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Preface

Over the past decades, many advances in information technologies that include
artificial intelligence (AI), 5G, blockchain, Internet of Things (IoT), and many more
provided beneficial effects on various aspects of our lives. However, these advance-
ments are accompanied with even more sophisticated threats to individuals, businesses,
and government’s most valuable data assets. Cybercriminals are also exploiting such
technologies to find vulnerabilities and develop more sophisticated attacks. Therefore,
it is of paramount importance to continuously study, inform, and develop new tech-
niques to ensure information security.

World Conference on Information Security Application (WISA) is one of the main
security research venues hosted by the Korea Institute of Information Security and
Cryptography (KIISC) and sponsored by the Ministry of Science, ICT and Future
Planning (MSIP), and co-sponsored by the Electronics & Telecommunication Research
Institute (ETRI), the Korea Internet & Security Agency (KISA), and the National
Security Research Institute (NSR). Especially in 2020, WISA celebrated the 31st
anniversary for KIISC while going toward its new position as the best contributor to
information security. Additionally, due to inevitable social changes caused by the
COVID-19 pandemic, WISA took a new path in holding the 21st World Conference on
Information Security Applications (WISA 2020). Despite the challenges, WISA con-
tinued to provide an open forum for exchanging and sharing common research interests
through both live and recorded online presentations. The challenges lead to another
opportunity for WISA to provide a platform for sharing results of on-going research,
developments, and application on information security areas.

This volume is composed of the extended version of papers presented at WISA
2020, held at Jeju Island, South Korea during August 26–28, 2020. The primary focus
of WISA 2020 is on systems and network security, including all other technical and
practical aspects of security application. In particular, this year’s conference invited
researchers working on 5G/6G, AI, blockchain, V2X, and advanced IoT who are keen
on bringing the latest open security challenges.

A total of 31 outstanding papers, covering areas such as AI and intrusion detection,
steganography and malware, cryptography, cyber security, application, systems, and
hardware security were accepted for presentation at WISA 2020. This year, WISA
2020 specially included poster presentations which composed of 39 posters. Moreover,
invited keynote talks by Prof. Matt Bishop (University of California, USA), and Prof.
Suman Jana (Columbia University, USA), as well as tutorial talks by Prof. Dan
Dongseong Kim (The University of Queensland, Australia), and Dr. SeongHan Shin
(National Institute of AIST, Japan) augmented the conference.

The great effort and countless dedication of the Organizing Committee and
reviewers, support of the sponsor and co-sponsor, and active participation of all the
participants led to another success story for WISA 2020. We would like to acknowledge



the contribution of each individual Program Committee member. As well as our sincere
gratitude to all the reviewers, authors, and participants around the world for their
unending support.

October 2020 Ilsun You

vi Preface
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Spatially Localized Perturbation GAN
(SLP-GAN) for Generating Invisible

Adversarial Patches

Yongsu Kim , Hyoeun Kang , Afifatul Mukaroh , Naufal Suryanto ,
Harashta Tatimma Larasati , and Howon Kim(B)

Pusan National University, Busan, Republic of Korea
dkgoggog0329@gmail.com, hyoeun405@gmail.com, afifatul.mukaroh@gmail.com,
naufalsuryanto@gmail.com, tatimmaharashta@gmail.com, howonkim@gmail.com

Abstract. Deep Neural Networks (DNNs) are very vulnerable to adver-
sarial attacks because of the instability and unreliability under the train-
ing process. Recently, many studies about adversarial patches have been
conducted that aims to misclassify the image classifier model by attach-
ing patches to images. However, most of the previous research employs
adversarial patches that are visible to human vision, making them easy to
be identified and responded to. In this paper, we propose a new method
entitled Spatially Localized Perturbation GAN (SLP-GAN) that can gen-
erate visually natural patches while maintaining a high attack success
rate. SLP-GAN utilizes a spatially localized perturbation taken from the
most representative area of target images (i.e., attention map) as the
adversarial patches. The patch region is extracted using the Grad-CAM
algorithm to improve the attacking ability against the target model. Our
experiment, tested on GTSRB and CIFAR-10 datasets, shows that SLP-
GAN outperforms the state-of-the-art adversarial patch attack methods
in terms of visual fidelity.

Keywords: Adversarial patch · Generative Adversarial Networks ·
Spatially localized perturbation

1 Introduction

Deep neural networks (DNNs) have been extensively used in various intelligent
systems such as facial recognition, object classification, and disease diagnosis.

This work was supported by Institute of Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korea government(MSIT) (2019-
0-01343, Regional strategic industry convergence security core talent training business).
This research was supported by the MSIT(Ministry of Science and ICT), Korea, under
the ITRC(Information Technology Research Center) support program(IITP-2020-0-
01797) supervised by the IITP(Institute of Information & Communications Technology
Planning & Evaluation).

c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2020, LNCS 12583, pp. 3–15, 2020.
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However, recent works have shown that DNNs are vulnerable to adversarial
attacks, which leads to deep learning models to misbehave in unexpected ways.

The study of adversarial attacks began with adversarial perturbation with
small magnitude added to an image that can cause to be misclassified by DNNs.
In the past years, various works of adversarial perturbation have been developed
using a number of optimization strategies such as Fast Gradient Sign Method
(FGSM) [3], Projected Gradient Descent (PGD) [12], and Carlini & Wagner
(C&W) Attack [2]. However, these methods have limitations that are applicable
only to the digital domain (e.g., security camera systems) because they mainly
focus on directly manipulating the pixels of the input images.

Compared to adversarial perturbation, an adversarial patch is introduced as
an alternative and practical approach to physical domain attacks. Brown et al.
[1] introduced to generate “universal adversarial patches” that can be physically
printed out and put on any images. However, these adversarial patches can be
easily recognized by human vision since they focus only on attack performance,
not visual fidelity.

Liu et al. [10] propose a perceptual-sensitive GAN (PS-GAN) to generate
adversarial examples using generative adversarial networks (GANs), which can
learn and approximate the distribution of original instances [4]. PS-GAN can
simultaneously enhance the visual fidelity and the attacking ability for the adver-
sarial patch using a patch-to-patch translation and an attention mechanism.
Even though the visual fidelity of adversarial patches is improved, they may still
not have a natural appearance compared to the original image.

To address the problem, our paper proposes a new method called Spa-
tially Localized Perturbation GAN (SLP-GAN) to generate invisible adversarial
patches. Our SLP-GAN can generate spatially localized perturbations as adver-
sarial patches that are visually natural with the original images. The patch region
is taken from the most representative area of the input image (i.e., attention map)
using the Grad-CAM algorithm [16] to improve the attacking ability. To evaluate
the effectiveness of our SLP-GAN, we conduct the experiments on GTSRB [18]
and CIFAR-10 [9] datasets using different target models, under white-box and
black-box attack settings. We also demonstrate a physical-world attack experi-
ment on Korean traffic sign mockups. The experimental results show that our
SLP-GAN outperforms the state-of-the-art adversarial patch attack methods in
terms of visual fidelity, maintaining a high attack success rate.

2 Related Work

The attack in Deep Neural Network (DNN) has raised concern for many
researchers due to its fatal impact. Even a slight perturbation added to an image
may cause to be misclassified. In this section, we provide an overview of adver-
sarial perturbation and adversarial patches which is related to our work, and
the overview of Generative Adversarial Networks (GANs), which recently has
gained interest for use as generation methods of adversarial attacks.
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2.1 Adversarial Perturbation

Adversarial perturbation is tiny perturbation added to the image that can cause
to be misclassified by the target model with high confidence [19]. Suppose that
a trained model M can classify an original image x correctly as M(x) = y; by
adding slight perturbation η that could not be recognized by human eyes to x,
an adversary can generate an adversarial example x′ = x+η so that M(x′) �= y.

Qiu et al. [14] and Yuan et al. [22] provide a review of the current attack
and defense technologies based on adversarial perturbation. According to their
reviews, adversarial attacks can be categorized into white-box attack and black-
box attack based on the adversary’s knowledge.

– White-box attacks: Adversary knows all the structure and parameters of the
target model, including training data, model architectures, hyper-parameters,
and model weights. L-BFGS [19], FGSM [3], Deepfool [13] are popular tech-
niques for generating the adversarial examples based on white-box attack.

– Black-box attacks: Adversary has no knowledge about the target model and
considers the target as a black-box system. Adversary analyses the target
model by only observing the output based on a given series of adversarial
examples. Most adversarial attacks are based on a white-box attack, but
they can be transferred to a black-box attack due to the transferability of
adversarial perturbation [23].

2.2 Adversarial Patch

Adversarial perturbation is typically applicable to the digital domain in the
real-world attack scenario. In contrast, an adversarial patch is feasible in the
physical domain because it can be attached to the specific location of the real
object. Brown et al. [1] introduce a method to create a universal, robust, targeted
adversarial patch in real-world applications. The patch can successfully fool a
classifier with a variety of scenes, transformations, and output to any target
class.

Another proposal is a black-box adversarial-patch-based attack called
DPatch. It can fool mainstream object detectors (e.g., Faster R-CNN and YOLO)
that can not be accomplished by the original adversarial patch [11]. They simul-
taneously attack the bounding box regression and object classification.

Both of the adversarial patch methods produce a visible patch that can be
easily recognized by human vision. Therefore, we will focus on the invisibility of
the patch while keeping the applicability in a real-world implementation.

2.3 Generative Adversarial Networks (GANs)

Recent studies have shown that most of the adversarial perturbations and
patches generations rely on optimization schemes. To generate a more percep-
tually realistic perturbation efficiently, many variants of Generative Adversarial
Networks (GANs) [4] have been commonly proposed by researchers.
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Earlier, Goodfellow et al. [4] introduce a framework for estimating generative
models via an adversarial process, which simultaneously trains two models: a
generative model G that captures the data distribution and a discriminative
model D that estimates the probability that a sample came from the training
data rather than G. This discovery, coined as Generative Adversarial Network
(GAN), has since been a big impact in data generation.

In the context of adversarial perturbation generation, Xiao et al. [21] pro-
pose AdvGAN to generate adversarial perturbation with generative adversar-
ial networks (GANs). It can learn and approximate the distribution of original
instances. Once the generator is trained, it can generate perturbations efficiently
for any instance, so as to potentially accelerate adversarial training as defenses.
The attack has placed the first with 92.76% accuracy on a public MNIST black-
box attack challenge.

Liu et al. [10] propose a perceptual-sensitive GAN (PS-GAN) that can simul-
taneously enhance the visual fidelity and the attacking ability for the adversarial
patch. To improve the visual fidelity, the authors treat the patch generation as
a patch-to-patch translation via an adversarial process, feeding seed patch and
outputting a similar adversarial patch with fairly high perceptual correlation
with the attacked image. To further enhance the attacking ability, an attention
mechanism coupled with adversarial generation is introduced to predict the crit-
ical attacking areas for placing the patches. The limitation of PS-GAN is that it
uses a seed patch that is quite different from the original image, so it may still
not seem visually natural.

Our proposed method is to generate a patch from the original input image
using an attention map that maximizes the attack rate while maintaining high
visual fidelity.

3 Spatially Localized Perturbation GAN

In this section, we describe the problem definition and introduce the Spatially
Localized Perturbation GAN (SLP-GAN) framework for generating invisible
adversarial patches.

3.1 Problem Definition

Suppose X ⊆ Rn is a feature space with n number of features. Assume (xi, yi)
is the ith instance in the training dataset with feature vector xi ∈ X and yi ∈
Y corresponding to true class labels. DNN attempts to learn the classification
function F : X → Y. The purpose of the adversarial attack in our study is
to generate the adversarial example xA, which satisfies the equation F (xA) �=
y, where y is the true label of x. Additionally, xA should also be similar to
the original instance x in terms of visual fidelity. The adversarial example xA

is created by attaching a spatially localized patches p to the original data x,
expressed as the equation xA = x + p. Spatially localized itself, in our term, is
defined as the characteristic of perturbation, which is only applied only to some
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specific part instead of the whole image. In the next section, we elaborate on
our proposed method for creating adversarial patches which satisfy the above
criteria.

3.2 SLP-GAN Framework

SLP-GAN. Our proposed structure SLP-GAN is mainly composed of three
parts; a generator G, a discriminator D, and the target model T . In the first
step, our mechanism is similar to the proposal of [21] for generating adversarial
examples with adversarial networks. Generator G takes the original data x as
input and generates perturbation throughout the entire area. Unlike previous
proposals, our method employs additional steps of performing spatially localized
perturbation to create adversarial patches that can be attached to a specific area.
We leverage the Grad-CAM algorithm [16] to extract patch regions and apply
the generated perturbation only to the extracted region. As a result, the spatially
localized perturbation can be treated as adversarial patches p.

The role of discriminator D is to distinguish the original data x and adver-
sarial example xA = x + p. D encourages G to generate perturbation similar to
the original data. Furthermore, G should have the ability to deceive the target
model T . So, the whole structure of SLP-GAN mainly has three loss functions,
the adversarial loss LGAN , the attacking ability loss Latk, the perturbation loss
Lptb. The adversarial loss LGAN can be written as:

LGAN = Ex log D(x) + Ex log(1 − D(xA)). (1)

The above equation shows that the discriminator D aims to distinguish the
adversarial example xA from the original data x. Note that D encourages G to
generate perturbation with visual fidelity due to the above equation. The loss of
attacking the target model T can be defined as follows:

Latk = −Ex�T (xA, y), (2)

where y is the true class of original data x and �T is the loss function (e.g.,
cross-entropy loss) applied to the target model T . We apply the trick to take
the negative of the target model loss function so that the target model cannot
classify the adversarial example xA to the real class y of the original data x.
Additionally, we define the perturbation loss Lptb using a soft hinge loss [8] on
the L2 norm to bound the magnitude of the generated perturbation:

Lptb = Ex max(0, ‖xA‖2 − c), (3)

where c represents the user-specified bound and serves to stabilize the GAN’s
training. Finally, SLP-GAN loss function combined with the above visual fidelity
and attacking ability for the target model can be expressed as:

L = LGAN + αLatk + βLptb, (4)
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Algorithm 1. Training process of SLP-GAN Framework
Input: training image set Ximage = {xi | i = 1, . . . , n}
Output: spatially localized patches P = {pi | i = 1, . . . , n}
for the number of training epochs do

for k steps do
sample minibatch of m images φx = {x1, . . . , xm}.
generate minibatch of m adversarial perturbations φG

x = {G(x1), . . . , G(xm)}.
obtain activation maps M(φx) by Grad-CAM.
extract spatially localized patches P = {G(xi)M(xi) | i = 1, . . . , n}.
create adversarial examples xA = {xi + pi | i = 1, . . . , n}.
update D to maxD L with G fixed.

end for
sample minibatch of m images φx = {x1, . . . , xm}.
create adversarial examples xA (same as above).
update G to minG L with D fixed.

end for

where α > 0 and β > 0 control the contribution of each loss function. The
generator G and the discriminator D in our SLP-GAN are trained by solving
the minimax game represented by the equation minG maxD L. As a result, the
generator G can generate a spatially localized perturbation that can be used as
adversarial patches that satisfy both visual fidelity and attacking ability. Figure 1
illustrates the overall architecture of SLP-GAN, and Algorithm1 describes the
training process of SLP-GAN framework.

Fig. 1. The SLP-GAN framework consists of the generator G, the discriminator D,
and the target model T .
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Spatial Localization. As the attention method to extract a representative area
of the input image, Grad-CAM can lead to good performance [16]. Grad-CAM
produces “visual explanations” from image classification models. It uses the
gradients of any target label flowing into the final convolutional layer to produce
a localization map highlighting the important regions in the input image. To
obtain a class-discriminative localization map, a gradient of the score for class
yc with respect to feature map activation Ak of the target layer.

αc
k =

1
Z

∑

i

∑

j

∂yc

∂Ak
ij

(5)

αc
k indicates the neuron importance weight of the feature map k for the target

class c. We take a weighted sum of forward activation maps, A, with weights
αc
k, and follow it by a ReLU to obtain counterfactual explanations that have a

positive influence on the class of interest.

Lc
Grad−CAM = ReLU(

∑

k

αc
kA

k) (6)

After localizing with class activation mapping (CAM), we take out the bounding
boxes in the activated parts by filtering only the value, which is over 80% of the
intensity of CAM. The acquired bounding boxes are the most representative area
of the target model decision for the input image. In Fig. 2, we get Grad-CAM
visualizations with bounding boxes for traffic signs of the VGG16 model.

Original Grad-CAM Bounding boxes

Fig. 2. Samples of Grad-CAM visualizations and bounding boxes on GTSRB datasets.
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4 Experiments

4.1 Experiment Setup

Model Structure To configure our SLP-GAN framework, we utilize similar
structures for the generator G and the discriminator D with image-to-image
translation as in [8] and [24]. Specifically, the generator G consists of the U-
Net structure, which has an encoder-decoder network. This structure has an
advantage for generating high-resolution images by adding skip connections
between each layer. The discriminator D uses modules in the form of convolution-
BatchNorm-ReLU that increases the generation ability.

Datasets. We use two datasets, GTSRB [18] and CIFAR-10 [9], to evaluate our
SLP-GAN framework. The German Traffic Sign Benchmark (GTSRB) is a large
and lifelike database that contains photos of physical traffic signs with 43 classes
and 50,000 images. CIFAR-10 is also a popular real-world dataset. There are
32×32 color images with ten categories, such as cats and ships.

Target Models. In our experiment, we use VGG16 [17], SqueezeNet1.1 [7],
MobileNetV2 [15], ResNet34 [5], which have good performance in image classi-
fication problems, as target models. We train these target models with GTSRB
and CIFAR-10 respectively. Table 1 shows the classification accuracy of target
models on GTSRB and CIFAR-10.

Implementation Details. We use PyTorch for the implementation and test on
an NVIDIA Titan Xp cluster. We train SLP-GAN for 250 epochs with a batch
size of 128, with an initial learning rate of 0.001, and drop it by 10% every 50
epochs.

Table 1. Classification accuracy of target models on GTSRB and CIFAR-10.

Target model Classification accuracy

GTSRB CIFAR-10

ResNet34 92.1% 94.8%

MobileNetV2 92.3% 94.5%

VGG16 91.9% 92.3%

SqueezeNet1.1 90.8% 91.2%

4.2 Experiment Result

We first evaluate our SLP-GAN in a white-box attack setting, then test it in a
black-box attack setting using the transferability. We also implement in a real
physical environment on Korean traffic sign mockups.
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White-Box Attack. In a white-box attack setting, an adversary knows about
the structure and parameters of the target model to generate adversarial patches
using the Grad-CAM algorithm. To evaluate the attacking ability and the visual
fidelity for our SLP-GAN, we conduct a comparative experiment to AdvGAN
[21], GoogleAP [1], and PS-GAN [10]. We choose these methods for comparison
since AdvGAN and GoogleAP are the representative methods of the adversarial
example and the adversarial patch, respectively, and PS-GAN is the most similar
method to our SLP-GAN for generating adversarial patches. Firstly, we estimate
the attacking performance of each target model on GTSRB and CIFAR-10. We
also measure the SSIM [20] to show how our method satisfies visual fidelity.
SSIM is based on the degradation of structural information, hence performs
better than other simpler metrics such as the mean squared error (MSE) for the
case of assessing the perceived visual quality [6].

Table 2. The comparative experiment result of classification accuracy and SSIM on
GTSRB and CIFAR-10 in the white-box attack setting.

SLP-GAN AdvGAN GoogleAP PS-GAN

Acc SSIM Acc SSIM Acc SSIM Acc SSIM

GTSRB 16.3% 0.963 14.1% 0.925 6.3% 0.824 12.5% 0.871

CIFAR-10 9.2% 0.987 6.7% 0.931 2.7% 0.839 4.9% 0.895

Table 2 shows the classification accuracy of each method for the adversarial
attack about each dataset, and also SSIM between the original data x and the
adversarial example xA to represent the visual fidelity of our adversarial exam-
ples. The classification accuracy means the degree to which each target model
classifies according to the true label of the adversarial example xA. From this
point of view, the lower the classification accuracy, the higher the attack success
rate. We calculated the classification accuracy and SSIM as the average of each
target model: VGG16, SqueezeNet1.1, MobileNetV2, and ResNet34. From the
table, we can conclude that the attacking performance of our SLP-GAN is not
much lower than other methods such as AdvGAN, GoogleAP, and PS-GAN.
Since our method is to add small perturbation to a part of the image, it is
obvious that the attack success rate is slightly lower than other methods. Note
that our SLP-GAN has the highest SSIM value among methods for adversarial
attacks. This indicates our method can generate adversarial patches that satisfy
the visual fidelity, which means humans will have more difficulty to identify our
patches in the original data. Figure 3 shows the adversarial patches generated
by GoogleAP, PS-GAN, and SLP-GAN on GTSRB against VGG16 model. All
of these adversarial examples are misclassified by the target model.

Black-Box Attack. In contrast to the white-box attack, an adversary doesn’t
know about the target model information in a black-box attack setting. We use
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GoogleAP PS-GAN SLP-GAN

Fig. 3. Adversarial patches generated by GoogleAP, PS-GAN, and SLP-GAN on
GTSRB.

the transferability to evaluate our SLP-GAN in a black-box attack instead of
using the target model directly. Table 3 shows the classification accuracy of each
target model using the transferability on GTSRB. We first generate adversarial
patches for source models and then use these patches to attack all other target
models. Note that adversarial examples generated to attack other source models
also significantly reduces the classification accuracy of target models. It means
that our SLP-GAN can encourage transferability among different target models
so that it can perform quite well in a black-box attack setting.

Table 3. Classification accuracy of each target model using the transferability on
GTSRB.

Target models

VGG SqueezeNet MobileNet ResNet

Source models VGG 18.7% 27.3% 34.7% 31.2%

SqueezeNet 21.8% 14.9% 26.5% 28.4%

MobileNet 30.6% 23.8% 17.1% 26.2%

ResNet 27.9% 31.1% 24.4% 14.5%

Physical-World Attack. We conduct a physical-world attack experiment to
verify that our SLP-GAN is actually applicable. We use Korean traffic sign mock-
ups with a size of about 15× 15 cm and ten classes. We first take 100 pictures for
each traffic sign mockup with varying distances and angles and then train the
ResNet18 as a target model using these images. The classification accuracy of
the target model on these images is 97.8% after training. We take 100 pictures
randomly and generate adversarial patches for each image through SLP-GAN.
After printing these patches, we attach them to the traffic sign mockups and
take photos again for each mockup with the patch attached. Table 4 shows the
physical-world attack result of traffic sign mockups with and without adversar-
ial patches and the classification results. The adversarial patches generated by
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SLP-GAN decrease the classification accuracy of the target model from 97.8%
to 38.0% on average. Although the results show that the physical-world attack
works quite well using our SLP-GAN, it can be seen that the attack perfor-
mance is slightly lower compared to the white-box attack because of real-world
distortion due to lighting conditions, various distances and angles.

Table 4. The physical-world attack result of traffic sign mockups with and without
adversarial patches generated by SLP-GAN.

Original Adversarial Original Adversarial

Roadworks Danger School Zone No Jaywalking

No Jaywalking Motorway Bike path Curfew

5 Conclusion

In this paper, we propose a spatially localized perturbation GAN (SLP-GAN) for
generating invisible adversarial patches. We extract the target region to place
an adversarial patch that can maximize the attack success rate by using the
Grad-CAM algorithm. The experimental results show that SLP-GAN generates
robust adversarial patches with high attack performance and a visually natural
property under white-box and black-box attack settings. Validation of our model
on GTSRB and CIFAR-10 datasets in the white-box attack implies that in terms
of visual fidelity, SLP-GAN surpasses the performance of other patch attack
methods by 13.9% and 3.8% compared to AdvGAN and GoogleAP, respectively.
Additionally, our method can also perform quite well in a black-box attack and
physical-world attack since it can encourage transferability and generality, as can
be seen from the experimental results. In future work, we plan to complement our
SLP-GAN to be robust enough to increase the physical-world attack success rate
and survive real-world distortions due to various angles, distances, and lighting
conditions.
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Abstract. A crypto ransomware usually encrypts files of victims using
block cipher encryption. Afterward, the ransomware requests a ransom
for encrypted files to victims. In this paper, we present a novel defense
against crypto ransomware by detecting block cipher encryption for low-
end Internet of Things (IoT) environment. The proposed method ana-
lyzes the binary code of low-end microcontrollers in the base-station (i.e.
server) and it is classified in either ransomware virus or benign software.
Block cipher implementations from Lightweight block cipher library (i.e.
FELICS) and general software from AVR packages were trained and evalu-
ated through the deep learning network. The proposed method successful
classifies the general software and potential ransomware virus by identi-
fying the cryptography function call, which is evaluated in terms of recall
rate, precision rate and F-measure.

Keywords: Ransomware virus · Deep learning network · Block cipher
encryption · Static analysis

1 Introduction

In 2017, WannaCry ransomware virus spread to Microsoft Windows users
through the vulnerability of file sharing protocol [1]. The Wannacry ransomware
attack was one of the largest attack, which was estimated to have affected more
than 200,000 computers across 150 countries.

