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Preface

Welcome to the proceedings of the 18th International Conference on Service-Oriented
Computing (ICSOC 2020). ICSOC 2020 took place virtually, during December 14-17,
2020. Its aim is to bring together academics, industry researchers, developers, and
practitioners to report and share ground-breaking work in the area of Service Oriented
Computing (SOC). The objective of ICSOC 2020 was to foster cross-community
scientific excellence by gathering experts from various disciplines, such as Web ser-
vices, business-process management, distributed systems, mobile computing,
cloud/edge/fog computing, security/privacy and trust for services, cyber-physical
systems, Internet of Things (IoT), scientific workflows, services science, data science
and services, and software engineering. This edition of ICSOC built upon a history of
successful series of previous editions in Toulouse (France), Hangzhou (Zhejiang,
China), Malaga (Spain), Banff (Alberta, Canada), Goa (India), Paris (France), Berlin
(Germany), Shanghai (China), Paphos (Cyprus), San Francisco (California, USA),
Stockholm (Sweden), Sydney (Australia), Vienna (Austria), Chicago (USA), Amster-
dam (The Netherlands), New York (USA), and Trento (Italy).

The conference attracted papers co-authored by researchers, practitioners, and
academics from different countries. We received 137 research and industry paper
submissions from countries across all continents. Each paper submission was carefully
reviewed by at least five members of the Program Committee (PC), followed by
discussions moderated by a senior PC member who made a recommendation in the
form of a meta-review. The PC consisted of 179 world-class experts in service-oriented
computing and related areas (161 PC members and 18 Senior PC members). Based on
the recommendations, and the discussions, 26 papers were accepted (23 research papers
and 3 industry papers) making the acceptance rate 18.9% for full papers. We also
selected 16 short papers (11.6%). A vision track was introduced this year which
attracted 10 submissions. The committee rejected all the submissions as they were not
visionary. This track will be reconducted in the next edition to give the community a
forum for expressing futuristic ideas that can drive and guide ongoing research efforts.

The program we assembled is reflective of the breadth and depth of the research and
applications of SOC, organized into four main focus areas:

Focus Area-1: Service Oriented Technology Trends

— Focus Area-2: Blockchain Technologies

Focus Area-3: Industry 4.0 Technologies

Focus Area-4: Smart services, Smart data and Smart applications

Contributions discuss different topics including, but not limited to, service-oriented
engineering, run-time service operations and management, security, privacy and trust
for services, data science and services, Internet of Things (IoT), and services in
organizations, business, and society. Furthermore, the program includes key notes from
distinguished speakers.



vi Preface

In addition to the technical program consisting of the keynote talks, the main
research track, the industry track, the PhD symposium, and the demo session, the scope
of ICSOC 2020 was broadened by different workshops.

In addition, special thanks are due to the members of the Senior PC, the Interna-
tional PC, and the external reviewers for a rigorous and robust reviewing process.
The ICSOC 2020 Organizing Committee is also grateful to the workshop organizers for
their great efforts to help promote SOC research to broader domains. We are also
grateful to Zayed University, UAE, for supporting the organization of the event, and
the technical support for ensuring a successful online event. We would also like to
acknowledge all the members of the Organizing Committee and all who contributed to
make ICSOC 2020 a successful event. We also acknowledge the prompt and profes-
sional support from Springer, the publisher these proceedings in printed and electronic
volumes as part of the Lecture Notes in Computer Science series. Most importantly, we
would like to thank all authors and participants of ICSOC 2020 for their insightful
work and discussions.

We expect that the ideas that have emerged in ICSOC 2020 will result in the
development of further innovations for the benefit of scientific, industrial, and social
communities.

November 2020 Eleanna Kafeza
Boualem Benatallah

Fabio Martinelli

Hakim Hacid

Athman Bouguettaya

Hamid Motahari
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A Tribute to Florian Daniel’s Contributions
to Service-Oriented Computing

Marcos Baez, Boualem Benatallah, Cinzia Cappiello, Fabio Casati

Florian’s friends and colleagues

Florian Daniel left us abruptly at the age of 42. He left a void that can not be filled,
memories and teachings that will stay with us friends, colleagues, and students forever.
Florian is remembered as an active and prolific member of the ICSOC community,
contributing to the advancement of key areas of service-oriented computing, and
shaping the minds of a new generation of researchers. While it is impossible to con-
dense the impact of a creative, intelligent, and wonderful person like Florian in a few
paragraphs, we try to highlight his main contributions in the following.

Florian’s research in software-oriented computing is marked by the exploration into
a diversity of topics that led to fundamental, practical, and seminal work that benefited
the IC-SOC community and beyond.

This exploration started with contributions to service composition and orchestra-
tion, building on the technological foundation of distributed computing. His research
contributed with techniques, algorithms, and tools to leverage service interactions to
derive service dependencies, protocols, and ultimately service compositions [4, 5, 22,
26]. It helped cement the work on service composition [21] and highlight core concerns
and open questions.

In business process management, his work contributed most notably to process
intelligence, modeling, and compliance. In process intelligence, he focused on the
challenges of low-quality data, introducing the concept of uncertain key indicators, as
well as models and tools to address this problem [26, 24]. The research on process
modeling produced modeling languages (e.g., extensions of BPMN or BPEL) and
runtime environments for project-centered learning [8], resource lifecycle management
[3], user interface orchestration [18, 17], wireless sensor networks [6], and
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Fig. 1 Florian with friends and colleagues at ICSOC 2009, Stockholm

crowdsourcing [30]. In terms business compliance, it addressed the practical and
conceptual challenges in designing, executing, and evaluating compliance with regu-
lations governing business process, contributing with concepts [29, 28], techniques and
algorithms [27, 26], and tools [12].

His work also looked at challenges and opportunities that emerge at the intersection
of processes and crowdsourcing. It advanced the knowledge in this area with contri-
butions ranging from surveys that brought understanding to the notion of crowd-
sourcing processes [20] and associated quality attributes [15] to new approaches in the
modeling and execution of crowdsourcing processes that seamlessly integrate with
common BPM practice [30]. This line of research also extended to relevant application
areas, such as leveraging crowdsourcing for data mining [23] and activity matching in
BPM [25].

In his continuous exploration for new avenues for service-oriented computing, his
most recent work investigated the feasibility of leveraging blockchain, and particularly
smart contracts, to enable a blockchain-based, service-oriented computing paradigm
[14]. This work and its follow-up [19] are already motivating promising research in this
area.

Another important line of research that he pursued with passion had to do with
assisting the development of software-enabled services. Besides fundamental contri-
butions to the engineering of service-oriented systems, this produced seminal work in
Mashups, Ul-computing, and lately chatbot development. The work on mashups
contributed with one of the first mashup frameworks, a universal integration approach
for data, application logic and Uls [11], domain-specific mashups [7], and a complete,
conceptual tool suite for the development of custom mashup platforms [31]. The
experience gained in mashups, led Florian to propose a paradigm shift in end-user
programming, moving away from APIs and Web Services to software artefact end-
users truly knew: the graphical interface. This motivated his work on Ul-oriented
computing [10, 13], where the goal was to provide a development environment where
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end users would leverage existing UI components and data directly from rendered Uls
to build their solutions, without going through APIs and services. Perhaps the final
materialization of this A Tribute to Florian Daniel’s Contributions to Service-Oriented
Computing idea can be seen in his latest work on deriving chatbots directly from
software artefacts, allowing users to engage in dialogs directly with databases [16] and
websites [1, 9], leading to the definition of chatbot integration as an emerging new
problem [2].

Last but not least, Florian represents and embodies the spirit of what the ICSOC
community — and the research community in general — should be. Deep technical
competences, humbleness, enthusiasm, uncompromising professional integrity, focus
on topics that matter, and most importantly a natural propensity to help others in any
way possible, always with a smile and a positive, constructive, make-you-feel-good
attitude. Let’s all remember the lessons he gave us by example to make our community
a great place to be.
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Abstract. A microservice-based system is composed of a set of
microservices that are developed and deployed independently for agile
DevOps. Intensive and iterative adaptations/upgrades of microservices
are essential for such systems to adapt to user requirement changes, and
as a consequence, result in the phenomenon of “multi-version microser-
vice coexistence” in a system. Besides traditional API-based functional
dependencies between different microservices, there appear complicated
dependencies between different versions of difference microservices. The
complicated dependencies dramatically deteriorate the maintainability
of microservice systems, especially when systems evolve to adapt to user
requirement changes. To meet this challenge, a version dependency model
is proposed for describing the complex dependencies between different
versions of microservices, and a greedy-based optimization algorithm
is developed for generating an optimal evolution plan. A programming
framework (MF4MS) and cloud-edge based infrastructure (MI4MS) are
implemented to facilitate microservice systems to automatically execute
the evolution plan. Experiments show that the proposed approach per-
forms well to cope with self-adaptation in the situation where compli-
cated version dependencies exist.

Keywords: Microservice systems - Multi-version coexistence + Version
dependency - Self adaptation - User requirement changes

1 Introduction

As business logics become more and more sophisticated in ubiquitous comput-
ing scenarios like smart city [4], both container technology and microservice
architecture pattern gain much more attentions because of their advantage on
continuous delivery and agile DevOps nowadays [7]. Independent development
and deployment of microservices lead to complex dependencies between them.
Since microservices communicate with each other through APIs, there are call
dependencies between them, which can be represented as a service dependency

© Springer Nature Switzerland AG 2020
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graph (SDG) [10]. Once a microservice is upgraded to a new version, the call
dependencies may change, and other microservices that depend on it may fail
to invoke its APIs due to incompatibility caused by the upgrade. Consider-
ing the situation that some users would keep requesting specific older versions,
microservices developers should not update all microservice instances that have
been deployed in the system. As a consequence, there might be multiple versions
of individual microservices that are co-deployed together in the system, which
is called multi-version coexisting. Further, version dependency occurs,
which implies the dependencies between different versions of different microser-
vices in multi-version coexisting system. A simple example is shown in Fig. 1(a).
Due to the enormous amount of users and services in the scenarios of edge
computing, there are lots of changes in user requirements, which leads to the
decline of Quality of Service (QoS). Since the multi-version coexisting leads
to an increase in version dependency complexity, it is a challenge to react to
the user requirement changes with version dependency in such a scenario. The
service system should evolve itself automatically to adapt to the user requirement
changes. So that, it can keep the QoS stable with the consideration of version
dependency in cloud-edge environments [15], as shown in Fig. 1(b).
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Fig. 1. Introduction for multi-version coexisting microservice system

In this paper, we consider three research questions (RQs) on multi-version
coexisting microservice system evolution in cloud-edge environment:

RQ1 How to model the version dependency between microservices?
Due to the independent version trees of each microservice, the version
dependency changes over time, and it is essential for the service sys-
tem to model the version dependency at runtime. Moreover, the existing
approaches of describing the call dependency by the SDG cannot cope with
the iterative development of microservices. Microservices should extend
their version dependency dynamically when compatible upgrades happen.
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RQ2 How to generate an optimal evolution plan with version depen-
dency? To satisfy changing user requirements, the cost of the evolution
plan should be concerned since each feasible evolution plan has a specific
cost, like the monetary cost, service downtime, etc. An optimal evolution
plan should be generated in a limited time with the consideration of the
version dependency.

RQ3 How to execute the evolution plan automatically with version
dependency? Due to the complexity of the multi-version coexisting
microservice system, the system should be self-adaptive [17], which means
it should have the ability to monitor the runtime state of the system,
decide when and how to evolve the system and execute the plan automati-
cally. The correctness of request routing should be ensured and the version
dependency should be satisfied in the multi-version coexisting microservice
system during evolution.

The main contributions and innovations are as follows:

— A model named Version Dependency Model (VDM) was proposed for describ-
ing the version dependency for RQ1, which copes well with the iterative
deployment. A programming framework MF4MS was also implemented to
integrate the version dependency into source code, which enables multi-
version coexistence and automatic dependency analysis before deployment.

— A greedy based algorithm was presented to find the optimal evolution plan with
the consideration of the version dependency for RQ2. It aims to find a feasible
solution to improve the QoS with the changes in user requirements. The con-
straints of computing resources and version dependency are concerned.

— An infrastructure MI4MS based on the MAPK-E reference model [8] was
developed for RQ3. It adopts the MAPK-E model and enables the self-
adaptation to user requirement changes with version dependency. The correct-
ness of request routing and the version dependency can be satisfied according
to the collaborative work between MI4MS and MF4MS.

Experiments were conducted at different scenarios that are common in the
real world, and the experiments are conducted in real cloud-edge environment.
The results show that our approach performs well according to user requirement
changes with version dependency, and the QoS keeps stable, meanwhile.

The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 describes the VDM. Section 4 details the optimal problem.
Section 5 presents the programming framework and infrastructure. Section 6
shows the experiments. Section 7 concludes the paper and explores future works.

2 Related Work

The problems in the multi-version coexistence, evolution plan generating, and
self-adaptive service system have been researched in recent years, and some solu-
tions were proposed.



6 X. He et al.

For the multi-version coexistence, the work [16] explored autonomic ver-
sion management in the microservice system. It considered versioning both at
application and company level to ensure the self-healing ability. The work [13]
presented APP-bisect, which can analyze the dependencies between services
and find the best coexisting patterns to solve the performance problems. The
work [11] proposed a solution named VMAMYVS to analyze the dependencies
between microservices, monitor the system, and visualize the dependencies. The
work [2] extended the microservice architecture. The clients and microservices
in the system can request for the specific version of microservices in the multi-
version coexisting system. The work [12] erased the gap between different ver-
sions of the same service by adding adaptor dynamically. Though the work [3]
allowed to deploy services with dependencies automatically, the multi-version
coexistence was missing. Although the microservices dependencies are concerned
in these works, they focus less on the self-adaptive evolution according to the
user requirement changes.

In terms of the evolution plan generating, the work [5] evaluated three algo-
rithms for fog service replacement considering resource usage, service spread,
and latency. The work [6] proposed a optimization policy for service place-
ment to improve network usage and service latency. However, call dependency
is immutable in current works, which is the opposite of the real world. And user
requirement changes are not taken into account. Thus, algorithms should be
extended for the challenge with call dependency and user requirement changes.

For the self-adaptive service system, the work [9] developed MiCADO for sup-
porting horizontal scalability by an orchestration layer according to the network
traffic. The work [14] applied the MAPE-K model to automatically optimize the
deployment according to the performance. The work [1] presented Kubow for
automated management of applications. However, the user requirement changes
are not concerned in those works, and the version dependency is overlooked.

In summary, current studies need to be extended for self-adaptation with vari-
able version dependency between microservices according to user requirement
changes, and it is urgent to solve the problem since the problem is ubiquitous in
the real world.

3 Version Dependency Model

Considering the service dependency graph can only describe the call dependen-
cies between APIs of specific versions of microservices, which is not suitable
to iterative development with changing service dependencies, we propose the
version dependency model based on the service dependency graph.

Definition 1 (Service). A service is defined as s =< Z,¢,m,v >, s € S, where
S denotes the service set:

— T ={i1,...,0n} is a set of functional interfaces offered by s. Each interface is

denoted by i; =< f;,1;, d§”7d§“t >, where f; is the functionality that s can

offer via i; and is in the form of unstructured texts describing the functional
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semantics; [; describes the constraint on quality attributes that ¢; offers; d;-"
and d;’“t are estimated sizes of ¢;’s input and output parameters (unit: KB).

— c is the computing resource requirement level of s. The execution of a service
requires many types of computing resources such as CPU, RAM, hard disk
storage, and network bandwidth.

— m is the maximum number of users which can be concurrently served by s.

- v=<MAJOR,MINOR, PATCH > is the version number of s. The Seman-
tic Version is adopted: MAJOR changes when incompatible API change hap-
pens, MINOR changes when adding functionality in a backward-compatible
manner, and PATCH changes when making backward compatible bug fixes !.

Definition 2 (Dependency Categories). There are three kinds of depen-
dency for every service in the microservice system: P = {p,,p;, ps}, where

— pu(8,4,v) =< 8,4,V > stands for calling the specific interface i of service s
with versions V', where V' = {v1,v2, ..., };

— pi(s,i,L) =< s,i,L > stands for calling the specific interface ¢ of service s
with SLAs L, where L = {ly,la, ..., 15 };

- py(f, L) =< f,L > stands for calling any API of function f with SLAs L;

For the traditional service dependency graph, the API invoking is usually
hardcoded, such as the OpenFeign?. Without the code modification, the depen-
dency between microservices can not be changed if the called microservices are
upgraded due to bug fixes, which can not adapt to iterative development. With
these three kinds of API calls, the service system can route the requests flexibly.

Definition 3 (Version dependency Model). The model is described as
VDM = {< s,v,P > |s € S}, where P = {p1,p2,...,Dn},p; € P stands for
the calling of the dependency set of service s with version v.

The traditional call dependency in most microservice frameworks like Spring
Cloud can be described as service name and APIs. Once some microservices are
upgraded to new versions with incompatible changes, other services depend on
them need to be modified in code level, which increases the burden on developers.
What’s worse, the developers must be careful about the versions of the services
in the system for correctness of requests routing. Coping VDM with MF4MS
detailed in Sect. 5 allows changing the dependencies without code modification
or rebooting instances at runtime.

VDM extends the traditional SVG with flexible version dependencies between
services by p,. It allows the multiple version dependencies description of the same
microservice, which allows the system to re-direct the requests to the compatible
versions. Besides the traditional call dependency, VDM provides other two new
dependency descriptions p; and py. p; is used when trying to request the APIs
of a service with specific SLAs. The system can automatically route the requests
with p; to the instances with the target SLAs even there are frequent upgrades for

! https://semver.org/.
2 https:/ /spring.io/projects/spring-cloud-openfeign.
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the microservices. py allows the developers request the APIs by functionality and
expected SLAs, and it further decouples the dependencies between microservices.
With pg, the service system can re-direct the requests to the instances with the
best SLAs and performance. And the developers do not need to modify the source
code during the independent iterative development of different microservices.

4 Optimization Algorithm with Version Dependency

To keep QoS stable when user requirements change, the algorithm needs to gen-
erate an optimal plan considering the version dependency and other constraints.
In this paper, the average response time is our main concern.

4.1 Problem Definition

Definition 4 (User Requirement). A user Requirement is defined as d =<
u, p,loc,t > where u is the user, t is the time when d is raised by u, loc is the
location of u at the time ¢, and p is the Requirement description, where p € P.
The Requirement set is described as D, where d € D.

Definition 5 (Server Node). A server node e =< type, ¢, loc > where type €
{ES,CS} is the type of e ( ES: an edge server, C'S: a cloud server), c¢ is the
total computing resources e can offer for service instances deployed on it (defined
by Key-Value pairs, same as Definition 1), and loc is e’s geographic location
(defined by latitude and longitude). The connection between two nodes e;, e,
are described by bandwidth (in Mb/s) and time delay (in milliseconds). E stands
for the set of the server node, e € E.

Definition 6 (Microservice Instance). A microservice instance 7(s) =<
s,e >,7(s) € T, where s is the service that 7 belongs to, e is the server node on
which 7(s) is deployed.

Definition 7 (Direction State). A direction state r(d) € DS of a user require-
ment d records a mapping between a service request in d and a microservice
instance that is selected to fulfill the request. r =< 7(s),7 >, where ¢ is the
corresponding interface.

Definition 8 (Deployment State). Deployment state of a service system at
time ¢ is denoted by O(t) =< S(t), E(t),T(t), D(t), DS(t) >, where the five
components are the sets of services, cloud/edge server nodes, deployed instances,
user requirements, and user requirement direction states, at time ¢, respectively.

Definition 9 (Evolution operations). There are three evolution operations,
i.e., Switch, Add, and Remove. OP = {Switch, Add, Remove}.

— Switch(d, 7i(Sm), 47 (Sn), i) is to switch a user requirement d from interface
i; of service s,,’s instance 7; to the interface i) of service s’s instance 7;. It
is possible that m =n or j = k.
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— Add(7(s),e) is to create a new instance 7 of a service s on server node e;
— Remove(7(s)) is to stop an existing instance 7 of a service s.

Problem Definition. A service system evolves from time ¢ to ¢t + § by a set of
operations OP = {oplop € OP}, and the § denotes the time interval from the
last evolution:

o) 2L o(t + 6) (1)

Furthermore, to minimize the average response time and evolution cost, the
optimization problem is described as Eq. 2a, where the rt(.) means the response
time defined as the sum of the delay and the transfer time of in/out data:

D oP
min(ijdl;T(d)), mm(z cost(op)) (2a)
Q(7(s)) >= Q(d;), vd; € D(t +0)
558D on ey T(T) <= Timaxler), Vep € E(t+9) (2b)
1 < ns(7) < NSmax(T), VT eT(t+0)

The first constraint assures that the quality level that each user requirement
expected to get from service can be satisfied by the selected service instance.
The second constraint makes sure that the total computing resources that all
instances consume on one server node do not exceed the maximal resource offer-
ing of the node. The number of users that have been allocated to one service
instance cannot exceed the maximal user number that the instance can serve
concurrently,and it is assured by the last constraint. It should be noticed that
the version dependency should be taken into consideration.

4.2 Optimal Evolution Algorithm

Due to the unknown future, it is impossible that to calculate the DS in the
next status during the optimal plan generation. Thus, the algorithm consists
of two phases: the planning phase and the running phase. The former focuses
on providing new service placement and routing rules during planning, and the
latter concentrates on the requests routing at runtime.

For the planning phase, the output of the algorithm is the deployment changes,
which consists of Add and Remove operations, and a set of rules to help to route
the requests. The rules describe what service should be used to serve a call with
dependency p € P. A greedy based algorithm is proposed as Algorithm 1.

The basic idea of this algorithm is trying to provide the lowest average response
time with as little cost as possible for each edge node. The service serves most
requirements with less resources are chosen by the ratio, as shown on line 6-10. It
is worth pointing out that the get M et Demands function considers the compat-
ibility of versions with MINOR and PATCH version changes. After that, line 11
calls the buildMiniSvcT ree to construct the service tree with version dependency.
A breadth-first strategy is used to solve the dependencies of the given services.
For each dependency of every service, the services in the given set will be used if
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Algorithm 1. The greedy based algorithm at planning phase
Require: Last system deployment status os
Ensure: Deployment changes and routing rules

1: S « getServices(os), N « getNodes(os), D «— getDemands(os)
2: unDeployedSve = 0, rules = ()

3: ns « createEmptyDelopStatus()

4: for n in N do

5 D,, — getNodeDemands(D,n), S, =0
6 while size(D,) #0 do

7 s « pickOneService(Dn, S)

8: D, — getMetDemands(Dy, s)

9: Sp =8, U{s}, Dn =Dy, \ Ds

10: end while

11: T, < buildMiniSvcTree(Sp, S)

12: rules < rules U get Rules(Ts)

13: Sn «— getAllServices(Ts)

14: instSizeMap «— calcInst Num(Sy, D)
15: while (s «— getNextSvc(Ty)) # null do

16: if deployInsts(ns,n, s,instSizeMap[s]) = true then
17: Sn — Sn \ {s}

18: end if

19: Ts — Ts \ {s}

20: end while

21: unDeployedSvc «— unDeployedSvc U Sy,

22: end for

23: for s in unDeployedSvc do

24: if otherNodesCanSupply(s) = false then

25: deployOnMostCloseNode(s, ns)
26: end if
27: end for

28: return calcDif f(ns,0s), rules

they satisfy the dependency, or the service that meets most of the requirements is
selected. The routing rules are also returned as tree’s edges.

On line 14, calcInstNum calculates how many instances are needed consid-
ering user capabilities of services and the count of requirements. It should be
noticed that the call coefficient is considered because when calling one service,
it can invoke other services several times instead of once, and the coefficient
presents how many times the dependency is called when calling the API. The
coefficient is calculated with the call history obtained in Sect. 5 on average.

When deploying instances on line 15-20, get NextSvc is used to pick up one
service without parent node in the tree, and it serves more requirements with
lowest resource usage. If the edge node has no sufficient resources for deploying
new instances, the existing instances on other nodes with enough user capabilities
are used instead of deploying new one, otherwise creating new instances on the
closest node with enough resources, as shown on line 23-27.
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For the running phase, the routing rules generated in the planning phase are
used. With the routing rules that describe which service is used to satisfy for
each p € P, the instance with enough user capabilities on the closest server node
to the requester is selected for each request.

5 Infrastructure and Programming Framework with
Version Dependency

To empower the system with self-adaptation, the MAPE-K model is adopted.
However, without a specific programming framework, the system can not analyze
the version dependency and deal with the multi-version coexistence. Both the
infrastructure MI4MS and programming framework MF4MS based on Java and
Spring Cloud are implemented for self-adaptation.

5.1 Overview

The MI4MS aims to empower the microservices with the help of the MAPE-
K model. Therefore, the system can automatically detect the user requirement
changes, generate the evolution plan, and execute the plan automatically. As
shown in Fig. 2, there are five main components in the MI4MS:

Service Analyzer Source

Repositories

=
Control Center J\F

Version N \
ke dd i
Dependency Model \’MEMM Build Center

L)

Docker Images

Cloud Analyzer Planner Executor T
g Docker
) g Repositories
Monitor E
B
ll’i"'ﬂ’“f”j soe ___________ - R ) SR

Edge i
L Docker Images |
Cluster Agent }
|
o I
= I
= Registery |<Ubemetes |
¥ BIStrY | ppiserver |
- I

E I
3 I
Worker Nodes |
|
. == e

Requests T Response
End Users l

Legends

" Wl Programming framework | Docker container () Functionaiity (Different colors stand for ifferent functions)

Fig. 2. Overview of the MI4MS
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— Control Center: It is the essential part of MI4AMS that controls the entire
service system. It implements the self-adaption control loop, which monitors
the system at runtime, analyzes current QoS of system, generates an evolution
plan with the algorithms in Sect. 4.2, and executes the plan.

— Service Analyzer: It aims to analyze the source code of the microservices
integrated with MF4MS to obtain the service information defined in Defini-
tion 1 and extract the dependencies of the service. It works with the Control
Center to build the version dependency model described in Sect. 5.2.

— Cluster Agent: It is responsible for fetc.hing the deployment status about
the edge cluster defined in Definition 6 with the help of Kubernetes API
Server? and Microservice Registry Server*, and passing it to the Control
Center. Moreover, it accepts the evolution operations from the Control
Center and executes them as detailed in Sect. 5.4.

— Gateway: It aims to route all the requests from the service instances and users
with unified form defined in Definition 2. It copes with the Cluster Agent to
perform the request routing in a multi-version coexisting microservice system,
as shown in Sect. 5.3. The request history is also cached for calculating the
QoS and the call coefficient in Control Center.

— Build Center: It is responsible for packaging the microservices from source
code and building the dockers automatically with Maven® and Jenkins®.

At the beginning of every time window, the Control Center fetc.hes the
latest deployment state and request history for QoS analyzing and call coeffi-
cient calculating at the monitoring step. After analyzing, an evolution plan is
generated and executed, and the control loop waits for the next execution.

The programming framework MF4MS is implemented based on the annota-
tion in Java. MF4MS takes the responsibility to integrate the microservices with
version dependency support, including loading the version dependency descrip-
tion in application.yaml files detailed in Sect. 5.2 and sending the requests
with version dependency to other instances detailed in Sect. 5.3.

5.2 Version Dependency Model Generation

For the developers, the microservice needs to be integrated with MF4MS at
the source code level. The configuration of version dependency should be inte-
grated into configuration file application.yaml, and three kinds of dependen-
cies defined in Definition 2 are supported, as shown in Fig. 3(a). For the func-
tionality and SLAs description of each API, the MFuncDescription annotation
is needed, as shown in (1) of Fig. 3(b), and developers should annotate each
API function in every controller with it. For other information like the resource
usage, max user capabilities of services, and source code repository should be
included in the service description when the service enters the system.

3 https:/ /kubernetes.io/docs/concepts/overview /components / #kube-apiserver.
* https://microservices.io/patterns/service-registry.html.

5 https://maven.apache.org/.

5 https://www.jenkins.io/.
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Once a new service enters the system, the Control Center sends the source
code repository of the new service to the Service Analyzer to analyze the ser-
vice of every version. The tags of the source code are used to distinguish different
versions of the same service. By analyzing each tag of the given repository at
the source code level with JavaParser, the Service Analyzer extracts the ser-
vice information and the version dependency of every version from controller
classes and configuration file, and returns the result to Control Center. Then
the results are saved to the version dependency model, and the Build Center
is called when no docker image exists for the new service.

mvfums :
version: 1.0.1 @Controller
dependencies: public class MainController {
— name: dependencyl
dependence:

— id: navigation
serviceName: SampleGaoDe
patternUrl: /navigation
versions:

—31.1.1
—d.2:-2

- id: weather MResponse p = new MResponse();
function: weather MResponse response =
slas: MVerRequestUtils.request("weather", p, RequestMethod.POST, request);
_9

— id: pay /.. (2)
function: pay
slas: return response;

private Logger logger = LogManager.getlogger(this);

@PostMapping(path = "/taxi")
ponseBod:
@MFuncDescription(value = "taxi", level = 1) | (1)
pubTic MResponse weather(
@RequestBody MResponse params, HttpServletRequest request) {

-2 }
—i3 }

(a) MF4MS configuration (b) Controller example with MF4MS

Fig. 3. An example of the MF4MS integration

5.3 Version Dependency Based Requesting

The Gateway and Cluster Agent work together to route requests with version
dependency. For all the requests from both instances and users, the developers
need to use the MVerRequestUtils.request provided by MF4MS to send a
request with a unique dependency id defined in the configuration file, as shown
in (2) of Fig. 3(b). Since the data formatting between different APIs is not our
primary concern, the MResponse type, which is a key-value map, is provided to
hold all the parameters or return values.

The requests are sent to the Gateway by MVerRequestUtils.request for re-
directing with version dependency. When there is no routing cache in Gateway
for the requester, the Cluster Agent is called. The Cluster Agent finds an
instance with the running phase algorithm detailed in Sect. 4.2 and returns the
URL to the Gateway. After that, the Gateway re-directs the request according
to the routing info and caches the info.

5.4 Version Coexistence Evolution Plan Executing

There are three kinds of operations: Switch, Add, and Remove. For Switch oper-
ation, the Control Center sends the routing rules to the Cluster Agent. All



14 X. He et al.

the caches in Gateway are deleted and all the requests need to be re-directed
by the Cluster Agent with the new rules. To execute the Add and Remove, the
Control Center sends the operations to the Cluster Agent, and the operations
are transformed to API calls to Kubernetes API Server since it provides conve-
nient APIs for managing the dockers. The Blue Green Deployment is adopted
here to erase the service down time during evolution.

6 Experiments

6.1 Experiment Setup

The experiments wre conducted in a proto system. Five 8vCPU and 16 GB
RAM AWS EC2 instances with Kubernetes 1.18.2 were used as the edge clus-
ter. The delay between each other was less than 1ms, and the bandwidth was
1000Mb/s. Other two AWS EC2 instances ware used as the cloud servers. The
Control Center, Service Analyzer, and Build Center were deployed on the
cloud server. Cluster Agent was deployed on the master node of the edge clus-
ter, and Gateway was deployed on every edge server.

There were two service sets that we created according to the taxi, shopping,
payment scenarios in the real world. The set 1 contained 6 services, and each
service had 0-2 dependencies. There were no more than two layers of dependency,
i.e., service A depends on service B, and service B has no dependency. The set
2 extended service set 1. It contained 4 new services, and each of them had at
least three layers of dependency. In both service set 1 and 2, every service had
2-3 APIs, and the size of input and output data ranged from 1 to 20 KB. For
each service, they had 2-3 versions, and the dependencies of different versions
of the same service differed from other versions. Thus, service set 2 had more
complex version dependency than set 1. All three kinds of dependency methods
were included in set 1 and 2. The max user number ranged from 100 to 300.

For the users, there were 2000 simulated users in the system, and they were
evenly distributed around five edge servers. All the users sent their requests to
the Gateway on the closest server node every 5-10 seconds. The average response
time and the count of failed user requirements were used as the evaluation indi-
cators. The service availability was also adopted to evaluate the performance
of the system, which is calculated by service down time divides running time.
Only the affected services were included during the calculation of the service
availability.

Since existing algorithms are not suitable for this problem, the performance
of the solution is evaluated in two common scenarios from the real world.

6.2 Scenario 1: Service Upgrade

Scenario 1 was simulated according to the service upgrade situation, which is one
of the most common scenario in the real world, with service set 1 and 2. It was
simulated by dividing users into three groups: upgrading requirements just after



Multi-version Coexisting Microservice Systems 15

new version releases, upgrading in 5-10 min after the new release, and keeping
the old version. The time window of the control loop was set to 5 min, and the
experiments 1 and 2 were conducted with service set 1 and 2 respectively. The
results are shown in Fig. 4(a), Fig. 4(b), and Table 1.

The results show that after detecting failed requirements, the system evolved
itself and kept QoS stable with both simple and complex version dependency. The
QoS of both the scenario with simple dependencies (service set 1) and scenario
with complex dependencies (service set 2) were improved after the evolution since
there were no failed user requirements and average response time was stable. It
should be noticed that the average response time increased first then decreased
during evolution. The reason is the recalculation of routing info requires sending
requests from Gateway to Cluster Agent, which increases the average response
time. After caching the routing info, the average response time decreases. The
service availability in Table 1 also shows the system works well with the user
requirement changes in the multi-version coexisting system.
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To study the effect of different time windows, experiment 3 was conducted
with a 10 min time window. Experiment 3 had the same settings to experiment 2,
including the time of service upgrades and user settings, except the time window
size. The results in Fig. 4(c) and Table 1 show that the service availability
decreases a lot since the system needs more time to discover the unsatisfied
requirements with a bigger time window than with a smaller one. However,
the bigger time window leads to less system evolution. There were 4 times of
evolution in experiment 3 while 5 times in experiment 2, which means the other
users in the system are less affected by the fluctuations in average response time.

Table 1. Service availability of experiment 1, 2, and 3

Experiment | Service down time in total (minute) | Service availability (%)
1 3.0 95

2 2.5 95.83

3 28 53.33

6.3 Scenario 2: New User Requirements

This experiment simulates another common scenario in the real world: new ser-
vices are released after users come up with new requirements. This scenario
differs with experiments 1, 2, and 3 because the users ask for new requirements
that the system can not provide. After the appearance of new requirements, new
services that can satisfy the new requirements are released in a random time.
Experiments 4 and 5 were conducted with service set 1 and 2, and the time
window was set to Smin. Since the service availability is severely affected by
when the new services released, only the average response time and the count of
failed requirements are adopted for evaluation. The results are shown in Fig. 5.

The results show that our solution also evolved itself for new user require-
ments. The system responsed quickly in one time window after the release of new
services that could satisfy the unmet user requirements with both simple and
complex version dependencies between services automatically. New user require-
ments were satisfied after the evolution, which keeps the QoS stable.
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7 Conclusion

In this paper, we proposed the version dependency model for describing the com-
plex dependency between microservices. A programming framework MF4MS and
a self-adaptive system infrastructure MI4MS with a greedy based evolution algo-
rithm were implemented for satisfying the user requirement changes automat-
ically with version dependency. The performance of the system was evaluated
in two common scenarios. The results show that MF4MS performs well with
complex version dependency and keeps the QoS stable.

The future work includes detecting the lack of function due to new require-
ments and evolving the system to fill in the functional holes automatically.
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Abstract. Continuous experiments, including practices such as canary
releases or A/B testing, test new functionality on a small fraction of the
user base in production environments. Monitoring data collected on dif-
ferent versions of a service is essential for decision-making on whether to
continue or abort experiments. Existing approaches for decision-making
rely on service-level metrics in isolation, ignoring that new functionality
might introduce changes affecting other services or the overall applica-
tion’s health state. Keeping track of these changes in applications com-
prising dozens or hundreds of services is challenging. We propose a holis-
tic approach implemented as a research prototype to identify, visualize,
and rank topological changes from distributed tracing data. We devise
three ranking heuristics assessing how the changes impact the experi-
ment’s outcome and the application’s health state. An evaluation on two
case study scenarios shows that a hybrid heuristic based on structural
analysis and a simple root-cause examination outperforms other heuris-
tics in terms of ranking quality.

1 Introduction

The ever-increasing need for rapidly delivering code changes to fix problems, sat-
isfy new requirements, and ultimately survive in a highly-competitive, software-
driven market has been fueling the adoption of DevOps practices [2] by many
companies. DevOps promotes the continuous deployment [13] of code to pro-
duction, breaking the traditional barrier between development and operations
teams and establishing a set of software development methodologies heavily
based on tools to automate software builds, tests, configuration, and deploy-
ment. To further increase development agility, companies are frequently following
a microservice-based [10] software architecture style. Microservice-based archi-
tectures are an evolution of the idea of service-oriented architectures [5,20], in
which applications comprise a multitude of distributed services.

The agility facilitated by DevOps practices and microservice-based architec-
tures enables companies to perform continuous experiments [16], which test the
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functionality and performance of new versions of application components under
production load. A common embodiment of continuous experimentation is to
perform canary releases [6]. In this practice, which resembles testing in produc-
tion, one compares the test version (the “canary”) of a microservice against
the current version (the baseline) with respect to performance and correctness.
Initially, the canary is exposed to requests of a small portion of users. If its per-
formance and correctness remains acceptable, it is gradually exposed to more
users until it replaces the baseline. If it fails to perform as expected at any time,
all traffic is shifted to the baseline and the canary is terminated. Crucially, deter-
mining the health of a canary requires (1) collecting and storing the metrics of
interest, and (2) comparatively analyzing the baseline and canary metrics.

Previous work [3,18] on assessing the outcome of continuous experiments
considers the microservice under test in isolation, focusing on service-level met-
rics alone. These approaches ignore the fundamental principle that microservices
communicate with each other and that these interactions affect the overall appli-
cation behavior. For example, performance issues in a canary version of a ser-
vice propagate delays (e.g., higher response times) within the network and when
solely judging on isolated service-level metrics, multiple services could appear
to misbehave. Given the scale of modern microservice-based applications com-
pounded by a myriad of possible inter-service dependency patterns, identifying
the root cause of such issues is challenging, especially when multiple microser-
vices are under experimentation, e.g., running multiple canaries simultaneously.

We contend that continuous experimentation in microservice-based applica-
tions must consider the topology underlying all inter-service calls so as to allow
developers to evaluate new versions holistically as opposed to in isolation. Out
of dozens or even hundreds of identified (topological) changes it is crucial to
assess those in detail that cause effects on the application’s health state. There-
fore, we propose an approach to not only identify and visualize changes between
baseline and canary versions, but also heuristics to rank these changes based on
their potential impact with the ultimate goal to guide developers when assessing
continuous experiments. We implemented our approach as a research prototype
that supports analyses in the context of multiple experiments running in paral-
lel. Our approach starts with inferring interaction graphs for both the baseline
and canary versions from distributed traces collected from microservice-based
applications. We then compare these interaction graphs to identify topological
changes, and rank these changes. A visual frontend allows developers to review
specific changes and associated quality metrics (e.g., response times).

In summary, this paper makes the following contributions: (1) a characteri-
zation of topological changes that occur in microservice-based applications; (2) a
general approach for ranking those observed changes; (3) three concrete ranking
heuristics as embodiments of this approach; (4) a proof-of-concept implementa-
tion; and (5) an evaluation of the quality of the produced rankings.

Our evaluation shows that a heuristic combining principles of both structural
analysis and performance analysis performs best across our evaluation scenarios.
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2 Related Work

Previous research has empirically assessed continuous experimentation practices
and challenges [15,16]. These works analyze reports on continuous experimen-
tation practices by selected companies [8,17], and also present data collected
more broadly using interviews and surveys. They find that software architec-
tures based on components that can be deployed and operated independently
(e.g., microservices) are essential for continuous experimentation, but also attest
that root-cause analysis of observed problems is challenging. Our work attempts
to address these challenges by considering the interactions in which updated
services participate.

Multiple methods and systems have been proposed for continuous experimen-
tation. Kraken is a system proposed by Facebook [19] for traffic routing between
services, servers, or even data centers to identify performance bottlenecks using
actual user traffic. Bifrost [14] formalizes continuous experiments consisting of
multiple phases. Experiments that are specified in a domain-specific language
are automatically executed by a middleware using smart traffic routing. The
MACT framework [4] for management, scalable execution, and interactive anal-
ysis presents an alternative way to express experiments integrating recurring
tasks around experiment documentation and management, scaling, and data
analysis with the goal of reducing specification efforts.

The work by Sambasivan et al. [11] is the closest to our approach. It com-
pares distributed traces to diagnose performance changes, distinguishing between
structural changes and ones in response-time. While Sambasivan et al. assume
similar workloads for the variants, our approach focuses on the topology and on
experimentation settings to assign only a small fraction of users to experimental
variants. Due to our set of change types, the comparison between the experimen-
tation variants is more fine-grained in our approach. This does also apply for
comparing our approach with Kiali!, a tool that helps observing services within
service meshs such as Istio?. While Kiali provides some basic health assessment,
our approach dives deeper by not only analyzing topological differences but also
ranking them to guide developers assessing the overall application’s health state.

Ates et al. [1] proposed Pythia, a framework making use of distributed tracing
to automatically enable instrumentation such as logs or performance counters
on those layers (e.g., application, operating system) that are needed to diagnose
performance problems. Santana et al. [12] investigates how syscall monitoring in
combination with a proxying approach can be used to obtain and inject tracing-
related meta-information with the goal to avoid code changes in the application
to propagate trace information. Our work relies on distributed traces collected
by the Istio service mesh using Envoy® proxies in combination with Zipkin* to
infer topologies of microservice-based applications.

! https://kiali.io/.

2 https://istio.io/.

3 https://www.envoyproxy.io/.
* https://zipkin.io/.
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3 Characterizing Change Types

In the following, we characterize recurring change types we identified when com-
paring service topologies. For this purpose, we derive formal representations of
microservice-based applications and service-interaction graphs that frame our
basis to define topological change types.

3.1 Microservice-Based Application

A microservice-based application A consists of a set of interacting services A =
{51, 82,...,8n}. Services are available in different versions, e.g., stable version
1 of the frontend service and a new experimental canary version 2 depicted
in Fig. 1 (Left). For a service s; € A this is represented as a tuple VS; =
(81,852, -, Sim), Where s; 1 ...8; ., are the corresponding versions j of service
s; with 1 < 7 < m. Note that Fig. 1 (Left) not only represents our running
example, but also depicts a topological difference which we will cover in detail
in later sections when we revisit this example.

o @ search

product

recommendation G>_>
b

vi
frontend
shipping

details

payment

Fig. 1. Topological difference graphs of microservice-based sample applications. Left:
running example (scenario 1). Right: scenario 2. Green depicts added functionality
or calls, red depicts removed functionality or calls, and yellow depicts service version
updates. (Color figure online)

In the context of continuous experiments a microservice-based application is
available in multiple variants VA = (vas, ..., vap) at the same time. An applica-
tion variant comprises a combination of services (s, ..., s;) with i < j < k and
s;j € A. For each of those services s; € A a concrete version u with s;, € VS;
is selected. In Fig. 1, the baseline variant of the application includes version 1 of
frontend, while the canary variant includes the new version 2 of frontend.

3.2 Interaction Graph

In a microservice-based application, version j of a service s; interacts with other
services by calling one or more of their endpoints. In our model, this interaction
is represented by a directed graph G = (V, E) in which V' and E denote sets of
vertices and edges respectively. Every service s; ; of an application corresponds
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to a vertex v € V in the graph, referring to version j of s; € A, where s; ; € VS;.
A directed edge e = s;; — 5y, Where e € E, represents a call from a service
si,; (subsequently named caller) to another service s, , (callee).

3.3 Topological Change Types

The presented formal model allows us to construct interaction graphs for every
application variant and to compare them. Comparing interaction graphs of two
or more variants reveals changes at the topological level. For example, in Fig. 1,
when the canary version 2 of frontend is deployed, we observe that a new service
(product) is required while the details service is no longer called.

