Default Test Model Generation

RESTest takes as input the specification of the API under test, i.e., system
model. Specifications described using the OAS language—arguably considered
the industry-standard and used in related approaches [2–4,9,23]—are supported,
but other API specification languages could be integrated into the framework
using available converters, e.g., RAML to OAS [15]. As a distinctive feature,
RESTest supports the specification of inter-parameter dependencies within the
OAS document using the IDL4OAS extension [12] (c.f. Sect. 2).

Test case generation in RESTest is driven by the system and the test models.
The test model includes all test-related configuration settings for the API under
test. A default test model, formatted in YAML (i.e., same language used in OAS),
is automatically generated from the input API specification (system model).
Such test model might be enough to generate effective test cases in some APIs.
However, in practice, some manual tuning is often necessary, for example, to
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generate input values hardly inferred from the specification such as identifiers
or codes. In particular, RESTest supports the following configuration settings:

– Operations under test. It is possible to specify the subset of the API opera-
tions to be tested. Specific test configuration settings can be defined for each
operation under test.

– Authentication data. This includes the API keys or tokens required to call
secured APIs.

– Test data generators. This allows to customise the data values used for each
input parameter. Test data generators in RESTest include random value gen-
erators, regular expression generators, boundary-value generators, and data
dictionaries, among others. Default generators are configured according to
the type of the input parameters, e.g., English words for string parameters.

– Weights. Testers might be interested in testing some parameters more thor-
oughly than others, for example, those more used in practice. Weights allow
to do so. A weight is a real number in the range [0,1]. The higher the weight
of a parameter, the more frequently it will be used in test cases. By default,
all parameters have a weight of 0.5.

3.2 Automated Analysis of Inter-Parameter Dependencies

API specifications including inter-parameter dependencies in IDL are provided
as input to IDLReasoner [12]. This tool transforms the specification into a CSP
and automatically checks for inconsistencies in the specification, informing the
user about any errors, e.g., parameters that cannot be selected. Once the speci-
fication is validated, IDLReasoner provides test case generators with a catalogue
of helpful analysis operations. Among these, three analysis operations stand out
as particularly helpful during test case generation, namely:

– isValidRequest. This operation takes as input an API specification (including
inter-parameter dependencies) and a service request (i.e., a list of parameters
and their values), and returns a Boolean indicating whether the request is
valid or not. A service request is valid if it satisfies all the inter-parameter
dependencies defined in the specification.

– getRandomValidRequest. This operation receives the API specification of an
API operation, and returns a random valid request for the operation, that is,
a random assignment of values to input parameters satisfying all the depen-
dencies of the specification.

– getRandomInvalidRequest. Contrary to the previous operation, this operation
returns a random request violating one or more dependencies.

The use of the IDL tool suite allows to decouple the automated management
of dependencies from the specific test case generation approach used. This makes
RESTest highly generic and easy to maintain. Furthermore, it eases the use of
different CSP solvers and the development of new analysis operations.
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3.3 Abstract Test Case Generation

Test cases can be derived from the system and test models using one or more
test case generation techniques. These test cases are abstract or platform-
independent, meaning that they can be later transformed into executable test
cases for specific testing frameworks and programming languages. RESTest cur-
rently supports random and constraint-based test case generation, but other
techniques (e.g., search-based generation) could be easily integrated extending
the right interfaces. Abstract test cases comprise test inputs, expected outputs
(test oracles), and the required information to build the API request, e.g., the
endpoint. RESTest currently supports testing at the operation-level, that is, each
test case performs a single API request.

RESTest generates both nominal and faulty test cases. Nominal test cases
aim to test the API with valid inputs, i.e., those conforming to the API speci-
fication. In practice, it is not always possible to guarantee that a nominal test
case represents a valid call to the API since it could violate some inter-parameter
dependency, for example. Therefore, nominal test cases can be regarded as poten-
tially valid test cases aimed at obtaining successful responses from the API (i.e.,
2XX status codes). Faulty test cases check the ability of the API to handle
invalid inputs, and therefore they expect a client error as a response (i.e., 4XX
status codes). Faulty test cases are generated by creating faulty variants (i.e.,
mutants) of nominal test cases. For example, RESTest supports the automated
generation of faulty test cases by excluding mandatory parameters, using out-
of-range values (e.g., assigning a string to an integer parameter), and violating
the JSON schema of the request body, among others. Additionally, as a novel
feature of RESTest, the framework supports the automated generation of invalid
requests violating inter-parameter dependencies using IDLReasoner.

Test case generation techniques mostly focus on generating test inputs, how-
ever, half of the challenge in testing lies on test oracles, that is, how to distin-
guish correct outputs from incorrect ones. RESTest supports the five test oracles
described below, where the last two are novel as they rely on the automated anal-
ysis of inter-parameter dependencies.

– 5XX. The status code must be lower than 500 (server error).
– OAS. The response must conform to the OAS schema.
– 2XXP . If the request violates the specification of individual parameters (e.g.,

a mandatory parameter is missing), the status code must not be 2XX (suc-
cessful response).

– 2XXD. If the request violates one or more inter-parameter dependencies, the
status code must not be 2XX.

– 4XX. If the request is valid according to the API specification, the status
code must not be 4XX (client error response).

Oracles 2XXD and 4XX are novel contributions of our work. Both of them
reveal failures undetectable by current state-of-the-art test oracles. It is worth
noting that oracle 4XX is particularly helpful as it allows to detect critical bugs:
those making the API return a client error response (4XX status code) with a



466 A. Martin-Lopez et al.

valid API call. Detecting this kind of failures is only possible thanks to the auto-
mated analysis of inter-parameter dependencies, which allows to automatically
determine whether a request is valid before calling the actual API (assuming that
the specification is correct and that the right test data generators are used).

3.4 Test Case Generation and Execution

The last step is concerned with test execution. Abstract test cases are instan-
tiated into executable test cases using specific testing frameworks and libraries.
RESTest currently supports the generation of executable test cases using REST
Assured [17], a Java library for testing RESTful services, developed as a JUnit
extension. However, other frameworks and programming languages could be eas-
ily supported by implementing specific test writers.

Test execution can be done either offline or online. In offline testing, test case
generation and execution are independent tasks. This has certain benefits. For
example, test cases can be generated once, and then be executed many times
as a part of regression testing. Also, test generation and test execution can be
performed on different machines and at different times. In online testing, test
case generation and execution are interleaved. This enables, for example, fully
autonomous testing of RESTful web APIs, e.g., generating and executing test
cases 24/7 as a part of a Continuous Integration (CI) setup. RESTest supports
both offline and online testing. However, more sophisticated techniques for online
testing remain to be implemented. For example, the test generation algorithms
can react to the actual outputs of the API under test, e.g., to guide search-based
test case generation algorithms based on the coverage achieved so far [13].

4 Evaluation

In this section, we assess the ability of RESTest to generate valid test cases (i.e.,
those satisfying all the input constraints) and to reveal failures in real-world APIs
with inter-parameter dependencies. To this end, we compare random testing
(RT)—state-of-the-art technique for black-box testing of RESTful APIs—and
constraint-based testing (CBT). We address the following research questions:

– RQ1: What is the effectiveness of CBT in generating valid test cases for
real-world APIs with inter-parameter dependencies?

– RQ2: What is the fault-finding capability of CBT in real-world APIs with
inter-parameter dependencies?

4.1 Services Under Test

We tested 9 services from 6 commercial RESTful APIs with millions of users.
We selected both read and write operations from those services. In order to
assess the potential of CBT, we selected operations containing the eight types of
dependencies identified in our study [11], with more than 50% of their parameters
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Table 1. RESTful API operations used in the evaluation. P = Number of parame-
ters, D = Number of IDL dependencies, PD = Number and percentage of parameters
involved in at least one dependency.

ID API Operation P D PD (%)

Foursquare Foursquare Search venues 17 8 10 (59%)

GitHub GitHub Get user repositories 5 2 3 (60%)

Stripe-CC Stripe Create coupon 9 3 5 (56%)

Stripe-CP Stripe Create product 18 6 11 (61%)

Tumblr Tumblr Get blog likes 5 1 3 (60%)

Yelp Yelp Search businesses 14 3 7 (50%)

YouTube-GCT YouTube Get comment threads 11 5 8 (73%)

YouTube-GV YouTube Get videos 12 5 7 (58%)

YouTube-S YouTube Search 31 16 25 (81%)

Mean 13.6 5.4 8.8 (62%)

involved in at least one dependency. Table 1 provides a summary of the services
under test (SUTs). For each SUT, the table shows an identifier (used to refer to
it within the rest of the paper), API name, description of the operation tested,
number of input parameters (P), number of IDL dependencies (D), and number
(and percentage) of different parameters involved in at least one dependency
(PD). On average, the operations have 14 parameters, 5 dependencies and 9
parameters involved in dependencies.

The OAS specification of each API under test, used as input in RESTest,
was taken from the API website or from the APIs.guru repository [1]. When
the specification was not available (Foursquare, Tumblr and Yelp), we created
it manually based on the online API documentation. Then, we looked for inter-
parameter dependencies described in the documentation and included them as
a part of the specification using the IDL4OAS extension. The links to the APIs
under test and their OAS specifications are available as part of the supplementary
material of the paper [21].

4.2 Test Case Generation Techniques

Next, we describe the test case generation techniques used in the evaluation.

Random Testing (RT). This is the state-of-the-art approach used as baseline
in our work [4,9,23]. Nominal test cases are generated by randomly selecting a
subset of the operation parameters and assigning random values to them within
their domain. All parameters are selected with the same probability (i.e., weight
= 0.5) except mandatory ones, which are always included in the API request.
Notice that this approach neglects inter-parameter dependencies and so the gen-
erated test cases may not be valid, i.e., they may generate responses with 4XX
status codes (client error). Faulty test cases are generated by mutating nominal
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test cases as described in Sect. 3.3, e.g., excluding a mandatory parameter from
the API call.

Constraint-Based Testing (CBT). Nominal test cases are generated in two
steps. First, the domain of each input parameter is discretised and reduced to a
fixed number of random values, within their domain, using RESTest test data
generators. Then, the analysis operation getRandomValidRequest is invoked on
IDLReasoner to generate a request that satisfies all inter-parameter dependen-
cies. Analogously to RT, faulty test cases can be generated by mutating nominal
test cases. Additionally, faulty test cases can also be generated by invoking the
getRandomInvalidRequest operation on IDLReasoner to generate an API call
violating one or more inter-parameter dependencies.

4.3 Experiment 1: Generation of Valid Test Cases

In this experiment, we aim to answer RQ1 by evaluating the effectiveness of RT
and CBT in generating valid test cases, i.e., those satisfying all inter-parameter
dependencies. The automated generation of valid test cases has two main bene-
fits. First, these are very helpful during regression testing as a part of Continuous
Integration. Second, and more importantly, valid test cases help identify critical
bugs: those returning an error (i.e., 4XX or 5XX status code) with an input that
should be successfully handled by the service (i.e., 2XX status code). In what
follows, we describe the setup and the results of the experiment.

Setup. For each SUT and test generation technique (RT and CBT), we gener-
ated 1,000 nominal test cases. Recall that a nominal test case is a potentially
valid test case intended to test the API under valid inputs. Then, we ran the test
cases on the services under test and counted the number of actual valid test cases
based on the 2XX responses obtained. Interestingly, we found that some of the
services tested had dependencies not described in the API documentation. This
was observed when obtaining 4XX status codes (client errors) with some input
combinations that should be valid according to the documentation. For example,
when using the channelType parameter in the YouTube API, the type param-
eter must be set to ‘channel’, although this dependency is not documented.
In order to assess the effect of the missing dependencies, we defined them in
the specification and included them in the evaluation as variants of the original
SUTs, denoted with * after their name in Table 2. Overall, we added 4 new
dependencies and updated 9 dependencies in 4 out of the 9 services under test.
The experiments were performed in a standard PC with an Intel i5 processor,
16GB of RAM and an SSD, running on Windows 10 and Java JDK 8.

Results. Table 2 shows the results of the experiment. For each SUT and test
generation technique, the table shows the percentage of valid test cases generated
(column Valid) and the time required to generate the 1,000 test cases in seconds
(column Time). Note that test case execution times are not included since those
are independent of the test case generation approach.

As expected, RT struggled to generate valid test cases in most of the APIs,
with the percentage of valid test cases ranging from 1.3% (Stripe) to 89%
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Table 2. Percentage of valid test cases and test case generation times.

SUT RT CBT

Valid (%) Time (s) Valid (%) Time (s)

Foursquare 89.0 1.4 93.6 107.0

Foursquare* – – 100 105.4

GitHub 62.1 3.6 100 96.8

Stripe-CC 17.1 0.4 82.0 102.9

Stripe-CC* – – 100 105.8

Stripe-CP 1.3 1.7 46.4 109.7

Stripe-CP* – – 100 108.8

Tumblr 65.5 0.2 100 100.3

Yelp 54.6 1.7 97.1 102.8

YouTube-GCT 20.5 0.6 99.9 95.9

YouTube-GV 49.2 7.5 100 114.2

YouTube-S 1.6 1.0 49.2 104.3

YouTube-S* – – 100 104.0

Mean 40.1 2.0 85.4 (99.7) 104.5

(Foursquare), 40.1% on average. In contrast, CBT successfully managed to gener-
ate 100% valid test cases in the API operations of GitHub, Tumblr and YouTube-
GV. Similarly, CBT generated 100% valid test cases in the operations of Four-
square, Stripe and YouTube-S once the missing dependencies were included in
the specification (rows denoted with *). Some of the test cases generated by
CBT did not obtain successful responses in the SUTs of Yelp and YouTube-
GCT. Interestingly, we found this was due to actual faults in those services, as
discussed in the next section. CBT generated an average of 85.4% valid test cases
in the services under test using the dependencies described in their documen-
tation, and 100% (99.7% counting fault-revealing test cases) when considering
all the dependencies, including those missing in the API documentation. Over-
all, out of 1,000 test cases, CBT generated between 11% (FourSquare) and 99%
(Stripe-CP) more valid test cases than RT, 59.9% on average.

RT took 2 s on average to generate 1,000 test cases, whereas CBT took 104.5 s
(less than 2 min) due to the overhead introduced by the constraint solver. How-
ever, the increment in the execution time of CBT is negligible compared to its
potential to generate valid test cases and to detect failures. To investigate this
further, we measured the time required by both techniques, RT and CBT, to
generate and run test cases in the service of Stripe-CP until having 1,000 suc-
cessful responses. RT took more than 10 h and 73K total generated test cases.
CBT took 11 min and 1K test cases.

Based on the results obtained, we can answer RQ1 as follows:
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CBT can generate 100% valid test cases for RESTful web services, pro-
vided that dependencies are correctly specified. This means an average
increment of 60% over RT (99% in highly constrained APIs) at a low
price in terms of generation time.

4.4 Experiment 2: Detection of Failures

In this experiment, we aim to answer RQ2 by evaluating the effectiveness of RT
and CBT in detecting failures in real-world APIs with inter-parameter depen-
dencies. Next, we explain the experimental setup and the main findings.

Table 3. Failures found by RT and CBT.

SUT RT CBT

5XX OAS 2XXP Total 5XX OAS 2XXP 2XXD 4XX Total

Foursquare 0 1,042 127 1,169 1 910 65 424 64 1,464

GitHub 0 0 487 487 0 0 236 0 0 236

Stripe-CC 0 0 0 0 0 0 0 0 180 180

Stripe-CP 0 0 0 0 0 0 0 0 535 535

Tumblr 0 389 806 1,195 0 492 411 160 0 1,063

Yelp 48 19 0 67 50 42 0 68 1 161

YouTube-GCT 0 0 0 0 0 1 0 8 1 10

YouTube-GV 0 0 2 2 0 0 2 114 0 116

YouTube-S 0 0 0 0 0 5 0 0 508 513

Total 48 1,450 1,422 2,920 51 1,450 714 774 1,289 4,278

Setup. For each SUT and test case generation technique, we generated 1,000
nominal test cases and 1,000 faulty test cases, 2,000 test cases in total. Faulty test
cases in RT were generated by violating the specification of individual parame-
ters, e.g., omitting a mandatory parameter in the API request. In CBT, however,
faulty test cases were divided into two groups: 500 test cases following the same
approach as in RT, and 500 test cases violating one or more inter-parameter
dependencies. To identify wrong outputs, we used the five test oracles explained
in Sect. 3.3, i.e., server errors (5XX ), conformance to the OAS specification
(OAS ), faulty requests obtaining successful responses (2XXP and 2XXD) and
valid requests obtaining client error responses (4XX ). Recall that oracles 2XXD

and 4XX are only applicable in CBT as they rely on checking whether inter-
parameter dependencies hold.

Results. Table 3 shows the number of failures detected in the services by each
test case generation technique and test oracle. Both techniques succeeded in
finding failures, but CBT proved more effective, as it uncovered 4,278 failures in
all the services under test, whereas RT revealed 2,920 failures in 5 out of 9.
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Regarding test oracles, both techniques uncovered a similar number of failures
with oracles 5XX and OAS. RT found twice the failures with test oracle 2XXP ,
but this was expected since it was checked 1,000 times in RT against 500 times in
CBT. The true potential of CBT is leveraged with our two novel oracles 2XXD

and 4XX. In fact, they sufficed to reveal 2,063 failures in 8 out of 9 services
on their own. It is noteworthy that these failures are undetectable by current
state-of-the-art techniques.

Oracle 4XX uncovered a total of 1,289 failures in 6 services. These failures
are specially critical: client errors should not be obtained when requests are well
formed. Since we are using a black-box approach, it is difficult to know the exact
number of distinct faults causing these failures. However, we analysed the error
messages returned by the services and managed to classify the failures in multiple
potential bugs. Due to space limitations, we describe three of the bugs uncovered
with this oracle below, and refer the reader to the supplementary material for a
comprehensive list [21]:

– In the Yelp service, when setting the location to ‘Egypt’ and the locale
to ‘fi FI’ (Finnish), the error LOCATION NOT FOUND (400 status code) is
returned. However, we noticed that changing the locale to Italian, for instance,
makes the error disappear and actual results are returned.

– In the YouTube-GCT service, a valid request obtained an error with the
following message: “Check the structure of the commentThread resource in
the request body to ensure that it is valid”. However, no body was included
in the request (actually the operation does not allow it), and so this failure
becomes hard to debug.

– In the YouTube-S service, there exist two undocumented dependencies: (1)
when using the channelType parameter, type must be set to ‘channel’; and
(2) when using the location parameter, type must be set to ‘video’. These
two unspecified dependencies caused 1 of every 2 requests to be invalid.

As for oracle 2XXD, most failures are related to inter-parameter dependen-
cies being wrongly specified in the API documentation, or not correctly imple-
mented in the API itself. For instance, the Yelp service defines the parameters
open now and open at as mutually exclusive, nevertheless, a request including
both parameters with open now set to ‘false’ will return a successful response.

In addition to the failures uncovered by our two novel oracles, RESTest suc-
cessfully found other types of errors such as 500 status codes in Foursquare and
Yelp and disconformities with the OAS specification in Tumblr and YouTube,
among others. All things considered, we can answer RQ2 as follows:

CBT is highly effective at revealing failures having found bugs in the nine
services under test. About half of the failures detected by CBT (2K out of
4K) were not detected by RT.
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5 Threats to Validity

The evaluation performed is subject to a number of validity threats.

Internal Validity. Are there factors that might affect the results of our eval-
uation? A possible threat in this regard is the existence of bugs in the tools
used, namely, RESTest and IDLReasoner. To mitigate this threat, both tools
have been thoroughly tested using standard testing techniques such as equiva-
lence partitioning and combinatorial testing. Furthermore, the tools with their
test suites and the results of our experiments are freely available [21], thereby
allowing full replication of the evaluation performed. Related to this, we had to
manually write the OAS specifications of three services. To minimise bias, we
created them solely based on their online documentation, and all specifications
were independently revised by at least two authors. Another possible threat is
related to the randomness of the testing techniques used (RT and CBT). A
thorough evaluation should have included more repetitions per experiment (e.g.,
10–30) and statistical analysis. However, due to the strict quota restrictions of
the commercial APIs tested, it was not possible to do so (e.g., the YouTube-
S service accepts only 100 requests per day). Despite this limitation, the total
number of test cases generated (40K) and failures found (7K) make us remain
confident about the significance of the results obtained.

External Validity. To what extent can we generalise the findings? We tested 9
services from 6 highly popular web APIs, nevertheless, this might not be a suf-
ficiently representative sample. To minimise this threat, we selected API oper-
ations of different types (read and create), from different application domains
(e.g., financial and social), with different numbers of parameters (from 5 to 31)
and containing the eight patterns of dependencies found in our study of real-
world APIs [11].

6 Related Work

RESTful API testing approaches can be classified into white-box and black-box.
Arcuri [2] is the only author who advocates for white-box testing. He proposed a
search-based approach, where test cases are generated aiming to maximise code
coverage. Black-box testing approaches do not require access to the source code.
Segura et al. [19] proposed to analyse the outputs returned by the service after
similar requests. They managed to find bugs when inconsistencies among those
outputs were detected, e.g., the API returns more data when using a filter than
when no filter is applied. Other approaches achieve a higher degree of automation
by leveraging the OAS specification of the API [3,4,9,23]. Ed-douibi et al. [4]
tested individual API operations using random, default and example parameter
values present in the OAS document. Other authors [3,9,23] tested sequences of
operations by inferring dependencies among them (e.g., creating a resource and
retrieving it). For the generation of input test values, Karlsson et al. [9] resorted
to property-based testing (PBT), while Atlidakis et al. [3] and Viglianisi et al.
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[23] used data dictionaries. All these approaches are limited in the oracles they
can use, as they can only check the conformance to the OAS document, the
absence of 5XX status codes and the correct management of invalid inputs. They
cannot be certain about whether a given API call is valid or not, since it may
violate some inter-parameter dependency. Neglecting this limitation would lead
to false positives for those APIs containing dependencies, as what happened
to Ed-douibi et al.: “four errors were linked to the limitation of OpenAPI to
define mutually exclusive required parameters” [4]. Atlidakis et al. [3] proposed
four additional oracles related to operation sequences (e.g., a resource that was
deleted must no longer be accessible) but, again, these oracles have no effect if no
valid calls to the service are generated in the first place. In constrast to previous
approaches, RESTest supports the automated management of inter-parameter
dependencies, enabling a deeper and faster evaluation of the SUT through the
systematic generation of valid and invalid input combinations.

In the context of constraint-based testing for web services, the most related
work is probably that of Sun et al. [20]. They proposed CxWSDL, a WSDL
[24] extension to specify six different types of behaviour constraints such as
the order in which operations should be invoked. Test cases were automatically
derived from the specification using a constraint solver. Inconsistencies in the
services tested were found when some constraint was violated. Li et al. [10]
presented a constrained combinatorial approach to generate optimal test suites
avoiding forbidden combinations of parameters. Xu et al. [25] proposed test-
ing web service robustness by violating constraints, including inter-parameter
dependencies, which were extracted from the OWL-S [16] specification of the
service. Compared to these papers, we support a wider range of inter-parameter
dependencies, including the eight dependency patterns defined in [11], and we
focus on RESTful APIs as the current de facto standard for web integration. Fur-
ther, our approach is integrated into RESTest, an open-source framework that
can be easily extended with other test generation strategies as well as testing
frameworks and libraries.

7 Conclusion and Future Work

This paper presents RESTest, a framework for automated black-box testing of
RESTful web APIs. RESTest implements a novel constraint-based testing app-
roach that leverages the specification of inter-parameter dependencies to auto-
matically generate valid calls to the service, i.e., those satisfying all input con-
straints. We showed that current random testing techniques can be extremely
inefficient in generating valid requests and therefore are unable to exercise the
actual functionality of the services, e.g., 98 out of every 100 random test cases
violated inter-parameter dependencies in YouTube. In contrast, RESTest can
efficiently generate 100% valid test cases when providing the specification of
inter-parameter dependencies. More importantly, RESTest implements two novel
oracles to evaluate how the API responds to constraint-satisfying and constraint-
violating test cases. This allowed us to reveal more than 4K failures uncovering
bugs in all the services under test.
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Several challenges remain for future work. On the one hand, we plan to
implement currently missing features in RESTest, such as testing of sequences
of operations and search-based online testing approaches. This will allow us to
perform a more extensive evaluation of the framework. On the other hand, we
intend to make RESTest SLA-aware with SLA4OAI [6], so that it can be deployed
in API gateways such as Governify [7] and perform autonomous functional and
non-functional testing of microservices architectures.

Acknowledgements. This work has been partially supported by the European Com-
mission (FEDER) and Junta de Andalucia under projects APOLO (US-1264651) and
EKIPMENT-PLUS (P18-FR-2895), by the Spanish Government under project HOR-
ATIO (RTI2018-101204-B-C21), and by the FPU scholarship program, granted by the
Spanish Ministry of Education and Vocational Training (FPU17/04077). We would
also like to thank Ramon Fernandez for his technical support during the development
of RESTest.

References

1. APIs.guru. https://apis.guru. Accessed Apr 2020
2. Arcuri, A.: RESTful API automated test case generation with EvoMaster. ACM

TOSEM 28(1), 1–37 (2019)
3. Atlidakis, V., Godefroid, P., Polishchuk, M.: Checking security properties of cloud

services REST APIs. In: ICST (2020)
4. Ed-douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic generation of test cases for

REST APIs: a specification-based approach. In: EDOC, pp. 181–190 (2018)
5. Fielding, R.T.: Architectural styles and the design of network-based software archi-

tectures. Ph.D. thesis (2000)
6. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: Automating SLA-driven API

development with SLA4OAI. In: ICSOC, pp. 20–35 (2019)
7. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortés, A.: Governify for APIs: SLA-driven

ecosystem for API governance. In: ESEC/FSE, pp. 1120–1123 (2019)
8. Gotlieb, A.: Constraint-based testing: an emerging trend in software testing. In:

Advances in Computers, vol. 99, pp. 67–101. Elsevier (2015)
9. Karlsson, S., Causevic, A., Sundmark, D.: QuickREST: property-based test gen-

eration of OpenAPI described RESTful APIs. In: ICST (2020)
10. Li, Y., Sun, Z.A., Fang, J.Y.: Generating an automated test suite by variable

strength combinatorial testing for web services. CIT 24(3), 271–282 (2016)
11. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: A catalogue of inter-parameter

dependencies in RESTful web APIs. In: ICSOC, pp. 399–414 (2019)
12. Martin-Lopez, A., Segura, S., Müller, C., Ruiz-Cortés, A.: Specification and auto-

mated analysis of inter-parameter dependencies in web APIs. IEEE Trans. Serv.
Comput. (2020, Submitted to). https://bit.ly/2ECr9rc

13. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Test coverage criteria for RESTful
web APIs. In: A-TEST, pp. 15–21 (2019)

14. MiniZinc: Constraint Modeling Language. https://www.minizinc.org. Accessed
Apr 2020

15. OpenAPI Specification. https://www.openapis.org. Accessed Apr 2020
16. Semantic Markup for Web Services (OWL-S). https://www.w3.org/Submission/

OWL-S. Accessed May 2020

https://apis.guru
https://bit.ly/2ECr9rc
https://www.minizinc.org
https://www.openapis.org
https://www.w3.org/Submission/OWL-S
https://www.w3.org/Submission/OWL-S


RESTest: Black-Box Constraint-Based Testing of RESTful Web APIs 475

17. REST Assured. http://rest-assured.io. Accessed Apr 2020
18. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly Media Inc.,

Sebastopol (2013)
19. Segura, S., Parejo, J.A., Troya, J., Ruiz-Cortés, A.: Metamorphic testing of REST-

ful web APIs. IEEE TSE 44(11), 1083–1099 (2018)
20. Sun, C.a., Li, M., Jia, J., Han, J.: Constraint-based model-driven testing of web

services for behavior conformance. In: ICSOC, pp. 543–559 (2018)
21. Supplementary material of the paper. https://github.com/isa-group/icsoc-2020-

supplementary-material
22. Swagger. http://swagger.io. Accessed Apr 2020
23. Viglianisi, E., Dallago, M., Ceccato, M.: RestTestGen: automated black-box testing

of RESTful APIs. In: ICST (2020)
24. Web Services Description Language (WSDL) Version 2.0. https://www.w3.org/

TR/wsdl20. Accessed May 2020
25. Xu, L., Yuan, Q., Wu, J., Liu, C.: Ontology-based web service robustness test

generation. In: WSE, pp. 59–68 (2009)

http://rest-assured.io
https://github.com/isa-group/icsoc-2020-supplementary-material
https://github.com/isa-group/icsoc-2020-supplementary-material
http://swagger.io
https://www.w3.org/TR/wsdl20
https://www.w3.org/TR/wsdl20


A Type-Sensitive Service Identification
Approach for Legacy-to-SOA Migration

Manel Abdellatif1,2(B), Rafik Tighilt2, Naouel Moha2, Hafedh Mili2,
Ghizlane El Boussaidi3, Jean Privat2, and Yann-Gaël Guéhéneuc4

1 Polytechnique Montréal, Montreal, QC, Canada
manel.abdellatif@polymtl.ca

2 Université du Québec à Montréal, Montreal, QC, Canada
3 École de Technologie Supérieure, Montreal, QC, Canada

4 Concordia University, Montreal, QC, Canada

Abstract. A common strategy for modernizing legacy systems is to
migrate them to service-oriented architecture (SOA). A key step in the
migration process is the identification of reusable functionalities in the
system that qualify as candidate services in the target architecture. We
propose ServiceMiner, a bottom-up service identification approach that
relies on source code analysis, because other sources of information may
be unavailable or out of sync with the actual code. Our bottom-up, code-
based approach uses service-type specific functional-clustering criteria.
We use a categorization of service types that builds on published service
taxonomies and describes the code-level patterns characterizing types of
services. We evaluate ServiceMiner on an open-source, enterprise-scale
legacy ERP system and compare our results to those of two state-of-
the-art approaches. We show that ServiceMiner automates one of the
main labor-intensive steps for migrating legacy systems to SOA. It iden-
tifies architecturally-significant services with 77.9% of precision, 66.4%
of recall, and 71.7% of F-measure. Also, we show that it could be used to
assist practitioners in the identification of candidate services in existing
systems and thus to support the migration process of legacy systems to
SOA.

Keywords: Service identification · Service types · Legacy migration ·
Software reuse

1 Introduction

The maintenance and migration of legacy software systems are central IT activ-
ities in many organizations in which these systems are mission-critical. These
systems embed hidden knowledge that is of significant values. They cannot be
simply removed or replaced because they execute effectively and accurately crit-
ical and complex business logic. However, legacy software systems are difficult
to maintain and scale because their software and hardware become obsolete [1].
They must be modernized to ease their maintenance and evolution.
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A common strategy for modernizing such systems is their migration to
service-oriented architecture (SOA), which defines a style where systems are
made of services that are reusable, distributed, relatively independent, and often
heterogeneous [2]. Service Identification (SI) is considered one of the most chal-
lenging steps of the migration process [3]. It consists in identifying reusable
groupings—clusters of functionalities in the legacy system that qualify as can-
didate services in the target architecture. Several SI approaches have been pro-
posed in the literature [4–10]. However most of them have limited identification
accuracy and usually require several types of inputs (e.g., business process mod-
els, use cases, activity diagrams, etc.) that may not be always available especially
in the context of legacy systems. We argue that service identification should
depend on service types to improve the identification accuracy by narrowing the
search space through the types and their associated code-patterns. Service types
can be used to classify service candidates according to a hierarchical-layered
schema and offers the possibility to prioritize the identification of specific types
of services according to the business requirements of the migration process. Also,
in our prior work [11], we reported that several practitioners highlighted the
importance of identifying service types when migrating legacy systems to SOA.
They claimed that type-aware SI provides important information on the nature
and business capabilities of the identified services. Besides, existing source-code
SI approaches use similar functional-clustering criteria—typically cohesion and
coupling, which lead to candidate services that are often architecturally irrelevant
for the new SOA-based system.

