
Methods to Select Features for Android Malware
Detection Based on the Protection Level Analysis

Chaeeun Lee, Eunnarae Ko, and Kyungho Lee(B)

Institute of Cyber Security and Privacy (ICSP), Korea University, Seoul 02841, Korea
{katey95415,eun13,kevinlee}@korea.ac.kr

Abstract. Android’s permission system is asked to users before installing appli-
cations. It is intended to warn users about the risks of the app installation and gives
users opportunities to review the application’s permission requests and uninstall it
if they find it threatening. However, not all android permissions ask for the user’s
decision. Those who are defined as ‘Dangerous’ in the permission protection level
are only being confirmed by the users in Android Google Market. We exam-
ine whether the ‘Dangerous permissions’ are actually being a main component
of detection when it comes to defining the app as malicious or benign. To collect
important features and to investigate the correlation between themalicious app and
the permission’s protection level, feature selection and deep learning algorithms
were used. The study evaluates the feature by using the confusion matrix. We used
10,818 numbers of malicious and benign applications, and 457 permission lists to
investigate our examination, and it appeared that ‘Dangerous’ permissions may
not be the only important factor, and we suggest a different perspective of viewing
permissions.

Keywords: Android application · Permission · Protection level · Malware
detection · Feature selection · Classification · Deep learning

1 Introduction

An investigation report by International Data Corporation (IDC) expects that the overall
smartphonemarketwill reach to 1.511 billion units in 2024. In the same year, theAndroid
market will still be in the first place of the OS Market with 87% share, while Apple’s
iOS will be accounted for second place with 13% share [11]. As of December 2019, the
Google Play Store consists of 2.87 million applications which are consisting of a wide
range of contents, such as music, magazines, books, film, games, and TV [18].

Permissions are divided into four levels of protection level. Among them, dangerous
level permissions are defined as higher-risk permissions, which is required to be con-
firmed by an Android user since they can cause harmful impact to the user and device.
In our paper, we performed a research to examine how effective dangerous level permis-
sions are when detecting malware applications. Therefore, we made a feature selection
of our dataset to see which permissions are being important factors. 70 different types
of permissions were selected via the Weka tool to detect malware applications. We used

© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2020, LNCS 12583, pp. 375–386, 2020.
https://doi.org/10.1007/978-3-030-65299-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65299-9_28&domain=pdf
https://doi.org/10.1007/978-3-030-65299-9_28

376 C. Lee et al.

four different deep learning algorithms to see the accuracy of the detection and calculated
themwith the confusionmatrix. All of the selected features resulted in a high score; all of
them were above 90% accuracy. We now look in-depth to see what kind of permissions
were being selected to be important and figured out what particular protection level was
considered more when detecting malware applications.

2 Background

2.1 The Android Permission System

Android uses permission to protect an Android user’s privacy, so all Android apps must
request permission to alert users about the risks that applications can contain [8]. Per-
missions that are askedmust be approved by the user in order to access to user’s sensitive
data. Android provides API framework for applications to interact with the Android sys-
tem, and API is consisted of packages and classes [15]. If the device’s API level is 23 or
higher, app permissions are notified to users at runtime, and if the device is running under
API level 22, app permissions are automatically asked to users at install-time. Therefore,
users can choose whether they want to accept or deny the permissions request [1]. Per-
missions that are reviewed by users are defined as “Dangerous” permissions, according
to the Android Developer’s protection level. Permissions are categorized into four threat
levels [3], [6]:

Normal permissions are default values. They are lower-risk permissions that are
automatically granted by the system without needing the user’s approval. However, if
needed, users can review these permissions before installing them.

Dangerous permissions are higher-risk permissions that are needed to be reviewed
by the user. These permissions request access to the user’s private data or can control
the device. Since these permissions can cause a negative impact on the user, they are
not automatically granted by the system which means that they are asked for a review
before proceeding. Dangerous permissions potentially have harmful API calls that are
related to the user’s private information. These permissions, for instance, can read and
send user’s text messages.

Signature permissions are granted by the system only if the requesting application
has the same certificate as the application that declared the permission. Permissions are
automatically granted without asking for the user’s review when the certificates match.