The ransomware is largely classified into two sets, including locker ran-
somware and crypto ransomware. The locker ransomware locks the victim’s
device, which is unable to use the device anymore [2]. However, the data is
not modified. For this reason, the data can be recoverable by copying the data
to other devices.

The crypto ransomware encrypts files of victim’s devices. Since the cryptog-
raphy algorithm is designed to be secure theoretically, there is no way to recover
the file without valid secret key. In order to receive the secret key, the victim
need to pay the ransom to the hacker. With this secret key, the victim retrieve
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2020, LNCS 12583, pp. 16–30, 2020.
https://doi.org/10.1007/978-3-030-65299-9_2
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original files. The ransomware virus has became a massive threat of people with
digital devices, as every user is moving towards digitization. To prevent from
these cyber threats, many researchers have published the ransomware recovery
and detection methods.

In [3], four most common crypto ransomwares were analyzed. They identified
all ransomware viruses relied on system tools available on the target system. By
generating shadow copies during execution of tools, the file recovery process is
available.

The ransomware detection is simply classified in network traffic analysis and
function call analysis. For the accurate detection, the machine learning method
is actively studied for the ransomware detection. In [4], they analyzed the ran-
somware network behavior and packet selection to identify the ransomware virus.
In [5], they evaluated shallow and deep networks for the detection and classifi-
cation of ransomware. To characterize and distinguish ransomware over benign
software and ransomware virus, they analyzed the dominance of Application
Programming Interface (API). In [6], they presented a multi-level big data min-
ing framework combining reverse engineering, natural language processing and
machine learning approaches. The framework analyzed the ransomware at dif-
ferent levels (i.e., Dynamic link library, function call and assembly instruction
level) through different supervised ML algorithms.

Due to the nature of crypto ransomware, many works focused on the cryp-
tography function. In [7], they performed fine-grained dynamic binary analysis
and used the collected information as input for several heuristics that charac-
terize specific, unique aspects of cryptographic code. In [8], they presented a
novel approach to automatically identify symmetric cryptographic algorithms
and their parameters inside binary code. Their approach is static and based on
Data Flow Graph (DFG) isomorphism. In [9], they targeted public key crypto-
graphic algorithms performed by ransomware. By monitoring integer multipli-
cation instructions of target system, the public key encryption by ransomware
was detected.

However, previous works paid little attention on the architecture of block
cipher and there are not many works on the defense against ransomware on
low-end Internet of Things (IoT) environment. In this paper, we present a novel
defense against crypto ransomware by detecting block cipher encryption on low-
end IoT environment. The proposed method analyzes the binary code of low-end
microcontrollers and the binary code is classified in either potential ransomware
virus or benign software. Block ciphers from Lightweight block cipher library (i.e.
FELICS) and general software from AVR packages for low-end microcontrollers
were trained and evaluated through the deep learning network. The proposed
method successful classifies the benign software and potential ransomware virus,
which is evaluated in terms of recall rate, precision rate and F-measure. Detailed
contributions are as follows:



18 H. Kim et al.

1.1 Contribution

Deep Learning Based Crypto Ransomware Detection for Low-End
Microcontrollers. By classifying the cryptographic function code and general
code, the potential ransomware virus is efficiently detected. In order to apply
the deep learning network, the binary file is transformed to the image file, where
the deep learning network has a strength in image classification.

Experiments with Several Options for High Accuracy. In order to achieve
the high accuracy for the classification, several options are evaluated. Instruction
and opcode based binary extraction are compared to show the performance.
Afterward, each GCC optimization option is evaluated to find the proper option.

In-Depth Analysis of Instruction Sets for Block Cipher Implementa-
tion on Microcontrollers. There are a number of block ciphers. We classify
block cipher algorithms into two sets, including SPN structure and ARX struc-
ture, by observing distinguished features between them. This classification rule
improved the performance, significantly.

The remainder of this paper is organized as follows. In Sect. 2, the back-
ground of crypto ransomware detection techniques for low-end microcontrollers
is covered. In Sect. 3, we present a novel approach to defense against crypto
ransomware by detecting block cipher encryption. In Sect. 4, the performance of
proposed methods in terms of detection accuracy is evaluated. Finally, Sect. 5
concludes the paper.

2 Related Works

2.1 Ransomware on IoT World

With the rapid development of Internet of Things (IoT), strengthening the secu-
rity and preventing ransomware virus have become a fundamental building block
for success of services [10]. There are many works to be secure the IoT envi-
ronment. In [11], they presented a machine learning based approach to detect
ransomware attacks by monitoring power consumption of Android devices. The
method monitors the energy consumption patterns of different processes to clas-
sify ransomware from benign applications. In [12], they presented a deep learning
based method to detect Internet Of Battlefield Things (IoBT) malware through
the device’s opcode sequence. They converted opcodes into a vector space and
apply a deep Eigenspace learning approach to classify ransomware and benign
application. In [13], they presented a Cryptowall ransomware attack detection
model based on the communication and behavioral of Cryptowall for IoT envi-
ronment. The model observes incoming TCP/IP traffic through web proxy server
then extracts TCP/IP header and uses command and control (C&C) server black
listing to detect ransomware attacks. In [14], they presented the method to trans-
form the sequence of executable instructions into a grayscale image. Afterward,
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Table 1. Comparison of ransomware detection techniques based on cryptographic
function call.

Features Gröbert et al. [7] Lestringant et al. [8] Kiraz et al. [9] This Work

Target Block & PKC Block Cipher PKC Block Cipher

Analysis Dynamic Static Dynamic Static

Method Heuristics Data graph flow System monitor Deep learning

Machine Desktop Desktop Desktop Microcontroller

the statistical method is used for separating two or more classes along with
dimension reduction.

However, previous ransomware detection focused on high-end IoT devices. A
number of IoT devices are equipped with low-end microcontrollers, which collect
the data in distance. This is one of the most important role of IoT applications.
For this reason, the ransomware detection mechanism for low-end IoT devices
should be considered. In this paper, we present the novel ransomware detection
mechanism for low-end microcontrollers. In order to classify the ransomware,
we transform the binary code into image file. Afterward, the image is classified
through deep learning network.

2.2 Previous Ransomware Detection Techniques Based
on Cryptographic Function Call

Ransomware encrypts victim’s files with cryptographic function. For this reason,
classifying the cryptographic function is important for ransomware detection.

In Table 1, the comparison of ransomware detection techniques based on cryp-
tographic function call is given. In [7], block cipher and public key cryptogra-
phy are detected by analyzing features of cryptographic functions. The method
is heuristics depending on the implementation. In [8], the data graph flow is
extracted from binary code. Sub-graph isomorphism is utilized to identity the
cryptographic function call. In [9], public key cryptography, such as RSA, is
detected by monitoring the multiplication instruction, which is heavily called in
RSA algorithm. However, previous works do not explore the deep learning based
ransomware detection. Recently, the work by [15] shows that deep-learning algo-
rithm can improve the malware detection. However, the method is not targeting
for ransomware and target platform is desktop. In this work, we firstly present
the crypto ransomware detection for microcontrollers.

2.3 Block Cipher Implementation on Microcontrollers

A benchmarking framework of software based block cipher implementations
named Fair Evaluation of Lightweight Cryptographic Systems (FELICS) was
introduced by Luxembourg University in 2015 [16]. More than one hundred
block cipher implementations on low-end IoT devices were submitted to FELICS
by world-wide cryptographic engineers. In this paper, we utilized block cipher
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implementations of FELICS. The target low-end microcontroller is 8-bit AVR
ATmega128, which is the most low-end IoT platform. The microcontroller is
an 8-bit single chip based on the modified Harvard architecture developed by
Atmel. The unit size of its registers and instructions is 8-bit wise. The block
cipher can be largely categorized in Substitution-Permutation-Network (SPN)
and Addition, Rotation, and bit-wise eXclusive-or (ARX). International block
cipher standard, namely AES, is based on SPN architecture, while lightweight
block ciphers, such as LEA, HIGHT, SIMON, and SPECK, follow ARX archi-
tecture due to high performance and simple design [17–20]. In this paper, we
utilized distinguished features of both architectures to classify the binary code.

3 Proposed Method

This paper describes a method for detecting ransomware through binary files for
low-end IoT-based embedded systems. Generally, the structure of sensor network
is based on tree-structure [21]. The powerful root-node (i.e. base station) man-
ages the structure and the leaf node (low-end IoT) collects the sensor data. The
base station regularly updates the firmware of leaf nodes. When the hacker inter-
cepts the packet between base station and firmware server and installs crypto
ransomware to the firmware, the base station should detect the ransomware
before deployment. In this scenario, the proposed method detects ransomware
by classifying the binary file of the supplied firmware through a convolutional
neural network. This approach distinguishes crypto ransomware from benign
firmware depending on the existence of an encryption process. We can extend
this approach to self-defense on the middle-end IoT, such as raspberry pi. The
device can perform CNN on its machine through tensorflow1.

The proposed system configuration for ransomware detection is shown in
Fig. 1. Assembly instructions and the opcodes are extracted from the binary file
and converted into image for deep learning training. In the test phase, if the
encryption process is detected, it is classified as crypto ransomware. Overall, the
proposed method consists of creating an image from binary code and two phases
of deep learning.

3.1 Binary Code Based Image Generation

Instructions for images to be used for training are obtained by analyzing the
binary files. Assembly instructions are a combination of opcode and operand,
and operand area may specify different registers each time even though the same
source code is compiled. In Fig. 2, the opcode is extracted from the instruction.
Afterward, the extracted opcode is converted into an image file to generate data
for training.

Since the binary code varies depending on the optimization option, data
sets are created by compiling for each option. If the pattern of the opcode are
similar, similar characteristics will be created. These features are trained in the
deep learning phase.
1 https://www.tensorflow.org/install/source rpi?hl=ko.

https://www.tensorflow.org/install/source_rpi?hl=ko
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Fig. 1. System configuration for proposed method.

Table 2. Deep learning training hyperparameters.

Hyperparameters Descriptions Hyperparameters Descriptions

pretrained model Inception-v3 epochs 20

loss function Categorical crossentropy steps per epoch 10

optimizer RMSprop(lr= 0.001) batch size 5

active function ReLu, Softmax train, validation and test ratio 0.7, 0.2, 0.1

3.2 Deep Learning

The deep learning phase is divided into training phase and detection phase. A
convolutional neural network known for its excellent image classification perfor-
mance is used as a deep learning model. Inception-v3 is used as a pre-trained
model, and this model performs well even on small data sets. Three fully con-
nected layers are added to pre-trained weights to adjust the classification prob-
lem. In addition, a suitable model that is not over-fitting to a specific data set is
selected through 10-fold cross validation. Grid search is performed on the selected
model to tune to the optimal hyperparameter for the model and dataset. The
detailed values are given in Table 2. Since it is a multi-class classification, the
Softmax activation function is used in the output layer. ReLU is used, which is
mainly used in hidden layers and is faster than other activation functions.
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(a) binary extraction from lss file (b) conversion from binary to image

Fig. 2. Binary code based image generation.

Training Phase. In the proposed method, block cipher algorithms are tar-
geted. There are two types of classification method as shown in Fig. 3. One is to
detect the ransomware by classifying each cryptographic algorithm and benign
firmware. The other is to classify ransomware and general firmware after train-
ing by combining algorithms of the same structure into one category. According
to previous methods, a data directory is configured, and the data is reshape to
150 × 150 pixels through pre-processing before being used as input data to the
convolutional neural network.

The input layer and the hidden layer have a structure in which the convolu-
tion layer and the pooling layer are repeated. In the two dimensional convolution
layer, the filter and the input image perform a convolution operation to extract
features for the input image. In the max pooling layer, the output of the previ-
ous layer is divided into a window size, and the maximum value for each area is
selected. By repeating the feature extraction process, the feature of the crypto-
graphic algorithm included in each image is learned. Then, it is transferred to a
fully-connected layer. Afterward, it is transformed into a one-dimensional array.
Finally it enters into a classification phase for detection.

Ransomware Detection Phase. It is a phase to classify into labels for each
input image by the Softmax activation function. The result of the classification
is the probability value for each class. The input image is finally classified as the
top-1 class with the highest probability.

Before checking the classification results of untrained test data, the perfor-
mance of the validation data should be measured. If it is verified that it is an
appropriate model, test data set not used for training is inputted to a trained
CNN model. Test images are generated from a binary file of a block cipher or
general program.

For the block cipher program, the test data has characteristics similar to the
training data by the pattern of the instruction used and the repetition of rounds.
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Fig. 3. Detailed deep learning phase for proposed method

As mentioned earlier, such characteristics can be classified by cryptographic
structure (SPN and ARX) or each cryptographic algorithm. If it is classified as
a cryptographic algorithm, it is judged as ransomware. It can block the instal-
lation to IoT devices. In other words, block ciphers and general programs are
classified by weight values trained by image-based deep learning. Through the
proposed framework, we can detect the potential ransomware virus for low-end
IoT devices.

4 Evaluation

For the experiment, Google Colaboratory, a cloud-based service, was utilized.
It runs on Ubuntu 18.04.3 LTS and consists of an Intel Xeon CPU with 13 GB
RAM and an Nvidia GPU (Tesla T4, Tesla P100, or Tesla K80) with 12 GB
RAM. In terms of programming environment, Python 3.6.9, tensorflow 2.2.0-rc
and Keras 2.3.1 version are used. In order to create the dataset required for
the experiment, we created a program that extracts instructions and opcodes of
specific functions from the lss file. And instruction and opcode were converted
to BMP image files using open source on github2.

In Table 3, the experiment targets binary files of general firmware and block
ciphers (e.g., SPN and ARX) in low-end embedded environment. Cryptographic

2 https://github.com/Hamz-a/txt2bmp.

https://github.com/Hamz-a/txt2bmp
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Table 3. Dataset (block ciphers and general firmware).

Architecture Descriptions of programs

SPN AES, RECTANGLE, PRESENT, PRIDE, PRINCE

ARX HIGHT, LEA, RC5, SIMON, SPECK, SPARX

General Bluetooth, GPS, WiFi, RFID, XBee, etc.

modules written in C language among implementations of FELICS (Fair Eval-
uation of Lightweight Cryptographic System) are selected. In the case of gen-
eral firmware, programs, such as WiFi, Bluetooth, xBee, and RFID, are mainly
obtained.

Since the crypto ransomware performs an encryption process unlike ordinary
firmware, we extract the instructions and opcodes of the encryption function
from binary file. As shown in Fig. 4, instructions and opcodes are converted into
image files. SPN using S-box has a more complicated structure than ARX. In
addition, it is possible to visually confirm that there is a common characteristic
for each architecture. We trained these features using the CNN and progressed
experiments to classify cryptographic algorithms and general firmware.

Since this experiment uses an unbalanced data set, it is commonly evaluated
through the F-measure, which is a harmonic mean of precision and recall rather
than accuracy. There are micro averaged and macro averaged in the F-measure.
The micro averaged method considers the number of data belonging to each
class. The macro averaged method considers all classes with the same weight.
Therefore, results of macro method are a slightly lower measurement in the case
of an unbalanced dataset.

4.1 Instruction-Based vs Opcode-Based

Since our proposed system classifies each cryptographic module according to the
instruction (e.g. pattern of operation type and number of times) performed by
encryption, the method of extracting the encryption part from the binary file
is largely based on instruction and opcode. In the case of instruction-based, the
opcode and operand are extracted together. In order to compare the perfor-
mance, only opcode part, which is the actual operation, is extracted.

As shown in Fig. 5, training loss and validation loss decreases smoothly with-
out significant difference. The training data has not been over-fitted. In the case
of opcode based, the overall loss value was calculated less than instruction based
approach.

After verifying the model with the data used in the training, the test data,
which was not used in the training through the model is predicted. In Table 4,
detailed results are given. By classifying with the test set, the instruction-based
performance was slightly better. However, in the case of opcode-based, the stan-
dard deviation is 0.12, which has more stable performance. It indicates that the
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(a) AES (b) PRESENT (c) PRINCE

(c) RC5 (d) SIMON (e) SPECK

(f) xBee (g) GPS (h) WiFi

Fig. 4. Images of binary files.
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Fig. 5. Training and validation loss depending on instruction and opcode; left: instruc-
tion, right: opcode.
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method of extracting only the opcodes specifying the actual operation is more
effective in finding the instruction pattern of the binary file (Table 5).

Table 4. Validation and test on instruction and opcode.

Target Validation Test

F-measure Precision Recall F-measure Precision Recall

micro macro micro macro micro macro micro macro micro macro micro macro

Instruction 0.91 0.84 0.91 0.87 0.91 0.95 0.80 0.60 0.80 0.60 0.80 0.60

Opcode 0.96 0.93 0.96 0.92 0.96 0.94 0.77 0.58 0.77 0.59 0.77 0.60

Table 5. Validation and test on GCC optimization options.

Op. Validation Test

F-measure Precision Recall F-measure Precision Recall

micro macro micro macro micro macro micro macro micro macro micro macro

O0 0.96 0.93 0.96 0.92 0.96 0.94 0.77 0.58 0.77 0.59 0.77 0.60

O1 0.90 0.81 0.90 0.80 0.90 0.85 0.85 0.79 0.85 0.82 0.85 0.81

O2 0.92 0.89 0.92 0.90 0.92 0.9 0.81 0.67 0.81 0.69 0.81 0.68

4.2 GCC Optimization Option

After compiling with optimization option for each encryption algorithm, an
opcode-based classification experiment was performed. For the experiment, the
GNU AVR-GCC compiler and O0, O1 and O2 options were used.

Binary files used in the experiment were not changed significantly depend-
ing on the optimization option. However, the classification performance changed
slightly depending on the optimization level. As shown in Fig. 6, the loss value
was reduced without over-fitting as a whole. As a result of classifying the
untrained test data, the optimization option O1 showed the best performance.

Table 6 shows the result of sorting the command used for each structure in
the order in which they are used frequently. In the case of the SPN structure, the
pattern of LD-XOR-ST is common in the part where S-box operation is performed,
and operations to access the memory frequently occurred. In the ARX structure
based on addition, rotation and exclusive-or operation, the ratio of arithmetic
and logical operations, such as ADD, XOR, SUB were frequently performed. In the
case of general firmware, there are many instructions to activate the interrupt
function and to access the I/O register, not found in the encryption code, and the
ratio of branch statements was largest among them. When applying the higher
optimization option, it seems that the instruction pattern, count, and order that
are effective for classifying each algorithm through the CNN model have changed
slightly, affecting classification performance.
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Cryptography algorithms of the same structure share similar instruction pat-
terns. Since block cipher algorithms repeat rounds, certain patterns are repeated.
Therefore, the BMP image generated based on the opcode also has a pattern.
For this reason, cryptographic algorithm is successfully classified through the
proposed approach.
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Fig. 6. Training and validation loss depending on optimization option; left: O0, middle:
O1, right: O2.

Table 6. Frequently used instructions for each architecture.

Architecture
Ordered by frequency in program

1 2 3 4 5 6 7 8

SPN LD ST MOV XOR ADD SUB AND SWAP

ARX LD ADD XOR MOV ST SUB ROR RJMP

General LD RJMP BNE CP OUT NOP MOV SEI

4.3 Block Cipher Vs General

In this experiment, block cipher algorithms are divided in two design groups (i.e.
SPN and ARX) to classify ransomware or general firmware.

In Table 7, F-measure for each option is given. The CNN model is properly
fitted at high speed. The loss value decreases. When the epoch exceeds 10, the
loss value converges to almost 0.00 (See Fig. 7).

The previous experiment does not properly classify, because the instructions
used in cryptographic algorithms of the same architecture have similar patterns.
By dividing the block cipher into two structures (i.e. SPN and ARX), the pro-
posed method achieved better performance than classifying each block cipher
module. Among the test data, the recognition of cryptographic algorithm as
general firmware occurred once in the case of optimization options O0 and O2,
respectively. The recognition of general firmware as cryptographic algorithm
occurred once in O0. It accurately predicted test data in optimization option O1.
The ransomware can be detected with a high overall probability for all optimiza-
tion options.
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Table 7. Validation and test depending on architectures (SPN, ARX, or general).

Op. Validation Test

F-measure Precision Recall F-measure Precision Recall

micro macro micro macro micro macro micro macro micro macro micro macro

O0 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.91 0.94 0.91 0.94 0.95

O1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

O2 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.99 0.98 0.99
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Fig. 7. Training and validation loss depending on classification rule and (i.e. SPN,
ARX, and general program) optimization option; left: O0, middle: O1, right: O2.

5 Conclusion

In this paper, we presented a novel approach to detect ransomware virus through
classification of block cipher module for low-end microcontrollers. The binary
code is converted to image file and deep learning network is applied. By observing
the specific features of SPN and ARX architectures, block cipher classification is
divided into two categories. This approach significantly improved the accuracy.
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Abstract. Completely Automated Public Turing test to tell Computers
and Humans Apart (CAPTCHA) is a challenge that is used to distinguish
between humans and robots. However, attackers bypass the CAPTCHA
schemes using deep learning (DL) based solvers. To defeat the attack-
ers, CAPTCHA defense methods utilizing adversarial examples that are
known for fooling deep learning models have been proposed.

In this paper, we propose an efficient CAPTCHA solver that period-
ically retrain the solver model when its accuracy drops. The proposed
method uses incremental learning that requires a small amount of data
while achieving high accuracy. We demonstrate that the proposed solver
bypasses the existing defense methods based on a text-based CAPTCHA
scheme and an image-based CAPTCHA scheme.

Keywords: CAPTCHAs · Adversarial examples · Adversarial
training · Incremental learning · ML security

1 Introduction

Completely Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA) systems produce challenges that are easy to solve for humans but
difficult for robots. The most common and widely used CAPTCHA schemes are
text-based and image-based CAPTCHAs, and these schemes are widely used in
popular websites.

Text-based CAPTCHAs have been the most commonly used before the era
of deep learning. The major websites have adopted these text-based schemes
to filter out spam robots. However, a number of recent studies demonstrated
that deep learning (DL) based solvers can easily bypass text-based CAPTCHA
schemes [2,20,21]. Despite the text-based CAPTCHA schemes are vulner-
able to DL-based solvers, many major websites are still using their own
text-based CAPTCHA schemes. Meanwhile, image-based CAPTCHA schemes
such as Google’s reCAPTCHA v2 also have been adopted by major web-
sites. Recent studies showed DL-based object detection techniques can bypass
the reCAPTCHA v2 [8,17]. Those DL-based automated solvers can solve
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CAPTCHA problems with higher efficiency than human labor solver services
on both text-based and image-based CAPTCHA schemes [8].

To defend against the DL-based solvers, defense studies have focused on the
ways to improve security while maintaining the usability of existing CAPTCHA
schemes. The DeepCAPTCHA algorithm utilizes the IAN generation method for
misleading DL-based solvers [12]. The IAN generation method is fast enough to
be used in a real-time CAPTCHA generation system and sufficient to disrupt
attackers who are based on pre-trained DL models. The Adversarial CAPTCHAs
framework proposed also the ways to insert more powerful adversarial exam-
ples into CAPTCHA schemes [16]. These defense methods dynamically change
the distribution of the CAPTCHA images using adversarial examples to defeat
attackers using pre-trained models.

In this paper, we propose an efficient and robust DL-based solver using the
incremental learning process. The proposed method retrains a DL model when
a significant accuracy drop is observed. The significant accuracy drop implies
that the distribution of CAPTCHA images is changed. We use the incremental
learning process to retrain the solver to preserve accuracy on both of the origi-
nal distribution and the changed distribution. The incremental learning process
requires a small amount of additional data which is only 2% of the number of
the original training dataset.

We evaluate the proposed method with accuracy on two datasets: original
CAPTCHAs and adversarial CAPTCHAs. For text-based CAPTCHAs, the pro-
posed method demonstrates 86.49% accuracy for the original dataset and 70.14%
accuracy for the adversarial dataset. For image-based CAPTCHAs, the proposed
method demonstrates 87.37% accuracy for the original dataset and 78.19% accu-
racy for the adversarial dataset. Compared with two previous works, the pro-
posed method shows higher accuracy on the original dataset than the preprocess-
ing method [12] and higher accuracy on the adversarial dataset than the adver-
sarial training method [16]. Moreover, the proposed method requires about 5.5
times smaller training time overhead compared with the adversarial training [16].

Our paper achieves the following contributions:

– We propose an efficient CAPTCHA solver using the incremental learning pro-
cess. To the best of our knowledge, we are the first to demonstrate incremental
learning for the DL-based solvers against adversarial CAPTCHAs.

– We conduct extensive experiments on a well-known CAPTCHA library and
image recognition tasks equipped with the existing solver defense methods.

2 Background

2.1 CAPTCHA Schemes

There exist various CAPTCHA schemes such as text-based, image-based, audio-
based, and game-based CAPTCHAs. Among them, we focus on the most com-
monly used text-based and image-based CAPTCHAs (see Fig. 1) [17,18,21].
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Text-based CAPTCHA Image-based CAPTCHA

Fig. 1. Examples of CAPTCHA schemes.