In the following, we characterize typical change types that surface in the evo-
lution of microservice-based applications. When comparing interaction graphs
G1 and G4, every such change type appears as a certain pattern involving a
subset of the vertices. We distinguish two categories of change types: fundamen-
tal and composed, where a composed change type is a combination of multiple
fundamental change types.

edge updated callee

added call to new endpoint - % version

details frontend ‘.I product orders shipping frontend
& 0@ |0 05

K f Iv..____l‘_‘_j::-updated

""" T orders version

removed call updated caller version @ @
search payment

Fig. 2. Topological change types demonstrated on sample application (excerpt). Left:
add call to new service, removed call, and updated caller version. Center: add call to
existing endpoint. Right: updated callee version and updated version.

added call to existing endpoint

Fundamental Change Types. Fundamental change types involve calling
newly added services (or service endpoints), calling endpoints of existing ser-
vices, or removing calls to service endpoints.

Calling a New Endpoint. This change type represents new functionality man-
ifesting as a call to a new resource, such as a service or a service endpoint that
was added. In both interaction graphs G; and G5 there exists a vertex (or node)
representing a service a, but in different service versions: ¢ in case of G; (i.e.,
Sq,i), and j in case of G (i.e., sq,;). The interaction graph G2 contains an edge
e € I/ with e = 5, ; — s, calling a service u in version v that does not exist in
graph G;. Figure 2 (left) depicts this change type in our running example. The
frontend service of the canary variant (version 2) calls a newly added product
service that does not exist in the baseline variant (version 1).

Calling an Existing Endpoint. This change type characterizes reusing func-
tionality, i.e., a new call to an existing service endpoint is made. There are again
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two nodes in the interaction graphs representing the same service a, but in dif-
ferent service versions: s, ; in Gi and s, ; in G2. Graph G2 contains an edge
e € I/ with e = 5, j — 54, denoting a call to service u that also exists in graph
G1; thus, s, , is represented by a vertex v € V of G;. However, there is no direct
interaction (no edge) between s, ; and s, , in G;. Figure 2 (center) shows this
change type in which the canary variant of orders (version 3) calls shipping. The
shipping service is also part of the baseline variant involving version 2 of orders,
but there is no direct interaction between orders and shipping.

Removing a Service Call. This change type represents the inverse of the pre-
vious one. A previously used resource is no longer used. Revisiting the previous
change type, this time the interaction graph G contains an edge e € E with
€ = Sq,; — Su,» Tepresenting a call to a service u, but no equivalent edge between
Sq,j and s, , exists in Gy. However, the service u might still be used in G by
other services. Figure 2 (left) represents this change type between the canary
variant of frontend (version 2) which no longer calls details.

Composed Change Types. These change types are constructed from funda-
mental change types and denote updated caller version, updated callee version,
and updated version.

Updated Caller Version. When comparing interaction graphs G; and G», the
version of a calling service a is “updated”. This caller-side version update is a
combination of removing a service call and calling an existing endpoint change
types. From the perspective of Gy, the service s,; no longer calls a service
endpoint s, , (i.e., removed service call), but the same service a of the updated
service version (i — j) is adding a call to s, , (i.e., calling an existing service
endpoint). Figure 2 (left) depicts an example. In the canary, the frontend service
is updated to version 2, and both version 1 and version 2 call the search service.

Updated Callee Version. This change type represents the case of a version
change in the service that is called. This callee-side version update combines
removing a service call and calling a new endpoint change types. From the per-
spective of G, the service s, ; no longer calls a service s, , (i.e., removed service
call), but the same service s,,; calls a new version z of service u (update: v — z,
i.e., calling a new endpoint), hence there exists an edge e = s4,; — Sy 5. Figure 2
(right) exemplifies this change type when the version of frontend that is called
by edge is updated from version 1 (baseline) to version 2 (canary).

Updated Version. This change type is a combination of updated caller version
and updated callee version change types. There exists a service a and service v in
both interaction graphs G'; and Gs. In G, there is an edge e; = 54, — Sy, and
in G, there is an edge ez = s5,,; — Sy,.. Hence, in G the interaction happens
between versions ¢ and v of the services a and u, and in G2 between versions j
and z. From the perspective of Go, both the caller and the callee versions are
updated. Figure 2 (right) shows this pattern between frontend and orders. While
for the baseline, version 1 of frontend calls version 2 of orders, in the canary,
version 2 of frontend requires version 3 of orders.
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4 Ranking Identified Changes

This section covers (1) the construction of the graph-based topological differ-
ences, (2) a generic algorithm that traverses these differences to produce a rank-
ing of identified changes, and (3) three embodiments of this algorithm in the
form of heuristics to assess the impact of the changes identified.

4.1 Constructing the Topological Difference

Our approach relies on distributed traces of a microservice-based application
to (1) infer interaction graphs for each variant of the experiment and to (2)
construct a graph-based topological difference resulting from their comparison.

Inferring Interaction Graphs. Distributed tracing is a technique used to
collect information about calls between microservices. A trace is a set of data
about the sequence of all inter-service calls resulting from a top-level action
performed by an end user. Each call is associated with timestamped events cor-
responding to sending the request, receiving the request, sending the response,
and receiving the response. In our approach, a developer needs to specify the
application variants of interest, i.e., versions of services for baseline and canary
and the experiment start time. Given the inputs, we then divide collected dis-
tributed traces of baseline and canary variants into clusters, where each cluster
contains multiple interaction graphs (as defined in Sect. 3) with the same root
request. A root request is a service call made to an edge service of the application,
which in turn triggers other inter-service calls within the application, forming
an interaction graph. In each cluster we also compute statistics on metrics for
each inter-service call, namely, duration, timeouts, retries, and errors.

Comparing Interaction Graphs. The next step is to compare corresponding
baseline and canary clusters of interaction graphs to identify topological changes
based on the types described in Sect. 3.3. Once the changes and their types are
identified, the graphs are merged into a single graph forming an “extended”
topological difference (e.g., Fig. 1). The topological difference contains all the
changes identified, their assigned type, and further statistics that were captured
during the interaction graph’s construction. Due to the merge, the difference
graph contains also those structures (services and their interactions) that are
common to the graphs under comparison. Doing so preserves the “big picture”
and enables detailed analyses on the entire service network.

4.2 Traversing the Topological Difference

Once the graph-based topological difference is built, we execute a two-phase
graph-traversal algorithm, consisting of the annotation and the extraction phases.

Basic Algorithm. In a first step, all vertices (or nodes) in the graph without
outbound calls are visited (and marked as such). Then, the algorithm visits those
vertices calling service endpoints that have been flagged as visited, marking them
as visited again. This process is repeated until all nodes in the graph are visited.
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Annotation Phase. In our approach, every node in the graph-based topological
difference has an associated state 7', which is used to store any information to
reason about, and ultimately rank changes. In the annotation phase, these states
are set to hold information required for the concrete implementation of the rank-
ing algorithm (i.e., heuristic). During a node’s visit, a wide range of information
is available, including the involved endpoint, outgoing calls and their change
types, statistics (for either one or for both variants) that were computed during
the construction of the interaction graphs, and any other queryable monitoring
information (e.g., from Prometheus®). It depends on the concrete implementa-
tion of a heuristic which information is used and how it is combined.

Extraction Phase. In this phase, every node is revisited with the goal to
extract a score S for each interaction (i.e., outgoing edge). Due to the nature
of our change types, an interaction in the topological difference graph could
comprise two edges in the source interaction graphs. The scoring happens on the
change type level: edges belonging to the same change are merged. Edges that
are common (without any change) in both source interaction graphs are treated
as a special change type. The idea of the extraction phase is to rely on the state
information gained in the annotation phase and to transform it into scalar values.
Formally, this scoring function has the type signature score : change — int.

Ranking. Once scores for all edges in the difference graph are computed, the
scores are sorted in descending order and ranks from 1 to k are assigned, where
k is the number of edges in the graph-based topological difference. The edge
achieving the highest score is ranked on position 1. Equal scores leading to tied
ranks are possible, even though they appear rarely.

In the following we will cover three specific embodiments of our algorithm.
Starting with the Subtree Complexity heuristic, followed by the Response Time
Analysis heuristic, we will cover their joint variant, the Hybrid heuristic.

4.3 Subtree Complexity Heuristic

This heuristic analyzes sub-structures of a topological difference and considers
uncertainty in the context of experiments.

Concept. The graph structure is broken down into multiple subtrees (see Fig. 3
for an example). The fundamental idea of this heuristic is that the more complex
the structure of the (sub-)tree is, the more likely it contains changes that affect
the outcome of the experiment and the application’s health state.

Initially, every node a has an assigned state of 7, = 0. Whenever a node a is vis-
ited during the algorithm’s annotation phase, its state 7, is set to 7, = ZY Ti+Da,i
being 1 < i < n the (child) nodes of the outgoing calls of a. Thus, the state values
7, of called nodes i are summed up and weights p, ; representing individual prop-
agation factors for these calls are added. During the extraction phase, for every
interaction of a node a with a node 4, the score for this edge e is computed as fol-
lows: S, = 7; + cq,;- Thus, the score is built from the state value 7; of the node
(i.e., service) that is being called and an individual scoring factor ¢, ; for the edge.

5 https://prometheus.io/.


https://prometheus.io/

Topology-Aware Continuous Experimentation 27
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calling a new endpoint: 3
calling an existing endpoint: 1
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s1: [s2], [s4,s7,s8,s5,s6], [s3]
s2:[]
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Fig. 3. Example of (topmost) subtrees in a topological difference. a) Basic subtree
complexity (ST) in blue (i.e., counting the number of edges in a subtree). Service sl
has three subtrees. The state value of s4 is 5 (3 subtrees, 5 edges in total). Thus, the
extracted score for the edge between s1 and s4 is 5+ 1 = 6. b) Extended subtree (ST
Ext) in blue, propagation values p,,; based on Uype values assigned to change types.
Extracted score for the edge between sl and s4 is 10 + 2 4+ 3 = 15. (3 represents the
performance penalty). (Color figure online)

The distinction between propagation and scoring factors serve the following
purposes. The propagation factor directly influences the state values of the nodes
(and thus the individual scores) when walking up the tree. This is useful if severe
issues within a subtree are detected that should be reflected in the ranking of the
changes. The scoring factor only influences individual scores, e.g., a single change.
It allows expressing fine-grained differences among the changes. Depending on
how propagation and scoring factors are chosen, the subtree complexity heuristic
allows for multiple variations. Within the scope of this paper, we focus on two
variations: Subtree and Subtree Extended.

Subtree (ST). This standard variant of the heuristic analyzes the structural
complexity of the difference graph by counting the number of edges within sub-
trees. Propagation and scoring factors p,; and c,; are set to 1 for all edges
independent of their change types. Figure 3a depicts an example in blue.

Extended (ST Ext). This variation introduces the concept of uncertainty.
Calling entirely new services compared to calling a new version of an existing
service leads to a different degree of uncertainty when assessing the application’s
health state. For the former, no information to compare to (i.e., previous calls
or historical metrics) exists, while for the latter calls to the new version can be
compared with previous calls. Deviations in metrics, such as response times or
error rates, can be considered. Similarly, when a new call to an existing endpoint
is made, even though a direct comparison on the interaction-level is not possible,
there are still metrics available that are associated to the called service allow-
ing an assessment whether this added call introduces unwanted effects. In our
approach, we built upon these subtle differences in uncertainty for the identified
change types and assign a weight Uyyp. to each of them.

For the extended subtree heuristic, instead of the number of edges, the uncer-
tainty values Uyype associated to the individual edges’ change types are summed
up within a subtree. Hence, individual propagation factors p, ; = Uyype are set to
the uncertainty value of the edge’s change type. Figure 3b depicts an example.
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The rationale for this is to emphasize the uncertainty of subtrees involving many
changes. Scoring factors are defined as c,,; = Uype + P. Similar to the propa-
gation factors we use the uncertainty values Uyy,. and we introduce penalties
P that are added to those interactions for which deviations are measured, e.g.,
significant changes in response times. This mechanism allows us to account for
performance issues without running in depth root-cause analyses. Penalization
applies to all interactions for which direct comparisons between the variants on
the edge-level are possible, i.e., composed change types and common calls.

4.4 Response Time Analysis Heuristic

This heuristic tries to identify services and changes that have caused performance
issues by incorporating the notion of uncertainty.

Concept. The intuition here is that in case of performance deviations (e.g.,
response time) spotted at a node, the node’s surrounding changes that add
additional calls (e.g., calling a new endpoint, or calling an existing endpoint)
are potential sources of these deviations. This heuristic focuses on the overall
response time (i.e., how long did the called endpoint take to respond) extracted
from tracing data. However, the concept can be extended to incorporate other
metrics that have similar cascading effects. Further, note that these performance
comparisons are only possible for specific change types, namely composed change
types and common calls.

The state 7, of a node a is extended to keep track of deviations and their
potential sources while traversing the graph. It involves flag, a counter that
keeps track how often a node is considered as the source of a deviation, a map
deviations that stores which outgoing call (i.e., key) causes how much deviation
(i.e., value, in milliseconds), and a list source keeping track which child caused
the deviation. Algorithm 1 illustrates the analysis executed for every outgoing
call in the annotation phase when visiting a node a.

Algorithm 1: Response Time Analysis

Input: node, child, call
if call.hasDeviation() :
node.state.addSource(child)
if len(child.state.deviations) == 0 :
node.state.addDeviation(call=call,deviation=call.deviation)
child.state.flag := 1
else:
flagSources(child)
total := sum/(child.state.deviations)
node.state.addDeviation(call=call, deviation=maz(call.deviation, total))
if call.deviation > total :
inc(child.state.flag)
for c in child.calls :
if c.type in [call-new_endpoint, call_existing_endpoint] :
inc(c.target.state.flag)
‘ child.state.addSource(c.target)

In case of a deviation, the called child is added as a source. If there are no
stored deviations for the child node, then the deviation is added to the node’s
state, and the child’s state flag counter is set to 1. If there are deviations, the
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recursive function flagSources walks through all the stored sources that might
caused the deviation on the child’s side and increases their flag counters. In
the next step, the sum of all stored deviations (i.e., total) is calculated and
the deviation is added to the node’s state. If the call’s deviation is higher than
the total sum of deviations on the child’s side, then it is likely that a change
introduced this new deviation. Therefore, the child’s flag counter is increased
and the child’s surrounding changes are analyzed. This involves all of the child’s
outgoing edges with calling a new endpoint and calling an existing endpoint
change types. The target nodes of these edges are added as potential sources
and their flag counters are increased.

By using different scoring factors in the heuristic’s extraction phase we dis-
tinguish two variations: RTA and RTA Ext. The annotation phase (i.e., flagging)
described in Algorithm 1 is the same for both variations.

Response Time Analysis (RTA). In the eztraction phase, for every outgoing
call of a node a to a child node 4, the score for an edge e is defined as S, =
T;. flag- The resulting score corresponds to the final value of the child node’s flag.
Consequently, those services with the highest flag counts are ranked first.

Extended (RTA Ext). For this variation we revisit the concept of uncertainty
and reuse weights Uyype as scoring factors. Again, the rationale is that those
interactions with high uncertainty for a change should have higher scores. To
have a mechanism to balance between flag and uncertainty values, we introduce
a penalty constant C'. The scoring function for an edge e is defined as S, =
,];.flag *C + Utype-

4.5 Hybrid Heuristic

More complex (sub-)structures are more likely to contain changes that could
cause problems. This is the strength of the subtree complexity heuristic. How-
ever, in case of performance deviations, the response time analysis heuristic pro-
vides more detailed analyses to identify the origin of problems. The goal of the
hybrid heuristic is to combine the strengths of both, structural and performance
analyses. The underlying mechanics of both heuristics remain untouched for the
hybrid heuristic. During the algorithm’s annotation phase, both the structural
and the performance analyses are conducted. The extraction phase shapes how
the individual results of the heuristics are transformed into a single result. We
distinguish two variants: Hybrid (HYB) and Extended (HYB Ext).

Both variants use the extended subtree heuristic (ST Ext) to determine state
values 7;. To determine state flag values, the standard variant of the heuristic
uses standard RTA, while the extend hybrid variant uses extended RTA. Conse-
quently, the scoring function for an edge e is defined as S, = 7;+Usype+7;. f1ag*C,
being C' the penalty constant established in RTA Ext, which is set to 1 in the
case of the standard hybrid variant.
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5 Ranking Quality Evaluation

To demonstrate our (formal) approach we developed a research prototype with the
goal to assist developers on experiment health assessment and decision-making.
The paper’s online appendix® provides screenshots of the user interface (also
depicting those two scenarios), source code of the heuristics, and a comprehen-
sive replication package.

We evaluated the quality of the produced rankings on two concrete scenar-
ios: (1) revisiting the running example, and (2) dealing with multiple breaking
changes. Before we dive into details of the ranking quality evaluation, we briefly
describe our evaluation’s setup.

5.1 Setup

The setup involves a description of the method we used to assess the quality
of the produced rankings, how we calibrated the parameters the heuristics are
operating on, and how we generated the distributed tracing data.

Method. Normalized discounted cumulative gain (nDCG) [7] is a measure of
ranking quality, widely used in information retrieval. Based on a graded rele-
vance scale of documents in the result list of search-engine queries, DCG (or its
normalized variant nDCG) assesses the usefulness (i.e., the gain) of a document
based on its position in the result list. The gain of each document is summed
up from top to bottom in the ranking, having the gain of each result discounted
the lower the rank, which has the consequence that highly relevant documents
ranked at lower positions are penalized. The DCG accumulated at a particular
rank position p is defined as DCG, = Y_%_ (rel;/loga(i + 1)).

rel; is the relevance of the document at position i. Instead of documents we
rank identified changes. In order to use DCG, the authors assessed the relevance
of every single change of our two scenarios. In total, including sub-scenarios,
6 relevance assessments were conducted rating changes on a scale from 0 (not
relevant) to 4 (highly relevant). We use a normalized DCG (nDCG) producing
relative values on the interval 0.0 to 1.0, this allows for result comparison across
scenarios. 1.0 is the maximum value representing a ranking with the most rele-
vant changes on the top positions. As tied ranks are possible (e.g., changes with
the same score and rank as resulting from a heuristic), we applied the nDCG
adaption proposed by McSherry and Najork [9] considering average gains at tied
positions.

Calibration. To calibrate the heuristics we followed an iterative exploratory
parameter optimization procedure across all scenarios. For nDCG we considered
the top 3,5,7, and 10 positions of the ranking to be compared. For the penal-
ties P and C used in the heuristics’ scoring functions we iterated through values
1,3,5,7,and 10. We tested four different mappings of uncertainty values to change
types Uiype. Based on more than 9000 calibration results, we determined that

5 https://github.com /sealuzh/topology-experimentation-appendix.
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P = C = 3 and an uncertainty mapping Uyype (i.€., change type — uncertainty)
of {‘calling new endpoint’: 3, ‘calling existing endpoint’: 1, ‘removing call’: 1,
‘updated caller version’: 2, 'updated callee version’: 2, 'updated version’: 2, ‘com-
mon call’: 0} yielded the most promising results. We determined the nDCG for
the top 5 positions to allow comparison across scenarios of different sizes.

Tracing Data. We implemented the two evaluation scenarios as microservice-
based applications running on top of a Kubernetes cluster in the IBM Cloud.
The Istio service mesh was in place to handle experiment traffic routing between
the application’s variants along with a Zipkin installation keeping track of service
interactions. For every (sub-) scenario 1000 requests were generated.

5.2 Scenario 1: Revisiting the Sample Application

As a first scenario we use the example application shown in Fig. 1. Contrary to
the next scenario, we do not cover a specific evaluation aspect here. However,
this scenario involves all of the change types we identified, hence making it a
useful baseline to assess the proposed heuristics.

Scenario. This scenario involves two sub-scenarios: basic and delayed. Basic
executes the baseline variant of the application without modification, the canary
variant involves added functionality and updated service versions. The delayed
sub-scenario introduces a delay of 100ms at the payment service for the canary
variant. This reflects an abnormally behaving orders service in the canary that
multiplies the traffic towards the payment service causing it to overload, resulting
in higher response times.

Relevance. For the basic scenario, the added calls to product and the updated
versions of frontend and orders were classified as highly relevant (i.e., a relevance
score of 4). For the delayed scenario, in addition, the call between payment and
orders is classified as highly relevant. Relevance ratings for all scenarios are listed
in our online appendix.

Table 1. nDCG5 scores for all variations of the three heuristics across all evaluation
scenarios. Scenario 1 with sub-scenarios basic and delayed (in the canary variant).
Scenario 2 with four sub-scenarios: basic, a delay involving service j (canary), a delay
involving service s (canary), and a combination of both delays (canary).

Scenario 1 Scenario 2
Heuristic Basic Delay Basic Delay j Delay s Combined
ST 0.89 0.93 0.91 0.83 0.87 0.76
ST Ext. 0960 093 [099 085 0.91 0.77
RTA 0.76 0.87 0.64 0.91 0.82 0.90
RTA Ext. 0.93 0.95 0.73 0.91 0.83 0.91

HYB 0.85 0.92 0.81
HYB Ext. 0.93 0.92 0.87
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Results. Table 1 (Scenario 1) shows the nDCG scores of the three heuristics in
their 6 variations for the basic and the delayed sub-scenarios. Scores are color-
coded, the higher the score, the more intense the background color. The hybrid
variations outperform the other heuristics, though some other approaches achieve
high scores as well. RTA produces good results for the delayed sub-scenario.
However, it only captures the “relevance” of the delayed fragments and ignores
the high relevance of the added functionality. This is simply because there are no
performance issues associated with these changes. The addition of uncertainty
for the RTA FEzt variant helps to compensate this flaw and leads to stronger
scores for both sub-scenarios. Moreover, penalizing as a scoring factor turns out
to have positive effects on the delayed sub-scenario. However, the standard HYB
variant without penalties performs slightly better, though only by a whisker, e.g.,
by 0.005 on the combined score of both sub-scenarios for HYB and HYB FEut.

5.3 Scenario 2: Breaking Changes

The goal of the second scenario is to identify how the heuristics behave when
dealing with more complex, cascading changes resulting in multiple version
updates. This represents deployment scenarios and experiments dealing with
multiple breaking API changes. Figure 1 (right) depicts its topological differ-
ence in which b is the experiment’s target service.

Scenario. We split into multiple sub-scenarios involving simulated performance
issues in the canary variant. In addition to the basic scenario, which contains
multiple version updates and new services, we added two specific performance
deviations: a delay at service h when calling service j (100 ms), and a delay at
service s (200 ms) simulating a more complex request processing compared to
the removed service pairs p, ¢, and r. As a fourth sub-scenario, we combined
these two delays, making them active at the same time.

Relevance. For the basic sub-scenario, the version updates between b and ¢, b
and f, f and m, and the added functionality for m calling s are rated as highly
relevant. The delayed variants emphasize the changes introducing performance
deviations.

Results. Similar to the running example, on average across all sub-scenarios, the
hybrid heuristics perform best (see Table 1, Scenario 2). Some individual results
on sub-scenarios provide valuable insights into the single heuristics’ strengths and
weaknesses. Keeping the basic results aside, RTA (in both variations) achieves an
average nDCG score of 0.88, only topped by HYB Ext, which naturally inherited
RTA functionality, with a score of 0.91. For the basic sub-scenario, the standard
HYB performs best, almost reporting the perfect ranking with a score of 0.996,
immediately followed by ST Fxt with uncertainty involved (as propagation and
scoring factor). Remarkably, the standard version of ST achieves a score of 0.91,
also due to the fact that changes rated with high relevance are particularly “up
high in the tree” (e.g., between b and f, and b and c¢) in this scenario. This
enables this simple heuristic to come close to the best rankings.
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5.4 Discussion

Combining the nDCG scores across all evaluation scenarios yields the highest
(average) score of 0.94 for HYB Ext, a heuristic involving both uncertainty and
a penalty mechanism in the scoring function. Interestingly, when diving deeper
and distinguishing between (1) all basic scenarios and (2) all scenarios involving
introduced performance issues we observe HYB Ezxt being not ranked first for
both (1) and (2). Despite being superior for performance cases (2) with an aver-
age score of 0.93 and a gap of 0.03 to the second-best heuristic (i.e., RTA Ext),
it is ranked third for non-performance cases, lacking a score of 0.03 to its lead-
ing standard HYB counterpart without penalty mechanism. As the performance
cases dominate — 4 versus 2 non-performance cases — HYB Ezxt clearly benefits
from the evaluation setup. This result is an indication that it would make sense
to let developers or release engineers using our proposed tooling toggle between
multiple (selected) heuristics which provide insights onto the application’s state
from different angles.

6 Limitations

One limitation of our approach is that the ranking quality evaluation was con-
ducted on traces for self-generated scenarios. We mitigated this threat by cov-
ering two complex scenarios and combined them with sub-scenarios including
simulated performance issues. A more thorough evaluation based on multiple
real cases is desirable, and part of our future research. A further threat involves
the relevance classification conducted by the authors of this paper. We classi-
fied all changes for all sub-scenarios on a scale from not relevant (0) to highly
relevant (4). As the relevance is used as baseline for nDCG, these ratings have
a direct effect on the resulting scores. Our online replication package allows
inspecting how results change when relevance ratings are adjusted. Another
threat involves the parameter calibration for the heuristics, which has a strong
influence on the results. We mitigated this threat by performing thorough cali-
bration runs with different parameter settings across all covered scenarios.

One limitation regarding the heuristics is that RTA variations only account
for changes that impact the response time negatively. We focus on the total
response time, ignoring that individual changes can have both positive and neg-
ative effects. However, our heuristics can be extended to cover this case as well.

Our evaluation focused solely on the ranking quality and left aside ques-
tions on how our approach would perform on industry-scale applications. We
conducted a performance evaluation on the heuristic’s execution behavior on
self-generated difference graphs of multiple sizes and with various characteris-
tics. First results are promising and show that the heuristics are able to cope
with graphs consisting of thousands of nodes within seconds. However, detailed
analysis are, also due to space reasons, out of scope for this paper and an eval-
uation on real instead of self-generated graphs is subject of future work.
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7 Conclusion

We proposed an approach that analyzes request traces captured from distributed
tracing systems to identify changes of microservice-based applications in the
context of continuous experiments. Using heuristics, we rank these identified
changes according to their potential impact on the experiment and the applica-
tion’s health state, with the goal of supporting decisions on whether to continue
or abort the experiment. While previous work on experiment health assessment
considers the services under test in isolation, which could skew the assessment
as certain effects are left out, we focus on the topological level. We characterized
a set of recurring topological change types consisting of fundamental patterns
and more complex composed variants. We proposed three heuristics that oper-
ate on top of these characterized changes taking the concept of uncertainty into
account. Our evaluation conducted on two case study scenarios demonstrated
that the rankings produced by the heuristics are promising and could be a valu-
able resource for experiment health assessments. An comprehensive evaluation
on how our approach performs on industry-scale applications is subject of future
work.
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Abstract. Microservice architectures have gained popularity in the last
ten years, based on their intrinsic capabilities of implementing scalable
software architectures. However, understanding a microservice architec-
ture is still a challenging task for software architects. Current state-of-
the-art approaches addressing this challenge focus on exhaustive solu-
tions, working in an all-or-nothing way. These all-or-nothing solutions
rely on heuristics to create one map of a given architecture, using static
and/or dynamic analysis of the existing source code. This is not compat-
ible with the classical approaches used in software comprehension, that
relies on the exploration of a program in an incremental way. In this
paper, we leverage the exploration metaphor and describes the ANAXI-
MANDER approach to support the incremental definition of a map that
suits the needs of the architect exploring an architecture. Using probes
working at different levels of abstraction and precision, one can incremen-
tally chart a map representing the architecture and leverage the map by
querying it. We applied the ANAXIMANDER approach to six reference
microservice architecture published by major actors from the state-of-
practice.

Keywords: Microservice architecture + Software comprehension -
Software composition

1 Introduction

Microservices are gaining momentum to support the development of com-
plex service architecture. Relying on the promising principles of domain-driven
design [12], microservices architectures provide an excellent answer to tame the
challenge of developing scalable service-based systems. Such architectures are
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decomposed into a set of independent microservices, each of these being dedi-
cated to a given domain. The communication between services is delegated to
reliable communication paradigms, such as messages buses [2]. From a software
engineering point of view, micro-services triggers several maintainability issues,
e.g.,, how to maintain and evolve such systems.

Table 1. Size and technology heterogeneity for each reference architecture

Id. Ref. architecture [1] | Technologies Size
Lang. | DBs | Mess. | Depl. | #Files | #LoCs | #Serv.

S1 HipsterShop 5 1 2 2 163 38,934 | 10
S2 SockShop 3 4 2 9 222 | 19,014 | 8
S3  eShopOnContainers |1 7 5 3 1,585 | 143,356 | 8
S4  Vert.x MS Blueprint | 1 7 2 1 218 18,881 9
S5 Shopping Cart 1 7 2 1 396 70,045 | 8
S6  Robot shop 4 3 2 1 120 6,341 | 7
Total for all arch. 5 5 6 11 2,704 | 296,580 | 50

In 2020, Assuncaao et al. described a variability challenge related to microser-
vice engineering [1], where they identified six references open-source microser-
vice architectures. These reference systems (see Sect. 4) demonstrate the high
level of variability related to microservices development (Table 1). This level of
heterogeneity is intrinsic to microservices architectures, and it is necessary to
support developers and architects who have to maintain such systems. Reverse-
engineering approaches typically support this task [9]. However, in the very
case of microservices architecture, the quest for a fully-automated tool that
can reverse-engineer any microservice architecture is pointless by design. On
the one hand, static code analysis approaches will quickly reach a limit consider-
ing the flexibility offered to the developers by the existing technologies, and the
upcoming frameworks that are not yet invented. On the other hand, dynamic
approaches (e.g., analyzing traces of execution) are fragile w.r.t. the scenarios
used as input to capture the dynamic traces.

Instead of targeting an ultra-high-definition description of the architecture,
we propose here to define an incremental and iterative way of creating such a
description. The key idea is to consider such a description as a map, and leverage
the way cartographers addressed the creation of maps in the early days of our
civilization. We named our approach after ANAXIMANDER, a Greek philosopher
known to have produced the first map of the world. Based on a source code audit
of the reference architectures, we propose in this paper to describe an incremen-
tal approach to support developers and architects who maintain microservice
architecture.
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2 Related Work

Haitzer and Zdun [4] present a Domain-Specific Language (DSL) to abstract
an application’s architecture in a semi-autonomous way. This approach empha-
sizes that working incrementally is essential. Granchelli et al. [3] present an
approach to recover the architecture of microservice systems called MicroART
from a GitHub repository and a reference to the container engine managing the
application. This approach differs from ours by using a monitoring tool such as
tcpdump to capture the communication log between services without taking into
account the architecture deployment artifacts. Kleehaus et al. [6] provides a tool
called MICROLYZE to recover the infrastructure in real-time of a microservice
architecture. Similar to our approach, MICROLYZE uses both automatic and
manual processes to gather information. Ma et al. [8] propose another approach
to generate service dependency graphs automatically. Those graphs are used to
analyze and visualize the dependencies between the microservices deployed for
the application. Their solutions allow them to select specific test cases in order
to run regression tests on the application. Ma et al. explore similar monitoring
solutions [7] to leverage annotation in Java source code. Those annotations are
used to help build service dependency graphs.

Composition

P a/gonthm

Architect

nriched Map

Fig. 1. Overview of the ANAXIMANDER approach

Leveraging the cartography metaphor, all the approaches described in this
can be seen as exploration campaigns of the architecture, trying to create a
complete map out of a single exploration. The maps are dedicated to a sin-
gle objective (e.g., non-regression testing) and cannot inter-operate with each
other. Moreover, the amount of information produced is very detailed, and it
might overwhelm an architect, preventing the approach to answer the architect’s
questions.

3 The Anaximander approach

Taking a different point of view, the key concepts of ANAXIMANDER are the
definition of (i) partial maps, obtained as the result of the execution of (i)
exploration probes applied to the system. This approach tackles by design the
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heterogeneity of micro-services architectures (see Sect. 4), and is complementary
of the approaches already existing in the state-of-the-art that can be considered
as exploration probes. We describe in Fig. 1 the approach for a software architect,
that relies on the classical exztract - abstract - present paradigm [10] used in
reverse engineering. The architect selects a probe among the one available off
the shelf, and execute it on the architecture. A probe can rely on static analysis,
or dynamic traces. As a result of its exploration, a probe returns a partial map,
i.e., the information gathered by the probe. The obtained partial map is then
composed with the already existing one (if any), to enrich the knowledge (e.g.,
adding new information, correcting errors).

3.1 Modelling the Map as a Graph

We define an architecture map as a typical graph g = (V, E) € G, where V =
{v1,...,v;} € V'is a set of vertices and F = {eq,...,e;} € £ a set of edges.
A vertex v is defined as an vertex identifier, a type, and a set of associated
properties P. An edge e is defined as a pair of source and target vertex identifiers,
a type, and a set of properties. A property p is a simple key-value pair. To support
the efficient manipulation of the maps, we rely on two constraints that need to
hold in a given map: (i) vertex uniqueness and (i) edge uniqueness.

To manipulate the map and support its enrichment, we leverage the classical
match and merge algorithm [5]. Each graph element (i.e., graphs, vertices and
edges) defines an equivalence relation (denoted as =) for matching purpose (e.g.,
two nodes are considered equivalent when they have the same identifier), and a
merge function (denoted as @) to merge two elements identified as equivalent.
Thus, enriching an existing map m with the result of a probe m/ is simply to
compute m'” = m @ m’. To correct an error, we rely on the opposite operation
remove (denoted as ©), where the following law holds: m = (m @& m’) o m/'.

3.2 Modelling Probes as Functions

Exploration probes are the software artifacts used to produce the partial maps.
According to the heterogeneity of the technologies involved in microservices
architectures, it is unrealistic to develop a polyglot framework supporting the
state-of-practice as well as anticipating any upcoming technological trends. As a
consequence, we decided to model a probe as a black-box function p : conf — G,
taking as input its configuration, and producing as output a map, in a tex-
tual format. Adding or removing information to the map relies on the & and &
operators previously described, e.g., m;y1 = my ® p(configuration).

The immediate advantage of this black-box representation is that it unifies
the outcome of each exploration while supporting the designers of probes to use
the most appropriate technologies for their very own probes. For example, a
static analysis of Go source code will leverage the compiler capabilities directly
embedded inside the Go language, where a probe dedicated to analyzing Spring
Boot Java services will leverage the reflexivity API available in Java to analyze
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the developed artifacts. Dynamic analysis can leverage classical formal mod-
els such as the Knowledge Discovery Metamodel [11], an international standard
promoted by the OMG to support software modernization. To tame this hetero-
geneity and consider all the probes as equals from the architect point of view, it
is possible to wrap each probe into an image (e.g., using Docker or Singularity
container technologies). The image will contain all the necessary software depen-
dencies (e.g., executable, compiler, libraries, frameworks) for a given probe, and
hide this complexity to the architect into a black-box approach. It emphasizes
the idea of probes’ black-box representation, where the internal implementation
details are hidden inside the container. The probes library available off-the-shelf
is then a set of turn-key images ready to be used by the architect, and creating
a new probe is as simple as publishing a new image inside the library.

legend

&S S —
messaging database

rabbitmq

Fig. 2. ANAXIMANDER map obtained dynamically using WeaveScope (m;)

4 Exploring a Reference Architecture

In this section, we validate the ANAXIMANDER approach based on the reference
architectures used to express the requirements. The source code of the probes is
available on the project repository!. For the sake of concision, it is not possible to
provide here an in-depth analysis of each of the reference architecture. Instead,
we focus on a single one (S2, SockShop[13]), as it is built as a demonstration
showcase by a tool vendor (WeaveWorks), medium-sized concerning the five
others, a representative in terms of heterogeneity (three languages for service
development, three databases technologies, two messaging framework and nine
deployment technologies), and involves 8 services.

As a starting point, we transformed the dynamic map provided by the tool
vendor into an ANAXIMANDER artifact (Fig. 2). This first map m; is the com-
position of three different information: (i) the server that host the services, (ii)
the TCP connections that exist between the services and (%) the kind of service

! https://github.com/ace-design /anaximander-microservices.
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(i.e., database, messaging, service). For the sake of readability, we only kept
the two last ones in the paper version of the map. As the map is obtained by
listening to a runtime infrastructure, it contains noise, i.e., existing containers
in the deployment infrastructure that are not related to the business logic (e.g.,
edge-router, consul).

To remove the noise, we use a probe dedicated to extracting services from a
Kubernetes descriptor. This probe extracts from the deployment descriptors the
services into a map my, but cannot infer their interconnection. This is where the
composition of multiple probes provided by ANAXIMANDER is helpful: to date,
our most useful map is mg = m; & (m; © my,), i.e.,, the map containing all the
discovered interconnection in m;, without the infrastructure noise (m; © my,).

T
|

/health

| |
:exposes exposes exposes
exchange ! : :
Jorders @ /orders
«shipping-task-exchange GET | POST GET [ POST
I
lexposes alls
exchange :
/paymentAuth /paymentAuth
shipping POST POST
(a) Masync S g (b) Mswag € g (C) Mspring € g

Fig. 3. Partial maps used to explore S2 with probes (RabbitMQ, Swagger, Spring)

Based on this initial map, we can start the incremental exploration of the
infrastructure. First, we want to understand the interconnection that uses asyn-
chronous messages (e.g., RabbitMQ exchange topics) in this architecture. A
query to mg to know all the services exchanging data with RabbitMQ returns
two services: queue-master and shipping. It means that if the message bus
suffers an outage, only the shipping infrastructure will be impacted. To improve
the precision of the map concerning asynchronous communications, we use a
source code analysis probe to identify the exchange topics from the source code,
obtaining a map mesyne (Fig. 3a).

A critical part of the architecture is the payment of orders, so we decide to
explore the interconnection that exists between the payment and order services.
Without more information, we assume that both services communicate using
an HTTP REST protocol. We first use a probe dedicated to Swagger contracts
identification, identifying the routes exposed by each service (mgyag, Fig. 3b).
Then, we use a probe that performs a static analysis of the order service to
identify the control-flow of its Spring implementation (mspring, Fig. 3c). As there
is no other connection between order and payment, we can use this information
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to correct our initial map, and erase the technical tcp link that exists between
the two services and use the proper control-flow instead.

queue-master

/health

GET
T

1
exposes tcp ‘\exposes

\

/Jorders
GET [ POST

N
N
~ (exposes calls
<
N

/paymentAuth

POST

Fig. 4. Final map for S2, composing m;, Mk, Masync, Mswag & Mespring

We describe in Fig. 4 the map obtained after these preliminary explorations.
We used a query to identify the databases and remove them from the map, and
then compose all the partial maps with the initial one to obtain a more precise
picture of the architecture. The map is still shadowed for some services, but the
amount of information inside it was sufficient to answer the questions we were
asking about the architecture.

An immediate threat to validity is related to the lack of validation outside of
the six reference architectures used to defined ANAXIMANDER. This is empha-
sized by the difficulty of collecting open-source microservice architecture, as this
paradigm is used to implement business-driven logic. However, we mitigate this
threat by the fact that the six architectures were highly heterogeneous, using dif-
ferent coding styles and technologies, and therefore representative of microservice
development. Moreover, the representativity of these architectures is emphasized
by their selection for a variability study by Asuncaao et al.

5 Conclusions and Perspectives

In this paper, we described a novel approach named ANAXIMANDER to support
microservice architecture maintenance, leveraging the idea of gathering incom-
plete information about the architecture and composing this incomplete infor-
mation with the existing ones to enrich the knowledge of the architect incre-
mentally. This approach complements the state-of-the-art ones, which try to
create ultra-precise maps by focusing on particular technological choices, where
ANAXIMANDER support a more flexible way of creating such maps. The need
for ANAXIMANDER emerged after a careful audit of six references architectures.
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This work opens an interesting perspective concerning uncertainty. As the map
created by ANAXIMANDER is imprecise by design and aims to be refined itera-
tively, finding a way to model such imprecision (e.g., with goal modelling from the
requirements engineering community) will help the architect during the explo-
ration of the system.
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Abstract. Aiming to break the software monoliths that traditional
approaches usually produce as artifacts, solutions that are based on
microservices consist of heterogeneous and independent software plat-
forms to manage applications and data. In this scenario, the term poly-
glot persistence has been introduced to characterize software solutions
where the involved microservices rely on different data storage technolo-
gies. Especially in Fog Computing where data are expected to efficiently
flow among nodes — usually from the edge to the cloud — the polyglot
persistence could have a negative impact since a combination of data
replication and transformation is required. The goal of this paper is
to study the challenges in data management in Fog Computing when
microservices are adopted, and to present a solution which combines the
advantages of the physical copy approach performed by network file sys-
tems to provide a fast data movement and the ability of the logical copy
approach to transform the data. The resulting mix is demonstrated to
reduce the time of creating the replica up to 70%.

Keywords: Efficient data management - Data movement

1 Introduction

The microservice architectural style is more and more adopted in software
solutions due to its ability, among the others, to deal with scalability and
ease of maintenance. As discussed in [13], seven main principles constitute
the fundamentals of microservice architectures: fine-grained interface, business-
driven development, cloud-native design, polyglot programming and persistence,
lightweight containers, decentralized continuous delivery, and DevOps lean.
Polyglot programming and the persistence principle aim to enable the pro-
duction of a software solution as a composition of several independent modules,
developed by independent teams, and based on different technologies. This way,
developers can break the classical monolithic solutions and use the most suitable
technology for a given specific task, without the need to agree on a specific plat-
form. The polyglot principle is in line with the need to get rid of the “one-size
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fits all” approach [11]. Thus, a microservice-based solution could involve a set
of different DBMSs which could even rely on different models: e.g., relational
DB, noSQL. This is also important when data to be managed by software solu-
tions come from legacy systems but we want to exploit as much as possible new
programming and storage paradigms to properly manage those data. As a con-
sequence, mechanisms are required to keep the alignment of different data stores
in the different nodes in which microservices are running.

The literature already proposes some solutions for the alignment of data
stored in heterogeneous environments which are ready to be adopted also in a
microservice architecture. Conversely, such solutions become no longer useful
when considering the deployment of microservices along the continuum between
the cloud and the edge, i.e., Fog Computing, which introduces additional require-
ments in terms of velocity, polyglot persistence, data transformation, and partial
replication. In fact, Fog Computing [6], a paradigm for managing distributed sys-
tems where nodes, called fog nodes, live in the continuum between the cloud and
the edge, implies: (i) a dynamic environment where fog nodes could easily join
and leave the system, and (ii) a continuous data movement among different nodes
which — due to the polyglot persistence principle — could be based on different
storage technologies. In this context, providing a fast access to the data needed
by a microservice is fundamental and it can be obtained by locating the required
data closer to where the computation is running.

The goal of this paper is twofold. First, to investigate how the adoption of
microservices affects software solutions in Fog Computing with respect to data
management. As discussed in the paper, an efficient and flexible replica mecha-
nism is fundamental and the current approaches — such as physical and logical
copy [10] — either are not able to satisfy all the requirements of Fog Computing
or the time required to create the replica is not acceptable. Second, this paper
proposes a solution to efficiently ensure the creation of replicas on the nodes
which are able to cope with the dynamism of the system and the heterogeneity
of the technologies involved. As demonstrated by the performed tests, the pro-
posed solution is comparable to traditional approaches for small databases but
outperforms them up to 70% when the size of the database becomes significant.

The rest of the paper is organized as follows. Section 2 motivates the require-
ments for replica mechanisms in Fog Computing. Section 3 introduces the pro-
posed solution, of which the evaluation results are presented in Sect. 4. Finally,
Sect. 5 discusses related work and Sect. 6 concludes the paper.

2 Background and Motivation

Fog Computing has recently emerged as a paradigm for improving the perfor-
mance of applications where data are generated on the edge but, due to the
limited capacity in terms of computation and memory, they are processed on
the cloud [2]. As the network can introduce a significant latency, the processing
performed on the cloud may experience an unacceptable delay. For this reason,
Fog Computing aims to create a synergy among resources on the edge, resources
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on the cloud, and even resources that connect the edge and the cloud, where all
these nodes are generically referred to as fog nodes.

In this context, mechanisms for enabling data and computation movements
hold a primary role. When possible, computation should be moved closer to
where data are generated. As not all computation is possible on edge nodes due
to their limited capacity, the data resulting from the initial analysis — which
are less than the generated ones anyway — should be sent or replicated to cloud
nodes. Moreover, especially when considering dynamic contexts, a fog node could
unpredictably join or leave the system. Hence, when a node is part of the system,
it can be a source of data or a place in which the computation can be executed.
Thus, it has to access the data to be processed which could be other than the
data that the node itself is generating.