SignatureOrSystem permission is an old synonym for signature|privileged which
was deprecated in API level 23. These permissions are used in some special cases and
are granted only to applications in the dedicated folder of the Android system image or
to applications signed with the same certificate as those that have declared permissions.
Since this protection level is sufficient to most cases, permissions in this protection level
can be activated regardless of the exact area of installation.

2.2 Feature Selection

When using machine learning, large data can be redundant or irrelevant. These data
can cause overfitting, increase run time and model complexity, and mislead the learning

Methods to Select Features for Android Malware Detection 377

algorithm. In order to run files in an efficient way, reducing unnecessary features can
help the program perform well with a higher level of accuracy. In particular, permission-
based analysis require feature selectionmethodswith classification algorithms.However,
choosing the right feature selection method is a challenge because the result of feature
selection can be impacted with not only the characteristic of the dataset but also the
interaction with the classification algorithms [17].

The feature selection method is consisted of three types of methods; filter, wrapper,
and embedded method. The filter method removes the least important features one by
one, the wrapper method finds which feature subset has the best performance in running
the algorithm, and the embedded method adds itself a feature selection function [4],
[20].

In our paper, to reduce the dimension size of the dataset, we performed a feature
selection method with the Weka tool. 16 different algorithms were used to get the best
feature set, and with the selected features, we were able to perform permission-based
malware application detection.

3 Related Work

Barrera et al. performed an empirical analysis of the permission-based security models
by analyzing 1,100 popular Android apps with the SOM algorithm. The study was to
find what permissions were used by the Android developers. They found out that out of
many permissions, only a small amount of numbers of permissions are used by them.
Also, they found that permissions do not exactly matter or correlate with the category of
the application [2]. Jesse Obiri-Yeboah et al. discussed how people relate their privacy
issues with the Android permission system, and studied about security issues that come
along [12]. Ontang et al. [14] propose access control policy infrastructure to prevent
applications. They also propose that Android permissions should be in more detail with
notifying some specific requirements for configurations or software versions for instance.
Felt et al. conducted a usability study on the effectiveness of the Android permissions.
The study came upwith the result that permissions do not help users to be informed about
the malware threat that could impact their security [7]. Aung et al. detected malware
applications by extracting permission-based applications at Google’s Play market. They
extracted the data from AndroidManifest.xml files. In order to calculate the accuracy
of their detection method, they compared the performances with true positive, false
positive, precision, and recall rates. J48 and Random Forest outperformed CART [21].
Enck et al. paper proposes Kirin security service to check on the permissions when
installing applications to reduce the risks of malware applications. The study is relied
on developer’s perspective of requesting permissions [5].

4 Data

In order to conduct this research, 6414 benign apps and 4404 malware apps were used.
These applications were collected from 2017 to 2019 by NSHC and Google. Out of 457
lists of permission that were provided byAndroid API features, we have figured out what
permissions were being used for each application that we have. For those permissions

378 C. Lee et al.

that were being used, we marked them as “1”, and “0” for those that weren’t being used,
and saved as a CSV file. In order to perform various algorithms for Feature Selection,
we used all of 457 permissions for features.

10,818 applications that we have collected used 182 different kinds of permissions.
We have matched all of used permissions with protection levels. 23 dangerous per-
missions, 54 normal permissions, 49 signature permissions, and 56 signature|privileged
permissions were used.

We wanted to check howmany protection levels existed in each benign and malware
app in total. We counted the actual numbers of permissions by its protection level.
Out of 6,414 benign applications, and 4,404 malware applications, 10,699 and 22,283
dangerous permissions were used respectively, and the detailed numbers are in Table 1.

Table 1. Percentage of Dangerous Protection Level Permissions

Dangerous Normal signature signature|privileged

Benign App (6,414) 10,699 17,286 800 1,391

Malware App (4,404) 22,283 37,460 8,386 8,829

5 Methodology

5.1 Weka Attribute Selection

To perform Feature Selection, we used WEKA’s Attribute Selection, which is great for
measuring the utility of attributes and finding the subsets that are predictive of the data
[9], [10]. Both wrapper and filter approaches are included in Attribute Selection. For
Attribute Evaluator, for example, correlation-based feature selection, chi-square statis-
tic, gain ratio, information gain, symmetric uncertainty, and support vector machine-
based criterion is provided. For search methods, the best-first search, ranker method,
and random search methods are provided, for example.