Consequently, we propose ServiceMiner, a type-aware SI approach to support
the migration of legacy systems to SOA. We consider a bottom-up approach
relying on source code analysis, as other sources of information (e.g., business
process models, use cases, activity diagrams, etc.) may be unavailable or out of
sync with the actual code. We use a categorization of service types based on
previous service taxonomies and describe the code-level patterns characterizing
each type of service. We evaluate ServiceMiner on an open-source, enterprise-
scale legacy ERP system and compare its results to those of two state-of-the-art
SI approaches [5,7]. We show that our approach automates the identification of
specific types of candidate services, which are architecturally significant for the
new SOA-based system.

This paper is structured as follows. Section 2 presents the related work and
describes the taxonomy of service types. Section 3 details the service identifica-
tion approach. Section 4 presents the experimental validation of our approach
and details the obtained results. We discuss in Sect. 5 our threats to validity and
provide our recommendations. Finally, we conclude in Sect. 6 with future work.

2 Background and Related Work

We describe in this section related work considering service types, their limita-
tions, and the taxonomies on which we build our approach.
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2.1 Related Work

Several approaches were presented to identify services from legacy software. How-
ever, only five approaches [12–16] considered the types of services.

Marchetto et al. [13] proposed a stepwise type-sensitive service identifica-
tion approach that extracts reusable services from legacy systems based on
dynamic analysis of java-based systems. They proposed guidelines to identify
Utility, Entity and Task services from legacy systems. They executed several
test scenarios and extracted reusable functional groupings that they qualified
as candidate services. They identified Utility services by manually mining non-
business-centric functionalities and looking at cross-cutting functionalities that
can be grouped and exposed as candidate Utility services. They extracted can-
didate Entity services by analyzing the persistent objects and the classes using
them. Finally, they considered each main functionality of the target application
as a possible candidate Task service. Although the proposed SI approach is type-
sensitive, the identification is still manual and based on executing several test
scenarios that may not cover all the functionalities of the system. The approach
was validated on small Java systems, limiting its application on real enterprise
systems.

Huergo et al. [15] proposed a method to identify services based on their
types. They rely on UML class diagrams of object-oriented based systems from
which they derive state machine diagrams to identify the states of the objects in
the system. They start by manually identifying Master data that they define as
entity classes considered to play a key role in the operation of a business. Each
Master data is considered as a candidate Entity service. Next, they derive state
machine diagrams that are related to the identified Master data. They analyze
the transitions on the state machine diagrams and identify Task and Process
services. The identification process is also not fully automated and relies on the
manual identification of master data in the system that qualify as Entity services.

Alahmari et al. [12] identified services based on analyzing business process
models. These business process models are derived from questionnaires, inter-
views and available documentations that provide atomic business processes and
entities on the one hand, and activity diagrams that provide primitive func-
tionalities, on the other hand. Different service granularity are distinguished in
relation to atomic business processes and entities. Dependent atomic processes as
well as the related entities are grouped together at the same service to maximize
the cohesion and minimize the coupling. However the implementation details of
the approach is not fully described.

Fuhr et al. [14] considered three types of services: Business, Entity, and Utility
services, which are identified from legacy code based on a dynamic analysis
technique. The authors relied on a business process model to identify related
classes. Each activity in the business process model is executed and classes called
during the execution of an activity are considered related. The identification of
services is based on a clustering technique where the similarity measurement is
the number of classes used together in one activity. The identified clusters are
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then manually mapped into the different service types. A strong assumption of
this approach is that business process models are available to execute activities.

Grieger et al. [16] presented an approach identifying three service types when
analyzing legacy code. The first type refers to initial Design services that imple-
ment business values. These occurrences are identified based on refining the
existing legacy code related to business values. The second type corresponds
to coarse-grained services, e.g, business processes. These are identified based
on orchestrating other services related to the same underlying business process
(i.e., structural dependent services). The last service type is related to services
that implement crosscutting concerns and technical functionalities used across
different services (i.e., Utility services). The identification of these services is
based on partitioning the functionalities of multiple services to recover indi-
vidual and common parts. The authors relied on a clone detection algorithm
to extract cloned functionalities shared among different services. The identified
cloned functionalities are given to software architects to decide if they should
to be moved into an existing service or merged into a new one. The proposed
approach highly depend on the manual and iterative refinement of the identified
candidate services with software architects. The approach also lacks of empirical
evidence on its reliability to support software architects during the migration
process as there is no information about the quality of the identified services.

We notice that there is a lack of SI approaches that are type-sensitive. These
approaches focus on identifying Business, Entity, and Utility services. Most of
these approaches are not fully-automated and need other inputs than the source
code (e.g., business processes, execution traces, state machine diagrams, etc.) to
identify services in legacy systems.

Also, a number of primary studies have been proposed in the literature about
SI without taking into account service types. Many of the proposed techniques
rely on Business Process Models (BPMs), to identify services within the context
of legacy migration [17–19]. These techniques decompose processes into tasks
and then map these tasks to legacy source code elements to identify candidate
services. Other SI techniques use heuristics based on the technical properties of
services, as reflected in various metrics [5,7,8,20,21]. Such techniques often use
these metrics to drive clustering and machine learning algorithms that identify
software artifact clusters as candidate services. Other AI-based techniques use
ontologies and Formal Concept Analysis to identify services in legacy systems
[9,10,22]. However these techniques are too complex and not ready for indus-
trial applications. There are also wrapping-based SI techniques that put service
interfaces around existing functional components and subsystems [4,6,23], which
solve integration problems but do not solve maintenance issues.

2.2 Taxonomy of Service Types

A number of service type taxonomies exists [2,12–16,24,25] that consider dif-
ferent aspects (e.g., domain specificity, granularity, governance) to distinguish
service types. We study and combine these taxonomies and limit ourselves
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to those services types that are distinguishable at the code level. We distin-
guish between domain-specific services, and domain-neutral services (cf. Fig. 1).
Domain-specific Services fall into four major types:

1. Business services: They correspond to business processes or use cases.
These are services used by users. These services generally compose/use
the Enterprise-task, Application-task, and Entity services described in the
following.

2. Enterprise services: (Also called capabilities [24]) they are of finer granu-
larity than business process services. They implement generic business func-
tionalities reused across different applications.

3. Application services: These services provide functionalities specific to one
application. They exist to support reuse within one application or to enable
business process services [24].

4. Entity services: (Also called information or data services) they provide
access to and management of the persistent data of legacy software systems.
They support actions on data (CRUD) and may have side-effects (i.e., they
modify shared data).

Domain-neutral Services are services that provide functionalities to develop,
use, and compose domain-specific services:

1. Utility services: They provide some cross-cutting functionalities required
by domain-specific services. Logging and authentication services are examples
of Utility services.

2. Infrastructure services: They allow users deploying and running SOA sys-
tems. They include services for communication routing, protocol conversion,
message processing and transformation. They are sometimes provided by an
Enterprise Service Bus (ESB).

Utility
Services

Application Services Enterprise Services

Infrastructure Services

Business Services

Entity Services

Fig. 1. Taxonomy of service types

In our prior work [11], we validated this taxonomy through an industrial
survey with practitioners who participated in real migration projects to SOA.
None of them mentioned the identification of other types of services during
the migration process. In the following, we will consider the identification of
only Utility, Entity and Application services and detail how we can identify
such types of services through the analysis of the source code of legacy software
systems. In fact, non service-oriented legacy systems are likely not to contain
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infrastructure services and, thus, we do not consider this type of services in
our analysis. Second, we do not distinguish between Application services and
Enterprise services because they only differ in terms of scope of reuse: within
a single system vs. across systems. Also, we do not consider Business services
because (1) they orchestrate other services, such as Enterprise and Application
services, and (2) other sources of information, e.g., business process models, are
required to detect them.

3 Service Identification by Type: Our Approach

Figure 2 summarizes our SI approach, ServiceMiner, which consists of two
phases: (1) a pre-processing phase in which we build the call graph of the system
based on source code analyses, perform an initial clustering of highly connected
classes, and compute the code metrics used in the services detection rules and (2)
a processing phase in which we apply rules on the generated clusters to filtrate,
reorganize, and classify them to identify candidate services and their types.

Source
code KDM Call Graph Generation Call Graph

Metrics Calculation Metrics

Initial Clustering Initial clusters

Detection Rule of Utility Services

Detection Rule of Entity Services

Detection Rule of Application Services

Utility
Services

Entity
Services

Application
Services

Phase 1: Pre-processing Phase 2: Processing (identification of reusable services)

5

7

MoDISCO
1

6
2

3

4

Fig. 2. Overview of ServiceMiner

3.1 Pre-processing Phase

Call Graph Generation. Our SI rules in Table 1 use code metrics, such as
fanin and fanout, computed on the call graph of the legacy system. Thus, in a
first step, we parse the source code of the legacy system and build its call graph.
Legacy systems come in different languages and may combine several technolo-
gies. The OMG Knowledge Discovery Metamodel (KDM) [26] was defined to rep-
resent (legacy) systems at different levels of abstraction, regardless of languages
and technologies. Thus, we use MoDISCO [27], an Eclipse-based open-source
implementation of the KDM that provides (1) an extensible parsing framework
to obtain KDM models from files in different languages and (2) a framework to
navigate the KDM models, which we extend to generate call graphs of legacy
systems.
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Metrics Calculation. Our rules use class-level and method-level metrics. We
use the call graphs obtained in the previous step to compute class-level met-
rics. For the sake of simplifying the implementation of our SI approach, we use
Understand1 to compute method-level metrics. We also analyze the static rela-
tionships between the modules of the systems and assign a weight to each of
them according to their relative importance. A module may be a procedure, an
object, or any other piece of software depending on the programming language.
A relationship may be generalization, aggregation, or association, between classes
in object-oriented systems for example. The total relationship strength between
a pair of related modules is:

Weight(Ci, Cj) =
T∑

t=1

Wt ×NRt

where Ci and Cj are modules, T is the number of relationships, Wt the weight
assigned to a relationship type t, and NRt the number of type t relationships
between Ci and Cj . We study the relationships to ensure that only related mod-
ules are grouped together in the following steps.

Initial Clustering: Identification of Functional Groupings. The SI rules
in Table 1 apply to candidate clusters that group functionalities in a legacy sys-
tem. Finding such groupings within a call graph is akin to a call-graph clustering
problem. We rely on Kruskal’s maximum spanning-tree algorithm [28] to gen-
erate our initial set of clusters because (1) it is an efficient polynomial-time
algorithm for generating clusters based on a graph structure, (2) it was used by
several state-of-the-art SI approaches [7,29], and (3) a free implementation of
the algorithm is provided in the open-source Java library Jgrapht, which can be
easily integrated into our implementation. To enhance the clustering results of
the spanning-tree algorithm, we put the modules that are reachable only from
certain other modules in the same cluster. For example in case of object-oriented
systems, if a class A is only accessible from a class B and the two classes are not
in the same cluster then they must be grouped in same one.

3.2 Processing Phase: Identification of Reusable Services

Not all the clusters qualify as candidate services. In this step, we select the
functional groupings/clusters to migrate while considering the different types of
services. We first discuss service types and their code patterns qualitatively and
then express them as rules (see Table 1).

Each type of service is mutually exclusive and their detection is hierarchical:
first we detect candidate Utility services. Within the remaining groupings, we
detect Entity and Application services as follows:

1 http://www.scitools.com.

http://www.scitools.com
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1. Utility services: They provide highly generic functionalities that are sepa-
rate from domain-specific business processes and reusable across a range of
business functionalities [2]. We detect Utility services by identifying group-
ings that satisfy the rule described in Table 1: high fanin (groupings that
are highly solicited/called) and low fanout (groupings that do not call many
other clusters). Utility services are domain-neutral so the identified groupings
should not be persistent or contain database queries.

2. Entity services: They represent and manage domain-specific business enti-
ties, such as products, invoices. They are data-centric and reusable by other
domain-specific services, such as Application services. We classify a grouping
as an Entity service with (1) high fanin, (2) low fanout, (3) persistent mod-
ules, (4) access to the infrastructure (e.g., database), and (5) fine grained.

3. Application services: They are domain-specific and provide business func-
tionalities specific to one system. They have low fanin compared to Entity
and Utility services. They can also compose functionalities provided by Entity
services. They generally perform complex computation. We use McCabe com-
plexity metric as well as error handling capabilities to measure complexity
computation. We classify a grouping as an Application service if it has (1) a
call to at least one Entity service, (2) a high McCabe complexity, and–or (3)
an error handling.

Table 1. Detection rules of services according to their types

Service type Detection rules

Utility services Very High Fanin AND Very Low Fanout AND Not persistent

Entity services Not Utility service AND High Fanin AND Low Fanout AND
Persistent AND Access to infrastructure AND Fine grained

Application services Not Utility AND Not Entity AND Low Fanin
AND (Call to Entity ≥1 OR High McCabe Complexity OR
Error Handling)

4 Experimental Validation

Our validation divides into (1) a quantitative validation of ServiceMiner on a
case study in comparison to a ground-truth, (2) a qualitative validation of the
identified services that are related to a particular feature of our case study, and
(3) a comparison of our identification results with those of two other state-of-
the-art approaches [5,7].

4.1 Case Study

As case study, we choose Compiere because it is one of the few available, large,
and open-source legacy system available on the Internet. Compiere is a legacy
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system because it is a large ERP system with a long history, first introduced
by Aptean in 20032. It provides businesses, government agencies, and non-profit
organizations with flexible and low-cost ERP features3, such as business part-
ners management, monitoring and analysis of business performance, control of
manufacturing operations, warehouse management (automating logistics), pur-
chasing (automating procurement to payment), materials management (inven-
tory receipts, shipments, etc.), and sales order management (quotes, book orders,
etc.). It supports different databases, such as Oracle and PostgreSQL. We use
Compiere v3.3 because (1) it is the first stable release of the system, (2) it was
released more than 15 years ago, (3) it includes 2,716 classes for more than 530
KLOC, and (4) it is not service-oriented.

4.2 Ground-Truth Architecture

We need a ground-truth service-oriented architecture of Compiere to assess our
approach. We asked two independent Ph.D. and Master’s students to identify
services in Compiere. They relied on several artifacts to build manually the
ground-truth architecture by (1) analyzing the system, (2) understanding it,
and (3) extracting its reusable parts that could become services. They used
Understand to recover its design and to visualize class dependencies. They also
generated views of its call graph that we make available online4. They also
reviewed extensively the system documentation as well as its source code to
have the best possible understanding and accurately identify services that can
be integrated in the targeted SOA-based system. They found 473 services, which
they annotated manually according to their type.

Fig. 3. Evaluation of the detection rules of Entity Services

2 http://www.aptean.com.
3 http://www.compiere.com/products/capabilities/.
4 http://si-serviceminer.com.

http://www.aptean.com
http://www.compiere.com/products/capabilities/
http://si-serviceminer.com
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Fig. 4. Evaluation of the detection
rules of Utility Services

Fig. 5. Evaluation of the detection
rules of Application Services

4.3 Quantitative Validation

We applied ServiceMiner on Compiere to show its practical accuracy in identi-
fying services in an existing system by considering, for each service type, several
combinations of the criteria related to each rule. We measured precision, recall,
and F-measure for each rule and report the results in Figs. 3, 4, and 5.

For example, for Utility services, we considered several possible combinations
of the criteria, such as “very high fanin”, “very low fanout”, and “Not persistent”.
We tested all possible combinations of these criteria and measured precision,
recall, and F-measure for each rule. As shown by Fig. 4, the best F-measure is
obtained when considering the three criteria to identify such type of services:
considering clusters with only very high fanin or very low fanout or clusters that
are only not persistent leads to poor precision values.

We did the same evaluation process to study the effectiveness of the detection
rules for Entity and Application services. As shown by Figs. 3, 4, and 5, the best
F-measure values were obtained when applying all the detection rules detailed
in Sect. 3.2, which we used in ServiceMiner to identify in Compiere 403 services:
24 Application services, 278 Entity services, and 101 Utility services. We report
in Table 2 the accuracy of ServiceMiner : a precision of 77.9%, a recall of 66.4%,
and a F-measure of 71.7%.

Table 2 shows that the best accuracy of ServiceMiner pertained to Utility
services with a precision of 77.9% and a recall of 86%. The identified Utility
services relate to logging, Web uploading, printing, etc. For Entity services, we
obtained a precision of 80.2%, a recall of 62.3%, and a F-measure of 70.1% with
services for products, orders, invoices, etc. We missed some Entity services that
have a low fanin/a high fanout because of our choice of metrics and thresholds,
which could be refined by the developers when applied to their own systems.
We observed a precision of 75%, a recall of 60%, and a F-measure of 66.7% for
Application services, which relate to payment processing, tax calculation, and
inventory management. The identification of Application services depends on
the previous identifications of Entity and Utility services and, thus, false-positive
Application services were mainly due to some Entity and Utility services being
incorrectly labeled as Application services, such as caching-related services and
Web-project deployment services.
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Although we missed the identification of some services, we reduced the devel-
opers’ effort needed to identify services by avoiding the manual identification of
at least 66% of the candidate reusable services. Our recall could be improved by
setting different thresholds and iterating through the identification process.

Table 2. Overview of service identification accuracy with ServiceMiner

Service type # Services Precision Recall F-measure

Application 24 (18/24) 75.0% (18/30) 60.0% 66.7%
Entity 278 (223/278) 80.2% (223/358) 62.3% 70.1%
Utility 101 (73/101) 72.3% (73/85) 86.0% 78.6%
Total 403 (314/403) 77.9% (314/473) 66.4% 71.7%

4.4 Qualitative Validation

We apply ServiceMiner on Compiere to identify relevant services in the system.
We take the example of the sales orders management in Compiere and detail
how ServiceMiner helps practitioners identify services related to this feature.

Sales orders management entails quotations, sales orders, and invoicing,
linked to the shipment of goods to customers. The initial clustering step of our
approach builds a set of candidate clusters that we then filtrate with our detec-
tion rules to identify candidate services. First, we identify Utility services by
applying the first rule in Table 1, which yields Utility services about logging and
printing. These services provide cross-cutting functionalities called by multiple
other services (e.g., sales) with very low fanout and no persistence.

Second, we identify Entity services, i.e., clusters representing business enti-
ties. They refer to the business entities of the system, such as products, invoices,
business partners, warehouses, and bank statements. These entities are persis-
tent, have access to the database, and are invoked by other domain-specific
services (e.g., Application and Business services).

Third, we apply our last detection rule in Table 1 to identify Application ser-
vices among the remaining clusters. An example of Application service related
to sales orders processing is the payment service responsible for generating pay-
ments of the orders based on the information provided by the invoice, business
partner, and bank statement Entity services. It is also responsible for handling
errors when the payment is unsuccessful.

We obtained architecturally significant candidate services thanks to the appli-
cation of our type-aware service identification approach on Compiere. We believe
that it can assist practitioners in the identification of candidate services because
it automates the SI process of Utility, Entity, and Application services with
acceptable precision and recall.
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4.5 Comparison with State-of-the-Art Approaches

We chose two existing approaches to compare their results against those of Ser-
viceMiner : MOGA-WSI [7] and Service Cutter [5]. These two were the only
available approaches. MOGA-WSI uses spanning trees and provides candidate
services with different levels of inter-service coupling. It relies on genetic and
multi-objective optimization algorithms to refine an initial set of services. It also
considers a set of managerial goals, such as cost effectiveness, ease of assembly,
customization, reusability, and maintainability. Service Cutter is a graph-based
approach considering 16 coupling criteria and two kinds of clustering algorithms,
Girvan-Newman (GN) [30] and Epidemic Label Propagation (ELP) [31], which
differ in terms of their (non-)deterministic behavior.

We assess our approach with respect to a ground-truth architecture and
in comparison to the two tools using measures of clustering and information
retrieval: MojoFM [32], Architecture2Architecture (A2A) [33], precision, and
recall. We rely on these metrics to study the identification results of each app-
roach regardless of the types of services.

Table 3 lists the identification results and shows that our approach outper-
forms MOGA-WSI and Service Cutter for all the reported metrics. We tried
several configurations for both tools but all showed poor results in comparison
to our approach. We observed that these approaches generate very unbalanced
services. For example, MOGA-WSI identified a service of 253 classes and 143
services of one to six classes. Similarly, Service Cutter (EPL) identified two
coarse-grain services and 393 fine-grained ones. Although service identification
using Service Cutter with Girvan-Newman is deterministic, we were limited to
a maximum number of 30 services, which lead to poor identification results.

We argue that our SI approach outperforms the two other approaches
because: (1) ServiceMiner follows a stepwise process, which identifies Utility
services then Entity services and finally Application services, (2) it uses simple,
straightforward metrics instead of complex goals, like maintainability, which are
subjective and more difficult to define and measure, and (3) the studied state-
of-the-art tools are proof of concepts, which may limit their applicability on
enterprise-scale systems, such as Compiere.

Table 3. Comparison results of service identification approaches

Approach #Services MojoFM A2A Precision Recall F-measure

MOGA-WSI 396 11.0% 42.0% 14.0% 13.0% 13.5%

Service Cutter (EPL) 395 15.7% 51.0% 12.2% 10.3% 11.2%

Service Cutter (GN) 30 21.6% 41.0% 15.6% 9.7% 14.1%

ServiceMiner 403 65.0% 73.0% 77.9% 66.4% 71.7%
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5 Discussion on the Approach

Threats to Validity. Construct validity concerns the accuracy of some obser-
vations with respect to a theory. In our validation process, we should have relied
on a real post-migration SOA-based system. However, we could not find any
open-source enterprise-scaled system that was migrated to SOA. Thus, we relied
on a ground-truth architecture to validate quantitatively the services identified
by our approach. We are aware that there is no single “correct” SOA for a given
legacy system. However, we relied on several artifacts (e.g., official documen-
tations, source code analysis, etc.) and studied in-depth the system to identify
reusable sets of classes that could be packaged into services. Also, we share our
ground-truth architecture to allow others to confirm/infirm our claims. We put
the original source code as well as the identified services online5, which also
reduces threats to reliability validity.

Our SI approach as well as its validation depend on several algorithms and
thresholds that threaten the internal validity of our results. To mitigate these
threats, (1) we implemented MOGA-WSI based on their original papers to the
best of our understanding and shared it for investigation and replication6; (2) we
used the best identification results of these tools to compare our approach; (3)
we explored the use of different metrics and threshold values; and, (4) we chose
the spanning-tree algorithm for its ease of use and available, open-source imple-
mentation. Future work should consider comparing with other algorithms to vet
further the reliability of our approach in comparison to other SI approaches.

We know that service detection rules may slightly differ from one system to
another. However, our detection rules are easily customized, being flexible and
extensible. We recommend to consider the same processing steps in the same
order than in our approach to identify the services in existing systems according
to their types. Also, legacy systems most likely embed poor design and coding
practices, e.g., code smells, that reduce the separation of concerns within/be-
tween classes, which reduces the precision/recall of static-based SI approaches.

Our case study may not be representative of all legacy software systems,
which limits the generalizability of our results but Compiere is large and complex
enough to validate our approach while we continue our search for other large,
open-source systems. Finally, the identified services may not be representative
of all service types, which may also limit the generalizabiltiy of our results.
Our approach is extensible to new service types. It can also be extended to
identify microservices [34] by mapping each Utility and Entity service identified
by ServiceMiner to a microservice and decomposing each identified Application
service into smaller microservices that each have a single responsibility.

Discussions and Recommendations. We believe that our approach is benefi-
cial for both researchers and practitioners interested in migrating legacy systems

5 http://si-serviceminer.com/ICSOC-2020-Replication.
6 https://github.com/MPoly2018/MOGA-WSI.

http://si-serviceminer.com/ICSOC-2020-Replication
https://github.com/MPoly2018/MOGA-WSI
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to SOA because (1) we automate the SI process, which is one of the most labor-
intensive step for migrating such systems to SOA; (2) our SI approach yields
to architecturally significant candidate services that can be packaged and inte-
grated in the targeted SOA-based system while identifying their types; (3) our
approach offers the possibility to prioritize the identification of specific service
types based on their importance and the architectural/business needs of the
migration process; and, (4) our approach is extensible to new technologies/lan-
guages, thanks to its use of the KDM metamodel as intermediate representation
for C, C++, Python, etc.

Finally, we recommend to consider service types to identify services in exist-
ing systems to improve accuracy. We also recommend to order the services to be
migrated. We suggest to start first with Utility services because they are highly
reusable and invoked by other services in the system (e.g., Entity, Application,
Business process services, etc.); second, to continue with Entity services because
they manage and represent the business entities of the system and are used by
the other services; third, to identify Application services as they compose func-
tionalities provided by Entity services; finally, to identify Business services that
manage and compose/use the previous types of services.

6 Conclusion and Future Work

In this paper, we proposed ServiceMiner, a type-aware service identification (SI)
approach for the migration of legacy software systems to SOA. ServiceMiner
helps during the key step of identifying reusable service candidates using a tax-
onomy of service types. We evaluated ServiceMiner on a real-world legacy ERP
system and compared its results with those of two state-of-the-art SI approaches.
We showed that, in general, ServiceMiner identified relevant, architecturally-
significant services with 77.9% of precision, 66.4% of recall, and 71.7% of F-
measure. Also, we showed that it outperformed the state-of-the-art SI approaches
by providing more architecturally-significant services. We believe that ServiceM-
iner can thus be used to assist practitioners in the identification of candidate
services in their systems.

As future work, we will consider the identification of other types of services,
such as Enterprise and Business services. We will also perform a qualitative
validation of the significance and relevance of the identified services with devel-
opers. We will compare other algorithms to further study the reliability of our
approach. Finally, we will complete our SOA migration road-map by exploring
automatic service packaging techniques to efficiently package and integrate the
identified services into the targeted SOA platform.
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Abstract. Customer management operations, such as Incident Manage-
ment (IM), are traditionally performed manually often resulting in time
consuming and error-prone activities. Artificial Intelligence (AI) software
systems and connected information management can help handle the dis-
continuities in critical business tasks. AI Incident Management (AIIM)
becomes therefore a set of practices and tools to resolve incidents by
means of AI-enabled organizational processes and methodologies. The
software automation of AIIM could reduce unplanned interruptions of
service and let customers resume their work as quick as possible.

While several techniques were presented in the literature to automat-
ically identify the problems described in incident tickets by customers,
this paper focuses on the qualitative analysis of the provided descriptions
and on using such analysis within the context of an AI-enabled busi-
ness organizational process. When an incident ticket does not describe
properly the problem, the analyst must ask the customer for additional
details which could require several long-lasting interactions. This paper
overviews ACQUA, an AIIM approach that uses machine-learning to
automatically assess the quality of ticket descriptions with the goals of
removing the need of additional communications and guiding the cus-
tomers to properly describe the incident.

Keywords: Incident Management · Service continuity · Digital
transformation · Artificial intelligence · Natural Language Processing

1 Introduction

Modern companies more and more require data-driven corporate services as
drivers for better quality and for saving money: the more data companies can
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collect, the more “observable” they become. Stakeholders can then exploit these
data to carry out dedicated analyses and react in a more appropriate and timely
way, with positive effects on the organizational performance of the company. Suc-
cessful companies, therefore, are those that harness the benefits of automation,
data analytics, and connected advanced human-machine interfaces [16].

In this context, service management—and specifically service incident man-
agement (IM)—is the set operations and processes that manages customer ser-
vices during their utilization, e.g., through the integration of tools and best-
practices [8]. One of the key aspects of IM is to provide service continuity [10],
that is, the capability of preventing, predicting, and managing service incidents
with the goal of maintaining the desired quality of service (QoS) during and
after unexpected events. These practices do not only aim to keep users engaged
and satisfied of the services they use.

A
N

A
LY

S
T

C
U

S
T

O
M

E
R

Create
ticket

Analyze 
ticket

Request more 
Information

Search for 
information

Add 
information

Provide 
solution

Apply 
solution

Is information complete?

Yes
No

Fig. 1. Customer-Analyst interactions when no automation is in place.

If no automation is in place, IM requires that customers and analysts interact
through a workflow similar to the one presented in Fig. 1. Customers describe
incidents through (service incident) tickets while analysts manually inspect them
and provide a solution. Several research efforts have already tried to automate
this process [6] but mostly concentrate on the semantic analysis of incident
descriptions. These works assume that customer inputs are always sufficiently
detailed to perform an analysis, while this in practice could not be true. Users
may not interact with the failed component directly and their description of the
incident could well be partial or unclear [7]. Consequently, analysts typically
interact with customers for extra inputs (as shown in the colored area of Fig. 1),
but this slows down ticket resolution—and hence, proper service operations—
dramatically.

What is more, although IM approaches have been studied since the seven-
ties [19], the resolution of incident tickets is still mainly done manually by ana-
lysts, strongly based on their experience and on interactions with customers [17].
This means that this task is one of the most time consuming and fallible
activities [9,21].
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To address the problem, the paper presents ACQUA (Automatic tiCket Qual-
ity Assessment), an approach based on Machine Learning (ML) that aims to
reduce—and eventually eliminate—the need of many customer-analyst itera-
tions. ACQUA automatically evaluates the quality of incident descriptions and
notifies the customer in case additional details are required. ACQUA is part of
a novel IM family of approaches and techniques that we call AIIM—and that
fuses Artificial-Intelligence (AI) with practices from Incident Management.

ACQUA consists of three main activities: i) feature engineering, that is, the
extraction of meaningful characteristics and metrics from an initial dataset of
incident tickets ii) service ticket modeling, that is, the creation of different models
from the extracted features that are able to evaluate the quality of new, unseen,
service tickets, and iii) service operations validation, that is, the selection of one
of the produced models based on their validated performance over available data
as part of conventional Machine-Learning operations.

We plan to evaluate ACQUA through comparison with three state-of-the-art
approaches: (1) BLEU [18] (BilinguaL Evaluation Understudy) (2) ROUGE [13]
(Recall-Oriented Understudy for Gisting Evaluation), and (3) a baseline that
uses a simple heuristic for computing the quality of incident tickets. On the one
hand, the two reference approaches exploit well-known metrics used in the field
of Natural Language Processing (NLP) to evaluate text quality; on the other
hand, the baseline approach offers an optimistic take at the problem. To do
that we will utilize a real-life industrial implementation and experimentation
conducted on a real dataset provided by a large banking corporation (from now
on called BANK) in The Netherlands We consider ACQUA as a valid first step
in the direction of more autonomous large-scale AIIM and connected service
governance operations.

The paper is organized as follows. Section 2 discusses some significant related
work. Section 3 illustrates the research questions, and methodology used to build
ACQUA. Section 4 describes the details of ACQUA and Sect. 5 concludes the
paper.

2 Related Work

Given that downtime causes monetary loss [3], Incident Management became a
key activity for businesses, and several works in the literature were presented in
order to enhance Service Continuity [7,14]

Shao et al. [20] propose a prioritization algorithm to rank the relevance and
severity of tickets according to their descriptions. This way more significant tick-
ets are handled by analysts before the others and service continuity is improved.
ACQUA and this work are complementary. Our approach can be used as a pre-
liminary step to analyze the quality of the ticket and, when users are able to
provide enough details, the ticket can be ranked and processed accordingly.

Gupta et al. [6] analyze the input requests made by analysts to customers to
understand how they impact the user experience. When calculating resolution
time, the time waiting for user inputs is not counted. Hence, they distinguish
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Fig. 2. The ACQUA methodology, an overview.eps

between two types of input requests: real and tactical. Real requests are sent to
effectively seek for useful additional details, while tactical ones are merely raised
to stop the downtime counting. Therefore, they created a system to automati-
cally detect tactical input requests using algorithm TF-IDF [2] for the decision
process and Principal Component Analysis [22] to reduce the dimensions com-
posing the feature space. This work does not validate the quality of the user
ticket as ACQUA does but the working efficiency of analysts during the resolu-
tion phase.