Text-Based CAPTCHA. A text-based CAPTCHA is the first introduced
scheme to block automated robots. It presents an image including several char-
acters, then users have to type the characters correctly to prove that they are
not robots. However, text-based schemes are vulnerable to DL-based attacks,
even to widespread optical character recognition (OCR) tools. To make this
scheme robust, many defense methods such as character overlapping, hollow the
line, and character rotation have been proposed [3]. Attackers have developed
DL-based solvers to break through these defenses. A simple convolution neural
network (CNN) can defeat fixed-size text-based CAPTCHA, and the long short-
term memory (LSTM) network can also be used for bypassing variable-sized
text-based CAPTCHA [14,22].

Image-Based CAPTCHA. An image-based CAPTCHA is motivated by the
vulnerability of text-based CAPTCHA schemes. This scheme requires users to
select one or more images with specific semantic meanings from several candi-
date images. Recognizing the semantic of images is more difficult than that of
text, thus it was more resilient to automated attacks. However, as the perfor-
mance of neural networks explodes, recent studies have demonstrated that CNN
and R-CNN can respectively bypass image classification CAPTCHAs and object
detection CAPTCHAs [8,17].

2.2 Adversarial Attacks

As the processing power of a GPU grows, deep learning based methods have
led to impressive performances on various challenging perceptual tasks, espe-
cially image classification and image recognition. DL-based methods are, how-
ever, vulnerable to adversarial examples. Inputs with a subtle perturbation can
be correctly recognized by humans but make the machine learning model fooled.

Fast Gradient Sign Method. Goodfellow et al. showed that misclassification
of adversarial examples can be caused by the linear nature of neural networks
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and high dimensional input space [5]. They propose a simple adversarial attack
called Fast Gradient Sign Method (FGSM).

x∗ = x + ε · sign(�xJ(θ, x, y))

In this equation, θ denotes the parameters of a model, x denotes the input
to the model, y denotes the original target class, J(θ, x, y) denotes the cost used
to train the network. The FGSM only computes the gradients for once, thus this
method generates adversarial examples quickly.

Projected Gradient Descent. Madry et al. demonstrated that the Projected
Gradient Descent (PGD), a multi-step variant of FGSM, can make the adver-
sarial attack more powerful [10].

xt+1 = Πx+S(xt + α · sign(�xJ(θ, x, y))

In this equation, S denotes a feasible perturbation set, and this multi-step
approach can maximize the inner part of the saddle point problem in adversarial
training formulation. Madry et al. demonstrated PGD is competitive compared
with other state-of-the-art attacks such as CW attack [4], thus PGD can be used
for adversarial training.

Adversarial attacks can be divided into two types. The first type is a white-
box attack, where an attacker has full knowledge of the target neural network
model’s architecture and weight values. In a white-box manner, the attacker uses
the model weights to generate adversarial examples. The second type is a black-
box attack, where an attacker can only query the model without accessing the
weights of the target model. Prior work has shown we can train a substitute
model with given black-box access to a target model, and by attacking the
substitute model, we can then transfer these attacks to the target model [13].

2.3 Adversarial CAPTCHAs

Recently, popular websites have adapted improved CAPTCHA systems such as
Google’s reCAPTCHA v2 that use adversarial examples or artificial noises to
defend against automated attacks using DL-based solvers [8].

IAN Generation. Osadchy et al. proposed a method called IAN generation
for producing powerful adversarial CAPTCHAs to defeat DL-based solvers [16].
This method is based on gradient descent technique and optimizes a perturbation
using L∞ distance metric. The algorithm of IAN generation is similar to the
PGD attack as small perturbation continuously to be mixed. Thus, the produced
adversarial CAPTCHAs can deceive the DL-based solvers with a median filter.

argmin ‖ε‖2 s.t. Net(Median(x + ε)) �= C

For solving this optimization problem, IAN generation leverages a FGSM
variant, as the perturbations of adversarial examples can remain after a median
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filter preprocessing. In the formula, ε denotes a perturbation, Net denotes a
neural network, and C denotes the original class. However, IAN is designed for
only defeating DL-based solvers who use preprocessing techniques. In this paper,
we assume CAPTCHA defense schemes produce adversarial CAPTCHAs using
the PGD method which can respond to various DL-based solvers.

2.4 Defending Against Adversarial Examples

To correctly classify adversarial examples, Goodfellow et al. proposed adver-
sarial training [5]. Adversarial training is one of the most effective methods to
defend against adversarial examples by training a model on original images and
adversarial examples in appropriate proportions [5,10]. The key point of this
defense technique is to generalize the model by increasing the size and diversity
of the dataset through producing adversarial examples and make the model learn
the distributions of adversarial examples. However, this technique requires more
data and time than normal training methods [15].

On the other hand, recent studies have proposed the preprocessing methods
that can defend against adversarial examples. The key point of this technique
is to change perturbed input to refined input by eliminating adversarial pertur-
bation before the model inference [6,9,19]. This method is time efficient since it
does not need to retrain the model. However, they are vulnerable to attackers
who know the preprocessing technique in a white-box manner [1].

2.5 Incremental Learning

The incremental learning is a training method that extends existing model
knowledge by continuously using new input data [7]. The goal of incremental
learning is to produce a well-generalized model adapted to new data without
forgetting existing knowledge. It does not need to retrain the whole model, and
by using only a little bunch of new data, the model can learn fresh information.

3 CAPTCHA Solver Methods

In this section, we show three types of CAPTCHA solver methods for bypassing
adversarial CAPTCHA schemes. We first explain two adversarial CAPTCHA
solver methods previously mentioned in other research. We will then introduce
our proposed solver method and its hyperparameter setting.

3.1 Preprocessing for CAPTCHA Solvers

The traditional OCR-based text CAPTCHA solver tools provide filtering meth-
ods to eliminate a variety of noises. The filtering method can increase the accu-
racy of text-based CAPTCHA solver since the CAPTCHA image contains a lot
of artificial noises. The DL-based solver also can preprocess CAPTCHA instances
to remove effects from adversarial perturbations. Osadchy et al. found that the
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median filter is one of the most successful preprocessing methods to revert the
noise for image-based CAPTCHAs [12]. Therefore we utilize the various sizes of
median filters for preprocessing inputs to baseline DL-based models.

3.2 Adversarial Training for CAPTCHA Solvers

For DL-based solvers, an attacker can perform adversarial training to achieve
high accuracy on adversarial CAPTCHAs. Shi et al. showed that the adversarial
training achieves high accuracy for text-based CAPTCHAs [16]. Therefore we
also adopt the adversarial training method for CAPTCHA solvers to compare
performance with our method.

Fig. 2. Process flow diagram of a CAPTCHA defense scheme using adversarial exam-
ples (right) and our CAPTCHA solver scheme (middle).

3.3 Proposed Method: Incremental Learning for CAPTCHA
Solvers

We propose a CAPTCHA solver using an incremental learning process. The sim-
plified workflow of our proposed method is summarized in Fig. 2. This workflow
consists of two components, our CAPTCHA solver and a defense method uti-
lizing adversarial CAPTCHAs. In the attack process, our method incrementally
trains a single DNN model instance. Our algorithm repeatedly verifies that the
current model instance achieves high accuracy on recent CAPTCHAs. When nec-
essary, our method trains the model on a small number of n recent CAPTCHAs.
Using incremental learning, the attacker can classify new CAPTCHAs from the
changed distribution, while preserving high accuracy on original CAPTCHAs.
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Learning Process. In the beginning, the solver trains a model on original
CAPTCHAs, and the model is referred to as a basic model. The solver then uses
the basic model to solve CAPTCHAs repeatedly. Most CAPTCHA schemes
immediately inform a client whether the client’s answer is correct or not. There-
fore, the attacker can measure the accuracy on the most recently collected k
CAPTCHAs. If the accuracy is less than the threshold θ, the solver trains the
model instance on the most recently collected n CAPTCHAs. In this process,
humans manually label n CAPTCHAs for training in text-based and image-
based CAPTCHA schemes.

Hyperparameter Setting. The proposed method has three hyperparame-
ters to control a way to train a model. We can change k to set how fast our
solver responds to changes of the CAPTCHA schemes. If the value of k is
small, the solver becomes sensitive to the change of the CAPTCHA distribution.
With a small k, the solver immediately performs incremental learning when the
CAPTCHA scheme presents adversarial CAPTCHAs.

An accuracy threshold for determining the necessity of incremental learning
is referred to as θ. Previous work showed that even if a solver shows only 1%
accuracy (θ value of 0.01), the solver effectively automates the desired work on
the target website [11]. In this paper, we set the θ value to 0.5 (50% accuracy),
preserving the attack success rate high enough.

The n denotes the number of CAPTCHAs to conduct the incremental learn-
ing process. According to our experiment, when the basic model is trained on
120,000 CAPTCHAs, newly collected 2,400 CAPTCHAs (n) are enough to train
a robust model using the incremental learning process. We empirically demon-
strate n should be larger than 0.5% of the number of train dataset of the basic
model to retrain the robust solver with more than the 50% accuracy threshold.

4 Experiments

This section addresses the evaluation results of the proposed method against the
defense method using adversarial CAPTCHAs. We first introduce the dataset
for the experiments and the DNN architecture used for solvers. We then present
the advantages of our incremental learning method compared with the meth-
ods of adversarial training and pre-processing, which are previously suggested
countermeasures for adversarial CAPTCHAs [12,16].

4.1 Experiment Setting

Original CAPTCHA Dataset. We construct a text-based and image-based
CAPTCHA dataset for the experiment. For text-based schemes, we generate
4-character text CAPTCHAs using the captcha library of Python. Each letter
in the text-based CAPTCHA image is an alphabetical capital or numeral, rep-
resenting one of 36 classes. The dataset of the text-based scheme consists of a
total of 180,000, which are split into 150,000 train data and 30,000 test data.
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Moreover, we adopted the CIFAR-10 dataset for image-based CAPTCHAs, since
the image-based CAPTCHA schemes are similar to the image recognition tasks.
Traditional image-based CAPTCHA schemes present about 10 images and then
require the user to classify images into the correct label [17]. CIFAR-10 dataset
is a widely used image classification dataset consisting of 50,000 train data and
10,000 test data.

In text-based schemes, we determine the answer of the solver as correct only
if all the 4 characters in the answer are correct. In image-based schemes, we
determine the answer of the solver as correct only if the selected class of the
answer for the single image instance is the same as the ground-truth class.

Adversarial CAPTCHA Dataset. To evaluate the accuracy of the solvers
after CAPTCHA defense schemes change the distribution of images, we generate
an adversarial CAPTCHA dataset. We first divide the original train dataset into
Train1 and Train2 datasets, then train a baseline model only on Train1 for
text-based CAPTCHA and image-based CAPTCHAs.

We assume the defense methods produce adversarial CAPTCHAs using their
own solver model to transfer adversarial perturbation to CAPTCHA solvers.
Therefore, we generate the adversarial CAPTCHA dataset by inserting adver-
sarial perturbations to Train2 using the model. The generated adversarial
CAPTCHA dataset is referred to as Trainadv. When producing adversarial per-
turbations, we use the PGD method, since PGD is a powerful and general method
for producing adversarial examples [10].

For text-based CAPTCHA, we split the 150,000 original train data into
120,000 for Train1 and 30,000 for Train2. We then train a ResNet-18 model
on Train1 and generate 30,000 adversarial train data (Trainadv) by perturbing
Train2. In the same way, we generate 30,000 adversarial test data (Testadv) by
perturbing 30,000 original test data. All the text-based adversarial CAPTCHAs
are constructed with ε = 0.1, step size of 0.03, and 7 steps.

For image-based CAPTCHA, we split the 50,000 original train data into
40,000 for Train1 and 10,000 for Train2. We then train a ResNet-18 model
on Train1 and generate 10,000 adversarial train data (Trainadv) by per-
turbing Train2. In the same way, we generate 10,000 adversarial test data
(Testadv) by perturbing 10,000 original test data. All the image-based adver-
sarial CAPTCHAs are constructed with ε = 0.0314, step size of 0.00785, and 7
steps, which are the same parameters in the original paper proposing the PGD
method [10].

Architecture of CAPTCHA Solver Suppose that the attacker leverages
the state-of-the-art CNN architecture, ResNet-18, for both image-based and
text-based CAPTCHA schemes (see Fig. 3). We find that the solver based on
ResNet-18 is sufficient to bypass the defense methods and outperforms other
architectures such as AlexNet, VGGNet, and GooLeNet for benign 4-character
text-based CAPTCHAs. For text-based schemes, we set the number of the out-
put layer’s neuron to 144 in ResNet-18, since we use each set of 36 neurons to
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Fig. 3. The architectures of our CAPTCHA solver for experiments.

represent a single character. The image-based CAPTCHA solver is also based on
ResNet-18 with 10 dimensions of the output layer for classifying the CIFAR-10
dataset (see Fig. 3).

In the training process, we train a ResNet-18 model using 50 epochs for
text-based CAPTCHA and 200 epochs for image-based CAPTCHAs setting the
batch size to 128 for both of them. For the text-based CAPTCHA solver, we fix
the learning rate to 0.0005, while we adjust learning rates from 0.1 to 0.001 for
the image-based CAPTCHA solver.

Fig. 4. The experiment setting for comparison between CAPTCHA solvers.

We assume all the CAPTCHA solvers want to not only classify original
CAPTCHA images (original test dataset) and but also adversarial CAPTCHA
images (Testadv). We, therefore, train all CAPTCHA solvers on Train1, and
then evaluate on the original test dataset and Testadv. We note that previous
works have assumed the CAPTCHA solver utilizing proprocessing or adversarial
training simply uses only a statically fixed classification model [12,16]. However,
we demonstrate only a small number of newly collected train data can boost the
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accuracy of CAPTCHA solvers significantly. Therefore, we assume the incremen-
tal learning method can train on the part of the Trainadv (see Fig. 4).

4.2 Experiment Results

Baseline Solver. We first train a baseline solver on Train1 and evaluate it on
the original test dataset and Testadv. The baseline solver has no knowledge of
the change of data distribution caused by the adoption of defenses using adver-
sarial CAPTCHAs. The baseline solver shows 93.32% accuracy for text-based
CAPTCHAs and 92.58% accuracy for image-based CAPTCHAs on each original
test datasets (see Table 1). Meanwhile, the baseline solver shows 7.19% accuracy
for text-based CAPTCHAs and 4.28% accuracy for image-based CAPTCHAs
on each adversarial datasets (Testadv). The results indicate that the baseline
solvers are inappropriate to solve adversarial CAPTCHAs.

Preprocessing Solver. We demonstrate the attack success rate of the pre-
processing method by adding a median filter to the baseline model. This model
preprocesses all the image inputs with a median filter (median blur) in inference
time [12]. For text-based CAPTCHAs, our ResNet-18 model with a 5×5 median
filter shows 85.41% original accuracy. This model gets 24.42% adversarial accu-
racy for adversarial CAPTCHAs. For image-based CAPTCHAs, our ResNet-18
model with a 3 × 3 median filter shows 82.13% original accuracy. This model
gets 61.47% accuracy accuracy for adversarial CAPTCHAs (see Table 1).

The preprocessing method increases the robustness of the model, however, it
decreases the accuracy on the original test dataset compared with the baseline
model. The reduction of accuracy comes from the fact that noise filtering elim-
inates the key features of images and causes the degradation of performance.
Therefore, deciding the size of the filter is important to control the trade-off
between original test dataset accuracy and adversarial test dataset accuracy. In
addition, we note that if the defense schemes know the use of the median filter
in the attacker, the defense scheme can decrease the attack success rate of the
attacker significantly [1].

Table 1. The accuracy of basic, pre-processing, adversarial training (7-step), and incre-
mental learning (with 2% more adversarial CAPTCHA images) ResNet-18 solver mod-
els against CAPTCHA defense schemes.

Basic Preprocessing [12] Adv. Training [16] Inc. Learning

Original Adver. Original Adver. Original Adver. Original Adver.

Text-based 93.32% 7.19% 85.41% 24.42% 63.68% 60.74% 86.49% 70.14%

Image-based 92.58% 4.28% 82.13% 61.47% 81.32% 79.54% 87.37% 78.19%
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Adversarial Training Solver. We experimented on the text-based and image-
based CAPTCHA dataset for evaluating the effect of adversarial training. The
attack success rate of the adversarially trained model is competitive since the
CAPTCHA defense schemes should attack the adversarially trained model in a
black-box manner. The adversarial training solver shows 63.68% for text-based
CAPTCHAs and 81.32% for image-based CAPTCHAs on each original test
datasets (see Table 1). Moreover, the adversarial training solver shows 60.74% for
text-based CAPTCHAs and 79.54% for image-based CAPTCHAs on each adver-
sarial test datasets (Testadv). We note that the adversarially trained solver can
be still efficient even if the defense schemes know the exact architecture of the
solver model in a white-box manner.

However, adversarial training for robust CAPTCHA solvers has the following
two shortcomings. First, adversarial training can reduce the accuracy on original
images. Second, adversarial training takes a lot of time. In our experiment, 7-
step PGD adversarial training takes about 5.5 times more than basic training
for both text-based and image-based solvers.

Incremental Learning Solver. We demonstrate our incremental learning pro-
cess is an effective method for creating a robust CAPTCHA solver compared
to the adversarial training and pre-processing. In our proposed method, the
CAPTCHA solver can improve accuracy quickly through incremental learning,
when the CAPTCHA defense schemes present adversarial examples. For the
incremental learning, we set the learning rate to 0.0005 and 0.001 for text-based
solver and image-based solver individually, then retrain the models by 50 epochs
with batch size 128.

Table 2 shows the results of our incremental learning. Without incremental
learning, CAPTCHA solver has only 7.19% accuracy for text-based and 4.28%
accuracy for image-based CAPTCHA schemes using adversarial perturbations.
However, if we leverage incremental learning with a small number of new per-
turbed CAPTCHA images, the accuracy of the CAPTCHA solver can increase
high enough again. For text-based CAPTCHAs, with only 600 (0.5% of the num-
ber of the original training dataset train1) new adversarial CAPTCHA images,
the accuracy of the CAPTCHA solver reaches the adversarial accuracy of 57.78%
by performing incremental learning. For image-based CAPTCHAs, only 200
(0.5% of the number of the original training dataset train1) new adversarial
CAPTCHA images can make the CAPTCHA solver reach the adversarial accu-
racy of 69.84%. From Table 2, we are able to see that the accuracy is enhanced
as the learning model includes more adversarial CAPTCHA data in its incre-
mental learning process. We empirically demonstrated if n is larger than 0.5% of
the number of train dataset of the basic model, we can retrain the robust solver
achieving more than the 50% accuracy threshold again.

Our experimental results show that incremental learning is more efficient than
adversarial training and noise filtering for CAPTCHA solver. The incremental
learning solver outperforms preprocessing and adversarial training with a small
amount of additional perturbed data which is only 2% (2,400 of 120,000 for text-
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Table 2. The accuracy of text-based and image-based CAPTCHA solvers with incre-
mental learning.

(a) Text-based CAPTCHA solver

ratio 0% 0.1% 0.2% 0.5% 1.0% 2.0% 4.0% 8.0% 15.0% 25.0%

Original dataset
(%)

93.32 88.95 89.43 88.17 87.23 86.49 86.35 86.41 87.23 89.16

Adversarial
dataset (%)

7.19 42.61 49.35 57.78 63.97 70.14 76.37 84.13 89.76 92.87

Required time
(second)

0 22 31 74 110 174 394 831 1256 2374

(b) Image-based CAPTCHA solver

ratio 0% 0.1% 0.2% 0.5% 1.0% 2.0% 4.0% 8.0% 15.0% 25.0%

Original dataset
(%)

92.58 88.27 89.54 88.15 87.55 87.37 87.87 88.28 89.01 89.39

Adversarial
dataset (%)

4.28 45.92 55.70 69.84 75.20 78.19 79.62 81.42 82.92 84.59

Required time
(second)

0 8 11 19 26 45 93 143 348 578

based and 800 of 40,000 for image-based) of the number of train data initially
required. Moreover, our method is 5.5 times faster than the adversarial training,
since the required time for incremental learning is significantly small (can be
ignored) than the training time for baseline solvers which requires more than 4 h
with a single NVIDIA Titan Xp graphics card (12 GB) in our experiments.

5 Discussion

The experimental results show that our simple incremental learning process
works better than previously suggested techniques. We note that these results
are caused by limitations of current CAPTCHA defense schemes.

First, CAPTCHA schemes should generate challenges every time a user
requests access. Therefore, a malicious user can simply get new train data from
CAPTCHA schemes. Second, CAPTCHA schemes using adversarial examples
assume static CAPTCHA solvers who only use a fixed pre-trained model. Hence,
they generate adversarial CAPTCHA images against fixed CAPTCHA solvers
and transfer these images to the solver model in a black-box manner. It is chal-
lenging to fool attackers who periodically train DL-based solvers with newly
collected data. These restrictions make the process of finding optimal adversar-
ial perturbation for current CAPTCHA solvers extremely hard.

In this restriction of current CAPTCHA defense schemes, our incremental
learning process is suitable to bypass the adversarial CAPTCHAs with a small
amount of new train data. Our method requires more labeling works than adver-
sarial training and preprocessing methods. However, we demonstrate attackers
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can be strong enough by training on a small amount of additional perturbed
data which is only 2% of the number of train data initially required.

6 Conclusion

Our work demonstrates that a CAPTCHA solver using incremental learning
with the small dataset is strong enough to break existing defense methods
for CAPTCHA systems. We show that just utilizing adversarial examples in
CAPTCHA schemes is not effective for our adaptive CAPTCHA solver. Thus,
for a more accurate evaluation of CAPTCHA defense methods, an adaptive
attacker should be considered. We hope our incremental learning method can be
used as a baseline attacker for future CAPTCHA defense studies.
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Abstract. Along with the importance of safety, an IDS has become a
significant task in the real world. Prior studies proposed various intru-
sion detection models for the UAV. Past rule-based approaches pro-
vided a concrete baseline IDS model, and the machine learning-based
method achieved a precise intrusion detection performance on the UAV
with supervised learning models. However, previous methods have room
for improvement to be implemented in the real world. Prior methods
required a large labeling effort on the dataset, and the model could not
identify attacks that were not trained before.

To jump over these hurdles, we propose an IDS with unsupervised
learning. As unsupervised learning does not require labeling, our model
let the practitioner not to label every type of attack from the flight data.
Moreover, the model can identify an abnormal status of the UAV regard-
less of the type of attack. We trained an autoencoder with the benign
flight data only and checked the model provides a different reconstruc-
tion loss at the benign flight and the flight under attack. We discovered
that the model produces much higher reconstruction loss with the flight
under attack than the benign flight; thus, this reconstruction loss can
be utilized to recognize an intrusion to the UAV. With consideration of
the computation overhead and the detection performance in the wild, we
expect our model can be a concrete and practical baseline IDS on the
UAV.

Keywords: Unmanned aerial vehicle · Intrusion detection system ·
Unsupervised learning · Autoencoder

1 Introduction

The Unmanned Aerial Vehicle (UAV) is a promising future technology due to its
various applications. The UAVs can deliver packages or medicines at the urgent
medical circumstances, or ship goods and products rapidly in the urban areas
[9]. Although the UAVs provide a wide range of benefits to the society, however,
concerns on the safety and security still exist [5]. If the UAV’s communication
signals are intruded, UAVs without appropriate control might cause a severe
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problem. UAVs under attack might not be able to come back to their base
station, or they could fail to land on the safe zone under the emergency. Along
with the safety concerns, it has become a significant task to identify whether the
UAV is intruded or not; thus, an intrusion detection system (IDS) has emerged
into the academia and the industry.

An IDS is a security technology that recognizes an intrusion into the com-
puter system [3]. An IDS on the UAV especially recognizes abnormal patterns or
unauthorized activities at the UAV by analyzing activity logs [5]. As the IDS can
identify abnormal UAV activities during the flight, several studies it has been
researched from the past. The first approach of the IDS on the UAV was a rule-
based model. Prior studies analyzed the pattern of UAVs during the flight under
attack, and extracted features which describe an abnormal status. The proposed
rule-based models achieved a concrete baseline of the IDS on the UAV; however,
the model performance was not precise enough to be deployed in a real world.
If an abnormal pattern of the UAV is not identified by the detection rules, the
proposed models could not recognize the status as an intrusion. Thus, it has
become an essential task to increase the detection performance at various types
of attacks.

To improve the limit of prior studies, a detection model with machine learn-
ing models have been proposed. Numerous machine learning models precisely
learn the pattern of UAVs during the flight; thus, presented machine learning-
based models achieved a significant detection performance. Although proposed
models improved the detection performance from the past, there existed a label-
ing problem. As prior approaches leveraged supervised machine learning models,
a practitioner must provide a well-labeled training data into the model. Under
supervised learning, the practitioner should collect and label the flight data under
attack, and this data collection process accompanies an enormous cost and effort.
Furthermore, a detection model with supervised learning cannot identify non-
trained patterns of attack. If a malicious intruder performs non-trained attacks
into the UAV, the IDS cannot identify the attack; thus, we analyzed the IDS on
the UAV should be implemented without supervised learning.