In this paper, we have used 16 algorithms for Feature Selection that were provided
in Weka’s interface, and 3 search methods. We are to select those that are the main
features to detect malware applications. The following Table 2 shows which algorithms
and methods were used in Feature Selection.

12 out of 16 algorithms were required to use the ranker method for the search
methods in Weka. Ranker methods rank all the features by their individual evaluations.
Therefore, they ranked all 457 features, which were not intended, so we made another
experiment with python to select the right features for malware detection. We calculated
the accuracy of the first ranked feature. Then, the next ranked feature was added to
calculate the accuracy, and then the next ranked feature was added, and so on until the
program calculates all 457 features. We continued this for 12 algorithms. After all the
features were calculated, we figured out the best feature selection for each algorithm by
the accuracy that they have reached (see Fig. 1).

Methods to Select Features for Android Malware Detection 379

Table 2. Algorithms used for Feature Selection in Weka.

Attribute Evaluator Search Method

CfsSubsetEval BestFirst

ChiSquaredAttributeEval Ranker

ClassifierAttributeEval Ranker

ClassifierSubsetEval GreedyStepwise

CorrelationAttributeEval Ranker

FilteredAttributeEval Ranker

GainRatioAttributeEval Ranker

InfoGainAttributeEval Ranker

OneRAttributeEval Ranker

ReliefAttributeEval Ranker

ConsistencySubsetEval GreedyStepwise

SignificanceAttributeEval Ranker

SVMAttributeEval Ranker

FilteredSubsetEval GreedyStepwise

SymmetricalUncertAttributeEval Ranker

WrapperSubsetEval GreedyStepwise

Fig. 1. An example of Ranker Method feature selection. The circle shows the peak of accuracy.
We selected all features until this point.

In Fig. 1, we are showing one example of how we performed a feature selection
for the ranker method. This figure is about the CorrelationAttributeEval algorithm. The
circle that surrounds the peak of the graph is the 28th feature. It was the highest peak,

380 C. Lee et al.

which eventually means that 28 features all together scored the highest accuracy. We
used this 28 features as a feature set to perform malware detection.

After the peak, when we continue to add permissions to calculate its accuracy, some
do reach up to the point where we first considered to be the highest accuracy. However,
we considered all the results after the peak to be overfitting, so they were not reviewed
in our study.

5.2 Deep Learning Algorithms

After selecting all the features that are relevant to detect malware applications, we now
put it into practice to see the accuracy of detection by using deep learning algorithm.
This method was intended to check if selected features are actually being meaningful
when detecting malware applications. The detection rate could differ by the dataset and
algorithm’s characteristics; we chose four different deep learning algorithms to see the
detection rate; MLP (Multilayer Perceptron), CNN (Convolutional Neural Networks),
LSTM (Long Short-Term Memory), and DBN (Deep Belief Network) [16].

Performance Evaluation Criteria. To evaluate the performance of our features, we
used a confusion matrix, which is a summary of prediction results that are used in the
field of machine learning. We used recall, precision, f-measure, and accuracy [19].

Accuracy calculates the percentage of correctly identified applications as shown in
Eq. (1):

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Recall calculates the percentage of correctly identifying malicious applications as
malicious as shown in Eq. (2):

Recall = TP

TP + FN
(2)

Precision calculates the percentage of actual malicious applications among those
predicted to be malicious as shown in Eq. (3):

Precision = TP

TP + FP
(3)

F-measure calculates the harmonic average of precision and recall as shown in
Eq. (4):

F − measure = 2 ∗ Recall*Precision

Recall + Precision
(4)

6 Results and Evaluation

6.1 Accuracy of Malware Detection

With selected features from Weka’s attribution selection, we evaluated its efficiency
with deep learning algorithms. According to Table 3, all of the detection rates are above

Methods to Select Features for Android Malware Detection 381

90% which scored a high percentage of malware detection. This percentage proves
that the selected features are meaningful to determine malware applications. Selected
features included all protection levels, and 324 permissions were used, with 70 types
of permissions. The confusion matrix was used to calculate the accuracy, and we only
scored the accuracy part on our Table 3.