3 The ACQUA Methodology

This paper addresses the problem of evaluating the quality of service incident
tickets in order to speed-up their resolution. Indeed, the research effort concen-
trates on how the quality of input text can be measured in the context of Inci-
dent Management. With this goal we present ACQUA, a 15-step methodology—
tailored from the Cross-Industry Standard Process for Data-Mining (CRISP-
DM) [4]—shown in Fig. 2.

The figure illustrates a concrete overview of the ACQUA AIIM methodology
in a simple box-and-line notation. ACQUA is based on machine learning and
employs different types of features and classifiers in order to predict the quality
of incident tickets. ACQUA is composed of four main types of actions. First,
preliminary actions (steps 1–3) are depicted in white boxes and are explained in
the rest of this section. Second, in feature engineering tasks (steps 4–8, shown
in the light gray box) different types of features are extracted and combined in
meaningful datasets. Third, in modeling phase (steps 9–12, shown in the dark
gray boxes) different classifiers are trained using selected features. Finally, black
boxes represent the evaluation actions (steps 13–15) which will reported in our
future work.

In order to properly assess ACQUA we formulated the following research
questions.

RQ1 How do existing state-of-the-art metrics (i.e., reference metrics) perform
when evaluating the quality of incident tickets?

RQ2 How does ACQUA perform when using reference metrics as features for
ML classifiers in oder to predict the quality of incident tickets?



496 L. Baresi et al.

RQ3 How does ACQUA perform when using deductive features (i.e., semantic
characteristics of the text) w.r.t. ACQUA using reference metrics?

RQ4 How does ACQUA perform when using embeddings (i.e., structural char-
acteristics of the text) w.r.t. the above alternatives?

With the first research question we aim to understand whether state-of-the-art
textual quality metrics are able to capture the quality of incident descriptions.
Subsequently RQs 2, 3, 4 investigate how different types of features (reference
metrics themselves, semantic and syntactic ones) perform when used in an AIIM
approach.

The data used in this study were obtained (step 1) by exporting the tickets
from the IM system (ServiceNow1) of BANK. Both customers and analysts of
BANK are Dutch speaker therefore the tickets are mostly written in Dutch or a
dialect2. The 77010 tickets collected in the dataset from September 2016 to April
2019 contain an average of 34 words each and one third of them (23874) required
the analyst ask further details to the customer. Reference metrics selection (step
2) refers to the study of the literature in order to find existing metrics that could
be used to obtain insights on the quality of text inputs.

Being tickets written by customers in natural language, we identified two
metrics, the ones that obtained the highest similarity with the human perception
of quality, widely used in the context of Natural-Language Processing: BLEU
and ROUGE. These metrics evaluate the quality of candidate text (often machine
generated) with respect to high-quality reference texts [13].

The original dataset does not contain any indications of the quality of the
tickets. Therefore, in step 3 we defined five labels with an associated value
between 0 (insufficient details) and 4 (well-described incident). Moreover, we
manually labeled each ticket according to the comments left by the analyst and
our perception of their quality.

4 Feature Engineering and Modeling

In this section we present the feature engineering and modeling steps (4–12) of
ACQUA.

The selected dataset contains a large amounts of unstructured data requiring
a preliminary processing phase (step 4). Indeed, the customer description of the
incident, the comments between analyst and customer and the analyst closing
notes are all written in plain text without any structure. For structured columns
minor processing was necessary in order to reduce the noise and being able to
properly compare values. The preprocessing consists in the following six activi-
ties: i) filtering to remove missing data, ii) text transformation to remove special
characters and punctuation, iii) domain transformation to eliminate from the
ticket text partial or blank parts, iv) encoding to transform values and labels

1 https://www.servicenow.com/products/incident-management.html.
2 A negligible amount of tickets contain also sentences (error messages) written in

English.

https://www.servicenow.com/products/incident-management.html
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onto pre-defined numbers, v) tokenization to obtain the list of words, and vi)
stemming to normalized words to a root form.

4.1 Feature Extraction and Selection

ACQUA uses three types of features: reference metrics, deductive and embed-
dings. In step 5, we computed the value of BLEU and for ROUGE each ticket.
These values, in addition to be evaluated as quality metrics in step 14, are then
used them as input features for classifiers to understand whether they can pro-
vide additional insights during training.

Deductive features are features extracted from the description of an incident
and are mainly related to the semantic of what the user describes (step 6). They
are a set of boolean features, that indicate if a specific word is mentioned in
the text. The intuition is that the occurrence of word like “error” or “warning”
prelude to a detailed description of the problem. If incident related keywords
(e.g.,“power drain” or ‘restart”) are included there could be high chances that
the incident is explained. In addition to boolean deductive feature, we include
also numerical ones that are related to the length of the description such as the
number of tokens and the sum of the token length for a total of 13 deductive
features.

Embeddings (step 7) are features encoded as sparse vectors obtained from
words or documents. They help a machine understand natural language by plac-
ing similar text inputs close to one another [12,15]. ACQUA uses two embeddings
techniques, namely Word2Vec, and Doc2Vec.

Word2Vec is a neural network language model that constructs a log-linear
classification network that produces a vector [15] where each word is represented
as a point in the space (a vector) and related words are located closely to each
other. In ACQUA Word2Vec is used to create a machine readable feature from
textual, unstructured data that can be used for further (algebraic) calculations.

Doc2Vec is another neural network language model that we used to create
embedding features. While Word2Vec computes a feature for every word in a text
corpus (e.g., an incident ticket), Doc2Vec computes a feature vector for every
document/ticket [12]. This eliminates the need of a vector aggregation step as
required by Word2Vec and facilitate the comparison among similar tickets. On
the other hand, given that Doc2Vec reasons on a coarse granularity, it is less
tolerant to word misspelling compared to Word2Vec. Since a significant amount
of ticket description contains misspellings we used both the methods in ACQUA.

In the last step of feature engineering (step 8) we generated datasets con-
taining the different types of features in order to answer RQ2, RQ3 and RQ4 in
our future evaluation.

4.2 Service Ticket Modeling

The first step of modeling is the selection of classifiers that using the selected
features can produce meaningful estimation models for the quality assessment of
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incident tickets (step 9). Having to deal with different set of features, ACQUA
does not rely on a single classifier but it uses 5 different types: random forest [1],
logistic regression [2], k-nearest neighbors [1], gradient boost [5], and a dummy
most frequent classifier.

Before training the models (step 12), the dataset is split in different parts.
20% of the data are removed and used for testing in step 13. On the remaining
80% ACQUA applies the stratified K-Fold [11] algorithm (step 10) to properly
tune the classifiers parameters. Data are split into k consecutive partitions (or
folds) each of them of approximately the same size. The training and validation
sets (i.e., the dataset used to adjust classifiers parameters) are generated in k
phase. On each phase one fold, in turn, is used as validation set while the other
k − 1 as training set. In ACQUA we used k equals to 10.

For each of the aforementioned classifiers, hyper-parameter (i.e., classifier
parameters) tuning was manually applied in step 11 by taking into account
the best practices when dealing with class imbalance and to avoid overfitting.
The tuning consisted in an iterative process of training-validation-parameters
adjustment-training until reaching satisfactory performance, as envisioned in
the CRISP-DM standard process [4]. Finally, in step 12 models are trained with
proper tuning parameters to be ready for being evaluated.

In our future work we will present how we tested the models (step 13) and
how we compared with reference metrics (step 14) and the performance of the
various classifiers (15).

5 Conclusions and Future Work

Incident Management and Service Continuity are key aspects of almost all the
businesses to reduce or avoid the costs of downtimes. This paper presented
ACQUA, a AIIM methodology for assessing the quality of incident tickets in
order to minimize the long-lasting communications between customers and ana-
lysts. In the feature we plan to carry out an extensive evaluation of the approach.

Acknowledgment. We thank Dr. Jeffrey Vervoort for his valuable contribution to
this work carried out during hist master thesis. Finally, some of the authors’ work is
partially supported by the European Commission grant no. 787061 (H2020), ANITA,
European Commission grant no. 825040 (H2020), RADON, European Commission
grant no. 825480 (H2020), SODALITE.

References

1. Aggarwal, C.C.: Text classification: basic models. Machine Learning for Text, pp.
113–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73531-3 5

2. Aly, M.: Survey on multiclass classification methods. Technical report (2005)
3. Cao, C., Zhan, Z.: Incident management process for the cloud computing environ-

ments. In: 2011 IEEE International Conference on Cloud Computing and Intelli-
gence Systems, pp. 225–229 (2011)

https://doi.org/10.1007/978-3-319-73531-3_5


Aut. Quality Ass. of Incident Tickets for Smart Service Continuity 499

4. Chapman, P., et al.: CRISP-DM 1.0 step-by-step data mining guide. Technical
report, The CRISP-DM consortium, August 2000

5. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. Association for Computing Machinery (2016)

6. Gupta, M., Asadullah, A., Padmanabhuni, S., Serebrenik, A.: Reducing user input
requests to improve it support ticket resolution process. Empir. Softw. Eng. 23(3),
1664–1703 (2018)

7. Gupta, R., Prasad, K.H., Luan, L., Rosu, D., Ward, C.: Multi-dimensional knowl-
edge integration for efficient incident management in a services cloud. In: 2009
IEEE International Conference on Services Computing, pp. 57–64 (2009)

8. Iden, J., Eikebrokk, T.R.: Implementing it service management: a systematic lit-
erature review. Int. J. Inf. Manag. 33(3), 512–523 (2013)

9. Janssen, P.: IT-Servicemanagement volgens ITIL, 3rd edn. Pearson Benelux,
Gatwickstraat 1, 1043 GK, Amsterdam (2008)

10. Klems, M., Tai, S., Shwartz, L., Grabarnik, G.: Automating the delivery of it
service continuity management through cloud service orchestration. In: 2010 IEEE
Network Operations and Management Symposium-NOMS 2010, pp. 65–72. IEEE
(2010)

11. Kuhn, M., Johnson, K.: Applied Predictive Modeling, p. 1. Springer, New York
(2013). https://doi.org/10.1007/978-1-4614-6849-3

12. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

13. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text
summarization Branches Out, pp. 74–81 (2004)

14. Liu, R., Lee, J.: IT incident management by analyzing incident relations. In: Liu,
C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp.
631–638. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34321-
6 49

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv e-prints, January 2013

16. Mithas, S., Ramasubbu, N., Sambamurthy, V.: How information management capa-
bility influences firm performance. MIS Q. 35(1), 237–256 (2011)

17. Motahari-Nezhad, H.R., Bartolini, C., Graupner, S., Singhal, S., Spence, S.: It sup-
port conversation manager: a conversation-centered approach and tool for manag-
ing best practice it processes. In: 2010 14th IEEE International Enterprise Dis-
tributed Object Computing Conference, pp. 247–256 (2010)

18. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL 2002, Stroudsburg, PA, USA, pp.
311–318. Association for Computational Linguistics (2002)

19. Rowley, D.D.: The fires that created an incident management system (2005)
20. Shao, J., Wei, H., Wang, Q., Mei, H.: A runtime model based monitoring approach

for cloud. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp.
313–320 (2010)

21. Wang, Q., Song, J., Liu, L., Luo, X., XinHua, E.: Building it-based incident man-
agement platform. In: 5th International Conference on Pervasive Computing and
Applications, pp. 359–364, December 2010

22. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell.
Lab. Syst. 2(1–3), 37–52 (1987)

https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1007/978-3-642-34321-6_49
https://doi.org/10.1007/978-3-642-34321-6_49


API-Prefer: An API Package
Recommender System Based on
Composition Feature Learning

Yancen Liu and Jian Cao(B)

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

{LiuYancen,cao-jian}@sjtu.edu.cn

Abstract. With the exponential increase in Web Application Pro-
gramming Interfaces (APIs), selecting appropriate APIs to construct a
mashup is a challenging task. When multiple APIs are put together, their
overall function is not just a superposition of their individual functions
in many cases. Unfortunately, the approaches proposed to date do not
sufficiently model the synthetical functions of the combined APIs. In
this paper, an API Package recommender system based on composition
feature learning (API-Prefer) is proposed. API-Prefer tries to learn the
composition features of an API pair. Then the composition features can
be used to predict whether this API pair can be adopted by a mashup
or not. Specifically, a deep neural network is designed for composition
feature learning and adoption probability prediction in API-Prefer. Since
there is a large amount of API pairs, API-Prefer applies a strategy to
select the potential APIs first, then the API packages can be discov-
ered based on the predicted scores over multiple API pairs. Experiments
on a real-world dataset show API-Prefer is significantly better than the
comparative methods.

Keywords: API package recommendation · Composition feature ·
Mashup · API · Neural network

1 Introduction

Web services are important components of a modern information system. As
a type of Web services, the number of Web Application Programming Inter-
faces (or APIs, for short) is increasing exponentially on the Web. In order to
help developers or non-IT professionals make use of APIs, various tools have
been developed. Of them, mashups are becoming a commonly used approach,
through which multiple APIs can be combined together to provide more compre-
hensive functions. Since the number of available APIs on the Web is huge, it is a
challenging task to find the APIs we need. To better assist mashup development,
we recommend multiple sets of cooperative APIs where each of them can achieve
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the functions of a mashup as a whole. These sets of cooperative APIs are often
referred to as “API Packages”.

We propose an API Package recommender system based on composition
feature learning (API-Prefer). API-Prefer extracts the composition features of
an API pair through a neural network. The contributions of this paper are as
follows:

– Based on analyzing the relationships between APIs and mashups, we design a
deep learning model to learn the composition features of API pairs to support
both shallow composition relationships and deep composition relationships.

– We propose API-Prefer, an API package recommender system for mashup.
API-Prefer is based on composition feature learning. It also includes the
strategies to avoid unnecessary calculations and generate the final packages.

– We compare API-Prefer with baselines and state-of-art models and the exper-
imental results show that API-Prefer is significantly better than the counter-
parts in terms of the recall and precision.

2 Related Work

API (or Web Service) recommendation for mashups has been a popular research
topic, and various methods have been proposed in recent years.

When an API is published, its name, description, or tags are often pro-
vided. These methods utilize traditional information retrieval ways to select the
recommended APIs by matching the description of the mashup with the API
description. For example, in [1], a vector space model is used for service retrieval.
Recently, researchers began to adopt more advanced technology to extract the
semantic relationship between mashups and APIs.

With the continuous development of machine learning and deep neural net-
work in recent years, some methods combining deep learning with service rec-
ommendation have emerged. In [2], a method to extract user preference embed-
dings to personalize and precisely recommend APIs to mashup developers is pro-
posed. Although these approaches try to learn more latent relationships between
mashups and APIs through the deep learning model, they don’t learn the syn-
thetical functions of composed APIs. Furthermore, these approaches still recom-
mend an API list instead of an API package.

The frequent co-occurrence set-based approach applies some traditional data
mining technology to discover frequent API sets. For example, in [3], a method
to mine frequent API pairs for recommendation is proposed. An information-
retrieval based approach can be combined with the frequent co-occurrence set-
based approach. For example, a multi-level relational network is proposed to
obtain the comprehensive relationships among topics, tags and APIs [4].

Our model is also a hybrid approach. Different from the other models, our
model learns the composition features of API pairs through a deep neural
network, which can support both shallow composition and deep composition
relationships.
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3 API-Prefer: An API Package Recommender System
Based on Composition Feature Learning

3.1 Composition Features of APIs

Let us give specific explanation of composition features through two real-world
examples. The first example is a mashup with the description “Find lyrics and
karaoke videos with this mashup. Record it and publish it also”. It is based on
two APIs, YouTube API and LyricWiki API. This example represents the case
where we can search APIs based on the phrases in the mashup descriptions in
a straightforward way, which is called a shallow composition relationship. The
second example is RueFind, whose description is “RueFind is a travel application
which tracks interesting tourist attractions around the world. Users can add, rank
or create lists of their favorite attractions”. Google Map API and Yahoo Weather
API are used in RueFind. According to the descriptions, the main function of
RueFind is to share information on tourist attractions. Although travel relates to
maps and weather, it cannot be matched with them directly. This fact indicates
that by combining APIs with different functions, synthetical functions can be
created. This is called a deep composition relationship.

Composition features are context-dependent, i.e., when a set of APIs is
applied to mashups with very different functions, their composition features
may be different. The approaches to learn composition features are introduced
in Sect. 4.

3.2 Overview of API-Prefer

API package recommendation by API-Prefer consists of two stages, i.e., the train-
ing stage and the recommendation stage. During the training stage, a deep neural
network that can predict whether an API pair can be applied to a mashup or not
is trained. Specifically, this network uses a multiple-layer structure to learn the
composition features of this API pair for a mashup. During the recommendation
stage, given the mashup description, potential API pairs will be inputted to the
network and the probability of this API pair being used by this mashup is out-
putted. Finally, a recommendation algorithm generates multiple API packages
in terms of the adoption probability of API pairs and other information.

4 A Deep Neural Network for Predicting the Adoption
Probabilities of an API Pair Based on Composition
Feature Extraction

The descriptions of mashups and APIs vary in length, so we need to embed
these descriptive texts into the uniform vectors. We use the latent Dirichlet
allocation topic model to extract the topic feature of the text. After tokeniza-
tion, the standard steps for text data pre-processing are undertaken, these being
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Fig. 1. The deep neural network model for predicting the adoption probability of an
API pair

stemming, lemmatization and removing stop words. We transfer the descrip-
tions of the APIs, the historical mashups and the mashup to be developed into
200-dimension LDA topic vectors (Fig. 1).

The LDA topic vector of API1, API2,and mashup is denoted by Ta1 , Ta2

and TM respectively, which are denoted as: T = {t1, t2, t3, ..., ti, ...}.
Since we want to mine the composition features from a pair of APIs, the

interactions of the features of two APIs can yield new features. Therefore, we
add an interaction layer into the network, through which all the features of two
APIs interact in pairs. The results are denoted by a matrix Ma1,a2 as Ma1,a2 =
Ta1 ⊗ Ta2 (Mi,j = ta1

i · ta2
j ).

However, not all feature interactions are equally useful. Therefore, we add a
weight layer W to adjust the interaction features as MTF = Ma1,a2 �W (mCF

i,j =
(ta1

i ·ta2
j )·wi,j). We get the interaction feature matrix MTF . Then we use a 10×10

max polling filter to process the matrix, and this will turn the original matrix
into a 20 × 20 matrix. Then we transform it to a 400 × 1 vector, which is the
interaction feature vector TIF .

We merge the topic information of API1 and API2 to a combination fea-
ture vector Ta1,a2 as Ta1,a2 = {max(ta1

1 , ta2
1 ),max(ta1

2 , ta2
2 ), ...,max(ta1

i , ta2
i ), ...}.

Then we concatenate the combination features, interaction features and mashup
features together ({Tx = Ta1,a2 , TIF , TM}) as the input to the multiple hidden
layers of the network.

After 3 hidden layers, we use a sigmoid function in the output layer to make
the prediction score between 0 and 1. The loss function for the network is cross
entropy, and we also add a L2 normalization to avoid the overfitting of our model.

Therefore, through a multi-layer neural network, the composition features are
actually learned from the combination features, interaction features and mashup
features, which are then used to make an adoption probability prediction.
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5 API Package Recommendation

We select and sort the historical mashups in terms of the similarity between the
descriptions of the historical mashups and the mashup to be developed. After we
obtain a sufficient number of mashups, we use the APIs used by these candidate
mashups to generate the API packages. As for the number of candidate APIs,
on the one hand, we don’t want too many APIs in the candidate set, but on the
other hand, we want the candidate API set to cover as many potential APIs as
it can. Therefore, we need to find an appropriate value for it.

After obtaining a set of APIs as candidates, we can predict the adoption
probability p(APIi, APIj) of each API pair. By regarding each API as a node,
and the adoption probability of an API pair as the weight of the edge between
them, we can draw a relational network of APIs. API packages can be discovered
on this network.

In order to discover API packages, we add a restriction on the network,
i.e., only when p(APIi, APIj) > max(p(APIi), p(APIj), ε) is true, will an edge
appear in this network. To discover all the effective edges for an API, we just
get the possibilities between this API with all the other candidate APIs in the
candidate set and use the equation above to get all the effective ones. This pro-
cess is Function SearchEdges, which is used in the following Package Discovery
Process. Then we try to discover the fully connected sub-graphs and the APIs
represented by their nodes can compose packages. As a special case, a single API
can also be a package when it is not in any fully connected sub-graph, provided
its prediction score is higher than a threshold.

The discovery process starts from an API seed, and makes use of breadth-first
search (BFS) to search for other members that are appropriate for a package.
The API seeds are chosen based on the their popularity in the mashup candidate
set from the largest to the smallest. For an API seed APISeed, after we detect
all its effective edges, then:

– If there is no effective edge for it, p(APISeed) is compared with a threshold
η. If p(APISeed) is over the threshold, then APISeed itself can be a package,
otherwise, it is skipped.

– If multiple effective edges can be found, we adapt a BFS algorithm to find
the fully connected sub-graph for this node. We maintain a queue QAPI and
push the seed node into QAPI and the set Pkg first. Then each time we
operate on the node APIhead, which is the head of the QAPI until the QAPI

is empty. For APIhead, we traverse its effective edges to obtain an API list
whose members are sorted in the descending order of their weights. If an API
APIi from this list has effective edges with all nodes corresponding to the
APIs in the set Pkg, that is, it can form a fully connection graph with these
nodes, we then append it to Pkg and QAPI . Otherwise, we skip it and fetch
the next APIhead.

We try more APISeeds till the number of packages meets the requirements.
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6 Experiments

6.1 Dataset and Experiment Settings

We crawled 12,140 APIs and 6,976 mashups from Programmable Web, which is
the largest mashup and API information sharing platform. There are 200 * 200
units in the Interaction Feature Extraction Layer, and we use a 10 * 10 filter for
Max-pooling. The configuration of the 3 hidden layers is (200, 100, 20). And the
L2 Regularization Strength λ is set to 0.001.

An important parameter in our method is the size of the candidate APIs.
When the number reaches around 200, the mean cover rate of the final adopted
APIs reaches 0.92, which is an appropriate parameter setting. As for the two
thresholds in API package recommendation, after parameter tuning, we finally
set ε = 0.86 and η = 0.92.

6.2 Comparison Methods

Some baselines and state-of-the-arts methods are selected as the comparison
methods.

– WVSM sorts the APIs by the product of similarity and popularity.
– WJaccard is similar to WVSM. The difference is it uses Jaccard similarity.
– Collaborative Filtering Method (CF) is based on TF-IDF between the mashup

description texts is calculated to evaluate whether they are similar or not.
– ERTM [5] recommends the APIs based on an enhanced relational topic model,

which leverages the potential Dirichlet distribution of the probabilistic topic
model to extract the functional properties of APIs.

– TopicCF [6] combines the topic model with the collaborative filtering app-
roach.

– SASR [7] models multi-dimensional social relationships among potential
users, topics, mashups, and APIs using a coupled matrix model.

– MRN [4] captures the deep relationships among APIs on top of the latent
topic, tag and API network.

6.3 Evaluation Metrics

We use precision, recall and f1-measure to evaluate our experimental results.
recall = TP

(TP+FN) , precision = TP
(TP+FP ) , f1 − measure = 2·recall·precision

(recall+precision) .
where precision represents the acceptance degree of users in relation to the

recommendation results, recall represents the completeness of the recommenda-
tion results, and the f1-measure is the synthesis of the two evaluation indexes.

6.4 Results

Firstly, we compare the performances of all the approaches with the number
of recommended APIs and the results are shown in Fig. 2. The performance of
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Fig. 2. Performance comparisons of all methods

the baselines is not good when either a small amount [1, 5] or a large amount
[5, 50] of APIs are recommended. Which indicates that only considering semantic
similarity and few attributes like popularity, cannot get ideal result. MRN and
SASR, on the other hand, take all the features into account. Their performances
are better than the previous methods. The results show that it is useful to con-
sider multilevel relationships. However, with a recommendation number between
[1, 5], the performance of API-Prefer is clearly better than the others. This also
reflects the effectiveness of the composition feature learning in API-Prefer.

Fig. 3. Performance comparisons of API package recommendation methods

Of all the compared approaches, MRN is the only one that can recommend
API packages. We compare the performances of API-Prefer and MRN with the
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number of API packages to be recommended. Figure 3 shows that performances
of API-Prefer are significantly better than the performances of MRN.

7 Conclusions and Future Work

In this paper, we analyze the main deficiency in the current approaches of API
recommendations for mashup. Therefore, we propose API-Prefer, an API pack-
age recommender system based on composition feature learning. API-Prefer
learns the composition features of an API pair based on combination features,
interaction features and mashup features through a deep neural network. Then,
the adoption probability can be predicted based on the description of the mashup
to be developed and the composition features of API pairs. Finally, the API pack-
ages can be generated based on the adoption probabilities. The performance of
API-Prefer is verified through the experiments.

Our future work will focus on improving the recommendation accuracy by
using advanced textual embedding techniques and considering the composition
of three or more APIs also have specific features.

Acknowledgement. This work is supported by National Key Research and Develop-
ment Plan (No. 2018YFB1003800).
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Abstract. Latency-sensitive applications often use fog computing plat-
forms to place replicas of their services as close as possible to their end
users. A good placement should guarantee a low tail network latency
between end-user devices and their closest replica while keeping the repli-
cas load balanced. We propose a latency-aware scheduler integrated in
Kubernetes which uses simple yet highly-effective heuristics to identify
suitable replica placements, and to dynamically update these placements
upon any evolution of user-generated traffic.

1 Introduction

Predictable low response time is an essential property for a large range of modern
applications such as augmented reality and real-time industrial IoT [1]. When
such applications are hosted in Cloud platforms, their response time depends on
the provisioned processing capacity and the network characteristics between the
end users and the cloud servers. However, users are often dispersed across a broad
geographic area far from the cloud data centers. This motivates the need for Fog
computing platforms which extend Cloud platforms with additional computing
resources located in the vicinity of the end users, where distributed applications
may deploy one or more replicated VM or container instances [11].

Choosing the best set of fog servers where an application should deploy its
replicas requires one to follow two objectives. First, the chosen placements should
minimize the network latencies between end-user devices and their closest appli-
cation replica. To deliver outstanding Quality-of-Experience to the users it is
important that each and every issued request gets processed within tight latency
bounds. We therefore follow best practice from commercial content delivery net-
works [19] and aim to minimize the tail latency rather than its mean, for example,
defined as the fraction of requests incurring a latency greater than some thresh-
old. Second, a good placement should also allow the different replicas to process
reasonably well-balanced workloads. When application providers must pay for
resource usage, they usually cannot afford to maintain replicas with low resource
utilization, even if this may help in reducing the tail device-to-replica latency.
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Selecting a set of replica placements within a large-scale fog computing infras-
tructure remains a difficult problem. We first need to monitor the usage of the
concerned applications to accurately identify the sources of traffic and their
respective volumes. Then, we must face the computational complexity of the
problem of choosing r nodes out of n such that at least P% of end-user requests
can be served in less than L ms by one of the chosen nodes, and the different
application replicas remain reasonably load-balanced. Replica placements must
then be updated when the characteristics of end-user requests change. Finally,
we need to integrate these algorithms in an actual fog orchestration platform.

We propose Hona1, a tail-latency-aware application replica scheduler which
integrates within the Kubernetes container orchestration system [24]. Hona uses
Kubernetes to monitor the system resource availability, Vivaldi coordinates to
estimate the network latency between nodes [5] and proxy-mity to monitor
traffic sources and to route end-user traffic to nearby replicas [7]. Hona uses a
variety of heuristics to efficiently explore the space of possible replica placement
decisions and select a suitable one upon the initial replica placement. Finally, it
automatically takes corrective re-placement actions when the characteristics of
the end-user workload changes.

Our evaluations based on a 22-node testbed show that Hona’s heuristics can
identify placements with a tail latency very close to the theoretic optimal place-
ment, but in a fraction of the computation time. Hona’s placements also deliver
an acceptable load distribution between replicas. The re-placement algorithm
efficiently maintains a very low tail latency despite drastic changes in the request
workload or the execution environment. Finally, we demonstrate the scalability
of our algorithms with simulations of up to 500 nodes.

2 Background

2.1 Kubernetes

We base this work on the Kubernetes platform which automates the deployment,
scaling and management of containerized applications in large-scale computing
infrastructures [24]. A Kubernetes cluster consists of a master node which is
responsible for scheduling, deploying and monitoring the applications, and a
number of worker nodes which actually run the application replicas and consti-
tute the system’s computing, network and storage resources.

Application Model: Kubernetes considers an application as a set of pods, defined
as a set of logically-related containers and data volumes to be deployed on a
single machine. Application replication is ensured by deploying multiple identical
pods. These pods can be then exposed to external end users as a single entity by
creating a service, which exposes a single IP address to the end users and acts
as a front end which routes requests to one of the corresponding pods.

1 Hona ( ) means “here” in Arabic.



510 A. J. Fahs and G. Pierre

Fig. 1. Optimizing the mean or the tail latency.

Network Traffic Routing: User requests addressed to a Kubernetes service are
first routed to a gateway node within the Kubernetes system. Every worker
node can act as a gateway: the fog computing platform is in charge of routing
incoming traffic to any one of them using networking technologies such as WiFi
and LTE, possibly in combination with SDN/NFV. Second, the request is further
routed internally to the Kubernetes system. Kubernetes services are composed
of iptables or IPVS rules installed in every worker node.

Pod Scheduling: When a new set of pods is created, the Kubernetes scheduler is
in charge of deciding which worker nodes will be in charge of executing them.
The scheduler selects a list of nodes that are capable of executing the new pods,
and stores this decision in an object store called etcd. In every worker node, a
kubelet daemon periodically checks etcd and deploys the assigned pods.

Kubernetes’ Limitations: Kubernetes was designed to manage cluster-based or
cloud-based platforms. In consequence, it considers all worker nodes as func-
tionally equivalent to one another, and it does not have any notion of node
proximity to the end users. To make it suitable for fog computing scenarios, we
aim to modify its scheduling components to proactively place pods in worker
nodes located close to the main sources of network traffic. This allows one to
considerably reduce the network latencies between the end-user devices and the
nodes serving them, while keeping replicas reasonably load-balanced.

2.2 Network Proximity

In fog computing platforms, servers are located close to the end users but nec-
essarily far from each other. Choosing a replica placement in such environment
requires an accurate estimation of network latencies across the full system.

Estimating Network Latencies: Hona models network latencies using Vivaldi to
accurately predict the latency between hosts without contacting all of them [5].
Hona specifically uses Serf, a mature open-source tool which maintains cluster
membership and offers a robust implementation of Vivaldi coordinates [9].

Routing Requests to a Nearby Node: By default, Kubernetes gateways route every
incoming request to any node holding a pod of the application regardless of its
location. To serve end user requests by nearby replicas, we use proxy-mity which
redefines the network routing rules to route requests with high probability to a
nearby application replica [7]. To avoid overloading certain nodes while others
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Table 1. State of the art.

Type Ref. Dyn. Rep. Obj. Eval. Type Ref. Dyn. Rep. Obj. Eval.
D
a
ta

[18] ✗ ✗ RT Sim

S
e
r
v
ic
e

[21] ✗ ✗ PX,DT Sim

[17] ✗ ✗ RT Sim [22] ✗ ✗ PX,RU Sim

[14] ✗ ✗ NU Sim [12] ✗ ✗ RT,RU Sim

[2] ✓ ✓ RT Sim [26] ✗ ✗ PX Sim

[20] ✓ ✓ RT Sim [23] ✓ ✗ PX,DT Testbed

V
M

[15] ✗ ✗ NU Sim [10] ✗ ✓ DT Testbed

[28] ✗ ✓ NU Sim [16] ✓ ✓ PX,RU Testbed

[27] ✓ ✓ NU Sim Hona ✓ ✓ PX,LB Testbed+Sim

are underutilized, proxy-mity allows one to define a tradeoff between proximity
and load-balancing.