Data generated at the sensing layer must, therefore, be replicated for the
computation layer, usually organized according to a microservice architecture.
Several challenges must be addressed concerning the creation and the manage-
ment of the database replicas in Fog Computing. R1: fast creation: when a fog
node joins the system, a secondary database should be quickly made available to
the newly deployed microservices. R2: polyglot persistence: fog nodes could be
based on heterogeneous storage technologies. R3: partial replication: for privacy
issues or to reduce the amount of data to be transferred, the secondary database
could contain a projection or a selection of data stored in the primary database.
RA4: data transformation: before moving to the secondary database, data could
be transformed for privacy, security, or optimization reasons.

It is worth noticing that the resources available on fog nodes may vary from
few cores and few megabytes of RAM and storage for nodes closer to the edge,
to powerful nodes when considering the cloud. For this reason, the solution must
be lightweight to be deployed in all configurations.

3 Fast Replica for Fog Computing

The replication mechanism proposed to satisfy the requirements introduced
above is based on dynamic replication. Thus, secondary databases are added
dynamically after the deployment of the primary database [12]. Static replica-
tion, where all secondary copies are deployed at the same time of the primary
copy, is indeed not an option in our context, as in Fog Computing all fog nodes
are not known in advance, as they could change dynamically.

The initial load phase of a database is considered in this paper. Such a phase
is required every time a microservice is deployed on a fog node. Depending on the
type of analysis and the amount of data generated by the sensing layer, it might
happen that the replica creation could require to move a significant amount of
data. In the literature [10], (see Fig. 1) two options are commonly considered: i)
logical copy, which refers to the mechanism of extracting data from the primary
copy and importing them onto the secondary copy using queries; and ii) physical
copy, which refers to directly transferring files containing the DBMS data, from
machine to machine, at filesystem level.
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Fig. 1. Comparison of physical and remote copy.

The physical copy is a very fast process (actually the fastest according to our
tests) but it only addresses R1. In fact, only full replication can be achieved as
a physical copy is obtained by copying the entire data directory of the database
onto a remote machine. For the same reason, data cannot be transformed (e.g.,
anonymized) during the replication process. Indeed, it is not possible to distin-
guish between columns, rows, or tables at the filesystem level. Finally, a physical
copy cannot be used in a heterogeneous setup with different DBMSs, since the
data directory, copied onto a remote machine, will be readable only by a DBMS
that uses the same technology of the primary one. An adopted workaround to
allow a polyglot environment with physical copy, consists of a primary node
where data are stored in all the different database technologies that might be
needed. When a replica is required, the physical copy of the database with the
needed technology is performed. However, this approach is extremely space con-
suming, so it is not an acceptable solution, especially when considering fog nodes.

When it comes to logical copy, it allows filtering and transforming the data
since, once rows are extracted from the primary copy, they can be filtered or
transformed before they are sent to the secondary copy (R3, R4), so also different
database technologies can be involved (R2). The main drawback of the logical
copy concerns the time required to complete the copy on the secondary node.
Indeed, as shown in Fig. 1, the performed tests show that the logical copy always
requires more time than the physical one and, with an increasing size of the
database to be replicated, the replica time has an exponential trend which makes
this approach not suitable.

We propose a hybrid approach (see Fig. 2) to perform the initial load, that
exploits the flexibility of the logical copy while maintaining the higher speed of
the physical copy. The hybrid approach consists of four phases:

1. Temporary node creation. A DBMS (of the same technology as the technology
of the secondary database) is deployed on a temporary node near the primary
node (or, if possible, on the same node).

2. Local logical copy. The (partition of the) database to be replicated is copied
into the new DBMS by using a logical copy. This allows to filter and to
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Fig. 2. Proposed hybrid approach

transform the data, and to translate the queries for a DBMS that is different
from the primary DBMS. This operation takes less time than it would take
to perform remotely onto the secondary node since it is performed on a node
that is near (or local to) the primary node. The logical copy is performed by
reading the primary copy and it does not need to lock the primary copy.

3. Remote physical copy. The newly created database is moved to the secondary
machine by using a physical copy which has been demonstrated to be fast.

4. Finalization. The secondary DBMS is started on the secondary node, where it
can access the newly copied database. The temporary node can be destroyed.

The overhead of this approach is given by the time necessary to deploy the
temporary machine and create extra resources (e.g., a temporary DBMS). How-
ever, some technologies (e.g., Docker and Kubernetes) allow to deploy these nec-
essary resources in a few tens of seconds, which is a negligible amount of time if
compared to the overall benefit provided by the proposed approach. Similarly,
the overhead given by the transmission of data between the primary database
and the temporary one is negligible since the temporary machine should be
created near the primary one (or be connected with a fast network connection).

It is worth noting that the usage of a temporary node is a valid approach
in Fog Computing. For nodes located in a cloud environment, the overhead of
the creation of a temporary node is negligible, due to the virtually unlimited
resources available. Edge nodes, are typically IoT devices which produce data,
that are stored in fog nodes. In this case, the temporary node will be created in
fog nodes where resources, even if limited, are usually higher than IoT devices
and the overhead will have a limited, and temporary, impact on the system.

Better performance can be achieved by starting the third phase (i.e., the
remote physical copy) during the second phase (i.e., the local logical copy),
without waiting for the second phase to finish. Using this variation, data is
copied onto the secondary node while it is being written on the temporary node.

This variation (named overlapped hybrid approach) introduces three cases:

No Overlap. If the third phase (i.e., moving the temporary replica to the
secondary node) is performed after the second one has finished, then the overlap
will be minimum, that is, null. In this case, the total necessary time to create a
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copy on the secondary node is equal to the time necessary to create a local copy
on the temporary node plus the time necessary to perform its entire physical
copy onto the secondary node.

Perfect Overlap. If the physical copy is timed perfectly with the logical copy,
the overlap will be maximum, and the two phases will be entirely overlapped.
In this case, the total necessary time to create a copy on the secondary node is
equal to the time necessary to perform a logical copy on the temporary node.
This is an ideal scenario that does not happen in reality for two main reasons.
First of all, the logical copy creates new files on the temporary node, while the
physical copy copies them on the secondary node, and these two processes may
follow different orders. Secondly, the exact times needed for logical and physical
copies are unpredictable in a Fog Computing environment. Therefore, it is not
possible to time the beginning of the physical copy perfectly so that its end
coincides with the end of the logical copy.

Partial Overlap. The best obtainable degree of overlap is a partial overlap. The
best strategy in order to maximize the overlapping of the two phases is to run
the process of the physical copy twice. Keeping in mind that the physical copy
is faster than the logical one, the first execution of the physical copy should be
timed so as to finish approximately when the logical copy finishes. As soon as the
logical copy ends, the second execution of the physical copy should start. This
maximizes the amount of raw data copied by the first physical copy leaving to
the second run of the physical copy only a small portion of the data. Transactions
performed during the first physical copy may lead to integrity problems in the
secondary node, because files are physically copied from the temporary node to
the secondary one, while writes are occurring on the temporary node. This is not
a problem, as the data is initially not accessed on the secondary node. Therefore,
just before the second physical copy, the alignment between the primary and
temporary node is suspended, and then the second physical copy to align and
restore the integrity of the data on the secondary node is performed. Immediately
after that, the alignment between the primary copy and the secondary copy
starts. All the transactions performed after the beginning of the second physical
copy will be propagated to the secondary copy.

3.1 Implementation Details

The proposed hybrid approach (both with and without overlap) has been imple-
mented adopting the most common tools used to deploy and run microservices
(i.e., Docker and Kubernetes) as well as existing software (i.e., SymmetricDS)
that is able to provide a logical copy.

More in detail, Docker® allows to create isolated virtual environments known
as containers, in which applications can be run. Containers are very lightweight:
they use less space and they also take less time to start up compared to other
virtualization tools. As a result, Docker allows to: (i) deal with fog heterogeneity,

! https://www.docker.com.
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Fig. 3. Architecture of the approach

as applications are containerized and they do not need to rely on the specific
hardware of the host machine; (ii) deal with fog dynamicity, as applications can
be started in a fast and practical way.

To coordinate multiple nodes, orchestrator tools, such as Kubernetes?, are
involved. More specifically, Kubernetes is an open-source container-orchestration
system for automating deployment, scaling and management of containerized
applications in distributed systems that, amongst others, supports Docker con-
tainers. It provides a container-centric management environment, that orches-
trates computing, networking, and storage infrastructure.

In a Fog environment, a Kubernetes Node is a worker machine, and it may be
a virtual machine or a physical machine that corresponds to a node, a.k.a., Fog
node. A set of Kubernetes Nodes makes up a Kubernetes cluster. A Kubernetes
cluster corresponds to a set of fog nodes. Each microservice can be containerized
and, therefore, it belongs to a single Docker container. A Kubernetes Pod is
a group of containers with shared network and storage, that are always co-
scheduled and co-located.

Finally, SymmetricDS? is an open source software package for database repli-
cation. It performs a type of replication known as transaction replication [5] as
opposed to statement replication [5] . This means that the secondary copies do
not receive SQL statements to apply, but rather only the changes produced by
SQL statements, known as writesets. As it is built on top of JDBC, Symmet-
ricDS supports a wide range of databases and it can automatically translate
between different SQL dialects. Moreover, SymmetricDS supports filtered repli-
cation (to allow replication of specific tables, columns or rows) and it supports
data transformation (which allows to anonymize or pseudonymize data before it
is replicated).

Figure 3 shows the architecture for the implementation proposed in this
paper. The lower part consists of Docker service, and GlusterFS service?, a
network filesystem we used for the creation of persistent volume where DBMS
data is stored. Both services are installed in every fog node, that provide the

2 https://kubernetes.io.
3 https://www.symmetricds.org.
4 https://www.gluster.org/.
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Table 1. Replica time (in min) for the different approaches

DB Size | Physical | Hybrid Overlap Logical
Logical | Physical | Total | Logical | Physical | Total
local remote local remote
100 MB | 0.5 0.45 0.5 1.95| 048 0.43 1.91 1.27
490 MB | 0.87 1.78 0.87 3.65| 1.77 ]0.52 329 4.62
900 MB | 1.52 3.55 1.52 6.07| 3.42 0.6 5.02 9.03
4 GB 5.85 16.32 5.85 229 |16.65 1.9 19.55 | 56.93
8 GB 11.57 34.82 | 11.57 47.39 | 34.47 2.38 37.85137.98

primitives for the management of containers. On top of it, Kubernetes provides
the infrastructure that groups Fog nodes into a cluster. Kubernetes manages the
resources provided by Docker and GlusterF'S.

Kubernetes works as a central authority. This makes the scheduling of the
resources very efficient since containers, being lightweight, are fast to start (gen-
erally less than 55s).

4 FEvaluation

To evaluate the proposed approach we compare the time needed to a create
a new replica with traditional approaches, i.e., physical and logical copy, with
the time required by the proposed approaches, i.e., the hybrid and overlapped
hybrid copy. To obtain reliable results, primary databases of different sizes are
considered to check how the results change as the size of the primary database
grew. Moreover, to mitigate the influence of the network, the tests were repeated
5 times in each configuration, on different days and different times of the day.

FEvaluation Setup and FExecution. Three nodes were used to simulate the
Fog nodes: two in the same physical location (Zurich - Switzerland) and one
remote (Miami - USA). The nodes in Zurich were local to each other for the
reasons explained in Sect. 3. We chose the location of the third node purposely
at a great distance from the other two, to simulate a geographically distributed
deployment of the Fog nodes, where the connection could be affected by great
variations of performance. The three nodes are hosted in cloud resources and
share similar characteristics: the two nodes in Zurich have 1 single-core CPU
and 4 GB of RAM, while the node in Miami has 1 single-core CPU and 2 GB
of RAM.

In order to produce significant results, OLTP-Bench® was used to populate
the primary database with sample data. We used this benchmark defined by the
Transaction Processing Performance Council (TPC) [4] as it emulates transac-
tions of real databases mimicking new observations of the sensing layer.

5 https://github.com/oltpbenchmark/oltpbench.
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Results. Table 1 shows the results of the conducted tests. Here, the logical and
physical copy represent, respectively, the upper and lower bound.
Hybrid and overlapped approaches are decomposed in two execution times:

— Logical local: the execution time of the logical copy in the temporary node.
— Physical remote: the execution time of the physical copy from the temporary
machine to the secondary node.

The difference between the observed total time and the time to perform both
the logical local copy and the remote physical one is related to the rescheduling
time needed to bootstrap the third node.

The results clearly highlight that the proposed approaches have a lower exe-
cution time that the classical one (logical copy). Such a difference is up to 73% in
case of a 8 GB database with the overlap method. The tests show that the time
of the traditional approach grows over twice as faster than that of our proposed
approaches. However, the hybrid approaches are advantageous only beyond a
certain size of the database. Indeed, when the database is small, the traditional
approach of the remote logical copy is faster.

5 Related Work

Database replication has been extensively studied in the literature and, as dis-
cussed in this section, there are solutions which inspired the proposed approach
but that also have limitations which hamper their adoption in Fog Computing.

Among these approaches most of them propose a middleware. Since [3] offers
a read-one/write-all approach, its proposed solution requires a lock of the pri-
mary copy, thus reducing the efficiency of the replica creation. The middleware
proposed in [1] is based on a scheduler accepting transactions from users which
will be sent to replicas with a distributed conflict aware approach. Such an app-
roach parses SQL statements while users must declare at each transaction which
tables are being modified. This approach permits to fine tune the amount of
transactions to be sent on each DBMS, however, it does not support polyglot
persistence. MIDDLE-R [9] is a middleware mainly focused on granting consis-
tency among the copies, but it is unable to deal with dynamic environments, as
it only considers systems with a fixed number of nodes. Moreover, it is unable
to recover nodes after they crash, and, when nodes are falsely suspected to have
crashed, they are forced to commit suicide regardless. In [8], authors propose a
middleware to distribute requests based on the locality of the data and, there-
fore, increasing the likelihood of using the cache of the DBMS. However, this
approach is based on static replication and static content, and so it does not
support updates on the replica, but it rather focuses on the distribution of con-
tent. Finally, [7] compares some peer-to-peer solutions, where data storage and
processing are distributed across completely autonomous peers. These solutions
support a write-anywhere approach, and, consequently, they require reconcilia-
tion algorithms to fix the divergences that arise among the replicas. In dynamic
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environments where data is continuously updated, this can drain a lot of com-
putational power from the nodes. Also, most of these solutions are based on a
weak type of replication, known as passive replication, where a piece of data is
specifically replicated only after the user tries to access it.

6 Conclusion

Due to the provided flexibility and scalability, the microservice architectural
style represents a good approach to developing applications according to the
Fog Computing paradigm. Nevertheless, the dynamicity of fog nodes requires a
data management that is able to quickly react to the re-deployments that may
occur to satisfy the quality of service that the applications have to ensure. In
particular, this paper has identified the need for mechanisms able to quickly
create replicas. As the typical physical copy does not provide the proper support
for fog environments and the logical copy is too slow, this paper proposes a hybrid
approach that is able to exploit both the advantages of the classical solutions.
The performed tests demonstrated how the hybrid approach can save up to 70%
of the time usually required to create replicas for an almost 10 GB database.
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Abstract. A major issue that arises when designing data-analysis
pipelines is that of identifying the services (or what we refer to as modules
in this paper) that are suitable for performing data preparation steps,
which represents 80% of the modules that compose data analysis work-
flows. Such modules are ubiquitous and are used to perform, amongst
other things, operations such as record retrieval, format transformation,
data combination to name a few. To assist scientists in the task of dis-
covering suitable modules, we examine, in this paper, a solution that
utilizes semantic annotations describing the inputs and outputs of mod-
ules together with data examples that characterize modules’ behavior as
ingredients for the discovery of data preparation modules. The discovery
strategy that we devised is iterative in that it allows scientists to explore
existing modules by providing feedback on data examples.

1 Introduction

Despite the impressive body of work in data management on data preparation
tasks, it is recognized that there is not a single generic one-shop-stop solution
that can be utilized by the scientists to prepare their data prior their analy-
sis. Instead, data preparation tasks are numerous, can be difficult to generalize
(e.g., data cleansing, data integration), and tends to vary depending on the pro-
cessing tasks at hand, but also on the semantic domains and the format of the
data subject to processing. As a result, scientists tend to develop their own pro-
gram/script using their favorite language, e.g., Python, R or Perl, to prepare
their data. This operation is time-consuming and recurrent since sometimes the
scientist has to redevelop data preparation scripts that s/he has previously per-
formed on the same or similar data.

To overcome the above problem, a number of researchers have been calling
for the creation of repositories dedicated to data preparation modules with the
view to save the time scientists spend on data preparation to allow them to
focus their effort on the analysis tasks. Examples of such repositories are BigGo-
rilla', an ecosystem for data preparation and integration, Bio.Tools?, a catalogue

1 https://www.biggorilla.org.
2 https://bio.tools.
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which provides access to, amongst other things, services for the preparation of
bioinformatics data, and Galaxy tools®.

In this paper, we set out to examine the problem of querying data prepara-
tion modules. Specifically, the objective is to locate a module that can be perform
a data preparation task at hand, if such a module exists. Semantic annotations
can be used to reach this objective [9]. A module is semantically annotated by
associating it to concepts from ontologies. Different facets of the module can be
described using semantic annotations, e.g., input and output parameters, task and
quality of service (QoS). In practice, however, we observe that most of semantic
annotations that are available are confined to the description of the domain of
input and output parameters of modules. Annotations specifying the behavior of
the module, as to the task it performs, are rarely specified. Indeed, the number of
modules that are semantically described with concepts that describe the behav-
ior of the module lags well behind the number of modules that are semantically
annotated in terms of the domains of the input and output parameters, e.g., in
BioTools. Even when they are available, annotations that describe the behavior
of the module tend to give a general idea of the task that the module implements,
and fall short in describing the specifics of its behavior. For example, the modules
in BioTools, which is a registry that provides information about data preparation
modules, are described using terms such as merging and retrieving. While such
terms provide a rough idea of what a module does, they do not provide the user
with sufficient information to determine if a it is suitable for the data prepara-
tion at hand. The failure in crisply describing the behavior of scientific modules
should not be attributed to the designers of task ontologies. Indeed, designing an
ontology that captures precisely the behavior of modules, without increasing the
difficulty that the human annotators who use such ontologies may face thereby
compromising the usability of the ontology, is challenging.

To overcome this issue, we examine in this paper a solution that utilizes
semantic annotations describing the inputs and outputs of modules together with
data examples that characterize modules’ behavior as ingredients for the discov-
ery of data preparation modules. Given a module m, a data example provides
concrete values of inputs that are consumed by m as well as the corresponding
output values that are delivered as a result. Data examples are constructed by
harvesting the retrospective provenance of modules’ executions. They provide an
intuitive means for users to understand the module behavior: the user does not
need to examine the source code of the module, which is often not available, or
the semantic annotations, which require the user to be familiar with the domain
ontology used for annotation. Moreover, they are amenable to describing the
behavior of a module in a precise, yet concise, manner. It has been shown in [2]
that data examples are an effective means for characterizing and understanding
the behavior of modules. We show in this paper that data examples can also be
used to effectively and efficiently discover modules that are able to perform a
data preparation task of interest.

3 https://galaxyproject.org/tools.
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GetRecord.i GetRecord.o

>sp|P17110|CH36_CERCA Chorion protein S36 OS=Ceratitis capitata
MNCFLFTLFFVAAPLATASYGSSSGGGGGGSSYLSSASSNGLDELVQAAAGGAQQAGGTI
TPANAEIPVSPAEVARLNQVQAQLQALNSNPVYRNLKNSDAIAESLAESSLASKIRQGNI
P17110 NIVAPNVIDQGVYRSLLVPSGQNNHQVIATQPLPPIIVNQPALPPTQIGGGPAAVVKAAP
VIYKIKPSVIYQQEVINKVPTPLSLNPVYVKVYKPGKKIDAPLVPGVOONYQAPSYGGSS
YSAPAASYEPAPAPSYSAAPAQSYNAAPAPSYSAAPAASYGAAPSASYDAAPAASYGAES
SYGSPQSSSSYGSAPPASGY

Fig. 1. Data example.

It is worth noting that a number of systems have been developed recently
to facilitate data preparation tasks, including Trifacta*, NADEEF [3], Tamer [8]
and VADA [6]. These systems come with a number of functionalities that cov-
ers, amongst other things, format transformation, data deduplication and data
repair. They are primarily targeted for end-users (be they domain expert or not),
who would like to use a GUI to clean a single tabular dataset (mainly in relational
form or CSV). In our work, we target scientists who wish to programatically pro-
cess one or multiple datasets, in any format (relational, CSV, text, JSON, etc).

The paper is structured as follows. We start by introducing background infor-
mation regarding data examples and how they are generated for characterizing
modules based on retrospective provenance of modules’ executions (in Sect. 2).
We go on to present our solution for module discovery (in Sect. 3), and close the
paper (in Sect. 4).

2 Background

For the purposes of this paper, we define a data-preparation module by the pair:
m = (id, name), where id is the module identifier and name its name. A module
m is associated with two ordered sets inputs(m) and outputs(m), representing
its input and output parameters, respectively. A parameter p of a module m is
characterized by a structural type, str(i), and a semantic type, sem(i). The for-
mer specifies the structural data type of the parameter, e.g., String or Integer,
whereas the latter specifies the semantic domain of the parameter using a con-
cept, e.g., Protein, that belongs to a domain ontology [5].

A data example § that is used to describe the behavior a module m can be
defined by a pair: 6 = (I,0), where: I = {(i,ins;)} and 0 = {(0,ins,)}. i (resp.
o) is an input (resp. output) parameter of m, and ins; and ins, are parameter
values. § specifies that the invocation of the module m using the instances in I
to feed its input parameters, produces the output values in 0. We use in what
follows A(m) to denote the set of data examples that are used to describe the
behavior of a module m.

Example 1. To illustrate how data examples can be used to understand a mod-
ule behavior, consider the module GetRecord, which has one input and one out-
put. Figure 1 illustrates an input instance that is consumed by GetRecord and

4 .
www.trifacta.com.
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BiologicalSequence

ProteinSequence

NucleotideSequence

DNASequence
' RNASequence

Fig. 2. Fragment of the myGrid Ontology.

the corresponding value obtained as a result of the module invocation. By exam-
iming such a data example, a domain expert will be able to understand that the
GetRecord module retrieves the protein record that corresponds to the accession
number given as input.

2.1 Data Example Generation

Enumerating all possible data examples that can be used to describe a given
module may be expensive or impossible since the domains of input and output
parameters can be large or infinite. Moreover, data examples derived in such a
manner may be redundant in the sense that multiple data examples are likely
to describe the same behavior of the module. A solution that can be used is to
create data examples that cover the classes of behavior of the module in question,
and then construct data examples that cover the classes identified. When the
modules are white boxes, then their specification can be utilized to specify the
classes of behavior and generate the data examples that cover each class (see e.g.,
[1]). If, on the other hand, the modules are black boxes and their specification is
not accessible, then a heuristic such as the one described in [2] can be utilized.
To make our paper self-contained, we will describe the solution presented in [2]
for generating data examples. We stress, however, that our approach for module
discovery is not confined to modules described using the approach presented in
[2]. Instead, it can be applied to potentially any module repository where the
modules are described using data examples that are annotated with semantic
domain concepts.

Using the solution proposed in [2], to construct data examples that character-
ize the behavior of a module m, the domain of its input i is divided into partitions,
Pi;P2, - - -, Pn- The partitioning is performed in a way to cover all classes of behav-
ior of m. For each partition p;, a data example ¢ is constructed such that the
value of the input parameter in é belongs to the partition p;. A source of infor-
mation that is used for partitioning is the semantic annotations used to describe
module parameters. Indeed, the input and output parameters of many scientific
modules are annotated using concepts from domain ontologies [7]. In its simple
form, an ontology can be viewed as a hierarchy of concepts. For example, Fig. 2
illustrates a fragment of the myGrid domain ontology used for annotating the
inputs and output parameters of bioinformatics modules [4]. The concepts are
connected together using the subsumption relationship, e.g., ProteinSequence



60 K. Belhajjame

is a sub-concept of BiologicalSequence, which we write using the following
notation: ProtSequence C BioSequence. Such a hierarchy of concepts can be
used to partition the domain of parameters.

To generate data examples that characterize the behavior of a module m, m
is probed using input instances from a pool, the instances of which cover the
concepts of the ontology used for annotations. The retrospective provenance
obtained as a result of the module’ executions are then used to construct data
examples. In doing so, only module executions that terminates without issues
(that is without raising any exception) are utilized to construct data examples
for m. For more details on this operation, the reader is referred to [2].

3 Module Discovery

To discover a module, a user can provide data examples that characterize the
module s/he had in mind. However, specifying data examples that characterize
the desired module can be time-consuming, since the user needs to construct the
data examples by hand. We present in this section a method that allows users to
discover modules by simply providing feedback on a list of data examples they
are presented with.

3.1 Feedback-Based Discovery of Scientific Modules

To identify the modules that meet his/her needs, the user starts by specifying
the semantic domains and the structural types of the inputs and outputs of the
modules s/he wishes to locate. The modules with inputs and outputs that are
compatible with the specified semantic domains and structural types are then
located. Consider, for example, that the user is interested in locating a module
that consumes input values that belong to the semantic domain c¢; and structural
type t;, and produces output values that belong to the semantic domain c, and
structural type to,. A module m meets such a query if it has an input (resp.
output) with a semantic domain and structural type that are equivalent to or
subsumed by c¢; and t; (resp. ¢, and t,). Specifically, the set of modules that
meet those criteria can be specified by the following set comprehension:

{ms.t.(3i € inputs(m), (sem(i) C c;)A(str(i) C t;))
A (o € outputs(m), (sem(o) C c,) A(str(o) C t,))}

It is likely that not all the modules retrieved based on the semantic domain
of input and output parameters perform the task that is expected by the user.
Because of this, we refer to such modules using the term candidate modules.
To identify the candidate module(s) that perform the task expected by the
user, the data examples characterizing candidate modules are displayed to the
user. The user then examines the data examples and specifies the ones that meet
the expectations, and the ones that do not. To do so, the user provides feedback
instances. A feedback instance uf is used to annotate a data example, and can
be defined by the following pair uf = (0, expected), where § denotes the data
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Data examples User feedback
protein name accession expected | unexpected
6, Chorion protein S36 CH36_CERCA X
6, Zinc metalloproteinase VMDM_VIRST X

Fig. 3. Data examples and user feedback.

example annotated by the feedback instance uf, and expected is a boolean that
is true if § is expected, i.e., compatible with the requirements of the user who
supplied uf, and false, if it is unexpected.

3.2 Incremental Ranking of Candidate Modules

The discovery strategy we have just described can be effective when the number
of candidate modules and the number of data examples characterizing each can-
didate are small. If the number of candidate modules to be annotated and/or
the number of data examples used for their characterization are large, then the
user may need to provide a large amount of feedback before locating the desired
module among the candidates. Moreover, there is no guarantee that the set of
candidates is complete in the sense that it contains a module that implements
the behavior that meets user requirements. Therefore, the user may have to
annotate a (possibly) large number of data examples only to find out that none
of the candidates meet the requirements. Because of the above limitations, we
set out to develop a second discovery strategy with the following properties:

1. Ranking candidate modules: Instead of simply labeling candidate modules
as suitable or not to user requirements, they are ranked based on metrics
that are estimated given the feedback supplied by the user, to measure their
fitness to requirements. In the absence of candidates that meet the exact
requirements of users, ranking allows the user to identify the modules that
best meet the requirements among the candidate modules.

2. Incrementality: The user does not have to provide feedback annotating
every data example characterizing the candidate modules before being pre-
sented with the modules that best meet the requirements. Instead, given
feedback supplied by the user to annotate a subset of the data examples, the
candidate modules are ranked and the obtained list of candidates is shown to
the user. The list of candidates is incrementally revisited as more feedback
instances are supplied by the user.

3. Learning feedback: To reduce the cost in terms of the amount of feed-
back that the user needs to provide to locate suitable modules, new feed-
back instances annotating data examples that the user did not examine are
inferred based on existing feedback that the user supplied to annotate other
data examples.
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Ranking Candidate Modules. To be able to rank candidate modules, we
adapt the notions of precision and recall [10] that are used in information
retrieval, to estimate the fitness of a module to user requirements based on
the feedback supplied by the user. Consider that the user provided the feedback
instances UF to annotate some (not necessarily all) data examples that charac-
terize the candidate modules. We define the precision of a candidate module,
m, relative to the feedback instances in UF as the ratio of the number of true
positives of m given UF to the sum of true positives and false positives of m given
the feedback instances in UF. That is:

precision(m,UF) = [tp(m, UF)]
|tp(m, UF) + £p(m, UF)|

where tp(m,UF) (resp. fp(m,UF)) is the set of data examples describing the
module m, and that are annotated as expected (resp. unexpected) by feedback
instances in UF, i.e:

tp(m,UF) = {6 € A(m) s.t. (§,true) € UF}
fp(m, UF) = {§ € A(m) s.t. (§,false) € UF}

Ranking based on precision only may not be enough: a module may be asso-
ciated with the maximum precision of 1, i.e., all its data examples are true
positives, and yet it may not implement all the classes of behavior expected by
the user. Recall can be used to identify such modules. The recall of a module m
relative to the feedback instances in UF can be defined as the ratio of the number
of true positives of m given UF to the sum of true positives and false negatives of
m given the feedback instances in UF. That is:

recall(m,UF) = |tp(m, UF)|
|tp(m, UF) + £n(m, UF)|

where fn(m, UF) denotes the false negatives of m given the feedback instances in
UF. To illustrate what we mean by a false negative data example, consider ¢’ a
data example that is the user annotated as expected. ¢’ is a false negative for
the module m if when invoked using the input values specified by nd’, the module
m returns output values that are different from the output values specified by ¢’.

fn(m, UF) = {J s.t., < §,true > € UF A not match(invocation(m,d.I).0,4.0)}

where invocation(m,d.I).0 denotes the output values delivered by the module
m when it is invoked using the input values specified by the data example §.

match(invocation(m,d.I).0,4.0) is a boolean that is true if the output values
delivered by the invocation of the module m are the same as the output values
specified by the data example J.

To rank candidate modules, we use the F-score, which combines precision
and recall using the harmonic mean as illustrated below. The module associated
with the highest F-measure is the candidate that best meets user requirements
given the feedback instances in UF.

2 x precision(m,UF) X recall(m,UF)

F(m,UF) =
(m, UF) precision(m,UF) + recall(m,UF)
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Learning Feedback. Notice that the method for identifying false negatives of
candidate modules that we have just described can be computationally expen-
sive. In particular, every candidate module m may need to be invoked using
all data examples that are not used to characterize m and that are labeled as
expected by the user, i.e., the data examples in expected(UF) — tp(m,UF).

To overcome the above problem, we adopt an approach that not only
reduces the number of times a candidate module needs to be invoked (using
known expected data examples) to identify false negatives, but also allows
learning new feedback instances that the user would give on unannotated
data examples based on existing feedback instances. To illustrate the approach
we adopt for this purpose, consider the candidate module getAccession and
getAccessionOfSimilarProtein (see Fig.3). These two modules consume a
protein name and output a protein accession, and are characterized by one
data example each because the concepts ProteinName and ProteinAccession
are leaf nodes in the ontology used for annotation. The feedback supplied
by the user to annotate the data examples &; and §, illustrated in Fig.3
shows that d; is expected and J, is unexpected. Therefore, J; is a true pos-
itive for the module getAccession, and &, is a false positive for the module
getAccessionOfSimilarProtein. Now, to know whether ¢, is a false nega-
tive for the module getAccession0fSimilarProtein, we will need to invoke
getAccessionOfSimilarProtein using the input value specified in 4, i.e.,
Chorion protein S36.

Intuition Behind Feedback Learning. Using the solution that we adopt, we do not
need to invoke getAccessionO0fSimilarProtein. To do so, we slightly modify
the process by which data examples are constructed to cover the partitions of
input parameters presented in [2] and overviewed in Sect. 2.1. Specifically, when
selecting input values for data examples to cover a given partition, i.e., semantic
domain, ¢, the same input value v (in c¢) is used in all those data examples.
For example, using this method, the data examples used to characterize the
two modules getAccession and getAccessionOfSimilarProtein will have the
same input value. Figure 4 illustrates the data examples §; and d3 specified using
this method to characterize such modules.

Consider that the user supplies the feedback instance annotating the
data example d; as expected (see Fig.4). Given this feedback instance, we
do not have to invoke the module getAccessionOfSimilarProtein using
the input value specified in d; to know if §; is a false negative for
getAccessionOfSimilarProtein. Indeed, the data example d3 shows that the
output produced by getAccessionOfSimilarProtein using the same input
value as that used in §;. Given that the output values of §; and d; are dif-
ferent, we can make the following inferences: i) ¢; is a false negative for
getAccession0fSimilarProtein, moreover, ii) d3 is unexpected, and is, there-
fore, a false positive for getAccession0fSimilarProtein. This last inference
can be made because the modules that we consider are deterministic. Therefore,
the fact that d; is expected implies that d3 is unexpected. Note that if 3 had
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Data examples User feedback
protein name accession expected | unexpected
6, Chorion protein S36 CH36_CERCA X
5, Chorion protein S36 Q5G556_DROAE

Feedback asserted by the user

Feedback inferred

Fig. 4. Example illustrating feedback inference.

the same output value as 01, then we would have inferred that d3 is expected
and is, therefore, a true positive for getAccessionForSimilarProtein.

4 Concluding Remarks

To assess the performance of the discovery strategy described in the previous
section, we ran an experiment to identify the amount of feedback required to
detect the modules that are relevant to users’ needs. We also examined the
error in the F-score estimates computed for candidate modules based on user
feedback. To perform a systematic sweep of the parameters of the experiment, we
use a synthetic dataset that we created for this purpose. We also used real-world
bioinformatic modules.

The result of this experiment showed that users can effectively discover sci-
entific modules using a small number of feedback instances. A particularly inter-
esting result that we empirically showed is that the number of feedback instances
that the user needs to provide to identify the module that meets the require-
ment, and more generally a ranking that meets his/her expectations, is small
even in the cases where the number of data examples describing the behavior of
the modules is large.

References

1. Alexe, B., Cate, B.T., Kolaitis, P.G., Tan, W.C.: Characterizing schema mappings
via data examples. ACM Trans. Database Syst. 36(4), 23:1-23:48 (2011)

2. Belhajjame, K.: Annotating the behavior of scientific modules using data examples:
a practical approach. In: EDBT, pp. 726-737. OpenProceedings.org (2014)

3. Ebaid, A., et al.: NADEEF: a generalized data cleaning system. PVLDB 6(12),
1218-1221 (2013)

4. Goble, C., et al.: BioCatalogue: a curated web service registry for the life science
community. In: Microsoft eScience Conference (2008)

5. Gruber, T.: Ontology. In: Encyclopedia of Database Systems (2009)

6. Konstantinou, N.; et al.: The VADA architecture for cost-effective data wrangling.
In: SIGMOD Conference, pp. 1599-1602. ACM (2017)

7. Kuropka, D., Troger, P., Staab, S., Weske, M. (eds.): Semantic Service Provisioning.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78617-7


https://doi.org/10.1007/978-3-540-78617-7

On Discovering Data Preparation Modules Using Examples 65

8. Stonebraker, M., et al.: Data curation at scale: the data tamer system. In: CIDR
(2013). www.cidrdb.org

9. Studer, R., Grimm, S., Abecker, A. (eds.): Semantic Web Services, Concepts, Tech-
nologies, and Applications. Springer, Berlin (2007). https://doi.org/10.1007/3-540-
70894-4

10. van Rijsbergen, C.J.: Information Retrieval. Butterworth, London (1979)


www.cidrdb.org
https://doi.org/10.1007/3-540-70894-4
https://doi.org/10.1007/3-540-70894-4

Internet of Things



®

Check for
updates

Accelerate Personalized IoT Service
Provision by Cloud-Aided Edge
Reinforcement Learning: A Case Study
on Smart Lighting

Jun Na(®) Handuo Zhang, Xin Deng, Bin Zhang®) and Ziyi Ye

Software College, Northeastern University, Shenyang, China
{najun,zhangbin}@mail.neu.edu.cn

Abstract. To enhance the intelligence of IoT devices, offloading suffi-
cient learning and inferencing down to the edge environment is promising.
However, there are two main challenges for applying the cloud generated
model in the edge environment. On the one hand, the input may vary
on dimensions or cover different situations that the cloud hasn’t met.
On the other hand, the model’s output might not satisfy the given user’s
personalized preference. To make full use of the cloud generated model in
the edge environment for accelerating personalized service provision, we
propose cloud-aided edge learning. Unlike current federated learning and
transfer learning, we focus on knowledge fusion in edge decision making
and try to build the supplement/correction model. We take the person-
alized service provision in a smart lighting system as an example, design
and implement the related deep reinforcement learning model, and take
experiments based on the data generated on the open software DAILux
to show our approach’s effectiveness and performance.

Keywords: Edge intelligence - Edge-cloud collaborated learning -
Personalized service provision * Smart lighting - Deep Reinforcement
Learning (DRL)

1 Introduction

The Internet of Things (IoT) [3,20] enables all kinds of real-world objects (includ-
ing human beings) to be connected to the cyber world. Considering the char-
acteristics of human-in-the-loop, providing personalized IoT services efficiently
and transparently turns to be essential. Recently, applying machine learning to
speed up personalization becomes a promising way[22,36], which can extract
useful knowledge from interactions happening in the physical world to produce
proper reactions.

To process the continuously generated IoT data efficiently, it needs a pow-
erful data center with enough storage and computing resources. Although cloud
computing is an excellent platform to handle the enormous IoT data, push-
ing all the raw data to the cloud is inefficient in response latency, network
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bandwidth cost, and possible privacy concerns [8,23]. To solve these problems,
edge computing [28], also known as fog computing [4], is becoming the right solu-
tion and get more attention in both research and industry domain. By offloading
sufficient training and inferencing down to the edge environment, edge intelli-
gence would be enhanced to satisfy users’ personalized needs more efficiently
while protecting privacy [19,27,32,37]. Combining both cloud computing and
edge computing advantages to offer flexible edge-cloud collaboration gets more
attention [5,27,36].

Existing studies usually focus on the underlying mechanisms of edge-cloud
collaboration. However, there are more challenges to accelerate personalized ser-
vice provision through deep learning. For example, data achieved by the edge
node might be different from the generic dataset used to generate the global
model. It does not only refer to the differences in input dimensions but also
other situations occurring in the edge environment. Besides, different preferences
among edge nodes may cause conflicts during knowledge fusing [17,24].

To solve the above problems, we focus on reducing the edge computation
cost as much as possible by making full use of the global model and only learn
to deal with the inapplicable parts. Since the successful application of Deep
Reinforcement Learning (DRL) [6,9,16,30] in playing Atari and Go games, we
adopt DRL to realize efficient online learning. Taking the example of offering
comfortable, personalized illumination in a smart lighting system, we designed
and implemented the corresponding algorithms, generated data based on an
open software platform, DIALux, and tested our approaches’ effect. The main
contributions of this paper are as follows.

— We propose a cloud-aided edge reinforcement learning framework that sup-
ports downloading the global consensus model from the cloud center and fuses
it into the edge learning process.

— To enhance the efficiency and effect by applying the downloaded pre-trained
model, we put forward two integration strategies, i.e., input expansion strat-
egy and output correction strategy.

— We conduct a case study on smart lighting as an example and present the
proposed approach’s effects.

2 Background and Related Work

2.1 Edge-Cloud Collaboration

Among most current studies, virtualizing the resources and services over WAN
networks is the shared premises to combine cloud computing and edge comput-
ing. Researches such as Pcloud [11], CoTware [1], FocusStack [2], etc. emphasize
to virtualize resources of individual devices, edge nodes and cloud to build a dis-
tributed resource pool for supporting resource-limited front-end devices. While,
SpanEdge [26], CloudPath [21], ECHO [25], etc. focus on the data stream pro-
cessing across different layers seamlessly.
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These works establish an elastic data analysis environment. However, most
of them pay attention to leveraging resources on higher layers along the path
from front-end devices to cloud with fewer considerations on how these analy-
sis results will reflect behaviors provided on the front layers. Moreover, as pre-
sented in several works [28,29,34], most existing studies lack information sharing
among multiple stakeholders, while the sharing may help these edge nodes to
make smarter decisions. Thus, it is still challenging to support more diversified,
personalized, and delay-sensitive system behaviors in the edge environment.

2.2 Schemes for Edge-Cloud Collaborated Model Training

At present, research on improving computing power and effects based on edge-
cloud collaboration is still in its early stages [34]. There are three primary
schemes for edge-cloud collaborated training models.

1) Gradient sharing: Reduce the transmission size of a single model by compress-
ing the gradient, so that the model update results are transmitted frequently
and multiple times to make up for the lack of computing power of edge nodes
[10,12]. The training effect in the network is independent of the same and dis-
tributed data. As a result, the sharing effect of multi-edges in heterogeneous
networks with different data sets cannot be guaranteed.

2) Parameter sharing: The edge side conducts preliminary training of the model
and transmits the parameters to the parameter server. The parameter aggre-
gation method in the cloud improves the accuracy of the edge side model
[15,18]. This scheme can reduce the transmission volume. It also protects the
privacy and improves model accuracy, but in scenarios with high personaliza-
tion requirements, parameter aggregation still has challenges.

3) Data sharing: When it is necessary to collect the original data and perform
parameter aggregation or train directly on the parameter server, noise can
be added to the data on the edge side or privacy leakage can be reduced
by preprocessing [35]. Simultaneously, there are some methods to study how
to enhance the processing capabilities of edge nodes through algorithms or
model hardware [14,31].

Existing work focuses more on improving the efficiency of data analysis and
model training and protecting privacy. However, the issue of how to improve the
personalized intelligence at the edge through the edge-cloud collaboration still
needs further studies.

2.3 Fast Personalization by Federated Reinforcement Learning

Personalization aims to understand user behavior and adapting to it, which is cru-
cial for gaming, personal assistants, dialogue managers, etc. It is often time con-
suming, so a critical challenge of personalization is how to adapt to a new situ-
ation quickly. To make robots quickly adapt to the new environment by sharing
their experiences, Liu et al. [17] proposed the Lifelong Federated Reinforcement
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Learning (LFRL) architecture. Each robot learns to avoid some new types of
obstacles in the new environment through reinforcement learning. After obtain-
ing a private Q-network model, the robot will upgrade this model by fusing with
models submitted by other robots through federated learning. This work assumed
all agents make the same decision when they meet the same type of obstacle. How-
ever, different agents might prefer to make other decisions to adapt to their cur-
rent behavior. Zhou et al. [38] proposed a similar federated reinforcement learn-
ing framework by building a Multilayer Perception (MLP) to compute a global
Q-network output with all Q-network results. It also doesn’t consider to enable
agents to make personalized decisions.

Nadiger et al. [22] pay attention to personalization in the context of gaming.
They propose an overall architecture, including the grouping policy, the learning
policy, and the federation policy. By putting forward the grouping policy, this
approach can avoid the risk of adding irrelevant samples, which may increase
the personalization time while guaranteeing the model quality. Unlike the above
works, this approach solves the problem resulting from conflict samples by only
allowing similar agents to share data samples. However, as reinforcement learning
is a typical online learning algorithm, considering the latency of generating a new
shared model, directly updating the private model weights might overwrite some
new knowledge learned during the shared model updating.

To solve these problems, we propose cloud-aided edge learning to fuse shared
knowledge gained at the cloud to the edge. Unlike existing studies, we try to
avoid training the whole shared model by only focusing on different situations
to reduce edge computation as much as possible.

3 System Model for Cloud-Aided Edge Reinforcement
Learning

3.1 Basic Ideas of the Cloud-Aided Edge Reinforcement Learning

To provide satisfactory personalized services, it requires capturing users’ per-
sonalized explicit or implicit requirements by self-learning. Besides, considering
the influences from the external environment and the users’ changing prefer-
ences, the system should be able to adapt to these new situations to provide
better services. We propose a hybrid framework focusing on how to realize and
improve the self-learning and adaptive ability of an edge system. Figure 1 shows
the proposed edge-cloud collaborative framework.

We focus on two key aspects to achieve smarter automation, learning, and
adaptation.