Table 3. Malware application detection results

CNN (%) MLP (%) LSTM (%) DBN (%)

CfsSubsetEval 94.4778 94.5779 94.2814 92.7911

ChiSquaredAttributeEval 95.5869 96.1799 95.7139 94.4778

ClassifierAttributeEval 94.9399 96.5496 95.0439 93.2070

ClassifierSubsetEval 95.1017 95.1325 94.9168 95.0323

CorrelationAttributeEval 96.7421 97.2274 96.8807 94.8013

FilteredAttributeEval 96.3725 97.0425 95.9681 94.7551

GainRatioAttributeEval 94.9630 96.1491 95.2403 93.7384

InfoGainAttributeEval 96.1414 96.4571 96.1183 94.5702

OneRAttributeEval 96.0259 96.1183 95.9681 93.6922

ReliefAttributeEval 97.2505 97.0425 97.3198 95.6099

ConsistencySubsetEval 97.0425 96.9808 96.9039 95.6099

SignificanceAttributeEval 95.1248 96.2723 95.8872 94.4778

SVMAttributeEval 95.4251 95.0708 95.3905 94.1312

FilteredSubsetEval 94.4547 94.3931 94.0850 92.4445

SymmetricalUncertAttributeEval 97.0656 97.1965 96.6266 94.9399

WrapperSubsetEval 96.7190 97.2581 96.8115 95.5175

From the process of selecting features that are important to detect malware appli-
cations, MLP’s accuracy was all above 94% which performed better than the other
three methods. The highest detection rate was conducted with a combination of
ReliefAttributeEval and LSTM methods.

Out of selected permissions, that were consisted of 370 permissions with 70 different
types,we counted each protection level to seewhich onewasmore used to detectmalware
applications. Table 4 shows exactly counted numbers of protection levels, and it appears
that the normal protection level is more used than a dangerous level. This is based on
permissions.

Out of 70 types of permissions, 19 were dangerous, 22 were normal, 10 were sig-
nature, and 19 were signature|privileged (Table 5). We divided 70 types of permissions
into four protection levels to use for malware application detection.

Four different deep learning algorithmswere used for the detection, and the confusion
matrix was used to calculate the accuracy. Table 6 shows the accuracy.

382 C. Lee et al.

Table 4. Total number of Protection Levels in Selected Features via Weka

Dangerous Normal Signature signature|privileged

of Protection Levels 119 147 54 50

Table 5. Protection Level counted for 70 types of permissions in Feature Selection

Dangerous Normal Signature signature|privileged

of Protection Levels 19 22 10 19

Table 6. Malware application detection with protection level

CNN (%) MLP (%) LSTM (%) DBN (%)

Dangerous 92.4676 92.2982 92.3406 89.2329

Normal 94.0619 94.3007 94.1774 90.5961

Signature 89.2791 88.3240 88.5166 88.3318

signature|privileged 91.1275 91.5280 91.5434 90.1571

When we detected malware applications with protection levels, CNN’s overall per-
formance was good, but the highest accuracy was detected with LSTM, 94.1774%,
with Normal protection level. This would let us assume that permissions with normal
protection are important factors to consider when detecting malware applications.

6.2 Classification

With the accuracy results from what we performed with various feature selection algo-
rithms and deep learning methods, it appeared that Relief Attribute Evaluator and
LSTM method detects higher accuracy. Relief Attribute Evaluator repeatedly samples
the instance and evaluates the value of the attribute by taking the value into account
of the given attribute for the nearest instance of the same and different classes. It can
perform on both discrete and continuous class data [13].

Out of 70 types of permissions that were selectedwith feature selection, wewanted to
investigate which are more important to consider when detecting malware applications,
and figure out what kinds of protection levels exist. Therefore, we chose to follow the
steps we made in 5.1, and used Relief Attribute Evaluator and LSTM for detection.