Optimizing the Mean or the Tail Latency: Fog computing platforms were cre-
ated for scenarios where the network distance between the user devices and the
application instances must be minimized. For instance, virtual reality applica-
tions usually require a response times under 20 ms. Such applications “need
to consistently meet stringent latency and reliability constraints. Lag spikes and
dropouts need to be kept to a minimum, or users will feel detached [6].” Aiming
to minimize the mean latency between the user devices and their closest replica
does not allow one to satisfy such extremely demanding type of requirements.

To illustrate the difference between placements which optimize the mean or the
tail latency, we explore 50 randomly-chosen placements of 4 replicas within a 22-
nodes testbed (further described in Sect. 5). We then select the two placements
which respectively minimize the mean (“Mean”) and the number of requests with
device-to-closest-replica latencies greater than a threshold L = 28 ms (“Tail”).
Figure 1 compares the cumulative distribution functions of the obtained latencies
delivered by the two placements. Mean delivers very good latencies overall, and
it can process many more requests under 20 ms compared to Tail. However,
when zooming at the end of the distribution, we see that roughly 5% of requests
incur a latency greater than 28 ms, and up to 32 ms. The users who incur such
latencies are disadvantaged compared to the others, and are likely to suffer from
a bad user experience.

On the other hand, with the same number of replicas, Tail guarantees that
100% of requests incur latencies under 27 ms. Although the mean latency deliv-
ered by this placement is slightly greater than that of the Mean placement, this
configuration is likely to provide a much more consistent experience to all the
application’s users.

In this work, we therefore aim to find replica placements which minimize the
tail device-to-closest-replica latency, while maintaining acceptable load balancing
between the replicas.
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3 State of the Art

The replica placement problem has been extensively studied since the creation
of the first geo-distributed environments such as content delivery networks [13],
and a very large number of papers have been published on this topic. Table 1
classifies the most relevant recent publications along multiple dimensions:

Type describes what is being placed. Data placement [17] focuses on the down-
load delay of cached items by placing caches in specific locations. VM place-
ment aims to reduce network usage [15,27,28] while service placement opti-
mizes mostly network proximity and resource utilization [16,21–23,26].

Dynamicity (Dyn) matters in systems which may experience considerable
workload variations over time. Many papers focus on the initial place-
ment problem only, without trying to update the placements upon workload
changes.

Replication (Rep) indicates whether the proposed systems aim at placing a
single object, or a set of replicas.

Objective (Obj) represents the optimized metrics: Response Time (RT) is the
overall response latency including network and processing latency; Network
Usage (NU) is the volume of backhaul traffic; Resource Utilization (RU) is
the effective use of the available resources; Deployment Time (DT) is the
time needed for the algorithm to find and deploy a solution; Proximity (PX)
is the latency between end-user and the closest application replica; and Load
Balancing (LB) is the equal distribution of load across replicas.

Evaluation (Eval) of placement algorithms is often done using simulators such
as CloudSim [4] and iFogsim [8]. However, some authors also use actual
prototypes and evaluate them in a real environment or a testbed.

Few papers in Table 1 propose dynamic placement algorithms for replica sets.
Yu et al. study the placement of replicated VMs to minimize the backhaul net-
work traffic [27]. The algorithm considers the proximity of end users to the
fog nodes, but does not take the proximity between distributed fog nodes into
account.

Aral et al. [2] and Shao et al. [20] propose dynamic replica placement algo-
rithms for data services in edge computing. Similarly, Li et al. [16] present a
replica placement algorithm to enhance data availability. All these papers use
the mean latency as their metric for response time evaluation. However, as dis-
cussed in Sect. 2.2, optimizing the mean latency does not necessarily imply an
improvement in the human-perceived quality of service. These papers also do
not consider load balancing between replicas. Finally, only [16] has implemented
and tested its proposed algorithms in a real testbed.

In contrast, to our best knowledge, Hona presents the first dynamic replica
placement algorithm which aims to maintain the tail latency and the load imbal-
ance within pre-defined bounds. Hona solves the placement problem based on
the network routes as well as the origin of traffic, and has been implemented in
a mature container orchestration system.
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4 System Design

The objective of this work is to dynamically choose the placement of fog appli-
cation replicas in a fog computing infrastructure to substantially reduce the
user-experienced tail latency (thereafter referred to as Proximity) while keeping
replicas load-balanced (thereafter referred to as minimizing Imbalance).

4.1 System Model

We define a fog computing infrastructure as a set of n server nodes Δ =
{δ1, δ2, . . . , δn}, where each δi is an object of class Node which holds informa-
tion on the status of the node, its Vivaldi coordinates, and its current request
workload. Similarly, we define a deployed application as a set of r replicas
Φ = {ϕ1, ϕ2, . . . , ϕr} (with r ≤ n). A Replica object ϕi holds information
on the status of the replica, its hosting node, its current request workload and
the locations from which this workload originates.

The replica placement problem can be formulated as the mapping of every
replica ϕi ∈ Φ to a server node δj ∈ Δ to optimize some pre-defined utility
metrics. It can be solved in principle by exploring the set of all possible placement
decisions Ω = {c1, c2, . . . , ck} where ci ⊂ Δ and |ci| = r. However, the number
k of possible placements is extremely large even for modest values of r and n, so
the usage of a heuristic is necessary to efficiently identify interesting placement
decisions.

We evaluate the quality of a potential replica placement decision according to
two metrics. The Proximity metric P% represents the tail latency experienced by
the application users. Specifically, it measures the percentage of network packets
which reached their assigned replica with a latency lower than the target L.
Greater Proximity values depict a better system. Every replica object ϕi holds
two member variables which respectively estimate the total number of packets
received by the replica (ϕi.req) and the number of received packets with a latency
greater than the target L (ϕi.sreq). Using these variables we can compute the
Proximity P%:

P% =

⎡
⎢⎢⎢⎢⎣

1 −

r∑
i=1

ϕi.sreq

r∑
i=1

ϕi.req

⎤
⎥⎥⎥⎥⎦

× 100%

σreq =

√√√√1

r
×

r∑
i=1

(ϕi.req − μreq)
2

I% =
σreq

r∑
i=1

ϕi.req

× 100%

Likewise, the Imbalance metric I% evaluate the load balancing between
replicas. Lower Imbalance values depict a better system. We define Imbalance
as the standard deviation of the workloads of individual replicas for a given
application.
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Our heuristics aim to optimize an objective function Θ which is a linear combi-
nation of P% and I%. For each case ci ∈ Ω they evaluate the objective function
Θ, and eventually select the evaluated case which maximizes the function:

Θα(ci) = α
ci.P%
Pmax%

+ (1 − α)
Imin%
ci.I%

The value α represents the desired tradeoff between Proximity and Imbalance,
and Pmax% and Imin% respectively represent the greatest and lowest observed
values of P% and I% in the set of evaluated cases. We use α = 0.95 to favorize
Proximity over Imbalance improvements. This function can easily be extended
to integrate other metrics such as financial cost and energy consumption.

4.2 System Monitoring

To evaluate the P% and I% metrics, Hona relies on measured data about the
sources of traffic addressed to different nodes. The initial replica placement prob-
lem must be solved before the application gets deployed, so it cannot rely on
information related to this specific application. Instead, we rely on informa-
tion from other applications, as an approximation of the future traffic of the
concerned application. In the replica re-placement problem the application is
already deployed so we can rely on the specific traffic addressed to it.

Evaluating the two metrics requires three types of input data:

Cluster information including the nodes, their resources, the pods, and their
hosting node is maintained by Kubernetes itself. We can access it with simple
calls to its etcd service.

Latency information is maintained by Serf. We can obtain an accurate up-to-
date estimate of the latency between any pair of worker nodes with a call to
the rtt interface of Serf’s agent at the master node.

Traffic information can be obtained from proxy-mity which logs the source
and destination of each request transmitted. proxy-mity makes this infor-
mation available to Hona’s scheduler via a call to its local Serf agent.

4.3 Initial Replica Placement

When deploying an application for the first time, finding the optimal placement
for r replicas among n nodes requires in principle one to explore the full set Ω of
possible placements and choose the one which optimizes the objective function
Θ. Unfortunately, this space is extremely large even for modest values of r and
n, so exploring it in its entirety is not feasible.

We however note that it is not necessary for us to identify the exact opti-
mal placement. In most cases, it is largely sufficient to identify an approximate
solution which delivers the expected quality of service to the end users. We can
therefore define heuristics which explore only a small fraction of Ω and select the
best placement out of the explored solutions. In practice we define a Proximity
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threshold which represents a sufficiently good solution. Our heuristics stop the
search as soon as they find a solution which exceeds the threshold, or when the
time quota allocated to the search expires.

We define two heuristics to explore the space of initial replica placements:
a random search heuristic, and a heuristic which exploits Vivaldi’s geometric
model of network latencies.

Random Search Heuristic: This heuristic is presented in Algorithm 1. The Ran-
domCases function first computes the load distribution per node (LPN ) using
the information collected from the nodes. It then initializes the set of evalu-
ated cases with a first randomly-selected configuration, and iteratively draws
additional randomly-selected configurations until a solution is found or the time
quota allocated to the search expires. The GetBest function then selects the best
studied configuration and the function returns.

In our experience, this heuristic provides good solutions when the Latency
threshold is relatively high as many placements can fulfill this QoS requirement.
A short random search identifies at least one of them with high probability.
However, in more difficult cases with a lower latency threshold, the number of
solutions reduces drastically and this heuristic often fails to find a suitable one.
We therefore propose a second heuristic which uses Vivaldi’s geometric model
to drive the search toward more promising solutions.

Vivaldi-Aware Heuristic: Vivaldi models network latencies by assigning each
node an 8-dimensional coordinate. The latency between two nodes is then
approximated by the Euclidean distance between their coordinates.

Hona introduce an efficient search heuristic which exploits this simple geomet-
ric model. As shown in Algorithm 2, the heuristic starts by computing the load
distribution per node before grouping the nodes into small groups according to
their location in the Vivaldi Euclidean space.

The main idea of this heuristics is to identify groups of nearby nodes and to
select a single replica among them to serve the traffic originating from all of
them. The grouping of nearby nodes is done using the CreateGroups function
which randomly selects a first node and creates a group with all nodes in its
neighborhood. The size of each group is determined by the ND (Nodes Density)
variable. This variable is computed as the fraction of total number of system
nodes to the desired number of replicas, multiplied by a user-defined variable p.
Larger values of p create smaller groups. The algorithm periodically re-generates
new groups and group leaders, until a solution is found or the deadline is reached.
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Algorithm 1: Random-search initial
placement heuristic.

Input: Δ, Lat, QoS, Traf, t, r, L
Output: csol

1 Function RandomCases(Δ, Lat, QoS, Traf, t, r, L)
2 Δ′ ← GetFeasibleNodes(Δ)
3 LPN← CalculateLoadPerNode(Traf)

4 SN ← GetRandomSet(Δ′,r)
5 ci ← CaseStudy(Δ, Δ′, SN, Lat, Traf,

LPN, L)
6 Cases.append(ci)
7 while Test(ci,QoS,t) != True do
8 ci ← CaseStudy(Nodes, Lat, Traf,

SN, LPN, L)
9 Cases.append(ci)

10 csol ← GetBest(Cases)
11 return csol

Algorithm 3: Hona’s replica re-
placement heuristic.

Input: Δ, Φ, QoS, Lat, Reason, Traf
Output: SelectedSolution

1 Function Replace( Δ, Φ, QoS, Lat, Reason, Traff)
2 for ∀ϕi ∈ Φ do
3 Slow[ϕi ] ←

CalculatePercentageSlow(Φ, Traf,
Lat)

4 ReqPerPod[ϕi] ←
GetRequestPerPod(Φ, Traf)

5 if Reason==”Proximity” then
6 SortedPods ← Sort(Slow)
7 PotentialNodes ←

SlowSources(Traf,Φ,Lat)
8 if Reason==”Imbalance” then
9 SortedPods ← ISort(ReqPerPod)

10 PotentialNodes ←
NearbyTraffic(Traff,Φ,Lat)

11 for ϕi in SortedPods do
12 for δi in PotentialNodes do
13 SN ← Nodes(Φ) - Node(ϕi) +

δi
14 ci ← CaseStudy(Δ,

Lat,Traff,SN,LPN,AL)
15 Cases.append(ci)
16 if ci is a solution then
17 solutions.append(ci)
18 found ← True
19 if found==True then
20 Return GetBest(solutions)
21 if Solutions==NULL then
22 Return GetBest(Cases)

Algorithm 2: Hona’s initial replica
placement heuristic.

Input: Δ, Lat, r, QoS, t, Traf, tech, p,
Change, L

Output: csol

1 Function CreateGroups(Δ, Lat, r, L, Tech, p)
2 ND ← len(Δ) / (r ∗ p)
3 Temp ← Δ
4 while len(Temp) > 0 do
5 if len(Temp) < ND then
6 Groups.append(group(Temp,

Δ, L, Tech))
7 else
8 MainNode ←

Random.choice(Temp)
9 Nearby ←

GetNearby(MainNode, Temp)
10 GN ← [MainNode] + Nearby
11 Temp.remove(GN)
12 Groups.append(group(GN, Δ,

L, Tech))

13 Function group(GN, Δ, L, Tech)
14 group.nodes ← GN
15 if Tech == 0 then
16 group.leader ←

GetLeaderRequests(GN)
17 if Tech == 1 then
18 group.leader ←

GetLeaderNeighbors(GN, Δ, L)

19 Function HonaCases(Δ, Lat, r, QoS, t, Traf, Tech,
p, Change, L)

20 Count = 0
21 LPN ← CalculateLoadPerNode(Traf)
22 Groups ← CreateGroups(Δ, Lat, r, L,

Tech, p, Traf)
23 Leaders ← GetLeaders(Groups)
24 SN ← GetRandomSet(Leaders,n)
25 ci ← CaseStudy(Δ, Lat, Traf, SN, LPN,

L)
26 Cases.append(ci)
27 while Test(ci,QoS,t) != True do
28 Count++
29 ci ← CaseStudy(Δ, Lat, Traff, SN,

LPN, L)
30 Cases.append(ci)
31 if Count%Change == 0 then
32 Groups ← CreateGroups(Δ,

Lat, r, L, Tech, p)
33 Leaders ← GetLeaders(Groups)
34 SN ← GetRandomSet(Leaders,n)
35 csol ← GetBest(Cases)
36 return csol

Once a group has been identified, a single node within the group is chosen as
the group leader which will receive a replica while the others are excluded as
potential replica locations.

We propose two possible criteria for the final selection of the group leader,
which result in two variants of this heuristic:

H1 selects the node which generates the greatest number of end-user requests.
This increases the number of requests that will be processed by their gateway
node, with a gateway-to-replica latency of approximately 0.

H2 selects the node with the greatest number of neighbors. Neighborhood is
established as an enclosure of the nodes with a latency lower than the thresh-
old latency L. A replica placed in a node with high number of neighbors will
offer a nearby replica for all its neighbors.

Similar to the random placement heuristic, this algorithm randomly chooses r
group leaders to produce a replica placement which gets evaluated using function
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Θ. The algorithm evaluates as many such placements as possible until a solution
is found or the deadline expires, and terminates by returning the best placement.

4.4 Replica Re-placement

Online systems often observe significant variations over time of the character-
istics of the traffic they receive [25]. To maintain an efficient replica placement
over time, it is important to detect variations when they occur, and to update
the replica placement accordingly.

Hona periodically recomputes the Proximity and Imbalance metrics with mon-
itored data collected during the previous cycle. When these metrics deviate too
much from their initial values, it triggers the Replace function which is in charge
of updating the replica placement. To avoid oscillating behavior, and considering
that re-placing a replica incurs a cost, Hona re-places at most one replica per
application and per cycle.

Algorithm 3 presents the re-placement heuristic. It first sorts the application
replicas to identify the least useful ones according to the current conditions, and
then tries to find them a better location out of a filtered set of nodes.

The identification of the least useful replica depends on the nature of the per-
formance violation. If the Proximity metric has degraded significantly, then the
heuristic will attempt to re-place one of the replicas with the greatest observed
tail latency. On the other hand, if the re-placement is triggered by an increase of
the Imbalance metric, the heuristic will select one of the replicas which process
the lowest amount of load.

Likewise, the set of potential nodes available to host the pod is selected accord-
ing to the violation type. If the violation was caused by a lack of proximity, the
potential nodes will consist of the gateway nodes that are suffering from high
tail latency. On the other hand, if the violation was caused by load imbalance,
the potential nodes are those located close to the main sources of traffic.

The replacement function then iterates through the list of least useful replicas,
and tries to find a better node to hold them. It stops as soon as it finds a
suitable solution which improves Θ by at least some pre-defined value. In case
no improvement can be obtained by re-placing one replica, the system keeps
the current placement unmodified. A potential solution in this case would be to
increase the number of replicas. We leave this topic for future work.

5 Evaluation

We evaluate this work using a combination of experimental measurements and
simulations. The experimental setup consists of 22 Raspberry Pi (RPi) model
3B+ single-board computers acting as fog computing servers. Such machines
are frequently used to prototype fog computing infrastructures [3]. They run
the HypriotOS v1.9.0 distribution with Linux kernel 4.14.34, Docker v18.04.0
and Kubernetes v1.9.3. We implemented Hona on top of Serf v0.8.2.dev and the
development version of proxy-mity.
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Fig. 3. Initial replica placement analysis
(testbed, n = 21).

As shown in Fig. 2, Hona is implemented as a daemon running in the
Kubernetes master node. It fetches information from Kubernetes and Serf, and
expresses its placement decisions by attaching labels to the concerned nodes.

In our cluster, one RPi runs the Kubernetes master and the Hona scheduler,
while the remaining RPIs act as worker nodes capable of hosting replicas. Every
worker node is also a WiFi hotspot and a Kubernetes gateway so end users can
connect to nearby worker nodes and send requests to the service.

We emulate realistic network latencies between the worker nodes using the
Linux tc2 command. We specifically use latency values measured between Euro-
pean cities3. Network latencies range from 3 ms to 80 ms and arguably represent
a typical situation for a geo-distributed fog computing infrastructure.

The application is a web server which simply returns the IP address of the
serving pod. We generate workloads either by equally distributing traffic among
all gateway nodes, or by selecting specific gateways as the only sources of traffic.
The threshold latency is L = 28 ms (the median inter-node latency in our
system), the trade-off between Proximity and Imbalance is α = 0.95, and the
deadline to find a placement is 10 s.

We perform the scalability analysis using a simulator which randomly cre-
ates up to 500 virtual nodes in the Vivaldi Euclidean space, and use the same
heuristics implementation as in Hona to select replica placements.

5.1 Initial Replica Placement

We first evaluate Hona’s initial placement algorithms and compare them with the
unmodified Kubernetes scheduler and the optimal solution found using a brute-
force approach. In the following graphs, each algorithm is denoted by a letter:
O for the optimal solution found using brute-force search, R for the random
heuristic, H1 and H2 for the first and second versions of Hona heuristic.

Overall Performance (Testbed Experiments): Figure 3 compares the Prox-
imity and Imbalance of solutions found by the different algorithms for various
2 https://linux.die.net/man/8/tc.
3 https://wondernetwork.com/.

https://linux.die.net/man/8/tc
https://wondernetwork.com/
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Fig. 4. Individual test cases analysis (testbed, n = 21).

numbers of replicas within the 21 worker nodes in the testbed. We run each
experiment 100 times, and evaluate 200 configurations per experiment.

Increasing the number of replicas to be placed makes the search easier, and
it delivers better results. More replicas can better cover the different regions of
the system, and the probability for any node to have a replica nearby increases.
Similarly, increasing the number of replicas makes load balancing easier.

The three Hona heuristics perform well in this case with results very close to
the brute-force optimal in a fraction of the time (for r = 9, O required ≈48 min
compared to 0.55 s for the heuristics). We however notice that in the relatively
difficult case of r = 3 the H2 heuristic outperforms the others according to both
metrics since it was designed to find solutions when the number of replicas is
relatively very small compared to the number of available nodes. This advantage
becomes more evident when testing over a large scale cluster.

To better understand the differences between the Random and the Hona
heuristics, Fig. 4 depicts the 5th/25th/50th/75th/95th percentiles of all the
tested placements during the same experiment. In contrast, Fig. 3 shows only the
best solutions found by every run of the heuristics. We can clearly see the dif-
ferences between heuristics; the Random heuristic evaluates placement options
across a wide range of quality, whereas the H1 and H2 heuristics better focus
their search on promising placement options.

Effect of System Size (Simulator Evaluations): We now explore Hona’s
placement algorithms in systems up to 300 nodes. Figure 5 depicts the results
obtained from 1000 runs of every evaluation. We chose the latencies between
nodes by randomly selecting Vivaldi coordinates for every node within a dis-
tance of at most 80 ms between nodes. To make the placement problem equally
difficult with different system sizes, we also scaled the number of requested repli-
cas accordingly: r = n/10. The red lines indicate the target values. We do not
plot the brute-force optimal placements which would require extremely long exe-
cutions.

In Figs. 5a and 5b, we observe greater differences between the three Hona
heuristics with larger system sizes. In particular, the H2 heuristic delivers better
Proximity for large-scale systems. This is due to the fact that it selects group
leaders with respect to the number of neighbors they can serve with low latency.

The H1 and H2 heuristics also outperform the Random heuristic in the number
of cases they need to evaluate before finding a solution which meets the user’s
requirements (Fig. 5c). We observe that H2 finds solutions much quicker than
the other heuristics.



520 A. J. Fahs and G. Pierre

●

●

●

●

●

●

●

●

●

n=100 n=200 n=300

99.76 99.80 99.84 99.88 99.91 99.94 99.92 99.93 99.94

R

H1

H2

µP%

A
lg

or
ith

m

(a): Proximity delivered by different algorithms (greater values are better).

●

●

●

●

●

●

●

●

●

n=100 n=200 n=300

3.2 3.6 4.0 4.4 1.5 2.0 2.5 1.0 1.5 2.0

R

H1

H2

µI%

A
lg

or
ith

m

(b): Imbalance delivered by different algorithms (lower values are better).

●

●

●

●

●

●

●

●

●

n=100 n=200 n=300

100 200 300 400 200 400 600 200 400

R

H1

H2

µ # Cases

A
lg

or
ith

m

(c): Number of cases studied by different algorithms (lower values are better).

n=100 n=200 n=300

0 50 100 150 0 200 400 0 100 200

R

H1

H2

# Timeouts

A
lg

or
ith

m

(d): Number of timeouts of different Algorithms (lower values are better).

Fig. 5. Initial replica placement with various system sizes (simulator, r = n/10).

Finally, Fig. 5d shows the number of heuristic executions which reached the
timeout without finding a suitable solution. Here as well, the H2 heuristic signif-
icantly outperforms the others because it targets its search to cases which have
a greater probability of delivering high-quality results.

We conclude that the H2 heuristic delivers better-quality results than the
others, in less time, and with a lower probability of a failed search. In the rest
of this paper we therefore use this heuristic for the initial replica placements.

5.2 Replica Re-placement

After the initial deployment of an application, Hona monitors the network traffic
it handles and periodically recomputes its performance metrics P% and I%.
When these metrics deviate too much from their expected values, it tries to
re-place replicas within the system to address the new situation.

We evaluate the behavior of Hona in our 22-nodes testbed with a variety
of scenarios. We define the Proximity target as P% = 99.5% of requests with a
latency under L = 28 ms, with a tolerance of 0.5% before triggering re-placement.
Similarly, the Imbalance target is I% = 5%, with a tolerance of 1% before re-
placement. These metrics are evaluated at a periodicity of 30 s.

Figure 6 depicts increasingly difficult re-placement scenarios. We plot the
Proximity and Imbalance metrics as calculated at the end of every cycle. The
red area depicts the period during which the new situation is introduced, and
the vertical red line(s) represents the time(s) at which the re-placement algo-
rithm actually changes the placement of replicas. We do not plot the P% and
I% metrics in the cycle immediately after a re-placement: these metrics capture
the transient state during which a new replica is created while another one is
deleted, and therefore do not represent accurate information.

(a) Changing a source of traffic: Figure 6a shows a case where one source of
traffic gets replaced with another one. During the first five cycles, no load is
issued to the studied application so the Imbalance metric remains at I% = 0.
Proximity is calculated according to the background traffic of other applications,
which explains its initial value of 90%. Some load is then generated starting from
cycle 6. The two metrics reach very good values: almost 100% for P%, and about
2% for I%. At cycle 9, however, we replace one of the main sources of traffic with
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Fig. 6. Replica re-placement analysis (testbed, n = 21).

another one located far away from any current replica. This event is detected
quickly and, at cycle 11, the system moves the useless replica close to the next
source of traffic, which effectively repairs the Proximity degradation.

(b) Adding a new source of traffic: Figure 6b shows a scenario where a new
source of traffic is added far away from the current set of replicas. This results
in a Proximity violation which is quickly detected by the system. However, in
this situation there is no solution that would bring both metrics within their
expected bounds. Since we favorized Proximity over Imbalance in the objective
function Θ, the system moves one replica close to the new source of traffic, which
fixes the Proximity violation at the expense of a degraded imbalance. The only
solution in this case to solve both QoS violations is scaling up the replica set.

(c) Changing a route latency: Figure 6c shows the case where the load dis-
tribution remains unmodified, but the latency between a gateway node and its
closest replica changes suddenly from 10 ms to 50 ms. In this case, Serf must first
detect the change of network latencies before Hona can react and re-place the
concerned replica accordingly. We see in the figure that these two operations take
place quickly. One cycle after the latency change, Hona triggers a re-placement
operation which brings performance back to normal.

(d) Complete replacement of the sources of traffic: Figure 6d depicts a dra-
matic situation where the entire workload changes at once: in cycle 11 we stop
all the sources of traffic, and replace them with entirely different ones. In this
case, the replica re-placement takes place in two steps. A first re-placement is
triggered at cycle 14: this operation improves Proximity but at the expense of
an increase in the load Imbalance. At cycle 17 a second re-placement is triggered
which brings both metrics back within their expected values.

(e) Starting from a uniform replica placement: Figure 6e shows a difficult
situation created by a sub-optimal initial replica placement. We initially placed
replicas with no information whatsoever about the future workload. In this case
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replicas get placed uniformly across the system. The Proximity is not affected
thanks to the uniform distribution of replicas. On the other hand, once actual
traffic is produced, an important Imbalance is detected. The system repairs it
(without significantly affecting Proximity) in three re-placement operations.

(f) Starting from a random replica placement: Figure 6f shows a case where
the initial replica placement was chosen randomly. When traffic starts in cycle 4,
both metrics are far from their expected values. The desired performance is
obtained after three re-placement operations.

Hona addresses a wide variety of QoS violations, and provides effective solu-
tions to solve them. In our experiments we never observed oscillating behavior
in which the system would not very quickly reach a new stable state.

5.3 Computational Complexity

Figure 7 shows the computation time of the H2 heuristic for placing 10 replicas
with QoS bounds of P% = 99.5%, L = 25 ms and I% = 4%. We used a
mid-range machine with a quad-core Intel Core i7-7600U CPU @2.80 GHz. The
current implementation is single-threaded, but parallelizing it should in principle
be easy as different placements can be evaluated independently from each other.

The left part of the figure depict the number of cases which can be evaluated
within 10 s. Clearly, the complexity of evaluating any single case increases with
system size as the metric evaluation function needs to iterate through a greater
number of potential traffic sources. However, as shown in the right part of the
figure, even for large system sizes, the computation time until a satisfactory
solution is found remains under 2 s of computation. This comes from the fact
that, with larger system sizes, the number of acceptable solutions grows as well,
and a solution can be found with a lower number of evaluated cases.

6 Conclusion

Replica placement is an important problem in fog computing infrastructures
where one can place computation close to the end-user devices. When many
sources can generate traffic it is often not affordable to deploy an application
replica close to every traffic source individually. One rather needs to limit the
number of replicas, and to choose their location carefully to control the tail
latency and the system’s load balance. Replica placement decisions must also
be updated every time a significant change in the operating conditions degrades
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the QoS metrics. We have shown that, despite the huge computational com-
plexity of searching for the optimal solution, simple and effective heuristics can
identify sufficiently good solutions in reasonable time. We have implemented
Hona in Kubernetes, thereby bringing it one step closer to becoming one of the
mainstream, general-purpose platforms for future fog computing scenarios.
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Abstract. Cloud computing attracts more and more people owing to its
compelling advantages in speed, efficiency and cost. The task scheduling
as the core in cloud computing affects the quality of service. However, the
mapping of tasks to appropriate resources is a complex job. Therefore,
a two-sided matching (task-to-resource) scheduling using Multi-Level
Look-Ahead Queue of Supply and Demand is proposed. Firstly, we design
a Multi-Level Look-Ahead Queue of Supply and Demand (MLLQ-SD)
according to the characteristics of cloud task scheduling. Then a task
scheduling algorithm using MLLQ-SD (SA-MLLQ-SD) is designed. In
addition, a greedy algorithm is used to improve its overall performance.
SA-MLLQ-SD helps each task queue be allocated to the appropriate
resource queue. Experimental results show that the proposed algorithm
reduces the overall execution time and completion time, significantly
guarantees the load balance while ensuring the service quality.

Keywords: Cloud computing · Multi-level look-ahead queue · Task
scheduling · Quality of service
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In recent years, more and more users submit tasks to the cloud in view of the
security, flexibility, and low-cost of cloud computing, which makes the tasks
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diverse [11]. These tasks need to be allocated to the appropriate computing
resources for execution. However, there are many kinds of computing resources
in cloud data center. Therefore, cloud computing resources are also heteroge-
neous, which further increases the complexity of task scheduling. How to rea-
sonably distribute these diversified tasks to heterogeneous resources and ensure
the Quality of Service (QoS) has become an increasingly popular research [3,5].
Many efficient methods were proposed in the past several years, such as Hadoop’s
FIFO scheduling, Yahoo’s capacity scheduling, Facebook’s fair scheduling, e.g.
In addition, some scholars applied genetic algorithm and ant colony algorithm
to obtain better scheduling solutions [4,9]. Some scholars narrowed task search
space by clustering tasks or resources to reduce scheduling overhead. Piraghaj et
al. [8] proposed a novel cloud resource allocation architecture, which maps task
groups to the corresponding virtual machines. Zhao et al. [14] combined Bayes
theorem with the clustering process to get the optimal clustering set of physical
hosts.

However, most of these scheduling algorithms only consider the execution
time of tasks, without considering the characteristics of tasks and resources. To
optimize the task scheduling in data center, we do the following work:

(1) A Multi-Level Look-Ahead Queue of Supply and Demand (MLLQ-SD) is
designed based on the features of cloud task scheduling. MLLQ-SD has two
parts: Multi-Level Queue of Task Resource Demand (MLQ-TRD), Multi-
Level Look-Ahead Queue of Resource Supply (MLLQ-RS). MLQ-TRD uses
Dynamic Priority DP to divide tasks; MLQ-RS uses a Look-Ahead method
to adjust the scale of resources in advance, then uses Resource Degree Coef-
ficient RD to divide the available resources.

(2) A two-sided matching scheduling using MLLQ-SD (SA-MLLQ-SD) is
designed. We utilize a greedy strategy to further improve its overall perfor-
mance. SA-MLLQ-SD helps MLQ-TRD to be allocated to matched MLQ-
RS. Experimental results reveal that the proposed algorithm not only
reduces the overall execution time and completion time, but also signifi-
cantly ensures the load balance while satisfying the quality of service.