In this study, we propose a novel IDS for UAVs leveraging unsupervised
learning. We presented a series of analyses to extract features from the raw log
data and how we transformed it into an effective form. We designed the detection
model with an autoencoder, a deep neural network of unsupervised learning, and
trained the model with the benign flight data only. Lastly, we validated the model
precisely recognizes two types of attack (DoS attack, GPS Spoofing attack) from
the benign status. Throughout the study, key contributions are described below:

– We designed an intrusion detection model leveraging unsupervised learning
with the benign flight data only; thus, our approach reduces a labeling effort.

– The proposed intrusion detection model effectively recognized the difference
between the benign flight and the flight under two types of attack: DoS attack
and GPS Spoofing attack.

– Our study illustrated a series of analysis to produce essential features from
raw log data, and extracted features can be applied into the common UAVs.
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2 Literature Review

Researchers have proposed various IDS approaches on the UAV. Prior works can
be categorized into two streams as shown in Table 1: a rule-based approach and
the machine learning-based approach.

Table 1. Prior researches of the IDS on UAVs

Category Intrusion type Key model Reference

Rule-based
approach

SYN flooding, Password guessing,
Buffer overflow, scanning

Behavioral rules [8]

Spoofing, Gray/Blackhole attacks
false information dissemination,
Jamming

Hierarchical scheme [12]

Constant flash-crowd attack
progressive flash-crowd attack

Spectral analysis [14]

Machine learning
approach

SYN flooding, Password guessing,
Buffer overflow, Scanning

PSO-DBN [13]

Spoofing, Jamming STL and SVM [2]

Spoofing SVM [10]

Mitchell and Chen [8] analyzed attackers’ behaviors according to their reck-
lessness, randomness, and opportunistic characteristic and derived a set of behav-
ior rules to identify attacks on the UAV. The proposed model achieved a promis-
ing detection accuracy. Moreover, it provided the capability to adjust detection
strength, which allowed them to trade false-positive and false-negative rates.
Sedjelmaci et al. [12] designed rule-based algorithms for five most lethal attacks
to UAV network. They investigated how each attack impacted the network indi-
cators, such as the signal strength intensity (SSI) or the number of packets sent
(NPS). Four rule-based detection models were implemented, and they showed
a precise detection ability with low false positives in a simulated environment.
Zhang et al. [14] suggested an IDS as a hybrid model of spectral analyses. They
used wavelet analysis to leverage spectral characteristics of the network traf-
fic. They also proposed a controller and an observer tracking the traffics of the
attacker to establish a precise IDS on the UAV. However, rule-based approaches
were not sustainable in a different environment. Proposed methods could not
sustain its detection performance when the platform or the system configura-
tion changes. If the UAV gets updated, several rules might not be suitable for
the new system. Furthermore, the detection model necessitates a more precise
performance to be implemented in the real world.
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To overcome the drawback, several studies applied machine learning models
to detect intrusions on the UAV. Tan et al. [13] applied a Deep Belief Network
(DBN) with Particle Swarm Optimization (PSO). They interpreted an intrusion
detection task as a massive and complicated problem. They trained a classifier
with the DBN and utilized the PSO optimizer to obtain an optimal number
of hidden layer nodes for the classification. DBN-PSO effectively leveraged the
machine learning model and showed a significant performance rather than prior
approaches. Arthur [2] discovered the connection of the UAV often became inter-
mittent and left a non-linear log data. The model employed a Self-Taught Learn-
ing (STL) to gain a set of features from the flight data and utilized the Support
Vector Machine (SVM) as a classifier. The proposed IDS verified its efficiency
with a significant detection performance. Panice et al. [10] utilized a SVM on
the estimated state of the UAV to detect GPS spoofing attacks on UAVs. They
utilized estimated states of the UAV as key features and classified the UAV sta-
tus into two cases: safe status and unsafe. They achieved a promising intrusion
detection performance through the binary classification of safe status and unsafe
status.

The machine learning approaches demonstrated their efficacy in many stud-
ies, but they accompanied the limit of supervised learning. As proposed machine
learning approaches employed supervised learning models, the practitioner must
provide a well-labeled data at the training phase. In the context of the IDS
on the UAV, labels indicate whether the flight data is benign or under attack,
and the type of attack techniques. However, labeling every flight data requires
an enormous effort and the cost. Furthermore, an IDS with supervised learning
cannot recognize attacks that were not trained before. As the supervised learn-
ing models can only identify learned attacks, the IDS might be neutralized with
an unseen attack into the system.

Considering analyzed drawbacks of both rule-based and machine-learning-
based approaches, we propose an IDS on the UAV with unsupervised learning.
As unsupervised learning does not necessitate solid labels during the model
training, it reduces the burden of labeling cost to the practitioner. Furthermore,
unsupervised learning enables the model to detect various intrusions that are
not labeled or not pre-known. The following sections further provide a detailed
description of how we designed an IDS on the UAV leveraging the efficacy of
unsupervised learning.

3 Proposed Methodology

3.1 Dataset

Description. We utilized Hardware-In-The-Loop (HITL) UAV DOS & GPS
Spoofing Attacks on MAVLINK dataset [7] on the experiment. The dataset con-
tains system logs along with the simulated flight. These system logs are collected
under the simulated environment, which follows standard jMAVSim setup. The
dataset contains system logs at the UAV under three circumstances described
below:
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– Benign Flight: A log data during the flight without any attacks on the
system

– DoS Attack: A log data during the flight with Denial-of-Service (DoS) attack
for 11 s

– GPS Spoofing Attack: A log data during the flight with GPS Spoofing
attack for 28 s

Our key takeaway of the study is utilizing the benign flight data only at the
model training stage, and whether the trained model can recognize the intrusion
unless attacks are not trained before. As the dataset includes both the benign
flight and the flight under attacks, we analyzed we can utilize the dataset to
train the model with the benign flight and validate the model with logs under
two attacks: DoS attack and GPS Spoofing attack.

Ground-Truth Confirmation. We confirmed the ground-truth of the dataset
by checking the timestamp of the log data. As HITL DOS & GPS Spoofing
Attacks dataset provides a particular timestamp of attack, we labeled the log
between attack start time and the attack end time as the flight under attack. The
log from the benign flight does not contain both attack start time and the attack
end time as the flight does not include any intrusions to the system. Detailed
timestamps are described in Table 2.

Table 2. Particular timestamps of the dataset

Dataset Flight start
time

Attack start
time

Attack
end time

Flight
end time

Benign flight 14:00:52 - - 14:25:50

DoS attack 15:29:06 15:54:09 15:54:20 15:55:09

GPS spoofing attack 15:58:19 16:24:14 16:24:42 16:26:25

3.2 Feature Extraction

The dataset contains a wide range of features related to the UAV. These features
are written in a system log to record the status of the UAV during the flight.
We categorized every features of the dataset into five types as summarized in
Table 3.

From the five categories of the feature, we extracted features that can effec-
tively recognize abnormal patterns of the UAV during the flight under attack.
We established two rules for feature extraction. First and foremost, we consid-
ered a hardware generality to select the category of the feature. Furthermore,
we investigated sensor stability to choose particular features under the category.
A detailed explanation is elaborated below.
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Table 3. Five categories of features in the dataset

Category Description

Location A set of features related to the location of the UAV. A
particular coordinates of the location is described along
with the Global Positioning System (GPS)

Position & Orientation A set of features related to the position and the orientation
of the UAV

Internal measurements A set of features extracted from the Internal Measurement
Units (IMUs)

System status A set of features related to the system management such
as on-board sensors

Control A set of features illustrating an input toward the actuator
to move the UAV

Hardware Generality. We analyzed features shall exist regardless of the type
of the UAV; thus, we extracted features related to the geographic properties and
physical properties. One of the key takeaways of our study is a generality; that
our models can be easily established regardless of the hardware. If a particular
feature exists only at our employed UAV, the proposed model cannot be utilized
at other types of UAVs. Therefore, we excluded every unique feature which only
exists at our UAV (MAVLINK). For instance, we excluded features in a control
category as the control input varies along with the hardware. As an input toward
the actuator differs from the hardware configuration, we analyzed features in the
control category that cannot be widely utilized. Instead, we selected features
related to the geographic properties and physical properties as we intuitively
inferred most UAV systems measure these properties during the flight. Therefore,
we employed features in a geographic category - location - and physical category
- position & orientation, internal measurements, and system status.

Sensor Stability. We inferred selected features should not be frequently lost
during the flight; therefore, we employed features that do not contain any failure
from the sensor. The absence of a particular feature causes damage to the model.
If a particular feature contains any missed values, this feature exercises a nega-
tive influence on the model training and inference. Moreover, a feature without
any changes can blur the pattern of UAVs during the flight. The model should
learn unique characteristics of benign flight; however, a tranquil feature without
any changes would blur these characteristics. Therefore, we established two con-
ditions described below and dropped every feature under any of the illustrated
conditions.

– Missing Value: A feature contains any missing values during the flight at
both benign flights and the flight under attack (i.e., Null)

– Tranquil Value: A feature only includes the same value without any changes
at both benign flights and the flight under attack
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By considering the aforementioned hardware generality and the sensor sta-
bility, we extracted features from the dataset. The used features are described
at the Table 4.

3.3 Feature Engineering

Although we extracted essential features from the dataset, we figured out two
obstacles to provide the data into the model: Different scales of each feature and
different periods of each feature. A different scale and periods of each feature
cause a negative influence at training deep neural networks. We mitigated these
two obstacles with the following feature engineering steps: Feature scaling and
timestamp pooling.

Feature Scaling. We transformed the values of each feature under the same
scale. As each feature has a different magnitude of the scale, a deep neural
networks-based model would get confused easily when it optimizes parameters.
If several features have much larger value than other features, the loss cannot
be minimized along with the training steps; thus, it creates an obstacle at the
model training. By applying the scaling function elaborated in Eq. (1), we scaled
each feature under the same scope and mitigated different scales of each feature.

Xscaled =
Xi − Min(Xi)

Max(Xi) − Min(Xi)
(1)

Timestamp Pooling. We unified the length of each feature through the times-
tamp pooling. Following the characteristic of UAV, each feature is recorded in a
different period, as visualized in Fig. 1. (a). Referring the Fig. 1. (a), Feature A,
B, and C have different periods of data recording under the same time window.
When we transform these features during a particular time window, the length
of feature vectors varies. During the same time window, the number of data
points at each feature is 6, 4, 2 for Feature A, B, C, respectively. As the intru-
sion detection system identifies the attack per timestamp, a different number of
data points during the same time window become an obstacle against the model
training. We interpret that each feature necessitates a transformation process
with the same number of data points during the fixed time window.

To fulfill this requirement above, we applied a timestamp pooling, which is
selecting a single value from the values during a fixed time window. We randomly
sampled a single value from each feature, and inferred randomly-selected value
can be a representative value during the fixed time window. We set the time
window as 500 ms and applied a timestamp pooling to every feature. If we
apply the timestamp pooling at the example as mentioned earlier, the result is
displayed in Fig. 1. (b). Each feature has a single value during 500 ms; thus, each
feature’s length has become unified. Therefore, we mitigated a different period
of each feature by applying the timestamp pooling.

Throughout two feature engineering processes, we transformed raw log data
into the trainable feature vector. The feature vectors have the same scope of
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Table 4. Features used in the analysis

Category Feature name Description

Location Latitude A value of latitude from the virtual GPS system

Longitude A value of longitude from the virtual GPS

system

Altitude A value of altitude from the virtual GPS system

EPH A hotizontal dilution of the position at the

virtual GPS system

EPV A vertical dilution of the position at the virtual

GPS system

Velocity A ground speed at the virtual GPS system

Course Over Ground A direction of the movement recorded in the

angular degree

Position &

Orientation

Local Position (x,y,z) Local position of the UAV in the local

coordinate frame along with the axis x,y,z,

respectively

Ground Speed X Ground X speed toward the latitude, positive

north

Ground Speed Y Ground Y speed toward the longitude, positive

east

Ground Speed Z Ground Z speed toward the altitude, positive

down

Roll A roll angle

Pitch A pitch angle

Yaw A yaw angle

Roll Speed An angular speed at the roll

Pitch Speed An angular speed at the pitch

Yaw Speed An angular speed at the speed

Relative Altitude An altitude above the home position

Local Altitude An altitude in the local coordinate frame

Quaternion (1,2,3,4) Quaternion component of w,x,y,z, respectively

IMUs Acceleration (x,y,z) An acceleration at axis x,y,z, respectively

Angular speed (x,y,z) An angular speed around axis x,y,z, respectively

Magnetic field (x,y,z) A value of magnetic field at at axis x,y,z,

respectively

Absolute pressure An absolute pressure at the UAV

Pressure altitude A value of the altitude calculated from the

pressure

System status Temperature A temperature of the battery

Air speed Current indicated airspeed

Heading Current heading in a compass units scaled in 0

to 360

Throttle Current setting of the throttle scaled in 0 to 100

Climb rate Current level of the climb rate
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(a) Before timestamp pooling (b) After timestamp pooling

Fig. 1. Timestamp pooling

scale and the same length; thus, we analyzed deep neural networks based model
can effectively learn the pattern of the UAV.

3.4 Unsupervised Intrusion Detection Model

Our key intuition of the intrusion detection model is training the autoencoder
to learn the dynamics of benign flights only. Then, the autoencoder trained only
with benign patterns generates a low reconstruction loss toward the benign flight
and high reconstruction loss with the flight under attack.

Autoencoder. The autoencoder is a deep neural network which learns the
representation of feature vectors by iterating an encoding phase and a decoding
phase. The encoder optimizes its parameters to find effective representations of
feature vectors while the decoder optimizes its parameters to reconstruct the
original input vector from the created representation [11]. A loss function of
the autoencoder is defined as the difference between the original input vector
and the reconstructed input vector. The autoencoder optimizes its parameters to
minimize the loss; thus, a well-trained autoencoder reconstructs the input vector
without much loss. In this study, we employed a linear autoencoder in which the
encoder and the decoder are designed with linear neurons, and the activation
function as ReLU function [1]. For a clear elaboration of the model, we described
a single layer of the encoder, single layer of the decoder, reconstruction loss (loss
function), and the objective function at (2), (3), (4), and (5), respectively.

Encoder : e(x) = ReLU(Wencx + benc) (2)

Decoder : d(r) = ReLU(Wdecr + bdec) (3)

Loss : L(x, y) = ||fθ(x) − y||2wherefθ(x) = dn(en(x)) (4)

θ∗ = argminθ(
∑

x∈D

L(x, y)) (5)
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Modeling. A key intuition of our detection models is as follows: The linear
autoencoder densely trained only with benign feature vectors would produce
small reconstruction loss at benign flights, but generate large reconstruction
loss at abnormal flights under attack. To leverage the efficiency of unsupervised
learning, we provided feature vectors from benign flights only. Note that there
were no labeled feature vectors from the flight under attack at the training stage.
We ‘densely’ trained the autoencoder with the benign feature vectors only, then
the parameters are optimized to reconstruct patterns from the benign flight. In
other words, a well-trained autoencoder reconstructs benign feature vectors with-
out much loss. On the other hand, the trained autoencoder will produce larger
reconstruction loss with feature vectors under attack. As the autoencoder did
not learn patterns of the attack, parameters are not optimized to feature vectors
under attack; thus, the model produces a large reconstruction loss. Following
the aforementioned intuition, we inferred the difference in reconstruction loss
could be utilized to recognize the intrusion. If the data point from a particular
time window records a large reconstruction loss, we can identify the existence of
intrusion. Along with the experiments described in a further Section, we proved
the trained autoencoder generates small reconstruction loss with benign fea-
ture vectors while it produces large reconstruction loss at feature vectors under
attack.

4 Experiment

Our experiment’s objective is to validate whether the proposed methodology
effectively recognizes the intrusion from the benign flight. Throughout the exper-
iment, we aimed to validate two key takeaway. First, we checked whether the
trained model provides a larger reconstruction loss during the flight under attack
rather than the benign flight. Second, we explored the difference between recon-
struction losses from both the benign flight and the flight under attack. The
following contents describe how we configured the experiment, and the experi-
ment results showed the proposed model can be utilized to detect intrusion on
the UAV.

4.1 Setup

We leveraged three log data (benign flight, DoS attack, and GPS Spoofing
attack) from the dataset. As our approach highlights the advantage of unsu-
pervised learning, we configured the training set only with the feature vectors
from the benign flight. On the other hand, we configured two test sets from the
DoS attack log data and GPS Spoofing log data. We randomly selected a particu-
lar timestamp as a starting point for the test set configuration, where the chosen
timestamp is located before the attack. From this starting point, we extracted
every log data until the attack ends. In this way, we configured the test set to
include patterns from both benign status and the status under attack. In other
words, two test sets - DoS attack and GPS Spoofing attack - have patterns from
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the benign status and the status under attack at the same time. After we set the
training set and the test set, we applied the aforementioned feature engineering
process. Note that we scaled features in the test set with the scaler used in the
training set.

4.2 Experiment Result

We trained a linear autoencoder with the training set, which is composed of the
benign feature vectors only. To fit benign patterns into the model, we leveraged
several techniques toward the model training. A batch normalization is applied
toward the encoder and the decoder. We utilized both L1 regularizer [15] and
L2 regularizer [6] to evade an overfitting problem, and parameters are optimized
with Adam optimizer for an effective model training. After the model is fully
trained, we provided two test sets to the model and collected reconstruction
losses. The experiment results from the test of DoS attack, and the GPS Spoofing
attack is described in Fig. 2 and Fig. 3.

Figure 2 explains the first takeaway of our experiment. The blue part of the
figure implies a reconstruction loss under the benign status, and the red part of
the figure stands for the loss under attack. We figured out the reconstruction
losses excessively rise when the flight is under attack at both DoS attack and the
GPS Spoofing attack. The reconstruction loss increases in a large amount when
the feature vector from the flight under attack is provided—furthermore, Fig. 3
shows the second takeaway of the experiment is also valid. Figure 3 illustrates a
distribution of reconstruction losses at both benign status and the status under
attack. The reconstruction loss distributes such far from the benign status at
both DoS attack and GPS Spoofing attack. A significant difference implies a
large difference in a pattern; thus, we discovered our model effectively learned
the dynamics of benign patterns and recognized any abnormal patterns on the
UAV. Despite a significant performance of our model, however, we figured out a
room for improvement with the consideration of real-world deployment. Detailed
contents are elaborated in the following section.

(a) Flight under DoS Attack (b) Flight under GPS Spoofing Attack

Fig. 2. Experiment result at two simulated flights: a flight under DoS attack and the
flight under GPS spoofing attack
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(a) Flight under DoS Attack (b) Flight under GPS Spoofing Attack

Fig. 3. Reconstruction losses at both normal status and intruded status

5 Discussions

Computation Overhead. First, future studies can consider the computation
overhead of the proposed model. Although our model produced a precise intru-
sion detection result, it should accompany small computing resources. Under
the heavy computation overhead, the model cannot be deployed into individ-
ual UAVs as the computing environment of the UAVs is not sufficient. If the
model requires substantial computing resources, it can be transformed into a
lightweight. We expect future studies to reduce the computation overhead by
minimizing the size of feature vectors or applying model compression techniques
[4] into the proposed model.

Model Improvement in the Wild. The model shall be improved with the
actual flight data. As our model is trained and validated with a simulated
dataset, log data would have fewer noises rather than the actual data. We expect
an actual flight would be interfered with by various factors such as sensor errors,
climate, and electric communication environment. The model might necessitate
additional feature engineering processes to make the model learns the dynamics
of benign flight. In a future study, we would collect the actual data from the
UAV in the wild and improve the proposed model.

6 Conclusion

An IDS is one of the key factors of the UAV safety, as it can identify an abnormal
status of the system at first. Prior studies have proposed numerous approaches
regarding the IDS, but they accompany limits. The rule-based models could not
precisely recognize attacks during the flight. Moreover, the machine learning-
based models required a great effort on data labeling, and the model could not
recognize the attack which was not trained. These limits were a room for the
improvement to build a practical IDS on the UAV.
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We presented a novel IDS on the UAV to improve the limits of previous
studies. Our study proposed an IDS leveraging an autoencoder, a deep neural
network of unsupervised learning. Throughout the study, we presented a series
of analyses to extract features from the raw UAV flight data. Furthermore, we
trained the model only with the benign flight data and validated the model effec-
tively recognize DoS attacks and GPS Spoofing attack though these patterns are
not trained. Our model with the unsupervised learning provided two advantages.
First, the model does not necessitate a heavy effort on data labeling. Second, our
model can identify attacks during the flight, although the model did not learn
the dynamics of the flight under attack. We expect our study can be a concrete
base in the pursuit of safe utilization of UAVs in the real world.
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Abstract. In this paper, we have developed a tool to perform an analy-
sis for all APIs over an APK and all APIs of every version of Android, to
solve problems of overfitting in machine-learning-based malware classifi-
cation. The tool is Java-based software consisting of approximately 2,000
lines, performing frequency analysis for the entire API or performing fre-
quency analysis based on the decompiled APK. For frequency analysis,
we split all API signatures into word units and grouped them according
to their entropy, which is calculated by the number of the emergence of
each unit words. As a result, the tool reduces 39,031 methods to 4,972
groups and 12,123 groups when including classes. This shows an approxi-
mately 69% feature reduction rate. For classification using machine learn-
ing, 14,290 APKs from 14 different categories are collected and trained
with 10,003 APKs and tested with 4,287 APKs among them. As a result,
we got 98.83% of true positive rate and 1.16% of false positive rate on
average, with 98.8% of F-measure score.

Keywords: Feature grouping · Feature manipulation · Machine
learning · Android · Android malware · Classification

1 Introduction

The most widely used OS for smartphones and tablets in recent years is Android,
which takes part for 76% of mobile OS in 2019 [1]. And many experts expect the
continuous growth of the Android platform in market share until 2023 [2]. Despite

This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.
2019-0-00477, Development of android security framework technology using virtualized
trusted execution environment) and this work was supported by Institute of Informa-
tion & communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government(MSIT) (No.2020-0-00952, Development of 5G Edge Security
Technology for Ensuring 5G+ Service Stability and Availability).

c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2020, LNCS 12583, pp. 59–72, 2020.
https://doi.org/10.1007/978-3-030-65299-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65299-9_5&domain=pdf
http://orcid.org/0000-0002-2051-7109
http://orcid.org/0000-0003-2676-3412
https://doi.org/10.1007/978-3-030-65299-9_5


60 H. Shim and S. Jung

the market share of Android OS, vulnerabilities are widespread across most cat-
egories of application [3]. According to threat report from NOKIA, Android
malware samples are keep increasing since 2012 until 2019, and increased approx-
imately 30% and more compare to previous year [4]. For Android malware, it is
difficult to analyze due to the complicated source code structure and an enor-
mous amount of resources. In order to analyze android malware, a number of
researches are conducted and the major two methods are static analysis and
dynamic analysis. While dynamic analysis is mainly based on ART environ-
ment, the static analysis aims to analyze without executing the APK. Most of
the static analysis methods are based on op-code, manifest file, and API calls,
and nowadays researches are based on machine learning and deep learning. To
leverage machine learning for static analysis, the feature set is one of the most
important parts. Previous researches using machine learning and deep learning
already discovered that too many or too small numbers of features could be a
problem [5]. If we use too many features, it tends to cause overfitting to training
data, which cannot deal with new types of data [6]. And if we use too small fea-
ture set, it tends to cause underfitting, which cannot be trained as intended [7].
To address these problems, previous researches [8–10] suggested methods such
as feature reduction or normalization. These methods can be used for specific
categories of classification, yet inappropriate for Android malware analysis, or
even purge general features. In this paper, we present the feature selection and
grouping method for Android malware classification. This method divides each
Android API name into unit words and groups each unit word based on entropy.
This allows all APIs within APK to be considered without generating all APIs
to feature set. Finally, we evaluated our approach using 14,290 APKs from 14
categories of malware, 10,003 APKs for training, and 4,287 APKs for testing. In
summary, our paper makes the following contribution:

– Analyze APIs used within Android and identified their problems.
– Analyze the feature set for Android malware categorization and its limitations

in the previous study.
– Proposal of a new feature manipulation method that can consider all APIs

in Android platform for malware classification.
– Results of a machine learning-based categorization to evaluate the perfor-

mance of the methods presented.