Relief Attribute Evaluator uses Ranker for the search method, and Fig. 2 shows the
peak of accuracy; 94.66%. 11 permissions as a set scored the highest accuracy when we
ran it through LSTM. 11 permissions are listed in Table 7. We also counted how many
applications have used them, and counted them in two ways; malware applications, and
bothmalware and benign applications. It appears that selected permissions are waymore
used in malware applications.

Methods to Select Features for Android Malware Detection 383

Fig. 2. ReliefAttributeEval’s accuracy. 11 permissions together scored highest.

Table 7. Relief Attribute Evaluator Feature Selection results

ReliefAttributeEval Protection Level Malware/Total

android.permission.BIND_DEVICE_ADMIN signature 2012/2032

android.permission.GET_TASKS normal 2638/2965

android.permission.VIBRATE normal 1780/3420

android.permission.WRITE_SETTINGS signature 2343/2564

android.permission.SEND_SMS dangerous 3668/4055

android.permission.RECEIVE_SMS dangerous 3436/3729

android.permission.READ_SMS dangerous 2832/2960

android.permission.WRITE_SMS normal 2308/2384

android.permission.WRITE_EXTERNAL_STORAGE dangerous 3793/6025

android.permission.READ_PHONE_STATE normal 4077/6073

android.permission.RECEIVE_BOOT_COMPLETED normal 3572/4284

Permissions that were selected again with Relief Attribute Evaluator algorithm con-
sists of 4 dangerous, 5 normal, and 2 signature levels. These selected permissions repre-
sent important factors in determining malware applications. Once again here, the normal
protection level was the most. While dangerous permissions are to ask users to review
their usage, other levels in these selected features are not notified to a user unless users
intend to look up for them. Permissions in Table 7 are all related to user’s privacy and
security, and many permissions were related to SMS and the device. Not only dangerous
level permissions are important factors that users should be noticed and be aware of, but
also all other permission levels. Therefore, we will name lastly selected permissions to
be “Risky”, and other remaining ones rather “Safe”.

384 C. Lee et al.

The result of choosing the right feature selection method with the right deep learning
study varies with the dataset. The suggested study set that we propose is not definitely
the right answer, but we propose a way to select risky features with a way to follow along
(see Fig. 3).

Fig. 3. How to choose risky features when detecting malware applications.

7 Conclusion

As Android has defined each permission with its permission levels, some are required to
be reviewed by the user, and some are not. Dangerous permissions are correlated with
user’s privacy issues, which we would all consider it being a really dangerous factor
when it comes up to detecting malware applications. In our research, we wanted to
find out what features are being considered to be the main elements to detect malware
applications, and proposed a way to follow. To detect malware applications, feature
selection and a way to evaluate it needs to be done. With our data, feature selection
was well done with the Relief Attribute Evaluator method, and malware detection was
done well with LSTM. However, we emphasize that this combination varies with the
character of the dataset. Selected features were closely related to the user’s privacy and
device, but most of the permissions were not required to be reviewed by the user. Four
levels of protection level are classified by the Android Google Homepage, but they are
divided into developer-friendly ways. Users must understand that other levels can also
be dangerous, and change their view of understanding the protection level. Therefore,
in our perspective, we view selected features as the same level, and define it “Risky”.

Our studywas to investigate important features and see how these feature’s protection
level was organized by the developer’s view. How we defined some permissions as

Methods to Select Features for Android Malware Detection 385

“Risky” is just a start of defining them in the user’s view. In future work, some user-
friendly views should be made, and we would like to categorize the views in more
detail. Usability studies and empirical analysis should be conducted to fully understand
the user’s view. Dividing up permissions with the user’s viewwould be another challenge
coming up.