The rest of the paper is organized as follows. Section 2 presents the design of
MLLQ-SD. Section 3 proposes a two-sided matching scheduling using MLLQ-
SD. Section 4 analyzes the experimental results. Section 5 gives a conclusion.

2 Multi-Level Look-Ahead Queue of Supply and Demand

According to the characteristics of cloud task scheduling, we design a Multi-Level
Look-Ahead Queue of Supply and Demand (MLLQ-SD) combined with Multi-
Level Feedback Queue. MLLQ-SD is mainly composed of two parts: Multi-Level
Queue of Task Resource Demand, Multi-Level Look-Ahead Queue of Resource
Supply.
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2.1 Multi-Level Queue of Task Resource Demand

Multi-Level Feedback Queue (MLFQ) performs well on terminal tasks, short
batch tasks, and long batch tasks of operating system. Each type of tasks can
get fair scheduling opportunities and improve system resource utilization. The
tasks of cloud data center can be divided into several types, which are similar to
the tasks in the operating system. For example, interactive task, short task and
long task. Therefore, the similar solutions can be used to process the tasks of
cloud data centers. So we design a Multi-Level Queue of Task Resource Demand
(MLQ-TRD) based on the thought of MLFQ. A novel dynamic priority is defined,
which divides tasks more reasonably and lays a foundation for the reasonable
resource allocation of tasks.

Dynamic Priority: MLFQ uses a high response ratio priority algorithm. It
can prevent long tasks from occupying resources in the queue for a long time,
which reduces the starvation of short tasks. It also can cut down the scheduling
time and improve the operational efficiency. We refer to the high response ratio
priority algorithm, then propose a novel dynamic priority by comprehensively
considering indicators such as the waiting time, execution time, priority and
scheduling class of the task. Dynamic Priority DP defined as

DP =
r(ti) · (te(ti) + tqueue(ti))

te(ti)
· (Pt(ti) + St(ti)) (1)

where te(ti) and tqueue(ti) denote the expected execution time and waiting time
of the task ti. Pt(ti) and St(ti) denote the priority and scheduling class of
the task ti, where the priority represents how important the task is, and the
scheduling class represents how latency-sensitive the task is. For example, Google
represents the scheduling class by a single number, with 3 as a more latency-
sensitive task and 0 as a non-production task [10]. Tasks with higher priority or
scheduling class mostly get priority for resources over tasks with lower priority
or scheduling class. r(ti) denotes the resource demand of the task ti, can be
calculated as r(ti) = TVLEN ·

√
TV 2

CPU + TV 2
MEM + TV 2

NET , where TVLEN ,
TVCPU , TVMEM and TVNET are the length, CPU, memory and net required
for the task ti.

We calculate the DP of each independent task in the task waiting queue
QW{t0, t1, · · · , tn}, and assign tasks to the queues at different levels according
to the DP . The pseudocode of algorithm for Multi-Level Queue of Task Resource
Demand (MLQ-TRD) is shown in Algorithm 1.

The steps of Algorithm 1 are as follows:
Step 1–2: Initialize MLQ-TRD and DP LIST . DP LIST is used to store

the DP of every task.
Step 3: Utilize RECEIVE TASK() to receive the arriving tasks.
Step 4–7: Traverse QW , calculate the DP for every task, and add it to

DP LIST .
Step 8: Utilize SORT() to sort DP LIST by DP in descending order.
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Step 9: Utilize QUEUE PARTITION to partition the tasks, the top P% tasks
are assigned to the first-level queue, the top P%–2P% tasks are assigned to the
second-level queue, and so on.

Step 10: Return MLQ-TRD.

ALGORITHM 1: MLQ-TRD
Input: Arriving tasks;
Output: MLQ-TRD 1 2{ , , , }zQS QS QS ;
1. Initialize MLQ-TRD;
2. Initialize the DP list of tasks DP_LIST;
3. QW←RECEIVE_TASK();
4. for each ti QW do
5. DP←COMPUTE_DP(ti);
6. DP_LIST.ADD((ti, DP));
7. end for
8. DP_LIST←SORT(DP_LIST, DP);
9. MLQ-TRD←QUEUE_PARTITION(DP_LIST,P);
10. return MLQ-TRD;

ALGORITHM 2: MLLQ-RS
Input: Available resources RS and historical data HD;
Output: MLLQ-RS 1 2{ , , , }zQD QD QD ;
1. Initialize MLLQ-RS;
2. Initialize the RD list of resources RD_LIST;
3. RS←LOOK_AHEAD(HD);
4. for each vj RS do
5. RD←COMPUTE_RD(vj);
6. RD_LIST.ADD((vj, RD));
7. end for
8. RD_LIST←SORT(RD_LIST, RD);
9. MLLQ-RS←QUEUE_PARTITION(RD_LIST,P);
10. return MLLQ-RS;

2.2 Multi-Level Look-Ahead Queue of Resource Supply

Because the traditional scheduling algorithms generally only consider the com-
pletion time of the tasks but seldomly consider the resource supply. Sometimes
it will lead to mismatches between resource supply and demand, which will
directly causes the slow executions to some tasks, and eventually increase the
whole completion time. Therefore, we design a Multi-Level Look-Ahead Queue
of Resource Supply (MLLQ-RS). MLLQ-RS considers the resource supply sit-
uation and classifies the available resources before scheduling. Look-Ahead and
Resource Degree Coefficient are the basis of MLLQ-RS.

Look-Ahead: The data center has plenty of computing resources. How to deter-
mine the number of virtual machines to handle tasks, has become a problem.
Therefore we use a Look-Ahead method to forecast future load demand by the
historical task data and determine the number of virtual machines. This Look-
Ahead method is our previous work [2], so it will not be described here.

Resource Degree Coefficient: Resource Degree Coefficient RD is utilized to
measure the computing power of the resource, can be calculated as

RD =
∑

∂k·Rk, k ∈ {CPU,MEM,NET} (2)

where Rk denotes the capability of vj on one resource; ∂k denotes the weight of
Rk,

∑
∂k = 1.

We calculate the RD of each virtual machine in the available resources
RS{v0, v1, · · · , vm}, and assign virtual machines to the queues at different levels
according to the RD. The pseudocode of algorithm for Multi-Level Look-Ahead
Queue of Resource Supply (MLLQ-RS) is shown in Algorithm 2.

The steps of Algorithm 2 are as follows:
Step 1–2: Initialize MLLQ-RS and RD LIST . RD LIST is used to store the

RD of every virtual machine.
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Step 3: Utilize LOOK AHEAD() to forecast future load demand according
to historical data HD and adjust the scale of RS.

Step 4–7: Traverse RS, calculate the RD for every virtual machine, and add
it to RD LIST .

Step 8: Utilize SORT() to sort RD LIST by RD in descending order.
Step 9: Utilize QUEUE PARTITION() to partition the virtual machines, the

top P% virtual machines are assigned to the first-level queue, the top P%–2P%
virtual machines are assigned to the second-level queue, and so on.

Step 10: Return MLLQ-RS.

3 Two-Sided Matching Scheduling

Two-Sided Matching Scheduling Algorithm (TSMSA) traverses QSk in MLQ-
TRD, obtains the QDk corresponding to QSk, and then schedules the tasks.
For example, assigning the high-priority queue in MLQ-TRD to the high-
performance resource queue in MLLQ-RS, and the low-priority queue in MLQ-
TRD to the low-performance resource queue in MLLQ-RS. We assign similar
tasks to corresponding resources to improve the matching between tasks and
computing resources. It narrows down the selection scope of tasks to improve task
scheduling efficiency and ensure service quality. We finally use a greedy strategy
for task scheduling (GS-QS-QD) between {QSk, QDk}. GS-QS-QD helps the
task to find the most optimal virtual machine. Each task should comply with
the resource constraints of the virtual machine, and only be executed on one
virtual machine during the scheduling process.

Figure 1 illustrates the flowchart of the scheduling algorithm using MLLQ-SD
(SA-MLLQ-SD). SA-MLLQ-SD utilizes MLLQ-SD to partition tasks and virtual
machine resources. Each task queue is assigned to the matched resource queue
by TSMSA. Then GS-QS-QD is used in each {QSk, QDk} to further improve
scheduling efficiency.

4 Experimental Evaluation

Experimental Environment: To guarantee the repeatability of experiments,
the CloudSim toolkit is selected as a simulation platform [1]. In the experi-
ment, we assume that the number of hosts is 100, and there is only one virtual
machine(VM) on each host. In addition, we simulate random tasks according to
Google trace data [10]. Since there is no task length in Google trace data, the
task length is randomly generated.

Scheduling Algorithm Evaluation: We not only implement our proposed
algorithm SA-MLLQSD, but also implement the Greedy Scheduling Algorithm
(Greedy) [7], Ant Colony Scheduling Algorithm (ACO) [6,13], Genetic Schedul-
ing Algorithm (GA) [9] and Task Clustering Scheduling Algorithm(TC) [8,12]
as the baseline algorithms. We use the whole execution time of all tasks and the
completion time of the tasks as the experimental metrics [15].
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Fig. 1. Two-sided Matching Scheduling using MLLQ-SD

Figure 2(a) shows the results of different algorithms on the whole execution
time of different number of tasks. Compared with several other algorithms, the
proposed algorithm SA-MLLQ-SD and ACO perform better, but SA-MLLQ-
SD is 2.53% longer than TC on the 6th experiment (3000). Figure 2(b) shows
the completion time of various algorithms. SA-MLLQ-SD is superior to ACO,
GA and TC, but slightly weaker than Greedy. Because Greedy takes the com-
pletion time as the optimization goal, so the task completion time is the best.
At the same time, to measure the load balance of each virtual machine during
the scheduling process, we record the load of each virtual machine. Figure 2(c)
shows the number of tasks allocated to each virtual machine (VM) during the
execution of various algorithms. Figure 2(c) shows that the number of tasks for
each algorithm tends to fluctuate around the average. ACO has the largest fluc-
tuation range, and SA-MLLQ-SD has the smallest fluctuation range. When the
total number of tasks increases, this advantage of SA-MLLQ-SD becomes more
obvious. SA-MLLQ-SD is far superior to the other algorithms in load balancing.
All factors taken into consideration, the division of tasks and resources reduces
the scope of task selection, and the matching scheduling of task queues and
resource queues ensures the rationality of task selection in resources.

In summary, SA-MLLQ-SD reduces the execution time and completion time,
guarantees the load balance of the virtual machines and improve the quality of
service.
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Fig. 2. The number of tasks allocated on each virtual machine

5 Conclusion

This paper has presented a two-sided matching scheduling using Multi-Level
Look-Ahead Queue of Supply and Demand (SA-MLLQ-SD). A Multi-Level
Look-Ahead Queue of Supply and Demand (MLLQ-SD) we proposed helps each
task queue can be allocated to the appropriate resource queue with the matching
execution ability. The application of greedy strategy further improved the overall
performance. The experiments comprehensively evaluate the performance of the
proposed algorithm in comparison to four baseline approaches. SA-MLLQ-SD
can reduce the overall execution time and completion time, significantly guar-
antee the load balance while ensuring the service quality.

In the future research work, we will try to focus on workflow and consider
other factors (energy consumption, resource utilization, etc.). It will make the
results more comprehensive.
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Abstract. Internal auditing tries to identify anomalies, weaknesses and manipu-
lations in business processes in order to protect the company from risks. Due to the
digitalization of processes, auditors also have to check the associated data volumes.
Already existing IT-systems focus on process-related data where the control flow,
i.e. the actual sequence of process events, is not considered. This paper examines
how the control flow and the process-related data can be analyzed in combination
to support auditors in process auditing. To realize this, audit requirements were
collected in the literature and evaluated by auditors from industry. On this basis,
a concept with five indicators was developed, then transferred into a prototype
and evaluated using real-life data as well as two auditors. The results show that
the requirements can be technically realized and the developed indicators enable
auditors to identify and interpret abnormal process executions.

Keywords: Internal auditing · Process mining · Process context · Unsupervised

1 Introduction

Today, business processes can be controlled and monitored by information systems.
Many of these systems can store process events such as transactions or machine signals
in a structured form. A collection of such digital events is called event log. The basic
assumption is that the data in the event log represents the sequence of events as they
occurred in reality. In this context, one also speaks of the control flow of a process [1].

For internal auditing, the control flow is relevant, since auditors could compare the
actual control flow of a process with a target control flow in order to detect anomalies.
However, a challenge with such an approach is the availability of a reliable reference
model. In practice, these models are often designed at the time the process is introduced,
while the actual process flows usually change over time. One reason for such a change
could be, e.g., new employees who have a slightly different way of working than their
predecessors [2]. To overcome this limitation process mining can be used.

Process mining refers to methods and techniques that can generate a structured
process model based on event logs [1]. Using such models, process mining provides
the basis for a comparison with an existing reference model or an event log. In contrast
to sampling, this would allow auditors to check an entire set of process executions.
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Despite these potentials, process mining is rarely used in auditing. The reasons for
this are suspected, e.g., in the high number of cases classified as anomalous [4]. This
typically results from the classical approach of control-flow-based anomaly detection.
Most approaches use discovery algorithms to determine a reference model from an
event log and then use this model in a conformance check to detect anomalies in the
log [5]. However, even a single event, which is not provided in the model can lead to a
process execution being interpreted as an anomaly. Such a sensitive interpretation can
be a challenge for auditors, as a high number of process executions wrongly interpreted
as anomalous can lead to unnecessary investigations. Another aspect is the missing
alignment of the technical output with the individual interests of the auditors [4]. The
concrete challenge is the atomic form in which the process deviations are provided by
the methods [6]. I.e., auditors may see that deviations in the control flow have occurred,
but an interpretation of the associated markings is not yet mapped to their specific needs.

To make the output of control flow-based anomaly detection manageable for internal
auditing in both quantitative and qualitative terms, we propose an approach that extends
the control flow with process-related data and also addresses the auditors’ requirements.

1.1 Fundamentals

Event Log and Process Related Data. The event log is essential for process mining
and is subject to requirements. One is that each event must be assigned to a unique case.
To be able to consider the ordering, the events must also be assigned to a timestamp
or sort element. The sequence of events in a case is then called a trace [1]. When a
process is running, further data can also be generated, which cannot be assigned to a
timestamp or event of the log. However, if this data also has a case it can be assigned
to the corresponding case in the log. In contrast to the log, which describes the process
flow over several lines ➀, a single line of process information could be provided in this
way ➁ (Fig. 1).

Event Log Process Related Data
case event timestamp case amount class priority owner ... attribute n
312P 90 2020-06-01 312P 16 3 high doe ... 48
312P 280 2020-06-02
312P 800 2020-06-03

1 2

Fig. 1. Event log and process related data

Conformance Checking. Conformance checking is a type of process mining and can
be used to check whether the real behavior, which is recorded in the log, corresponds
to a process model. For the implementation of conformance checks replays are used.
This term comes from the idea of reproducing or rather “re-playing” the single traces
of a log on the process model. As a concrete replay approach, alignments have become
the standard for conformance checks [1]. Alignments can relate unsuitable events of the
log to the process model by a mapping procedure. E.g., let o= {90, 265, 160, 280, 467,
492, 413, 496, 730, 769, 810, 820} be a trace of an event log L. If we replay o on the
petri net M, this can be visualized in a matrix ➀. The bottom row corresponds to the
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moves of the trace o and the top row to the moves in the petri net M. If a move can be
performed both in the trace and in the model, this is called a synchronous move. The icon
>> indicates a misalignment and appears either when an event recorded in the trace
could not be executed in the model (move-on-log-only), or when an event that had to be
executed by the model did not take place in reality (move-on-model-only) [1] (Fig. 2).

M 90 265 160 165 280 467 492 >> 496 705 706 730 769 800 810 820
o 90 265 160 >> 280 467 492 413 496 >> >> 730 769 >> 810 8201

synchronous-move
move-on-model-only
move-on-log-only
misalignment>>

fitness (o, M) = 1 – cost sum of optimal-case alignment (o)
cost sum of worst-case alignment (o)

result
0 = no fitness
1 = perfect fitness
... ...2

27090
265

160 165

467
496705706

769 800 810 820

730
413

280

492M = 

Fig. 2. Conformance checking using alignments

During a replay there can be many different alignments between a log and a process
model. For the calculation of the replay fitness only the optimal andworst-case alignment
is needed. Here, it is necessary to assign costs to the moves. For moves where the log
and the model match (synchronous moves), these costs must always be set to 0. If log
and model differ and no process knowledge is available, a fixed cost value of 1 can be
assigned to all misalignments. To calculate the replay fitness between o andM, the costs
of all moves are then summed up for each trace and filled into the formula ➁ [1].

1.2 Related Work

While most conformance checking methods have focused on the control flow, some
studies also considered additional process data. Such data can be used to check whether
the control flow also meets the correct process conditions (e.g., correct control flow
activity performedby an authorized person). To consider such aspects in the conformance
check, in [7] an alignment approach is extended by a heuristic-based procedure. In [8]
an approach based on integer linear programming is presented, which, in contrast to
[7], is also capable of processing numerical values. In [9] a constraint-based approach
for conformance checking of declarative processes is developed. In [10] both the data
and the time perspective are linked to the control flow. In [11] a cost function is used to
prioritize deviations between a log and a model, considering all process perspectives.

Further studies focused on reducing the high number of control-flow-based alerts
or false-positives. E.g., in [12], not every unexpected event is immediately classified
as abnormal, but assessed based on the likelihood of its occurrence. In [13] an asso-
ciation rule mining approach is proposed that can be used to determine what behavior
might have caused an abnormal process. This can help to differentiate between harmful
anomalies and false-positives. Besides the purely technical research, process mining is
also investigated in the auditing context [3, 14–17]. These studies stand out from others
because they already address concrete tasks and scenarios in the auditing area.

2 Requirements

To determine the requirements for our approach, we conducted a literature research that
aimed to identify the criteria according to which an auditor selects anomalous process
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executions based on their control flow behavior. As a result, only the study by [4] was
identified as relevant. This is due to the fact that the known control-flow-related deviation
patterns originate from the field of process mining or business process management and
until recently these patterns were not checked for consistency with the deviation patterns
used by auditors. It was only the study by [4] that provided representative answers by
conducting interviews with auditors. According to [4], especially swapped,missing and
duplicate events in the control flow are criteria that are relevant for auditors. In order
to assess these requirements, the following aspects were discussed with two auditors.
A1: Compliance of the collected criteria with those of the own audit department, A2:
Suitable way of presenting the criteria in concrete figures/indicators.

After aspect A1 was discussed, it can be stated that the requirements were confirmed
by the auditors. They added, that it would be helpful if they could also be informed about
the (ab-)normality of the associated process conditions when evaluating the control flow
deviations. This could help to interpret whether the deviations may be typical or atypical
under certain process circumstances. Aspect A2 showed that, a combination of deviation
criteria as numerical indicators would be helpful for the auditors. The concrete proposal
was a labeling that consists of four indicators. Three of these would be represented by the
fields missing, swapped and duplicate events which provide the rates these deviations
types have for each process execution. The fourth indicator should be an overall value,
which summarizes the conformance of each process execution.

3 Conceptual Design

Our concept consists of two phases. One for the integration of the control flow and
a second one for the process-related data. In the first phase, the upstream task is the
process discovery ➀, which creates a process model based on the event log and a mining
procedure. Thismodel represents the basis for the second task: the conformance check➁,
which aims tomeasure the deviations between the log and the processmodel by replaying
the log on the model. The conformance check provides the indicators that show the rates
of missing, swapped and duplicate events as well as the overall conformity for each
process execution (trace). These indicators will be calculated both for each event of the
trace (event_metrics) and for the entire trace (trace_metrics) ➂ (Fig. 3).

Fig. 3. Concept
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In this concept, the process discovery only considers the control flow. The result-
ing process model thus does not contain guards. Guards are rules that explain when
process executions have to take a certain path at a decision point in the process model
[7]. This means, a process model, which is extended by guards (a data-petri-net [18]),
describes not only which process paths are possible, but also under which conditions
they may be executed. In our concept, the event log could also be used in combination
with the process-related data to create a data-petri-net. However, regardless of the pro-
cess model type, we propose an additional data combination. This is due to the fact that
during a conformance check even guards can only control the behavior that is modeled
in the process model. However, a process model can never contain the entire behav-
ior of a real business process without becoming unreadable for a person. Instead, pro-
cess models are typically created in a more general form. If a conformance check is
then performed using such a generalized model, the number of deviating process exe-
cutions can quickly increase when the log is noisy. In order to identify the legitimate
– but not modeled – cases within this set of potential anomalies, the control flow devi-
ations can also be subsequently combined with process context. In our approach, this
combination is realized by further processing the previously calculated event_metrics ➃
together with the process related data➄ using an unsupervised anomaly detection➅. I.e.,
the data processed by the anomaly detection contains a row for each process execution
with the fields: case | missing_event_A | swapped_event_A | duplicate_event_A | miss-
ing_event_B |…| missing_event_X |…| process_related_attr_1 | process_related_attr_2
|…| process_related_attr_n. In this way, it is possible to put the control flow behavior of
a process execution into a concrete process context, even if this behavior is not provided
in the generalized model (e.g., to determine, whether the missing event A is typical or
untypical, considering the respective process context). In our concept, this results in an
additional indicator➆ that provides a boolean value, where “true” stands for an abnormal
and “false” for a normal process execution. The approach is unsupervised, as no labels
should be used. The final output also includes the aggregated control flow metrics ➇.

4 Case Study

Setting, Data and Preprocessing. To evaluate our concept, we transferred it into a pro-
totype and conducted a case study in the internal auditing department of an internationally
operating automobile manufacturer. In addition to the expertise of two auditors the case
study benefited from real-life data from 2058 manufacturing-related permit processes.
The event log contains status numbers as events, which were set in the information sys-
tems during a permit process. The process-related data provides single-line information
on 54 fields about each permit process without referring to events or times in the con-
trol flow. The categorical fields of the process-related data set (8% of the data) were
converted into numeric values using a frequency-based [19] encoding. A one-hot encod-
ing [20] was omitted because in this data, this would have generated tens of thousands
of columns and thus greatly increased the object space dimensionality. Afterwards, a
min-max normalization (0, 1) has been performed for all attributes.
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Process Discovery. To perform the process discovery and conformance checking, we
used ProM, an open source framework for process mining algorithms [21]. For the pro-
cess discovery, the plugin Inductive Visual Miner [22] and for the process representation
the petri net was used. The Inductive Visual Miner can be adjusted using the path slider
and the activities slider. The latter determines the proportion of events to be considered
in the process model. The path slider can be used to control the scope of the noise filter-
ing and ranges, just like the activity slider, from 0 to 1 (0 = maximum noise filtering).
In this context “noise” refers to the variation of paths between the events [22].

Since initially no events should be excluded from the log, the activities slider was set
to 1 during the entire process discovery. In contrast, the path slider (ps) was examined
at 21 settings (0.0, 0.05, 0.10,…, 1.0). To simplify the creation of a generalized model,
these 21 settings were used for the evaluation of 10 chaotic event filtering [23] and 20
trace filtering [24] iterations. E.g., during the chaotic event filtering, one chaotic event
after another was successively filtered out of the log and after each filtering, the 21 ps-
positions were iterated. Since one process model results from each path slider setting,
a total of 630 process models were created in this way (21 ps * 10 + 21 ps * 20). By
replaying the log on each of these process models, the fitness and precision as well as
the f -score were calculated. After running all iterations, the model with the maximum
f-score was selected for the prototype (f-score: 97.6 | fitness: 96.9 | precision 98.3).

Conformance Check. Weused the calculation of alignments in our conformance check.
Since the previously created process model is considered as a reference process and the
single process executions (traces) should be assessed with regard to their conformity
to this reference process, the perspective of trace fitness takes effect. To address this
perspective through alignments we applied the plugin Conformance Checking of DPN
(XLog) [11] which used the process model and the log as input. The output is a list of all
traces, in which the control flow violations are marked by different coloring. Figure 4
shows two traces of the log: one with 100% trace fitness ➀ and one with 81.8% ➁.

90 265 160 165 280 492 496 705 706 730 769 800 810 820

90 265 160 165 165 280 492 496 730 705 706 730 769 800 810 820

100% trace fitness
81,8% trace fitness

1
2

3Not Part of the Plugin duplicate event 4 swapped event 5 missing event

synchronous-move
move-on-model-only
move-on-log-only
unobservable (e.g. splits)  

Fig. 4. Conformance checking output

Given the collected requirements to detect missing, swapped, and duplicate events,
this output needs additional interpretation. The purple and yellow markings indicate
whether the event could be set at the respective position exclusively by the model (move-
on-model-only) or by the log (move-on-log-only). For the alignment calculation, these
move classifications are performed exclusively for the considered position in the trace
andmodel.However, the fact that, e.g., amove-on-model-only needs to be interpreted as a
completelymissing event,would only be true if this eventwas not set at any other position
in the trace. Such an actually missing event is shown in➄. If, on the other hand, the event
would also be set at an earlier or later position in the trace, this should be interpreted
as a swapped event ➃. The move-on-log-only shows that the event was not intended by
the model. Besides a swapped event, this could also be due to a duplicate event ➂. Such
a global consideration of the entire trace is irrelevant for the fitness calculation and is
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thus not provided by the plugin. To calculate themissing, swapped and duplicate events,
we therefore implemented a script which used the csv-export-file of the plugin as input.
In this file, the move type is given by numbers: 0 (synchronous-move), 1 (move-on-log-
only), 2 (move-on-model-only). Our script stores these values together with the occurring
event names for each trace in three lists (type_0, type_1, type_2). Then it iterates over
the lists and derives the deviation categories for each event based on the logic shown in
➅. In this way, each trace event receives its own deviation categories (event_metrics).
E.g., for event 730, the columns 730_duplicate, 730_swapped, and 730_missing would
be created in which the respective frequencies are stored ➆. In a final aggregation, the
values of the event_metrics are set in relation to the number of all events occurring in
the trace (for trace ➁ of Fig. 4: 1/14 events = 0.0714 ➇) (Fig. 5).

Calculation Logic for the event_metrics Output of the Calculation
Action Condition (MT = move type; e = the considered event within the trace) 

Case
trace metrics event metrics

duplicate+1 A synchronous-move (MT: 0) and a move-on-log-only (MT: 1) was found for e trace
fitness

duplicate
events

swapped
events

missing
events ... 730_ 

duplicate
730_ 

swapped
730_

missing ...swapped+1 A move-on-log-only (MT: 1) and a move-on-model-only (MT: 2) was found for e
missing+1 Only a move-on-model-only (MT: 2) was found for e XY23 0.8181 0.0714 0.0714 0.0714 ... 0 1 0 ...

6 8 7

Fig. 5. Calculation of the control flow indicators

Unsupervised Anomaly Detection. We used two views of the process-related data. In
the first view no attributes were filtered out (data_view). The second view included,
besides the event_metrics, only attributes in which our auditors found anomalies
(aud_view).

For the unsupervised anomaly detection, performance between an iForest [25] and a
local outlier factor (lof) [26] was compared. The lof classifies a data point as (ab)normal
based on the local density deviation of the data point in relation to its neighbors [26]. The
iForest uses a combination of several isolation trees,which isolate outliers from the rest of
the data by a recursive, random division of the attribute values [25]. These two methods
were implemented using the python library scikit-learn which explains the available
parameters in [27]. For these parameters, different value intervals were defined and
combined with one another. This resulted in 400 iForest and 480 lof parameter settings.
Since no process knowledge was assumed in our concept, an internal evaluation of
the model quality was necessary. In this way, the influence of the different parameter
settings can be measured without using ground truth labels. To do so, we used a classifier
performance approach. This assumes that if an anomaly detection method efficiently
captures a data set, the abnormal entities identified by thismethodmust bewell separated
from the normal entities. This separability can in turn be measured by a supervised
classification. The goal is to capture the prediction quality of a classifier, which used the
previously predicted anomaly classes of the unsupervised anomaly detection as target
labels during the training [28]. If the classifier is able to predict the outliers in a test
set well, this indicates a good separability. To measure such a classifier performance,
we implemented a loop that performed an unsupervised anomaly detection for each of
the 400 (iForest) and 480 (lof) parameter settings as well as a subsequent supervised
classification on the anomaly detection results. Since the unsupervised anomaly detection
did not require training, it was applied to the entire data set. For the subsequent supervised
classification, a random forest was applied which used 60% of the data for training and
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40% as a test set to measure the prediction quality. To guarantee the same conditions
for each iteration, all random variables (in train/test-split, random forest, iForest) were
set to 0. As a result of each loop iteration, the classification quality was measured using
the f-score and stored in a list. After the loop terminated, the maximum f-score was
determined from the list and the corresponding model and parameter setting was used
for the final anomaly detection. For both the data_view (f-score: 0.936) and aud_view
(f-score: 0.998) the maximum f-score belongs to the iForest.

4.1 Evaluation

As a first step of this evaluation, the auditors of the partner company converted their
audit findings into binary anomaly flags ➀. Based on the comparison of these flags
with those of the prototype ➁, two confusion matrices were calculated. These matrices
show differences regarding the hit rate of the actually (ab)normal cases. While in the
data_view ➂ 422 anomaly classifications (20.5%) deviated from the audit report, only
249 (12.1%) deviated in the aud_view ➃. The results also show that the prediction of
actually abnormal cases is more accurate if the set of attributes is limited by auditors
(Fig. 6).

Prototype Indicators Audit Report
Case trace fitness missing events swapped events duplicate events anomaly anomaly Case
XY31 1.0 0.0 0.0 0.0 true true XY31
PW24 0.850 0.0 0.166 0.083 true true PW24
RT67 0.944 0.0 0.060 0.0 false false RT67

... ... ... ... ... ... ... ...

Confusion Matrix – Data View Confusion Matrix – Aud View

Deviations: 422
Audit Report Deviations: 249

Audit Report
abnormal normal abnormal normal

Proto-
type

abnormal 339 287 Proto-
type

abnormal 446 221
normal 135 1297 normal 28 1363

2 1 3 4

5

6

Fig. 6. Comparison of the anomaly flags of the prototype with those of the audit report

In a second step, the auditors assessed the indicators in functional terms.As a result, it
can be stated that they consider the indicators as a useful audit instrument. This perception
is based on the ability to sort and group the process executions by the indicators values.
Since the fifth indicator considers every event deviation in its respective process context,
auditors can also seewhen a deviation is relativized by its context. In such a case a control
flow deviation would be displayed, but the anomaly flag would be false ➄. The added
value of such a relativization becomes clear if auditors would use only the four control
flow indicators to select potential audit cases. The auditors would then classify a process
execution as relevant for an audit if it deviates from the model (e.g. fitness < 1). If we
had used such an exclusively control-flow-based approach for our comparison with the
audit report, there would be 7.3% more false-positives. It is also possible to select only
those cases that have been classified as abnormal solely because of the process-related
data conditions. I.e., no control flow deviation is displayed but the anomaly flag is set to
true➅. The combined view of the four control flow indicators together with the anomaly
flag thus allows auditors to better interpret an anomaly.

In a final step, the control flows of the false-positives were examined in detail, as
they had a much larger proportion compared to the false-negatives. It was found that
the deviations in 76,1% of all false-positives were due to events which, according to
the auditors, are known to be chaotic in nature. This includes, e.g., the responses from
email distribution lists. In some cases, several departments must provide a statement
on a requested permit process. However, the times at which these responses are made
can be very arbitrary – which is legitimate. It is only important that all responses are
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received before proceeding to the next approval step. This implies that some switched_
events are legitimate in this case study. If departments do not respond, the requests will
be sent again. This is also legitimate and leads to duplicate_events. The reason why
this behavior was not considered by a loop in the process model is that these cases
did not occur often enough to be considered by the process discovery method (when
using maximum f-score). Given this legitimate and at the same time negligible process
variance, the concerned 76,1%were confirmed as actual false-positives. In the remaining
23,9% alleged false-positives, specific control flow deviations were found which were
actually relevant for further audits.