The rest of the paper is organized as follows. The next section shows the
motivating example of this work. In Sect. 3, we describe our design. Section 4
presents the method and approaches for our work. In Sect. 5, we evaluate the
effectiveness of the feature grouping method proposed in this paper. Finally,
Sect. 6 shows the conclusions obtained by the experiment and discuss limitation
with future work to be carried out.
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2 Motivation

2.1 Android API Version

Android provides software development kits (SDKs) for each version, and devel-
opers can designate development environments by using them. Moreover, the
Android platform manages code such as the version of user applications and
version of the system itself SDK through API level. Since 2008, Android releases
total of 29 versions from Android versions 1 to 29. Android releases about three
versions per year on average, showing rapid development and distribution trends.
These characteristics also affect the development environment and user experi-
ence. For example, for each version, they change, add, and deprecate several
APIs. As consequence, it leads to a security policy change or restrain existing
functions.

Table 1 shows changes in the number of classes and methods of each API
level. This covered only changes from API level 14, with an average of 82 classes
added, five classes deprecated, 795 methods added, and 30 deprecated. Compare
to the total 39,031 numbers of APIs, and these changes may seem small. However,
when we consider a specific API version only, we may miss some of the important
APIs that are changed. For example, if we target API levels with version code
N, we may consider the newly added APIs before version code O, which are
8,351 numbers of APIs. However, since version code O, 2,785 methods are newly
added, and they will be ignored for the target API level. On the other hand,
it is also inappropriate to target the newest version of API, due to deprecated
or deleted APIs during the update. Therefore, it is inappropriate to analyze the
Android APK based on a specific version, and we should consider total APIs
through versions to take differences into account.

Table 1. Android API changes in number.

Version Code Class Method

Added Deleted Added Deleted

I (API level 14 - 15) 87 2 641 23

J (API level 16 - 18) 134 6 1, 561 100

K (API level 19 - 20) 107 0 836 26

L (API level 21 - 22) 246 21 2, 532 76

M (API level 23) 130 7 36 93

N (API level 24 - 25) 200 24 2, 745 38

O (API level 26 - 27) 243 10 2, 785 63

Total 1, 147 70 11, 136 419
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2.2 Feature Selection

Previously, many researches were conducted to create a feature through data
such as permission and version codes within AndroidManifest.xml as well as
API [11,12]. However, these researches target only certain API levels and did
not consider changes from earlier or later versions’ APIs, making it difficult to
consider the characteristics of all versions of APK. In addition, it was found that
the false-negative rate was high that it reached over 17.3% when considering API
only without manipulate the features.

On the other hand, among existing researches, we were able to find researches
that generate features from API and permission and manipulates for better per-
formance [13,14]. They generate a feature set and then manually analyze it to
select specific features, which are not guaranteed to consider all API character-
istics. These researches also considered only certain functions and their APIs,
and cannot respond if malicious apps with different behaviors emerge or if the
signature of those APIs changes. In addition, there is research that takes a sim-
ilar approach with this paper [15], which split the list of permissions and APIs
used in APK to a list of unit words and manipulated the feature. However, this
research has the same limitation as previous researches due to criteria to select
the main unit word that was chosen empirically.

3 Related Works

Previously, many works focused on detecting or classifying Android malware
based on machine learning or deep learning [16–18]. As proposed in those works,
in order to apply machine learning and deep learning on purpose, the popu-
lar way to generate feature is using signatures and permissions. However, the
Android platform provides over 39,000 numbers of APIs currently, so consider-
ing all those APIs as a feature is way too huge, so other works tried to reduce
the feature set [15,19,20].

The feature selection method is one of the most commonly used methods
for feature reduction in the area of Android malware detection or classification.
Although most of these methods have their own way of selection such as ranking
APIs used primarily in training data, it has not been proven whether the criteria
for selection is correct. While training the model, those feature selection method
may exclude some of APIs that are used less frequently, but decisive API to
detect or classify the Android malware.

4 System Design

To automatically group the features and perform the Android malware classifi-
cation, we design the system, as shown in Fig. 1. Architecture is mainly divided
into two parts, one for the preprocessing part and the other is the machine
learning part. In the preprocessing part, the system requires a full API list of
every version and categorized APK data to train the model. From the API list
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collected, we split each API’s signature and store them as a form of unit word
array. As each API’s signature has been split into words, we can calculate the
frequency of each word for every word array of every APIs. This step is called
the frequency analysis step, and in this step, we choose the root word for API
that is most unpopular (has the smallest frequency) in the word frequency map.
In the end, we obtain mapping between API and its root word.

Meanwhile, categorized APKs will be decompiled, and APIs used in each
APK will be collected individually. For those collected APIs, we match each
API to API - root word map, and the APIs will be converted into root word
with frequency. This is API – root word matching step, and the final result of
this step is grouped feature data set, which will be the training data for our
classifier.

After generating the feature data set from the preprocessing step, the next
part will perform machine learning against collected training data. For all the
data collected, we will test with different machine learning algorithms and com-
pare the result with each other.

Android API
for every versions

Decompiled
API information

Grouped feature data
for categorized APKs

API-root word data
Frequency
analysis

Training for dataset

API-root word
matching Classifier

Categorized APKs

Preprocessing part Machine learning part

Fig. 1. Overall system design (analysis pipeline)

5 Feature Generation and Grouping

5.1 Feature Map Generation

For feature map generation, we collected all the APIs of each version from 1 to
29. Based on the list of APIs, we generated the feature map, which is consists
of the root word and corresponding APIs. All features are mainly based on the
feature map and will be collected for all the target APKs. Figure 2 presents the
algorithm to generate a feature map.

The algorithm is consists of 3 steps, and the final output is the feature map
of all APIs. The first step is about splitting the API signature into word array
to obtain a word map. For all the APIs, the method name will be split into word
array by regular expression. By the code convention of JAVA, Android’s method
name follows the camel case. For this reason, it is possible to get the array of unit
words by splitting with capital letters. For example, numberToCalledPartyBCD
from android.telephony.PhoneNumberUtils has 5 unit words, which are {number,
to, called, party, BCD}. In this case, BCD should be treated as 1 unit word. In
order to satisfy this condition, regular expression with pattern
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Fig. 2. Algorithm for feature map generation

(?<!(^|A-Z]))(?=[A-Z])|(?<!^)(?=[A-Z][a-z])

will be used so that we can consider the unit word with continuous capital letters.
The second step is calculating the frequency and generate a word map of

words. In this step, we gather all the unit word array of signature from step 1,
and accumulate the frequency by counting the emerge of each word. It is slightly
different from the feature map, and the feature map will be generated with a
frequency map. The frequency map provides information on the popularity of
each API.

In the final step, we get the root word from each API and store it in the form
of a map. We call this map the feature map. This step is performed after the
second step is completely over.



Entropy-Based Feature Grouping 65

From the frequency map and word array of each API, the root word will
be selected with the most unpopular word from the word map. This is due to
information gain and entropy, that when a low-probability event occurs, the event
carries more information than when the data source produces a high-probability
value.

As the final step is over, we obtain the feature map that can reproduce the
API signature into a single word. And by the nature that we generate the features
with the unit word in lowest probability, generated features will have maximum
information with grouped root words. With this feature map, we were able to
group 39,031 APIs from all versions into 5,086 numbers of root words.

5.2 Feature Grouping

The feature grouping step is much more simple than the feature generation step.
Firstly, for all the target APKs collected, we decompile them to get an API
usage map over all the APIs. For 39,031 numbers of total APIs, each API with
a number of emergences will be counted. And for the APIs that do not exist will
be counted as zero. This will be the initial feature set, and will be manipulated.

For manipulation, we use a feature map generated from the previous step.
Each of API that emerged more than once will be recalculated according to a
feature map. Fig 3 depicts this process. Finally, to avoid the situation that same
method names from the different classes to be treated as one, we added the part
of the class name to distinguish each. As we added the part of the class name to
the duplicated method names, we obtained a feature set with 12,123 numbers of
features, which is 69% smaller than the original.

API Frequency

android/app/ActivityOptions: Landroid/os/Bundle 
toBundle()

java/util/ResourceBundle$Control: Ljava/lang/String 
toBundleName(Ljava/lang/String;Ljava/util/Locale)

android/net/sip/SipAudioCall: void toggleMute() 4

0

3

1

0

0

1

android/view/inputmethod/InputMethodSession: void 
toggleSoftInput(II)

android/accessibilityservice/AccessibilityServiceInfo: 
Landroid/content/pm/ResolveInfo getResolveInfo()

...

android/content/pm/PackageManager: Landroid/content/
pm/ResolveInfo resolveService(Landroid/content/Intent;I)

java/io/ObjectInputStream: Ljava/lang/Class 
resolveProxyClass([Ljava/lang/String)

...

Unit word

Toggle

Bundle

Resolve

Frequency

4

4

1

API Unit word

Toggle

Bundle

Resolve

...

Fig. 3. Procedure of converting API frequency map into root word frequency map.
(a) shows API frequency map, which is from a single APK and used to be the initial
feature for machine learning. (b) the table is API – root word relationship map that
groups API to root word. (c) According to API – root word map, API can be grouped
as root word – frequency relationship map
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5.3 APK Decompile and Preprocessing as Data

To collect the API from APK, firstly, we have to decompile the APK. There are
several existing tools for APK decompiling, such as APKTool [21], AmanDroid
[22]. To take advantage of modification, we decided to utilize Soot [23], analyze,
and optimization framework for Java. Soot supports the function to convert
bytecode of APK into Java-readable data so that we can read and manipulate
as we intend. For these reasons, our tool is built on top of the Soot framework.

For further analysis, our tool outputs the decompiled result as a form of Json
and store it. After we decompile all the given APKs, we read all the results again
and analyze them. Before this step, we already have an API – root word map
for all versions of API. Therefore we match all the APIs declared in each APK
and reproduce them as a frequency of root word. Final results will be stored as
CSV format, which is one of the input formats for WEKA [24] library.

6 Evaluation

For evaluation, we collected 14,290 numbers of each different 14 categories.
Source of APK is AMD dataset [25], which contains 24,553 samples. As train-
ing data should be enough and bigger the better [26], among the samples, we
selected the categories with more than 100 APKs. Each portion for categories is
depicted as Fig 4.

Fig. 4. Number of APKs for each category

6.1 Preprocessing for Data

Before using a machine learning algorithm for building a classifier, we have to
process the original API call data into a form grouped feature dataset. As men-
tioned in Sect. 4, we applied the entropy rule to get the dataset with the highest
information value. Meanwhile, we had to prove that this entropy-based feature
grouping has the best performance than other strategies, such as reverse-entropy
that arrange the word map from the highest frequency and group the feature
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from it. Therefore we decided to process the data into three different types, ORI,
ENT and RENT, which represent original, entropy-based, and reverse-entropy-
based grouped features, respectively. Original here means the feature produced
from 39,031 numbers of APIs with its frequency. As the ORI type feature set
has too huge dimension, we visualized grouped feature sets, and the results of
each strategy are depicted as Fig 5. As we can see from the visualized results
of each strategy, ENT data seems much more diverse than RENT data. RENT
data is biased to some or one of the root words, and some data has high value
regardless of category. When we choose a root word for each APIs, some of the
words that have high frequency will group almost all the APIs, and in the end,
it will produce API - root word map with small diversity.

(a) Airpush

(b) Bankbot

(c) Dowgin

(d) DroidKungFu

(e) FakeInst

(f) Fusob

(g) GingerMaster

(h) Jisut

(i) Kuguo

(j) Mecor

(k) RuMMS

(l) SimpleLocker

(m) SmsKey

(n) Youmi

(a) Airpush

(b) Bankbot

(c) Dowgin

(d) DroidKungFu

(e) FakeInst

(f) Fusob

(g) GingerMaster

(h) Jisut

(i) Kuguo

(j) Mecor

(k) RuMMS

(l) SimpleLocker

(m) SmsKey

(n) Youmi

Fig. 5. (Left) Visualization of entropy-based grouped features in average value, (Right)
Visualization of reverse-entropy-based grouped features in average value.
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6.2 Machine Learning for Classification

After we refine the data, we applied machine learning for all categories. Among
14,290 samples, only 70% of samples are used as training data. Training data is
randomly selected, and the rest of the data, which takes 30% of total samples
are used as test data. Therefore, as we mentioned in the previous section, we
trained and tested using four algorithms and compared the results. To compare
the result, we mainly focused on the F-measure score with true/false positive
rates. One of the objectives that we aimed for is reducing the false positive rates.
In addition, after we test with all 4 algorithms, we will visualize the result with
the algorithm that has the highest performance and analyze based on it.

Table 2. Classification results for 4 algorithms with ORI, ENT and RENT type fea-
tures.

Feature type Algorithm TP rate FP rate F-measure

ORI RandomForest 98.68% 1.32% 98.7%

J48 98.58% 1.41% 98.6%

SMO 98.76% 1.23% 98.8%

NaiveBayes 89.69% 10.31% 89.8%

ENT RandomForest 98.16% 1.84% 98.1%

J48 97.53% 2.47% 97.5%

SMO 98.83% 1.16% 98.8%

NaiveBayes 93.33% 6.67% 93.3%

RENT RandomForest 97.08% 2.92% 97.0%

J48 96.20% 3.80% 96.2%

SMO 97.60% 2.40% 97.6%

NaiveBayes 90.39% 9.61% 90.7%

For 4 algorithm, the results of each are shown in Table 2. While training the
model, it took about 136.34, 224.63, 112.41, 15.11 s, respectively, for Random
forest, J48, SMO, NaiveBayes. In this case, NaiveBayes seems much effective in
the aspect of speed, however, it took 138.81 s for testing while the other’s average
testing time was only 6.44 s. According to the results in Table 2, as we expected,
ENT type is higher in accuracy than the RENT type for every algorithm. This
is because, ENT type has more diversity in RENT type, while RENT type has
been biased to some of the root words. In other words, the ENT type has more
diversity and rich of information.

When comparing ENT type result with ORI type result, even though the
number of features has been reduced to 31%, overall accuracy has not been
decreased much. For the ORI type feature set, about 0.52% and 1.05% of TP
rate have been increased, and only an average 0.85% of F-measure has been
increased for tree-based algorithms. And for SMO, it is slightly lower or the
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same for all the metrics we decided. Moreover, for bayes type algorithms such as
NaiveBayes, accuracy decreased, and the false positive rate increased by 3.64%.
Due to the dataset to train the model, which is consists of 39,031 columns with
10,003 rows, it took about four times longer to train the model. For these reasons,
we can see that feature grouping contributes to overall performance.

Among the results of each algorithm, There are differences in accuracy and
false positive rates. For our dataset, each algorithm showed a higher true positive
rate has a lower false positive rate. For example, the Random forest and J48
algorithm are ranked as 2nd and 3rd in performance. And as Random forest is
higher in true positive rate than J48 algorithm, Random forest shows a lower
false positive rate than J48. The algorithm that showed the highest accuracy
with the lowest false rate is SMO, which has 98.83% of true positive rate with
1.16% of the false positive rate, and 98.8% of the F-measure score. In contrast,
the NaiveBayes algorithm showed the worst performance with the highest false
rates. It showed over 6.67% of false positive rate with 93.33% of the true-positive
rate.

Finally, as we confirmed that SMO is best in performance, we visualized our
results of classification done by SMO (See Fig 6). In addition, SMO showed the
highest performance in RENT type either, we visualized the result of RENT
type. Both with ENT type and RENT type showed a massive false rate in
RuMMS, which is consists of 402 numbers of APKs. Our trained model confuses

Fig. 6. (Left) SMO classification result with ENT(Entropy) based grouped feature
(Bottom) SMO classification result with RENT(Reverse-Entropy) based grouped fea-
ture
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RuMMS category APKs with BankBot category APKs. In fact, the RuMMS
category showed 80.3% of true positive rate, which is the worst performance
of all categories. Since RuMMS has similar characteristics with BankBot, they
both have a small number of the dataset. Therefore, when a larger dataset is
available, we can expect better performance.

7 Conclusion

In this paper, we propose a new feature grouping method for the machine learn-
ing approach of Android malware classification. In our approach, we first col-
lected all the APIs of Android and generate the API – root word map to group
the API into smaller groups. After generating a map, we match the APIs of
target APKs to convert the APIs into grouped features, and performed machine
learning-based classification and achieved 98.8% of F-measure score with 1.16%
of false positive rate.

Until now, this approach can only be applied to Android malware classifica-
tion. However when we can collect the samples from other frameworks such as
Spring or other Java-based frameworks, it is possible to apply on them either.
Moreover, even though there are a lot more categories or family to distinguish
Android malware, but it is hard work to get a dataset according to them. In order
to consider wider categories into our system, it is necessary to collect plenty of
data.

Future research directions will mainly focus on collecting as much data as
possible and processing of the collected data. Then additional processing will be
performed if necessary, to apply the approaches introduced on our paper.
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Abstract. Recently, research on deep learning based side-channel analy-
sis (DLSCA) has received a lot of attention. Deep learning-based profiling
methods similar to template attacks as well as non-profiling-based meth-
ods similar to differential power analysis have been proposed. DLSCA
methods have been proposed for targets to which masking schemes or
jitter-based hiding schemes are applied. However, most of them are meth-
ods for finding the secret key, except for methods for preprocessing, and
there are no studies on the target to which the dummy-based hiding
schemes or shuffling schemes are applied. In this paper, we propose a
DLSCA for detecting dummy operations. In the previous study, dummy
operations were detected using the method called BCDC, but there is
a disadvantage in that it is impossible to detect dummy operations for
commercial devices such as an IC card. We consider the detection of
dummy operations as a multi-label classification problem and propose a
deep learning method based on CNN to solve it. As a result, it is possible
to successfully perform detection of dummy operations on an IC card,
which was not possible in the previous study.

Keywords: Hiding countermeasure · Deep learning · Multi-label
classification · IC card · Dummy operation

1 Introduction

Electronic devices such as smart watches, air conditioners, and refrigerators used
to perform simple manipulations have recently begun to deal with personal data
by providing a variety of features, such as being able to make phone calls by
starting to be interconnected. Accordingly, the security of these devices must
be carefully considered. Side-Channel Analysis (SCA) is the most representative
of potential attacks, and it recovers secret information using physical properties
such as power consumption [7] or electromagnetic emissions [1].
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Deep learning, which was not under consideration at the beginning of the pro-
posal, has seen rapid progress in recent years due to the advent of big data and
the gradual enhancement of computing power over the past decade. Recently,
deep learning has been used in various fields such as image recognition, speech
recognition, and natural language processing. In side-channel analysis, deep
learning will also come to play an important role. Beginning with the case of
leakage characterization using multi-layer perceptron (MLP) [19], deep learning-
based SCA (DLSCA) was conducted using convolutional neural network (CNN),
autoencoder, long short-term memory (LSTM), etc. [14]. Analysis was also per-
formed in the case of using a masking scheme and jitter-based hiding schemes
[11]. In addition, a DLSCA method based on non-profiling has been proposed
recently [18].

Of the various DLSCA methods that have been studied, the majority have
been for the purpose of revealing a secret key. In the end, they mention that
they succeeded in analyzing only those targets to which the jitter-based hiding
schemes, which have relatively weak strength, were applied. To the best of our
knowledge, we haven’t seen cases of successful secret key recovery with DLSCA
for targets with dummy-based hiding schemes or shuffling scheme. Designers
intend to increase attack complexity by simultaneously using the shuffling scheme
and the random insertion of dummy operation schemes. For example, if the
designer adds up to d dummy operations to n sbox operations and apply the
shuffling scheme, α × (n + d)2 traces are needed to recover a one-byte of secret
key. Here, α is the number of traces needed to recover the one-byte secret key
when hiding schemes are not applied. However, if the dummy operations are
filtered out, the number of required traces is reduced to α × n2. When n =
d = 16, the reduction rate is 75%, which is very dangerous. Therefore, even if
the secret key cannot be recovered from a target to which the shuffling scheme
or dummy-based hiding schemes are applied, there is a need for research on a
method of neutralizing them.

Our Contributions. In the previous work [10], they proposed a technique to
detect dummy operations using the method BCDC (Bounded Collision Detection
Criterion) [4]. However, in order to calculate BCDC values, it is necessary to
specify a suitable reference area, which is very empirical. So we were wondering
if there is a way to automatically distinguish dummy operations. Research has
already been conducted using CNN to detect fake face images, fake news, and
fake data transmission [15,16,20]. Inspired by these existing studies, we thought
that CNN could be used to detect dummy operations in side-channel traces.
In this paper, we propose a method of detecting dummy operations using deep
learning. The proposed method can detect dummy operations very well even
though it takes different devices for training and testing. In addition, this method
can detect dummy operations even for commercial devices such as an IC card,
which the previous method could not.
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Outline. The rest of this paper is structured as follows. In Sect. 2, Deep Learn-
ing and Deep Learning-based Side-Channel attacks are introduced. It also dis-
cusses hiding schemes, one of the countermeasures against side-channel attacks.
Section 3 covers the previous work and the proposed methodology to detect
dummy operations. We describe experiment results performed on an IC card
in Sect. 4 along with the experiment setup. Finally, in Sect. 5, we conclude this
paper and comment on future research.

2 Preliminaries

2.1 Deep Learning

Deep learning is a type of machine learning and makes computational models
consisting of multiple processing layers to learn representations of data with
multi-level abstraction [8]. Recent works have shown that deep learning success-
fully applied to many fields such as image recognition, speech recognition, and
natural language processing. In this chapter, we describe deep learning by taking
deep learning for data classification as an example. A neural network for data
classification is a function Net : RD → R

|Z|. Net is trained to classify some data
x ∈ R

D into their labels z (x) ∈ Z, where D is the dimension of the data and Z
is the set of labels.

Multilayer Perceptron. A multilayer perceptron (MLP) is a kind of neural
network composed of several perceptron layers [2]. A perceptron P : RD → R

takes x ∈ R
D as input and calculates the output as follows:

P (x) = A

(
b +

D∑
i=1

wixi

)

Fig. 1. Multilayer perceptron of a (L + 1)-layer perceptron with D input units and
|Z| output units. The lth hidden layer contains m(l) hidden units.
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where A is an activation function, wi are weights, and b is the bias. The acti-
vation function serves to determine which neurons are triggered in each layer,
and sigmoid function, Rectified Linear function (relu), or Hyperbolic Tangent
function (tanh) are typically used.

A MLP is a neural network which is a combination of many perceptron
units organized in layers as shown in Fig. 1. A MLP consists of an input layer,
intermediate layers called hidden layers and an output layer. The weights and
biases of the MLP are adjusted as learning progresses.

Convolutional Neural Network. Convolutional Neural Networks (CNN) is
a type of neural network composed of a mixture of Convolutional layers and
Pooling layers [9].

Fig. 2. Convolutional neural networks architecture.

The general structure of CNN is shown in Fig. 2. The CNN architecture is
composed of a mixture of convolutional layers and pooling layers, and then fully-
connected layers are attached. The convolutional layer slides a set of filters to
apply a convolution operation to the input. The pooling layers is a nonlinear layer
that slides a window over the input and outputs a local summary, such as the
average or maximum of the input. Due to the use of shared weights and pooling
operations applied to the space during convolution, the CNN architecture has a
natural translation-invariance property.

2.2 Profiled Deep Learning Side-Channel Attacks

In 2011, Yang et al. first used an MLP to characterize the leakage model [19].
Beginning with the proposition of a secret key recovery method using a neural
network by Martinasek et al. [14], research using machine learning for side-
channel analysis has exploded. In earlier works, various pre-processing methods
such as PCA, average trace reduction, and wavelet transformation were used
[5,13,17]. After that, Maghrebi et al. used a random forest, autoencoder, long
short-term memory (LSTM), MLP, and CNN to reveal the secret key of the
unprotected or first-order masked AES [11].

While an MLP pays attention to numerical values in traces, a CNN focuses
on the shape of traces. Therefore, it is mainly used for image recognition that
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must be resistant to distortion. Cagli et al. first used a CNN to defeat jitter-
based hiding countermeasure [3]. However, as far as we know, no results have
been applied to hiding schemes using dummy operations.

2.3 Hiding Schemes

Traditional side-channel analysis methods such as differential power analysis or
template attacks are applied to aligned side-channel traces. Attackers must pro-
cess side-channel traces using pre-processing methods such as domain transfor-
mation to improve performance when the traces are not aligned. Hiding schemes
are used to artificially disrupt the alignment. Eventually, designers can break the
association between intermediate values and side-channel traces. Time-domain
de-synchronization and changing the vertical values are typical features of a hid-
ing scheme. When the time-domain de-synchronization is applied, it is difficult
for an attacker to identify when the target operations are performed.

Random insertion of dummy operations scheme is the first approach of the
time-domain de-synchronization. This approach randomly inserts dummy oper-
ations, which are meaningless operations that are not related to encryption and
decryption, into the middle of real operations. The second method is a shuffling
scheme that randomly reorganizes the order of operations. These two methods
make an attacker hard to detect when real operations are being performed.

3 Detection of Dummy Operations

In this section, we describe the previously proposed dummy operation detection
method [10] and the method we propose. Since our method is based on profiling-
based DLSCA, it explains how to make labels corresponding to profiling traces
and the model configuration used.