1) How to share knowledge among different edge nodes with cloud assistance:
Single edge environments always face the data sparsity problem. For exam-
ple, lack of various states of weather, season, and system deployment. It is
necessary to share knowledge among different edge systems, which will enable
an edge system to make more smart decisions by taking advantage of the sit-
uations shared by others that haven’t already appeared but might happen in
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Fig. 1. The overview of collaboration for learning and adaptation in smart home sys-
tems between the edge node and the cloud.

the future. The offline learning part in Fig. 1 is in charge of sharing knowledge
among different edge nodes by parameter sharing.

How to utilize the historical experiences/knowledge generated on cloud in
making real-time decisions on edge nodes efficiently: Learning performed on
cloud is based on the historical data. Therefore, the resulting knowledge usu-
ally reflects past situations that may be outdated in current states. An appro-
priate mechanism is needed to integrate such historical experiences with fast
rules of the local environment to improve the accuracy of reactions gener-
ated by an edge decision-maker. The online learning part in Fig.1 aims to
enhance real-time decision making by applying consensus achieved through
offline learning on the cloud.

3.2 Knowledge Fusion Strategies on Edge Nodes

As mentioned above, data achieved by the edge node might be different from the
generic dataset used to generate the pre-trained model, including differences in
either input dimensions or situations occurring in the edge environment. Besides,
different preferences among edge nodes may also be different from each other. To
cope with such various problems, we propose two knowledge fusion strategies to
accelerate edge personalized decision making, i.e., input expansion and output
correction.

The Input Expansion Strategy. As the global model and the local model
are trained based on different data samples, there may be some special states
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emerging in the edge environment that have not met by the cloud. In this case,
the global consensus model only captures part of the knowledge about the edge
environment. To complement the model to provide more accurate decisions, we
propose the input expansion strategy shown in Fig.2. As shown in Fig.2, the
current state will be sent to both the global consensus model and the local
private model as input. Then, the decision-maker will produce the final action
by integrating outputs of both the two models. Such fusing can be realized as
follows.

Output of Global

Global Consensus Consensus Model

Model

Decision Maker

Local Private

Model Qutput of Local

Private Model

Fig. 2. The input expansion strategy.

N

H(z) = Z w; * hy(x) (1)

where, w; is the weight of the output h;(x), and N is the total number of models
participate in fusing.

Under the edge-cloud collaboration framework, both the global and the local
model might have some information not learned by the counterpart model. So
the setting of weights needs to balance the advantages of both parties. Assuming
that the accuracy of both parties is the same, the weights of the two are the same,
and the advantages of both parties can be guaranteed to be balanced. While, if
they have different degrees of accuracy, it is necessary to ensure that the model
with higher accuracy has a higher weight. For reinforcement-learning, we define
accuracy as the proportion of decisions resulted in a reward greater than zero
in all decisions. With this in mind, we define the following equation to compute
the weight w; based on the corresponding accuracy Acc;.

Ace;

- Zf\; Acc; )

wj

Considering the simplest situation that there are only one global model and one
local model, the value of N is 2.

On this basis, suppose the accuracy of the private model is Acceqge, and the
accuracy of the global model is Accejouq- The corresponding model output value
formula is
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Initially, the edge model has just started training and is still in the process
of exploration. At this time, the accuracy of the local model should be set to
0 while the weight of the cloud model should be set to 1. After training for a
while, as the accuracy of the edge model improves, its weight, i.e. the value of
Acceqge/(Acceage + Acceioud) Will gradually increase.

The Output Correction Strategy. Because the global consensus model is
achieved by integrating, it contains user consensus with similar characteristics.
However, when the model is delivered to a given edge environment, it may not
be able to meet the preference of a specific user. To satisfy users’ personalized
usage habits and requirements, we need to modify the output of the global model
properly. To this end, we take the output of the global model as an additional
input in training the local personalized model, as shown in Fig. 3.

Decision Maker

Fig. 3. The output correction strategy.

Output of Global

Global Consensus Consensus Model

Model Output of Local

Private Model

Local Private
Model

The corresponding algorithm is shown in Algorithm 1, which both accelerates
the training of the local model but also improves the effectiveness of the decision
making. Here, we only consider revising the final decision generated by the global
model.

4 Reinforcement Learning for Providing Personalized
Illuminance in Smart Lighting

Lighting plays a significant role in our daily lives. Generally, lighting includes the
use of both natural illumination in the form of daylight and electric illumination
provided by various light sources. Together with the flourishing of IoT, a new
generation of LED lighting systems are emerging, i.e., LED-based intelligent
lighting systems where LEDs are integrated with sensors and actuators to have
intelligence. For example, Philips Hue is a wireless lighting product, which can
cooperate with a range of smart devices such as Amazon Echo, Apple HomeKit,
Google Home, etc. to provide a convenient and comfortable way for occupants
to control and experience light.
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Algorithm 1. Collaborative algorithm by adjusting cloud model’s output.
Require:
The environment state, S =< Brightl, Bright2, Distance, Time >;
User’s operation on the light, Icontrot
The globel model, Modell
Ensure:
The adjustment action to the light, Action;
1: Set the training episode to n;
2: for i =1ton do
3:  Achieve the initial state S;

4:  Set the max adjustment time to m;

5: for j=1tomdo

6: Input S to Modell and get the output ol;

7: Combine S and ol to a new state S™;

8: Input the state S~ into the local model Model2. Train the model and get the

output Action;

9: Perform the generated Action;

10: Achieve the next state S /;

11: Achieve use’s operation Icontrol;

12: Compute the Reward based on Icontrol;
13: Perform related iterative formula or loss function to optimize M odel2.
14: Update the state to the next iteration, S = Sl;
15:  end for
16: end for

To enhance the quality of user experience, light control strategies need to be
more flexible and automatic. Thus, Al and data-mining technologies are widely
adopted to seek useful information on resident behavior and the state of the envi-
ronment for generating satisfactory reactions [7,13,24,33]. These approaches are
usually storing and analyzing the continuous human-system interactions during
the non-stop system running. Considering the successful application of DRL, we
adopt DRL to realize personalized illuminance setting.

According to the definition of reinforcement learning, we use a quadruple
< S, A, P, R > to represent a reinforcement learning model, where S represents
an environmental state, A represents an action, P represents a state transition
probability, and R represents a reward value.

In reinforcement learning, the state comes from the agent’s observation of
the environment. We suppose there are four sensors around a light, which are
two light sensors, one ultrasonic sensor, and one infrared sensor. Generally, the
infrared sensor is usually used to determine whether there is a person or not
to turn on or turn off the light. Thus, we only use the other three sensors
to construct the current state. Specifically, we define the state as a 4-tuple
< Byeeling, Bpature, Distance, Time >. We get the synthesized brightness (i.e.,
Byight) and natural light (i.e., Bpature) by the two light sensors. The distance
data (i.e., Distance) is obtained by the ultrasonic sensor and the Time is when
constructing the state values.
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For an LED, the action represents the adjustment of the lamp output by
the model. For simplicity, we only consider the brightness in this paper. There
should be two kinds of actions. One is a determined value of brightness or a
predefined gear. The other is one of the operations up, down, and hold.

Reinforcement learning needs to construct reward functions for training the
model. To achieve higher user satisfaction, we define the reward function as
follows.

_ § )
=% Rpositive + Yok Rpositive + Icontrol * Rnegati'ue (4)

When the user moved to another place or the sunlight intensity changed, the
algorithm should generate a proper illuminance and set the light accordingly.
Whether the user adjusts the light manually after running the automated setting
is used as the feedback for training a DQN. In the above equation, Rycgative is the
negative feedback, which is collected if the user adjusts the light manually after
an automated adaptation. In other words, the algorithm didn’t find a satisfactory
brightness for the user. Similarly, if the user didn’t take any action after an
automated adaptation, it means the algorithm meets users expect. « is the times
that there is no user adjustment during an episode. v is the reward decay rate
to decrease the reward if there is no manual adjustment. i is the continuous
times without manual adjustment in an episode, and I optro is the number of
manually adaptions.

5 Experiments

5.1 Dataset

We use the open software DIALux to generate a dataset for simulating the
training and decision making procedure. DIALux is a lighting design software,
which is a useful lighting calculation software. It can use all the lamps and
lanterns provided by the lamp manufacturers and add sunlight to the scene
according to actual calculation requirements. We set a 5.4m*3.6m room in
DIALux with a window, a variable power lamp placed on a table in the center
of the room, as shown in Fig.4. The light is 1.8 m away from the window and
0.85m away from the ground. Taking the height of 0.85m above the ground
as the daily working plane, people can obtain the light intensity of each point
on the working plane under different power under the influence of the current
sunlight.

When we set the present time is 8 am, Fig. 5 shows the brightness in the room.
The red point is the position of the light, and the blue line at the bottom is the
window’s position. We can find that light intensity around the lamp is about
300 lux, while the light intensity near the window is about 1367 lux. Different
conditions of the room can be obtained by adjusting the power of the table
lamp and the sunlight. Based on this basic dataset, we generate sequences to
simulate interaction procedures between different users and lamps under various
environments.
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Fig.4. Data collection environment Fig. 5. Brightness value in the room.
setting in DAILux. (Color figure online)

5.2 Experimental Setup

To verify the effectiveness and performance of the proposed approach, we build
a three-layer neural network, an input layer, a fully connected layer and an
output layer, in which four neuron activation functions are set to Relu in the
input and the fully connected layer. Three neurons are set in the output layer,
and the activation function is linear. The distance, current sunlight intensity,
and current table light intensity are used as input of the neural network. The
three output values represent increasing the lamp power, decreasing the lamp
power, and keeping the power unchanged. The lamp power is adjusted through
the decision output of the neural network.

We ran the experiments on a PC with an Intel Core i7-7700HQ and 16G
RAM. DQN, the algorithm of the input expansion strategy, and the algorithm
of output correction strategy were used for experiments. Each algorithm trained
50 episodes, and each episode carried out 600 network interactions with humans.
It is known that people work in comfortable environments with an illumination
of about 300 lux. If the comprehensive illumination near the lamp does not reach
290 lux or more than 320 lux, the network will receive a negative reward of —1.
Otherwise, it will receive a positive reward of 1. Adjust the network through the
reward value obtained, and the upper limit of the positive reward obtained is
600. Initially, we apply the same network to train both the global model and the
local private model.

5.3 Experimental Results

Labl: Comparison on Working in the Same Environment. First, we
compared the rewards of the proposed two strategies and a pure DQN model.
In this experiment, we train a DQN model as the global model and then fuse it
with a new private model which is start training from scratch. The results are
shown in Fig. 6.
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We can find that using these three algorithms all quickly obtain a higher
reward value. However, the reward value obtained by using pure DQN and train-
ing 50 episodes alone does not exceed 400. It means there are still some wrong
decisions in these episodes, which result in a low reward. To get a higher reward,
we need more episodes to train the model. On the contrary, both the input expan-
sion strategy and output correction strategy can get a high reward in a short
episode. The output correction strategy is better than the input expansion strat-
egy from the perspective of speed and stability. It’s because the global model is
achieved in the same environment as the private model. Thus, the global model
output can reach high rewards in most of the cases in the edge environment.
However, as initialization of the local model in the input expansion strategy
might bring more influences.

Lab2: Comparison on Satisfying Different Preferences. To compare the
performance of the two proposed knowledge fusion strategies, we first train the
global model with a target brightness between 290-320lux. At the same time,
the user in the local environment prefers the illumination between 350-3801ux.
The results are shown in Fig. 7. From the results, we can see both strategies can
get a high reward quickly compared with using pure DQN, as shown in Fig. 6,
even though the global model is trained to get a different target brightness.

Lab3: Comparison on Training in Different Environments. To test the
performance for fusing models trained in a different environment, we train a
global model in the environment of around 8 am. Then, we try to fuse this
model by the proposed two fusion strategies to adapt to the environment of 8
pm. Figure 8 shows the accordingly results. It can be seen from the experimental
results that using the global model to perform auxiliary training on edge, both
the two strategies can achieve perfect results. In the output correction strategy,
the edge node needs to be adjusted briefly to adapt to the current night envi-
ronment. However, the input expansion strategy can get a higher reward in the
initial states.

5.4 Quantitative Comparison of the Performance of Different
Algorithms

We set the condition that if the algorithm gets a reward which greater than
450 within five consecutive episodes, it is stable enough to adapt to the environ-
ment. Then, by running the above experiments, we collect the time cost, average
training time, and memory size, as shown in Table 1.
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We can clearly find that the average iterations of only using DQN, which
is nearly ten times using either of the proposed strategies. In the latter two
groups of experiments, we can see the output correction strategy requires less
time than the input expansion strategy. While, from the perspective of memory
occupation, our strategies need a little more memory than only using DQN as
we need to load the global model.

o0 Episode_reward . Episode_reward w00 Episode_reward
400 400 400
200 200 200

o 0 o
-200 -200 —200
-400 —400 -400

o 10 20 30 40 50 o 10 20 30 40 50 0 10 20 30 40 50
episode episode episode
(a) Pure DQN (b) Output Correction (c) Input Expansion

Fig. 6. Rewards comparison for applying models trained in the same environment.
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Fig. 7. Rewards comparison for applying models trained for satisfying different pref-
erences.



600

Accelerate Personalized IoT Service Provision 81

Episode_reward

400

200 A

—200 A

—400

10 20 30 40 50

episode

(a) Output Correction

600

Episode_reward

400 A

200 1

—200 1

—400

10

20 30 40 50
episode

(b) Input Expansion

Fig. 8. Rewards comparison for applying models trained in different environments.

Table 1. Quantitative comparison of performance of different algorithms.

Experiment | Strategy Average | Time for | Memory
iterations |training occupation
Lab 1 DQN 186 6ml0s 0.2281 GB
Output correction | 10 28s 0.2301 GB
Input expansion 24 1mil9s 0.2296 GB
Lab 2 Output correction | 19 56's 0.2303 GB
Input expansion 24 1ml13s 0.2303 GB
Lab 2 Output correction | 14 41s 0.2310GB
Input expansion 14 528 0.2307GB

6 Conclusion

In this paper, we propose a cloud-aided edge reinforcement learning framework
and introduce two edge knowledge fusion strategies. As shown in the experi-
ments, the proposed approach can accelerate personalized service provision while
do not increase the memory occupation obviously. We present a case study on
applying the method in providing personalized illuminance services. The pro-
posed framework and strategies are also suitable for other applications. In our
future work, we will focus on identifying and describing the features of different
edge environments, which would better enhance the inference accuracy.
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Abstract. The blockchain technology has recently proved to be an effi-
cient solution for guaranteeing the security of data transactions in data
trading scenarios. The benefits of the blockchain in this domain have been
shown to span over several crucial security and privacy aspects such as
verifying the identities of data providers, detecting and preventing mali-
cious data consumers, and regulating the trust relationships between
the data trading parties. However, the cost and economic aspects of
using this solution such as the pricing of mining process have not been
addressed yet. In fact, using the blockchain entails high operational costs
and puts both the data providers and miners in a continuous dilemma
between delivering high-quality security services and adding supplemen-
tary costs. In addition, the mining leader requires an efficient mecha-
nism to select the tasks from the mining pool and determine the needed
computational resources for each particular task in order to maximize
its payoff. Motivated by these two points, we propose in this paper a
novel game theoretical model based on the two-sided market approach
that exhibits a mix of cooperative and competitive strategies between
the (blockchain) miners and data providers. The game helps both the
data providers and miners determine the monetary reward and compu-
tational resources respectively. Simulations conducted on a real-world
dataset show promising potential of the proposed solution in terms of
achieving total surpluses for all involved parties, i.e., data providers,
data consumers and miners.

Keywords: Game-based trading - Big data - IoT - Blockchain -
Two-sided market

1 Introduction

Blockchain technology has lately emerged as a revolutionary paradigm for
addressing the challenges of finding trustworthy third-parties and guaranteeing
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the privacy and security of data trading transactaions in critical domains such
as Internet of Things (IoT), data analytics, mobile crowd-sensing, and machine
learning. Interestingly, recent statistics estimate that the data contained in the
blockchain ledger is expected to worth up to 20% of the global big data market
and to generate up to 100 billion in annual income to the data market that
already hit $203 billion dollar of revenue at the end of 2019 [6,9]. In the con-
text of data trading using blockchain, three players are to be considered: miners,
data providers and data consumers. Miners are responsible for supervising and
regulating the execution of what is known as smart contracts. A Smart contract
is a self-executing computer program that states and organizes the agreed terms
of a certain data transaction such as the desired quality of service clauses and
secure payment mechanism between the data providers and data consumers.
Processing smart contacts by miners entails high (mining) operational costs and
processing time, which might negatively affect the execution time of real-time
and delay-critical applications such as IoT and data analytics. In the literature,
there is lack of attention on the business model that would enable data trading
over blockchain where the main stream research in the general context of data
focuses on developing mechanisms of data resource management such as [14—
16]. Several challenging issues are yet to be addressed, in particular, assigning
optimal amount of computational units to the mining tasks, sustaining optimal
payoffs to involved players and serving data requests on time. In this work, our
objective is to provide a novel contribution to the data trading over blockchain
through proposing a game-theoretic-based business model that helps regulate
the secure data trading of IoT and big data analytics services. In particular, we
aim to address the following two substantial research challenges: 1) how should
the blockchain node distribute the computational resources of the mining pro-
cess among the data providers in such a way to maximize its payoff; and 2) how
should the data providers decide on the optimal monetary reward that needs to
be given to the miners versus their service in such a way to guarantee optimal
execution time of their transactions while avoiding over-payments.

1.1 Motivating Example

We provide in Fig.1 a motivating example to better clarify the research gap
in the literature and highlight the need of our solution. As explained in the
figure, data consumers request to run real-time data analytics on an edge IoT
server. Following the blockchain technology, the request is deployed as a smart
contract which includes clauses that regulate the relationships between the data
consumers and the edge IoT server in terms of data quality, data size and pro-
cessing speed. The execution of the smart contract is supervised and executed
by the blockchain node, which manages the mining process and the mining com-
putational units. Smart contracts vary in their terms, and hence they differ in
their executions in terms of execution time and required resources. For instance,
in Fig. 1, the hospital server is exposed to more privacy threatens as it stores
patients data, which requires more computational units from the blockchain node
to authenticate only trusted consumers. This creates the need for a distributing
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mechanism that determines the optimal amount of resources for each smart con-
tract. However, the absence of such a mechanism might assign more resources
to less profitable contracts.
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Fig. 1. Motivating scenario: run real time data analytics procedures on Edge IoT server
using the blockchain technology.

1.2 Related Work and Problem Statement

The state-of-the-art proposals focus on deploying verification approaches into
the blockchain technology in order to tackle the privacy and security issues such
as preserving the anonymity of the data providers, and preventing imperson-
ation attacks and colluding miners. For instance, the approaches proposed in
[18,22] leverage the blockchain technology to address the problem of user loca-
tion impersonation and re-identification attacks respectively in a crowd-sensing
context. The approaches proposed in [8,11] aim to increase the engagement of the
crowd system participants through capitalizing on the anonymous and reliable
interaction features provided by the blockchain technology.
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The proposals [10,13,19,20] propose game theoretical foundations in the con-
text of mobile blockchain supported by edge computing services. The interactions
between miners and edge computing nodes are modeled using Stackelberg games
and auctions to derive an optimal price for the proof-of-work for offloading allo-
cation tasks. The main limitation of such games is that they result in putting
the miners into an aggressive competition situation between each other from one
side, and with the edge computing services from the other side. This leads to
less efficient outcomes in terms of total surpluses for all these parties. In [21], the
authors propose to deploy blockchain for big data sharing in a collaborative edge
environment. Similar works have also been proposed in [12,23]. The aforemen-
tioned proposals, and the state-of-the-art in general suffer from several problems.
In fact, they 1) do not explain how the mining resources should be distributed
over the existing smart contracts and miners; 2) do not provide any mechanism
to derive the optimal payment that should be given by data providers to min-
ers); and/or 3) propose pricing schemes for the mining process based on pure
competitive games, which entails an aggressive competition among the involved
parties and results in lower payoffs for them.

1.3 Contribution

To address the aforementioned issues, we extend the work in [3,4] by proposing
a novel double two-sided game that models the interactions among the involved
parties (i.e., blockchain node, data providers and data consumers) using the two-
sided market theory [17]. In the proposed game, as shown in Fig. 2, both the data
providers and blockchain node act as a two-sided platform that gets on board
two market sides. Specifically, the blockchain node intermediates the interactions
between the data providers and data consumers, while the data providers inter-
mediate the interactions between the blockchain node and data consumers. As
shown in the figure, the data providers either 1) subsidize the blockchain node
by a higher portion of revenue to motivate it to supply more mining computa-
tional units, which results in attracting more data consumers and increasing the
revenue; or 2) subsidize the data consumers by more data computational units,
which increases the consumers’ demand and hence contributes in attracting the
blockchain node. Similar strategies are set up to the blockchain node as shown
in Fig. 2b. The proposed game combines both strategies as two separate games.
The solution of the games helps derive the equilibrium in terms of shared revenue
among the blockchain node and data providers and amount of mining resources
that each smart contract should be assigned with.
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Fig. 3. Double two-sided game

The proposed secure data trading model, depicted in Fig. 3, consists of three
entities: Data Service Consumers (SC), Big Data Service Providers (SP) and
Blockchain node (BC) that consists of a network of miners. In our solution, a
certain big data service provider SP; receives a monetary value of P; per a data
service consumer’s access to its services. The service provider S P; provides both
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the data and computing resources that are required to execute the data analytics
duties of the data consumers. The interactions between data providers and data
consumers include negotiating the data type, quality of provided services, pay-
ments, and all the associated terms of delivered data services. The blockchain
node BC' is in charge of executing the transactions of smart contracts in order
to append a correct block into the blockchain. Executing smart contracts will
also ensure the sustainability of consumers’ access security, verification of the
identities of the data providers and consumers, protection of the privacy of data
providers and enforcement of quality control of data services. In our model, the
blockchain node seeks to distribute and allocate its computing resources for the
mining process among service providers in such a way to maximize its own payoff.
The Consumers’ demand on data service ¢ provided by a service provider SP;
is denoted by D,, and the computing resources allocated by service ¢ to run the
data analytics duties of its consumers is donated by Dp,. Dp, is measured in
terms of the throughput per second of executing the data requests. The relation-
ship between consumers’ demand D., and supplying service ¢ is modeled using
the two-sided market theory [17] as cross-group externalities ¢ and . Here, 1
represents the increase in the number of data consumers obtained when some
new computing and storage resources are added to Dp,. ¢ represents the amount
of profit that the data service provider earns when one more new consumer is
added to D.,. Similarly, the computing resources allocated by the blockchain
node to regulate the smart contracts of service ¢ is denoted by D,,. The rela-
tionship between consumers’ demand and the supply of the blockchain node is
likewise modeled using the two-sided market theory as cross-group externalities
« and (. Here, a represents the increasing of data consumers obtained when
some new computing and storage resources are added to Dg, and [ represents
the amount of benefits that the blockchain node earns when one more new con-
sumers are added to D.,. The parameters o, 3, ¢, and 1 are dependant on the
service 7. However, the variable i is omitted from the notations of these parame-
ters to simplify the equations when the service i is understood from the context.
Thus, instead of using «; for instance, « will be used. The same simplification
is applied for the other parameters that appear as exponents in our equations.
The interaction between SP and BC' is modeled as a two-stage game, where
BC' acts as the game leader and SP are the followers. In the first stage of the
game, each service provider S P; providing service ¢ observes the amount of money
returns x; requested by BC' in order to adjust the supply volume of computing
resources and the price to be charged to service consumers SC; consuming the
service i. In quest of the price specified by S P;, BC determines the optimal amount
of computing resources D, that should be supplied to handle the smart contracts
between S P; and SC;. The model forms a closed loop of dependencies that involves
subsidizing techniques from the two-sided market theory. Thus, S P; may chose to
subsidize BC' by an extra amount of payment that exceeds the contribution of BC'.
The objective is to keep an optimal level of D, that maximizes the return revenues
P; % D.,. Alternatively, BC may subsidize SP; with a low portion of the resulting
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revenue to keep an optimal level of P;. The different parameters and symbols used
in our proposed solution are summarized in Table 1.

2.2 Players Demands and Utility Functions

The consumer’s demand and supply are modeled using the Cobb-Douglas func-
tion, which have the ability to represent the elasticity of the computing and
storage resources supply (Ds,, Dp,) and its variations depending on the user’s
demand. These demand functions are defined as per Egs. (1), (2), and (3). By
substituting Egs. (2) and (3) into Eq. (1), we can express the consumer’s demand
as a function of x; and P; as described in Eq. (4).

D., = ki P, " D2 DY, (1)
Dsi = kQ(XiBDCi)ﬁ (2)
Dp, = k3(PiDe,)? (3)

Table 1. Model parameters

Model parameters | Descriptions

SP; Service provider providing service ¢

BC A blockchain node

SC; Consumers of service 1

D, SC;’s demand

Dp, IT-infrastructure supply to handle requests of SC;
D, IT-infrastructure supply to handle smart contracts between SP; and SC;
P; Service i’s price

Xi Portion of revenue required by BC from SP;

a The Network effects (externality) on D., by D,

B The Network effects (externality) on Ds, by D,

P The Network effects (externality) on D., by Dp,
) The Network effects (externality) on D, by D,

v D.,’s elasticity with respect to P;

ki1, ko, and ks Constant multipliers

fe Associated costs per smart contract

fs Associated costs per service request by a consumer
e SP;’s payoff

T Blockchain node’s payoff

ay = -7+ af+ o

as =af

as =1/(1—apf —¢e)
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D., = (kik§ky P x§2)® (4)

Each big data service provider SP; is subject to a fixed cost fs per each
consumer access. SP; aims to maximize its payoff as described in Eq. (5).

mi = ((B)(1 = xi) — fs) Do, (5)
The blockchain node BC'is subject to a fixed cost f. per each smart contract

between S P; and a data consumer. As a rational agent, the blockchain node seeks
to maximize its payoff as given in Eq. (6).

™= (PzXz - fC)DCi (6)

2.3 Game Equilibrium

The equilibrium of the above-described game is solved using a backward induc-
tion methodology. Specifically, the followers’ (data service providers) sub-game
is solved first to obtain their optimal response P;* to the service consumers. The
leader’s (blockchain node) sub-game is then computed to obtain the optimal x;.
The game equilibrium is stated in Theorem 1.

Theorem 1. Under the assumption validated in [4] stating that the cross-group
externalities are not too week and not too strong, (0.1 < af < 0.8) and (0.1 <
oY < 0.8), The equilibrium of our double two-sided game is given by the best
responses of the different players as follows:

1. The best response of the data service provider SP; is given by:

aiaz fs
(ara5 —1)(x; — 1)
Zf 1< (1/(11&3)
2. The best response of the Blockchain node with respect to a service i is given
by:

P = (7)

* a20a3 fc
Xi (a2a3 =+ 1)Pz* ( )
Proof. From Eq. (5) of the data service provider’s payoff, using log for both sides
of the equation, we obtain:

log m; = log(P;(1 — xi) — fs) +1log D, (9)
Then, the optimal price P is defined by 9m; /0P; = 0 as follows:

K3

1 (97Ti 1—X2‘ 1 aDC
—x o ST T 10
T 0P Pi(1=xi)—fs D, OF; (10)

By deriving Eq. (4) with respect to P;, then:

oD,
op, — mwDel (11)
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By substituting Eq. (11) into Eq. (10), we get:

P, = CL1a3fs (12)

(araz —1)(xi — 1)

Since P; > 0, fs >0, ((x;—1) < 1) then (a1a3/(a1az—1) < 0), so the condition.
By considering the acceptable range for v analysed in [5], 0.2 < v < 0.3 then
Om;/OP; > 0 when P; < (a1asfs)/((aras — 1)(x; — 1)) and 9m;/OP; < 0 when
P; > (aqasfs)/((araz — 1)(x; — 1)). Consequently, P; is the best response.

For the second result of the theorem, we consider and take the log for both
sides of the equation of the blockchain node’s payoff (Eq. (6)) and obtain:

logm = IOg(PiXi - fc) + log D, (13)
Then, the optimal x; is defined by d7/0x; = 0 as follows:

1 P; 1 D..
—xa—ﬂzib—&——xaclzo (14)
T Oxi Pxi—fe De O
By deriving Eq. (4) with respect to x;, we get:
oD,
aXi” = asazD.,x; ! (15)
By substituting Eq. (15) into Eq. (14), then:
asas fe
Xi = = (16)

(a2a3 —+ ]-)Pz

or/0x; > 0 when x; < (agasf:)((azas + 1)P;) and 97/dx; < 0 when y; >
(agasfc)((azas + 1)P;). Consequently, x; is the best response, so the theorem.

3 Simulation and Empirical Analysis

3.1 Simulation Setup

Our simulation analysis is grounded on statistical observations from big data
and IoT services from the AWS marketplace [2], BMR [1]—the annual statistical
report that publishes the revenues, payoffs and market growth of the the AWS
marketplace—and a real-world dataset from Google [7]. The price, P;, of the
data service is chosen from the interval [0.2,3.2] USD/hour, following the price
distribution of 150 data and IoT services from the AWS marketplace. According
to [1], Amazon Web services (AWS) received 30 billion USD in revenue with a
net income of approx. 12 billion. The gap between the gross and net revenues is
caused by the marginal operating costs which made up approx. 60% of revenue.
The operating costs represents in our model the costs associated with the smart
contracts f. and service requests initiated by data consumers f;. The Google
dataset [7] records statistics on the execution of big data requests executed on
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Google-powered virtual machines, which are similar to the instances of Amazon
cloud infrastructure (EC2). According to these statistics, each virtual machine
takes on average 1.42 to 10s to complete a data processing request (with a mean
of 5.71's and standard deviation of 4.29s). The instances and their average com-
putational power are respectively represented in our model by D;, and the exter-
nality factor . Adding a compute instance has a direct impact on the increase of
the consumers’ demand between 0.1 to 0.7 data request per second. By following
the mathematically proved result in [4] that the cross-group externalities should
not be neither too weak nor too strong, the cross-group externalities should be
bounded by 0.1 < af8 < 0.8. Hence, the externality factor § would range from
0.1/« to 0.8/ca. We follow those estimations and set up the cross-group exter-
nalities ¢ and 1 in the same range of a and (. The price elasticity = is set to
0.15, which is similar to the sensitivity of mobile/telecommunication services
price estimated in the literature [5]. The simulation takes the aforementioned
parameters as inputs, and then calculates the optimal shared revenue y; from
each service i according to Eq. (8) in Theorem 1. Moreover, the simulation inputs
meet the theoretical condition (1 < 1/ajas) in Theorem 1. Thus, by substituting
the real ranges of the simulation parameters, the mathematical term represent-
ing the strength of total externalities (a3) is greater than zero (i.e af+ ¢p < 1).
Hence, we demonstrate our three dimensional results in three sets of criteria: 1)
week externalities (0.1 < a8 < 0.4, 0.1 < ¢y < 0.4); 2) strong externalities of
af - weak externalities of ¢ (0.4 < af < 0.7, 0.1 < ¢1p < 0.2); and 3) strong
externalities of ¢ - weak externalities of a8 (0.1 < o < 0.2, 0.4 < ¢ < 0.7).

3.2 Shared Revenues and Computational Costs over Externalities

Shared Revenue x

03 T
Externalities ¢ 1) g2

o3

02 Externalities o §
0.1 0.1

Fig.4. Shared revenue over week Fig.5. Shared revenue over strong
externalities externalities a3
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Fig. 6. Shared revenue over strong externalities ¢t

In this section, we study the impact of the cross group externalitie metrics (af3)
and (¢1) on the shared revenue y; among data providers and blockchain node.
In Fig.4, we study the percentage of shared revenue received by the blockchain
node for a weak level of externalities between, on one side the data providers
and blockchain node, and on the other side the data consumers. In Figs. 5 and 6,
we study the shared revenue for a stronger level of externalities a8 and ¢
respectively. As shown in these figures, the blockchain node receives a higher
percentage of revenue as the externality factors a3 and ¢ become stronger.
Another important observation is that the average of shared revenues increases
at a higher pace over the blockchain node externalities with data consumers (a/3)
than that over data provider and data consumers (¢1). This behavior is clearly
observed in Fig. 5 which shows that the shared revenue reaches 60% over strong
externalities of af versus a maximum of 40% over strong externalities of ¢
as shown in Fig. 6. This behavior is interpreted as follows. The demand of data
consumers is positively impacted when its externalities with the blockchain node
(af) become stronger. Consequently, the data providers entice the blockchain
node by a higher portion x; of revenues to supply more computational units
with the aim of increasing the consumers’ demand and hence the total revenue.
Nonetheless, the blockchain node faces higher operating costs by increasing its
supply of mining computational units. Consequently, it would ask for a higher
portion of revenue. Moreover, the consumers’ demand is positively impacted as
its externalities with data provider become stronger. Thus, the data providers
would face higher operating costs when they add more computational units in
an attempt to increase the consumers’ demand. This forces the blockchain node
to subsidize data providers with a lower portion x; of revenue to sustain a higher
level D, of consumers’ demand. In general, increasing the consumers’ demand
adds more computational cost on the blockchain node, which leads to increasing
the portion of blockchain node as the externalities among the data provider
and data consumers become stronger. This explains the slower increase pace of
shared revenues over the externalities ¢ compared to the externalities af.
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3.3 Data Consumers’ Demand and Computational Unit Supply

In this section, we study the impact of cross-group externalities among all the
involved parties (i.e., data providers, blockchain node, and data consumers) on
the data consumers’ demand. As shown on Figs.7, 8 and 9, the consumers’
demand is higher under a weak level of externalities than the strong level. Those
observed results are interpreted as follows. A higher externality level among the
market players incurs a higher cost for the two-sided market platform to get
the market players on board. Specifically, under a strong level of externalities
among the blockchain node and data consumers a3, data providers either (1)
subsidize the blockchain node with a higher portion of revenue to attract more
data consumers (as discussed in Sect. 3.2); or (2) subsidize the data consumers
by supplying higher amounts of data computational units, which in turns, leads
to incentivizing the blockchain node. However, data providers cannot ultimately
subsidize data consumers due to their mutual cross-group externalities (¢1)).
To study this phenomenon, we show in Figs.10 and 11 the amount of data
computational units supplied by data providers as well as the number of data
consumers attracted over the externalities ¢ respectively. As shown in Fig. 10,
the amount of supplied computational units increases under weak externali-
ties (¢p € [0.1 — 0.4]) and gradually decreases as the cross-group externalities
become stronger (i.e., ¢1p € [0.4 — 0.8]). However, as shown in Fig. 11, the num-
ber of attracted data consumers exponentially decreases over the whole range
of externalities. This implies that the subsidizing technique becomes costly as
the externalities become stronger. For instance, data providers attract 2 x 10°
data consumers by providing 20 data computational units at an externality level
of 0.2, while they attract a number of data consumers that is 0.1 x 10° less
by providing the same amount of data computational units but with a higher
externality level of 0.5. In both cases (i.e., subsidizing data consumers and data
providers), the data providers would undergo higher costs. Similarly, under a
strong level of externalities between data providers and data consumers, the
blockchain node subsidizes either the data providers (by asking lower portion of
revenues) or the data consumers (by supplying a higher amount of computational
units), which entails higher costs for both cases. Similarly, the blockchain node
cannot ultimately subsidize the data consumers due to their mutual cross-group
externalities represented by «/3. Similar observations are depicted in Fig. 12 in
terms of mining computational units over ag.

3.4 Data Providers and Blockchain Payoffs

In this section, we investigate the impact of externalities on the payoff of the
data providers and blockchain node. Figure 13 shows the payoff of data providers
under weak externalities, while Figs. 14 and 15 depict providers’ payoff under
strong externalities o3 and ¢ respectively. As illustrated in these figures, the
data providers’ payoff gradually decreases as the externalities increase. The rea-
son behind this increasing is that the overall demand of consumers decreases
while computational costs and asked shared revenue increase over externalities
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as discussed in Sects. 3.2 and 3.3. Similarly, the payoff of the blockchain node
decreases under externalities as shown Figs. 16, 17 and 18.
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4 Conclusion

externalities ¢y

In this work, we proposed a new game-based business model for data trading
over blockchain. The problem is formulated as a double two-sided game that
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solved the problem of maximizing the players’ payoff by optimally distributing
the mining computational powers over smart contracts. Technically, the game
considered the smart contract characteristics as well as the impact of the mining
computational units on the data service and consumers’ demand. The theoretical
and simulation results proved the efficiency of the proposed game.
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Abstract. The rapid growth of IoT devices and applications with data-
intensive processing has led to energy consumption and latency con-
cerns. These applications tend to offload task processing to remote Data
Centers in the Cloud, distant from end-users, increasing communica-
tion latency and energy costs. In such a context, this work proposes a
dynamic cost model to minimize energy consumption and total elapsed
time for IoT devices in Mobile Edge Computing environments. The solu-
tion presents a Time and Energy Minimization Scheduler (TEMS) that
executes the cost model, validated through simulation, which resulted in
a reduction in energy consumption by up to 51.61% and in task comple-
tion time by up to 86.65%.

Keywords: Mobile Edge Computing + Internet of Things - Cost
minimization model - Energy consumption - Scheduling algorithm

1 Introduction

Billions of smart devices can now connect to the Internet in the form of Internet
of Things (IoT) and applications have evolved, especially those used in artificial
intelligence and computer vision, and require high computing power [7,8]. For
these applications, IoT devices usually rely on task processing offload to remote
Cloud Computing (CC) Data Centers, far away from the end-user, to boost
processing time and reduce battery energy consumption. This results in higher
latency, which became inefficient for high distributed scenarios [1].

Mobile Edge Computing (MEC) is a suitable alternative to CC, as it provides
low latency and better QoS to end-users [3]. It relies on top of high-speed mobile
networks such as 5G to allow fast and stable connectivity for mobile devices
and users. But energy consumption remains an open issue [6,9], because most
IoT devices run on batteries with limited energy capacity and need to handle
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E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 101-109, 2020.
https://doi.org/10.1007/978-3-030-65310-1_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65310-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-65310-1_8

102 J. L. G. Gross et al.

lots of data, which is energy-consuming. Thus, reducing energy consumption in
networks with IoT devices is a goal worth exploring.

This work tackles these issues by proposing a dynamic cost model to minimize
energy consumption and task processing time for IoT devices in MEC environ-
ments. Also, we propose the TEMS scheduling algorithm that implements the
dynamic cost minimization model, which calculates the cost of different alloca-
tion options and chooses one that yields the lesser cost for the execution of tasks.
Finally, the efficiency of TEMS is evaluated through simulation.’

The main contributions of this work are i) we evaluate tasks with different
profiles such as critical tasks (with a deadline) and non-critical tasks (without a
deadline) in a variety of case scenarios; ii) Our methodology covers a considerable
number of energy and time metrics for task processing and data transmissions,
including the accounting of CPU cores idle energy; iii) The model uses a DVFS
technique aiming to optimize CPU cores processing time and energy consump-
tion; iv) Our model considers three possible processing sites, including processing
in the IoT device itself, in a local MEC server and in a remote Data Center from
CC; v) We develop and adapt experiments based on a well-defined simulation
tool for scenarios with IoT devices, MEC servers, and CC Data Centers.

2 Dynamic Cost Minimization Model

In this section, we introduce a detailed view of our dynamic cost minimization
model. Figure 1 presents the architecture design of the system decoupled in three
layers, following a bottom-up approach:

— IoT Layer (L1): Composed of IoT devices, which generate the application
tasks. They run on batteries and have limited processing power.

— MEC Layer (L2): Composed of MEC servers with a limited number of
CPU cores and mid-range processing power. They are close to the end-users,
providing small communication delays.

— CC Layer (L3): Composed of Data Centers from CC. They are far located
from the end-users, and geographically distributed, with high processing
power and high network latency.

For the system we assume set D to be the mobile IoT devices, S the local
MEC servers, W the wireless communication channels and A the tasks. Each
task A; is represented by a tuple A; = (C;, s;, d;, t;), where i € A.

For each task A;, C; represents the number of CPU cycles required for its
complete execution. s; and d; represent, respectively, the source code and data
entry sizes. t; represents the deadline of the task, which is the maximum time to
complete its execution. Tasks can be normal or critical if the deadline is positive.

Also, for every task scheduled to MEC or CC, a wireless channel is associated,
which is represented by set H. If a task i is associated with a channel w, then
h; = w, otherwise h; = 0 for computation in the IoT device, where h; is an
element of H. Every h; € WU 0.

! MEC Simulator available at https://github.com/jlggross/MEC-simulator.
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Fig. 1. System architecture and task allocation policies.

2.1 Local Computing in the IoT Device

Each mobile device j € D has one or more CPU cores, which is given by
PL; = {plj1,plj2,...,pl;n}. We compute idle energy for vacant CPU cores,
and dynamic energy (Ej; iocqr) for occupied ones. Each core has an operating
frequency (fiocai,j k), an effective commutative capacitance (Ciocar,j,k) [11], and
a voltage supply (Viocai,j,1). Each task i has a total number of CPU cycles (CT;)
for its execution.

The total execution time [11] (Eq.1), dynamic power (Eq.2), and dynamic
energy consume [5] (Eq.3) can be calculated as:

CT;
:ri,local = 7 (1)
flocal,j,k
P; =C ik *Viearin* f ; (2)
i,local local,j,k local,j,k local,j,k
Ei,local = Pi,local * E,local (3)

The lesser cost for the system, that provides a better relationship between
battery energy consumption and latency, can be expressed by:

COSti,local = UlocalT * CZﬂi,local,total + Ujocal E * Ei,local (4)

In Eq 4 UlocalT and Ulocal E € [Oa 1]7 and UlocalT T Ulocal E = 1. As mentioned
in [10] these coefficients are used to represent the weight of time and energy, and
work as a trade-off to prioritize the minimization of one of the costs.

2.2 Local Computing in the MEC Server

Every local MEC servers has multiple CPU cores, which is given by PS; =
{psji, pSj2,---,PSjn}t- A ps;p core has an operating frequency (fmec k), an
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effective commutative capacitance (Ciec,jk), and a supply voltage (Vinec,jk)-
Communications between IoT devices and local servers that use the same wireless
channel cause mutual interference between each other (I;). In this case, the data
transfer rate (r;(h;)) attenuates according to Shannon’s formula [11]:

ri(hi) = W xlogy (1 + W) -

I; = Z Pm’ * G5/ m/ (6)

n€A|{i}:hn=h;

For Eq.5, W is the channel bandwidth, g; ., is the channel gain between a
mobile device m and a local server j. The variable p,, is the transmission power
of m when offloading task i to j. N is the power of the thermal noise of the
wireless channel, and h,, the wireless channel for task n.

The time required to send data and source code, and download results from
an IoT device to a local server are shown below. Also, the total time accounts
for these two times plus the task execution time 7} ,,¢c, calculated the same way
as for the IoT devices.

s; +d;
Ti mec—u, hz = 7
s p( ) i (hz) ( )
d’
T mec—down hz = . 8
;mec—down (Ni) ) (8)
Ti,mec,total = Ti,mec—up(hi) + 711',mec + 7ji,mec—doum(hi) (9)

The energy consumed by the data transmissions is calculated by the transmis-
sion power (Puwireless) times the elapsed time (T ymec—up(Ri) OF T; mec—down (i),
resulting in E; mec—up(hi) and E; mec—down(hi), respectively. Finally, the
dynamic energy consumed (E; mec) is calculated as P; pec * T mec, and the total
dynamic energy consumption is given by:

Ei,mec,total = Ei,mecfup(hi) + Ei,mec + Ei,mecfdown(hi) (10)

The cost equation for the local server is expressed as follows:

COSti,mec = UmecT * Enncc,total + UmecE * Ei,mec,total (11)

2.3 Remote Computing in the Cloud

CC is assumed to have unlimited resources, which is why cores are not dis-
tinguished, and idle energy not computed. The CC Data Center formulas are
very similar from the MEC server formulas, but with some more components
such as time spent (7T} cioud—up a0d T; cloud—down) and energy (E; cioud—up and
E; cloud—down) consumed for transmissions between MEC and CC layers.
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Ti,cloud,total = Ti,mecfup(hi) + /Ti,cloudfup + ﬂ,cloud

(12)
+ Ti,cloud—down + ,-Ti.,mec—down(hi)
Ei7cloud,total = Ei,mecfup(hi) + Ei,cloudfup + Ei,cloud (13)
+ Ei,cloudfdown + Ei,mecfdown (hz)
Finally, the cost to run a single task i in CC is given by:
COSti,cloud = UcloudT * Cri,cloud,total + UcioudE * Ei,cloud,total (14)

2.4 System Dynamic Cost Minimization Equation

For every task ¢ the minimum cost is chosen between all three allocation options,
one from each layer. The total system cost is equal the sum of all task costs and
idle energy costs.