5 Conclusion

In this paper we investigated how a control-flow-based anomaly detection can be used to
support auditors in selecting audit-relevant process executions. An important feature of
this approach is its intended practical suitability. In addition to the conceptual alignment
with the audit-requirements, this claim should also be achieved through a practice-
oriented data requirement. Since unlabelled data are common in practice, no labelled
data were used during the modeling. The entire procedure was thus realized without
process knowledge. The evaluation of the developed indicators confirmed that these can
provide auditors with useful assistance in the selection of relevant cases. In addition to
the evaluation results, this is also due to the comparison with classical audit methods,
which are still characterized by sampling and focusing on process-related data. The
practical application of our approach is therefore not only the consideration of a full
data population, but also the use of both the control flow and the process related data.
In this way it was also shown that control flow deviations can be relativized by their
individual context. This in turn can help to reduce the amount of irrelevant cases.

For theoretical application, this paper provides new insights in terms of integrating
data-driven methods in internal auditing. Three aspects are crucial in this context: 1)
Our approach addresses the current reasons that hinders the establishment of control-
flow-based anomaly detection in internal auditing. 2) In addition to a concept, our paper
presents an exemplary implementation. 3) The suitability of our approach is evaluated
quantitatively using real-life data and qualitatively by two auditors.

A limitation of our approach is that the consideration of process-related data could
only reduce the false-positives to a certain extent, but not entirely. I.e., auditors could
still be held up examining some irrelevant cases. In future work, we want to overcome
this limitation and also test the approach in further real-world auditing scenarios.
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Abstract. In recent years, an application deployment method using
Docker container has attracted attention by researchers. Docker contain-
ers are fast and lightweight, can improve the portability and reproducibil-
ity of applications, and are thus often used with CI/CD and DevOps to
accelerate the release cycle. However, if a Docker image is not updated,
problems such as security risks or a lack of the latest features may occur.
Therefore, in this paper, we propose a method for automatically updat-
ing the base image to the latest version when the image is considered
to be the old version. Our method extracts the information of the base
image from the Dockerfile described by the user, and infers the version
of the base image that is considered to be certainly used. By apply-
ing our method, the user can regularly update the base image. Based
on the evaluation result, we confirmed that our method recommends an
approximately correct version to the users.

Keywords: Dockerfile · Semantic versioning · Automatic update ·
PaaS

1 Introduction

In recent years, an application deployment method using a Docker container1

has been attracting attention from researchers. As the mechanism of a Docker
container, the Docker runs an application using a Docker image built based
on a Dockerfile based on the container-type virtualization. The time required
to start an application is extremely short compared with the server virtualiza-
tion technology. Therefore, it is compatible with methods such as CI/CD and
DevOps that accelerate the release cycle, and the number of cases adopting
the Docker container for the application development has significantly increased
[4,8]. Container-type virtualization became popular once the portability of the
applications was improved using a Docker image and Docker image sharing sys-
tems, e.g., Docker Hub2 [1,10].
1 https://www.docker.com/.
2 https://hub.docker.com/.
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FROM python:3.5 #Specify base image (python:3.5)

# The processes to add to the base image are listed in the following.
WORKDIR /usr/src/app
COPY requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txt
COPY . .

CMD [ "python", "-u", "./main.py" ]

Fig. 1. An example of a Dockerfile.

However, there are some problems when using a Docker container. One such
problem is updating the Docker image [1]. In a Dockerfile, which is the source of
the Docker image, it is necessary to describe the procedure in a defined format
required for building the Docker image. In many cases, version-controlled items
such as base images, dependent libraries, and applications are described in a
Dockerfile. To reduce security risks, users should use the latest version of these
items as much as possible. By regularly updating these items to the latest version,
there are advantages in that a large version upgrade can be avoided, making it is
easy to roll back and investigate the cause of version update failures. However,
when a Docker user manages many different Docker containers, it is extremely
complicated to periodically check for updates of the version-controlled items and
rewrite the versions in the Dockerfiles when they are updated.

Therefore, in this paper, we propose a method for automatically updating
the base image to the latest version when the image is considered to be an old
version. The base image can be described without specifying the detailed version
in a Dockerfile. Thus, our method infers the version of the base image that is
thought to be actually used based on the date of the git commit. When our
method infers that a user is applying the old version, it rewrites the Dockerfile
to the latest version. A new Docker image is built automatically based on the
CI/CD pipeline set by the user when our method rewrites the Dockerfile.

The remainder of this paper is organized as follows. We describe our assump-
tions in Sect. 2. In Sect. 3, we describe our method for automatically updating
the base image. We then evaluate the accuracy of our method in Sect. 4 and
describe previous related studies in Sect. 5. Finally, we provide our concluding
remarks in Sect. 6.

2 Assumptions

In this section, we describe our assumptions.

2.1 Dockerfile and Docker Registry

A Docker image is built from a Dockerfile. Fig. 1 presents an example of a
Dockerfile. In the Dockerfile, the base image is specified by the line starting
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with “FROM.” In the example, the base image is “python:3.5.” A user basically
selects a base image from Docker images published on public registries, e.g.,
Docker Hub, and describes it in a Dockerfile.

Time axis

Digest Tag

A
3
3.7
3.7.0

B
3
3.7

3.7.0

C
3

3.7
3.7.1

D
3
3.8

3.8.0

E
3
3.8
3.8.1

t1 t2 t3

Fig. 2. Relationship between tags and digests.

The Docker images on public registries can be used by anyone. However,
there are private registries that are mainly used to store Docker images within
an organization, and can be accessed only by a limited number of users.

In the Dockerfile, the user can specify Docker images on these public and
private registries. In this study, we assume that users select Docker images on
Docker Hub, where most Docker images are published, as the base images. Our
method can be applied when the users select Docker images in other Docker
registries only if we can obtain a list of tags and digests of the Docker images.

2.2 Tag and Digest

Figure 2 shows the relationship between tags and digests. When a user specifies
“python:3.5,” it indicates the Docker image with tag “3.5” among the Docker
images with the name “python.” In addition, a unique hash value (digest) is
assigned to each Docker image. If two images are the same Docker images, the
digests of these images are equal; otherwise, they are different. Each Docker
image has a few tags. A Docker image may have multiple tags, but a tag is
attached to only one Docker image. Moreover, a tag may be reassigned to another
Docker image, and the tag is untagged from the Docker image that was previously
tagged. That is, the tag and digest have a relationship of 1:N .

A tag assigned to a Docker image often represents the version of the appli-
cation contained in the image. For example, the Docker image “python:3.5.0”
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FROM [--platform=<platform>] <image> [AS <name>]

FROM [--platform=<platform>] <image>[:<tag>] [AS <name>]

FROM [--platform=<platform>] <image>[@<digest>] [AS <name>]

Fig. 3. Notation of FROM in Dockerfile.

indicates that the Docker image contains version 3.5.0 of python. A method
called semantic versioning3 is widely used for assigning version numbers to
applications. In semantic versioning, version numbers are assigned in the form
of X.Y.Z, where X is the major version, Y is the minor version, and Z is the
patch version. Changes in the major version X represent backward-incompatible
changes, changes in the minor version Y represent backward-compatible changes,
and changes in the patch version Z represent backward-compatible bug fixes. Our
method targets Docker images that use the semantic versioning.

Figure 2 indicates that, at t1, the three tags “3,” “3.7,” and “3.7.0” are
simultaneously assigned to the Docker image of Digest A. Subsequently, each
tag is re-assigned to the Docker image of Digest B. If the user downloads this
Docker image at t2 with the tag “3.7,” the Docker image of Digest B will be
downloaded.

There are three types of base image notation when describing a Dockerfile4.
Figure 3 exhibits the three different notations of the base image. Although all of
them start with “FROM” followed by the Docker image name in the same way,
they are divided into three approaches depending on whether the tag or digest is
omitted, the tag is written, or the digest is written. Our analysis of Dockerfiles
published on GitHub5 indicates that, in most cases, users specify the Docker
image by name and tag.

It is also assumed that users do not use development-tagged Docker images
such as α, β, or release candidate versions. This is because such a development
version of the Docker image is mainly released for testing purposes, and is not
used in a regular version update.

2.3 Dockerfile Management

Because Dockerfiles are the source code, they are compatible with version con-
trol systems, e.g., Git6. In particular, when distributing a Docker image of a
developed application or an open source software (OSS), Dockerfiles are often
stored in the same Git repository with the source code. In addition, when a user
creates a new Docker image based on a Docker image published in a public reg-
istry, the user often stores the Dockerfile in a Git repository. This is because the

3 https://semver.org/.
4 https://docs.docker.com/engine/reference/builder/.
5 https://github.com/.
6 https://git-scm.com/.

https://semver.org/
https://docs.docker.com/engine/reference/builder/
https://github.com/
https://git-scm.com/


Latest Image Recommendation Method for Automatic Base Image Update 551

user not only manages the history of the Dockerfiles using the version control
system, but also builds Docker images automatically in cooperation with the CI
tools when updating the source code or Dockerfiles.

In this study, we assume that a user practices CI/CD and that Dockerfiles
are managed on version control systems (Git repositories) such as GitHub or
GitLab7. When a Dockerfile is updated using our method, a new Docker image
is built and tested. The new Docker image is used when it passes a test. There
are two types of Git repositories: public repositories that anyone can access,
and private repositories that only limited users can access. Our method can be
applied regardless of whether the repository where the user places the Dockerfiles
is a public repository or a private repository.

3 Automatic Base Image Updating Method

In this section, we propose a method for automatically updating the base image
to the latest version when the image is considered to be the old version. Our
method infers the version of the base image that is considered to be actually
used based on the date of a git commit, and it rewrites the Dockerfile to the
latest version when the user uses the old version.

3.1 Extraction of Base Image Information

Our method extracts the information of the base image from the Dockerfile by
using regular expressions based on the notations presented in Fig. 3. Here, the
information of the base image consists of three pieces of information: Docker
image name, tag, and digest. In addition, our method acquires the commit date
of the files under the directory containing the Dockerfile to infer the time when
the Docker image was built from the Dockerfile.

It is assumed that the user practices CI/CD and builds Docker images when-
ever the Dockerfile and the source code are updated. Therefore, the Docker
image is built immediately after the last update of the files, i.e., the Dockerfile
and the source code referenced in the Dockerfile. We cannot obtain the updated
dates of the files directly from the Git repository because the Git repository does
not store such information. In addition, the build of the Docker image actually
starts when the commit result is pushed to the Git repository, not when the file
is updated. For these reasons, we use the commit date to infer the version of the
base image.

3.2 Inference of the Version of the Base Image

Because the version of the base image may differ depending on the timing of the
build, we infer which version of the Docker image was actually used as the base
image and check whether the latest Docker image is used. When the user specifies

7 https://about.gitlab.com/.

https://about.gitlab.com/
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last_updated: 2020-02-26T20:56:26Z
name: 3.7.6

architecture: arm
digest: sha256:ddda089e5533e2c...
os: linux
size: 309680093

architecture: amd64
digest: sha256:af8fc40f758a1847...
os: linux
size: 346767745

Fig. 4. Information obtained through Docker Registry HTTP API V2

the base image by the digest, our method should check whether the user specifies
the digest of the latest Docker image. However, because there are very few users
who specify the digest when using the base image, this study excludes such users.

By contrast when the user specifies the base image by the tag, our method
finds the Docker images that have the tag containing the semantic version and
that have the same digest as the image specified by the user. Our method the
checks whether the user has specified the latest tag.

We describe the relationship between the tag and Docker image actually used
by referring to Fig. 2. When the user specifies the tag “3” in the Dockerfile, a
Docker image of “3.7.0” is used when building at t1. However, when the user
builds at t3, a Docker image of “3.8.0” is used. In this way, if we can infer the
build timing, we can infer which semantic version of the Docker image was used.

3.3 Acquisition of the Public Information in Docker Hub

The information presented in Fig. 2 consists of a digest, tag, and update date of
each Docker image. We can acquire such information from the Docker Hub by
using the Docker Registry HTTP API V28. Figure 4 shows an example of some
of the information acquired from the Docker Hub through the Docker Registry
HTTP API V2. In this example, the last modified date of the Docker image
with the tag “3.7.6” is “2020-02-26T20:56:26Z.” In addition, the Docker image
for each CPU architecture is registered, and the digest of each image is a string
starting with “sha256.”

However, because the information acquired from this API does not include
the past information, it is not possible to later acquire the old digests or the
update dates of the Docker images with the same tag but different digests. In
other words, to acquire the old information, as in Fig. 2, it is necessary to
periodically acquire and store the information of this API.

By rewriting the user’s Dockerfile to the latest digest instead of the latest tag,
our method can deal with a case in which the Docker image is updated without
changing the tag. However, when the tag of the image adopts the semantic
versioning, it is difficult to say that specifying the base image by the digest
instead of the tag is the best approach. This is because the semantic version is
meaningful, as described in Sect. 2.2.

8 https://docs.docker.com/registry/spec/api/.

https://docs.docker.com/registry/spec/api/
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Table 1. Examples of digests and tags of “python” image acquired through Docker
Registry HTTP API V2

Therefore, our method updates the tag only when the version used in the
tag is updated. In the future, we will consider an automatic update method for
a case in which the Docker image is updated without changing the tag.

Table 1 presents an example of digests and tags of a “python” image acquired
using Docker Registry HTTP API V2. The digests are omitted because they are
long, and the tags are omitted because there are too many tags. There are several
types of tags: only the semantic version, added OS type (e.g. “alpine,” “buster,”
and “stretch”), only the OS type, containing “a” for the α version, “rc” for
the release candidate version, ‘slim” for Docker images that are lightened by
removing unnecessary packages for Python, and “latest” for the latest version.

3.4 Tag Disassembly

In Table 1, the digest of “latest” tag matches the digest of the tags “buster,”
“3.8.2,” and “3.8.2-buster.” This indicates that they point to the same Docker
image. Therefore, we can infer that the OS of the Docker image of the tag “latest”
is “buster,” the Python version of which is “3.8.2.” In this way, by searching for
the Docker images with the same digest, we can infer the semantic version when
the tag of the Docker image does not include the semantic version.

Thus, we decompose the tag into two parts: “semantic version” and “addi-
tional information such as OS.” In this study, we refer to the former as version
and the latter as type. By comparing the versions, we can determine whether a
newer version of the Docker image has been published.

Table 2 shows an example of a disassembly of the tags in Table 1 into the
version and type. Some versions are the semantic version, such as “3.8.2,” but
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Table 2. Disassembly of tags into versions and types.

others are not, such as “rc” and “3.9.0a4.” The types include the OS name such
as “alpine,” the OS version such as “buster” and “alpine3.11,” the property of
the Docker image such as “slim,” their combination, and a special meaning such
as “latest.” The “-” part of the version or type indicates that the version or type
is not included in the tag.

The user typically updates to the same type as the base image. For example,
a user applying a base image of type “alpine” selects a newer version of the
Docker image of the same type “alpine” when updating the version of the base
image. This is because, if the OS of the Docker image selected for the base
image is different from that of the image used, the packages contained in the
base image and the commands are different, and the complete Dockerfile needs
to be modified. By contrast, to reduce the weight of the Docker image, the user
who uses the Docker image of the type “-” as the base image may change to use
the Docker image of the type “slim” or “alpine” as the base image. In this study,
we consider only the version of the base image, and do not consider changes the
type of base image.

3.5 Inference of the Version and Type

The Docker image created by the user depends on the timing when the Dockerfile
is built. Therefore, we infer the version and type of the Docker image actually
used by the user. We use the name of the base image and the information of
the tag acquired in Sect. 3.1 as well as the digest and update date of each tag
acquired in Sect. 3.3.

We define the last commit date as tc, the used tag as tagu, the time when
we started to acquire the information of Docker Hub as tstart, the current time
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as tnow, the information of Docker Hub acquired at time ti as DHti and the set
of times when we start to acquire the information of Docker Hub to the current
time as T = {ti | tstart ≤ ti ≤ tnow}.

First, to determine when to use the information of the Docker Hub, we use
the set Ta = {t ∈ T | ti < tc} to find ta according to the following equation:

ta =

⎧
⎪⎨

⎪⎩

max(Ta) (|Ta| > 0),
tstart (|Ta| = 0, |T | > 0),
tnow (|Ta| = 0, |T | = 0).

(1)

If DHti(ti < tc) exists, we can use DHti . If it does not exist, we use the
oldest information DHstart. If the past information has yet to be obtained, we
use the information of the current time.

Next, we infer the semantic version of the Docker image actually used by
using DHta acquired at time ta. We define the digest contained in DHa as
da,j(0 ≤ j ≤ ndj), the tag contained in DHta as taga,j(0 ≤ j ≤ ndj), and
a mapping function FT : taga,j → da,j as da,j = FT (taga,j). In addition, we
assume that taga,j can be decomposed into the version vera,j and type typa,j ,
and we define a mapping function FV : taga,j → vera,j as vera,j = FV (taga,j)
and a mapping function FP : taga,j → typa,j as typa,j = FP (taga,j).

In the case of FS(tagu) �= 0, we infer the version and type of the Docker
image actually used as follows. Here, we define a mapping function of the length
of the string as len, the version of the inferred result as vereu, and the type of
such result as typeu.

1. Calculate digest du = FD(tagu) of tagu.
2. Calculate the set TUa,u = {taga,j | du = FD(taga,j)} of taga,j , where du =

FD(taga,j).
3. For taga,j ∈ TUa,u, calculate taga,m ∈ TUa,u where len(FV (taga,m)) =

max(len(FV (taga,j))) and len(FP (taga,m)) = max(len(FP (taga,j))).
4. Calculate vereu = FV (taga,j) and typeuFP (taga,j)).

We assume that Table 2 represents DHta and provide an example for the
case in which tagu is the “latest.” In Table 2, the digest of the Docker image
with the tag “latest” is “sha256:d24b098d2b...” The tags for the Docker images
with the digest of “sha256:d24b098d2b...” are “latest,” “buster,” “3.8.2-buster,”
and “3.8.2.” Among them, we select the string with the longest notation, that
is, the one with the finest granularity of both versions and types, where both
the version and type exist. Thus, we select “3.8.2-buster.” As a result, we infer
that vereu was “3.8.2” and typeu was “buster.”

3.6 Extracting the Latest Version

Because we assume that the user does not change the type of Docker image when
changing the version of the base image, we first enumerate the Docker images
from DHtnow

that have the same type inferred in Sect. 3.5, and extract the
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most recent version among them. Here, we define a function FS that indicates
whether vernow,j is the semantic version as follows:

FS(vera,j) =

{
0 (is not semantic version),
1 (is semantic version).

(2)

The procedure is shown below.

1. Among the tags tagnow,j contained in DHtnow
, we calclate the set TUnow,eu =

{tagnow,j | FP (tagnow,j) = typeu}, where FP (tagnow,j) = typeu of tagnow,j .
2. Calculate the set TUSnow,eu =

{
tagnow,j | tagnow,j ∈ TUnow,eu,

FS(FV (tagnow,j)) = 1
}

of tags whose version is the semantic version among
TUnow,eu.

3. Calculate the tag tagnow,latest ∈ TUSnow,eu with the semantic version being
the highest among TUSnow,eu.

Owing to the nature of the semantic version, it is possible to determine
which version is higher through the following comparison. The latest version
in this study refers to the uppermost semantic version, and the one with a
lower semantic version but a newer update date is not considered the latest
version. The procedure for comparing the semantic version sv1 = X1.Y1.Z1 with
sv2 = X2.Y2.Z2 is as follows. Here, if sv1 has a semantic version higher than sv2,
we represent as sv1 > sv2.

1. If X1 > X2, sv1 > sv2.
2. If X1 < X2, sv1 < sv2.
3. If X1 = X2,

(a) If Y1 > Y2, sv1 > sv2.
(b) If Y1 < Y2, sv1 < sv2.
(c) If Y1 = Y2,

i. If Z1 > Z2, sv1 > sv2.
ii. If Z1 = Z2, sv1 = sv2.
iii. If Z1 < Z2, sv1 < sv2.

We assume that Table 2 represents DHtnow
, and provide an example for the

case in which vereu is “3.8.2” and typeu is “buster.” In Table 2, the tags of the
Docker images with the type “buster” are “buster,” “3.9.0a4-buster,” “3.9-rc-
buster,” and “3.8.2-buster.” Among these tags, only the tag whose version exists
and is the semantic version is a “3.8.2-buster.” Because the version portion of this
tag is “3.8.2” and corresponds with vereu, we assume that the user is currently
using the latest version in this example.

By contrast, if FV (tagnow,latest) > vereu, we recommend tagnow,latest to the
user.
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3.7 Automatic Tag Update

In our method, if there are tags with a semantic version higher than the semantic
version inferred as described in Sect. 3.6, the tag with the highest semantic
version is recommended to the user. There are several possible methods for this
as follows.

– With our method the user is notified by e-mail or other means, and the user
modifies the Dockerfile.

– With our method the Dockerfile is automatically rewritten into the Git repos-
itory and committed, and the Git repository sends a commit notification to
the user based on its function.

We assume that the users themselves select one of the methods according
to their preferences. In this section, we describe a method used to update the
Dockerfile automatically in the latter case.

When managing the source code and Dockerfile in the Git repository, a
branch concept is applied. The branch is used from a commit at a certain point
and manages multiple changes in a parallel manner. There are several patterns
for managing such branches. For example, users prepare two branches, a master
branch and a dev branch, and when users want to make a change, they commit
the change to the dev branch and then merge it into the master branch. As
described in this example, it is common for users to not directly commit the
changes to the master branch. This is because the users want to prevent bugs
caused by unverified or unintentional changes in the master branch.

Therefore, we ask the user to select the target branch of our method and
apply our approach to the target branch. Our method creates a further branch
from the target branch, automatically updates the Dockerfile on the created
branch to the latest version of the tag, and commits it. The user receives a
commit notification from the Git repository and merges it into the target branch
if there are no problems with the change. If the user wants to fully automate the
updates, the user should prepare automated tests in advance. When the changed
Dockerfile passes the tests, the branch with the changed Dockerfile is merged to
the target branch automatically, and the Docker image is created based on the
latest base image.

4 Evaluation

In this section, we evaluate whether our method can correctly recommend the lat-
est version. In this evaluation, we describe the results from applying our method
to a Dockerfile created by several different users.

4.1 Evaluation Environment

We prepared a system for implementing our method and asked seven users
who maintain Dockerfiles in the Git repository to apply the developed system.
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Table 3. Tags recommended by our method

Case Base image

name

Tag by user Recommended tag User action Latest

version

Reasonable

recommend

1 python 3.6 3.8.1-buster Not changed Yes Yes

2 python 3-alpine 3.8.1-alpine3.11 Changed Yes Yes

3 maven 3.6.3-jdk-8 3.6.3-jdk-8 – Yes Yes

4 python 3-alpine 3.8.1-alpine3.11 Not changed Yes Yes

5 python 3.7-slim 3.8.1-slim-buster Not changed Yes Yes

6 node latest 13.8.0-stretch Not changed Yes Yes

7 maven 3.5.2-jdk-8-alpine 3.6.1-jdk-8-alpine Not changed Yes Yes

8 node 8-alpine 13.8.0-alpine3.11 Not changed Yes No

9 nginx alpine – – – –

10 jupyter/scipy-

notebook

31b807ec9e83 – – – –

In this study, we call this system a “Dockerfile automatic update system.” We
provided the users with an outline of the system to update the base image of the
Dockerfiles automatically, excluding performance of our method, such as what
type of Dockerfiles or base images can be updated automatically.

During this evaluation, the public information of the Docker Hub is stored in
the database once allowing an investigation into which time information of the
Docker Hub was used to recommend the tag. We implemented the tag recom-
mendation by using the data in the database as the latest information, rather
than the past information.

We acquire the public information of Docker Hub once a day, and the Docker
image name acquired with the information is “python,” “golang,” “node,”
“ruby,” “openjdk,” and “maven,” which are thought to be used by many users
in our company.

We asked the users to freely register the repository containing the Dockerfile
in the Dockerfile automatic update system, and gave permission to the Docker-
file automatic update system to write and read the Dockerfile. The Dockerfile
automatic update system accesses the repository registered by the user at any
time once per week, reads the Dockerfile, and checks whether the base image
used is the latest according to our method. If it is not the latest, it will be
updated automatically. When the system reads the Dockerfile, it refers to the
master branch of the registered repository. The system creates a new branch
from the master branch, commits the automatically updated Dockerfile to the
created branch, and pushes it to the repository.

4.2 Evaluation Results

Table 3 provides the Docker image name and tag specified by the user and the
tag recommended by our method. There are cases in which multiple Dockerfiles
are registered in one repository, and there are 10 items. Each item in the table
includes the name of the Docker image, the tags assigned by the user, the tags
recommended by our method, whether the user has modified the Dockerfile based
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on the results of the recommendation, whether our method has recommended
the latest version of the tag, and whether we consider the recommendation to
be valid.

For cases 9 and 10, no recommendation results were obtained. This is because
the evaluation was implemented such that the latest tags can be recommended
for only the six types of Docker images for which the Docker Hub information
is acquired in advance. In addition, the base image in case 10 is not managed
by the semantic versioning, and thus our method cannot be applied as is. It is
therefore necessary to improve our method to update the base images that are
not managed by the semantic versioning.

In all cases except 9 and 10, our method can correctly recommend the latest
version of the tag. Therefore, the results of the recommendation of our method
itself are considered to have no problems. However, in practice, the number
of users who have adopted the updates of the Dockerfile using our method is
limited, and thus we believe that a more detailed analysis is needed.

In case 3, because the user is already using the latest Docker image, the tag
assigned by the user matches the tag recommended by our method. Therefore,
the recommendation result of our method is considered to be reasonable. In case
2, we can confirm that the user adopted the tag of the recommendation result
and updated the Dockerfile. Therefore, the result is considered to be reasonable.

In Cases 1, 4, 5, 6, and 7, it was found that the user did not adopt the
tag recommended by our method and did not update the Dockerfile. When we
interviewed the users, the following comments were obtained: “I did not realize
that a branch was being created because I did not set it to be notified by e-mail,”
and “I did not think it was a high-priority fix, so I left it as it was.” However,
the tag recommended by our method is correctly the latest version, and it is
considered that the recommendation result itself was valid. In the future, we plan
to consider not only a method for recommending the latest version of the tag,
but also a method for encouraging an update only when there is a security risk or
a fatal bug, a method for changing the recommended tags and the recommended
timing based on the user’s policy, and a method for quantifying the necessity of
an update.

In case 8, the tag recommended by our method was the latest version; how-
ever, the user commented that it was difficult to incorporate this change as is
because it was a significant upgrade from version 8 to 13. It will therefore be
necessary to consider how to deal with such a large increase in the major versions
in the future.

5 Related Studies

In this section, we describe previous studies related to Dockerfile and its version
control.

Studies related to Dockerfile have dealt with its updates [1,3,7], the Docker
image quality [1,10], faster builds of Docker images [4,10], and Docker image
retrieval [9].



560 S. Kitajima and A. Sekiguchi

Schermann et al. structured and collected information regarding the state and
transition of the Dockerfile. In addition, Hassan et al. proposed a method called
RUDSEA, which analyzes the source code of an application and a Dockerfile
managed in the same Git repository to create a Docker image of the application,
and recommends updates to the Dockerfile when the source code is changed,
based on the relationship between variables in the source code and variables in
the Dockerfile [3]. Cito et al. examined Dockerfiles on GitHub and reported that
the average Dockerfile update frequency was low, with 62.27% of Dockerfiles
having zero or one update per year from the first commit [1]. We believe that
the results of these studies suggest that the Dockerfile updates that are originally
required may not be applied correctly for particular reasons.

Studies dealing with the quality of Dockerfile are close to our aim. Cito et
al. investigated the Dockerfiles on GitHub and actually built Dockerfiles for 560
projects. The authors found that 34% of them failed to be properly built with
28.6% not fixing the version of the base images or dependent components [1].
This result reveals that the management version of the base images and the
dependent components in the Dockerfiles are extremely difficult. We propose a
method for updating the Dockerfile automatically, focusing on a case in which
the version of the base image is managed through semantic versioning.

Zhang et al. investigated the relationship between the quality of Dockerfile
and the build time of the Docker image, and concluded that the fewer the layers
and the smaller the layer size of the Docker image, the less impact regarding the
quality problem and the shorter the build time [10]. In addition, Huang et al.
proposed a method called FastBuild to speed up the build of the Docker images
by caching externally downloaded files and using the cache transparently [4].
We believe that it is necessary to establish a method to not only automatically
update the base image but also automatically convert the image into to a lighter
type.

To solve the problem in which it is difficult to select an appropriate Docker
image from a Docker repository, Yin et al. proposed a method called STAR that
recommends tags for a search based on a Dockerfile [9]. The target is the tag
used as metadata in the search, which differs from the tag added to the Docker
image we are targeting.

For studies dealing with version updates other than Docker images, we
describe research dealing with package managers. Raemaekers et al. surveyed
packages distributed in the Maven repository to determine whether changes in
the major versions of packages managed by semantic versioning contained sig-
nificant incompatible changes, and found that 35.8% contained at least one sig-
nificant change [6]. Dietrich et al. surveyed 17 package managers and concluded
that, although a large number of packages have adopted semantic versioning, it
is doubtful that all versioning will move to this approach [2]. The results of these
studies indicate that semantic versioning itself has not yet penetrated, and it is
necessary to consider a method for updating Docker images and libraries that
do not adopt the semantic versioning.
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Macho et al. proposed a method called BUILDMEDIC, which automati-
cally repairs dependency errors in Maven built files. This method uses the ver-
sion dependency definitions of the Maven repository to automatically remove
unwanted packages and modify the versions of the packages used [5]. In the
future, we plan to work on an automatic updating method of dependent pack-
ages included in the Docker images.

6 Conclusion

In this paper, we proposed a method for extracting the information of the base
image being used from the Dockerfile and to update it automatically to the
latest version of the base image. From the results obtained from applying our
method to the Dockerfiles used by multiple users, we confirmed that our method
recommends approximately correct tags.

Future challenges include the following items.

– Proposal of a method for upgrading the OS of the base image.
– How to handle the updates of the Docker image with the same tags.
– Proposal of a method to recommend tags according to the user policy.
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Abstract. Retrieval of knowledge from short texts has attracted a lot
of attention these days as topic discovery from them can unearth hid-
den information. In many applications, such topics are needed to be
learned on the fly for streaming short texts. In this work we propose an
online topic discovery algorithm (OTDA) for short texts. It overcomes
the inability of short texts to capture word co-occurrence information
by adopting word-context semantic correlation through the skip-gram
view of the corpus, following the approach of semantics-assisted NMF
(SeaNMF) model due to Shi et al. This OTDA works with one data
point or one chunk of data points at a time instead of keeping the entire
data in the memory, and also admits the property of memorylessness.
We consider a couple of public data sets and an internal data set to
conduct experiments using one-pass and multi-pass iterations of the pro-
posed algorithm. The results show encouraging performance of OTDA
in terms of average Frobenius loss, Topic Coherence, Normalized Mutual
Information (NMI), and emerging topic detection.