3.1 Detection of Dummy Operations Using BCDC

In a previous study [10], they used the BCDC value [4] as a reference to detect
dummy operations. The BCDC is a measure of similarity between two groups
and is defined as follows:

BCDC (T1, T2) =
1√
2

× σ(T1−T2)

σ(T1)

where T1 and T2 denote the reference area and the target area, respectively. σ(T1)

is the standard deviation of T1. If a BCDC value close to zero is calculated, it
means that the two groups are similar.

An attacker sets a part of the section as the reference area T1 to determine
whether it is a dummy operation or a real operation. It does not matter if it
is actually a dummy or real operation. Then, the BCDC value is calculated by
shifting the target area T2 of the same length as T1 by one point from the start
of the trace. The attacker sequentially acquires the desired number of sections
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having the lowest value from the calculated BCDC values. The acquired sections
may be real operations or dummy operations. If these are dummy operations,
the attacker can take the sections that have not been acquired.

3.2 DLDDO

Label. For supervised learning, corresponding labels of an input trace are
needed. Models for revealing a secret key used labels as expected values such
as outputs of Sbox or its Hamming Weight values. However, the purpose of our
model is to determine if this is a real operation or a dummy operation. More-
over, there is not only one operation to judge. Therefore, we use a multi-label
classification problem. For example, if the following index of the real operations
were performed:

[2, 3, 5, 6, 8, 10, 14, 16, 17, 18, 19, 24, 26, 27, 30, 31] ,

we can construct the following 32 labels:

[0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0] .

Here, 0 means the dummy operation and 1 means the real operation.

Algorithm 1. Generate labels for dummy operation detection
Input: Index of real operations I = [i0, i1, . . . , i15] where ij ∈ {0, 1, . . . , 31}
Output: Label L = [l0, l1, . . . , l31] where lj ∈ {0, 1}
1: Initialize L to zero array � size of L = 31
2: for j ← 0 to 16 do
3: L [I [j]] = 1
4: return L

Algorithm 1 describes how to generate labels for dummy operation detection.
For each profiling trace, an attacker can generate corresponding labels using
Algorithm 1. Although we are going to experiment with the number of dummy
operations inserted set at 16 in Sect. 4, even if the number of inserted dummy
operations is variable, Algorithm 1 can be used through modification such as
setting the value of trailing labels, which are equal to the number of dummy
operations not inserted, to 0. If the number of dummy operations inserted is less
than the maximum value, we can determine whether the real Sbox operation
is performed on side-channel traces corresponding to ShiftRows or MixColumns
functions. Therefore, it makes sense to set the label value corresponding to the
ShiftRows and MixColumns part of the side-channel trace to 0 because the
ShiftRows and MixColumns part of the side-channel trace is not a real Sbox
operation, just like a dummy operation from the attacker’s perspective.
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Fig. 3. CNN model for dummy operation detection

Deep Learning Model. We use a CNN model for dummy operation detection
due to the possibility of side-channel traces being shaken. Figure 3 shows the
full construction process for our model. All convolutional layers use small sized
kernels like 2 or 3 with a stride size 1 and “valid” padding. In order to minimize
the number of trainable parameters, this model has been constructed by using
a lot of convolutional layers and one dense layer. As the activation function,
relu and sigmoid functions are used for convolutional layers and the dense layer,
respectively. The sigmoid function is used for binary classification and the soft-
max function is used for multiple classification. In the multi-label classification
used in this model, since each label is used for binary classification, the activa-
tion function of the output layer is used as the sigmoid function. The dropout
ratio is 0.25, and He initializer is used as a kernel initializer in the dense layer.
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This model has 32 output nodes. To solve the multi-label classification problem,
each node puts out the probability that the corresponding Sbox operation is a
real operation. The optimizer used is Adam [6], the learning rate is 1e-3, and the
decay rate is 1e-4. Binary cross-entropy is used as the loss function. Note that
our model is not the optimal model for obtaining the highest test accuracy.

Using the label creation method and the deep learning model described
above, an attacker can obtain the indexes on which the real operations were
performed.

4 Experiments

Algorithm 2. Pseudo code for the AES algorithm’s SubBytes function with
dummy operations and shuffling scheme
Input: RL IN[16], DM IN[16], ORD[32]
Output: RL OUT[16], DM OUT[16]
1: for i ← 0 to 31 do
2: switch (ORD[i])
3: case 0:
4: RL OUT[0] ← Sbox[RL IN[0]] � Real operation
5: break
6: case 1:
7: RL OUT[1] ← Sbox[RL IN[1]] � Real operation
8: break

...
9: case 16:

10: DM OUT[0] ← Sbox[DM IN[0]] � Dummy operation
11: break
12: case 17:
13: DM OUT[1] ← Sbox[DM IN[1]] � Dummy operation
14: break

...
15: end switch

In the previous work [10], we classified the implementation method of the
hiding scheme using one of four types of dummy operations according to
the type of variables used in the dummy operations. We named them local
variable, global variable, separate function argument, and combined
function argument. We took the target algorithm using the switch-case state-
ment as Algorithm 2. The above four variable types were applied to DM IN and
DM OUT. In addition, the countermeasure was also presented in the previous
paper. This countermeasure is configured to select the variable index of the Sbox
operation by referring to the ORD variable in which the shuffled operation order
is stored instead of using the switch-case statement as in Algorithm 3.
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Algorithm 3. Pseudo code for the countermeasure [10]
Input: IN[32], ORD[32]
Output: OUT[32]
1: for i ← 0 to 31 do
2: OUT[ORD[i]] = Sbox[IN[ORD[i]]]

Fig. 4. A power consumption trace of an IC card

The model number of our target IC card is S3FJ9SK which is made by
Samsung. The number of dummy operations used is fixed at 16, and four imple-
mentation methods are pushed on the smart card. The power consumption trace
of the implementation using local variable is shown in Fig. 4. The power con-
sumption traces for the other three implementations are similar to Fig. 4. After
measuring the trace with 500M sampling, the trace was compressed using 50
units of Raw Integration method [12]. We used two IC cards of the same model
to apply to DLDDO, our proposed method. For training the deep learning model,
10,000 traces were collected from the profile card and 1,000 traces were collected
from the other card for testing.

4.1 Using BCDC

We attempted to detect dummy operations by setting a portion of the first Sbox
operation area as reference area T1 in the trace in Fig. 4. No matter how much
the reference area was changed, dummy operations could not be detected with a
high success rate. Figure 5 shows the result of one of the attempts to distinguish
dummy operations using BCDC. The above graph is the power consumption
trace of the SubBytes function and the graph below is the calculated BCDC
trace. For each of the 32 areas, each one is represented by R in case of real
operations and D in case of dummy operations. We set the reference area for
calculating BCDC values as part of the first dummy operation and compute the
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Fig. 5. The power consumption trace of SubBytes function (above) and its BCDC
values (below).

Fig. 6. Blue lines are BCDC traces of real operations and red dashed lines are BCDC
traces of dummy operations. (Color figure online)

BCDC trace. We splitted the BCDC trace into each operation, then overlapped
the pieces of operation as shown in Fig. 6. However, we cannot set any threshold
to distinguish the dummy operations from the real operations. At best, the
success rate was only about 50%. The problem of determining whether each
Sbox is a real operation or a dummy operation is the same as the problem of
choosing the front or back of a coin. Therefore, if the method is not capable of
distinguishing dummy operations, the accuracy should be about 50%.

4.2 Using DLDDO

We used a profiling card to train the neural network and a test card to check
if we could extract dummy operations from other cards with the trained neural
network. Both cards use the same model IC chip. 10,000 power consumption
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traces were collected from the profiling card, of which 9,000 were used for the
training phase and 1,000 were used for the validation phase.

1,000 power consumption traces were collected from the test card. Through
the trained neural network, the probabilities that each of the 32 Sbox operations
were real operations were calculated. The 16 indexes having the highest proba-
bility are judged to be the indexes on which the real operation was performed.
For example, the output values of the trained neural network are

[0.87, 0.53, 0.96, 0.97, 0.02, 0.89, 0.99, 0.32,

0.96, 0.20, 0.88, 0.02, 0.35, 0.52, 0.90, 0.19,

0.99, 0.99, 0.99, 0.91, 0.50, 0.50, 0.29, 0.01,

0.96, 0.09, 0.92, 0.94, 0.62, 0.29, 0.99, 0.95]

,

we judge indexes of real operations are

[2, 3, 5, 6, 8, 10, 14, 16, 17, 18, 19, 24, 26, 27, 30, 31] .

Table 1. Test accuracies according to variable types

Variable types Test accuracy

Local variables 95.4125%

Global variables 82.4375%

Separate function arguments 96.1875%

Combined function arguments 74.4375%

Countermeasure 50.0906%

As a result of estimating the real operation indexes of the test traces with
the trained neural networks, the accuracies are shown in Table 1. Using the
DLDDO method, we were able to detect dummy operations when targeting
dummy operations of power consumption traces collected from the IC card for all
four types of variables used for the dummy operations. It has been confirmed that
the dummy operations cannot be detected when the countermeasure proposed
in the previous paper is still applied.

For the BCDC value to convert to 0, the standard deviation of the point-
wise subtraction of the two areas must converge to 0. This means that the
two areas are well aligned and there is little variation due to noise. Therefore,
in the previous work [10], they succeeded in distinguishing dummy operations
using BCDC for the ChipWhisperer-Lite board which has low noise and good
alignment. However, the target white card in this paper is noisier and misaligned
than the ChipWhisperer-Lite board, and the time during which each operation
is performed can vary. It is obvious that it is impossible to distinguish dummy
operations of the white card using BCDC for these reasons. On the other hand,
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our proposed DLDDO uses a convolutional network used in image recognition,
making it resistant to alignment and noise issues. The reason DLDDO can do
what BCDC cannot do is the same reason CNN does image recognition better
than MLP.

5 Conclusion

In this paper, we propose the deep learning method DLDDO for detecting
dummy operations. The previous work, which used BCDC to detect dummy
operations, has the disadvantage that empirical reference area setting is required.
Also, detection of dummy operations was possible only when the noise was rela-
tively small on the side-channel traces. We solved these drawbacks by applying
the CNN model and the multi-label classification problem. In addition, it was
possible to detect dummy operations even in a situation where a profile device
and a test device were used differently.

DLDDO is a supervised learning method for solving multi-label classifica-
tion problems. As a recent successful case of image classification problem solving
through unsupervised learning was proposed, it seems to be applicable to dummy
operation detection. We targeted a cryptographic algorithm that was applied by
combining a random dummy operation insertion scheme and a shuffling scheme.
On this target, we have succeeded in detecting dummy operations, but the shuf-
fling scheme has not been neutralized. There is also a need for research on how
to neutralize the shuffling technique using various deep learning algorithms.
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Abstract. Steganography enables a user to hide information by embed-
ding secret messages within other non-secret texts or pictures. Recently,
research along this direction has picked a new momentum when Hayes
& Danezis (NIPS 2017) used adversarial learning to generate stegano-
graphic images. In adversarial learning, two neural networks are trained
to learn to communicate securely in the presence of eavesdroppers (a
third neural network). Hayes–Danezis forwarded this idea to steganog-
raphy where two neural networks (Bob & Charlie) learn “embed” and
“extract” algorithms by exchanging images with hidden text in presence
of an eavesdropping neural network (Eve). Due to non-convexity of the
models in the training scheme, two different machines may not learn
the same embedding and extraction model even if they train on the
same set of images. We take a different approach to address this issue of
“robustness” in the “decryption” process. In this paper, we introduce a
third neural network (Alice) who initiates the process of learning with
two neural networks (Bob & Charlie). We implement and demonstrate
through experiments that it is possible for Bob & Charlie to learn the
same embedding and extraction model by using a new loss function and
training process.

Keywords: Deep learning · Neural networks · Steganography

1 Introduction

1.1 Background

Cryptographic techniques are highly relied on nowadays for resolving security
threats. Provably secure cryptographic protocols have been useful for securing
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communication protocols as TCP or FTP where the connection is insecure. But
as these protocols were not invented with the security in mind, implementing
them with provable security incurs a huge overhead and a larger size of the data
exchanged. Several lighter and faster cryptographic algorithms are proposed but
in most cases they are not provably secure and often they are broken. A new
direction is added in the realm of cryptography which uses artificial neural net-
works. It is a relatively new field and much remains to be explored. Some works
proposed in the past encryption methods that use neural networks (NN) e.g.
[8,14,16] and also attacks [10]. Although the idea of using artificial neural net-
works for securing communication has been a buzzword for the last two decades,
a recent work by the Google Brain researchers [1] has drawn a lot of attention.

In the model shown in [1], two neural networks train to protect a communica-
tion in the presence of a third eavesdropping neural network. Many contributions
followed the work done in [1]; For example in [2] where the researchers propose a
better model that improves the security in [1] and making it resistant to proba-
bilistic attacks. These contributions originate from the idea done by Goodfellow
et al. in [4,5]. A study and analysis of the security of the encryption method
learned by the neural networks was done by Zhou et al. in [18] which states that
the neural networks are weak against probabilistic attacks. The work done in
[18] also shows other training models and scenarios that improve the security.
The tests done in [18] include several statistical tests e.g. χ2 test, Kolmogorov-
Smirnov test.

GAN (Generative Adversarial Neural Network). In a generative adver-
sarial network (GAN), two neural networks contest each other in an adversarial
game. One network is a generator and the other is a discriminator. Broadly
speaking, task of the generator is to generate “fake samples” of a data distri-
bution and the discriminator distinguishes samples produced by the generator
from the true data distribution. Goal of the training process is to enable the gen-
erator to produce a synthetic data distribution which is “close” to the real data
distribution i.e. the error rate of the discriminator is maximized and it cannot
distinguish between the synthetic data distribution from the true distribution.

ReLU, Sigmoid, Tanh. ReLU, Sigmoid and Tanh are all activation functions
used in deep learning and they help get the output from a neural network in
a specific format. ReLU is widely used in convolutional neural networks as it
has faster speed in converging the stochastic gradient descent when compared
to Tanh and Sigmoid [11]. Tanh is used in this work in order to get values in
[−1, 1] which help map our binary output.

1.2 Related Works

Adversarial Cryptography. First adversarial cryptography (symmetric key
encryption) scheme was introduced in [1]. In their proposed model, Three neural
networks with the same structure are competing in a GANs setup, Alice and
Bob are neural networks that share a secret key and their goal is to exchange
messages with the presence of an eavesdropper Eve which has not access to the
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secret key K. Implementing public-key encryption has been a challenging issue
– some attempts were made in [1,19], however the results are not satisfying as
the neural networks were not able to synchronize in the majority of attempts.
In another recent work [17], a secret sharing scheme based on GANs is proposed
which was done in order to work around main problems including the hard
recovery of lost keys, low communication efficiency etc. in blockchain.

Adversarial Privacy. Adversarial Privacy was derived from Adversarial Cryp-
tography [1], the authors in [7] built a model called Generative Adversarial Pri-
vacy (GAP) that can anonymize data and remove any potential information that
can lead back to the original user. The model is composed of two learning blocks:
A privatizer that learns to process the public data and output a sanitized ver-
sion of it and an adversary that tries to learn private data from the public data.
This is done through competing in a constrained minimax zero-sum game. The
privatizer trains on minimizing the adversary’s performance and the adversary
tries to find the best strategy to maximize its performance. A loss function is
used to measure the efficiency of the adversary.

Adversarial Steganography. Adversarial steganography was also derived
from adversarial cryptography. It aims to hide information inside an image.
The setup is the same but the goal is to hide a plaintext inside an image. Alice
hides a plaintext P inside a cover image and sends the image to Bob. Bob has
to extract the original plaintext and Eve tells whether the image he intercepted
contains a secret message or not.

Recent works show that it is also possible to steganography based on GANs
as in [9] where the neural networks learn to generate secret message without
modying the original message or in [6] where the neural networks learn to hide
a text inside an image instead of encrypting the plain text in [1]. Multiple agent
diverse GAN was considered in [3] which had taken into account multiple gener-
ators and one discriminator for developing MAD-GAN (A Multivariate Anomaly
Detection for Time Series Data with Generative Adversarial Networks). Another
variant of Adversarial Steganography is in the work done in [15]. In their work,
Alice and Bob are sharing a key K (Whereas there is no key used in [6]) and
exchanging steganographic images in the presence of an eavesdropper. Alice must
trains to hide random messages inside a cover image in a way that only Bob can
extract those messages.

Motivation and Challenging Issues. It was mentioned (and also a known
fact) in [6] that due to the non-convexity of the training models, two different
parties training on learning the model on different machines are not guaranteed
to learn the same embedding and extraction model. [6] made a workaround by
training one party with Alice and then sending an encrypted version of the
trained parameters to the other party to allow it to have the same model and
be able to extract the plaintext from the images correctly. But this requires an
additional (encryption) process which is not desirable. Therefore, we ask the
following question: is it possible to learn the same model while simultaneously
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training on different machines in order to avoid sending an encrypted version of
the parameters to the second machine? One of our motivations for this work is
to solve the problem stated in section 4.4 in [6] and to enable multiple parties to
learn the same embedding and extraction model through training. We perform
the experiments by adding one more party and test it in the first scenario. The
results show that it is possible for two different parties to train with Alice and
be able to extract the same plaintext no matter who sends the image.

1.3 Our Contribution

To answer the question of the learnability of the same model on different
machines, we implemented in the first scenario a case where Alice, Bob and
Charlie are three neural networks in different machines exchanging stegano-
graphic images; and we will see if it is possible for Bob and Charlie to learn
the same embedding and extraction model.

We show that in our method (presented in Sect. 4.1), two different parties
can learn the same model and are able to extract the same plaintext to solve the
problem stated in Section 4.4 in [6] where multiple parties are not guaranteed to
learn the same model when being on different machines. We did a similar work
previously in [13] where we do a study on the extension to multiple parties; The
concept is an analogy to this work however the main difference is the neural
network structure, training process and the loss functions especially for Eve.

The next two scenarios viz. scenario 2 and scenario 3 (presented in Sect. 4.2)
show that different 3-party steganographic communications are achievable with
similar training time and extraction accuracy as the two-party case. Although,
they do not allow all parties to communicate with each other but they can be
useful when multi-hop communications are allowed where we allow a party to
act as an intermediary.

2 Neural Network Structure Used

Similar to the scenarios in [6] and in [1], for Alice we use a random cover image
and a random n-bit bit-stream (The secret message) as input. We flatten the
cover image and concatenate it with the secret message which is then fed into the
neural network. The first layer is a fully connected layer so that the message is
mixed with the image. It is then reshaped to a 4 × 4 × I ∗ 8 where I is the width
of the cover image. Then we follow with a sequence of four layers which consist
of a sequence of convolutions, normalization and ReLU except for the final layer
where tanh is used as the activation function. Bob and Charlie use the image
output by Alice as their input, their structure consists of four consecutive and
fractionally-strided convolutions. All the layers use Leaky ReLU except the final
one, which uses tanh in order to get a binary output. Eve has the same structure
as Bob and Charlie except in the final layer where he has sigmoid in order to
output probabilities whether what he was fed is a normal or steganographic
image.
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3 Training Process and Loss Functions

In order to allow multiple neural networks to learn the same model on different
machines, we choose one machine that will act as a leader (Alice), and all of
the other machines will train with that leader which is be better than training
Bob and Charlie with a local Alice running on their own machine. Sharing a
leading machine is what allows multiple parties to learn the same model. In this
paper, we only focus on communicating among three parties to reduce training
time. When training is complete, the three neural network will learn the same
embedding and extraction algorithm (i.e the steganography algorithm).

The parameters used to train the neural networks are as follow: θA for Alice,
θB for Bob, θC for Charlie and θE for Eve. The function EA(θA,M, P ) repre-
sents the embedding function on the image M and the plaintext P for Alice and
with a steganographic image as output and DB(θB, S) represents the extraction
algorithm of Bob on the steganographic image S with output as PBob. The loss
function for Eve is as follow: DE(θE,M, S) where M is a normal image and S
is the steganographic image. Eve’s output on an image is the probability of it
being a steganographic image.

The distance between the original plaintext and each extracted text is cal-
culated in order to tell how accurate each neural networks is:

d(P, P ′) =
N∑

i=0

| Pi − P ′
i |

The definition of the loss function for Bob is the euclidean distance d between
Bob’s output and the Original plaintext:

LB(θA, θB ,M,C) = d(P,DB(θB , EA(θA,M,C)))

When adding Charlie, the third neural network, he will have the same struc-
ture as Bob and therefore the same loss function:

LC(θA, θC ,M,C) = d(P,DC(θC , EA(θA,M,C)))

The loss function for Eve is the sigmoid cross entropy loss:

LE(ΘA, ΘE ,M, S) = −y · log(E(ΘE , x)) − (1 − y) · log(E(1 − ΘE , x))

where y = 0 if x = S and y = 1 if x = M .
As in [6]. Alice’s loss is the weighted sum of Bob’s, Charlie’s and Eve’s loss

on steganographic images, combined with an additional loss term:

LE(ΘA, ΘE ,M, S) = λA · d(S,M) + λB · LB + λC · LC + λE · LE(ΘE , S)

where ΘA, ΘB , ΘC , ΘE ∈ R represent the weight given to each of the respective
loss terms. Note that it is mandatory to add the parameters of Charlie or any
additional party to the above equation so that they all can learn the same model.
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To summarize, the main idea behind hiding and extracting the plain text
consists of concatenating the image with the plaintext (secret message of Alice)
and passing it through Alice’s neural network. The output from Alice’s neural
network is sent to Bob and Charlie which will again go through their neural
networks respectively. The outputs of Bob and Charlie are plaintexts and the
neural networks are trained until the plaintexts become equal to Alice’s secret
message.

4 Main Results

Our goal is to train the three neural networks and synchronize them in a way
that they learn the same embedding and extraction algorithm. Our three com-
municating neural networks with the same structure are Alice, Bob and Charlie
and Eve will play the role of the eavesdropper. We use the CelebA data set [12]
to train the neural networks, a new image and plaintext are used in every step
of training.

4.1 First Scenario

In this scenario we solve the issue mentioned in Section 4.4 of [6] to allow multiple
parties to learn the same embedding and extraction model simultaneously.

Training Process I. We have Alice, Bob, Charlie in three different machines
and Alice will embed random plaintexts inside images from CelebA data set. We
see that after around 200 epochs Bob and Charlie will synchronize and extract
the same plaintext. The training process is presented in Algorithm 1.

Algorithm 1 Training Process I.
1: image array ← CelebADataSetImages // loads the image data set into an

array
// n refers to the number of images in the data set and synchronized is

a Boolean variable that indicates if synchronized or not
2: initialize: i = 0
3: while i <= n or synchronized do
4: AliceGetNextImage(i) //Alice gets the next image from the dataset
5: AliceGenerateBitstream(100 ) //Alice generates a random bitstream of 100

bits
6: AliceGenerateStegoImage(i) //Alice generates the steganographic image
7: BobCharlieExtractBitstream(stegoImage) //Bob and Charlie extract the bit-

stream from the steganographic image
8: EveAnalyzeImages(stegoImage, originalImage) //Eve tries to distinguish

between steganographic and cover images
9: UpdateParameters(ΘA,ΘB ,ΘC ,ΘE ) //update the parameters

10: end



3-Party Adversarial Steganography 95

Algorithm Explanation. In this algorithm, we load the training data set and
we enter a loop that only stops when there is no more images or that the neural
networks are synchronized. In the body of the loop, we get the first image,
generate a bitstream which will be the plaintext we will hide, feed it into the
neural network of Alice in order to generate the steganographic image. Bob and
Charlie will then extract the text from the stego image and Eve will analyse the
image and output either 1 if she thinks that the image is steganographic or 0 if
it is a cover image. After getting the output, the loss function is verified and if
it is not satisfied yet, we will jump to the next iteration.

Experiment I. In the first experiment, Alice generates a random 100 bits plain-
text P , and hides it inside a sequentially picked cover image from CelebA data
set and sends it to Bob and Charlie

Bob and Charlie extract the hidden text and output PBob, Pcharlie. As Eve
has access to the communication, he intercepts the cover image and tells if it’s
a cover image or a steganographic image by outputting either 1 or 0 as Peve.

In every iteration, we calculate the loss of each neural network as well as
the minimum distance between the original plaintext and the extracted ones
respectively: PBob, PCharlie. Figure 1 shows the plotted loss made by each neural
network during training.

Analysis I. In Experiment I, we can see in Fig. 1 that Bob and Charlie have a
loss of about 0.5 at the beginning of the experiment but reach 0 loss after around
175 epochs. We also see that they learned the same extraction algorithm.

To make sure they learned the same embedding and extraction algorithms,
we also make Bob & Charlie generate a random plaintext and hide it inside a
random image; Bob will send its image to Charlie for extraction and vice versa.
We will not update the parameters in exchanges between Bob and Charlie in
order to only learn when exchanging with Alice.

Figure 2 shows the accuracy of Charlie while extracting images received from
Bob, and Fig. 3 shows the accuracy of Bob when extracting images received from
Charlie. We can see that after around 160 epochs, they both have 100% accuracy
when extracting messages and this therefore proves that they all learned the same
embedding and extraction algorithms.