Cost; = min(Cost; iocal, COSti mec, COSti cioud) (15)
A

COStsystem = Z Cost; + Elocal,idle + Emec,idle (16)
i=1

3 Time and Energy Minimization Scheduler (TEMS)

The TEMS heuristic scheduling algorithm executes the dynamic cost minimiza-
tion model with reduced computational cost. It has complexity O(n?).

Algorithm 1: Time and Energy Minimization Scheduler (TEMS)

Result: Task mapping to the processing nodes
1 execute Step 1 - Collection of system information and initialization

2 repeat

3 execute Step 2 - Task allocation

4 execute Step 3 - Task conclusion monitor

5 execute Step 4 - New tasks and device battery level monitor

6 until user decides to keep running;

In Algorithm 1 are presented the steps of TEMS. Step 1 defines the sets of
the IoT devices, MEC servers, communication channels, and battery levels of the
ToT devices. A Lower Safety Limit (LSL) is set for the battery capacity, which
may not be reached, preventing the device to run out of energy. The algorithm
collects the number of CPU nodes available in each IoT device and MEC server,
their operating frequencies, and supply voltages.
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In step 2, TEMS classifies the tasks between critical and non-critical. Critical
tasks are ordered by deadline and scheduled to the CPU with the minimum total
elapsed time. Then normal tasks are scheduled to the CPU with lesser total cost.

In step 3, tasks are monitored for their completion status, and when com-
pleted, the CPU core resources are released and made available for other alloca-
tions in step 2. The battery level check is performed for the IoT devices. Task
cancellation may occur if the elapsed time is higher than the deadline or if the
TIoT device runs out of battery.

Finally, in step 4, the battery level from each IoT device is collected, as well
as newly created tasks. Execution continues as long as tasks are being created.

4 Evaluation

This section explains the simulation details and the different experimental sce-
narios used. The simulated environment was designed with low, mid-range and
high processing power devices for IoT, MEC and CC layers, respectively. For
TIoT devices we chose Arduino Mega 2560, with five operating frequencies and
corresponding supply voltages. The MEC servers were simulated on top of 5
Raspberry Pi 4 Model B boards, each board with a Quad-core Cortex-A72
1.5GHz (ARM v8) 64-bit, summing a total of 20 CPU cores per server. The
CPU cores have three operating frequencies and corresponding supply voltages.
For CC it was chosen Data Centers with Intel Xeon Cascade Lake processors of
2.8 GHz per CPU core, reaching up to 3.9 GHz with Turbo Boost on. The net-
work throughput was configured to achieve up to 1 Gbps speed and latencies to
5ms, for both 5G and fiber optics communications [2]. Moreover, two vehicular
applications were defined [4], one with high processing workload and high task
creation time (Application 1), and another with low processing workload and
low task creation time (Application 2).

a. Number of MEC servers: This experiment used Application 1 in two
different scenarios. Both with 500 tasks distributed to 100 IoT devices, but
one with only a single MEC server (case 1, plot 1) and the second with two
MEC servers (case 2, plot 2). Figure2 shows the results for the execution of
Application 1.

500
1 2
» 400
w
8
%5 300 @ POLICY1_IOT
3 200 ) POLICY2_MEC
5 POLICY3 CLOUD
Z 100 .
= ,,=v=ry—n;é—‘- ’
0 —
0 20 40 60 0 5 10 15
Elapsed Time (seconds) Elapsed Time (seconds)

Fig. 2. Task allocation for Application 1.
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The energy and time coefficients were set, respectively, as 4/5 and 1/5, that
is, a high weight was given to the energy consumed so that it could be minimized.
In Fig. 2, from plot 1 to plot 2, the increase in the number of MEC servers made
fewer tasks be to allocated in the CC layer, reducing total energy consumed for
case 2. Compared to another scenario with the same characteristics, but without
MEC servers, the reduction in energy consumption for case 1 was 42.51%, while
for case 2 it was 44.71%. Thus, the use of MEC servers helps the system to lower
the total energy consumed.

b. Impact on different energy and time coefficients: This experiment
used Application 2 in four different scenarios. Each case with 500 tasks, 100 IoT
devices, and one MEC server. The energy coefficients were set to 1/5, 2/5, 3/5,
4/5 and the time coefficients to 4/5, 3/5, 2/5 and 1/5.

Table 1. Costs for Application 2, varying the cost coefficients for energy and time.

Case FEcoess Tcoess Cost Erotat  Trotar  Policy
cl1 1/5 4/5 0.01859 0.14550 0.03336 MEC
c2 2/5 3/5 0.02597 0.14276 0.03469 MEC
c3 3/5 2/5 0.03318 0.14276 0.03469 MEC
c4 4/5 1/5 0.03544 0.07040 0.25000 IoT

The lowest calculated cost was the same for cases 2 and 3, with MEC as an
offloading option. Case 1 had the lowest calculated cost among all coefficient
pairs. In these three cases the time coefficient had high values, and MEC was
chosen because task execution got the lowest processing times. For case 4, the
allocation took place on the IoT device itself. Now, energy had a high-value
coefficient, which made the scheduler choose the policy that provided the lowest
energy cost, reducing total cost. In case 4 energy consumption reduced up to
51.61% compared to the other cases. To reduce task completion time, coefficients
from cases 1, 2 and 3 are better, with a reduction of up to 86.65% compared to
case 4 (Table1).

c. Impact of input data size: As the size of data entry increases from
3.6MB to 3.6GB, the calculated costs progresses in the MEC and CC allocation
policies. The cost to execute in the IoT devices remains the same, as no data
transmissions are carried out. When data entry scales, allocation policies that
require data transmissions become very costly, and allocation on the device itself
becomes increasingly advantageous. We observed that with more tasks with less
data per task it is possible to reduce energy and time by up to 29% compared
to a scenario with fewer tasks and lots of data per task. With this approach less
time is spent waiting for data transmission to end, maximizing CPU usage in
the MEC servers.

d. IoT device battery consumption: Battery should stay in healthy levels
to avoid reaching the LSL threshold, avoiding the device to be unavailable for
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processing. Also, adequate task processing workloads may help save battery,
extending the operation time of the IoT device.

e. Deadline for critical tasks: Very low deadlines made tasks to be can-
celed because any given policy could execute the task in a feasible time. There-
fore, the deadline must be properly configured for at least one of the allocation
policies to have enough time to process and conclude the task correctly.

f. Impact on using the DVFS technique: With DVFS activated, the
total energy consumption decreased by 13.74%, while the total time increased
by 28.32% in comparison with DVFS off. This demonstrates the effectiveness of
the proposed model, and the scheduling algorithm in minimizing total energy
consumption. Although the whole time may have been longer in the approach
with DVFS, it is no problem because the tasks were completed within the time
limit imposed by the deadline.

5 Conclusion

In an environment with accelerated generation of large volumes of data and
mobile devices connected to the Internet with restricted QoS requirements and
battery limitations, energy and time reduction are mostly needed. The TEMS
scheduler could choose the best allocation options in the system, reducing both
energy consumption and elapsed time. Experiments show that the adequate
adjustment of the cost coefficients were essential for the final cost perceived by
the scheduling algorithm. Adequate coefficients allowed the energy in the system
to be reduced by up to 51.61% or the total times to be reduced by up to 86.65%,
ending critical tasks before deadline. The system has become more sustainable
and the user experience has not been affected.

The use of MEC servers helped extend the battery life of the IoT devices
and made task execution more agile. Also, using the DVFS technique brought
interesting results, helping to reduce the overall energy consumption. Major
contributions are the TEMS algorithm, the addition of data transmissions to
the model, accounting for idle costs, calculating transmission rate interference,
use of the DVFS technique, and the interaction with the CC layer to provide
resources whenever the local network becomes saturated.

As future works, we can relate the improvement of the system cost model,
with the insertion of new variables and new experiments to explore applications
in new scenarios such as industry, healthcare, aviation, mining, among others.
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Abstract. In the Internet of Things (IoT), billions of physical devices,
distributed over a large geographic area, provide a near real-time state of
the world. By adopting a service-oriented paradigm, the capabilities of
mobile or static devices can be abstracted as IoT services and delivered
to users in a demand-driven way. In service environments, a particular
service provisioning tends to be specified in a service level agreement
(SLA), which can be further used to monitor and guarantee the quality
of service (QoS). Automatic SLA negotiation can be used to resolve
possible conflicts between trading parties, but existing SLA negotiation
approaches do not consider the characteristics of an IoT environment.
In this paper, we present an automated negotiation strategy for multi-
round bilateral negotiation that caters for the level of dynamicity in an
IoT environment. The negotiation strategy makes concessions based on
the artificial bee colony (ABC) optimization algorithm. The simulation
results demonstrate that our proposal provides a better balance between
success rate and negotiation utility, compared to other approaches.

Keywords: Internet of Things + SLA + Automatic negotiation *
WS-Agreement Negotiation - Artificial bee colony optimization

1 Introduction

The Internet of Things (IoT) envisions a large number of physical objects, con-
necting over the Internet to provide a near real-time state of the world. By
adopting the Service-Oriented Architecture (SOA), a device’s capabilities or
measurements can be abstracted as services [6] and delivered to applications in
a demand-driven way. For mission-critical IoT applications, Service Level Agree-
ments (SLA) are widely used as a contract-like concept to assure the obligations
and guarantees of involved parties [5], but the scale of the IoT makes human
intervention infeasible for SLA negotiation. An automated, dynamic negotiation
process is needed for trading parties to express their preference and resolve possi-
ble conflicts. However, existing negotiation strategies may be insufficient for IoT
SLA negotiation because they do not consider the characteristics of the IoT envi-
ronment. Compared to web and cloud services, the negotiable scope of services
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in the IoT is likely to be more diversified when mobile devices and reconfigurable
resources are considered. IoT services also exhibit time-varying QoS levels [12]
that may be caused by unpredictable workload, an unstable wireless network,
and device malfunction. QoS variability may impact a service provider’s nego-
tiation boundaries or negotiation preferences, which further affects negotiation
efficiency.

In this paper, we propose a negotiation strategy for multi-round bilateral
negotiation, which uses a bio-inspired negotiation tactic to dynamically adjust
concessions based on the opponent’s behaviour. As resources in the IoT environ-
ment are geographically distributed, we assume a negotiation system is deployed
on a set of edge devices, which negotiate with service providers for consumers.
These edge devices are referred to as negotiation gateways. Providers publish
their SLA-supported services to a nearby gateway in the form of SLA templates
(SLAT), and wait for negotiation requests. SLATS are partially completed agree-
ments filling default values relating to negotiable SLA terms that the providers
are expecting to offer, and the constraints that restrict the values of those nego-
tiable terms. Gateways select candidate service providers by matching a request
with registered templates, and send the negotiation request to the candidate
service providers to start a bilateral negotiation [10].

In the remainder of this paper, Sect. 2 summarizes related work on SLA
negotiation in related field. Section 3 describes the negotiation strategy that
uses artificial bee colony optimization to adjust offerings. Section 4 details the
experimental setup and evaluation results. Section 5 concludes the paper with a
discussion about future research directions.

2 Related Work

Generally, a negotiation strategy is a mathematical model used to evaluate pro-
posals and make decisions [15]. Faratin et al. proposed three types of negoti-
ation tactics agents can employ during a negotiation process: time-dependent,
resource-dependent, and behavior-dependent [4]. They concluded that there is
a tradeoff between the number of successful deals and the utility gained. To
increase negotiation utility, Fharna et al. proposed a policy-based negotiation
strategy where agents dynamically adapt decision functions during the negotia-
tion process to comply with an opponent’s preferences according to performance
observations [18]. However, this adaptation may be inefficient when the strat-
egy adopted by the counterpart is unknown. To balance the success rate and
utility for negotiations with incomplete information, Zheng et al. [16] proposed
a game-theory based strategy that combines the concession and tradeoff tactics
to resolve possible conflicts. However, this does not guarantee a solution will be
found when one exists. To optimize negotiation behaviour, some approaches use
machine learning techniques and metaheuristic algorithms to learn opponents’
negotiation models. Faratin et al. used fuzzy similarity to approximate an oppo-
nent’s preference, and a hill-climbing algorithm detects a tradeoff offer that might
be acceptable by the counterpart [3]. Coehoorn et al. assumed that the opponent
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employs a time-dependent tactic, and adopted kernel density estimation to esti-
mate the opponent’s negotiation preference [2]. Narayanan et al. used a Markov
chain to model bilateral negotiations among agents, and Bayesian learning for
agents to learn the optimal strategy [11]. Sim et al. combined Bayesian learning
with genetic algorithms (GA) to search for the optimal strategy [13]. Carbonneau
et al. created a three-layer neural network that exploits information from past
counteroffers to predict opponent’s future proposals [1]. The drawbacks of these
strategies are that they are computationally expensive for multi-issue negotia-
tion, and their assumptions ignore the dynamicity of the opponent’s behaviour.
When using metaheuristic algorithms, the common disadvantage is the multiple
negotiation rounds that are required to find the final solution. Also, GA needs
a coding mechanism to transform each possible offer to a real number, which is
complex for multivariable problems.

3 Negotiation Strategy

The bilateral negotiation session begins when a negotiation gateway sends the
consumer’s preferred values as the initial offer to a candidate service provider.
The purpose of the negotiation is to reach an agreement that has the best possible
utility through a bargaining process. In each round, negotiating parties perform
their own negotiation strategies to evaluate a received offer and make decisions
about whether to accept/reject the offer or propose a counteroffer. A Negotiation
Offer proposed by a service provider p to a gateway g at time t is defined as
x;ﬁg, the value of negotiable term j offered in zpég is noted by xp_>g[ j]. Each
negotiable term j (j € 1, ..., k) has a negotiation space noted by Qg which is the
collection of possible values of term j. In a competitive market, providers may
regard some negotiation spaces as business sensitive data and may not be willing
to disclose them to the negotiation opponent, which means the negotiation may
occur under an assumption of incomplete information.

To measure an offer’s satisfaction level, each negotiable term j in the offer
is normalized and evaluated by gateways using a score value ng (ng € [0,1]).
A higher score represents a higher satisfaction. In our previous work, we have
identified four types of negotiable terms for IoT services and defined the scoring
functions ng targeting each type [9]. In this paper we assume consumers will not
clearly specify their preferences on each negotiable term, the average utility is

used to quantitatively measure the negotiation utility of a received offer ;vpﬁ g

k
1
Us( ZHg E Z pﬂg (1)

Each time a gateway g receives one or more counteroffers X p_) 4 from provider
p, it evaluates the offers using Eq. 1 and selects the offer with the highest util-
ity xpﬁg to make decisions (i.e., accept/reject an offer or propose a counter
offer). The decision-making process is controlled by WS-Agreement Negotiation’s
(WSAN) offer state transition model [14]. The WSAN-based decision-making
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model has been discussed in our previous publication [9]. However, in this paper
we use a modified ABC-based negotiation tactic to generate new counteroffers
rather than using the context-based tactic.

Algorithm 1. Gateway: Perform ABC-based Tactics

Input: Solutions F[10], received offer of last round m;f;;, the number of current round

r, loop limit Loopmaz, request req, similarity factor a, best solution Fpest
Output: The vector of updated negotiable terms Fpest
1: o « updateSimilarityFactor(r)
2: if F[n] is null then Initialize solutions and bees

Evaluation of solutions («, req, x;f;gl,)
cycle «— 0
while cycle < Loopya. do
Employed bees phase(a, req, x;f;; , F[n])
P, — Calculate selection probabilities(ca, F'[n])
If Random(0,1) < P, then Onlooker bees phase(a, req, z,75%, F[n))
9: if any F[i].T, > Trmas then Scout bee phase (req, 258 Foest, F[i])
10: Evaluation of solutions («, req, m:f;;)
11: Fyest < memorizeBestSolution(F[n])
12: end while

The main goal of designing a negotiation tactic is to find the best possible
agreement for a specific request that not only satisfies all the user’s constraints
but also maximizes the utility. However, if both parties are only concerned with
their individual utility and ignore the opponent’s preference, it is harder to
reach an agreement. Automatic negotiation with incomplete information can be
modeled as an optimization problem, which tries to find a solution that has
the highest possible utility for both parties from all feasible solutions under
the partially known negotiation constraints. The Artificial Bee Colony Optimi-
sation (ABC) algorithm is simple and accurate when addressing multivariable
problems [7], and we use a modified version to seek a win-win solution from the
solution domain. ABC abstracts solutions as food sources and searching for them
is performed by three types of specialized bees: scout bees, employed bees, and
onlooker bees [17]. They work cooperatively to find a food source with maximum
fitness. Algorithm 1 shows how negotiation gateways use the modified ABC to
update the expectations of negotiable terms. Different combinations of negotiable
terms make up the solution domain. A possible solution is modeled as the posi-
tion of a food source, which is evaluated by a fitness function. The ABC-based
negotiation tactic defines each food source as F' = {position, bee, bee,, fit, T, }.
position is a k-dimension vector V, = (vi1,i2, ...,V k) representing a possible
solution, which contains the expected values of negotiable terms (i € [1,n], n is
the number of food sources, k is the number of negotiable terms), bee. and bee,
are the associated employed bee and onlooker bee respectively, fit is the fitness
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value and T;. is the number of times that a solution has been exploited. Initially,
ten solutions are generated based on a user’s most preferred values and the ﬁrst
received counter offer xp_,g(Lme 2). The elements in initial position vector 1%
are computed using Eq. 2:

s + xz — . .
v;,; = Min{Max{N <p“2pgm |vprr.i — IZLg[JH) ,ming},mar;} (2)

where N () denotes a Gau551an distribution with mean (vp,.f.; + 25 [4])/2 and
variance |vp,z,; — 2 [j]], Vpry.; is the user’s most preferred term value j. maa;
and min; are the upper and lower boundaries of the term’s negotiation space j.
Gaussian distributed values are used rather than randomly distributed values as
in the standard ABC to avoid too many concessions in the early stage when the
maximum number of iterations is limited. The standard ABC algorithm usually
has thousands of iterations, which introduces latency. Reducing the number of
iterations reduces the solution accuracy, but decreases computation complexity.
To make the algorithm more lightweight, in each round, the maximum number
of loops (Line 5) is defined as:

Loopmaz = 2(mt + 1) (3)

where 2 is the scale factor, r is the current round number, mt is a constant
positive integer, representing the minimum times a solution can be exploited
initially. The sum of mt and r is the limit of exploitation times as the negotiation
processes. Equation 3 shows that more loops is introduced when r is increasing.
Through the next repeated cycles, the ten solutions are modified by the
searching processes of different bees (Line 6-9) and evaluated according to a fit-
ness function (Line 10). The particular mechanism for finding a win-win solution
is that each solution is evaluated by its utility and the absolute cosine similarity
between the current solution and the counteroffer proposed by the opponent.
The fitness function of solution 17; is defined as:
t—1
g g
fﬁ(:)_E{o, Uiy > sV ) @
(1—a) x U9V, ) +ax szm(V’7 S7), otherwise.

where U-‘J(V}t) is Vi’s utility at time ¢ (Eq. 1). S is the normalized! vector of
an opponent S expectation extracted from the optimal counteroffer of the last
round scpﬂg V’ is the normalized V;. « is the similarity factor for the weight of
making concessions (« € (0,1)), which gradually increases from Cy to Cy:

oB7

a_%+01 — m<%+cﬁa) (5)

where 7 is the ratio of the current round to the maximum negotiation round. 3
is an integer that controls the change rate of a (|5] < 10). A negative 8 means

' The values of terms are normalized using the score functions V¢ defined in [9].
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« increases quickly at the start but gets slower as the negotiation proceeds,
while positive 3 does the opposite. The negotiation is more conservative when
(G is positive. Equation 4 and Eq. 5 show that the fitness evaluating criteria
weight dynamically changes as the negotiation proceeds. The fitness is set to zero
when the solution has higher utility than the last proposal since the solution is
likely to be rejected by the opponent. The fitness function illustrates why more
iterations are needed as the rounds increase (Eq. 3). This avoids conservatism
in the early stage, and increases the chance of finding a better solution that has
higher utility when the concession rate increases. In the repeated iteration, the
searching process is performed in three phases: employed bee phase (Line 6),
onlooker bee phase (Line 8), and scout bee phase (Line 9), as follows:

Employed Bee Phase: Each employed bee searches for a new solution depend-
ing on the current one V; and another random one V;,, (k € {1,...,n},k # i). For
all elements v; ; in V;, new values are generated as follows [17]:

v;j = Min{Max{v; ; + [2Random(0,1) — 1](v; j — U ;), min;},max;}  (6)

where vy, ; is the value of term j in Vi (G € {1,...,k}), Random(0,1) is a

—

uniformly distributed random number (range [0,1]). If the new solution V; has

a higher fitness, it replaces the old V;. Otherwise the solution exploitation time
increases by 1.

Onlooker Bee Phase: After an employed bee completes its searching process,
the current solution’s information is shared with the associated onlooker bee,
which decides whether to exploit it based on the probability computed by fitness:
fit(Ey)
Prob(F;) = —————— 7
P = M Fit(F) @
€en

Considering the iterations limit, maximum fitness is used as the denominator
instead of the sum of fitness defined in standard ABC to increase the chance
of discovering a better solution. Based on the probability and Roulette-wheel
selection mechanism, the onlooker bee may further modify the current solution
by following the same searching process defined in the employed bee phase.

Modified Scout Bee Phase: After all the onlooker bees are distributed, the
solution whose exploitation time reaches the limit is exhausted, and the corre-
sponding employed bees turn into scout bees to find a new solution. In classic
ABC, the scout bee randomly chooses a solution that satisfies the boundary
constraint (Eq. 9). However, when the number of iterations is limited, a more
efficient searching mechanism that accelerates the convergence process is needed.
Inspired by the bare bones particle swarm algorithm [8], here, a Gaussian bare-
bone searching equation uses the global best solution and received counteroffer.
For all elements v; ; in ‘7;-, new values are generated as follows:

4 I
v;,; = Min{Max{N (W, fvbesm' — xfj_jé[j”) ,min;},maz;} (8)
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where vpeqt,; is the global best solution’s term j. Solution 17;’ is further compared
with the random solution (Eq. 9) to select the solution with the higher fitness.

v;,; = min; + Random(0, 1)(max; — min;) (9)

4 Evaluation

4.1 Experimental Setup

In the simulation experiment, there are two types of providers: static and mobile.
Mobile providers are more likely to provide a service that can satisfy the spa-
tial requirement, while static providers have a limited negotiation space for the
spatial feature. The price for a mobile service linearly depends on the standard
Euclidean distance between the current offering and the requested properties;
while the price for a static service is restricted by a range if the price is negotiable
(PIN), or a static value if it is non-negotiable (PNN). The service providers are
classified based on the service level they can provide: high-performance (HP) ser-
vices, moderate-performance (MP) services, and low-performance (LP) services.
The intersection degree of negotiation space between negotiating parties is set to
0.7, 0.4 and 0.2 for HP, MP and LP providers respectively. We assume the simu-
lation environment is a rectangular area where latitude varies from 53.33385 to
53.35556, and longitude varies from —6.27963 to —6.23328. Static HP providers
have six service instances uniformly distributed in the area, while MP and LP
providers have four and two service instances respectively. For mobile providers,
the probability of satisfying a user’s spatial requirement is set to 0.9, 0.5, 0.2 for
HP, MP and LP providers. If the requested location is not acceptable, a mobile
provider offers a random location within 1km around the requested location.

In our scenario, a service consumer is randomly distributed in the simulation
area, and requests a hazardous gas monitoring service. Negotiation on price,
sample rate, accuracy, availability and response time is needed to satisfy its
requirements. Two test cases simulate different environments: (i) In test case A,
one mobile provider (MP) and one static provider (MP-PNN) are the negotiation
candidates (i.e., resource-limited environment); (ii) In test case B, six mobile
providers (LP, MP, and HP) and six static providers (LP-PIN, LP-PNN, MPPIN,
MP-PNN, HP-PIN, HP-PNN) are the negotiation candidates (i.e., resource-rich
environment). To reduce chance variation, we repeated the experiment 100 times
under each test case. In each trial, each requested term’s negotiation constraint
is randomly generated based on a pre-defined range. The ABC-based tactic’s
parameters are set as Cyp = 0, C; = 0.9, mt = 5, § = 1. This experiment is
implemented with Java using Eclipse Mars IDE.

4.2 Result

Two metrics are used to evaluate the performance of the ABC-based negotiation
strategy (ABC): average negotiation utility and success rate. The negotiation
utility is the utility of the acceptable offer used to create the final SLA, which
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is computed by Eq. 1. We compare the performance against other four tactics,
which demonstrate a good balance between utility and success rate: the game
theory-based strategy for cloud service negotiation (UMC) [16], the behavior-
dependent relative tit for tat tactic (BDR), the time-dependent linear tactic
(TDL) and the resource-dependent patient tactic (RDP) [4]. In the experiment,
providers play the TDL tactic while the gateway plays the five different tactics.
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Fig. 1. Negotiation performance of ABC-based negotiation strategy

The results in Fig. 1 show the average negotiation utility and success rate
using different negotiation tactics when the maximum negotiation round R
increases. When R is set to 10, ABC and UMC outperform other tactics in
utility in a resource-rich environment. When the available resources are lim-
ited, ABC has moderate utility, lower than UMC and BDR, but it maintains a
much higher success rate. Figure le shows the utility-changing trend of solutions
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under this situation. Each graph shows the mean utility observed in each round
with the error band representing the standard errors. ABC concedes more in
the early negotiation rounds but becomes more conservative as the negotiation
proceeds. Once the negotiation deadline approaches, it becomes more inclined
to concede again, trying to reach an agreement with the service provider. ABC
controls the balance between success rate and negotiation utility by dynam-
ically changing fitness values and restricting the number of search iterations.
From Eq. 4 and Eq. 5, when Cy = 0, C; = 0.9, the fitness value in the early
negotiation rounds mainly depends on the solution’s utility. Equation 3 shows
that fewer iterations are allowed during the process, which prevents ABC from
being too greedy. As the negotiation proceeds, the fitness value depends more
on the similarity between the detected solution and counter offer proposed by
the negotiation opponent. More search iterations are introduced during the pro-
cess, allowing employed bees and onlooker bees to explore more solutions than
the earlier rounds, which increases the chance of finding a solution more likely
to be accepted by opponents, without losing too much utility. This process is
similar to the negotiation with the tradeoff tactic that the utility remains at a
similar level from round 3 to round 6. In the final negotiation round, ABC makes
the largest possible concession to maximize the likelihood of the last offer being
accepted by the negotiation opponent. Figure 1 also shows that when R is set to
20, ABC demonstrates better and more stable performance in both utility and
success rate. Figure 1f shows the utility change of solutions when more interac-
tions are allowed. Similarly, ABC makes concessions in the early /ending rounds
but is more conservative in the middle rounds than other tactics, which means
it maintains a higher utility than other approaches. Although both ABC and
BDR adjust concessions based on recent counteroffers proposed by the opponent,
BDR only imitates the opponent’s behaviour, while ABC combines the oppo-
nent’s counteroffer with the negotiation deadline and its self utility to search for
a win-win solution acceptable for both parties. This makes ABC more adaptable
to the negotiation environment, achieving higher negotiation utility than BDR.
Also, the irregular utility change in each round makes it hard for the opponent to
predict the concession, therefore the risk of accepting an offer with lower utility
is reduced.

5 Conclusion and Future Work

To enable an agreement-driven service provisioning, a negotiation component is
necessary to resolve possible conflicts on service properties between the trading
parties. In this paper, we proposed a metaheuristic negotiation strategy that
uses the artificial bee colony algorithm to find a win-win solution through a
bargaining process. The proposed strategy demonstrates better and more stable
performance in terms of utility and success rate compared to the other four pop-
ular approaches. This strategy can be used for SLA negotiation with incomplete
information, specially when the user does not specify any negotiation preference
in the request. However, this strategy may be trapped into the current optimum
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for several rounds when the constraint on negotiation deadline is loose. In future
work, we will modify the searching equations and possibly, add an opponent
behaviour learning mechanism to overcome this problem.

Acknowledgment. This work was funded by Science Foundation Ireland (SFI) under
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Abstract. The Internet of Things has emerged as a paradigm in a vari-
ety of application domains where several parties share data to tackle spe-
cific tasks. However, these IoT data can be sensitive and the data subject
wish not share them with other competitor organizations without retain-
ing some level of control. Thus, a privacy-preserving, user-centric, and
transparent solution is needed to deal with the challenges of IoT data
sharing, such as the loss of control over the shared data, the trust need
in data consumer infrastructure, and the lack of transparency in terms
of data handling. Therefore, we propose PATRIoT, a privacy-preserving
PIATfoRm for IoT data sharing using a service-oriented approach. The
latter is proposed based on the blockchain technology, which enforces pri-
vacy requirement compliance according to the General Data Protection
Regulation. For validation purposes, we deploy the proposed solution on
a private Ethereum blockchain and give the performance evaluation.

Keywords: Privacy - [oT - Blockchain technology - Data sharing

1 Introduction

The Internet of Things (IoT) is a paradigm that improves delivering advanced
services in a wide range of application domains. Indeed, multiple devices col-
lect, exchange, store, and process a large amount of fine-granularity and high-
frequency data in every aspect of life [4]. However, these smart devices have
limited memory and storage capabilities, so they collect and send IoT data to
consumers’ external platforms to be stored and analyzed. Indeed, these external
platforms receive these IoT data and use them to personalize services, optimize
decision-making processes, and predict future trends. However, the produced IoT
data are generally rich in sensitive data and their analysis allows data consumers

© Springer Nature Switzerland AG 2020
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to deduce personal behaviors, habits and preferences of data subjects.! Indeed,
collecting data in IoT applications increases the data subject’s worries about
the potential uses of these data. Hence, centralizing the storage and analysis
of a huge amount of data poses significant issues in terms of data subject pri-
vacy, such as the loss of control over the externalized data, the need to trust the
consumer platforms, and the lack of data handling transparency. To overcome
the aforementioned issues, various legislative bodies have enacted privacy legis-
lation, such as the General Data Protection Regulation (GDPR) [9] in Europe
that gives data subjects rights to be informed how their personal information
are handled by consumers. However, a user-centric and transparent solution for
ensuring that these rights are respected in the IoT domain is still missing.

Motivated by the limited computing capabilities of smart devices, the sen-
sitive feature of IoT data, and the increasing privacy legislation pressure,
we propose PATRIoT, a preserving privacy PIATfoRm for IoT data sharing
while adapting a service-oriented approach based on the blockchain technology.
PATRIoT provides a set of services, generic enough to be applied to a large vari-
ety of IoT applications. These services can be deployed over a given architecture
to make applications aware of users’ privacy requirements, such as data pur-
pose, disclosure, and retention. The components of PATRIoT are built around
the semantic description of data (e.g., data sensitivity level, data purpose, etc.)
without storing personal data. Furthermore, the reason behind the blockchain
technology use is its immutable nature secured by a peer-to-peer network. It
hosts smart contracts which contain conditions to trigger and actions to execute
if the conditions are satisfied. In our case, the conditions represent the prefer-
ences and requirements of the data subjects concerning their IoT data privacy
that need to be respected by consumers. Thus, the smart contract use prevents
any attempt to violate privacy by ensuring that the shared data are handled as
expected during their lifecycle.

This paper is organized as follows. Section 2 analyses existing solutions that
studied the privacy-preserving issue in the IoT domain. Section 3 describes the
proposed system model. Experiments and results are detailed in Sect. 4. Finally,
Sect. 5 concludes the paper and presents some future endeavors.

2 Related Work

Early attempts to incorporate blockchain technology into IoT proposed new
blockchain systems. For instance, Dorri et al. [8] proposed a custom blockchain,
where the home gateways hold the role of the miners. Such a solution is hard
to be deployed since they require a “critical mass”. As it seems relevant to new
ToT solutions, it is worth building on existing technologies to be compatible with
already available libraries and wallets. More recent attempts are using blockchain
and smart contracts to provide security and access control for IoT. Novo [11] pro-
posed an IoT access control system with gateway nodes, which are responsible for
handling resource requests by taking into consideration the policies stored in the

! Data subject: any person whose personal data are being collected, held or processed.
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blockchain. For their part, Zhang et al. [12] proposed a smart contract-based
access control system while an IoT gateway handles resource requests. These
solutions encoded statically in smart contracts the actions a specific consumer
can perform to a particular IoT device/data. Furthermore, the blockchain tech-
nology is also used in the healthcare field. For instance, Dagher et al. [7] proposed
a blockchain-based framework for secure access to medical records by several par-
ties, while preserving the patients’ privacy. However, this work cannot perform
data erasure, since it stored some personal data in the blockchain. To overcome
this issue, an off-chain distributed database can be used to store the shared IoT
data to guarantee data subjects’ right to be forgotten as required by the GDPR.

3 System Model Overview

Despite the increasing legislation pressure, several privacy requirements have
been less addressed in the IoT domain. Using a service-oriented approach to
address the GDPR compliance makes it easier to the data consumers to build
new applications or change existing applications while ensuring the enforcement
of the data subject privacy thanks to smart contracts. For this purpose, we
propose the system model that is depicted in Fig. 1. It consists of five involved
parties, namely data producer, blockchain and smart contract, PATRIoT plat-
form, distributed database, and data consumer. The PATRIoT platform aims at
providing an environment that allows data subjects to easily exercise their rights
defined by GDPR and assisting data consumers to meet the GDPR requirements
using a privacy ontology and the blockchain technology. To this end, PATRIoT
has been designed to be an IoT data sharing platform while adapting a service-
oriented approach that provides several components including the privacy pref-
erence matching service and the privacy policy compliance service.
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In the rest of this section, we first outline the proposed model core compo-
nents, then describe the IoT data sharing process.

3.1 Core Components Description

Figure 1 depicts the model components, which we describe hereafter:

Data producer: it is an IoT device equipped with sensing and communica-
tion capabilities that allow it to collect data, communicate with other devices, or
connect to the Internet. In this work, a mobile phone can provide a user-friendly
environment for data subjects in order to control their shared data and manage
their privacy preferences thanks to the privacy preference matching service.

Privacy preference matching service: it is responsible for matching the
data subjects’ and data consumers’ privacy requirements that are served as
inputs, then generating a common privacy policy, as an output. This privacy
policy consists of several rules that specify why, when, how, to whom and for how
long the requested IoT data are handled. To ensure privacy preference matching,
the PATRIoT platform adopted the data privacy ontology, called LIoPY and the
reasoning process that we have previously proposed in [10]. Indeed, LIoPY ontol-
ogy models the privacy requirements in the IoT environment and the common
privacy policy that will be enforced by the blockchain and smart contracts.

Blockchain and smart contract: blockchain is responsible for trans-
parency, integrity, non-repudiation, and validity of the data handling operations.
Moreover, it hosts a privacy policy as a set of self-enforcing and machine-readable
rules using smart contracts [6]. Therefore, we propose loTDataSharing, a smart
contract that aims at addressing the data subject’s control enforcement over the
shared data and assisting the data consumers to meet the fundamental GDPR
requirements. The predefined smart contract’s functions can be invoked by the
data producers and consumers by means of the privacy policy compliance service.

Privacy policy compliance service: it is responsible for exposing the
functionality of the deployed smart contract as an application REST interface
for simpler external application interaction with the blockchain. Both POST and
GET methods are provided to push transactions and query for transactions on
the blockchain. These methods can invoke the smart contract’s functions. Indeed,
this service ensures that the data sharing management works properly according
to the access authorizations defined in the smart contract while eliminating the
data producers’ needs to interact directly with the blockchain due to their limited
memory and storage capabilities. Moreover, it verifies the consumer’s permissions
before allowing access to the shared data that are stored in distributed databases.

Distributed database: it is an off-chain database, used to store the
IoT data. It is a peer-to-peer storage system used to overcome the expensive
cost of storing IoT data on the blockchain and to guarantee the right to be for-
gotten defined by the GDPR. Thus, only the hash pointer of the data location
is exchanged by the blockchain’s transactions between the data producers and
the data consumers.

Data consumer: it can be a medical application, an energy substation, or
a traffic routing station that can use the privacy preference matching service
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Fig. 2. The process for IoT data sharing using the PATRIoT platform. Assume that
actors have established a blockchain address prior to this process.

to request data subjects’ consents and the privacy policy compliance service to
handle the requested data transparently and unambiguously.

For more details, we refer the reader to a full description that is available on.?

3.2 Blockchain-Based IoT Data Sharing Process

Figure 2 depicts the process of sharing IoT data between data producers and
consumers using the PATRIoT platform while logging the established commu-
nication on the blockchain. This process begins by registering a new data pro-
ducer using the RegisterNewloTDevice function to store the producer’s blockchain
address and its sensed data type on the loTDataSharing smart contract. Once
the privacy preferences are defined, the data consumer asks for getting permis-
sion by specifying its terms of service, such as the requested data type, why,
to whom, and for how long the data are used. Then, the privacy preference
matching service matches the received terms of service with the data subject’s
privacy preferences, off-chain. In case of a match, the service uses the Grant-
Permission function to add the consumer’s blockchain address to the authorized
consumers’ list stored in the smart contract that notifies the producer of the
new consumer. When the data producer collects new data, it sends them to
the distributed database that generates a hash pointer of the file location and

2 https://www.dropbox.com/s/levxfzid1s3050b/PATRIoT.pdf?d1=0.
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returns it to the producer. The latter encrypts the received hash pointer using
the consumer’s public key and sends it to the consumer. Once mined, the con-
sumer receives the transaction, retrieves the encrypted hash pointer, and uses its
private key to decrypt the hash pointer. When the consumer obtains the hash
pointer of the file location, it uses the GetSharedResource function provided by
the privacy policy compliance service to retrieve the data from the distributed
database or invoke one of the loTDataSharing smart contract functions to han-
dle the data. By using the privacy policy compliance service, the data subject
is periodically informed how the data are handled and can easily add or revoke
authorization to the data consumers.

4 Experiments and Result Analysis

Due to a lack of space, we only show in this section the proposal feasibility
by implementing smart contracts, but the entire proposal is designed for a
service-oriented architecture deployment. As Ethereum is currently the most
common blockchain platform for the development of smart contracts [6], we
implemented our smart contract using the Solidity language [1] and deployed it
to the Ethereum test network using Ganache [2]. Therefore, we created a test
system using Truffle development framework [3], used InterPlanetary File Sys-
tem (IPFS) [5] as an off-chain distributed database, and deployed the PATRIoT
services to Swarm that is a Docker orchestration tool.

4.1 Computation Time Cost

In order to measure the performance of our solution, we conducted some exper-
iments to compute the computational time cost of both addFile and updateFile
functions defined on the loTDataSharing smart contract. Thus, we performed add
file operation by adding random file contents for 100 repetitions. We measured
the required time to off-chain compute the file content’s hash and execute the
addFile function (see Fig. 3a) and the updateFile function (see Fig. 3b) by making
several tests while increasing the file size from 1KB to 2MB. We observe that the
processing time of updating an existing file that varies from 95 to 180 ms is less
than the processing time of adding a new file that varies from 257 to 390 ms.

4.2 Cost Overhead

To evaluate the PATRIoT efficiency, we conducted an experiment to measure the
gas® used by a transaction to invoke one of the loTDataSharing smart contract’s
functions, namely addFile, updateFile, addConsumer, and removeConsumer.
Table 1 illustrates the average gas usage and cost per invoked function. We
observe that the gas used by a transaction changed depending on the function.
This can be explained by the fact that functions that require more computational
resources cost more gas than functions that require few computational resources.

3 gas: it is a measure unit of the cost necessary to perform a transaction on the network.
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Table 1. Cost overhead

Invoked function | Average Gas Usage (gas) Average Gas Cost (USD)
File size =1KB | File size =2MB

addFile 471959 471959 3,00

updateFile 28946 28946 0,18

addConsumer 332429 332429 2,11

removeConsumer | 23456 23456 0,15

Moreover, we used in this experiment two file sizes, namely 1KB and 2MB.
We deduce that the gas used by the transactions is independent of the file size.
This can be explained by the fact that the functions only used the file content’s
hash whose bit length is fixed and equal to 32 bits. Thus, the file size has no
impact on the cost overhead of our proposal. Indeed, this latter can be used in
case of files with a huge amount of data without increasing the cost overhead.

Table 1 also illustrates the average gas cost of the four smart contract’s func-
tions. Currently, 1 gas costs about 20 Gwei (i.e., 20 * 107 Ether) and the
exchange rate is about 318 USD for 1 Ether at the time of writing. Thus, we com-
pute the gas cost by multiplying the used gas by the gas price for each function.
Therefore, we can deduce that our solution is not a cost-expensive one.

After evaluating the performance, we analyze below the legal compliance.

4.3 PATRIoT Platform in Legislation Context: GDPR Compliance

PATRIoT aims at achieving the GDPR compliance by meeting several privacy
requirements. First, PATRIoT meets the consent requirement by using the loT-
DataSharing smart contract that offers to the data subjects the ability to manage
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their consents by easily adding, modifying, and revoking authorizations. More-
over, PATRIoT establishes accountability and transparency of data sharing pro-
cess. Thus, the defined blockchain-based solution helps data consumers to auto-
mate compliance checks and allows for a comprehensible record for auditing. Fur-
thermore, PATRIoT meets the notification obligation by logging all the transac-
tions that prove who has handled data. Thus, any privacy violation attempts can
be detected. Finally, PATRIoT meets the erasure requirement by using the off-
chain data store and only storing the hash of the IoT data on the blockchain.

By meeting the aforementioned privacy requirements, PATRIoT addresses
areas associated with GDPR compliance. On one hand, it enforces the data sub-
ject’s ownership and control over the shared data. On the other hand, it can be
seen as a consumer’s proof of legislation compliance thanks to both transparency
and auditability characteristics.

5 Conclusion

In recent years, several researchers have agreed that the blockchain technology
can be used to improve the data subject privacy in the IoT domain while being
GDPR compliant. In this context, we proposed PATRIoT, an IoT data shar-
ing platform for preserving privacy using a service-oriented approach based on
blockchain. Indeed, we proposed a smart contract that ensures that the shared
data will be handled as expected. Besides, we relied on off-chain database use to
store the shared IoT data. In our future work, we aim at continuing research in
the use of blockchain to meet other privacy legislative standards by deploying a
Blockchain as a Service to be available for all actors in different domains.

References

1. Solidity language (2014). https://solidity.readthedocs.io/en/develop/. Accessed 20
Aug 2020

2. Ganache: Personal blockchain for ethereum development (2016). https://www.
trufflesuite.com/ganache. Accessed 20 Aug 2020

3. Truffle: Ethereum development framework (2016). https://github.com/
trufflesuite/truffle. Accessed 20 Aug 2020

4. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw.
54(15), 2787-2805 (2010)

5. Benet, J.: IPFS-content addressed, versioned, P2P file system (2014)

6. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White paper (2014)

7. Dagher, G.G., Mohler, J., Milojkovic, M., Marella, P.B.: Ancile: Privacy-preserving
framework for access control and interoperability of electronic health records using
blockchain technology. Sustain. Cities Soc. 39, 283-297 (2018)

8. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT security
and privacy: the case study of a smart home, pp. 618-623 (2017)


https://solidity.readthedocs.io/en/develop/
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle

PATRIoT: A data sharing platform for IoT using a service-oriented approach 129

9.

10.

11.

12.