Keywords: Data mining · Online topic modeling · Short texts ·
Non-negative matrix factorization (NMF) · Average frobenius loss ·
Topic Coherence · NMI · Emerging topic

1 Introduction

Lot of applications involving short texts need to possess the ability to learn
topics on the fly as new data points arrive in the context of an evolving system.
For example, consider the case when an organization tries to address the issue
of understanding customer feedback (which is typically short text) using topic
modeling. With the constant churning of feedback from customers it is not very
prudent to run the topic modeling algorithm on complete data on every update
(whenever a new feedback is collected). Also as an organization introduces new
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services and functionalities on the existing issues in their products/services, the
nature of user supplied feedback texts changes over time. To capture the thematic
content of evolving feedback materials an online topic modeling algorithm should
be in place that can give more importance to the current feedback than the
older feedback texts. Motivated by this, we propose an online topic discovery
algorithm (OTDA) for streaming short texts which incorporates word-context
semantic correlation learnt from the skip-gram view of the corpus much like the
semantics-assisted NMF (SeaNMF) model [19], with the adaptivity of forgetting
mechanism [5]. The SeaNMF model is solved using a block co-ordinate descent
(BCD) algorithm. The well known methods for solving BCD need to hold the
entire data matrix in the memory throughout the process of computation which
can be prohibitive in case of large amount of data sets. Although various online
NMF algorithms like the algorithm [6], have been proposed that can detect
latent factors and track their evolution with new data arrival, none of them
are suitable to be applied to short texts. To address this issue we incorporate a
variant of the online NMF algorithm of [21] in OTDA, grounded in the framework
of SeaNMF [19], to discover topics from very large scale/streaming short texts.

The OTDA algorithm works with one data point or one chunk of data points
instead of storing the whole data in the memory. Further it updates the topic
representation in an underlying space as well as context representation in terms
of words on arrival of new data stream, by employing Projected Gradient Descent
(PGD) algorithm in both the steps. Admission of context information improves
the quality of incremental topic modeling as it can capture the semantics of
the short text corpus based on word-document and word-context correlations,
thus overcoming the problem of lacking word co-occurrence in short texts. To
highlight the adaptivity of our learning algorithm we introduce a decay factor
that exponentially reduces the contribution of history data, thereby imposing a
forgetting (memorylessness) mechanism on the topic discovery process [5]. We
design experiments to investigate the effect of the forgetting mechanism, and
the results show that one needs to forget to adapt, that is, in absence of decay
parameters the quality of generated topics suffers (NMI values go down) as new
data points arrive, and richer topics are generated for streaming data when decay
factors are present.

Contribution of This Work. This work has contributed to the body of online
topic discovery in several ways. The topic learning incorporates word-context
semantic correlation from SeaNMF model, however, it uses the framework of
distributed clustering algorithm [22] without an increase in computational over-
head and memory requirements. This algorithm has noticeable speed-up as the
topic computation is done locally via a reduction in the memory footprint. Also
like other online applications, we allow memorylessness with our method by
introducing decay factors in the computation which causes the past history to
be forgotten at exponential rate and attaches more importance to the current
set of data. Extensive experimentation on real-life data sets produce interesting
results on metrics, such as average Frobenius loss, Topic Coherence, NMI and
emergent topic detection.
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Organization: The paper is organized as follows. In the next section (Sub-
sect. 1.1) we discuss the current literature related to this work. In Sect. 2 we
review background material on NMF concepts and related matters. We propose
our online topic discovery algorithm in Sect. 3. We discuss the data sets and the
metrics used for experimentation in Sect. 4 and 5 respectively. The results of the
experiments are furnished in Sect. 6. Finally we conclude in Sect. 7.

1.1 Related Work

Two groups of topic models are frequently employed to automatically extract
topical contents from the documents, generative probabilistic models such as
PLSA [10], LDA [3], and non-negative matrix factorization (NMF) [24]. They
normally work well for lengthy documents. However these techniques do not pro-
duce meaningful results for short texts as term document matrix is very sparse
which produces scarce word co-occurrence information and hence, generates poor
quality topics [7,19]. There are lot of methods proposed in recent times to tackle
this problem. These include aggregating short texts into pseudo-documents, and
extracting cross document co-occurrence [16,27] using internal semantic relation-
ship between words. While a pseudo-document generated in the first approach
may contain many irrelevant short texts, noise and bias can creep in due to
adoption of Wikipedia-centric notions of semantics in the second approach. To
alleviate these problems, Shi et al. have proposed a novel semantics-assisted
NMF (SeaNMF) model for short texts which incorporates word-context seman-
tic correlations learned from the skip-gram view of the corpus [19]. Rest of the
discussion on relevant prior art is divided into two parts, online topic discovery
and online NMF.

Online Topic Discovery. In one of the earlier work on online topic modeling
based on LDA Blei et al. [2] develop a family of probabilistic time series models
in order to analyze the time evolution of topics in documents. Another LDA-
based model is proposed in [23] to model a topic as a continuous distribution
over timestamps and the mixture distribution as a function of both word co-
occurrences and the document’s timestamp. AlSumait et al. [1] introduce a topic
modeling framework based on the LDA model to make it work in an online
fashion such that it incrementally builds an up-to-date model (mixture of topics
per document and mixture of words per topic) as a set of documents appear. The
authors [11] propose another online topic model for sequentially analyzing time
evolution of topic along multi-scales in a large collection of documents. Some
online topic models have been also proposed for short texts like tweet data, such
as [18] wherein the authors model the generation process of tweets by estimating
the ratio between topic words and general words for each user.

Online NMF. We do not come across any work which uses NMF to present
online topic model, hence we discuss few pieces of works related to online NMF.
Cao et al. have proposed an online NMF which finds two factor matrices to
approximate the whole data matrix [6]. Although it performs well in practice
it cannot be applied to large-scale or streaming data sets due to the memory
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limitations. Bucak and Gusel have proposed an incremental NMF [5] in which the
term topic matrix at (t+1)th step is updated on the arrival of (k +1)th sample.
It has been seen that this works well in practice but, it is time consuming as the
updation of rules have slow convergence. Zhou et al. has proposed another variant
of incremental NMF with volume constraint [26]. In [8] Guan and Tao propose
an efficient online NMF algorithm that learns NMF in an incremental fashion
using robust stochastic approximation. In [21] an online NMF algorithm has been
proposed for efficient document clustering for very large and streaming data sets.
The proposed algorithm in this paper is an improvement of this algorithm in the
sense that we consider word context correlation in the model and incorporate
decay factors that cause the past history to be forgotten at an exponential rate.

2 Basic NMF Model for Topic Discovery

In this section we discuss basic NMF method, its application to topic modeling
and the recently proposed SeaNMF method [19] for short texts.

Notation: Let R denote the set of real numbers (or reals), R+ the set of non-
negative real numbers and N the set of natural numbers. xxx ∈ R

n denotes an n-
dimensional vector of reals. 111K denotes a row vector of size 1 whose all elements
are 1. Also ‖xxx‖1 and ‖xxx‖2 denote the �1 and �2 norms of vector xxx respectively.
We use the notation X ∈ R

p×q to denote a matrix of real numbers having p
and q number of rows and columns respectively (or having dimension p × q).
We denote the elements of a matrix X ∈ R

p×q
+ as [xij ]{1≤i≤p,1≤j≤q}. We use XXXi·

and XXX ·j to denote the ith row vector and the jth column vector of matrix X. In
some cases the column vector XXX ·j will be also denoted as xxxj as before. Further
‖X‖2F denotes the sum of the squared elements in the matrix X (also called the
Frobenius norm). The zero matrix 000 has all zero entries with its dimension to be
read off from its context.

Basic NMF Model. The problem of Non-Negative Matrix Factorization
(NMF) deals with factoring a given matrix into two non-negative matri-
ces [13,24]. Given an input matrix X ∈ R

m×n
+ , an integer K � min(m,n),

NMF tries to solve a lower-rank approximation, X ≈ UVT . where U ∈ R
m×K
+

and V ∈ R
n×K
+ are factor matrices. This is done by considering the optimiza-

tion problem that minimizes the following objective function/loss function (also
called the error of approximation or the Frobenius loss):

min L(U,V)
(

=
1
2

∥∥X − UVT
∥∥2

F

)
, s.t.,U ≥ 0,V ≥ 0 (1)

Popular algorithms for solving the NMF problem with Frobenius loss as given
by Eq. 1 are Multiplicative Update Rule (MUA) [14], Blockwise Co-ordinate
Descent (BCD) [12], Projected Gradient Method (PGD) [15] to name a few. We
shall mainly adopt PGD [15] which follows alternative minimization principle.

Topic Discovery Using NMF. In topic modeling, X ∈ R
m×n
+ is called the

term-document matrix where we assume a given corpus with n documents and



Online Topic Modeling for Short Texts 567

m terms. XXX ·l ∈ R
l
+ represents the l-th column vector of X, which corresponds

to the bag-of-words representation of document l with respect to m terms, pos-
sibly using TF*IDF weight after some pre-processing, and column-wise �2 nor-
malization. For solving the minimization problem in Eq. 1 one assumes a pre-
determined number of topics K.

Topic Modeling for Short Texts Using NMF. As short texts are sparse
and consists of only a few terms many unrelated documents may lead to biased
relationship between terms resulting in poor clustering (and topic extraction).
Moreover, most of the algorithms for solving NMF fail to appropriately discover
the relationship between terms and their contexts. To overcome this problem
the authors in [19] propose a novel semantics-assisted NMF (SeaNMF) model to
learn topics from short texts.

The SeaNMF approach is based on the idea that terms are dependent on
contexts as they appear around them. Towards this the authors define term-
context correlation matrix R [19] using Skip-gram view of the corpus in the
presence of an M -dimensional context vector ccc:

rij = max
[
log

(
#(ti, cj)

#(ti) · p(cj)

)
− log κ, 0

]
, 1 ≤ i ≤ m, 1 ≤ j ≤ M (2)

We use V to denote the the overall vocabulary of terms and contexts. The nota-
tion #(ti, ci) denotes the number of times ti appears with context ci in text
corpora. Further #(ti) =

∑
cj∈V

#(ti, cj) and #(cj) =
∑

ti∈V
#(ti, cj) represent

the number of times ti and cj occur in all possible term-context pairs respec-
tively, and κ is the number of negative samples. Finally, p(cj) is a unigram
distribution for sampling a context cj defined as p(cj) = #(cj)∑

cj∈V
#(cj)

. There are

a few techniques to specify the sliding window for a context [19]. For example,
each document can be selected as a window of context [19] for a term in short
text corpus or it can be a long pseudo-text obtained by aggregating short texts
belonging to a cluster. A fixed size window of neighboring words can act as a
context for a word, and so on.

Finally, SeaNMF proceeds in two step. In the first step the term-context cor-
relation matrix R is factored into two matrices, term-topic matrix U ∈ R+

m×K

and another newly introduced matrix context topic matrix Uc ∈ R+
M×K . In

the second step the term document matrix X ∈ R
m×n
+ is factored along with

the term-topic matrix to obtain the document-topic matrix V ∈ R
n×K
+ (some

sparsity constraint may be imposed on X in the process). For details the reader
is advised to consult [19].

The computational complexity of SeaNMF for short texts is same as the
computational complexity of standard NMF [12] using MUA or BCD method and
is equal to O(nmK) for single iteration and O(TnmK) for T iterations (assuming
K � min(n,m)). However, as R and X are sparse matrices the authors conclude
that the complexity of the SeaNMF model using BCD is O(zK) (O(TzK)) for
single (T ) iteration(s), where z = max (zR, zX), and zR and zX are the non-
zero elements in the matrices R and X respectively, max (zR, zX) � mn and
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K � min(m,n), which is less expensive than the standard NMF. Further it
is required to hold the matrices X and R at a storage cost of O(mn) in the
SeaNMF model.

3 Proposed Online Topic Modeling for Short Texts

We propose an online Topic Discovery (OTDA) algorithm that updates the
matrices U,Uc and V by adding the effects of subsequent samples in an incre-
mental fashion.

3.1 An Incremental Form of NMF

Note the loss function in Eq. 1 can be decomposed as [12]:

L(U,V) =
∥∥X − UVT

∥∥2

F
=

n∑
j=1

∥∥∥X·j − UV·jT
∥∥∥2

F
=

n∑
j=1

‖xxxj − Uvvvj‖2F (3)

Consider the problem of generating K topics from the data set. The term
topic matrix will look like U = [uuu1 · · ·uuuK ] which represents each topic as the
weighted combination of terms. Further vvvj = [gj1 · · · gjK ]T are the reconstruction
weights of xxxj from these representatives.

When U is fixed, the minimum value of L(U,V) is reached if and only if
the cost function L(U, vvvj) = ‖xxxj − Uvvvj‖2F is minimized for all j, 1 ≤ j ≤ n.
Thus, one solves independent Non-negative Least Squares (NNLS) problems of
the form,

min
vvvj≥0

‖xxxj − Uvvvj‖2F , j = 1, 2 . . . n (4)

and aggregate the solution as V = [vvv1 · · ·vvvn].

3.2 Computing Document Representations

In this step we let the topic representation U to be fixed. We solve the optimiza-
tion problem in Eq. 5 to compute vvv(t):

min
1
2

(∥∥∥xxx(t) − Uvvv(t)
∥∥∥2

F
+ λ

∥∥∥vvv(t)
∥∥∥2

1

)
s.t., vvv(t) ≥ 0,U is given (5)

where λ > 0 is a constant. We also impose the sparsity on vvv(t) by adding a
suitable �1 norm on it. The NNLS problem given by Eq. 5 is the so-called Lasso
problem [20] which can be solved using Projected Gradient (PGD) [15] with the
gradient computed as: ∂L(t)

∂vvv(t) = −(xxx(t))
T
U + (Uvvv(t))

T
U + λ111T

K .
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3.3 Solving for Context Representation

In this step we try to compute the context representation of term in an incremen-
tal fashion. We assume that the M -dimensional context vector ccc(t) is available
at time instant t, this can be invariant with time or can be learned incrementally
as new samples arrive, e.g., it can be learned online as a cluster of data points
for streaming data [25]. Thus at time point t we can compute the term context
correlation matrix R(t) with the aid of current context information ccc(t) using
Eq. 2.

Now we solve for the underlying representation of context in the form of
context-topic matrix U(t)

c by minimizing the following cost function in Eq. 6
keeping U as constant. Also below, we impose the condition that the computed
U(t)

c will be dense by using a �2-regularization term for it, where β > 0 is a con-
stant. Again this NNLS can be solved using a standard optimization algorithm.

1
2

∥∥∥R(t) − U(U(t)
c )T

∥∥∥2

F
+ β

∥∥∥U(t)
c

∥∥∥2

F
s.t., U(t)

c ≥ 0, U is given (6)

3.4 Updating Topic Representations

The topic represented in the form of term-topic matrix U is updated in this
step. At time instant t, as xxx(t) arrives, OTDA first solves for vvv(t) and U(t)

c using
U(t−1), and then updates U by minimizing the following loss function:

L(t)(U(t)) =

[
γ0
2

t∑
s=1

μ
∥∥∥R(s) − U(t)U(s)

c

T
∥∥∥2

F
+

t∑
s=1

γs

2

∥∥∥xxx(s) − U(t)vvv(s)
∥∥∥2

F

]
(7)

under the constraints U(t) ≥ 0. Further vvv(s) is obtained as a solution of the
minimization problem given in Eq. 5, and U(s)

c is found by solving Eq. 6.
We introduce decay factors [5] to ensure that the effects of new samples on

the representation is higher, while that of old ones wane (memorylessness). That
is, γ0, γs (s = 1, 2 . . . , t) are the decay factors which cause the past history to be
forgotten at an exponential rate. We define,

γj = γ0
(t−2r), j ≤ 2r

= γ0
(t−j)γf , 2r < j ≤ t

We assume γ0 < 1(γ0 ≈ 0.5), γf < 1(γf ≈ 0.9) and r = 1.
The gradient of L(t) wrt U(t) is given by

∇U(t)

(
L(t)(U(t))

)
= −γ0

t∑
s=1

μ[RRR(s)U(s)
c − U(t)U(s)

c

T
U(s)

c ]

−
t∑

s=1

[γs(xxx(s)vvv(s)
T − U(t)vvv(s)vvv(s)

T
)] (8)
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One can update U(t) using PGD assuming an initial value of U(t)
0 . However, when

we implement the first-order PGD we do not get quality results as expected,
because there are some known drawbacks for the first-order PGD, for instance,
large step size in the update leads to slow convergence etc. Hence we use second
order PGD for which we compute the Hessian matrix of L(t) wrt U(t),

HU(t)

(
L(t)(U(t))

)
= 2

t∑
s=1

[
μ · γ0 · U(s)

c

T
U(s)

c + γsvvv
(s)vvv(s)

T
]

(9)

Finally we adopt the following update rule for the second order PGD that
can guarantee faster convergence without using any parameter:

U(t)
k+1 = P

[
U(t)

k − ∇U(t)

(
L(t)(U(t)

k )
)

H−1
U(t)

(
L(t)(U(t)

k )
)]

(10)

where H−1 is the inverse of the Hessian matrix H. As the computation of H−1

matrix is time consuming we adopt Conjugate Gradient to calculate it. The
second-order PGD has been shown in Algorithm 1. For notational convenience
we introduce the following first-order and second-order terms respectively.

W(t) =
t∑

s=1

[
γ0 · μ · RRR(s)U(s)

c + γs · xxx(s)vvv(s)
T
]

(11)

H(t) =
t∑

s=1

[
γ0 · μ · U(s)

c

T
U(s)

c + γs · vvv(s)vvv(s)T )
]

(12)

Algorithm 1: 2nd order PGD for updating U(t)

Input : Number of topics K, Initial term-topic matrix U
(t)
0 , and

document-topic matrix V(t), and other terms W(t) and H(t)

/* Using Conjugate Gradient Descent (CGD); k is the index of

iterations and Γ is no. of iterations */

for k = 1, . . . , Γ do

Compute the gradient Δk = W(t) − U
(t)
k−1H

(t) † ;

Solve Q such that QH(t) = Δk ;

U
(t)
k = max

(
000,Q + U

(t)
k−1

)

end

3.5 Online Topic Discovery

Using second-order PGD we can design an online algorithm for topic discovery
for short texts. This algorithm procedure can be performed using one pass and
multiple passes. The complete one-pass algorithm is mentioned in Algorithm 2.
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This algorithm follows mini-batch implementation [4] which is at the con-
fluence of Stochastic Gradient Descent and the traditional batch descent algo-
rithms. As this algorithm imports p data points at each step, the OTDA algo-
rithm can be expected to converge faster. Consequently the update rules for
W(t) and H(t) are given by,

W(t) = W(t−1) +
p∑

i=1

[
γ0 · μ · RRR(t,i)U(t,i)

c + γt · xxx(t,i)vvv(t,i)
T
]

(13)

H(t) = H(t−1) +
p∑

i=1

[
γ0 · μ · U(t,i)

c

T
U(t,i)

c + γt · vvv(t,i)vvv(t,i)T )
]

(14)

Notice that we do not recompute W(t) and H(t) afresh each time. Rather
we update W(t) and H(t) by using Eqs. 13 and 14 respectively. Although only
a single pass over the data seems to be feasible in data stream applications,
multiple passes can be run in many applications. In the multi-pass OTDA, the
document topic assignment matrix V can be updated using term-topic matrix
U. Moreover, the first and second order information W and H in the previous
pass can be updated and utilized. When multiple passes are feasible one can
expect to obtain more accurate results.

Algorithm 2: One-pass OTDA in the mini-batch model (n is the total no
of data points
Input : Term-document matrix X, Initial term-topic matrix U(0), No

of data points at each step = p, No of steps S =
⌈

n
p

⌉
, Initial

Emerging topic set Etopics(1) = ∅, Confidence level CL
Initialization: W(0) = 000,H(0) = 000
for t = 1, . . . , S do

Draw XXX(t) (p data points) from from X;

Compute vvv(t) by solving the optimization problem given in Eqn. 5;

Update W(t) and H(t) using Eqns 13 and 14 respectively;

Update U(t) by Algorithm 1;
if t > 1 then

Etopics(t) = Edetect(CL) using the algorithm in [1]
end section 3.2
;

end

3.6 Computational Savings

As the OTDA proceeds by solving Eqs. 5, 6 and 7 it incurs computational cost
of O(mnK), O(mmK) and O(nmK) at each of these steps respectively. How-
ever, since X and R are sparse matrices, we only need to multiply the non-
zero elements with factor matrices. Hence the cost for these operations will be
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O(zXK), O(zRK) and O(zK), where z = max (zR, zX) for single iteration1. The
proposed OTDA will therefore will have a cost of O(zK) for single iteration.
The Frobenius loss of OTDA is frequently very close to the Frobenius loss of the
SeaNMF algorithm after T ≤ 2 iterations as witnessed by our experimentation,
which will save computational cost appreciably (≈ O(zK) cost only). Also our
one-pass OTDA needs to only load the data matrix once which involves low IO
cost. Our experiment results shows that we often do not need many passes to
obtain very accurate results.

3.7 Topic Detection and Tracking

Our dynamic topic model enables capturing the topics and their evolution over
time. The vector U(t)

·k portrays the evolution of topic k at time t. As each topic
is represented in the form of a column vector, represented as a weighted combi-
nation of terms the dissimilarity between the representation of a topic k at time
point t+1 and t, is defined as Dist(k, t) =

∥∥∥U(t+1)
·k − U(t)

·k
∥∥∥
2
. We consider a topic

to be emerging if it is different from its peers in the same stream, or from all
the topics seen so far. The identification of emerging topics can be modeled by
considering the K topic distances computed at time t using a confidence level
CL. Then we use the algorithm in [1] (Sect. 3.2) to compute nominated emerging
topics in which the function Edetect(CL) returns the emerging topics Etopics(t)
generated in the time slice t and (t + 1).

4 Data Sets for Experimentation

We have considered four sets of short text data for experimental purposes, three
of which are public datasets and the fourth is an internal data set. Public data
sets are Yahoo manner, SearchSnippets and StackOverflow. Yahoo manner data
set (Yahoo) is a subset of the Yahoo Answers Manner Questions, version 2.042.
The data set SearchSnippets (Snippets) is selected after searching through the
transactions on the web using predefined phrases of 8 different domains. Stack-
Overflow (Stack) is the challenge data set published online3. The fourth data
set (Optum) contains feedback texts that are provided by customers (from an
offshore center of Optum) in certain healthcare domains. Three public data sets
are labeled with categories, for which we generate the same number of topics.
For Optum feedback texts we assume 9 topics by using the standard criterion of
selecting optimal number of clusters.

1 We assume a low average number of PGD iterations for updating U or V in one
round, and also a low average number of trials needed for implementing the Armijo
rule [15,21].

2 https://webscope.sandbox.yahoo.com/catalog.php?datatype=l.
3 Kaggle.com.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://Kaggle.com
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Table 1. Statistics of data sets considered

Data set # docs # terms density(X) density(R) doc-length #cats #topics

generated

Yahoo 24555 14370 0.0482 0.1598 11.1 8 8

Snippets 10060 23031 0.0561 0.513 17.87 8 8

Stack 10000 8162 0.0858 0.354 8.22 8 8

ptum 9999 4372 0.3736 1.896 28.41 NA 9

Some basic statis-
tics of these data
sets are shown in
Table 1. ‘#docs’
represents the num-
ber of documents
in each data set,
and ‘#terms’ the number of terms in the vocabulary. The quantity ‘density’ is

defined as
#non-zero

#docs · #terms
, where #non-zero is the number of non-zero elements

in the matrix. The entities ‘density(X)’ and ‘density(R)’ represent the density of
term-document matrix X and term-context correlation matrix R, respectively.
‘doc-length’ represents the average length of the documents. ‘#cats’ denotes the
number of distinct categories.

5 Evaluation Metrics

We present an evaluation of our approach by comparing the performance of
our online topic discovery algorithm with other relevant algorithms on three
characteristics, average Frobenius loss [14,21], Topic Coherence (Coherence) [17]
and Normalized Mutual Information (NMI) [7]. As a topic can be related to a
cluster we use a cluster-related metric Normalized Mutual Information (NMI)
to measure the efficacy of our method, especially for labeled data. Due to which,
it is not possible to compute NMI values for Optum dataset.

For comparison with our OTDA on average Frobenius loss, we use the work
on clustering using online NMF due to Wang et al. [21] (ClusterONMF). There
is an old work of online NMF for latent factor tracking due to Cao et al. [6]
(LatentONMF), however it is shown that ClusterNMF performs better than
LatentONMF in terms of average Frobenius loss [21], and hence we do not con-
sider LatentONMF in our experimentation. When we compare our OTDA using
Coherence and NMI we use three baseline methods other than ClusterONMF,
- adaptive Online-LDA (A-OLDA) [1], Online Learning for LDA (L-OLDA) [9]
and Dynamic Topic Model (DTM) [2].

6 Experimental Results

We present experimental results on the data sets discussed before. For the benefit
of reproducible research we upload all our codes and the baseline methods on
https://github.com/varma-ds/OTDA. We have tweaked parameters appearing
in loss functions in Sect. 3, but they do not have much effect on the results. So,
we use default hyperparameter settings for each of the baselines. We use Scikit-
learn’s online LDA implementation4 for L-OLDA and Gensim’s LdaSeqModel5

4 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDi
richletAllocation.html.

5 https://radimrehurek.com/gensim/models/ldaseqmodel.html.

https://github.com/varma-ds/OTDA
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
https://radimrehurek.com/gensim/models/ldaseqmodel.html
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implementation for DTM. For L-OLDA and A-OLDA we use document topic
prior value as 1/K.

6.1 OTDA with Conjugate Gradient

We mainly focus on OTDA with second order methods using conjugate gradient
method. The performance of OTDA with first order PGD is not satisfactory,
and hence is not presented (for space constraints).

Fig. 1. (a) Average Frobenius loss for one-pass and two-pass with increasing number of
batches (b) Average Frobenius loss with increasing number of passes on Yahoo dataset

For the below experiments, we assume that data is divided into different
batches of some fixed size. For each batch, both term-document matrix and
word context correlation matrix are generated using fixed vocabulary. For com-
puting word-context correlation matrix each short text is considered as a con-
text. Using this information word context correlation matrix is updated for each
batch. Other context information like fixed size window of words, streaming text
clusters [25] etc. can be also considered.

Fig. 2. NMI measured at the end of each
pass on Yahoo data

We present the results for the aver-
age Frobenius loss for one-pass and
two-pass with increasing number of
batches. For the second pass we com-
pute the average Frobenius loss using
all the n data points. For the first
pass, average Frobenius loss is calcu-
lated only for the data points seen so
far. From Fig. 1(a), we can see that
with only one pass of the algorithm,
the average Frobenius loss increases at
first and then starts decreasing as the
number of batches increases. If two passes are allowed the average Frobenius loss
remains almost constant, but it is smaller than the values in the first pass as
it learns the topics from the initial batch only. All the data sets show almost
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similar pattern. Results in Fig. 1(b) indicate that the average Frobenius loss
continues to decrease as we increase number of passes with diminishing returns
for almost all data sets. Here we reproduce the results for only one initialization
and omit results for other initializations for space constraints. We show results
for Yahoo data set as other datasets exhibit similar patterns only.

We further compute the NMI values for the labeled data sets using OTDA
and plot the results in Fig. 2 for Yahoo dataset. It shows that NMI continues to
go up as we increase number of passes to an extent and then stabilizes.

6.2 Comparison with Online Methods

We now compare the performance of OTDA with ClusterONMF [6], A-OLDA [1],
L-OLDA [9] and DTM [2] using the metrics topic coherence and NMI. Addi-
tionally, we compare Frobenius loss for both OTDA and ClusterNMF during
learning. We publish the best score achieved by each of the models for all the
datasets in Table 2.

Table 2. Performance of OTDA against baselines.
(Best scores across different batch sizes and number
of passes are chosen for each model)

Data Model Loss at learning Topic quality

Avg. Frobenius loss Coherence NMI

Yahoo OTDA 0.748 0.485 0.390

ClusterNMF 0.712 0.449 0.350

L-OLDA – 0.302 0.112

A-OLDA – 0.269 0.054

DTM – 0.340 0.123

Snippets OTDA 10.114 0.656 0.280

ClusterNMF 9.746 0.411 0.190

L-OLDA – 0.491 0.176

A-OLDA – 0.271 0.030

DTM – 0.560 0.285

Stack OTDA 1.213 0.327 0.186

ClusterNMF 1.112 0.084 0.185

L-OLDA – 0.295 0.077

A-OLDA – 0.190 0.035

DTM – 0.322 0.113

Optum OTDA 1.762 0.468 –

CLusterNMF 1.569 0.430 –

L-OLDA – 0.183 –

A-OLDA – 0.186 –

DTM – 0.191 –

Average Frobenius Loss.
We compare our OTDA with
ClusterONMF in terms of the
average Frobenius loss (using
Eq. 4.22 in [6]). We report
the result for only one ini-
tialization and different batch
sizes. Further we produce the
results for only one-pass of
the algorithm for obvious rea-
sons. We compute the Frobe-
nius loss given using Eq. 4.20
in [6] (at the final iteration)
for each batch due to the
method of Lee and Seung,
which is shown as a dashed
line (labeled by L-S) in Fig. 3,
wherein which we report the
average Frobenius loss for 3
different method on Yahoo
dataset only. Similar behav-
ior is observed in other 3
datasets as well, the descrip-
tion of which is omitted in this paper due to space constraint. In all the cases
OTDA produces higher loss than ClusterONMF. It is expected as we minimize
the Frobenius loss along with another term involving context information, that
acts like a regularization term (see Eq. 7).
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Fig. 3. Comparison of Average Frobenius loss on
Yahoo

Topic Coherence. We com-
pute topic coherence for all the
data sets as shown in Table 2.
For all of them OTDA per-
forms better than all other base-
lines. While for Snippets, Stack
and Optum datasets apprecia-
ble improvement of Coherence
is observed for OTDA, Snippets
data set shows marginal gain
with both OTDA and DTM.
Further, in Fig. 4(a) we observe
that with increase in batch size,
topic coherence values reduce as the models tend to assign more diverse and
non-coherent words associated with topics.

NMI. Quantitative evaluation using NMI metric is conducted on the three data
sets with label information, e.g., Yahoo, Snippets and Stack have the same num-
ber of clusters being equal to 8. Table 2 depicts the comparison of clustering for
each method on three labeled data sets. Overall, OTDA always outperforms
ClusterONMF in terms of NMI values. For Yahoo and Snippets data, OTDA
shows an improvement of 5-8% in NMI values in comparison to ClusterONMF.
On the other hand, DTM performs slightly better than OTDA on Snippets
dataset. Figure 4(b) shows the comparison of different models on Yahoo dataset.
We observe a competitive performance between OTDA and ClusterNMF with
increasing batch size.

Fig. 4. Comparison of different models w.r.t. Topic Coherence and NMI on Yahoo data

6.3 Effect of Decay on Streaming Data

We now examine the effect of decay factors on the streaming data. For that we
curate Yahoo data set as follows. We divide the data set into 4 groups and 2
types, characterized by the categories, that is, each type will contain exactly
4 distinct categories of data. Details of this curated data is shown in Table 3.
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We assume each group corresponds to one batch and data arrives in batches.
Using this curated data we have experimented with and without decay factors in
OTDA formulation. The results are presented in Fig. 5. It shows that in absence
of decay factors when a new type of data arrives, NMI reduces. But, with the
introduction of decay factors in OTDA, the algorithm is able to forget the past
topic distributions and learn the new topic distributions.