Acknowledgements. “This research was supported by the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-
2015-0-00403) supervised by the IITP (Institute for Information &communications Technology
Planning &Evaluation)”

“This study was supported by a grant of the Korean Heath Technology R&D Project, Ministry
of Health and Welfare, Republic of Korea. (HI19C0866)”

References

1. AndroidDevelopers Homepage. https://developer.android.com/guide/topics/permissions/ove
rview. Accessed 28 May 2020

2. Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A methodology for empirical
analysis of permission-based securitymodels and its application to android. In: Proceedings of
the 17th ACMConference on Computer and Communications Security, CCS 2010, pp. 73–84
(2010)

3. Chin, E., Felt, A. P., Greenwood, K., Wagner, D.: Analyzing inter-application communi-
cation in Android. In Proceedings of the 9th International Conference on Mobile systems,
Applications, and Services, pp. 239–252 (2011)

4. DAS, Sanmay.: Filters, wrappers and a boosting-based hybrid for feature selection. In: ICML,
pp. 74–81 (2001)

5. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification.
In Proceedings of the 16th ACM Conference on Computer and Communications Security,
pp. 235–245 (2009)

6. Enck,W., Ongtang,M.,McDaniel, P.: Understanding android security. IEEE Secur. Priv. 7(1),
50–57 (2009)

7. Felt, A. P., Finifter, M., Chin, E., Hanna, S., & Wagner, D.: A survey of mobile malware in
the wild. In Proceedings of the 1st ACMWorkshop on Security and Privacy in Smartphones
and Mobile Devices, pp. 3–14 (2011)

8. Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permissions: user
attention, comprehension, and behavior. In Proceedings of the Eighth Symposium on Usable
Privacy and Security, pp. 1–14 (2012)

9. Frank, E., et al.: WEKA-a machine learning workbench for data mining. In: Maimon,
O., Rokach, L. (eds.) Data Mining And Knowledge Discovery Handbook, pp. 1269–1277.
Springer, Boston, MA (2009)

10. Hall, M., et al.: The WEKA data mining software: an update. ACM SIGKDD Explorations
Newsletter 11.1 (2009)

11. IDCHomepage. http://www.idc.com/prodserv/smartphone-os-market-share.jsp.Accessed 02
April 2020

12. Obiri-Yeboah, J., Man, Q.: Data security of android applications. In: 2016 12th Inter-
national Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD). IEEE (2016)

https://developer.android.com/guide/topics/permissions/overview
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

386 C. Lee et al.

13. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F.,
De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-57868-4_57

14. Ongtang, M., McLaughlin, S.E., Enck, W., McDaniel, P.D.: Semantically rich application-
centric security in android. In: ACSAC, IEEE Computer Society, pp. 340–349 (2009)

15. Peiravian, N., Zhu, X.: Machine learning for android malware detection using permission and
API calls. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence,
pp. 300–305. IEEE (2013)

16. Samira, P., et al.: A survey on deep learning: algorithms, techniques, and applications. ACM
Comput. Surv. (CSUR) 51(5), 1–36 (2018)

17. Shabtai, A., et al.: “Andromaly”: a behavioral malware detection framework for android
devices. J. Intell. Inf. Syst. 38(1), 161–190 (2012)

18. Statista Homepage. https://www.statista.com/statistics/266210/number-of-available-applic
ations-in-the-google-play-store/. Accessed 28 May 2020

19. Story, M., Congalton, R.G.: Accuracy assessment: a user’s perspective. Photogramm. Eng.
Rem. Sens. 52(3), 397–399 (1986)

20. Lei, Y., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter
solution. In: Proceedings of the 20th International Conference on Machine Learning (ICML
2003), pp. 856–863 (2003)

21. Zarni Aung, W.Z.: Permission-based android malware detection. Int. J. Sci. Technol. Res.
2(3), 228–234 (2013)

https://doi.org/10.1007/3-540-57868-4_57
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

	Methods to Select Features for Android Malware Detection Based on the Protection Level Analysis
	1 Introduction
	2 Background
	2.1 The Android Permission System
	2.2 Feature Selection

	3 Related Work
	4 Data
	5 Methodology
	5.1 Weka Attribute Selection
	5.2 Deep Learning Algorithms

	6 Results and Evaluation
	6.1 Accuracy of Malware Detection
	6.2 Classification

	7 Conclusion
	References