GDPR: Regulation (EU) 2016/679 of the European parliament and of the council
of 27 April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing directive
95/46. Off. J. Eur. Union (OJ) 59, 1-88 (2016)

Loukil, F., Ghedira-Guegan, C., Boukadi, K., Benharkat, A.N.: LIoPY: a legal
compliant ontology to preserve privacy for the Internet of Things. In: 2018 IEEE
42nd Annual Computer Software and Applications Conference (COMPSAC), pp.
701-706. IEEE (2018)

Novo, O.: Blockchain meets IoT: an architecture for scalable access management
in IoT. IEEE Internet of Things J. 5(2), 1184-1195 (2018)

Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access
control for the Internet of things. IEEE Internet of Things J. 6(2), 1594-1605 (2018)



Services at the Edge



®

Check for
updates

Energy Minimization for Cloud Services
with Stochastic Requests

Shuang Wang"2(®)  Quan Z. Sheng?, Xiaoping Li', Adnan Mahmood?,
and Yang Zhang??3

! Southeast University, Nanjing, Jiangsu, China
{wangshuang,xpli}@seu.edu.cn
2 Macquarie University, Sydney, Australia
{michael.sheng,adnan.mahmood}@mq.edu.au
3 'Wuhan University, Wuhan, Hubei, China
yangz10@whu.edu.cn

Abstract. Energy optimization for cloud computing services has gained
a considerable momentum over the recent years. Unfortunately, mini-
mizing energy consumption of cloud services has its own unique research
problems and challenges. More specifically, it is difficult to select suitable
servers for cloud service systems to minimize energy consumption due to
the heterogeneity of servers in cloud centers. In this paper, the energy
minimization problem is considered for cloud systems with stochastic
service requests and system availability constraints where the stochastic
cloud service requests are constrained by deadlines. An energy minimiza-
tion algorithm is proposed to select the most suitable servers to achieve
the energy efficiency of cloud services. Our intensive experimental stud-
ies based on both simulated and real cloud instances show the proposed
algorithm is much more effective with acceptable CPU utilization, saving
up to 61.95% energy consumption, than the existing algorithms.

Keywords: Energy minimization - Cloud service * Service request -
Quality of Service - Rejection probability - System availability

1 Introduction

Energy optimization is not only important for protecting environments because
it mitigates the carbon emission, but also indispensable for the cloud providers
since it reduces the electricity consumption. It is estimated that 70 billion
kilowatt-hours of electricity, i.e., about 1.8% of the total electricity consump-
tion of the United States, is consumed in 2014 alone for cloud services [11].
According to the International Energy Agency’s New Policies Scenario, which
takes account of existing and planned government policies, the world primary
energy demand is projected to be increased by 37% between 2012 and 2040 [23].
Energy consumption is directly proportional to power consumption. To reduce
power consumption in computing systems, there are in general two approaches:
© Springer Nature Switzerland AG 2020
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(a) thermal-aware hardware design and (b) power-aware software design [20].
The thermal-aware hardware design approaches are related to hardware devices,
while on the contrary, the power-aware software design approaches involve com-
puting systems, including operating system-level power management, compiler-
level power management, application-level power management, and cross-layer
adaptations [20]. Our work falls largely as one of the power-aware software design
methods.

In this paper, we take into consideration of the energy consumption mini-
mization problem for stochastic requests with deadlines. Service requests arrive
at the cloud centers both stochastically and dynamically while servers are het-
erogeneous in nature with different configurations. Dealing with stochastically
arriving requests and heterogeneous servers in cloud service systems is a com-
plex problem in its own essence [8,22]. The power consumption of servers and
the response time of service requests are typically negatively correlated. If the
service rate of servers is higher, more power is consumed and the service requests
are processed quicker, thereby leading to a smaller response time. In addition,
it is hard to evaluate the energy consumption with different service rates of
servers in cloud systems. Server selection is a NP-hard problem. This is further
complicated when selecting optimal number of servers from the cloud centers
to minimize the energy consumption, with the needs to satisfy the deadlines of
service requests and the system availability [15] (which defines the probability
that requests can be processed) constraints of the selected servers. The major
contributions of this work are as the following:

— We develop a novel cloud service system model that is based on the queuing
theory to deal with the stochastic property of the cloud service requests. The
model enables the efficient server selection by considering i) service request
arrival rates, ii) service rates of the cloud servers, iii) deadlines of the service
requests, and iv) the system availability constraints.

— The energy consumption of a cloud service system is measured by the power
consumption of the servers based on their response time of the service
requests, which is calculated by a proposed energy evaluation (EE) algorithm.
We further develop an energy minimization (EM) algorithm to select suitable
servers to minimize the energy consumption while meeting the service request
deadlines and system availability constraints.

— We conduct extensive experimental studies using both simulated and real-
life cloud instances and the results show the effectiveness of our proposed
approach on energy optimization of cloud services.

The rest of the paper is organized as follows. In Sect. 2, we discuss the related
work and in Sect. 3, we detail the model and formulate the research problem. The
energy optimization algorithms are presented in Sect. 4. Finally, the experimen-
tal results are reported in Sect. 5, followed by conclusions and future research
directions in Sect. 6.
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2 Related Work

Energy consumption is closely related to power consumption. A stochastic activ-
ity network model was constructed to evaluate the power consumption and per-
formance of servers in cloud computing [3]. By allocating the power to the
servers, the overall quality of service (QoS) of the servers in the data center
was optimized [7]. A heuristic algorithm was presented to minimize the energy
consumption on the condition of location constraint of nodes [21]. A brownout-
based approximate Markov Decision Process approach was proposed to improve
trade-offs between energy saving and discount offered to service users [22]. The
key novelty was to reduce the cumulative power by the dynamic voltage scaling
[1]. A Constrained Markov Decision Process model was built for power man-
agement in web server clusters [18]. The energy consumption was minimized by
optimizing the power consumption of different servers in [1,7,18] while the dead-
line constraint of service requests was not considered. In this paper, we consider
the stochastic service requests with deadline constraint and the suitable servers
are selected to minimize the energy consumption. The dynamic property of the
queue capacity makes the energy consumption minimization problem different
from the existing problems tackled in [1,7,18].

Low energy consumption and high service performance (e.g., response time,
reliability and service level agreement) are usually negatively correlated. Higher
performance implies less response time and faster service rates while lower
energy implies lower allocated power which results in slower service rates and
longer response time. A suitable queuing model was built to satisfy the conflict-
ing objectives of high performance and low power consumption in [10]. Mobile
devices were modeled as a semi-Markov decision process to achieve a good bal-
ance between the application execution time and power consumption [2]. The
balance between higher performance and lower energy was studied in [2,10].
In [19], two novel adaptive energy-aware algorithms were proposed to achieve
energy efficiency while minimizing SLA (service-level agreement) violation rate
in cloud data centers. When balancing the performance and energy consump-
tion, the queue capacity in [2,10] is determined while in our paper, the queue
capacity changes dynamically with different servers.

Energy minimization with heterogeneous cloud servers has been studied in
[6,8,14]. When the servers are heterogeneous, the server sequence has to be cer-
tain for performance analysis since different server sequences lead to different
results. The heterogeneity of servers make problem more difficult. In this paper,
heterogeneous servers in cloud service systems are considered with deadline con-
straint, which is not handled in the existing works [6,8,14].

3 Cloud Service System Model and Problem Description

In this section, the cloud service system model is constructed and then the
research problem is formally defined.
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3.1 Cloud Service System Model

When service requests arrive, cloud providers offer suitable servers to deal with
the requests while minimizing the energy consumption. The arrival rate of the
service requests is assumed to follow a Poisson distribution with parameter A [9].
Let us assume that there are N heterogeneous servers in the cloud service sys-
tem and the number of selected servers is n (n < N). According to our recent
work [15], the service rates of the servers, which are the speed of requests pro-
cessed by the servers, are assumed to follow exponential rates with pq,--- , un-.
The deadline of service requests is denoted as D which implies that requests are
processed before the arriving time plus D. All requests have the same D. The
rejection probability is assumed to be Pr and the system availability is &.

The model of the cloud service system can be constructed, as illustrated in
Fig. 1. Once the service requests arrive at the cloud system, a dedicated server
is firstly selected to process these requests. If more requests arrive, requests wait
in the queue. Due to the deadline constraint, the maximum number of service
requests is computed by the selected server and if the system availability is
satisfied, no more server will be selected. Requests are executed by the selected
servers. Otherwise, more servers will be considered by iteration in order to meet
the requirement of the system availability.

Requests Queue Judge Execution

*@
e OV

Fig. 1. Cloud service system model based on the queuing theory.

v

v | ¥ |

The queuing theory [13] is adopted in terms of the stochastic property of the
cloud service requests. Rp;(i € {1,--- ,n}) is the maximum queue length when
the server with service rates p;) is selected to process requests. Ry is determined
in terms of comparing the response time of requests processed by service rate
with pp;) to the deadlines. {0,1,--- ,4,---, Z;;l Rypj+n} is the state space where
i is the number of service requests in the system. According to the system model
in Fig. 1, states {0,1,---,1+ Ryyj} correspond to the first selected server with

service rate puy). States {Z;;ll Ry +1,- - ,Zj.:l Ry;) + i} correspond to the it
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selected server with service rate p;;. When 1 —§ < Py Ry;j+n> O NEW server
will be selected. According to the stochastic property of requests and servers,
the cloud service system is a Markov process. For the first selected server, the
arrival rate of requests is A while the arrival rate of next selected servers is the
rejection probability that requests cannot be processed by the previous selected
server by the arrival rate A\. The state transition process is shown in Fig. 2.

Fig. 2. State transition process.

According to the state transition process described in Fig. 2, the input rate
of requests is equal to the output rate of requests for each state. Denote P;(i €
{0,1,---,1 4+ Rpy}) as the steady state probability for state i. Therefore, the
balance equations for the first server are:

APy = ppy Py (1)
A+ ) Pr = AP + ppy P (2)
APr,, = pPrtry, (3)

In addition, the steady state probabilities Py, P, -, P1yg,, satisty

> Phi=1 (4)

pp) is denoted as ﬁ According to Eq. (1), Eq. (2) and Eq. (3), it is obtained

Py = ppPo (5)
P, = 0[21]P0 (6)
lJrR[l]

P1+R[1] = P[l] PO (7)
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P, is calculated in terms of Eq. (4), (5), (6) and (7):

1_[] 21
| Rt Pl
Py = [1] (8)

1
- -1
2+ Rp Pl
The steady state probabilities in different states are calculated according to
Eq. (5), (6), (7) and (8). Based on the steady state probabilities, the rejection
probability P, is calculated using:

Pryy = PRy, 9)

The rejection probability P,
nt? server is selected, it should meet the requirement of the system availability &,
which implies that P = < 1—¢. For minimizing the energy consumption, when
a server is selected, the rejection probability P, should be as small as possible
so that more service requests can be processed. The relationship between P,

and Rjjj can been proved in Theorem 1.

is related to the system availability &. When the

(1]

Theorem 1. P, decreases with the increase of Rpy).

R[l

Proof. According to (8), P, = % The derivative of P, is calcu-
lated as Pm
DP, (L= puep MY (= ) = (1= pl (= ppp)ey )
DRy (1- [QTRM)
(1= ooy ™) mppy (1= iy ™) + o Iy (1= prag)opy ™
- (1 ppyy )2
((1- P[u)p[l;]rRm ) In ppa)
- 2R (10)

(1- P )
When 0 < pjg; < 1, it is easy to calculate that only In p;) < 0 which results in

W < 0. PT[l] decreases with the increase of Rj;). When pp;) = 1, according to

Eq. (5), (6), (7) and (8), the steady state probab1ht1es are the same for all states.
P decreases with the increase of the number of states which results from the

increase of Ryy). When pry; > 1, only 1 — ppy) < 0. oy ” < 0. Therefore, Py,

decreases with the increase of R[ 1]- |

Based on the steady state probabilities, it is easy to calculate the number of
requests in the cloud service system. The number of service requests L) in the
system is
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1+R[1]
Ly= ) ixP (11)
i=0

Based on Ly, the response time of requests is determined. The response time
of requests T, is determined based on the Little theorem [5]:
Ly
T, =———" (12)
" )‘(1 - PT[1])

If T,,, < D, compared P, to 1 —¢&, Ry is calculated. With the £ (system
availability) and D (service requests deadline) constraints, servers are selected
to minimize the energy consumption in a cloud system. When the next server
is selected, the arrival rate of requests changes with the current rejection prob-
ability P, . Similar to the first selected server, the balance equations for the

(1]

it" selected server are obtained. The steady state probabilities are computed in
terms of the balance equations. The rejection probability Py, and the expected
response time of requests are calculated by using Eq. (9) and (12).

Energy consumption is measured by the power consumption of servers based
on the response time of requests. According to [8], the power consumption of a
server is determined by W = wCV 25, where w is the switching activity, C' the
electrical capacitance, V' the supply voltage and n the clock frequency. For any
physical server with a service rate pup;, pf;) o< n and n o V¢ with 0 < ¢ < 1.
n o< V¢ implies V oc n/®. According to [17], pugi) o< nand V' oc i imply W) oc
where « = 1+2/¢ > 3, i.e., P can be represented by /w[ol‘.} where « is a constant:

Wy = /w[og] + W*. (13)

W* is the static power consumption.

3.2 Problem Description

Since the number of servers are dynamic, the expected energy consumption is
calculated in terms of the expected response time of service requests, the power
consumption of servers, and the probability of states calculated by the corre-
sponding servers. The total number of service rates should be not less than A
to balance the system. Otherwise, the system could break down. The energy
consumption minimization problem is therefore formally described as follows:

n i—1
min B =(1 = Py )W Ty + > [ ] Pryyy (1 = Pry) )W T, (14)
i=2 j=1
A<D g (15)
i=1
—¢< PZ?ZI R +n (16)
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According to Eq. (12), we can have T, = ﬁ Therefore, the following
o
equation is obtained:
n i—1
E = (1= Pry Wiy Ty + 3 [T Priy (1= P Wi T,
=2 j5=1
n i—1 L[]
— J
== )WU])\ Pry) +ZHPT[1 )W[Z]P A1-P)
=2 j=1 4]
W[z L

Wi Lia -

Therefore, Eq. (14) is transformed equivalently into £ = " | —&

4 Energy Minimization Algorithm

Energy minimization is closely related to the response time of service requests,
the number of servers and the power consumption in a cloud service system. To
solve the problem, different servers are selected to satisfy the deadline constraint
and minimize the energy consumption. The number of service requests waiting
in the cloud system is determined by the selected servers. The queue capacity
is determined firstly by considering the deadline constraint D and the system
availability £ by Algorithm 1 according to which the energy consumption is eval-
uated. After energy evaluation, selected servers are determined to minimize the
energy consumption in Algorithm 2.

The Energy Evaluation (EE) algorithm (see Algorithm 1) is proposed to eval-
uate the energy consumption of a selected server. u is assumed as the service
rate of the selected server. With the increase of R, the response time of service
increases while the rejection probability decreases gradually. With the deadline
D and the system availability £ constraints, the queue capacity R is determined
(lines 3-6). The number of requests in the cloud service system is computed (line
7) and the power consumption for the selected server is calculated (line 8). The
energy consumption F is evaluated (line 9). The time complexity of Algorithm 1
is determined by the queue length R.

Different servers are selected to minimize the energy consumption in the
cloud service system by Algorithm 2. E° is the energy consumption vector for
the selected servers and Py is the rejection probability vector for the selected
servers. U = {py,- -+, un} is the server set. F is the energy consumption vector
for servers. Fg,., is the total energy for the selected servers. The arrival rates
of service requests for the next server is determined by the current rejection
probability in terms of Fig. 2. During the server selection procedure, N servers
are evaluated firstly (lines 5-6). Since the rejection probability in the cloud
service system and the energy consumption have different ranges and units, we
employ a min-max normalization. We use E’ and P,’ to denote the values of
E° and P? after min-max normalization, respectively (line 9). When selecting
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Algorithm 1: Energy Evaluation (EE) Algorithm

Input: u, €&

1 begin

2 R«+—0,T, —0,Pr «— 1;

3 while T, < D& Pr > 1— ¢ do
4

5

R— R+ 1,
Calculate T, by Eq. (12) and p; /* Response time calculation®/
Calculate Pr by Eq.(9); /* Rejection probability calculation*/

6 Calculate L by R and p;  /*The number of requests calculation®/
Calculate W by Eq. (13); /*Power consumption calculation*/

E — %; /*Energy consumption evaluation®/

7 return R, Pgr, E.

more servers, the rejection probability of the system decreases while the energy
consumption increases. We denote r = %,' as the selection metric (line 9).
A server with the min () value is selected to minimize energy consumption
(lines 10-11). With the constraint of system availability &, different servers are
selected and the number of servers n is determined (lines 3-13). The n'" server
is compared with the rest servers to minimize the energy consumption further
because one of the rest servers may be better than the last selected server with
the system availability £ and deadline D constraints (lines 15-24). The time
complexity of Algorithm 2 is O(NR).

5 Experiments

In the proposed EM algorithm, there are five system parameters and we will
first present our experiments to calibrate the parameters using simulated cloud
instances. We then present experimental results to compare the proposed EM
algorithm against three existing algorithms using both simulated and real-life
instances. All compared algorithms are coded in MATLAB and un on an Intel
Core i7-4770 PC (CPU@3.20 GHz, RAM@8 GBytes).

5.1 Parameter Calibration

For energy minimization in a cloud service system, the commonly tested parame-
ters are: the total number of servers in a cloud service system IV, the service rates
of the N heterogeneous servers, the service request arrival rate A, the request
deadline D, and the system availability £. To statistically analyze the effects of
the system parameters on the proposed algorithm framework, we calibrate these
parameters over randomly generated test instances.

Since the values of the calibrated parameters should be as close as possible
to real scenarios, we set the parameter configurations according to the Alicloud!

! https://github.com/alibaba/clusterdata.
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Algorithm 2: Energy Minimization (EM) Algorithm
Input: U, A\ ¢

1 begin

2 E°—0, P° +— 0, Us < 0

3 while Pr > 1—¢ do

4 E—0, P —0,7—0, Esym < 0;

5 fori=1to N do

6

7

8

9

L [R,E;, Py;] — EE(pi,€); /*Energy evaluation®/

Tmin < 10, P.' «+ 0, E' «+ 0;
fori=1to N do

l E;—min(E) ’ Py ;—min(P;)
Ei - max(E)—min(E)’ Pri - max (P, )—min(P; )’

T — 2"5; /*Normalization*/
10 if r; < rmin then
11 L Tmin < Ti, k — 13 /*the it" server selection™®/
12 U—U-pur,Us —UsUpg,n—n+1, N— N —1;
13 ;PR<_P7'k7Proi<_P7‘k,Eio<_Ek,Esum<_Esum+Ek;
14 /*Last server determination®/;
15 for i =1to N do
16 R« 1,Tr « 0
17 if n > 1 then
18 ‘ Pr — Pf<n71);
19 else
20 | P51
21 [R, E1, Pr]| — EE(pi,§); /*Energy evaluation*/

22 E — ES;
23 if E1 < E' then
24 L Esum‘_Esum_El‘FElyE/(_El:Pron <_PR7 US7L<_M1'§

25 return R, Esym.

as: N €{10, 20, 30, 40}, A €{{1, ..., 20}, {21, ..., 40}, {41, ..., 60}, {61, ...,
80} }(per second), D €{0.2, 0.4, 0.6, 0.8, 1}(second), & €{0.55, 0.65, .75, 0.85,
0.95}. The maximum service rate of cloud servers is assumed to be p €{10, 20,
30, 40} (per second). The service rates of heterogeneous servers are determined by
Ly = ZWM(Z € {1,---,N}). Therefore, there are 4 x4 x5 x5 x4 = 1,600 parameter
combinations in total. Five instances are generated randomly for each arrival rate
A, i.e., five instances are generated for each combination, that is, 1,600 x 5=8,000
instances in total are tested for calibrating the parameters combinations.

Th experimental results are analyzed by using the multi-factor analysis of
variance (ANOVA) statistical technique [15]. Three main hypotheses (normal-
ity, homoscedasticity, and independence of the residuals) are checked from the
residuals of the experiments. All three hypotheses can be accepted by consider-
ing the well-known robustness of the ANOVA technique. The resulting p-values
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Fig. 3. Means plot of the five studied parameters with 95% confidence level Tukey
HSD intervals.

are less than 0.05, meaning that all studied factors have a significant impact on
the response variables at the 95% confidence level within ANOVA.

The means plot of the five studied factors on the total energy consumption
E with 95% HSD (Tukey’s Honest Significance Differences) intervals is shown in
Fig. 3 and we can observe that:

— X has a great influence on energy consumption F. With an increase in the
upper bound of A, F increases with statistically significant differences. F
becomes minimum when A takes values from {1,...,20}. The reason lies in
that fewer arriving service requests can be processed by servers with small
service rates, which consumes few energy.

— £ greatly influences energy consumption. F increases with the increase of &.
The differences are statistically significant. £ becomes the minimum when
£=0.55. The reason lies in that a higher £ implies less rejection probability
which requires more servers.

— Similarly, 4 has a great impact on E. E takes the minimum value when p = 10
because a bigger p implies more power consumption.

— D has a great influence on E. With an increase in D, the energy E increases.
A bigger D results in an increase in the response time of requests for servers.

— Though the statistical differences of N on FE are insignificant, which implies
that the number of servers are satisfied with the stochastic requests, F
becomes maximum when N equals 30.

5.2 Algorithm Comparison

During server selection, the FS (Fastest Server) policy always selects the fastest
server while the Random policy selects servers randomly when the system avail-
ability is not satisfied. To minimize the energy consumption, the rejected requests
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Fig. 4. The mean plots of the interactions between each parameter and the four com-
pared algorithms.

that current server cannot process will be executed by the next selected servers
while in the traditional queuing system (TQS) M/M/N/N + R [13], it implies
that service requests are processed immediately when there are idle servers. In
our experiments, we compare EM with these three methods.

Algorithm Comparison over Simulated Instances. Since there are no
benchmark instances for the considered problem, we first compare the four algo-
rithms across simulated instances. Based on the calibrated results in Sect. 5.1,
the system parameters N=10 and other parameters are the same as Sect.5.1.
Five instances are randomly generated for each of the 400 combinations, i.e.,
2,000 instances are tested on each of the four algorithms. The results are shown
in Fig. 4.

From Fig.4, we can see that when the arrival rate A takes a value from
{61,...,80}, EM obtains the smallest F while TQS obtains the largest. FS and
Random perform similarly. In other words, with an increase in service requests
arrival rate A\, EM becomes more effective than the other three algorithms.

With an increase in ¢ from 0.55 to 0.95, EM always results in the smallest
E whereas TQS becomes the largest. F'S is always worse than Random with a
larger E. The higher values of £ demonstrate the superiority of E. Random has
the largest E which is similar to F'S. The energy on TQS is smaller than FS. EM
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Fig. 5. Algorithm comparison over real instances.

is much more robust than the other three algorithms, i.e., with an increase in p,
the performance of EM fluctuates less than the other three. Similarly, with an
increase of D, F'S obtains the largest F, while EM gets the smallest E. Random
is a littler larger than T'Q.S.

Table 1. Algorithm comparison

EM TQS FS Random
E 9,398.28 | 21,220.6 | 24,705.0 | 24,659.6
CPU time 0.0043 |0.0003 |0.0023 |0.0021

To further compare the algorithms, the average performance on effectiveness
(the average energy consumption) and efficiency (CPU time) are shown in Table 1.
According to Table 1, we can observe that EM obtains the smallest E, 9,398.28,
followed by 21,220.6 of TQS. FS obtains the largest E 24,705 and for Random,
it is 24,659.6. Comparing to TQS, FS, and Random, EM can save up to 61.95%
energy consumption. Although EM has the longest CPU time of 0.0043 s, it is still
comparable to the other three algorithms and acceptable in practice.

Algorithm Comparison over Real Instances. To evaluate the perfor-
mance in real systems, the real production Cluster-trace-v20182 published by
the Alibaba Group is analyzed, which contains eight-day sample data from one
of the production clusters. By analyzing the start_time® of requests [15], the
arriving time interval is obtained which implies that the arrival rates are Pois-
son distributed. According to start_time and end_time*, the execution times of

2 https://www.aliyun.com.
3 http://clusterdata2018pubcn.oss-cn-beijing.aliyuncs.com/batch_task.tar.gz.
4 http://clusterdata2018pubcn.oss-cn-beijing.aliyuncs.com /batch_instance.tar.gz.
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all servers are calculated and the execution time of each server is exponential
with different arrival rates and service rates. The arrival rate A is analyzed by
different types of service requests. The service rates uj;) (i € {1,...,N}) are
evaluated by different types of servers. Similar to the simulated instances, D, ¢
are set to 0.2, 0.95 respectively because the information on these parameters is
not available in the real instances. The service rates are obtained with {14.5,
15.4, 16.9, 17.4, 18.5, 19.4, 20.4, 21.3, 22.8, 23.9} [15] and the number of servers
is already known, i.e., N = 10.

Figure 5 shows the performance of the four compared algorithms. It can be
observed that our proposed EM algorithm always obtains the smallest values as
A increases. FS, Random and TQS fluctuate as A is less than 100. TQS is worse
than Random followed by FS when A is bigger than 100.

From the experiments on both simulated and real instances, we can observe
the similar results in terms of algorithm performance. Our proposed EM algo-
rithm always achieves the best performance on energy consumption.

6 Conclusion

Energy optimization of cloud computing services has been a key challenge due
to their unique characteristics such as dynamic and stochastic service requests
and heterogeneous cloud servers. In this paper, we present a novel approach to
minimize the energy consumption by selecting appropriate cloud servers with
the consideration of the service request deadline and system availability con-
straints. In particular, we develop a new cloud service system model based on
the queuing theory to deal with stochastic service requests. An energy minimiza-
tion (EM) algorithm is proposed to select the most suitable servers to achieve
the energy efficiency while satisfying service request deadlines and system avail-
ability constraints. Our experimental studies show that the EM algorithm saves
up to 61.95% energy consumption than the other algorithms. Ongoing work will
focus on further improving our model by relaxing some constraints, e.g., the
Poisson distribution of service requests.
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Abstract. The Internet of Things has enabled many application sce-
narios where a large number of connected devices generate unbounded
streams of data, often processed by data stream processing frameworks
deployed in the cloud. Edge computing enables offloading processing from
the cloud and placing it close to where the data is generated, whereby
reducing both the time to process data events and deployment costs.
However, edge resources are more computationally constrained than their
cloud counterparts. This gives rise to two interrelated issues, namely
deciding on the parallelism of processing tasks (a.k.a. operators) and
their mapping onto available resources. In this work, we formulate the
scenario of operator placement and parallelism as an optimal mixed inte-
ger linear programming problem. To overcome the issue of scalability
with the optimal model, we devise a resource selection technique that
reduces the number of resources evaluated during placement and paral-
lelization decisions. Experimental results using discrete-event simulation
demonstrate that the proposed model coupled with the resource selec-
tion technique is 94% faster than solving the optimal model alone, and
it produces solutions that are only 12% worse than the optimal, yet it
performs better than state-of-the-art approaches.

Keywords: Data stream processing + Operator placement - Operator
parallelism - End-to-end latency - Edge computing

1 Introduction

A Data Stream Processing (DSP) application is often structured as a directed
graph whose vertices represent data sources, operators that execute a function
over incoming data, and data sinks; and edges that define the data interdepen-
dencies between operators [4]. DSP applications are often deployed in the cloud
to explore the large number of available resources and benefit from its pay-as-
you-go business model. The growth of the Internet of Things (IoT) has led to
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scenarios where geo-distributed resources at the edge of the network act both
as data sources and actuators or consumers of processed data. Streaming all
this data to a cloud through the Internet, and sometimes back, takes time and
quickly becomes costly [4].

Exploration of computing resources from both the cloud and the Internet
edges is called as cloud-edge infrastructure. This paradigm combines cloud, micro
datacenters, and IoT devices and can minimize the impact of network communi-
cation on the latency of DSP applications. An inherent problem, however, relies
upon deciding how much and which parts of a DSP application to offload from
the cloud to resources elsewhere. This problem, commonly known as operator
placement and shown to be NP-Hard [2], consists in finding a set of resources
to host operators while meeting the application requirements. The search space
can be large depending on the size and heterogeneity of the infrastructure.

When offloading operators from the cloud, the DSP framework needs to
adjust the operators’ parallelism and hence decide how to create the number of
operator instances to achieve a target throughput. The operator placement needs
to address two interrelated issues, namely deciding on the number of instances
for each operator and finding the set of resources to host the instances; while
guaranteeing performance metrics such as application throughput and end-to-
end latency. As an additional level of complexity, the deployment of DSP appli-
cations in public infrastructure, such as a cloud, incurs monetary costs, which
must be considered when deciding on where to place each DSP operator and
how many replicas to create.

This work describes the Cloud-Edge Stream Model (CES), an extension of
an optimal Mixed Integer Linear Programming (MILP) model introduced in
our previous work [16] for the problem of determining the degree of parallelism
and placement of DSP applications onto cloud-edge infrastructure. The model is
enhanced with a heuristic that improves its scalability. We devise a solution for
estimating the number of replicas, and the processing and bandwidth require-
ments of each operator to respect a given throughput and minimize the appli-
cation end-to-end latency and deployment costs. The contributions of this work
are therefore: (i) it presents a MILP model for the joint-optimization of opera-
tor parallelism and placement on cloud-edge infrastructure to minimize the data
transfer time and the application deployment costs (Sect. 2); (ii) it introduces a
resource selection technique to improve the system scalability (Sect. 3); and (iii)
it evaluates the model and the resource selection technique against traditional
and state-of-the-art solutions (Sect.4).

2 Proposed Model

This section introduces preliminaries, the placement problem and CES.

2.1 System Model

This work considers a three-layered cloud-edge infrastructure, as depicted
in Fig.1, where each layer contains multiple sites. The IoT layer contains
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numerous geo-distributed computational constrained resources, therefore, often
acting as source or sinks, but with non negligible computational capacity to
support some DSP operators. Micro Datacenters (MDs) provide geo-distributed
resources (e.g., routers, gateways, and micro datacenters), but with less strin-
gent computational constraints than those in the IoT layer. The cloud comprises
high-end servers with fewer resource constraints [13].

The three-layered cloud-edge infrastruc-
ture is represented as a graph G! = (R, P),

Public Infrastructure

Cloud

where R is the set of computing resources orn  omem Loites

of all layers (RI°T U RMP y Reloud)  and =] %

P is the set of network interconnections / DateNer ors
between computing resources. Each £ € R has =3

CPU (CPUy) and memory (Memy) capaci-
ties, given respectively in 100 x num_of _cores,
and bytes. The processing speed of a resource
(Vi) is its CPU clock in GHz. Similar to exist-
ing work [9], the network has a single intercon-  private infrastructire

nection between a pair of computing resources

k and [, and the bandwidth of this intercon- Fig. 1. Target infrastructure.
nection is given by Bwy,; and its latency is Laty ;.

The application graph specified by a user is a directed graph G4 = (O, ),
where O represents data source(s) Source®, data sink(s) Sink® and transforma-
tion operators Trans®, and &€ represents the streams between operators, which
are unbounded sequences of data (e.g., messages, packets, tuples, file chunks) [4].
The application graph contains at least one data source and one data sink. Each
operator j € O is the tuple (S, C7, U7, AR?), where S7 is the selectivity (mes-
sage discarding percentage), C7 is the data transformation factor (how much
it increases/decreases the size of arriving messages), U’ is the set of upstream
operators directly connected to j, and AR/ is the input rate in Bps that arrives
at the operator. When operator j is a data source (i.e., j € Source®) its input
rate is the amount of data ingested into the application since 47 = (). Otherwise,
AR is recursively computed as:

AR' =" p"77 x DR’ (1)
SZE

where p*—7 is the probability that operator i will send an output message to
operator j, capturing how operator ¢ distributes its output stream among its
downstream operators. DR’ is the departure rate of operator i after applying
selectivity S* and the data transformation factor C? to the input stream:

DR' = AR" x (1 - 8%) x C* (2)

A physical representation of the application graph is created when opera-
tors are placed onto available resources as depicted in Fig. 2. Operators placed
within the same host communicate directly whereas inter-resource communica-
tion is done via the Data Transfer Service. Messages that arrive at a computing
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resource are received by the Dispatching Service, which then forwards them to
the destination operator within the computing resource. This service also passes
messages to the Data Transfer Service when inter-resource communication is
required. Each operator comprises an internal queue and a processing element,
which are treated as a single software unit when determining the operator prop-
erties (e.g., selectivity and data transformation factor), and its CPU and memory
requirements. Moreover, an operator may demand more CPU than what a single
resource can offer. In this case, multiple operator replicas are created in a way
that each individual replica fits a computing resource.

Application Graph

Op.2 h
Op. 1 Op. 4
2@ o O
Placement Data

Vs

loT 1 o

op.1 0p. 1N/
Replicai1 Replicai2

(O3 op. AN\
Processing ‘-Replica 1-Replica ¥
Element X

Message
Queue

Dispatching
Service

([

L Data Source —— Physical and framework communication - - = Logical communication )

Fig. 2. Application graph adjusted to the computing resource capacities (placement).

The quality of a placement is guaranteed by meeting the application require-
ments. The CPU and memory requirements of each operator j for processing
its incoming byte stream are expressed as Rqupu and Regq), ., and they are
obtained by profiling the operator on a reference resource [1]. Refl,,, Refi,cm
and Re fiam refers to the reference CPU, memory and processed data of operator
j, respectively. Since CPU and memory cannot be freely fractioned, the reference
values are rounded up and combined with AR’ of j in order to compute Reg?,,
and Regql,.,, that handle the arriving data stream:

) Refl , x AR , Refl ARJ
Rqupu = L and Rqunem = M (3)
Revfglata Refcjlata

2.2 Problem Formulation

The problem is modeled as a MILP with variables z(j,1) and f(i,k — 7,1).
Variable x(j,1) accounts for the amount of bytes that a replica of operator j can
process on resource [, whereas variable f(i,k — j,1) corresponds to the number
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of bytes that operator replica i on resource k sends to downstream operator
replica j deployed on resource .

The data ingestion rate in sources is constant and stable. Hence, it is possible
to compute CPU and memory requirements recursively to the entire application
to handle the expected load. Placing an application onto computing resources
incurs a cost. This cost is derived from Amazon Fargate’s pricing scheme'. The
cost of using one unit of CPU and storing one byte in memory at resource [ is
given by Cepy (1) and Chpem (1), respectively. While the cost of transferring a byte
over the network from resource k to [ is denoted by Cl,, (k, ).

As cloud-edge infrastructure comprises heterogeneous resources, the model
applies a coefficient £2; = Re f{, /V; to adapt the operator requirements to resource
l. Re f‘j, is the reference processing speed of the resource for operator j, and V; is
the clock speed of resource [. The computational cost is given by:

qu‘ .
P X Bxx(g,l) Regq) xz(j,l)
>< _ & ~EemAWe X C (l) X Imem ) Js
cc=>> Cepu Af i AR 4
= max Cepy (1) + max Crem (1) (4)

where max Cep, () and max Cpen(l) are the cost of using all the CPU and

memory capacity of resource [. The CPU and memory costs are normalized

using their maximum amounts resulting in values between 0 and 1. 3 refers to a

safety margin to each replica requirements aiming to a steady safe system. This

margin relies on Queueing Theory premises to avoid an operator reaching the

CPU limits of a given computing resource, which requires a higher queuing time.
The network cost NC' is computed as:

Chw(a,b) 1,ps —
ACRD D IDIP DL mai(i(w(z ) = (5)

pEP a,bEp jEO iclfi

where a,b is a link that represents one hop of path p, and a,b can belong to
multiple paths. The resources at the extremities of path p hosting replicas i and
Jj are given by p, and pg, respectively. NC' is normalized by max Cyy(a,b), the
cost of using all the bandwidth available between resources a and b.

The Aggregate Data Transfer Time (ATT) sums up the network latency of
a link and the time to transfer all the data crossing it, and is normalized by the
time it takes to send an amount of data that fills up the link capacity:

. . 1
(i,ps = J,pa) X (Late, + 5o4—)

[, :
ATT = Z Z Z Z Laty; +1 , ()

pEP k,lep jeO icUi

The multi-objective function aims at minimizing the data transfer time and the
application deployment costs:

min : ATT + CC + NC (7)

The objective function is subject to:

! https://aws.amazon.com/fargate/pricing.
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Physical Constraints: The requirements of each operator replica j on resource
[ are a function of x(j,1); i.e., a fraction of the byte rate operator j should process
(AR’) with a safety margin (3). The processing requirements of all replicas
deployed on [ must not exceed its processing capacity, as follows:

Belep B % 2(j, 1)

CPU; > Z 2 AR and Mem; > Z
j€O JEO

AR (®)

To guarantee that the amount of data crossing every link a,b must not exceed
its bandwidth capacity:

Z Z fi,ps = j,pa) < Bwap Va,b € p;Vp € P (9)
JjeO icuUi

Processing Constraint: The amount of data processed by all replicas of j
must be equal to the byte arrival rate of j:

AR =) " a(4,1) VjeO (10)
lER

Flow Constraints: Except for sources and sinks, it is possible to create one
replica of operator j per resource, although the actual number of replicas, the
processing requirements, and the interconnecting streams are decided within the
model. The amount of data that flows from all replicas of ¢ to all the replicas of
j is equal to the departure rate of upstream i to j:

DR x p"™7 =3 "N " f(i,k — j,1) Vi€ O;Viel (11)
kKERIER

Likewise, the amount of data flowing from one replica of i can be distributed
among all replicas of j:

2(i k) x (1= 8) x C" x p™7 =" f(i,k — j.1)
IER (12)
Vk e R;Vj e OVi el
On the other end of the flow, the amount of data arriving at each replica j of
operator ¢, must be equal to the amount of data processed in z(j,():

SN flk— 4 =2(,) VieO;VleR (13)
i€UI kER
Domain Constraints: The placement k of sources and sinks is fixed and pro-
vided in the deployment requirements. Variables x(j,1) and f(i,k — j,1) repre-
sent respectively the amount of data processed by j in [, and the amount of data

sent by replica ¢ in k to replica j in [. Therefore the domain of these variables is
a real value greater than zero:

x(j,1) = AR Vj € Source® U Sink®;Vl € R (14)
z(5,1) >0 Vj € Trans®;Vl € R (15)
flik—34,1)>0 VkIeR,j€O;icld (16)
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3 Resource Selection Technique

The three-layered cloud-edge infrastructure may contain thousands of computing
resources resulting in an enormous combinatorial search space when finding an
optimal operator placement. This work therefore proposes a pruning technique
that reduces the number of evaluated resources and finds a sub-optimal solution
under feasible time. The proposed solution extends the worst fit sorting heuristic
from Taneja et al. [17] by applying a resource selection technique to reduce the
number of considered computing resources when deploying operators.

The resource selection technique starts by identifying promising sites in each
layer from which to obtain computing resources. Following a bottom-up app-
roach, it selects all IoT sites where data sources and data sinks are placed.
Then, based on the location of the selected IoT sites, it picks the MD site with
the shortest latency to each IoT site plus the MD sites where there are data
sources and data sinks placed. Last, the cloud sites are chosen considering their
latency-closeness to the selected MD sites as well as those with data sources
and data sinks. After selecting sites from each layer, the function Get Resources
(Algorithm 1) is called for each layer.

As depicted in Algorithm 1, GetResources has as input the layer name,
the vector of selected sites in the layer and the set of operators. First, it calls
GetResourcesOnSites, to get al.l computing resources from the selected sites,
sorted by CPU and memory in a worst-fit fashion (line 3). Second, it selects
resources that host sources or sinks (lines 4-7). Third, CPU and memory require-
ments from the operators that are neither sources or sinks are summed to
ReqCPU and ReqMem, respectively (line 9). When the evaluated layer is IoT,
ReqC PU and ReqMem are used to select a subset of computing resources whose
combined capacity meets the requirements (lines 18-21). For each operator of
the other two layers, the function selects a worst-fit resource that supports the
operator requirements. Since the goal is just to select candidate resources and
not a deployment placement, if there is no resource fit, it ignores the operator
and moves to the next one (lines 11-16). At last, the combination of resources
evaluated by the model contains those selected in each layer.

4 Performance Evaluation

This section describes the experimental setup, the price model for computing
resources, and performance evaluation results.

4.1 Experimental Setup

We perform an evaluation in two steps as follows. First CES is compared against
a combination of itself with the resource selection technique, hereafter called
CES-RS, to evaluate the effects that the resource pruning has on the quality
of solutions and on resolution time. Second, we compare CES-RS against state-
of-the-art solutions. The evaluations differ in the number of resources in the
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Algorithm 1: Resource selection technique.

1 Function GetResources(layer, Sites, O)
2 Selected — {}, ReqCPU «— 0, ReqMem «— 0
3 Resources < GetResourcesOnSites (Sites)
4 foreach j € (Source® U Sink®) do
5 if j.placement € Resources then
6 Selected «— Selected U j.placement
7 Resources <+ Resources — j.placement
8 foreach j € (O — (Source® U Sink®)) do
9 ReqCPU «— ReqCPU + CPU;, ReqMem «— ReqMem + Mem;
10 if layer! = IoT then
11 foreach r € Resources do
12 if CPU, > CPU; and Mem, > Mem; then
13 selected «— selected U r
14 Resources < Resources —r
15 break
16 Sort (Resources)
17 if layer == IoT then
18 foreach r € Resources do
19 if CPU, < ReqCPU or Mem, < ReqMem then
20 Selected < Selected U r
21 ReqCPU «— ReqCPU — CPU,, ReqMem «— ReqMem — Mem,
22 else
23 L break
24 return Selected

infrastructure and the solutions evaluated. Both evaluations are performed via
discrete-event simulation using a framework built on OMNET++ to model and
simulate DSP applications. We resort to simulation as it offers a controllable
and repeatable environment. The model is solved using CPLEX v12.9.0.

The infrastructure comprises three layers with an IoT site, one MD and one
cloud. The resource capacity was modeled according to the characteristics of the
layer in which a resource is located, and intrinsic characteristics of DSP appli-
cations. IoT resources are modeled as Raspberry Pi’s 3 (i.e., 1 GB of RAM, 4
CPU cores at 1,2 GHz). As DSP applications are often CPU and memory inten-
sive, the selected MD and cloud resources should be optimized for such cases.
The offerings for MD infrastructure are still fairly recent and, although there
is a lack of consensus surrounding what the MD is composed of, existing work
highlights that the options are more limited than those of the cloud, with more
general-purpose resources. In an attempt to use resources similar to those avail-
able on Amazon EC2, MD resources are modeled as general purpose t2.2xlarge
machines (i.e., 32 GB of RAM, 8 CPU cores at 3.0 GHz), and cloud servers are
high-performance C5.metal machines (i.e., 192 GB of RAM, 96 CPU cores at
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3.6 GHz). Resources within a site communicate via a LAN, whereas IoTs, MDs,
and cloud are interconnected by single WAN path. The LAN has a bandwidth
of 100 Mbps and 0.8 ms latency. The WAN bandwidth is 10 Gbps and is shared
on the path from the IoT to the MD or to the cloud, and the latency from IoT
is 20 ms and 90 ms to the MD and cloud, respectively. The latency values are
based on those obtained by empirical experiments carried out by Hu et al. [9].

Existing work evaluated application graphs of several orders and intercon-
nection probabilities, usually assessing up to 3 different graphs [4,7,8,10]. To
evaluate CES and CES-RS we crafted five graphs to mimic the behaviour of
large DSP applications using a built-in-house python library. The graphs have
varying shapes and data replication factors for each operator as depicted in
Fig. 3. The applications have 25 operators, often more than what is considered
in the literature [18]. They also have multiple sources, sinks and paths, similar
to previous work by Liu and Buyya [10]. As the present work focuses on IoT
scenarios, the sources are placed on IoT resources, and sinks are uniformly and
randomly distributed across layers as they can be actuators — except for one sink
responsible for data storage, which is placed on the cloud.

Fig. 3. Application graphs used in the evaluation.

The operator properties were based on the RIoTBench IoT application bench-
mark [15]. RIoTBench offers 27 operators common to IoT applications and 4
datasets with IoT data. The CITY dataset is used with 380 byte messages col-
lected every 12s containing environmental information (temperature, humidity,
air quality) from 7 cities across 3 continents. It has a peak rate of 5000 tuples/s,
which in the experiments is continuous and divided among sources. The remain-
ing properties are drawn from the values in Table 1.

We consider that Re g'pu, Ref? .., the arrival byte rate AR’, probability
that an upstream operator i sends data to j p*~7, selectivity 57, and data
transformation pattern C7, are average values obtained via application profiling,
using techniques proposed in existing work [1]. With Re gpu and Ref] ., we are
able to compute requirements for each operator To create a worst case scenario
in terms of load, p’—7 is set to 1 for all streams in the application request. As the
model creates multiple replicas, p'~7 gets divided among instances of operator
7, hence creating variations on the arrival rate of downstream operators during
runtime. The operator processing requirements estimated by the model may not
be enough to handle the actual load during certain periods, so resulting in large
operator queues. To circumvent this issue we add a small safety margin, the 3
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Table 1. Operator properties in the application graphs.