Table 3. Curated Yahoo data

Group Data indices Type Categories

1 0–3999 1 Family, Maths, Cleaning, Dogs

2 4000–8999 2 Cooking, Finance, Repairs, Diet

3 9000–13999 1 Family, Maths, Cleaning, Dogs

4 14000–18999 2 Cooking, Finance, Repairs, Diet

Fig. 5. Decay effect on NMI for
Yahoo data

6.4 Emerging Topic Detection

Fig. 6. Probability distribution and Distance of
the topic Maths across different batch numbers
(Trending regions are highlighted)

To test the ability of OTDA
to detect novel topics as they
evolve, we create synthesized
data by mixing Yahoo and Stack
Overflow data sets from which
we take 10 categories (all the
categories from Yahoo and only
2 categories from Stack overflow)
in the following manner: (1) we
add 9 categories in equal pro-
portions (i.e.p.) excluding the
topic Maths; (2) we add all
the 10 categories i.e.p. including
Maths; (3) we repeat step 1 and
2 four times; and (4) in the 9th time instant we have added 9 categories i.e.p.
excluding Maths. With this synthesized data, we are able to detect the topic
Maths as an emerging one at 2nd, 4th, 6th and 8th time instances at 90% con-
fidence level (Fig. 6). The detected Topic probability distribution of Maths is
also presented in Fig. 6.

7 Conclusion

We have proposed an efficient online NMF algorithm for discovering topics from
short texts which processes incoming data incrementally. There are several rea-
sons for choosing NMF over LDA to design this online algorithm.
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While our method advocates optimizing loss function directly, other varia-
tions of (LDA-based) online topic discovery algorithms using variational infer-
ence techniques produce approximations of the actual results. Further, all
Markov chain Monte Carlo-based topic extractions (e.g., LDA) are asymptoti-
cally exact although computationally expensive. This makes our model a perfect
fit for accurate as well as fast, scalable alternative to other topic models.
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Abstract. Many contemporary service-based systems follow the
microservice approach, particularly in DevOps or continuous delivery
contexts. They share a set of important tenets such as independent devel-
opment and deployment, high releasability, polyglot technology support,
and loose coupling. A number of best practices for microservice architec-
tures have been codified as patterns, which embody those tenets. How-
ever, no real-world microservices system can support all patterns and
practices well, but rather architectural decisions making trade-offs among
them are needed. Conformance to the patterns and practices selected in
such decisions is hard to ensure and assess automatically, especially in
large-scale, complex, and evolving systems. In this work, we propose a
model-based approach based on generic, technology-independent met-
rics, tied to typical architectural design decisions in the microservice
domain. With this approach we can measure conformance to the pat-
terns and related tenets. We demonstrate and assess the validity and
appropriateness of these metrics in performing an assessment of a sys-
tem’s conformance to patterns through statistical methods.

1 Introduction

Microservices architectures [10,19] structure an application as a collection of
autonomous services, modeled around a domain. They share a set of impor-
tant tenets such as development in independent teams, cloud-native technolo-
gies and architectures, polyglot technology stacks including polyglot persistence,
lightweight containers, loosely coupled service dependencies, high releasability,
end-to-end tracing and monitoring, and continuous delivery [9,10,19]. This work
examines ways to ensure architecture conformance to these microservice tenets
while applying established patterns and practices. That is, many architectural
patterns that reflect recommended “best practices” in a microservices context
have already been published in the literature [14,15,20]. Conformance to these
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patterns impacts how far a microservice system supports the desired microser-
vices tenets.

Unfortunately, as real-world, industrial microservice-based systems are usu-
ally highly complex, often highly polyglot, and rapidly changed and released
(see, e.g. [2,8]), an automatic or semi-automatic assessment of their pattern
conformance is difficult: real-world systems feature various combinations of these
patterns and different degrees of violations of the same. Different technologies
in various parts of the system implement the patterns in different ways, and
these implementations are continuously changing at a high pace. Making mat-
ters even more challenging, a high level of automation is required for complex
systems. While for small-scale systems of a few services, a manual assessment by
an expert is probably as quick and as accurate as an automated one, that is not
true for industrial-scale systems of several hundred or more services, which are
being developed by different teams or companies, evolving at different paces. In
that case, manual assessment is laborious and inaccurate, and a more automated
method would vastly improve cost-effectiveness. Another major challenge is that
no microservice system can support all microservice tenets well at once. Rather
the architectural decisions for or against a set of related patterns and practices
need to make a trade-off among the desired tenets and important other qual-
ity attributes [6,19]. Under these considerations, this paper aims to study the
following research questions:

– RQ1. How can conformance to the tenets embodied in microservice architec-
ture decision options (i.e. patterns and practices) be automatically assessed?

– RQ2. How well do measures for assessing decision options and their associ-
ated tenets perform?

– RQ3. What is a set of minimal elements needed in a microservice architecture
model to compute such measures?

Our approach to address these challenges is to define a set of metrics for
each microservice decision associated to the decision’s options, i.e. at least one
metric per major decision option. Based on a manual assessment of a small set of
models and model variants that is representative for the possible decision options
and option combinations of the studied decisions, we derive a ground truth. The
ground truth is established by objectively assessing whether each decision option
is supported. By combining the outcome of all options of a decision, we can
then derive an ordinal assessment of how well the decision is supported in each
model. We then use the ground truth data to assess how well the hypothesized
metrics can possibly predict the ground truth data by performing an ordinal
regression analysis. In this paper, we propose an architectural component model
based approach which uses only modeling elements that can be derived from the
system’s source code. For this reason, it is important to be able to work with a
minimal set of modeling elements, else it might be difficult to continuously parse
them from the source code.

To study the research questions we selected and modeled three major deci-
sions, which represent important aspects in architecting microservices. To illus-
trate our approach we selected by purpose very different aspects of microservices
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architecture, in particular: the decision for an external API, message persistence,
and end-to-end tracing. For each of these we hypothesized a number of generic,
technology-independent metrics to measure conformance to the respective deci-
sions. For the evaluation of these metrics, we modeled 24 architecture models
taken from the practitioner literature and assessed each of them manually regard-
ing its support of the patterns and practices contained in each decision. We then
compared the results in depth and statistically over the whole evaluation model
set. The results show that a subset of each decision related metrics are quite
close to the manual, pattern-based assessment.

This paper is structured as follows: Sect. 2 compares to related work. In
Sect. 3 we explain the decisions considered in this paper and the related pat-
terns/practices. Next, we describe the research methods and the tools we have
applied in our study in Sect. 4. In Sect. 5 we report how the ground truth data
for each decision is calculated. Section 6 introduces our hypothesized metrics.
Section 7 describes the metrics calculations results for our models and the results
of the ordinal regression analysis. Section 8 discusses the RQs regarding the eval-
uation results and analyses the threats to validity. Finally, in Sect. 9 we draw
conclusions and discuss future work.

2 Related Work

Much research has been conducted in collecting and systematizing microservice
patterns. For instance, Richardson [14] collected microservice patterns related
to major design and architectural practices. Zimmermann et al. [20] intro-
duce microservice API related patterns. Skowronski [15] collected best practices
for event-driven microservice architectures. Microservice fundamentals and best
practices are also discussed by Fowler and Lewis [9], and are summarized in
a mapping study by Pahl and Jamshidi [11]. Taibi and Lenarduzzi [16] study
microservice bad smells, i.e. practices that should be avoided (which would cor-
respond to metrics violations in our work).

Many of the works on service metrics today are focused on runtime proper-
ties (see e.g. [13]). A number of studies has used metrics to assess microservice-
based software architectures, e.g. [1,12,18], but each is focused on narrow sets of
architecture-relevant tenets (e.g. loose coupling), and no general approach for an
assessment across different microservice tenets exists. Pautasso and Wilde [12]
propose a composite, facet-based metric for the assessment of loose coupling
in service-oriented systems. Zdun et al. [18] study the independent deploy-
ment of microservices by defining metrics to assess architecture conformance
to microservice patterns, focused on two aspects: independent deployment and
shared dependencies of services. Bogner et al. [1] propose a maintainability qual-
ity model which combines eleven easily extracted code metrics into a broader
quality assessment. Engel et al. [3] also propose a method of using real-time sys-
tem communication traces to extract metrics on conformance to recommended
microservice design principles such as loose coupling and small service size.

These studies focus on treating microservice architectures as a question of
components and connectors, factoring in the technologies used, and producing
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assessments that combine different assessment parameters (i.e. metrics). Such
metrics, if automatically collected, can be utilized as part of larger assessment
models/frameworks during design and development time. Our work broadly fol-
lows the same approach, but extends it to different architecture tenets relevant
to microservice-specific design decisions. Once metrics can be checked automat-
ically, our approach can be classified as a metrics-based, microservice-specific
approach for software architecture conformance checking. In general, approaches
for architecture conformance checking are often based on automated extraction
techniques [5,17]. Techniques that are based on a broad set of microservice-
related metrics to cover multiple microservice tenets do not yet exist.

3 Background

External API Decision. One central decision in microservice-based systems
is how the external API is offered to clients. This is tightly coupled to the loose
coupling, releasability, independent development and deployment, and contin-
uous delivery tenets, as it determines the coupling between client and internal
system concerns. In some service-based systems, the clients can call into sys-
tem services directly, meaning high coupling and thus difficulties in releasing,
developing, and deploying the clients and system services independently of each
other. A better decoupling level might be reached through an API Gateway [14],
a pattern that describes a common entry point for the system through which all
requests are routed. It is a specialized variant of a Reverse Proxy, which covers
only the routing aspects of an API Gateway but not further API abstractions
such as authentication, rate limiting, and so on (see [20]). A variant of API
Gateway for servicing different types of clients (e.g., mobile and desktop clients)
is the Backends for Frontends pattern [14], which offers a fine-grained API for
each specific type of client. A variant where clients can call into system services
directly, but are still decoupled is API Composition [14], i.e. a service which can
invoke other microservices and provides an API for the connected services.

Inter-service Message Persistence Decision. In many business-critical
microservice systems, an important concern is that no messages get lost. This
concern directly influences the communication between services, and, depending
on which option is chosen, the coupling between services, their releasability, their
independent development and deployment, as well as their continuous delivery
are impacted. Many systems choose communication means that offer no inter-
service message persistence. Some patterns better support the related aspects of
the microservice tenets: The Messaging pattern [7] describes service communica-
tion, in which persistent message queuing is used to store a producer’s messages
until the consumer receives them. Many Stream Processing [15] components (e.g.
Apache Kafka) offer a very similar message persistence level. These solutions
offer optimal inter-service message persistence, in the sense that the technol-
ogy is designed for providing support for it. Some other solutions applied in the
microservice field can be used (or adapted) to support it: Interaction through a
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Shared Database, even though frowned upon with regard to other microservice
tenet aspects, supports some level of message persistence as well, but not the
automated support of Messaging. A more microservice-style technique that sup-
ports this level of database-based persistence is the combination of the Outbox
and the Transaction Log Tailing patterns [14] in which each service that sends
messages has an outbox database table. As part of the database transaction,
the service sends messages by inserting them into the outbox table. A message
relay component reads the outbox table and publishes the messages to a message
broker. Using the Event Sourcing pattern [14] every change to the state of the
system should be contained in an event object and stored sequentially in order
to be accessible over time. The events are persisted in an event store. This way
at least a temporary message persistence is achieved.

End-to-End Tracing Decision. Logging and monitoring are standard practices
for creating observability of microservices. As microservice architectures are used
for highly distributed and polyglot systems with complex interactions, many of
them go one step further and realize end-to-end tracing. It supports tracing and
monitoring tenets directly, as well as understandability concerns during indepen-
dent development and deployment, mastering complexity of highly decoupled ser-
vices, and thus indirectly releasability and continuous delivery. Like in the other
decisions, one option is to offer No Tracing Support. In contrast, Distributed Trac-
ing [14] is a method used to profile and monitor applications through recording
traces on the distributed components. It can either be supported on the microser-
vices of a system, on the gateways of a system, or on both. If both support Dis-
tributed Tracing, this is optimal, as all relevant traces in ingress, egress, and inter-
service communication can be recorded. If it is not supported, a lower level of
tracing and monitoring can be reached by routing the service communication
through a central component, such as a Publish/Subscribe or Message Broker com-
ponent [7]. This can also be achieved if all internal inter-service communication is
routed through the API Gateway, or if Event Sourcing or Event Logging [14,15]
are used, which store all events temporarily. None of the later techniques has the
same level of support as Distributed Tracing, but all of them can – with some pro-
gramming or manual effort – be used to reconstruct traces.

4 Research and Modeling Methods

4.1 Model Selection Methods

This study focuses on architecture conformance to microservice patterns and
practices. To be able to study this, we first performed an iterative study of
a variety of microservice-related knowledge sources, and we refined a meta-
model which contains all the required elements to help us reconstruct exist-
ing microservice-based systems. For problem investigation and as an evaluation
model set for eventually creating a ground truth for our study, we have gathered
a number of microservice-based systems, summarized in Table 1. Each of them
is either taken directly from a system published by practitioners (on GitHub
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and/or practitioner blogs) or a system variant adapted according to discussions
in the relevant literature. The systems were taken from 9 independent sources.
They were developed by practitioners with microservice experience, and they
provide a good representation of the microservices best practices summarized in
Sect. 3. We performed a fully manual static code analysis for those models where
the source code was available (i.e. 7 of our 9 sources; two were modeled based
on documentation created by the practitioners). The result is a set of precisely
modeled component models of the software systems (modeled using the tech-
niques described below). Variations were modeled to cover the complete design
space of our three decisions described in Sect. 3, according to the referenced
practitioner sources. Apart from the variations described in Table 1 all other
system aspects remained the same as in the base models. This resulted in a total
of 24 models summarized in Table 1. We assume that our evaluation models are
close to models used in practice and real-world practical needs for microservices.
As many of them are open source systems with the purpose of demonstrating
practices, they are at most of medium size, though.

Table 1. Selected models: size, details, and sources

Model ID Model size Description/Source

BM1 10 components
14 connectors

Banking-related application based on CQRS and event sourcing
(from https://github.com/cer/event-sourcing-examples)

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely
synchronous service invocations instead of event-based
communication

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely
asynchronous service invocations instead of event-based
communication

CO1 8 components
9 connectors

The common component model E-shop application implemented
as microservices directly accessed by a Web frontend (from
https://github.com/cocome-community-case-study/cocome-
cloud-jee-microservices-rest)

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service
with a message broker. Added support for Open Tracing. Added
an API gateway

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use
inter-service communication, but a shared database for accessing
product and store data. Added support for Open Tracing

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations,
databases per service, and an API gateway (from https://
codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-
it-to-docker-part-4-703c2b0dd269)

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API
gateway

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of
the API gateway

(contniued)

https://github.com/cer/event-sourcing-examples
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-part-4-703c2b0dd269
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Table 1. (contniued)

Model ID Model size Description/Source

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the
client and another subsystem routing all traffic via the API
gateway

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing
microservices and an API gateway for service-based API (from
https://microservices.io/patterns/microservices.html)

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event
sourcing internally

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one
service interactions

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based
interaction, a middleware-triggered identity service, databases per
service (4 SQL DBs, 1 Mongo DB, and 1 Redis DB), and
backends for frontends for two Web app types and one mobile app
type (from https://github.com/dotnet-architecture/
eShopOnContainers)

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API
gateway instead of event-based communication and one shared
SQL DB for all 6 of the services using DBs. However, no service
interaction via the shared database occurs

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API
gateway instead of event-based communication and one shared
database for all 4 of the services using SQL DB in ES1 However,
no service interaction via the shared database occurs

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly
linked to a Web UI (from https://github.com/jferrater/Tap-And-
Eat-MicroServices)

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API
composition and asynchronous interservice communication. Added
Jaeger-based tracing per service

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and
OpenCensus monitoring & Tracing for all but one services as well
as on the gateway (from https://github.com/
GoogleCloudPlatform/microservices-demo)

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event
sourcing, except for one service, and realizes the tracing on all
services

RM 11 components
18 connectors

Restaurant order management application based on SAGA
messaging and domain event interactions. Rudimentary tracing
support (from https://github.com/microservices-patterns/ftgo-
application)

RS 18 components
29 connectors

Robot shop application with various kinds of service
interconnections, data stores, and Instana tracing on most
services (from https://github.com/instana/robot-shop)

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases
per services from (https://www.nginx.com/blog/introduction-to-
microservices/)

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event
sourcing for all but one service interactions

https://microservices.io/patterns/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/microservices-patterns/ftgo-application
https://github.com/microservices-patterns/ftgo-application
https://github.com/instana/robot-shop
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/
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4.2 Metrics Definition, Ground Truth Calculation, and Statistical
Evaluation Methods

To measure conformance to the respective patterns and practices in the design
decisions from Sect. 3, we defined a set of metrics for each microservice decision
associated to the decision’s options, i.e. at least one metric per major decision
option. Based on the manual assessment of the models from Table 1, we derived
a ground truth for our study (the ground truth and its calculation rules are
described in Sect. 5). The ground truth is established by objectively assessing
whether each decision option is supported, partially supported, or not supported.
By combining the outcome of all options of a decision, we then derived an ordinal
assessment on how well the decision is supported in each model, using the scale:
[++: very well supported, +: well supported, o: neutral, −: badly supported,
−−: very badly supported]. Our scale does not assume equal distances (i.e. it
is not a Likert scale), but it assumes the given order. We then used the ground
truth data to assess how well the hypothesized metrics can possibly predict the
ground truth data by performing an ordinal regression analysis.

Ordinal regression is a widely used method for modeling an ordinal response’s
dependence on a set of independent predictors. For the ordinal regression analysis
we used the lrm function from the rms package in R [4].

4.3 Methods for Modeling Microservice Component Architectures

From an abstract point of view, a microservice-based system is composed of
components and connectors with a set of component types and a set of connector
types. Our paper has the goal to automate metrics calculation and assessment
based on the component model of a microservice system. That is, if the system
is manually modeled or the model can be derived automatically from the source
code, our approach is applicable. For modeling microservice architectures we
followed the method reported in our previous work [18]. All the code and models
used in and produced as part of this study have been made available online for
reproducibility1.

5 Ground Truth Calculations for the Study

In this section, we report for each of the decisions from Sect. 3 how the ground
truth data is calculated based on manual assessment whether each of the relevant
patterns is either Supported (S in Table 2), Partially Supported (P in Table 2),
or Not-Supported (N in Table 2). The ordinal results of those assessments are
then reported in the Assessments rows of Table 2.

Following the argumentation, which decision option explained in Sect. 3 has
which impact on the External API Decision related tenets, we can derive the
following scoring scheme for our ground truth assessment of this decision:

1 https://doi.org/10.5281/zenodo.3999477.

https://doi.org/10.5281/zenodo.3999477
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Table 2. Ground truth data

– ++: All client traffic is routed through an API Gateway or Backends for
Frontends.

– +: All client-connected services provide API Composition or only Reverse
Proxy capabilities.

– o: Some client traffic is routed through API Gateway or Backends for Fron-
tends.

– -: Some client-connected services provide API Composition or only Reverse
Proxy capabilities.

– --: All client traffic is directly connected to backend services and no API
Composition happens.

From the argumentation for the Inter-service Message Persistence Decision, we
can derive the following scoring scheme for our ground truth assessment:

– +: Message Brokers or a persistent Publish/Subscribe or Stream Processing
component are used for all inter-service communication.

– +: All interservice communication is persisted by some combination of partial
Message Brokers, persistent Publish/Subscribe, or persistent Stream Process-
ing or partial or full coverage with Shared Database, Event Sourcing, Out-
box/Transaction Log Tailing.

– o: A part of the interservice communication is persisted by partial cover-
age with Message Brokers, persistent Publish/Subscribe, or persistent Stream
Processing.

– -: A part of the interservice communication is persisted by partial coverage
with Shared Database, Event Sourcing, Outbox/Transaction Log Tailing.
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– --: None of the above is supported.

Finally, from the argumentation for theEnd-to-end Tracing Decision, we can
derive the following scoring scheme for our ground truth assessment:

– ++: Distributed Tracing is fully supported on all services and gateways.
– +: Distributed Tracing is fully supported on either the services or the gate-

ways.
– o: Distributed Tracing is partially supported or Event Sourcing/Event Logging

are fully supported.
– -: Publish/Subscribe, Message Broker, or Invocations Routed Via API Gate-

way are fully supported for service interactions or those patterns are partially
supported and at the same time Event Sourcing/Event Logging are supported.

– --: None of the above is supported.

6 Metrics

All metrics, unless otherwise noted, are a continuous value with range from 0 to
1, with 1 representing the optimal case where a set of patterns is fully supported,
and 0 the worst-case scenario where it is completely absent. For instance, in EC1
client traffic is partially routed through API Gateway resulting CCF = 0.25. The
metrics results for each model per decision metric are presented in Table 3.

6.1 Metrics for the External API Decisions

Client-side Communication via Facade utilization metric (CCF). This
metric returns the number of the connectors from Clients to Facade components
set in relation to the total number of unique Client connectors. This way, we can
measure how many unique client links are using the External API used by one
of the Facade components (i.e. offered through patterns such as API Gateway,
Reverse Proxy, Backends for Frontends).

CCF =
Number of Client to FacadeLinks

Number of UniqueClientLinks

In this metric (and in other metrics below), the number of unique client links
is defined as follows:

Number of UniqueClientLinks =
max{Number of FacadesLinked toClients,

Number of ClientsLinked to Facades}
+Number of Client toNon − Facade/Non − ClientLinks

As a result, the only decision option remaining is API Composition, for which
we formulated the APIC metric.
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API Composition utilization metric (APIC). In cases that a client is
directly connected to services, it is possible that these services offer an External
API shielding the interfaces of other services that are connected to them. That
is, a client can have access to a system service via other services. To detect such
cases, we count the routes from the client to system services via other services
and set this number in relation to the total number of system services. That gives
us the proportion of services that are accessible by clients via other services. We
then divide this number with the unique client links to estimate the proportion
of clients connected services which are possibly composing an External API using
API Composition.

APIC =

Number of Client to Services via other ServicesRoutes

Total Number of Services

Number of UniqueClientLinks

6.2 Metrics for Persistent Messaging for Inter-Service
Communication Decision

Service Messaging Persistence utilization metric (SMP). One important
aspect in services interconnections is the persistence of the exchanged messages.
We defined this metric to measure the proportion of the services interconnec-
tions that are made persistent through supporting technology (i.e. Messaging or
Stream Processing).

SMP =
Service InterconnectionswithMessaging or StreamProcessing

Number of Service Interconnections

Shared DataBase utilization metric (SDB). Although a Shared Database is
considered as an anti-pattern in microservices, there are many systems that use
it either partially or completely. The pattern might be beneficial for persistent
messaging, but definitely is not the optimal option. To measure its presence
in a system, we count the number of interconnections via a Shared Database
compared to the total number of interconnections. We note that for this metric,
our metrics scale is reversed in comparison to the other metrics, because here
we detect the presence of an anti-pattern: the optimal result of our metrics is 0,
and 1 is the worst-case result.

SDB =
Service InterconnectionswithSharedDB

Number of Service Interconnections

Outbox/Event Sourcing utilization metric (OES). Outbox and Event
Souring can ensure temporary message persistence. Our metric measures the pro-
portion of the interconnections with Outbox/Event Sourcing to the total number
of interconnections.

OES =
Service InterconnectionwithOutbox or Event Sourcing

Number of Service Interconnections
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6.3 Metrics for End-to-End Tracing Decision

SFT =
Services andFacades SupportDistributed Tracing

Number of Services andFacades

Service Interaction via Central Component utilization metric (SICC)
and Service Interaction with Event Sourcing utilization metric (SIES).
Distributed Tracing can be supported by routing the inter-service communication
via a central component (e.g. Publish/Subscribe, Message Broker and API Gate-
way). Since Event Sourcing also enables tracing by tracking the messages, we
distinguish between systems that support Event Sourcing (SIES), and systems
that do not (SICC).

SICC =
Service Interaction viaCentral Componentw/oEvent Sourcing

Number of Service Interconnections

Table 3. Metrics calculation results

Metrics BM1 BM2 BM3 CO1 CO2 CO3 CI1 CI2 CI3 CI4 EC1 EC2

External API

CCF 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.50 0.25 0.25

APIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.10 0.00 0.00

Persistent messaging for inter-service communication

SMP 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SDB 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

OES 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

End-to-end tracing

SFT 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

SICC 0.00 1.00 1.00 0.00 1.00 1.00 0.14 1.00 0.00 0.60 1.00 0.00

SIES 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Metrics EC3 ES1 ES2 ES3 FM1 FM2 HM1 HM2 RM RS TH1 TH2
External API

CCF 0.25 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.25 0.25

APIC 0.00 0.00 0.00 0.00 0.25 0.50 0.70 0.70 0.00 0.00 0.12 0.04

Persistent messaging for inter-service communication

SMP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.11 0.00 0.00

SDB 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.66

End-to-end tracing

SFT 0.00 0.00 0.00 0.00 0.00 1.00 0.90 0.90 0.14 0.62 0.00 0.00

SICC 0.00 0.60 0.45 0.45 0.00 0.00 0.00 0.00 1.00 0.11 0.00 0.00

SIES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.66
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SIES =
Service Interaction viaCentral ComponentwithEvent Sourcing

Number of Service Interconnections

7 Ordinal Regression Analysis Results

The metrics calculations for each model per each decision metric are presented
in Table 3. The dependent outcome variables are the ground truth assessments
for each decision, as described in Sect. 5 and summarized in Table 2. The metrics
defined in Sect. 6 are used as the independent predictor variables. The ground
truth assessments are ordinal variables, while all the independent variables are
measured on a scale from 0.0 to 1.0. The aim of the analysis is to predict the

Table 4. Regression analysis results

Intercepts/Coefficients Value Model p-value
External API
Intercept (≥Badly Supported) −3.5690 4.423828e−11
Intercept (≥Neutral) −4.5042
Intercept (≥Well Supported) −10.2692
Intercept (≥Very Well Supported) −15.7271
Metric Coefficient (CCF) 20.3552
Metric Coefficient (APIC) 18.1419
Persistent messaging for inter-service communication
Intercept (≥Badly Supported) −5.6344 2.002198e−09
Intercept (≥Neutral) −9.5937
Intercept (≥Well Supported) −11.2074
Intercept (≥Very Well Supported) −21.0398
Metric Coefficient (SMP) 94.5503
Metric Coefficient (SDB) 10.4199
Metric Coefficient (OES) 13.3840
End-to-end tracing
Intercept (≥Badly Supported) −35.4940 4.440892e−15
Intercept (≥Neutral) −53.7947
Intercept (≥Well Supported) −103.6085
Intercept (≥Very Well Supported) −135.5906
Metric Coefficient (SFT) 44.6971
Metric Coefficient (SICC) 94.1809
Metric Coefficient (SIES) 125.5634
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likelihood of the dependent outcome variable for each of the decisions by using
the relevant metrics.

Each resulting regression model consists of a baseline intercept and the inde-
pendent variables multiplied by coefficients. There are different intercepts for
each of the value transitions of the dependent variable (≥Badly Supported,
≥Neutral, ≥Well Supported, ≥Very Well Supported), while the coefficients reflect
the impact of each independent variable on the outcome. For example, a positive
coefficient, such as +5, indicates a corresponding five-fold increase in the depen-
dent variable for each unit of increase in the independent variable; conversely, a
coefficient of −30 would indicate a thirty-fold decrease.

In Table 4, we report the p-values for the resulting models, which in all cases
are very low, indicating that the sets of metrics we have defined are able to predict
the ground truth assessment for each decision with a high level of accuracy.

8 Discussion

8.1 Discussion of Research Questions

For answering RQ1 and RQ2, we suggested a set of generic, technology-
independent metrics for each microservice decision, and we associated at least
one metric to each major decision option. The ground truth is established by
objectively assessing how well a pattern and/or practice is supported in each
model, and extrapolating this to how well the broader decision is supported.
We formulated metrics to assess a pattern’s implementation in each model, and
performed an ordinal regression analysis using these metrics as independent vari-
ables to predict the ground truth assessment. Our results show that every set
of decision-related metrics can predict with high accuracy our objectively eval-
uated assessment. This suggests that automatic metrics-based assessment of a
system’s conformance to the tenets embodied in each design decision is possible
with a high degree of confidence.

Regarding RQ3, we can assess that our microservice meta-model has no
need for major extensions and is easy to map to existing modeling practices.
More specifically, in order to fully model our evaluation model set, we needed
to introduce 25 component types and 38 connector types, ranging from general
notions such as the Service component type, to very technology-specific classes
such as the RESTful HTTP connector, which is a subclass of Service Connector.
Our study shows that for each pattern and practice embodied in each decision
and the proposed metrics, only a small subset of the meta-model is required.
The decision External API requires to model at least the Service, Client, and
the Facade component types and the technology-related connector types (e.g.
RESTful HTTP, Synchronous Connector, HTTP, HTTPS). The Persistent Mes-
saging for Inter-Service Communication and End-to-End Tracing decisions need
a number of additional components (e.g. Event Sourcing, Stream Processing,
Messaging, PubSub) and the respective connectors (e.g. Publisher, Subscriber,
Message Consumer and Messages Producer) to be modeled.
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8.2 Threats to Validity

We deliberately relied on third-party systems as the basis for our study to
increase internal validity, thus avoiding bias in system composition and structure.
It is possible that our search procedures introduced some kind of unconscious
exclusion of certain sources; we mitigated this by assembling an author team
with many years of experience in the field, and performing very general and
broad searches. Given that our search was not exhaustive, and that most of the
systems we found were made for demonstration purposes, i.e. relatively modestly
sized, this means that some potential architecture elements were not included
in our meta-model. In addition, this raises a possible threat to external valid-
ity of generalization to other, and more complex, systems. We nevertheless feel
confident that the systems documented are a representative cross-cut of current
practices in the field, as the points of variance between them were limited and
well attested in the literature. Another potential threat is the fact that the vari-
ant systems were derived by the author team. However, this was done according
to best practices documented in literature. We made sure only to change specific
aspects in a variant and keep all other aspects stable.

Another potential source of internal validity threat is the modeling process
itself. The author team has considerable experience in similar methods, and the
models of the systems were repeatedly and independently cross-checked, but
the possibility of some interpretative bias remains: other researchers might have
coded or modeled differently, leading to different models. As our goal was only
to find one model that is able to specify all observed phenomena, and this was
achieved, we consider this threat not to be a major issue for our study. The
ground truth assessment might also be subject to different interpretations by
different practitioners. For this purpose, we deliberately chose only a three-step
ordinal scale, and given that the ground truth evaluation for each decision is
fairly straightforward and based on best practices, we do not consider our inter-
pretation controversial. Likewise, the individual metrics used to evaluate the
presence of each pattern were deliberately kept as simple as possible, so as to
avoid false positives and enable a technology-independent assessment. As stated
previously, generalization to more complex systems might not be possible with-
out modification. But we consider that the basic approach taken when defining
the metrics is validated by the success of the regression models.

9 Conclusions and Future Work

In this work we have hypothesized that it is possible to develop a method to
automatically assess microservices tenets in microservice decisions based on a
microservice system’s component model. We have shown that this is possible
for microservice decision models comprising patterns and practices as decision
options. Our approach first modeled the key aspects of the decision options
using a minimal set of component model elements (which could be automatically
extracted from the source code). Then we derived at least one metric per decision
option and used a small reference model set as a ground truth. We then used
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ordinal regression analysis for deriving a predictor model for the ordinal variable.
Our statistical analysis shows a high level of accuracy.

While so far many studies on metrics for component model and other archi-
tectures exist, the specifics of microservice architectures and their particular
tenets have not been studied. As discussed in Sect. 2, only using general met-
rics does not help much in assessing microservice architectures. Our approach
is one of the first that studies a metrics-based assessment of multiple, very dif-
ferent microservice tenets. Our main goal is a continuous assessment, i.e. we
envision an impact on continuous delivery practices, in which the metrics are
assessed with each delivery pipeline run, indicating improvements, stability, or
deteriorations in microservice architecture conformance. With small changes, our
approach could also be applied, during early architecture assessment.

As future work, we plan to study more decisions, tenets, and related metrics.
We also plan to create a larger data set, thus better supporting tasks such as
early architecture assessment in a project.
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