4.2 Second and Third Scenario

Second Scenario

Training Process II. In the Second Scenario, we split the neural networks into
two communicating pairs. Concretely, Alice will communicate with Bob and
Bob will communicate with Charlie. And Alice cannot communicate directly
with Charlie. This can be useful in IoT devices where two devices are too far
from each other and need another device as a bridge.

Experiment II. In this scenario, Alice generates a steganographic image and
sends it to Bob. Bob extracts the hidden text, hides it again in another image
through its neural network and the new steganographic image is sent to Charlie.
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Fig. 1. Test results of experiment 1

Fig. 2. Charlie’s accuracy when extract-
ing from Bob in scenario I

Fig. 3. Bob’s accuracy when extracting
from Charlie in scenario I.

Charlie will extract the hidden text from the image received from Bob in order
to output PCharlie. Eve can intercept any of the images exchanged between the
neural networks. At every step of the training, we calculate the distance between
the original plain texts and the extracted texts, we also calculate the loss of every
neural network. The loss of the neural networks are plotted in Figs. 4 and 5.

Analysis II. Similarly to the first scenario, we can see that Alice, Bob and
Charlie converge to 0 loss in around 200 epochs. However the communication
between Charlie and Alice is not possible and the accuracy was around 50%
during our tests Therefore they will need to use Bob as a bridge to communicate.

Third Scenario

Training Process III. In this scenario, Alice’s synchronization with Bob and
Charlie is done in an independent way; In other words, Alice will use one unique
set of parameters for the communication with Bob and another unique set of
parameters with Charlie. Therefore, a communication between Bob and Charlie
would require the use of Alice as a bridge.
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Fig. 4. Loss in the communication between
Alice and Bob in Exp. II

Fig. 5. Loss in the communication
between Bob and Charlie in Exp. II

Experiment III. Two sets of unique parameters are generated by Alice in this
scenario; When generating a steganographic image by Alice, if the image is sent
to Bob, the first set of parameters is used and when sending the steganographic
image to Charlie, the second set of parameters is used. We record the loss of
every neural network and we plot it in Fig. 6 and Fig. 7.

Fig. 6. Loss in the communication
between Alice and Charlie in Exp. III

Fig. 7. Loss in the communication
between Alice and Bob in Exp. III

Analysis III. We can see that Bob and Charlie start with a loss of around
0.5 but the loss quickly decreases and we get a nearly perfect accuracy. Eve’s
loss was between 2.0 and 3.5. Which means that each pair of neural networks is
synchronized. But the communication between Charlie and Bob is not possible
and Alice must be used as a bridge.



98 I. Meraouche et al.

4.3 Discussions

We have shown in the first scenario of the communication that it is possible to
add a third party to Alice and Bob and enable them to learn the same model
therefore solving the issue in Section 4.4 in [6]. However in the second and third
scenario the 3-party communication will need to use one of the parties as a bridge
whether the training party uses the same or different parameters for each party
due to the problem of non-convexity.
Overall, the usage of cases depends on the scenario. First scenario fits best when
having multiple machines communicating as it allows them to learn the same
model. Second and third scenarios are best for talking separately. The same
applies in the case of multiple parties communication.

After training our neural networks, we tried feeding them the same set of
images and see the output. Figure 9 and Fig. 10 show the images generated by
Alice at the beginning and end of training respectively. Figure 8 shows the set
of original images.

Fig. 8. Original image

The extension to a multi-party scheme is possible by just adding as many
parties as needed and including their parameters in the main loss function in
order to enable them to learn the same model. However the training time should
be taken into consideration as it will rise significantly when more parties are
added to the scheme.
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Fig. 9. Images generated by Alice
before training

Fig. 10. Images generated by Alice
after training

5 Conclusion and Future Work

We proposed a methodology to enable more than two parties to learn the same
steganography model (with a 3-party example) based on Google’s Adversarial
Cryptography model [1] and 2-Party Steganography model [6]. We took a novel
approach by training several machines altogether with respect to one (leader)
machine. We also showed (in Scenario 2 & 3) that it is not always possible to
learn the same steganography model by introducing a third machine.

Several interesting future works are in order. For example, scrutinize the
(concrete) implementation of the scheme for more than three parties; perform
concrete (standardized) steganalysis attacks on these extended versions. One
may consider achieving resistance against more concrete adversaries (e.g. chosen
plaintext attack) in order to improve the security.
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Abstract. The number of malware detected has been increasing annu-
ally, and 4.12% of malware reported in 2018 attacked Android phones.
Therefore, preventing attacks by Android malware is critically impor-
tant. Several previous studies have investigated the percentage of apps
that utilize accessibility services and are distributed from Google Play,
that have been reportedly used by Android malware. However, the Social
Networking Services (SNSs) that are used to spread malware have dis-
tributed apps not only from Google Play but also from other sources.
Therefore, apps distributed from within and outside of Google Play must
be investigated to capture malware trends. In this study, we collected
apps shared on Twitter in 2018, which is a representative SNS, and cre-
ated a Twitter shared apps dataset. The dataset consists of 32,068 apps
downloaded from the websites of URLs collected on Twitter. We clar-
ified the proportion of apps that contained malware and proportion of
apps utilizing accessibility services. We found that both, the percentage
of malware and percentage of total apps using accessibility services have
been increasing. Notably, the percentages of malware and un-suspicious
apps using accessibility services were quite similar. Therefore, this prob-
lem cannot be solved by automatically blocking all apps that use acces-
sibility services. Hence, specific countermeasures against malware using
accessibility services will be increasingly important for online security in
the future.

Keywords: Accessibility service · Android app · Malware · SNS

1 Introduction

The number of malware detected has increased annually, with 4.12% of malware
found in 2018 reportedly attacking Android phones [6]. A 2018–19 security report
by AV-TEST found a total of 5,490,000 Android malware attacks in 2018 [6].
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Contrarily, WeLiveSecurity has reported that the number of Android malware is
actually decreasing [18]. Either way, the number of Android malware is still large
and this poses a significant problem that warrants investigation and prevention.

In 2017, Dr. Web has reported accessibility service (AS) utilization as a recent
trend for mobile malware [9]. These services are an Android feature intended for
use by people with disabilities, but they have been reportedly used by Android
malware as well. For example, a malware called Skygofree, which uses AS to
eavesdrop on information on user screens was reported in 2018 [14]. Additionally,
in 2019 a malware called Gustuff reportedly used AS to send money unintended
by users [11]. Clearly, there have been many malware attacks that exploit these
well-intentioned AS.

It is therefore important to investigate the utilization rates of AS by Android
applications (apps). There have been reports on the AS utilization rate, specif-
ically by apps that were distributed by Google Play. In November 2017, it was
announced that any apps that were using AS for purposes other than supporting
users with disabilities would be deleted from Google Play [4]. According to the
AS documentation [3]:

“Although it’s beneficial to add accessibility features in your app, you
should use them only for the purpose of helping users with disabilities
interact with your app.”

Therefore, developers could not use Google Play to distribute apps that use AS,
except those intended to help users with disabilities. However, many apps that
use AS could be distributed by methods other than Google Play, so surveys
targeting only Google Play apps are insufficient to investigate the actual dis-
tribution of such apps. We must, therefore, investigate the distribution of apps
that use AS from all sources to evaluate the overall utilization of AS in malware.

Malware and fake websites have been widely shared on Social Networking
Services (SNSs) [13], where many cybercrimes have also occurred [7]. It is there-
fore important to investigate the true situation around Android apps that use
AS so that malware trends can be accurately characterized.

In this study, we collected URLs obtained from Twitter, which is a represen-
tative SNS, accessed these URLs, and collected the Android apps that could be
downloaded to explore apps distributed from sources other than Google Play. We
created a Twitter shared apps dataset that consists of 32,068 apps downloaded
from the websites of URLs collected on Twitter. We clarified the proportion of
apps that contained malware and proportion of apps utilizing AS.

We used this data to identify the proportion of the total number of shared
apps that used AS. This revealed both the threat level presented by apps shared
on Twitter and the danger of allowing AS for SNS distributed apps.

In summary, our study makes the following contributions:

– We created a dataset that consists of apps downloaded from the websites of
URLs collected on Twitter. As far as we know, there is no dataset that focuses
on apps distributed by URLs via Twitter.
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Fig. 1. Extract of manifest declaring AS use

– We analyzed the rate at which Android apps shared on Twitter use AS.
Focusing on these apps, which are distributed from third party app stores or
websites, we identified an accurate summary of apps distributed from these
sources in 2018.

– We show that the proportion of malware is increasing for apps shared on
Twitter.

– We find increasing AS usage rates for Android apps shared on Twitter.
– We show some countermeasures that mitigate the threats of apps utilizing

AS. We believe that the increasing trend of apps utilizing AS will continue,
thus we should carefully check the apps that require AS and their required
permissions.

2 Accessibility Services Overview

Following the AccessibilityEvents documentation [1]:

Accessibility services should only be used to assist users with disabilities in
using Android devices and apps. They run in the background and receive
callbacks by the system when AccessibilityEvents are fired. Such events
denote some state transition in the user interface, for example, the focus
has changed, a button has been clicked, etc. Such a service can optionally
request the capability for querying the content of the active window.

Notably, apps that use AS can read string data that is displayed on screens
and operate other apps [2], making them particularly powerful and potentially
dangerous.

For an app to use AS, two things must occur. First, it must be declared in
AndroidManifest.xml, an example of which is shown in Fig. 1. Second, the user
must allow AS in the app settings. A sample settings screen for Android users
is shown in Fig. 2. When utilizing AS, users must change their settings, as the
AS cannot be engaged unless the user permits it.

Malware have been reported to exploit AS. According to Kaspersky, a mal-
ware named Skygofree used AS to eavesdrop on messages received by chat apps
[14]. Skygofree also hid AS permission requests behind other requests to trick
users [14]. Additionally, Group IB reported a malware called Gustuff that auto-
matically filled forms using AS, in mobile banking app, and was thus able to steal
money from users [11]. Generally, malware that exploit AS can obtain sensitive
information displayed on user screens such as passwords [10]. Further, malware
can operate Android phones automatically to download other applications from
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Fig. 2. Sample AS settings screen

Google Play and post reviews [15]. Often, attackers trick users into granting
access to AS to take advantage of these capabilities.

3 Investigation of the Ratio of Malicious Apps and Their
Accessibility Service Utilization Rates

3.1 Purpose of Investigation

Our purpose herein is to investigate the actual AS usage rates of the distributed
apps. To this end, we investigated apps shared on SNS, specifically Twitter. We
selected Twitter because users can use it anonymously, and a single user can
have multiple accounts, making it particularly vulnerable to criminal misuse.

3.2 Method for Collecting Apps on Twitter

As a result of searching for “apk” as a keyword in the public streaming appli-
cation programming interface (API) [17] of Twitter, we collected the uniform
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Fig. 3. Android app file structure

Table 1. Number of apps

Month Number of apps Number of different certificates

Jan. 3,499 1, 220

Feb. 2,702 1, 088

Mar. 2,399 936

Apr. 2,848 1, 072

May 4,563 1, 201

Jun. 2,815 855

Jul. 2,817 988

Aug. 2,384 959

Sep. 1,256 513

Oct. 1,653 631

Nov. 2,913 987

Dec. 2,397 771

resource locators (URLs) included in all acquired text. We selected “apk” as
a keyword because “apk” is used as the file extension for Android apps. We
obtained the contents from the websites of the URLs collected from Twitter as
well as the contents from the websites contained in the links included on the
websites. Android apps include files with unique names such as those shown in
Fig. 3. Hence, we collected files that met all of the following conditions, which
indicate that the file is indeed an app.

A) It is in ZIP format.
B) It includes class.dex and AndroidManifest.xml.
C) It includes a directory named META-INF.

For the identified apps, we used VirusTotal to determine whether each was
suspicious and to obtain a list of “detected” warnings for users from multiple
virus scanners. In this research, one or more “detected” readings determined that
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the app was suspicious. The app collection period was 1 year, spanning January
1, 2018 to December 31, 2018, and 32,068 total apps were analyzed. The number
of apps and different certificates are shown in Table 1. Different certificates
indicate different developers. As Table 1 shows, we have collected many apps
with different certificates to ensure we obtained a wide range of apps.

Fig. 4. Percentage of suspicious apps shared on Twitter

3.3 Investigation Method

The flow for analyzing AS usage rates is shown below:

(1) Extract AndroidManifest.xml from the app using Apktool [5].
(2) Search for the following in AndroidManifest.xml:

android.permission.BIND ACCESSIBILITY SERVICE
(3) If a character string is found as a result of this search, the app is determined

to use AS. Apps exhibiting technical issues such as Apktool that abnormally
terminated, were excluded from the AS usage rate survey.

This analysis allowed us to collect apps according to their trend of being shared
on Twitter. In addition, analyzing AndroidManifest.xml revealed the percentage
of apps that can use AS. Therefore, the ratios of suspicious apps shared on
Twitter and apps using AS could be clarified.
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3.4 Investigation Results

Investigating the Ratio of Suspicious Apps. In Fig. 4, the percentage of
suspicious apps identified in each month of 2018 is shown, which exhibits an
overall increasing trend.

We can infer from these results that the proportion of malware in the apps
distributed on Twitter is also increasing. Specifically, the average percentage of
suspicious apps was 49.8%. If we generalize this result, we can conclude that
about half of all SNS-distributed apps are suspicious, and installing them is
dangerous and not recommended.

Fig. 5. Percentage of apps that use AS

Investigating the Percentage of Apps that Use Accessibility Services.
In Fig. 5, the AS usage rates for apps shared on Twitter are shown. The rate
increased from 3.9% in January 2018 to 14.5% in December 2018, for an overall
3.7 fold increase in 2018. Therefore, we concluded that AS utilization in apps
shared on Twitter was on the rise.

Notably, the 2018 AS usage rate for apps distributed on Google Play was
reported to be 0.37% [8], while it was 9.4% (3,015/32,068) for the apps collected
in our study. Thus, the utilization rate found here is quite high. This implies
that the AS utilization rates for apps shared on Twitter is higher than that for
apps on Google Play. We can thus infer that the proportion of apps that use AS
increases for app distribution sources without any AS use restrictions such as
those imposed by Google Play.
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Analyzing the Ratio of Apps that Use as for Suspicious Activity. Figure
6 shows usage rates, classified by whether they correspond to suspicious apps.
From Fig. 6, we observe almost no difference in the AS usage rate depending on
whether or not an app is suspicious. Therefore, the use of AS cannot on its own be
used to identify an app as malware. In fact, the number of suspicious and benign
apps that use AS were very similar. However, as the ratio of suspicious apps to
all those that use AS was high, about 52.8% (1,591/3,015), we can clearly state
that apps shared on Twitter that require AS should not be installed without
considering the significant risk of malware.

Fig. 6. AS usage rates classified by whether they correspond to suspicious apps

4 Discussion

As described in Sect. 3.4, the overall prevalence of malware and overall AS usage
rates have been increasing. Thus, the malware risk associated with apps dis-
tributed from third-party stores or developer websites has increased accordingly.
These are common sources for apps that use AS, likely because Google Play
prohibits the distribution of apps that use AS with any intention other than
supporting app usage by people with disabilities. Figure 6 clearly indicates that
apps that use AS are not necessarily suspicious. Therefore, all apps that use AS
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cannot automatically be blocked. Therefore, specific countermeasures against
malware will become increasingly important for online security in the future.

We believe these countermeasures may include:

– Checking the app developer
When installing an SNS distributed app, it is important to ensure that the
app developer is trust worthy to avoid unintentionally installing malware.
Contaminated apps may be repackaged and distributed, so it is imperative
to check with the original developers.

– Allow AS only when needed
Confirm the reason that an app requires AS, before permitting the AS use.
This is expected to reduce AS-exploiting attacks.

– Check permissions required with AS
Users should check the permissions required with AS, as attacks could be
prevented by denying these permissions that may leak information.

5 Related Work

5.1 Identifying AS Vulnerabilities

Kalysch et al. [12] showed that AS could be used to eavesdrop on sensitive
user information. They also surveyed the top 1,100 apps on Google Play and
found that 99.25% were vulnerable to this type of exploitation. Furthermore,
Fratantonio et al. [10] showed that by combining AS with SYSTEM ALERT WINDOW,
which grants permissions to display on top of other apps, an attacker could per-
form tasks such as clickjacking, keylogger, and password stealing. Additionally,
McAfee [15] introduced Click Farm, which uses AS to send fake reviews from
devices infected with malware. Collectively, these studies prove that AS can be
abused and exploited, highlighting the importance of investigating AS usage
among real Android Apps distributed on SNSs. In addition, unsuspicious apps
use AS. Thus, it is important to make clear the differences in the AS usage ratios
of suspicious and unsuspicious apps.

5.2 Survey of AS Usage Rates

Wenrui et al. [8] investigated apps distributed by Google Play, and Mohammad
et al. [16] reported that 2,815 of these 4,155,414 apps used AS, after investigating
their dataset. While these studies investigated AS usage in apps distributed from
Google Play, they did not address those from other sources, such as SNS, third-
party app stores, and developer websites.

6 Conclusion

We collected URLs from the Twitter streaming API, which is a representative
SNS. We then accessed these URLs and collected the Android apps that could
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be downloaded to investigate apps distributed from sources other than Google
Play. We created a data set of the 32,068 apps shared on Twitter in 2018 and
showed that 49.8% of these apps are suspicious. Our results also indicate that
the proportions of suspicious apps and apps that use AS had been increasing.
Installing these apps is dangerous and not recommended. In addition, we showed
some countermeasures. The 2018 AS usage rate for apps distributed on Google
Play was reported to be 0.37% [8], but it was 9.4% for the apps collected in
our study. This implies that the AS utilization rates for apps shared on Twitter
is higher than that for apps on Google Play. Further, the AS usage rates for
suspicious apps and benign apps are very similar, demonstrating the increasing
importance of malware specific countermeasures in the future of online security.

In future works, malware utilizing AS must be analyzed in detail, and specific
countermeasures should be considered and outlined.
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missioned Research of National Institute of Information and Communications Technol-
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Abstract. A well-known technology called steganography is a strategy of hid-
ing secrets that nobody will suspect the existence of secrets in cover medium. This
paper indicates a novel and reversible steganographic protocol based on transfor-
mation of secrets to be transmitted covertly in high-frequencies waves carried by
a public audio. In principle: a secret is first turned into a digital wave, and then
lifted to a radio frequency. The radio-frequency signal is out of the threshold cor-
responding to human beings’ awareness and will be put onto an audio that could
be downloaded by receivers legally. A receiver can lift down the radio-frequency
wave and drain out the secret. The proposed technology decreases the risk greatly
about preventing secrets from explosion during a transition. Experiments, com-
parisons and analyses are also performed to investigate practicability and superior
performance compared with state-of-the-art steganographic schemes.

Keywords: Reversible · Acoustic · Steganography · Secrets · Radio-frequency
signals

1 Introduction

In recent years, people accessing different data on the Internet have been frequent.
Therefore, it is important to protect and secure the information. Many state-of-the-art
techniqueswere designed tomaintain the confidentiality consequently. Among lots kinds
of data protection schemes available nowadays, various forms of steganography have
been prevalent. Steganography is a data hiding technique in which a secret is embedded
on medium, known as the ‘cover media’. If the contents of cover medium are modified
with secrets, resultant medium becomes ‘stego-medium’. Only authorized receivers are
able to obtain secrets by recovering them from stego-medium. There are also other cover
media like text [1], DNA sequences [2] and physiological signals [3].

Lots numbers of data are able to be hidden on acoustics, and many published papers
described how to hide secret data in these signals [4–24]. Bender [4] concluded four
principle steganographic strategies in acoustics including LSB, spread spectrum, phase
coding and echo data hiding.
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The main meaning of LSB strategy is that the data will be hidden by replacing the
least significant bits of cover medium [5]. It is easy to deploy and manipulate. However,
it is also easy to be aware of the modified parts. Further, its applications are restricted
only on digital data.

Spreading data via different frequency spectrums are designed by segmenting secrets
in many pages and spreading secrets across as many frequency bands. The bene-
fit is ensuring signal integrity and reception, even though there are lots of existing
interferences [6].

The main idea of phase coding is substituting phases of initial acoustic segments by
referencing phases which represent data. Phases of successive blocks being adjusted are
set to preserve relative phases of blocks. When phases’ relationship of frequencies is
changed dramatically, obvious phase dispersions occur. As this is effective by means of
signal-to-perceived noise ratio, it is hard to detect in host medium.

One strategy is psychoacoustic masking [7]. Secrets are embedded after replacing
of high and low frequencies of cover medium. The cover medium obtains some ratio
frequencies out of the threshold on human ears, and the frequencies are available to
embed messages.

One strategy is called Echo data hiding which hides secrets into cover medium by
inserting echoes [8]. Human ears are not able to distinguish pure echoes and those
carrying secrets. Echoes are either derived from cover medium or available on cover
medium.Echoes derived fromcovermedium increase capacity of a hostwhen embedding
secret messages while it is not easy to ensure artificial echoes not to be noticed.

The article is organized as follows. Section 2 describes the proposed protocol.
Section 3 presents an experiment and simulation of the proposed scheme to demon-
strate the practicability. Section 4 compares robustness of some related work and gives
theoretical analysis of capacity and security. Conclusions are addressed in Sect. 5.

2 The Scheme

The workflow of the proposed protocol: First, transform a bit stream with embedded
secrets to acoustic signals and lifts the signals into very high frequencies. Then, embed
the high frequency signals on a public cover acoustic. Also, reveal the corresponding
process of data recovery.

The overview of the proposed strategy runs as follows (the process of data hiding):

(1) Turn the secret S into a bit stream S′.
(2) Transform S′ to a digital wave M.
(3) Adopt a frequency lifting onto M and M changes to a radio-frequency wave M ′.
(4) Put the radio-frequency waveM′, which cannot be heard, onto a public music audio

P, that is low-frequency and auditable to generate an audio P′. Process of data
recovery works in the following:

(5) Legal receivers download audio P′ which is composed of a low-frequency audio P
and the radio-frequency secrets M ′.

(6) Legal receivers lift radio-frequency audio M ′ down and recover M.
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(7) Legal receivers turnM to a digital bit stream S′.
(8) Legal receivers recover S and check the correctness of S by referencing P.

This scheme uses a special property of communications and brings the best effects
to make transmitted contents unnoticeable. A translated bit stream S′ will be first turned
to be an audio wave n(t) by using the coming operations:

(a) Cut S′ into blocks of equal size w until the size of the last block is not larger than
w. Thus, S′ = S1′S2′…Si ′Si+1′, i is equal to |S|/w and | Si+1′| ≤ w.

(b) If | Si+1′| ≤ w, pad zeros after Si+1′ until | Si+1′| = w.
(c) Assume that the number of padding zeros after Si+1′ is x, produce a bit stream Si+2′,

where | Si+2′|= w which denotes the value of x in binary, and appends it after Si+1′.

For instance, a bit stream S′ = 1001011001011010100010101010101001010.Based
on the procedure, suppose l = 8 and S′ will be first divided as S1′S2′S3′S4′S5′ where
S1′ = 10010110, S2′ = 01011010, S3′ = 10001010, S4′ = 10101010, S5′ = 01010.
The last segment should be extended by adding 0 after it until its size is equal to l and it
shall be S5′ = 01010000 in this case. There are three zeros added to S5′ such that S6′
= 00000011 should be created to point out the number of zeros added after S5′. l should
be given to legal receivers. S1′, S2′…S6′ are used to compose an acoustic wave n(t).
Then, lift n(t) to be a radio- frequency wave n′(t). The exploited frequency lifting will
be discussed in the following subsections. Finally, choose a public known music P(t)
and append n′(t) on P(t) to produce P′(t). P′(t) will be put in a public music database
and downloaded by authorized receivers. Notice that senders do not need to deliver the
stego-audio P′(t) while senders and authorized receivers negotiate for the cover medium
under a secure channel.

The procedure of data recovery works as follows: when authorized receivers receive
a public acoustic P′(t), the first process is to use a high-pass filter (HPF) to strain the
radio-frequency wave n′(t) and the public music P(t) out. It is sure that legal receivers
know all frequencies of the lifting in the process of hiding secret. Then, lift down the
radio-frequency wave n′(t); it is doubtless that authorized receivers can obtain n(t) via
the operations of communication. The detail procedure of the operations will also be
described later. After obtaining n(t), receivers then transform n(t) to a digital, meaningful
data. It works like the following:

(d) An authorized receiver uses the information of block size l to derive the number of
blocks in sampled wave n(t), suppose it is i + 1, then it will obtain a group of binary
streams S1′, S2′,…, Si ′, Si+1′.

(e) According to the transformation, the value of Si+1′ represents the number of zeros
padded after Si’, suppose it is d.

(f) After deleting d zeros from the tail of Si ′, the collecting of bit stream S1′, S2′, …,
Si-1′ and the Si ′ could be concatenated one by one as a bit stream S′.