Property Value Unit
Selectivity 0-20 %

Data transformation pattern | 70-130 %
Reference CPU 1-26 CPU units
Reference memory 1-27300000 | Bytes
Reference data 38-2394000 | Bytes

factor, as mentioned in Sect. 2.2, which is a percentage increase in the application
requirements estimated by the proposed model. A 3 too high results in expensive
over-provisioning. After multiple empirical evaluations, 8 was set to 10% of each
replica requirement.

Price Model: The price of using resources is derived from Amazon AWS ser-
vices, considering the US East Virginia location. The CPU and memory prices
are computed based on the AWS Fargate Pricing? under a 24/7 execution.
Regarding the network, we consider a Direct Connection® between the IoT site
and the AWS infrastructure. Direct Connections are offered under two options,
1 GB/s and 10 GB/s. As DSP applications generate large amounts of data, we
consider the 10 GB/s offer. The data sent from the IoT to AWS infrastructure
uses AWS IoT Core*. Connections between operators on the edge or on IoT
resources to the cloud use Private Links®. Amazon provides the values for CPU,
memory and network as, respectively, fraction of a vCPU, GB and Gbps, but
in our formulation the values for the same metrics are computed in CPU units
(100 % num_cores), bytes and Mbps. The values provided by Amazon converted
to the scale used in our formulation are presented in Table 2. As the environment
combines both public and private infrastructure, deployment costs are applied
only to MD and cloud resources, the network between these two, and the network
between these two and IoT resources. As IoT resources are on the same private
network infrastructure, the communication between IoT resources is free.

Evaluated Approaches and Metrics: Five different configurations of deploy-
ment requests are submitted for each application. The reported values for each
application are averages of these five executions. Each deployment request has a
different placement for sources and sinks with sources always on IoT resources
and at least one sink in the cloud. The operator properties such as selectivity
and data transformation pattern vary across configurations.

The performance of DSP applications is usually measured considering two
main metrics, namely throughput, which is the processing rate, in bytes/s, of
all sinks in the application; and end-to-end latency, which is the average time

2 https://aws.amazon.com/fargate/.

3 https://aws.amazon.com/directconnect /.
* https://aws.amazon.com/iot-core/.

5 https://aws.amazon.com/privatelink/.
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Table 2. Computing and network costs.

Resource Unit Cost
CPU CPU/month $0.291456
Memory Byte/month $3.2004e—09
Direct link IoT to AWS 10 GB link/Month | $1620
Link IoT to AWS Connection/Month | $0.003456

KB $0.0000002
Communication IoT to cloud, | GB $7.2 4+ 0.01 per GB
IoT to MD, and MD to cloud

span from when a message is generated until it reaches a sink. The MILP model
takes the throughput into account in the constraints, and the end-to-end latency
indirectly by optimizing the Aggregate Data Transfer Time.

4.2 Resolution Time Versus Solution Quality

Here we evaluate how much the quality of a solution is sacrificed by reducing the
search space. The simulation, which runs for 220s, considers 100 IoT devices,
a MD with 50 resources and a cloud with 50 resources. The throughput is the
same in all scenarios since it is guaranteed as a model constraint.

Figure 4 shows the end-to-end latency and deployment costs under CES and
CES-RS. There are some variations regarding the end-to-end latency both on
CES and on CES-RS. Since CES-RS aims to reduce the search space, it might
be counter intuitive to see cases where the resource selection with less options
obtains better end-to-end latency, such as in App3. However, the objective func-
tion considers both latency and execution costs as optimisation metrics. As CES
searches to strike a balance between cost and end-to-end latency, the average
deployment costs obtained with CES-RS for App 3 (Fig.4(b)) are higher. This
behavior happens because under the limited search space, CES-RS finds sub-
optimal solutions, where the best trade-off resulted in better end-to-end latency.
To do so, it needed to use more edge or cloud devices, which incurs higher com-
putational and network costs.

As CES considers the whole search space, it explores more options and yields
better results. Despite reduced search space CES-RS can produce very similar
results — in the worst case yielding an end-to-end latency ~ 12% worse, and
deployment costs ~ 12% higher. The resolution time (Fig.5), clearly shows that
CES considering the whole infrastructure faces scalability issues. Despite produc-
ing results that sometimes are worse than those achieved under CES, CES-RS
can obtain a solution up to ~ 94% faster. CES-RS would yield even more simi-
lar results on a larger infrastructure because their search space is limited by the
application size and requirements rather then by the infrastructure size.
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Fig. 5. Resolution time to obtain a deployment solution.

4.3 Comparing CES-RS Against the State-of-the-Art

CES-RS is compared against two state-of-the-art approaches, namely Cloud-Only
and Taneja’s Cloud-Edge Placement (TCEP). Cloud-Only applies a random walk
considering only cloud resources, and TCEP is the work proposed by Taneja et
al. [17], where all resources (IoT, MD and cloud) are sorted accordingly with
their capacities, and for each operator it s elects a resource from the middle of
the sorted list. This experiment was executed during 120s and considered 400
IoT devices, 100 resources on the MD and 100 resources on the cloud.

Figure 6 shows the throughput and end-to-end latency for all solutions, with
averages for each application. Since CES-RS guarantees a maximum throughput
through a constraint, on the best case the other approaches would achieve the
same values, and this can be observed on App3, App4 and App5. But under
Appl and App2 Cloud-Only struggles because these applications perform a lot
of data replication, thus producing large volumes of data. The large volume of
messages generated by Appl and App2 has an even bigger effect on the end-
to-end latency for Cloud-Only. When compared to Cloud-Only, TCEP provided
better results, but still ~ 80% worse than the results provided by CES-RS. CES-
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Fig. 6. Throughput and latency under CES-RS and state-of-the-art solutions.

RS achieves low values because, different from Cloud-Only and TCEP, it creates
several replicas, being able to better explore the IoT resources considering their
computational capacities and even further reducing the amount of data that is
send through the internet, facing less network congestion.

Figure 7 contains the costs results. Beyond better end-to-end latency, CES-
RS provides better computational costs. The reason that makes CES-RS achieve
computational costs at least ~ 6% better than the traditional approaches is the
creation of replicas. The considered cost model, accounts for an IoT infrastruc-
ture without deployment costs, making such devices very attractive for deploy-
ment. Since [oT devices have constrained computational capacity, it is hard to
deploy on such devices. Due to CES, CES-RS breaks an operator into several
small replicas, allowing the use of IoT resources.

Regarding network costs, CES-RS provides cheaper deployments on most
cases except on App4 and App5. In these two applications, IoT resources support
the operators’ requirements without creating operator replicas allowing TCEP to
exploit it and result in fewer data transfers. TCEP has higher computational costs
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because it cannot split operators into multiple replicas, thus resulting in placing
the whole operator on powerful and expensive computing resources located on the
cloud or a MD. When CES-RS is compared to TCEP, it achieves a lower compu-
tational cost and a shorter end-to-end latency.

5 Related Work

The problem of placing DSP dataflows onto heterogeneous resources has been
shown to be at least NP-Hard [2]. Moreover, most of the existing work neglects
the communication overhead [6], although it is relevant in geo-distributed infras-
tructure [9]. Likewise, the considered applications are often oversimplified, ignor-
ing operator patterns such as selectivity and data transformation [14].

Effort has been made on modeling the operator placement on cloud-
edge infrastructure, including sub-optimal solutions [5,17], heuristic-based
approaches [12,19], while others focus on end-to-end latency neglecting through-
put, application deployment costs, and other performance metrics when estimat-
ing the operator placement [3,4]. Existing work also explores Network Function
Virtualization (NFV) for placing IoT application service chains across fog infras-
tructure [11]. Solutions for profiling DSP operators are also available [1]. The
present work addresses operator placement and parallelism across cloud-edge
infrastructure considering computing and communication constraints by mod-
eling the scenario as a MILP problem and offering a solution for reducing the
search space.

6 Conclusion

This work presented CES, a MILP model for the operator placement and paral-
lelism of DSP applications that optimizes the end-to-end latency and deployment
costs. CES combines profiling information with the computed amount of data
that each operator should process whereby obtaining their processing require-
ments to handle the arriving load and achieve maximum throughput. The model
creates multiple lightweight replicas to offload operators from the cloud to the
edge, thus obtaining lower end-to-end latency.

To overcome the issue of scalability with CES, we devise a resource selection
technique that reduces the number of resources evaluated during placement and
parallelization decisions. The proposed model coupled with the resource selec-
tion technique (i.e., CES-RS) is 94% faster than solving CES alone, it produces
solutions that are only 12% worse than those achieved under CES and per-
forms better than traditional and state-of-the-art approaches. As a future work
we intent to apply the proposed model along with its heuristic to a real-world
scenario.
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Abstract. Various kinds of dynamic routing architectures are used
in today’s service- and cloud-based architectures, including sidecar-based
routing, routing through a central entity such as an event store, or archi-
tectures with multiple dynamic routers. We propose an analytical model
of request loss during router and service crashes, as well as an empirical
validation of that model. The comparison of the empirical data to the
predicted values by our model shows a low enough and converging error
rate for using the model during system architecting. Our model predicts
that, having the same crash probability, decentralized routing results
in losing a higher number of requests in comparison to more central-
ized approaches. To the best of our knowledge, our study is the first to
empirically study the reliability trade-off in such architectural decisions.

1 Introduction

Many distributed system architecture patterns [3,10,15] have been suggested
for dynamic routing [8]. Some dynamic routing architectures require a single
dynamic request routing decision, e.g., when using load balancing. More complex
request routing decisions or combinations of decisions, such as routing to the
right branch of a company or checking for compliance to privacy regulations,
often require multiple runtime checks during one sequence of requests.

In our prior work [1], we studied representative service- and cloud-based sys-
tem architecture patterns for dynamic request routing. A typical cloud native
architecture pattern is the sidecar pattern [10,12] in which the sidecar of each ser-
vice handles incoming and outgoing traffic [6]. In contrast, a central entity, e.g.,
an API Gateway, an event streaming platform [15], or any kind of central service
bus [3], can be used to process the request routing decisions. These two extremes
are often combined and multiple routers are used; this is called dynamic routers

This work was supported by FWF (Austrian Science Fund), project ADDCompliance:
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in this paper. Consider an API Gateway, two event streaming platforms, and a
number of sidecars, all making routing decisions in a cloud-based architecture.
At present, the impacts of such architectures and their different configura-
tions on system reliability have not been studied. More is known about other
qualities relevant for this decision. For instance, our prior work [1] has shown that
more distributed approaches for dynamic data routing offer a better performance
compared to more centralized solutions. As reliability is a core consideration in
service and cloud architectures [14], a reasonably accurate failure prediction for
the feasible architecture design options in a certain design situation would help
architects to better design system architectures considering quality trade-offs.

RQ1: What is the impact of choosing a dynamic routing architecture, in partic-
ular central entity, sidecar-based, or dynamic routers, on system reliability?

RQ2: How can we predict this impact when making architectural design decisions
regarding system reliability?

We model request loss during router and service crashes in an analytical
model based on Bernoulli processes; request loss is used as the externally visible
metric indicating the severity of the crashes’ impacts. The model abstracts cen-
tral entities, dynamic routers, and sidecars in a common router abstraction. To
validate our analytical model, we designed an experiment in which we studied
36 representative experimental cases (i.e., different experiment configurations)
for the three kinds of architectures Our results show that the error is constantly
reduced with a higher number of experimental runs, converging at a prediction
error of 8.1%. Given the common target prediction accuracy of up to 30% in
the cloud performance domain [11] these results are more than reasonable. Our
model predicts and our experiment confirms that more decentralized routing
results in losing a higher number of requests than more centralized approaches.

2 Related Work and Background

2.1 Related Work

Architecture-Based Reliability Prediction. To predict the reliability of a
system and to identify reliability-critical elements of its system architecture,
various approaches such as fault tree analysis or methods based on a continuous
time Markov chain have been proposed [17]. Architecture-based approaches, like
ours, are often based on the observation that the reliability of a system does not
only depend on the reliability of each component but also on the probabilistic
distribution of the utilization of its components, e.g., a Markov model [4].

Empirical Reliability or Resilience Assessment. Today many software
organizations use large-scale experimentation in production systems to assess
the reliability of their systems, which is called chaos/resilience engineering [2].
A crucial aspect in resilience assessment of software systems is efficiency [13].
To reduce the number of experiments needed, knowledge about the relationship
of resilience patterns, anti-patterns, suitable fault injections, and the system’s
architecture can be exploited to generate experiments [18].
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Service Service Service
Service Service Service
Service Service Service
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Central Entity Sidecar Architecture Dynamic Routers

Fig. 1. Dynamic routing architecture patterns (adapted from [1])

Service-Specific Reliability Studies. Some related works introduce service-
specific reliability models, e.g., Wang et al. [19] propose a discrete time Markov
chain model for analyzing system reliability based on constituent services. Grassi
and Patella [7] propose an approach for reliability prediction that considers
the decentralized and autonomous nature of services. However, none of these
approaches studies and compares major architecture patterns in service and cloud
architectures; they are based on a very generic model about the notion of service.

2.2 Background: Dynamic Routing Architecture Patterns

Central Entity (CE). In a CE architecture, as shown in Fig.1, the central
entity manages all request flow decisions. One benefit of this architecture is
that it is easy to manage, understand, and change as all control logic regarding
request flow is implemented in one component. However, this introduces the
drawback that the design of the internals of the central entity component is a
complex task. CE can be implemented utilizing an API Gateway, an event store,
an event streaming platform [15], or a service bus [3].

Sidecar Architecture (SA). Figure 1 presents an SA example. Sidecars [6, 10,
12] offer benefits whenever decisions need to be made structurally close to the
service logic. One advantage of this architecture is that, in comparison to the
central entity service, it is usually easier to implement sidecars since they require
less complex logic to control the request flow; however, it is not always possible
to add sidecars, e.g., when services are off-the-shelf products.

Dynamic Routers (DR). Figure 1 shows a specific dynamic router [8] configu-
ration. One benefit of using DR is that dynamic routers can use local information
regarding request routing amongst their connected services. For instance, if a set
of services are dependent on one another as steps of processing a request, DR
can be used to facilitate the dynamic routing; nonentheless, dynamic routers
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introduce an implementation overhead regarding control logic, deployment and
so on since they are usually distributed on multiple hosts.

3 Model of Request Loss During Crashes

We use the common term router for all request flow control logic.

3.1 Definition of Internal and External Loss

In Fig.1 routers and services send internal requests amongst one another to
complete the processing of one external request received from clients. In case
of a crash, external requests will not be processed fully. We define external and
internal loss as the number of lost external and internal requests, respectively.

Internal Loss. In case of a crash, per each external loss, the internal loss is the
total number of internal requests (I Ry) minus the ones that have been executed.
Let IL., EL. and n%*°“ be the internal and external loss, and the number of
executed internal requests for the crash of a component c:

IL.=EL.- (IR — n*®) (1)

(&

Note that I Rp and nf*°“ need to be parameterized based on the application. An
example of this parameterization is given in Sect. 4.

External Loss. Let d. be the expected average downtime after a component c
crashes and cf the incoming call frequency, i.e., the frequency at which external
requests are received. Then, the external loss per crash of each component c is:

EL.=d, - cf (2)

3.2 Bernoulli Process to Model Request Loss

In this section, we model request loss based on Bernoulli processes [17]. We only
model the crash of routers and services in Fig.1 because we assume an APl
Gateway is stable and reliable. Moreover, a crash of a Client results in external
requests not being generated; as a result, external requests are not lost. Hence,
from now on, we use the common term components for all routers and services.

Number of Crash Tests. During T, all components can crash with certain
failure distributions. Here, T" should be interpreted as the time interval in which
these failure distributions are observed (e.g., failure distributions of a day or a
week). We model this behavior by checking for a crash of any of the system’s
components every crash interval CI. That is, our model “knows” about crashes
in discrete time intervals only, as it would be the case, e.g., if the Heartbeat
pattern [9] is used for checking system health. Let n¢.qsp be the number of times
we check for a crash of components during T, i.e., the number of crash tests:

Nerash = \_%J (3)
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Expected Number of Crashes. Each crash test is a Bernoulli trial in which
success is defined as “component crashed”. Assuming CI > d. (justifiable
because when a component crashes it cannot crash again) all n.qs, crash tests
of a component ¢ are independent. The binomial distribution of each Bernoulli
process gives us the number of successes. Let P. be the crash probability of a
component ¢ every time we check for a crash and E[C,] the expected number of
its crashes, i.e., the expected value of its binomial distribution during 7"

E[Cc] = Nc¢rash * Pc (4)

Total Internal and External Loss. The total internal loss (IL7) is the sum
of internal loss per crash of each component. Let C' be the set of all components
that can crash, i.e., routers and services. Using Egs. (1) to (4):

T
ILy = Y E[C]-IL, = L&) cef > Pe-de- (IRp —ng™®)  (5)
ceC ceC
The total external loss (ELr) is the sum of external loss per crash of each

component. Using Egs. (2) to (4):

T
ELr = Y E[C] BELc = | =] cf ) Pe-de (6)
ceC ceC
Total Number of Crashes. The total number of crashes (Cr) is the sum of

the expected number of crashes of each component. Using Eqgs. (3) and (4):

Cr = Y BC] = [ ag) SR (7)

ceC ceC

4 Empirical Validation

4.1 Experimental Planning

Goals. We aim to empirically validate our model’s accuracy with regard to the
number of crashes as well as the total external and internal loss represented
by Egs. (5) and (6). We realized these architectures using a prototypical imple-
mentation, instantiated and ran them in a cloud infrastructure, measured the
empirical results, and compared the results with our model.

Technical Details. We used a private cloud with three physical nodes, each
having two identical Intel®) Xeon®) E5-2680 CPUs. On top of the cloud nodes
we installed Virtual Machines (VMs) with eight CPU cores and 60 GB system
memory running Ubuntu Server 18.04.01 LTS. Docker containerization is used to
run the cloud services which are implemented in Node.js. We utilized five desk-
top computers to generate load, each hosting an Intel®Core™i3-2120T CPU @
2.60 GHz, 8 GB of system memory which run Ubuntu 18.10. They generate load
using Apache JMeter which sends HTTP version 1.1 requests to the cloud nodes.
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Specific Model Formulae. In our example configurations each service receives
an internal requests, processes it and sends it back either to a router or the API
gateway, so we can calculate I Ry based on the number of services (ngery ):

IRT == Qnserv +1 (8)

In order to calculate n&*““, we need to differentiate between service and router
crashes. In case of a service crash, all internal requests up until the last router

will be executed. Let s.rqsneq be the label number of the crashed service:

nia;ec = 2Scrashecl -1 (9)
In case of a router crash, we need to know the allocation of routers (A) which is
a set indicating the number of directly linked services of each router. Let 7erqshed
be the label number of the crashed router:

Terashed

neee =2 Y A (10)
r=1

Experimental Cases. We chose different levels for ¢f and nger, to study their
effects on ILy. We selected cf based on a study of related works, e.g., [5,16], as
10, 25, 50, and 100 requests per second. Based on our experience and a survey
on existing cloud applications in the literature and industry [1], the number of
cloud services which are directly dependent on each other in a call sequence is
usually rather low. As a result, we chose 3, 5, and 10 as values for nge,,. We
simulated a node crash by separately generating a random number for each cloud
component. If the generated random number for a component was below its crash
probability, we stopped the component’s Docker container and started it again
after a time interval d = 3s. We chose T" = 10 min, during which we checked for
a crash for all components simultaneously every C'I = 15 seconds resulting in
Nerash = 40 (Eq. (3)). Each component had a uniform crash probability of 0.5%;
akin to the related works we chose a relatively high crash probability to have a
high enough likelihood to observe a few crashes during 7'

Data Set Preparation. For each experimental case, we instantiated the archi-
tectures and ran the experiment for exactly ten minutes (excluding setup time).
We studied three architectures, three levels of nge., and four levels of c¢f, result-
ing in a total of 36 experimental cases; therefore, a single run of our experiment
takes exactly six hours (36 x 10 min) of runtime. Since our model revolves around
expected values in a Bernoulli process, we repeated this process 200 times (1200 h
of runtime) and report the arithmetic mean of the results!.

4.2 Results

Experimental Results Analysis. Based on Eq. (5), ILy is a model element
that incorporates crashes of all components and it includes all model views,

! The data of this study is published as an open access data set for supporting repli-
cability: https://zenodo.org/record /4008041, doi:10.5281/zenodo.4008041.
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e.g., architecture configurations, expected average downtime, etc. Therefore, we
conduct our analysis mainly based on I Ly. It can be observed from Table 1 that
when we keep ngery constant, increasing cf results in a rise of ELp (predicted

Reliability of Dynamic Routing Architectures

by Eq. (6)) in all cases, which leads to a higher value of Ly (Eq. (5)).

Table 1. Results of the model and the experiment

Arch.|nsery | ¢f | Cr |ELr |ILp Cr ELpy | ILr o(ILy)
Model Experiment

CE | 3 10 [0.800 | 24.000 114.000|0.760  23.395  98.960  118.552
25/0.800 | 60.000 285.000 0.620| 47.435| 228.975| 292.389

50 | 0.800 | 120.000  570.000 | 0.705 106.370| 480.235| 608.635

100 | 0.800 | 240.000 | 1140.000 | 0.725| 218.130 1045.000  1216.765

5 10 | 1.200 | 36.000| 246.000 1.165 36.405  236.575| 236.536
25/1.200 | 90.000  615.000 1.110| 85.400 | 608.040 | 574.267

50 | 1.200 | 180.000  1230.000 | 1.115 | 172.085| 1155.550 | 1173.295

100 | 1.200 | 360.000 | 2460.000 | 1.040 | 317.585 | 2223.655 | 2101.272

10 10 (2200 66.000| 786.000 | 1.920 62.000  720.190  616.778

25 [2.200 | 165.000  1965.000 | 2.125| 171.290| 2063.305 | 1711.931

50 | 2.200 | 330.000 3930.000  2.160 | 344.765 | 4223.665 | 3458.119

100 1 2.200 | 660.000 | 7860.000 | 1.960 | 590.665  6853.500 | 6567.047

DR | 3 10 | 1.200 36.000 162.000 1.075  32.505  153.045  175.952
25 1.200 90.000 405.000  1.225 | 92.745 | 452.160 | 466.814

50 |1.200 | 180.000 ~ 810.000 | 1.225| 182.595| 882.695| 916.540

100 | 1.200 | 360.000| 1620.000 | 1.130 | 328.925 | 1477.405 | 1470.332

5 10 | 1.600 | 48.000| 306.000 | 1.670 | 51.995  319.210 301.989
25[1.600 | 120.000  765.000 1.760 | 135.105| 816.895  686.709

50 | 1.600 | 240.000  1530.000 | 1.790 | 270.540 | 1597.535 | 1324.199

100 | 1.600 | 480.000 | 3060.000 | 1.635| 490.990  2909.115 | 2353.168

10 10 [2.600 | 78.000| 930.000 2.525 82.255  921.610| 495.543

25 [2.600 | 195.000  2325.000 | 2.355  187.715| 2181.590 | 1275.035

50 | 2.600 | 390.000  4650.000 | 2.205 345.350 | 4043.070 | 2508.002

100 | 2.600 | 780.000| 9300.000 | 2.375 | 741.870 | 8544.700 | 5022.780

SA | 3 10 |1.200 36.000| 162.000 | 1.140  34.910 170.265  186.911
25/1.200 | 90.000  405.000 | 1.230| 93.265| 435.685| 452.190

50 | 1.200 | 180.000 810.000  1.215 | 181.305 883.510 | 911.088

100 | 1.200 | 360.000| 1620.000  1.185 | 345.950 1634.850 | 1844.829

5 10 [2.000 | 60.000| 390.000 1.795 55.745 350.055 | 244.898

25 (2.000 150.000 975.000 1.795 | 138.910 891.525  647.402

50 | 2.000 | 300.000 1950.000 1.715| 261.740 | 1716.095 | 1284.733

100 | 2.000 | 600.000| 3900.000 | 1.790 | 528.420 | 3385.240 | 2633.592

10 10 [4.000 | 120.000 | 1380.000|3.900  127.715 | 1443.040  773.632

25 4.000 | 300.000 3450.000 | 3.745 | 306.745 | 3477.305 | 1979.270

50 | 4.000 | 600.000 6900.000 | 3.860 | 617.375| 7140.655 | 4262.114

100 | 4.000 | 1200.000 | 13800.000 | 3.870 | 1232.770 | 14072.910 | 8287.361

171
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Table 2. Prediction error of experimental runs

Number of Runs | Cr (%) | ELT (%) | ILy (%)
50 12.919 |12.307 13.946
100 9.416 | 8.492 9.593
150 8.326 | 7.426 8.731
200 8.081 | 7.097 8.105

Since in our experiment, we instantiated the DR architecture with three
dynamic routers, it is interesting to consider the experimental case of nger, = 3.
In this case, SA and DR have the same number of components, i.e., routers
and services. Note that SA uses a sidecar per each cloud service; as a result
with ngery = 3, we will also have three sidecars. The difference between the two
architectures in this experimental case is that in DR dynamic routers are placed
on a different VM than their directly linked services, but in SA sidecars are
placed on the same VM as their corresponding cloud services. For this reason,
it can be observed that the reported values for SA and DR closely resemble
each other when we have different values of c¢f but keep nger, constant at three.
Considering the cases with five or ten cloud services, we almost always observe
higher I Ly when we change the architecture from a CE to a DR or from a DR to
an SA but keep the same configurations, i.e., constant nge., and cf. It is because
in our experiment, CE has only one control logic component (the central entity),
DR has three (dynamic routers), and SA has nger, (sidecars). Consequently, the
number of crashes corresponding to control logic components goes up from CE
to DR and then to SA. This increases Cp, which results in losing more requests.

5 Discussion and Conclusions

Evaluation of the Prediction Error. We measure the prediction error by
calculating the Mean Absolute Percentage Error (MAPE) [17]. Let model; and
empirical; be the result of the model, and the measured empirical data for
experimental case i, respectively. n¢qse is the number of cases (36 in this study).

100% Ncase

ncase i=1

model; — empirical;

MAPE = (11)

empirical;

Table 2 reports prediction error measurements of our model for a different
number of runs. As the table shows, with a higher number of experimental runs
the prediction error is reduced, which indicates a converging error rate. After 200
runs, the final prediction error regarding I Lt is 8.1%. As mentioned before, the
common target prediction accuracy in the cloud performance domain is 30% [11].

Threats to Validity. While injecting crashes is a commonly taken approach
(see Sect. 2.1), a threat remains that measuring internal and external loss based
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on these crashes might not measure reliability well, e.g., cascading effects of
crashes [14] are not covered in our experiment. We collected an extensive amount
of data to validate our model; however, we did so in limited experiment time
and with injected crashes, simulated by stopping Docker containers. We avoided
factors such as other load on the experiment machines; much of the related
literature takes a similar approach. To increase internal validity we decided not
to run the experiment on a public cloud where, e.g., other load on the experiment
machines might have had a significant impact on the results. As a consequence,
there is the threat that generalization to a public cloud setting might be limited.
As our private cloud setting uses very similar hardware and software stacks as
many public cloud offerings, we believe this threat to be small. As the statistical
method to compare our model’s predictions to the empirical data, we used the
MAPE metric as it is widely used and offers good interpretability in our research
context. To mitigate the threat that this statistical method might have issues
we double-checked three other error measures, which led to similar results.

Conclusions. We investigated the impact of architectural design decisions on
system reliability. Regarding RQ1, our study concludes that more decentralized
routing results in losing a higher number of requests in comparison to more
centralized approaches. Regarding RQ2, we derived an analytical model for
predicting request loss in the studied architectures and empirically validated
this model using 36 representative experimental cases. Our results indicate that
with a higher number of experimental runs the prediction error is constantly
reduced, converging at a prediction error of 8.1%.
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Abstract. In the cloud market, there exist multiple cloud providers
adopting auction-based mechanisms to offer cloud services to users.
These auction-based cloud providers need to compete against each other
to maximize their profits by setting cloud resource prices based on their
pricing strategies. In this paper, we analyze how an auction-based cloud
provider sets the auction price effectively when competing against other
cloud providers in the evolutionary market where the amount of partic-
ipated cloud users is changing. The pricing strategy is affected by many
factors such as the auction prices of its opponents, the price set in the pre-
vious round, the bidding behavior of cloud users, and so on. Therefore, we
model this problem as a Partially Observable Markov Game and adopt
a gradient-based Multi-agent deep reinforcement learning algorithm to
generate the pricing strategy. Furthermore, we run extensive experiments
to evaluate our pricing strategy against the other four benchmark pricing
strategies in the auction-based cloud market. The experimental results
show that our generated pricing strategy can beat other pricing strate-
gies in terms of long-term profits and the amount of participated users,
and it can also learn cloud users’ marginal values and users’ choices of
cloud providers effectively.

Keywords: Auction-based cloud market * Pricing strategy + Markov
games - Multi-agent deep reinforcement learning

1 Introduction

Because of economical, scalable, and elastic access to computing resources, the
development of cloud computing has achieved significant success in the industry.
More and more companies and individuals prefer using computing services over
the Internet. This contributes to the vigorous development of the cloud com-
puting market. In the cloud market, there exist different types of cloud resource
transaction mechanisms, such as pay as you go, subscription-based transaction.
Furthermore, some cloud providers may run auction-based mechanisms to sell
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resources to users, such as Amazon’s Spot Instance. In such a context, cloud
providers need to set proper transaction prices for the sale of resources. Moreover,
there usually exist multiple cloud providers offering cloud resources, where cloud
users can choose to participate in one of the auctions to bid for the resources. In
this situation, the resource transaction prices will affect the cloud users’ choices
of cloud providers and bidding behavior significantly, and in turn, affect the
cloud providers’ profits. Furthermore, the competition among providers usually
lasts for a long time, i.e. the providers compete against each other repeatedly.
Therefore, in this paper, we intend to analyze how the cloud provider sets the
auction price effectively in order to maximize long-term profits.

In more detail, in the environment with multiple auction-based cloud
providers, each cloud user needs to determine which auction mechanism to par-
ticipate in according to the choice model and then submits the bid to the cloud
provider. The auction mechanism then determines the auction price. Users whose
bids are not less than the auction prices obtain the resources and pay for it
according to the auction prices, not their bids. In this paper, we analyze how to
design an appropriate pricing strategy to set the auction price to maximize the
cloud provider’s profits in the environment with two cloud providers. First, we
consider the evolution of the market, where the numbers and the preferences of
cloud users are changing. In addition, how cloud users choose the providers and
bidding, and how providers set the auction prices are affected by each other, and
it is a sequential decision problem. Reinforcement learning is an effective way
to solve such problems. Furthermore, this problem involves multiple providers
competing against each other. This is a Markov game, which can be solved
by Multi-Agent Reinforcement Learning. Specifically, we use a multi-agent deep
deterministic policy gradient, named MADDPG to generate the cloud provider’s
pricing strategy [10]. Finally, we run experiments to evaluate our pricing strat-
egy against four typical pricing strategies. The experimental results show that
the pricing strategy generated by our algorithm can not only respond to the
opponents’ changing prices in time but also learn the marginal values of cloud
users and users’ choices on providers. Moreover, the pricing strategy generated
by our algorithm can beat other strategies in terms of long-term profits.

The structure of this paper is as follows. In Sect. 3, we introduce the basic
settings of cloud users and cloud providers. In Sect.4, we describe how to use
the MADDPG algorithm to generate a pricing strategy. We run extensive exper-
iments to evaluate the pricing strategy in different situations in Sect. 5. Finally,
we conclude in Sect. 6.

2 Related Work

Since cloud computing involves resource provision and consumption, auction-
based mechanisms have been widely used by cloud providers for sale of resources,
such as AmazonEC2's Spot Instance [8]. In [15], AmazonEC2 Spot Instance
mechanism was investigated from a statistical perspective. The researchers also
considered the proportion of idle time for cloud service instances and proposed
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an elastic Spot Instance method to ensure stable reliability revenues for providers
[3]. In [6], a demand-based dynamic pricing model for Spot Instance was pro-
posed by adopting a genetic algorithm. There also exist some works predicting
the auction prices of AmazonEC2 Spot Instances [2,7]. In [12,14], the authors
analyzed how cloud providers using “pay as you go” set prices in the compet-
ing environment, but did not take into account the auction-based cloud market
and the evolution of cloud users. In [4], the authors proposed a non-cooperative
competing model which analyzed the equilibrium price of a one-shot game, but
ignored the long-term profits and did not consider the auction-based mecha-
nism as well. Actually, to the best of our knowledge, few works have considered
how to set auction prices effectively in the competing environment with multiple
auction-based cloud providers.

3 Basic Settings

In this section, we introduce the basic settings of cloud users and cloud providers.
We assume that there are two cloud providers P; and P» in the cloud market,
where they compete with each other to maximize their long-term profits. This
market is constantly evolving, and we use t to denote the time stage. At the
beginning of each stage, each provider publishes its auction price of the last
stage. Then each user chooses to be served by a provider based on its choice
model of the provider (see Sect.3.1). However, if the user’s expected profit in
both providers is negative, it may not enter any providers. After users select
the cloud providers, they submit their bids. Now two providers determine the
auction prices and obtain the corresponding immediate reward (see Sect. 3.2).
The competition enters into the next stage.

3.1 Cloud Users

In this section, we describe the basic settings of cloud users. The amount of cloud
users participating in the cloud market varies as the market evolves. Therefore,
we model it as a classical logical growth function [11], which is:

NONOO

MO = N - Ny .

where N(t) is the number of cloud users at stage ¢, d is the temporal evolution
rate of the market, and the initial number of cloud users is Ny, the market is sat-
urated when the amount of cloud users entering the market becomes stabilized,
then the number of cloud users is Noo.

Users’ Choices of Providers. Cloud users’ choices of providers are mainly
dependent on their expected utilities in the selected provider. The expected
utility of cloud user j choosing to be served by provider i at stage ¢ is:

wl ;= my — it + =05, + N (2)
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where m; is the marginal value that user j can receive from per-unit requested
resource, p;; is the auction price set by provider ¢, and we use vjtl =mj — Dy
to represent the profit that cloud user j can make when choosing provider ¢ at
stage t. 1;,; means that user j has an implicit preference on provider 4, which is
an independently, identically distributed extreme value, and the density function
is f(nj:) = e e

According to the user’s expected utility in Eq. 2 and the density function, user
j will choose to be served by provider ¢ (i’ # i) only if its utility is maximized.
The probability of cloud user j choosing to be served by provider ¢ at stage t is
denoted as P ;:

e Mj,i

vt
t e
Pj,i - Zi/ 6”571" (3)

Users’ Bidding Model. After each user chooses a provider, it needs to bid for
the cloud resource. We adopt a bidding algorithm based on a feedback control
system, where cloud users utilize a feedback loop to automatically adjust the
submitted bids [1], which is shown in Fig. 1.

b

w Bid price

Control caleulator Submitted bid

Signal

p

Historical
auction price

Fig. 1. Cloud users’ bidding algorithm

The user’s submitted bid for the next stage is by:

by =pr + X arccot(w) (4)

Pu — D1
T
where p; and p, are the lower and upper bound of the cloud service instance
respectively, w is a control signal to adjust the user’s bid appropriately. The
range of arccot(w) is (0,7), and thus the user’s bid b, is constrained in (p;, py,)-

Note that w consists of two parts, which is the current proportional error w,,
and the historical accumulated errors w;(t):

wp:k;pxer (kp<0apl_pu<er<pu_pl) (5)

where k, is the proportional gain of the control signal. e, is defined as the
difference between the submitted bid at stage ¢ and the auction price of the cloud
service instance at stage t, i.e. e, = pp,—bp|p=¢. Therefore e, is in (p;—pu, Pu—01)-
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Since historical errors contain more information to help users to improve
their bidding behavior and win bids, we decide to use an integral controller to
further study the historical errors, which can be expressed as:

t t
w;(t) = ki x /0 e(T)dr =~ k; X Zeh (ki <O0,p1 —pu <ep <py—p1) (6)
h=0

where k; is the integral gain of the control signal, ej is the historical error at
stage h (0 < h < t). Based on Eq. 5 and Eq. 6, we can calculate the control signal
w, that is: w = w, + w; =~ ky, X e, + k; X 22:0 en-

3.2 Cloud Providers

In this section, we introduce the basic settings of cloud providers. Cloud providers
incur costs when providing cloud services. Similar to the work in [5], the marginal
cost of provider 7 in a per-unit cloud service at stage t is:

_ﬁefpt

Cit = Cio X Z dj¢ (7)

JEN ¢

This equation indicates that the marginal cost of provider ¢ will decrease when
the number of cloud users N;,; in demands of cloud services d;; increase at
stage t, where ¢; o is the initial cost of cloud provider i, 8 > 0 and p > 0 are two
parameters to control the decreased marginal cost when users’ demands increase.
We then compute the provider’s immediate payoff(reward), which is:

Tit = Z djt % (it — cit) (8)

JEN; +

Its long-term profits, which are the discounted cumulative profits over all stages,
is calculated as: R; = ZZ;O Yorit.

4 MADDPG Algorithm

In this section, we describe how to model the issue as a Partially Observable
Markov Game and use MADDPG to solve it to generate a pricing strategy.

4.1 Partially Observable Markov Game

In this paper, two cloud providers repeatedly competing with each other to max-
imize their profits, which is a sequential-decision problem. Furthermore, since
cloud providers and users cannot perceive all information of the world, it is a
partially observable Markov game [9].

In more detail, this Markov game consists of a set of states S describing the
cloud market, a set of pricing actions A, A and a set of the observed states
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01,04 for each provider. We use s = (pcwg,psd,pavg,psd,bavg,bsd,b1 bl

max? “min?
briar Vovg V2ds Dimazs Ui Uoias 1,05 M2t CLe, C2t) € S to denote a state. For
cloud provider P;, the average and standard deviation of its auction prices
over a period of time are pzvg7pid respectively. From the cloud users’ bids, we
can compute the average, standard deviation, maximum, minimum, and median
value of the bids, which are b, ,,b% 4, 0%y 00 by, blig Tespectively. We use n;
to represent the number of cloud users choosing to be served by provider @
at stage t, and use c¢;¢ to denote the marginal cost of provider ¢ at stage t.
Note that in the realistic cloud market, the cloud providers’ auction prices
over a period of time are usually accessible to users. However, the number
of cloud users choosing to be served by provider 1 and users’ bids are usu-
ally not public. That 15 pavg7 psd, pavg, p?, are shared public information of
all providers, but bavg, t a2 Drnaws Omins bmzd,nl’t,cz,t are private information hid-
den to the other cloud provider. Therefore, the observation of provider P; is
0; (pavg7psd’p(wg7psd7bm)g’ lsd’ ina»u mzn’bmzd7ni7t?ci7t) € 0;.

Then we use 7y, : O; x A; — [0, 1] to present the pricing strategy of provider i.
After providers take pricing actions, the state transfers to the next state accord-
ing to the state transfer function A : S x A; x Ay — S’, then each provider can
obtain the immediate reward 7;; : S X A; — R, and obtain the corresponding
observation o; : S — O; of the next state. Given the immediate reward made
at stage ¢, the cloud provider can maximize the long-term profits through an
efficient pricing strategy.

4.2 Multi-Agent Deep Deterministic Policy Gradient

In this section, we introduce how to use MADDPG to generate a pricing strategy
in the competing environment with two cloud providers. MADDPG is a multi-
agent reinforcement learning algorithm based on the Actor-Critic framework
proposed by OpenAl, where Actor is a probability-based actuator, while Critic
evaluates every action of Actor to modify the weight of Actor. When the critic
of MADDPG evaluates the actors’ actions, it not only considers themselves but
also the rest of the agents [10].

Specifically, the two cloud providers whose strategies mg = {m,m2} are
parameterized by 8 = {601,02}. Then the gradient of expected return J (6;) =
E[R;] of cloud provider 7 is:

Vo,J (0;) = Espra;mm; [ Vo, logmi (ai]0;) QF° (z,a1,a2)] (9)

where p* is the state distribution, x = (01, 02) is the observed value of all cloud
providers. Q7°(x, a1, az) is a centralized value function and its input contains not
only some observed information x, but also all providers’ actions a1, as. When
Eq.9 is extended to a deterministic policy, we use ug, w.r.t. parameter 6; to
represent the provider’s strategy. Then its gradient can be written as:

vgq‘,‘] (:u‘97‘,) = ES,GND[V@‘, e, (ai|0¢)VaiQf (Ia ay, a2)|ai:ll9i (0@)] (10)



Pricing in the Competing Auction-Based Cloud Market Using MADDPG 181

where D is the experience replay buffer contains tuple (x,a1,as,r1,72,2’), in
which r1, o are the immediate rewards, and z’ is the two providers’ observations
in the next stage. The centralized action-value function Q¥ is updated as:

L (91) - Ez,a,r,w’ [(Q? (ZC7 ai, a2> - y)2:| Y Y =T4 + fYQi/ ($/7 a/17 a/2)
a :Méj (05)

(11)

where 11" = {f1g;, p1y } is the set of target policies with the delayed parameter 0;.

Updating the value function in Eq.11 requires the pricing strategy of the

opponent provider. However, the opponent’s pricing strategy is usually private

in the realistic environment, and thus hard to be known. Therefore each cloud

provider can only estimate the opponent j’s pricing strategy o with ¢ param-

eter instead. This approximated strategy is learned by maximizfng the log prob-
ability of provider j’s actions with an entropy regularizer, which is:

L (1) = ~Foya, [log7,, (aslo) + AH (7, )| "

where H (fr ‘p;) is the entropy of the policy distribution. Now y in Eq. 11 can be

i

replaced by the approximated value y:

§=ri+9Q (a7, (00,7, (0))) s i) (13)
where ﬁ'; ; (05) is the target network of the approximate policy 7 ;.

To imlprove the robustness of agents’ strategies, sub-strategy will be used to
enhance the adaptability of agents. Therefore, in each round of a game, the cloud
provider randomly selects a sub-strategy to execute from a set that contains
K different sub-strategies. For cloud provider i, the goal is to maximize the
ensemble objective, which is:

Je (/’Lai) = Ekwunif(LK),swpl"7a~u9§k) [Ri(sa CL)] (14)

where pg, is a set of K different sub-strategies, and p, ) represents an element

in this set. Consequently, the gradient of ensemble objective w.r.t ng) is:

1
VowrJe (p6.) = 72 E, o pwr | Vow tgw (ail01) Va, Q" (2,01, 02) ai:%m(o»]
©(15)

where ng) is the replay buffer for each sub-strategy p,m of agent .

5 Experiments

5.1 Parameter Settings

In this paper, two cloud providers P; and P, can set the auction prices in the
range of [10,100]. Each round has 200 stages. We set the number of cloud users
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at initial stage t = 0 is Ny = 100, at saturation stage ¢t = 200 is Ny = 1000,
the temporal evolution rate of the market is § = 0.07. The users’ marginal
values follows a uniform distribution within [40, 70]. Then we use two queues
Queue;, Queuey to store the two providers’ historical auction prices, and the
length of the queue is len = 10. The lower bound price of the cloud service
instance equals to the lowest price that the provider can set, i.e. p; = 10, and
the upper bound price of the cloud service instance equals to the marginal value
that cloud user j can obtain from per-unit requested resource, i.e. p, = m;. ky
and k; in the users’ bidding model follow a uniform distribution within (—0.1,0).
We set = 0.01, p = 0.02 and ¢; o = 8.0, and the users’ demands for cloud
resources follow a uniform distribution of d;, ~ U[1, 3].

5.2 Training

In this section, we generate a pricing strategy that can maximize the cloud
provider’s long-term profits in the competing cloud market. The same as the work
done in [13], we consider the fictitious self-playing which can learn the optimal
pricing strategy from scratch. Therefore, we use MADDPG with fictitious self-
playing to train our agents. After training, a pricing strategy based on MADDPG
is shown in Fig. 2. From this figure, we find that the prices set by the two cloud
providers Py, P5 at each stage converge in [10, 30], which is less than the highest
auction price range [40, 70] that cloud users can accept. It further indicates that
the MADDPG algorithm can learn the marginal values of cloud users, and set
the prices a bit lower than the marginal values of most users. By doing this, the
cloud provider can maximize its profits while keeping cloud users.

Price

Fig. 2. MADDPG’s pricing strategy

5.3 Strategy Evaluation

In this section, we run experiments to evaluate our pricing strategy against four
typical pricing strategies, and we evaluate the pricing strategy by using these
metrics: auction price set by the pricing strategy, cloud user ratio which is the
ratio of the number of cloud users entering in the provider to the total number of
users, and cumulative profits which is the long-term profits made by the provider
across all stages.
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Vs. Random Pricing Strategy. In the market, there exist some fresh compet-
ing cloud providers who may explore the market by adopting a random pricing
strategy to obtain more information. Therefore, we first evaluate our pricing
strategy against the competing provider adopting a random pricing strategy of
uniform distribution. The results are shown in Fig. 3, we find that the provider
using the MADDPG pricing strategy can attract more cloud users and obtain
more cumulative profits than the opponent using a random pricing strategy.

Cloud user ratio
Cumulative profit
g

“:ii\‘ MM i
A/Lﬂ*wﬁ M n }}

(a) Price (b) Cloud user ratio (c) Cumulative profit

Fig. 3. MADDPG vs. Random (uniform distribution)

Vs. Price Reduction Strategy. Some cloud providers may keep reducing the
prices to attract cloud users in the cloud market. We consider two kinds of price
reduction strategies, named Linear Reduction strategy (RecL) and Exponential
Reduction strategy (RecE) where RecL: decreases the price linearly while RecE
decreases the price rapidly in the initial stages and then becoming smooth when
approaching the threshold price. The results are shown in Fig. 4 and Fig. 5. From
the experiments, we find that our provider using MADDPG can adjust the price
in time to adapt to the changes of the opponent, and thus make the cumulative
profits at a higher level.

Cumulative profit

(a) Price (b) Cloud user ratio (c) Cumulative profit

Fig. 4. MADDPG vs. Linear Reduction
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(a) Price (b) Cloud user ratio (c) Cumulative profit

Fig. 5. MADDPG vs. Exp reduction

Vs. Greedy Pricing Strategy. Similarly, some cloud providers may adopt
a greedy pricing strategy, which only focuses on the immediate reward of each
stage, regardless of long-term profits. Therefore, we set the discount factor ~y
to 0 in MADDPG. The results are shown in Fig.6. We find that the price of
the greedy strategy is slightly higher, so the number of cloud users attracted by
the provider using the MADDPG pricing strategy is higher. Again our pricing
strategy can beat the greedy pricing strategy in terms of cumulative profits.
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Fig. 6. MADDPG vs. Greedy

Vs. M-MADDPG Pricing Strategy. To further demonstrate the effective-
ness of the pricing strategy generated by MADDPG algorithm, we train a new
pricing strategy against itself, and we name it as M-MADDPG. The results are
shown in Fig.7. We can see that the provider using the M-MADDPG pricing
strategy has almost the same cumulative profits as that in the MADDPG pric-
ing strategy. This means that even though the opponent can train a particular
pricing strategy against the MADDPG pricing strategy, it still cannot beat our
pricing strategy.



Pricing in the Competing Auction-Based Cloud Market Using MADDPG 185

. . S A LA
A . > h sl MADD!
] ! 7y L
stae, sten I I

(a) Price (b) Cloud user ratio ) Cumulative profit

Cloug
Cumulative profit

Fig. 7. MADDPG vs. M-MADDPG

6 Conclusion

In this paper, we use the gradient-based multi-agent deep reinforcement learning
algorithm to generate a pricing strategy for the competing cloud provider. We
also run extensive experiments to evaluate our pricing strategy against the other
four typical pricing strategies in terms of long-term profits. Experimental results
show that MADDPG based pricing strategy can not only beat the opponent’s
pricing strategy effectively but also learn the marginal values of cloud users and
users’ choices of providers. Our work can be used to provide useful insights on
designing practical pricing strategies for competing cloud providers.
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Abstract. Mobile Edge Computing (MEC) policies that bind user ser-
vice requests to edge servers, seldom take into account user preferences of
Quality-of-Service (QoS) and the resulting Quality-of-Experience (QoE).
In this paper, we design a novel user-centric optimal allocation policy
considering the QoS preferences of users, with an attempt to maximize
the overall QoE. Additionally, we propose a real-time mobility aware
user-centric heuristic algorithm to solve the allocation problem by accom-
modating the time varying QoS demands of users. Experimental results
on real data sets demonstrate the efficiency of our allocation scheme and
a comparison with state-of-art approaches in MEC literature.

Keywords: Edge computing - Server allocation + User migration

1 Introduction

In recent times, Mobile Edge Computing (MEC) [1] has emerged as a new
paradigm that allows service providers to deploy services on MEC servers located
near base stations. As users move around, their application service invocations
are routed to proximate MEC servers to curtail the high latencies of cloud com-
munication networks. A service allocation policy is designed to determine the
user-service-server binding, i.e. which service requests from which users are pro-
visioned by which MEC servers in their vicinity, as they move around. In recent
years, several allocation policies, static and dynamic, considering different opti-
mization metrics have been proposed in literature [3,4,6-8].

The general philosophy of service allocation policies is to design and optimize
a user-mobility aware service-server-user binding that optimizes some quantita-
tive metric (e.g.. latency, energy, throughput) to cater to user application service
needs and ensure seamless usage experience. A recent work [6] has proposed a
novel view of considering qualitative QoS level offerings by service providers in
designing the service bindings. Additionally, the authors have quantitatively cor-
related QoS values with overall Quality-of-Experience (QoE) of users to demon-
strate the existence of thresholds, beyond which, enhancing QoS values no longer
enhances a user QoE. This work, however, does not consider a user’s QoS pref-
erences when deciding these bindings. Moreover, the binding is static, in other
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words, once an allocation is decided for a user service invocation to a specific QoS
level at an edge server, he is continued to be served at the same level throughout,
oblivious to the fact that the user may not be in a position to enjoy services at
a higher QoS level always due to battery or other constraints. Also, the policy is
not adaptive, in the sense that user movements, joining or leaving of users, and
user QoS preferences and preference changes in terms of the required QoS lev-
els, are not accounted for. This motivated us to design a dynamic self-adaptive
allocation policy that can address these variations.

Designing an allocation that considers user preferences of QoS levels is chal-
lenging due to the dynamics of MEC systems, the stochastic nature of service
invocation patterns and the large space of user-service-server binding configura-
tions. In our view, allocation policies in literature are more catered towards the
perspective of service providers [5,6], aiming to optimize quantitative metrics,
often ignoring users’ qualitative preferences of QoS levels when making allocation
decisions. QoS levels typically translate to a monotonically increasing footprint
on the resource consumption for both the user and the provider, at the server
end where the service is provisioned, and at the user end where a communication
latency depending on the size of transferred data is incurred. Policies like [6],
being user agnostic, may allocate QoS levels to users leading to an added aggra-
vation. In such scenarios, a service provider may also suffer a degradation in
throughput since the high QoS levels translate to more resources allocated at
the server end which could have been otherwise allocated to other users. In the
worst case, an overtly aggressive user-agnostic QoS allocation can lead to new
service requests being needlessly denied service.

Our proposal in this paper is a service allocation policy that caters to both
user and provider views considering individual QoS preference levels to enhance
overall QoE of users in a mobility-aware scenario. The QoS preferences of users
can vary over time, for example, a user initially having high battery levels, and
preferring to stream services at high QoS levels, may sometime later choose to
downgrade his preference depending on the changing battery conditions to alle-
viate energy utilization spent in data communication. We take into account such
user specified adjustments in an attempt to maximize the overall user experi-
ence. Additionally, we cater to mobility of users and changing conditions as well.
We first formulate the problem of dynamic QoS preference aware edge user allo-
cation and propose an Integer Linear Programming (ILP) formulation for the
optimal solution, and a heuristic which produces near optimal QoE allocations.
We use the EUA dataset [4-7], a real-world dataset as edge server locations,
and the PlanetLab and Seattle Latency dataset [10] to generate latencies repre-
sentative of MEC environments to validate our approach. Experimental results
demonstrate the efficiency of our heuristic which produces near optimal alloca-
tions. We compare our results with two state-of-the-art approaches and show
that our proposal outperforms both with respect to QoE.



Dynamic Edge User Allocation with User Specified QoS Preferences 189

2 A Motivating Example

In this section, we present a motivating example to explain the problem context.
Consider the scenario demonstrated in Fig. 1. There are two edge servers F; and
FE5 and six users w1, us, u3, ug, us and ug. The coverage area of a particular
server is marked by a circle, hence any user within the coverage area of a server
can use the services hosted at the particular server. For example, u; can only
access the services from FE7, whereas, us can access the services hosted at both
FE, and E5. The resource capacity of each server is represented as a resource
vector (vVCPUs, RAM, storage, bandwidth) [6], where vC PU denotes the num-
ber of virtual CPUs. For the example scenario, assume the resource capacities
of server are denoted by vectors s1 = (16,32,750,8) and s, = (16, 16,500, 4).
Edge servers host services at different QoS levels. Provisioning a service at a
QoS level consumes a certain amount of server resources. We assume both Fj
and Fs host a service P with 3 QoS levels W1, W5 and W3 as in Table 1. Each
QoS level has a resource requirement represented by a 4-element resource vector
W = (vCPUs, RAM, storage, bandwidth) and an associated QoE value. W3 is
the highest QoS level. Each user when invoking P specifies a desired QoS level,
Wy, Wy or W3, at which he wishes to be served, and additionally, a lower tol-
erance threshold QoS level, below which the services are rendered unacceptable
to him. The initial QoS preferences of the users are in Table2. In the scenario
demonstrated in Fig. 1, uz follows the trajectory as depicted by the curved line
while all other users remain stationary. While in its trajectory, at time ¢t = 0,
demarcated by a black rectangle, ug invokes P with QoS preference as W3. Simul-
taneously, u1,us2,uq, and us also invoke P at t = 0, while ug does the same at
t = 5s. During the course of its trajectory, at t = 5s, ug downgrades its QoS
preference from W3 to Wa, at the point indicated by the blue diamond.

Table 1. Available QoS levels

QoS level|Resource requirement|QoE
Wi (2,2,10,1) 15
Wa (4,4,15,1.5) 1
Ws (8,4,20,2) 5

Table 2. User QoS details

User|QoS |QoS |Allocation t =0s|Allocation t=>5s
level | Min [[6] Our [6] Our

w1 |Wh |Any|Ey, Wa|Ey, Wi |Ey, Ws|Ey, W)
uz |Any |Any|Ey, Wa|Ey, Wy |E1, Wa|E1, W3
uz  |Ws |Wa |Er, W3|E1, W3 |E2, W3|E2, Wa
us |Wa |Any|Ey, Wa|Es, Wo |Ey, Wa|Er, W Fig.1l. Representative MEC scenario

us  |Ws |Wa |Ea, W3|Ea, W3 |Ea, W3|Ez, W .
us (W1 |Any|Idle Idle NA Ey, W (COIOI‘ ﬁgure onhne)

User QoS Preference Agnostic Allocation: A user preference agnostic policy such
as [6] does not even take into the account the initial QoS preferences. The alloca-
tion is shown in Column 4 of Table2 as Ej,, W, pairs indicating the edge server
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Ej) and the QoS level W), to which the user u; is bound. Moreover, at ¢ = 5, this
policy continues to provision usg at W3 as shown in Column 6, agnostic of the
fact that ug had requested for a downgrade to W5. The QoE value experienced
by ug is 5. In such a scenario, since the bandwidth requirement of Ws is 2 Mbps,
ug incurs an additional latency overhead due to increased data transfer. Also, at

= 5s, when ug invokes the service, Fs no longer has the needed resources to
serve him, considering its serving capacity and the resources already consumed.
Given the coverage constraint and the locations shown, ug cannot be served
by Fi. However, had us’s QoS level been reduced to Wy when us changed its
preference level, ug could be onboarded at Es.

Our Method at Work: Our user preference aware policy considers the initial
preferences, and allocates levels as depicted in Table 2 to the users. Further, at
time ¢ = 5s, when ug indicates its change of preference level, we reduce the
QoS level allocated from W3 to Ws. In such a scenario, for QoS level Ws, the
bandwidth requirement is 1.5 Mbps, hence, the additional latency incurred by
ug earlier is no longer applicable. When we assign W5 to us, the QoE index of
ug is 4, lower than W3. Since u3 requested for a lower QoS level, we consider the
corresponding QoE value is good enough. Additionally, since a lower QoS level
corresponds to lower resource consumption at the server, we can re-distribute
the resources to better serve other users. ug can now be onboarded at ¢t = 5s.
The example shows the trade-off between resource consumption, latency and
QoE in user QoS agnostic versus user QoS preference aware provisioning. The
latter is challenging to design considering time-varying user QoS requirements
while catering to user mobility. To the best of our knowledge, this is the first
work towards mobility-aware dynamic user allocation with user QoS preferences.

3 System Model and ILP Formulation

In this section, we first formalize the system model. We consider a discrete time-
slotted model [7]. We denote by U" = {u1,us ... u,} the set of active users and
by St = {s1,82 ... sy} the set of active edge-servers at time ¢. Each server S5
has a radius R; and a capacity vector Cjt» (CPU, RAM, storage, bandwidth) at

t, denoted as C} = ((c]l)t ) (c?)t ) (c?)t , (c;*-)t> in that order. We denote by W,
the demand vector (CPU, RAM, storage, bandwidth) of QoS level I, denoted as
(wll, wl2, w?, w?) in that order. A server can only cater to service requests from
users within the service radius. For user u;, the preferred QoS level is denoted as
H!, and the threshold L! for the lowest QoS level tolerable. A service allocation
policy can choose to serve him at any QoS level between the threshold and
the preferred level (both inclusive), with an attempt to serve maximum number
of users at their preferred levels, thereby, maximizing the overall QoE of all
stakeholders, while keeping in view the capacity of each edge server, and the
coverage constraint induced by the relative separating distance between the user
and the servers. If a user cannot be allocated to any edge-server a suitable QoS
level inside the preference range, he has to wait till the required resources are
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available. We assume a set of ¢ QoS levels. Let E!, denote the QoE value for
u; at QoS level I, g the QoS level assigned to u; at time ¢, df; the distance
between u; and server s;, Agj the latency experienced by u; allocated to s; at
t. We compute latency Af; as a function of ¢ and df;. The latency experienced
in any user-server allocation has to honor a maximum limit denoted by 6. We
formulate an Integer Linear Program (ILP) for the problem below.

Objective:
|U*| IS H;
Lo t t
Mammzze.g E E E x5 % By (1)
teT i=1 j=1]=Lt
where,

' 1, If user u; is allocated to server s; at QoS level [ at time ¢
:L‘ .o =
il 0, Otherwise

Subject to:

1. Coverage Constraint:

df; < R} (2)

[\

. Capacity Constraint:

¢ ¢
v 'Z:Lt wf x aty < (cj?)t VteT,Vje {1,...|8'} Yk e {1,...4} (3)

=1
3. Latency Constraint:

IS —H ¢ . ¢
Zl:LzAij xaly <6 VteT, Vie{1,...|U"} (4)

j=1
4. User-Server Mapping:

|S*] «—=H} ‘
Zl:[ﬁx%lgl: VtGT’ VZ€{17|Ut|} (5)

Jj=1

Ut

. Integer Constraint:
xi; €{0,1} : vt e T, Vi € {1,..|U"|} ,Vj € {1,.|S"|} ,Vl € {L}.H}} (6)

The objective function aims at maximization of the overall QoE of users over
the set of time slots ¢ over a period T The indicator variable z}; at any time
instant ¢, encodes all possible server-user-qos preferences. The objective function
implicitly encodes all individual preferences and the threshold in the summation,
hence no additional constraints are needed to specify the minimum threshold
QoS level as required. At any time instant ¢, a user u; can be allocated to
s; if the user is within radius R;, as expressed by the constraint in Eq.2. To
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allocate u; to s; at a QoS level [, the resource requirement at s; is denoted
by W;. The total resources allocated must honor the capacity constraint of each
server. Equation 3 ensures that the combined requirements of users allocated to a
server remains within the server’s total capacity for each dimension CPU, RAM,
storage and bandwidth of the resource vector. Equation 4 ensures that users are
allocated to servers such that the latency bound is honoured. Equation 5 is used
to express that a single service can only be allocated to a single server at a
QoS level at any t. Equation 6 specifies that xﬁjl variables are Boolean indicator
variables denoting service requests from users, the respective server to which
the requests are allocated and required QoS values. As observed in [6], QoS is
non-linearly correlated with the QoE for any service, and we represent the QoS-
QOoE correlation using the logistic function (Eq. (7)) as in [6] with an additional
scaling according to the QoS level preference and threshold specified by a user.
The QoE EY, experienced by u; at time ¢ for level [ is expressed as:

Ei _ Emax

"l exp{-a(y -6}
The scaling assists to assign lowest QoE value to lowest QoS level and highest
QoE value to highest QoS level. Ef, depends on the QoS level W/, his QoS

4 k
§ —1 Wy .
preference H! and the threshold level Lt at time t. Here, v, = =k=L_L ig

(7)

the mean computational demand of QoS level W of user u; at time t; 3! =
Vi — Virr . i .
——+———* ig the mid-point of QoE value of user u; at t. The value E,,,,, is the
maximum value of QoE and « is the growth factor of the logistics function.

A solution to the ILP gives us for each time slot ¢, an optimal allocation of
user service requests to QoS levels at edge servers, honoring QoS preferences,
the latency upper bound and radius constraints. If the ILP solver returns unsat-
isfiable, we conclude that the user set cannot be allocated to their proximate
edge servers, given the constraints. To cater to dynamic mobility and preference
changes, we re-evaluate the ILP when any of the following scenarios occur: (a)
any user changes the QoS specification; b) users or edge-servers become inactive;
¢) users move in and out of the service zone of servers; and d) new service requests
are placed. However, given the associated computational needs, re-evaluating the
ILP frequently turns out to be a non-scalable strategy, as demonstrated in our
experimental results presented in Sect.5. To address this, we design a scalable
heuristic to cater to real-world dynamic scenarios, as described in the following.

4 Heuristic Solution

In this section, we present the design of an efficient polynomial time heuris-
tic which generates near-optimal solutions. We use a Red-Black Tree [2] as an
indexing data-structure. The algorithm maintains a Red-Black Tree for each
edge server and uses a metric defined as i-factor for each user in its service zone
as index. This heuristic is used in place of the ILP, and executes whenever any
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of the events mentioned earlier occur, necessitating a reevaluation of the alloca-
tion. However, this being a polynomial time algorithm, is lightweight and can
be executed more efficiently than the ILP. Our heuristic has the following steps.

— We first divide the new users into two classes, single-server class (S-class)
and multi-server class (M-class). The users within the range of only one edge-
server are clustered into S-class and the users withing the range of more than
one edge-server are put into the M-class. For example, in Fig. 1, the users uq,
ug, uz, us and ug are within the range of only one server i.e. F; and are hence
clustered into S-class. However, uy can access both F; and Fs, hence is put
into the M-class. This categorization is done once for all users at the start,
and adjusted at every time slot only if there is a change in user locations,
new users join in, or existing users leave.

— The users in both S-class and M-class are allocated an initial QoS level
at their minimum threshold specified. Referring to the scenario in Sect. 2,
u1, Uz, uz ug, and us are initially assigned at QoS level Wy, Wi, Ws, Wy
and Wy respectively. The increment factor (i-factor), discussed later in this
section, is computed for all the users in both the S-class and M-class. The
i-factor is determined by user’s QoS preference and presently assigned QoS
level (plevel). For determining the allocation, S-class is considered before the
M-class since S-class users are bound to a single edge server. Each user is
assigned to the edge server according to his i-factor. Users with low i-factor
get higher preference to an edge server during the assignment. For M-class
users, the allocation policy tries to assign an user to the nearest server with
required remaining computation resource, with a motivation to serve him with
better latency experience. We examine the users according to their i-factor,
compute an initial assignment and update the Red-Black Tree with i-factor
as key for each server.

— Our heuristic then attempts to enhance the QoS level of each user (upper
bounded by their respective preference levels) and re-evaluates the i-factor
after incrementing the QoS level. This process of incrementing continues till
all users receive their QoS preference levels or the server exhausts its available
resources and we move on to examine the next server in the vicinity of the
user from where he can be served.

— For servers which have exhausted their resources, users from M-class may be
migrated to the other nearby servers having free resources. Once users have
been migrated across nearby servers, the QoS levels have to be re-evaluated.
QoS upgrade is re-performed after migration.

The heuristic selects the user with smallest ¢-factor and increments the QoS
level of that user. It then proceeds to update the Red-Black Tree with the re-
computed i-factor. Considering our example, at ¢ = 0, on enhancement of QoS
levels, the users uq ... us are alloted Wy, Wy, W3, W5 and W3 respectively.

Computation of i-factor: The i-factor helps to determine which user causes more
alterations to QoS values if the QoS level of a user is increased. Users with
lower i-factor values are given higher preferences when the QoS values allocated
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to them are upgraded. Equation 8 determines the i-factor of a certain user wu;
having level preference and threshold of H! and L! respectively with presently
assigned QoS level of [ at time ¢. The QoE function Ef, E,,q, and « are from Eq. 7
discussed previously. The numerator affects the i-factor by scaling the QoE value
according to the present QoS level, i.e., it assigns a higher i-factor as user’s reach
their preferred QoS levels. The denominator demarcates the difference between
H! and L}, the higher the difference, the lower is i-factor.

Emaz % (Bt +1)

ifactor =
f ax max(H! — L, 1)

(8)

Migrating Users for Improving QoE: Once all the Red-Black trees correspond-
ing to all edge servers have been updated, we find the list of users who can
be migrated from the servers which have exhausted their resource capacities
and hence, no further QoS upgradation for users are possible. Upon successful
migration, our allocation algorithm is re-initiated for possible QoS upgradation.

5 Experiments and Analysis of Results

All experiments were conducted on a machine with Intel Core i5-8250U processor
and 8 GB RAM. The ILP model discussed in Sect. 3 was solved using the Python
Mixed-Integer-Programming library. The results from our heuristic are compared
with the baseline ILP formulated in Sect.3, the optimal algorithm presented
in [6] and the dynamic mobility aware policy in [7].

Experimental Setup: We use the EUA data-set for edge server locations, which
includes data of base stations and users within the Melbourne Central Busi-
ness District area. The coverage area of edge servers are set randomly to values
between 200-400 m radius. To simulate different attributes of users over time,
we randomly select several users and do the following: a) randomly assign 20%
users with 0 m/s for static users, 30% users with random speed between 1 —2m/s
for walking users, and the remaining 50% users with speed between 10 — 20 m/s
for users in vehicle; b) randomly assign an initial direction between 0° to 360°
which then follows the random way-point mobility model [7]; and ¢) randomly
assign the users’ high and low QoS preferences.

We generate latencies from the real world PlanetLab and Seattle latency
data-set [10]. Since the PlanetLab and Seattle latency data-set comprises laten-
cies from across the world, which is not fully representative of latencies in an
MEC environment, we cluster the data-set into 400 clusters considering devices
which are in proximity of each other. A cluster is randomly picked and a repre-
sentative latency is assigned according to our latency measure derived based on
the distance and QoS level, as in [9]. We consider the product of distance and
QoS level, which is scaled down according to the number of clusters. A discrete-
time slotted model with each slot of 25s is considered in which the users move
and change their QoS preferences dynamically. At the end of each time slot,
some user locations are updated, and to 20% of users, we randomly assign new
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preference levels to simulate dynamic QoS preferences. The number of discrete
time slots is kept at 20 for each experiment. To consider various sizes of user
population, we vary the number of users from 50 to 250 at intervals of 50 users,
while keeping the number of servers to 50 and the server resources at 100% of
the cumulative resource requirement of all users at the highest QoS level, dis-
tributed uniformly over all servers. Each experiment is averaged over 50 runs.
For the QoE model, we set E,,.. = 5, a = 1.5. We compare the results of our
ILP, our heuristic, the static ILP proposed in [6] and MobMig [7], a Mobility-
aware dynamic allocation policy. We consider the ILP in [6] by running it in
each discrete time step since it is a static formulation. We use MobMig by set-
ting the QoS level as highest possible since MobMig does not support dynamic
QoS changes. For comparison, we study the following metrics: a) Average QoE
achieved per time slot; b) Average number of users allocated within their QoS
preference per time slot; ¢) Average execution time (CPU time) for evaluation
of algorithms; and d) Average latency experienced by users.

Results and Discussion: Figure 2 depicts the average QoE and the average num-
ber of users allocated within their QoS preference on the experimental setup
with varying users. The results show the effectiveness of the heuristic in being
able to generate near optimal solutions comparable with the results from the
optimal ILP for both average QoE and average number of users allocated within
their QoS preferences. The ILP achieves better allocation of users within their
QoS preference having QoE values similar to the ILP in [6]. MobMig [7], being
unaware of user QoS preferences allocates users at highest available QoS level
when used in a variable QoS scenario. Consequently, the policy leads to a vio-
lation in preference levels in a large fraction of users as inferred from Fig. 2b.
However, the ILP [6], which seeks to optimize overall QoE, generates near equiv-
alent QoE and number of allocated users as compared to our ILP and heuristic.
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Fig. 2. Varying users experiment results

The average latency per user is depicted in Fig. 3a. As can be inferred from
Fig. 3a, both our optimal and heuristic policies significantly outperform Mob-
Mig and the ILP in [6] in terms of average latency incurred by the users. This
is because our preference aware policies provide the flexibility to dynamically
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Fig. 3. Latency and running time for allocation policies

adapt QoS values depending on user-qos preference levels and hence conserve
resources both at the server end and at the user end. Additionally, at the user-
end, adapting to changing QoS levels, prevents higher communication data trans-
fer latencies. As such, our heuristic, which initially assigns the lowest assignable
QoS value to users, while progressively upgrading the QoS values depending on
resource availability, results in a much lower average latency owing to lower com-
munication overhead. Figure 3b additionally depicts the efficiency of our algo-
rithm in a mobility-driven dynamic scenario where the heuristic takes a frac-
tion of the running time of our ILP. Our heuristic requires lower running times
as compared to the ILP in [6] while requiring similar running times to Mob-
Mig simultaneously taking QoS-preferences into account. For each algorithm,
we consider time-out as 25s, i.e., the length of each slot. In Fig. 3b, however,
we illustrate the time it would have actually taken by the algorithms for the
allocation to compare effectiveness.

6 Conclusion and Future Work

In this paper, we have proposed a novel approach to the user-centric dynamic
QoS edge user allocation problem. We formulated an optimal ILP and a near
optimal heuristic to aid scalability in mobility driven real-world scenarios. As
future work, we are working on learning based strategies for modeling user move-
ments, QoS preferences, service invocations and migrations.
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Abstract. In the distributed and dynamic edge computing environ-
ment, edge servers are subject to runtime failures. Therefore, edge servers
in an area must be fault-tolerated to ensure the reliability of services
deployed on those edge servers. Server redundancy is an effective fault
tolerance technique and has been widely applied in different distributed
computing environments in the past decade. However, conventional fault
tolerance techniques are not suitable for edge computing which has
unique characteristics, i.e., the constrained coverage areas of individual
edge servers (coverage constraint) and the partial overlapping between
edge servers’ coverage areas (overlapping constraint). In this paper, we
make the first attempt to investigate and tackle the novel edge server
redundancy (ESR) problem. We prove that the ESR problem is NP-
hard. Then, we introduce a novel optimal approach for identifying a
group of edge servers to be redundant. The objective is to maximize
the effectiveness of fault tolerance measured by the harmonic mean of
the scope and strength of fault tolerance given a redundancy budget.
Furthermore, we propose a heuristic approach for finding sub-optimal
fault tolerance strategies efficiently in large-scale ESR scenarios. Exten-
sive experiments are conducted on a widely-used real-world dataset to
evaluate the proposed approaches against three representative baseline
approaches.

Keywords: Edge computing - Fault tolerance - Redundant server
identification + Group degree centrality

1 Introduction

Edge computing is a promising distributed computing paradigm that provides
computation and storage capacity within end-users’ proximity [10]. In such an
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environment, edge servers, typically facilitated by a micro-data center or a small
cluster of servers, usually bind with small base stations to share the compu-
tation burdens of mobile and IoT devices and provide high quality-of-service
(QoS) for end-users [16]. Therefore, edge servers are the critical components in
the edge computing environment. However, edge servers are subject to runtime
failures because of various unexpected reasons such as hardware faults, software
exceptions, and cyberattacks [3], similar to their counterparts in cloud data cen-
ters [22]. In fact, edge servers are more prone to failures and outages than cloud
servers due to their geographical dispersion, limited resources and low scalability
[1]. In addition, unlike cloud servers that are managed in-house, geographically-
distributed edge servers cannot be inspected, repaired or replaced immediately
upon failures. Edge server failures will disconnect users from the edge server net-
work if they are not covered by any other edge servers. Therefore, effective and
efficient techniques are indispensable for fault-tolerating edge servers to ensure
high QoS for end-users served by edge servers. Server redundancy is a promising
solution [8]. A redundant server deployed with and isolated from a primary server
can take over the workloads when the primary server fails. As the coverage areas
of adjacent edge servers usually partially overlap to avoid blank areas, the edge
servers sharing overlapping coverage areas also can take over the workloads of
the end-users located in the overlapping coverage areas upon each other’s failure.

However, it is usually unrealistic for an edge infrastructure provider to make
every edge server redundant in a particular area because it can easily incur
excessive redundancy costs and operational costs. A cost-effective solution is to
identify a group of edge servers to be redundant strategically. In this paper, we
refer to those edge servers as critical edge servers and the others as uncritical
edge servers. Given a redundancy budget, i.e., the percentage of critical edge
servers, there are two goals to achieve when we attempt to identify the critical
edge servers. One is to maximize the fault tolerance scope, measured by the total
number of uncritical edge servers that share overlapping coverage areas with
at least one critical edge server. This way, when an uncritical edge server fails,
its workloads can be (partially) taken over (supported) by at least one critical
edge server, which is fault-tolerated by the redundant edge server. Over an edge
server graph, where a node represents an edge server and an edge represents
whether two edge servers’ coverage areas overlap, the scope of fault tolerance
achieved by a group of critical edge servers is formally measured by their Group
Degree Centrality (GDC) [2], higher the better. Another goal for fault tolerance
is to maximize the fault tolerance strength, measured by the total number of
overlapping areas shared by critical and uncritical edge servers. This way, when
an uncritical edge server fails, its end-users can be (partially) taken over by the
most critical edge servers on average. Over the edge server graph, the strength of
fault tolerance achieved by a group of critical edge servers is formally measured
by their Group Degree Intensity (GDI), which will be defined in Sect. 2.1, higher
the better. There is usually a conflict between the scope and the strength of a
fault tolerance strategy.

Figure 1 illustrates an example area with ten edge servers, i.e., {v1,...,v10}-
Each edge server covers a particular geographical area. Their coverage areas
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partially overlap. The end-users located in an overlapping area can connect to
one of the edge servers covering them. In Fig. 1, end-user u; can be served by
either server v; or server vo. When vy or vy fails, uy is taken over by the other
server. This way, v; and vy are mutually and partially fault-tolerated. A fault
tolerance strategy should maximize the number of fault-tolerated edge servers,
i.e., the fault tolerance scope. Similarly, uz can be served by either v; or wy,
Thus, v; and vy are also mutually fault-tolerated. Servers vs and vy together
increase the possibility that v1’s end-users can still be served when v fails, i.e.,
the fault tolerance strength.

There might be multiple fault tolerance strategies to optimize the GDC and
GDI of a group of critical servers while fulfilling the redundancy budget con-
straint. In Fig.1, given a redundancy budget, say 20% of edge servers (i.e.,
two edge servers can be redundant), two possible fault tolerance strategies are
{v1,v2}, which identifies edge servers v; and vs as critical servers, and {vg, v7},
which identifies edge servers vg and v; as critical servers. Now let us compare
aforementioned two strategies in terms of GDC and GDI. Strategy {v1, v2} allows
servers v; and vy to support both vz and v4 upon their failures. The GDC of
{v1,v2} is 2 and GDI is 4. On the other hand, strategy {vs,v;} allows servers
vg and vy to support vs, vg and vip upon their failures. The GDC of {vg,v7} is
3 and GDI is 3. Obviously, neither {v1, v} or {vg,v7} is superior on both GDC
and GDI. Thus, a trade-off is needed for identifying a proper fault tolerance
strategy depending on the edge infrastructure provider’s preferences.

Edge server
Base station

>, End-user not located in
the overlapping area

End-user located in the
overlapping area

Fig. 1. An example ESR scenario

We refer to the above problem as an edge server redundancy (ESR) problem.
In this research, we make the first attempt to investigate and tackle this new
problem with the aim to maximize their harmonic of GDC and GDI so that both
GDI and GDC are taken into account. Solutions to problems remotely similar to
the ESR problem have been investigated, e.g., the backup virtual machine place-
ment problem in cloud computing [11,30] and the critical edge server placement
problem [26]. However, due to the unique characteristics of edge computing,
including the coverage constraint and overlapping constraint discussed above,
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traditional server redundancy strategies designed for cloud computing are not
applicable for edge computing. Meanwhile, existing studies of edge server place-
ment have not considered the robustness of edge server network. Therefore, a
new approach is needed for solving the ESR problem. In this paper, we model
the ESR problem as a variant of the group degree centrality problem [2] and
propose two approaches for solving it exactly and heuristically, respectively. The
major contributions of this paper are as follows:

— The edge servers in an ESR scenario is modelled as an edge server graph.
Based on this graph, the ESR problem is modelled as a variant of the group
degree centrality problem. The concepts of Group Degree Centrality (GDC)
and Group Degree Intensity (GDI) are introduced to measure the fault tol-
erance scope and the fault tolerance strength, respectively. Their harmonic
mean is employed to evaluate the overall effectiveness of a fault tolerance
strategy.

— We theoretically prove the AP-hardness of the ESR problem.

— An optimal approach is designed for solving the ESR problem optimally based
on the Integer Programming technique.

— A heuristic approach is designed for finding sub-optimal solutions to large-
scale ESR problems efficiently.

— Extensive experiments are conducted on a widely-used real-world dataset to
evaluate the effectiveness and efficiency of the proposed approaches against
three baseline approaches.

The remainder of this paper is organized as follows. Section2 models and
formulates the ESR problem. Section3 introduces the proposed approaches.
Section 4 experimentally evaluates the proposed approaches. Section 5 reviews
the related work. Section 6 concludes this paper and points out future work.

2 Problem Statement

2.1 Definitions

In this section, we summarize the notations and give four important definitions
used in this paper. The key notations are described in Table 1.

In this research, we model the edge servers in an ESR scenario as an edge
server graph G = (V, E). A vertex v; € V in the graph corresponds to an edge
server. Vertices v; and v; in G are connected by an edge (v;,v;) € E if their
coverage areas partially overlap. In the remainder of this paper, we will speak
inter-changeably of an edge server and its corresponding vertex in graph G.

The fault-tolerance strategy is defined as follows:

Definition 1 ESR strategy. Given a set of edge servers V.= {vy,...,vn}, an
ESR strategy is a vector X = {x1,...,2n}, where x; (1 < i < n) denotes whether
edge server v; is a critical server to be fault-tolerated, i.e.,

1, if edge server v; is a critical server

(1)

T = . . .,
{07 if edge server v; is an uncritical server
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Table 1. Key notations

Notation Description

C ={ci,ca,...,cx} | Set of critical edge servers, where
ccV,|ICl=k k=1,2,....mym<n

E Set of edges in G representing the corresponding
overlapping areas between edge servers

fi Number of critical edge servers which support uncritical
edge server v;

G=(V,E) Edge server graph

k Redundancy budget

M(C) Set of edges connecting uncritical edge servers to critical
edge servers, which is a subset of E, i.e. M(C) C E

N(C) Set of uncritical edge servers connected to critical edge
servers, which is a subset of V, i.e. N(C) C V

V=A{vi,...,vn} Set of vertices (edge servers) in G

X =A{x1,...,Zn} An ESR strategy

T Whether edge server v; is a critical server (x; = 1) or not
(zi =0)

Yi Whether uncritical edge server v; is supported by at least
one critical server (y; = 1) or not (y; = 0)

Given a group of critical vertices C' C V, the GDC and GDI of C are defined
as follows:

Definition 2 Group Degree Centrality (GDC). The GDC of C, denoted by
gdc(C), is the size of set N(C), i.e., gdc(C) = |N(C)|, where N(C) is the set of
uncritical edge servers that are connected to any critical edge server in C, i.e.,
N(C) ={v; e V\C| (v;,vj) € E,vj € C}.

Definition 3 Group Degree Intensity (GDI). The GDI of C, denoted by gdi(C),
is the size of set M(C), i.e., gdi(C) = |M(C)|, where M(C) is the set of
edges connecting uncritical edge servers to critical edge servers, i.e., M(C) =
{(Ui,'l}j) S | v; € N(C),'Uj S C}

Take strategy X3 = {1,1,0,0,0,0,0,0,0,0} for Fig.1 for example, which
identifies edge servers v; and vy as critical servers. We can obtain that C =
{v1,v2}, N(C) = {vs,v4}, M(C) = {(v1,v3), (v2,v3), (v1,v4), (v2,v4)}. There is
gdc(C) =2 and ¢di(C) = 4.

The effectiveness of a fault tolerance strategy is positively correlated with
both its GDC and GDI. However, there is a conflict between maximizing GDC
and GDI. In general, a high GDC is achieved by distributing fault tolerance
while a high GDI requires concentrated fault tolerance. Thus, there is a trade-
off between GDC and GDI. This trade-off can be managed domain-specifically,
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depending on the edge infrastructure provider’s preference. In this research, we
employ the harmonic mean [6] of GDC and GDI to evaluate the overall effective-
ness of a fault tolerance strategy. This is inspired by the widely-used F1-score
which is the harmonic mean of precision and recall.

Definition 4 Harmonic mean (HM). Given a set of critical vertices C, the har-
monic mean of its GDC and GDI, denoted by HM (C'), is expressed as follows:

_ 2 x Ngdc(C) x Ngdi(C)
AM(C) = =N ae(C) + Ngdi(©)

(2)

where Ngde(C) = 424C) is the normalized GDC and Ngdi(C') = 2% is the

normalized GDI.

2.2 ESR Model

According to Definition 2, GDC in essence represents the number of uncritical
edge servers which share at least one overlapping area with one of critical edge
servers. It is also the total number of uncritical edge servers supported by critical
edge servers. This is the first optimization goal of the ESR problem, i.e., to
maximize gde(C):

mazimize gde(C) (3)

According to Definition 3, GDI indicates the number of overlapping coverage
areas between uncritical edge servers and critical edge servers. It is also the total
number of supports that uncritical edge servers can be obtained from critical
edge servers upon runtime failures. This is the second optimization goal, i.e., to
maximize gdi(C):

maximize gdi(C) (4)

Additionally, the total redundancy cost incurred is quantified by the redun-

dancy budget k, i.e.,
ICl=Fk ()

Finally, as explained in Sect. 2.1, the overall optimization objective of an ESR
problem is to maximize the harmonic mean of normalized GDC and GDI, i.e.,
to maximize HM (C):

maximize HM(C) (6)

2.3 Problem Hardness

In this section, we demonstrate that the ESR problem is NP-hard by proving
the following theorem.

Theorem 1. The ESR problem is N'P-hard.
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Proof. To prove the hardness of the ESR problem, we introduce the maximum
k facility location (MKFL) problem. The MKFL problem is a known A P-hard
problem [19] and it can be defined as follows. Let G’ = (V’, E’) denote a complete
graph, and p'(7, j) € N is the profits of function p’ between vertex ¢ and j, where
i,7 € V'. The formulation of MKFL problem is displayed below:

objective:

Z max p’ (v, f) (7)

s.t.
F C V' with |F| =k (8)

To prove that the ESR problem is NP-hard, we prove that the MKFL prob-
lem can be reduced to an instance of the ESR problem. The reduction can be
done as follows:

1) add |C] nodes as critical edge servers into the edge server graph G = (V, E)
of the ESR problem, i.e.,, V «— CJV;

2) given a set of critical edge servers C, the profit p(v;,v,),v; € V,v; € C equals
to HM(C)/|M(C)| iff edge (v;,v;) € M(C) and 0 otherwise, where |M(C)|
is the number of edges in M(C); Given an instance MKFL(G', p’), we can
construct an instance ESR(G, p) with the reduction above in polynomial time
where |G'| = |G| and p’ = p; For the constraint (8), it is easy to see C C V
of the ESR problem, and k is a special case of the ESR problem. In terms of
the objective of the ESR problem (Eq. (6)), D,y maxcec p(v, c) is the total
profits between a set of critical edge servers C and the edge server graph
G, which is the same as the objective calculated from Definition 4, and the
profit function p equals to p’ of MKFL problem. In this case, any solution Q
satisfied objective (7) and constraint (8), also satisfies the objective (6) and
constraint (5).

In conclusion, solution Q satisfies the reduced ESR problem if Q satisfies the
MKFL problem. Thus, the ESR problem is reducible from the MKFL problem
and it is N'P-hard.

3 Approach Design

3.1 Optimal Approach

To solve the ESR problem exactly, ESR-IP, our optimal approach, models it as
an Integer Programming (IP) problem that consists of a set of variables X =
{z1,...,x,} with a domain D; = {0,1},i = 1,...,n, listing the possible values
for each variable z; € X, and a set of constraints 7 over V. A solution to an
IP problem is an assignment of a value to each variable z; € X from D; such
that all the constraints 7 are fulfilled. To facilitate the calculation of gdc(C) and
gdi(C), in the IP model, we define two additional sets of variables y; (1 <i < n)
and f; (1 <i<n) as follows:

yi=1liffv,e NC) (9)
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fi = {Zvj:(viyvj)eE xj? Ty = 0 (10)

O, .’131':1

where y; indicates that edge server v; is an uncritical server connected to a critical
server over G and f; is the number of critical servers supporting uncritical server
v;, Take strategy X; = {1,1,0,0,0,0,0,0,0,0} for Fig. 1 as an example. We can
obtain that y3 = 1, y5 = 0, f3 = 2 and f5 = 0. Please note that f; = 0 when
2; = 1 in Eq. (10) ensures that the number of edges between each pair of critical
edge servers is not accumulated into GDC and GDI.

Based on N(C) and M(C), we can utilize y; and f; to measure the sizes
of N(C) and M(C). This way, we can rewrite gdc(C) and gdi(C): gde(C) =
Y viev Yir 9di(C) = >, v fi. Now, the IP model of the ESR problem can be
formulated as follows:

2Zvi€V fi EviEV Yi
(n— k)(Zv,,eV fit kY, v ¥i)

objective: maximize

(1)

s.t.
P < xi,Yu; €V 12
Y Z”Ujl('l}i,'l}j)eE 7 ( )
ity <1,V €V (13)
1
T +yi > zj, Vv, €V (14)

- I; vj:(vi,v;)EE

ZMV z; =k, (15)
fi=0—x) Zv'-(v‘v‘)eExj’vvi eV (16)
J- CERe)

Equation (11) is obtained by applying y; and f; to Eq. (6). Constraint (12)
ensures that if y; = 1, there is at least one critical server sharing the overlapping
coverage area with edge server v;, i.e., Eq. (9). Constraint (13) ensures that edge
server v; cannot be both a critical server and an uncritical server. Constraint
(14) ensures that if ; = 0 and y; = 0, none of the edge servers sharing the
overlapping coverage area with server v; is a critical server. I; is a sufficiently
large constant for the tightness of IP relaxation. Here, it is set to k!. Constraint
(15) rewrites constraint (5) and ensures that the number of critical servers is k.
Constraint (16) rewrites the piece-wise function f; as one expression.

The solution to this IP problem is the vector X = {1, ..., 2, } that achieves
(6) while fulfilling (5). Based on X, the edge infrastructure provider can fault-
tolerate the identified critical edge servers to maximize the harmonic mean

! In Constraint (14), there are three possible pairs of values for (z;,v:), i.e., (1,0), (0,1)
and (0,0). If (zi,y:) = (1,0), Zvj:(ui’vj)eExj < k — 1, I can be set to a value
greater than or equals to k — 1 to satisfy Constraint (14). If (z;,y:) = (0,1),
Zvi:(%vj)eE z; < k, I can be set to a value greater than or 