If an authorized receiver successfully turns n(t) to a bit stream, it means the trans-
formed output is S′. Finally, turn the bit stream S′ to rebuild a meaningful content S.
Receivers could identify the rebuilt data and judge that S is the correct one or not. The
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identification procedure is to compare the public audio P(t) and others which contain the
same meanings. The exhaustion will not need to be considered because all procedures
are done by mathematical simulations.

2.1 Properties and Operations

The basic design of the scheme is on the characteristics of human-hearing system by
psychoacoustics that humans are not able to hear radio-frequency (over 16,000 Hertz)
signals [25]. If the frequency of a human voice can be lifted to a very-high-frequency
band, the generated signals will not be heard by humans. In communication systems,
it is necessary to lift up frequencies of signals because of long antennas corresponding
to low-frequency signals. Long antennas are not feasible for delivering signals. In the
following section, a frequency lifting which lifts up frequencies effectively is introduced
[25]. We will describe how to use this technique steganography lately.

2.2 DSB-SC (Double-Sideband Suppressed Carrier)

Suppose there is a carrier sinusoidal wave f (t) defined as f (t) = Ac cos(2π fct), where
t represents time in second, Ac is a carrier wave and f c is a carrier frequency. Let n(t)
be the candidate signal (baseband signal). The DSB-SC wave r(t) (delivering signal) is
defined as r(t) = Acn(t)cos(2π fct). It is no doubt that the lifting process increases the
frequency of a baseband. Also, F.T. (Fourier transform) of a periodic wave a(t) = cos
2π f 0t according to frequency f 0 can be computed as

A(f ) = F{cos(2π f0t)} = F{(1/2)(e2π f0t + e−2π f0t)} = (1/2)F(e2π f0t) + (1/2)F(e−2π f0t)

= (1/2)(δ(f − f0) + δ(f + f0) (1)

According to the Eq. (1), the F.T. of c(t) is (Ac/2)[δ(f -fc) + δ(f + fc)].
Let the F.T. of a(t), b(t) and c(t) be denoted as A(t), B(t) and C(t), respectively. Let

c(t) = a(t)b(t). Then follow the rule:

c(t) = a(t)b(t)
→
←C(f ) = A(f ) ∗ B(f )

where → and ← denotes Fourier and inverse Fourier transforms and * represents con-
volution denoted as A(f ) ∗ B(f ) = ∫ ∞

−∞ A(v)B(f − v)dv. In this case, a(t) = n(t), it
indicates A(f ) = N(f ) and b(t) = cos(2π f ct) is also obtained. According to Eq. (1), it is
known that B(f ) = (1/2)[δ(f−f c) + δ(f + f c)] and B(f−v) = (1/2)[δ(f−v−f c) + δ(f−v
+ f c)]. Thus,

AcA(f ) ∗ B(f ) = (Ac/2)
∫ ∞

−∞
N (v)

[
δ(f − v − fc) + δ(f − v + fc)

]
dv =

(Ac/2)
[
N (f − fc) + N (f + fc)

]
(2)

Equation (2) indicates that a base-band signal-frequency spectrum N(t) is now lifted
up to N(f−f c) and N(f + f c). Assume the signal n(t) is band-limited to [W, W ]. For
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instance, the F.T. of N(f ) is zero for |f | > W . Bandwidth of the message wave is
then defined as W. For instance, a voice may have spectrum concentrated within 3 k
Hertz. Its bandwidth is therefore W = 3 kHz. Components N(f−f c) and N(f + f c)
are corresponding to higher frequencies. The lifted signal then consists of a spectrum
concentrated around f c, i.e., from f c−W to f c + W. Bandwidth of the lifted signal is
therefore 2W. Note that the raising of frequencies of baseband signals to higher ones is
the main purpose of the proposed protocol.

The system will recover signal n(t) from DSB-SC signal and the lifting down works
as follows. A lock oscillator produces a local sinusoidal waveform cos(2π fct) with
the same frequency and phase as those of the transmitted carrier. The signal r′(t) =
r(t)cos(2π fct) can be expressed as:

r′(t) = r(t)cos(2π fct) = Acn(t)cos2(2π fct) = (Ac/2)n(t) + (Ac/2)n(t)cos(2π(2fc)t) (3)

First term of Eq. (3) is a low-frequency part of n(t). Second term of the Eq. (3) is a
high-frequency part that is equivalent to aDSB-SCwavewith carrier 2fc. Signal r′(t) will
pass over a low-pass filter. A low-pass filter will only permit a low-frequency part which
is n(t) to pass and strain over a high-frequency part in the DSB-SC wave. Therefore, the
lifted down output of a low-pass filter obtains only (Ac/2)n(t). This indicates the n(t) is
recovered.

2.3 Carrier Orthogonality and Steganography

According to the previous properties, the authors proposed a protocol to hide secrets
N(t) into an acoustic P(t) and then put in a voice/speech storage. Intruders who try to
crack needs to brute force trying numerous public music in the database while authorized
receivers are able to recoverN(t) according to the pre-shared information (covermedium
and the carriers). The proposed protocol consists of the coming 3 steps:

(1) Multiply N(t) and cos(2π fct) where fc is a very high frequency. It will lift all
frequencies contained in N(t) to radio frequency bands, namely surrounding fc.
Define the lifted signal N ′(t). Since fc is very high, no one can hear the lifted wave
N ′(t).

(2) Add P(t) and N ′(t) to produce P′(t). Any interceptor can hear P(t) and would not
be suspicious to embedded secrets.

(3) Authorized receivers use a high pass filter to strain out N ′(t) and then they will
recover N(t) after multiplying N ′(t) and cos(2π fct).

2.4 Entire Schemes

In the process of the secret hiding, suppose the secrets are S1, S2, …, Sn . The first
action is to turn the secrets to bit stream S′1, S′2, …, S′n. However, the next operation
is an frequency lifting and it is necessary to transform S′1, S′2, …, S′n to acoustic
signals. The transformed signals are n1(t), n2(t), …, nn(t) and then transformed as
high-frequency signals of lifting by high frequencies. At the end, the acoustic P(t) is
also embedded secrets to produce P′(t). The sender provides the stego-acoustic P′(t)
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in a public multimedia storage and authorized receivers are permitted to download.
In the process of data recover, when authorized receivers download P′(t), they adopt
the recovering process to strain out waves n′

1(t), n′
2(t), …, n′

n(t) and turn them to bit
streams. S′1, S′2, …, S′n. Authorized receivers finally turn S′1, S′2, …, S′n to secret
S1, S2, …, Sn. Notice that there is pre-shared information, such as the translation of
meaningful data and bit streams, the information of bit streams, acoustic waves and
carrier frequencies, that should be given to authorized receivers. The regular data hiding
and recovery procedures are given below.

Procedure of Embedding Secrets

Input: selected secrets S1, S2,…, Sn, the translation rule translating secrets to binary
strings, transformation rule transforming bit stream to acoustic waves, the
cover acoustic P(t), and carrier frequencies f 1, f 2,…, fn.

Output: the stego-acoustic P′(t).
Step 1: use the translation rule to translate the secrets S1, S2, …, Sn to bit streams

S′1, S′2, …, S′n.
Step 2: use the transformation rule to transformbit streams S′1, S′2,…, S′n to acoustic

waves n1(t), n2(t), …, nn(t).
Step 3: Calculate cos(2π f 1t), cos(2π f 2t), …, cos(2π fnt).
Step 4: Multiply n1(t), n2(t), …, nn(t) by cos(2π f 1t), cos(2π f 2t), …, cos(2π fnt)

individually and generate n′1(t), n′2(t), …, n′n(t).
Step 5: Summarize n′1(t), n′2(t), …, n′n(t), the result is sum(t).
Step 6: sum up sum(t) and P(t) to P′(t)

Procedure of Recovery Secrets

Input: received cover acoustic P′(t), carrier frequencies f 1, f 2,…, fn, HPF (high pass
filter), LPF (low pass filter), transformation rule transforming acoustic waves
to bit streams and the translation rule translating bit streams to secrets.

Output: secrets S1, S2, …, Sn.
Step 1: calculate cos(2π f 1t), cos(2π f 2t), …, cos(2π fnt).
Step 2: use HPF on P′(t), the resulting wave is sum′(t).
Step 3: multiply sum′(t) and individual of cos(2π f 1t), cos(2π f 2t),…, and cos(2π fnt),

it obtains n11(t), n21(t), …, nn1(t), respectively.
Step 4: use LPF on n11(t), n21(t), …, nn1(t) to acquire the lifted down waves n12(t),

n22(t), …, nn2(t), respectively.
Step 5: adopt transformation rule to transform n12(t), n22(t), …, nn2(t) to bit streams

S′1, S′2, …, S′n
Step 6: translate and recover secrets S1, S2, …, Sn

3 Implementation and Experiment

A practical experiment which includes HPF, LPF and carrier lifting are simulated by
using MATLAB 2010 in this section. Input secrets could be text or images. In this
experiment, a text is the first secret and an image is the second secret. The data of
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the text file is Revelation, the last chapter of the BIBBLE. It will be transformed to
binary value by ASCII. The image file is a 256×256 pixel PGM file, called Lena.pgm,
which represents a famous testing file in image processing. Figure 1 is the description
of “Lena.pgm”. Figure 2 is the time-domain spectrum of a public voice P(t).

Fig. 1. Lena.pgm. Fig. 2. The time domain of P(t).

Each binary value will be processed to be a sampled value in time domain. Here
the digital signal of the text and the image are denoted as n1(t) and n2(t), respectively.
Figure 3 (Fig. 4) is the frequency domain of n1(t) (n2(t)). Both of n1(t) and n2(t) are set
up as 16 bits, 8000 Hzsignals.

Fig. 3. The frequency spectrum of n1(t). Fig. 4. The frequency spectrum of n2(t).

Consult to the data hiding process, n1(t) and n2(t) should be lifted to higher frequency,
named n′

1(t) and n′
2(t). Figures 5 and 6 demonstrate their frequency domains after lifting

to 18,000 Hz and 3,9000 Hz. The last step is to sum up n′
1(t), n′

2(t) and P(t) to generate
P′(t) as shown in Fig. 7.
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Fig. 5. Frequency spectrum of n′
1(t). Fig. 6. Frequency specturm of n′

2(t).

Fig. 7. Time series of P′(t). Fig. 8. Frequency spectrum of sum(t).

In the recovery procedure, Fig. 8 demonstrates the frequency domain of the sum-
mation sum(t) according to secrets n′

1(t) and n′
2(t) after applying HPF to P′(t). Then

multiply cos(2π f 1t) and cos(2π f 2t) which are carrier frequencies of n1(t) and n2(t),
respectively. Figure 9 and Fig. 10 show the lifted-down secrets and after using low pass
filter, respectively. It is clear that n1(t) and n2(t) have been successfully recovered.

Fig. 9. Frequency spectrum of recovered n1(t). Fig. 10. Frequency spectrum of n2(t).
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4 Analysis and Comparisons

Traditional data hiding schemes use images as the host file to hide secrets, while it will
certainly distort cover medium such that intruders can detect the distortion and attack it.
A security proof is proposed in Sect. 4.1, a capacity analysis is introduced in Sect. 4.3 and
comparisons among related works and the proposed scheme are described in Sect. 4.3.

4.1 Security Proof

Today, people have their own databases referring to the availability of the Internet. Unlike
those in the past, databases of special purposes are always targets of intruders. Popularity
of sharing private data makes an intruder does not know where the stego-medium are.
The proposed protocol is a primal steganographic scheme. It has different versions based
on requirements of users. For example, senders can make appointments to receivers for
downloading the modified audio in permitted timings. The selected timing could be
encrypted by hash functions or other principles, with no regularity to appoint a rightful
short-time period for receivers to download cover acoustics.

Besides, the secrets S1, S2,…, Sn could be designed as a dependent set of sequences:
S2 cannot be recoveredwithout successful recovery of S1, S3 cannot be recoveredwithout
correct recoveryofS2,…, and soon.Adependent set of sequencesmakes intruders harder
to crack all secrets. An intruder may successfully crack parts of secrets and try to guess
the entire contents,while a dependent sequence setmakes intruders to recover all of them.
According to [2, 3], the authors gave possibilities for successful guessing or recovering
of secrets, meaning Pr(Si) which corresponds to brute force analysis on the composition
of a sequence. In this paper, the above measurements are also provided while they are
different. The probability Pr(Si) is composed of three probabilities: PrBT (Si), PrSM (Si)
and PrCL(Si). PrBT (Si) defines the probabilities of cracking bit translation from secret
Si to bit streams S′

i. PrSM (Si) represents the probability of cracking S′
i to ni(t). PrCL(Si)

is the probability of cracking the carrier frequencies which are used to lift the secrets
to high frequencies from ni(t) to n′

i(t). Obviously, Pr(Si) = PrBT (Si) × PrSM (Si) ×
PrSM (Si), and the probability of breaking a dependent set of sequences is

∏n
i=1 Pr

(
S ′
i

)
.

4.2 Capacity Analysis

Other considerations in the research field of steganography such as capacity, payload
and bpn should be issued. Consult to [2], the definition of capacity, represented by CA is
defined as the length of the increased-referencing sequence after the secret is embedded
within it. The payload, denoted as PA, is defined as the rest length of a new sequence
after straining out a referencing DNA sequence. The payload is used to understand how
much additional information is needed to append in the process of data hiding. The bpn
as the number of secret bits embedded per character is defined as |M| /CA, where M is
the number of secret bits.

The proposed protocol might contain many secrets such that the capacity CM =
|P(t)|
2 + ∑n

i=1 CAi. (each CAi is a capacity generated after hiding a secret in P(t)) if

there are n secret bits embedded in the cover audio P(t). Note that |P(t)|
2 is the character
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size of P(t) because all CAi
′s are in character form. The payload PAM =

n∑

i=1
PAi is the

summation of all PAi
′s of secrets. The bpn is equal to

∑n
i=1|Mi|
CAM

, where |Mi| is the size of
a secret hidden in one of the secrets. It is obvious that the size of P(t) does not restrict
the capacity of the proposed protocol. It can be said that if the number of secrets is large

enough or |P(t)| is quite small, bpn will be nearly equal to
∑n

i=1|Mi|∑n
i=1 CAi

.

4.3 Comparisons

This section compares relatedworks [8, 10] and the proposed scheme.Audio steganogra-
phy focuses on bit error ratio under signal-processing attack including filtering (high/low
pass), direct current (DC) padding, re-quantization (such 16 to 8bits or 8 to 16 bits), ran-
dom noise padding and echo injection [10]. Bit error ratio denoted by BER is defined as
the percentage of correct numbers of secrets under attack. Echo, DC and random noise
intervention utilize noise with low frequency to distort the stego-acoustic. HPF (High
pass filter) will not affect the secrets of the proposed scheme because they are all lifted
to high frequencies. Re-quantization will not affect the proposed scheme because the
secrets are all used as eight-bits data. Table 1 points out the performance when the pro-
posed protocol is under each kind of attacks. The results confirm the presented scheme
outperforms other methods.

Table 1. Comparisons of bit error ratio (BER) under some types of attacks.

Schemes Attacks

Direct current High pass filter
(8 kHz)

Re-quantization
(16 to 8 bits)

Noise (25 dB) Echo

The proposed
scheme

0.0% 0.0% 0.0% 0.3% 0.1%

[8] 4.5% 4.2% 11.9% 22.8% 7.2%

[10] 0.0% 0.0% 0.0% 1.0% 12.0%

∅: not proposed

Table 2 demonstrates numbers of data which can be embedded by adopting LSB
(least significant bit), spread spectrum and the proposed scheme. A selected cover audio
with size equal to two hundred kilo-bits and secret with size of thirty kilo-bits are used.
The LSB strategy only has 1/8 space of selected cover signal, i.e., 25,000 bits, which is
replaced by the secret. Spread spectrum will be used to hide all data in a cover signal,
while available space might be less than the secret. The proposed protocol will not be
restricted by the size of the cover signal, that is, all secrets can be embedded via giving
enough carrier frequencies and making sure all given frequencies are orthogonal to each
other.
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Table 2. Available spaces of different strategies.

Variables Strategy

Spread spectrum
(bits)

LSB (bits) Proposed scheme

P(t) 200,000 200,000 200,000

|M | <30,000 25,000 30,000

5 Conclusions

In this paper, a steganography based carrier orthogonality is proposed. Secrets are first
transformed to acoustic waves and embedded in an acoustic via frequency lifting. The
strategy proposed here adds a hiding audio to make illegal intruders unaware of the
secrets and the transmission restriction is also neglected. Unlike previous studies, the
popularity of a cover audiowillmake intruders ignore suspicious fileswith secrets hidden
inside, and numerous secrets are allowed to be delivered via once transmission. Different
multimedia could be embedded in cover acoustics and delivered by respectively lifting
them to different radio frequencies and these radio signals do not mutually interfere
with others due to using accurate carrier frequencies to extract them out correctly. The
property is so called carrier orthogonality. Also, it obtains high security even if the
intruders know that those secrets are presented in a stego-acoustic. It will be impossible
for the stego-acoustic being successfully recovered by intruders. In the last step, awidely-
used personal database on Internet can be selected to store the stego-audiowhich can then
be downloaded by legal users actively. It will certainly decrease risks on exposing the
secrets via a transition. Furthermore, legal receivers will not be induced by identifying
the recovered host audio. In addition, high capacity will be still practical if the sender
uses a cover medium of small size. At the end, the proposed protocol is easily changed
to further reduce the cracking probability by adding the time constraint.
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Abstract. In this paper, we presented an optimized implementation of
CHAM block cipher on low-end microcontrollers. In order to accelerate
the performance of the CHAM block cipher, the architecture of CHAM
block cipher and the full specification of 8-bit AVR microcontrollers are
efficiently utilized. First, the counter mode of operation for CHAM block
cipher is optimized. A number of computations for round function are
replaced to look-up table accesses. Second, multiple blocks of CHAM
block cipher are computed in a parallel way for high throughput. With
the parallel computation, we also presented the adopted encryption. This
approach is efficient for long-length data handling. Third, the state-of-
art engineering technique is fully utilized in terms of instruction level
and register level. The partially unrolled 8-round based implementation
is adopted, which avoids a number of word-wise rotation operations.
With above optimization techniques, proposed CHAM implementations
for counter mode of operation outperform the state-of-art implementa-
tions by 30.1%, 9.3%, and 10.0% for CHAM-64/128, CHAM-128/128,
and CHAM-128/256, respectively.

Keywords: CHAM block cipher · Microcontroller · Counter mode of
operation · Parallel computation · Round based encryption

1 Introduction

Internet of Things (IoT) becomes feasible services as the technology of embedded
processors are developed. In order to provide user-friendly services, IoT appli-
cations need to analyze data which should be securely encrypted before packet
transmission. However, the encryption is expensive for resource-constrained IoT
devices with limited computation, energy, and storage. For this reason, block
cipher algorithms should be implemented in an efficient manner under certain
limitations.

In this paper, we introduce optimization techniques for CHAM block cipher
on 8-bit AVR microcontrollers. Optimized counter mode of CHAM block cipher
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2020, LNCS 12583, pp. 127–141, 2020.
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and parallel computations are presented. To get compact results, we used
platform-specific assembly-level optimizations for CHAM block ciphers (e.g.
word size, number of registers, and instruction set). Proposed implementation
techniques for CHAM block cipher can be used for other ARX based block
ciphers, such as SPECK and SIMON, straightforwardly. Detailed contributions
are as follows:

1.1 Contribution

Optimized Counter Mode of Operation for CHAM Block Cipher. The
repeated input of counter mode of operation for CHAM block cipher can be
optimized with the pre-computation. In total, 5 left rotation by 1-bit, 10 XOR,
3 ADD, and 3 left rotation by word-wise operations are replaced to 5 word-wise
table accesses. The proposed method optimizes all CHAM parameters.

Parallel Implementation of CHAM-64/128. The lightweight version of
CHAM block cipher (i.e. CHAM-64/128) is accelerated with the parallel com-
putation. By utilizing all registers, multiple blocks of CHAM block cipher are
computed, simultaneously. We also presented an adopted encryption with the
parallel computation, which is efficient when the data length is long enough.

Highly Optimized Source Code and 8-Round Based Implementation.
The state-of-art engineering technique is fully utilized with the available instruc-
tion sets and register files to achieve the high performance. The partially unrolled
8-round based implementation is adopted, which optimizes the left rotation by
8-bit wise operations.

The remainder of this paper is organized as follows. In Sect. 2, the basic spec-
ifications of CHAM block cipher and target AVR microcontrollers are described.
In Sect. 3, the compact implementation of CHAM block cipher on AVR micro-
controllers are described. In Sect. 4, the performance of proposed methods in
terms of execution timing is evaluated. Finally, Sect. 5 concludes the paper.

2 Related Works

2.1 CHAM Block Cipher

Lightweight cryptography is a fundamental technology to optimize the hardware
chip size and reduce the execution timing for low-end Internet of Things (IoT)
devices. Recently, a number of block cipher algorithms have been designed for
being lightweight features.

In ICISC’17, a family of lightweight block ciphers CHAM was announced by
the Attached Institute of ETRI [1]. The family consists of three ciphers, including
CHAM-64/128, CHAM-128/128, and CHAM-128/256. The CHAM block ciphers
are of the generalized 4-branch Feistel structure based on ARX operations.



CHAM on Microcontrollers 129

In ICISC’19, the revised version of CHAM block cipher was presented [2]. In
order to prevent new related-key differential characteristics and differentials of
CHAM using a SAT solver, the numbers of rounds of CHAM-64/128, CHAM-
128/128, and CHAM-128/256 are increased from 80 to 88, 80 to 112, and 96 to
120, respectively.

2.2 Previous Block Cipher Implementations on 8-Bit AVR
Microcontrollers

Table 1. Instruction set summary for efficient CHAM implementations on 8-bit AVR
microcontrollers.

asm Operands Description Operation #Clock

ADD Rd, Rr Add without Carry Rd ← Rd + Rr 1

ADC Rd, Rr Add with Carry Rd ← Rd + Rr + C 1

EOR Rd, Rr Exclusive OR Rd ← Rd⊕ Rr 1

LSL Rd Logical Shift Left C|Rd ← Rd<< 1 1

ROL Rd Rotate Left Through Carry C|Rd ← Rd<< 1||C 1

MOV Rd, Rr Copy Register Rd ← Rr 1

MOVW Rd, Rr Copy Register Word Rd + 1:Rd ← Rr + 1:Rr 1

LDI Rd, K Load Immediate Rd ← K 1

LD Rd, X Load Indirect Rd ← (X) 2

LPM Rd, Z Load Program Memory Rd ← (Z) 3

ST Z, Rr Store Indirect (Z) ← Rr 2

PUSH Rr Push Register on Stack STACK ← Rr 2

POP Rd Pop Register from Stack Rd ← STACK 2

The low-end 8-bit AVR platform working at 8 MHz supports 8-bit instruction
set, 128 KB FLASH memory, and 4 KB RAM. The number of available registers is
32. Among them, 6 registers (i.e R26–R31) are reserved for address pointers and
the other registers are used for general purpose. The basic arithmetic instruction
takes one clock cycle, while the memory access takes two clock cycles per byte.
Detailed instruction set summary for efficient CHAM-CTR implementation is
given in Table 1.

A number of works devoted to improve the performance of lightweight cryp-
tography implementations on low-end microcontrollers (e.g. 8-bit AVR). The
structure of block cipher is largely divided into two categories. First, Addition,
Rotation, and eXclusive-or (ARX) based block ciphers were efficiently imple-
mented on low-end microcontrollers.

In WISA’13, LEA block cipher was by the attached institute of ETRI [3].
First implementation of LEA-128 on the 8-bit AVR microcontroller achieved 190
clock cycles per byte for the encryption [3]. In WISA’15, speed-optimized and
memory-efficient LEA implementations were presented [4]. In [5], the number of
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general purpose registers and the instruction set of the AVR microcontroller were
fully utilized to optimize the LEA block cipher implementation. In WISA’18,
general purpose registers are efficiently utilized to cache intermediate results of
delta variables during the key scheduling of LEA [6].

In CHES’06, HIGHT block cipher was introduced [7]. The basic implementa-
tion of HIGHT was firstly introduced in [8]. The execution timing for encryption
and decryption is 2,438 and 2,520 clock cycles per byte, respectively. In [5], effi-
cient rotation operations were suggested and achieved high performance. In [9],
speed-optimized and memory-efficient HIGHT implementations were presented.

In ICISC’17, the original CHAM on 8-bit AVR microcontrollers achieved
172, 148, and 177 clock cycles per byte for CHAM-64/128, CHAM-128/128,
and CHAM-128/256, respectively [1]. In [10], 2-round based memory-efficient
implementation was suggested. The work achieved 211, 187, and 223 clock cycles
per bytes for CHAM-64/128, CHAM-128/128, and CHAM-128/256, respectively,
with reasonably small memory footprint. In ICISC’19, revised CHAM was pre-
sented by modifying the round of CHAM [2]. AVR implementations achieved
188, 203, and 219 clock cycles per byte for CHAM-64/128, CHAM-128/128, and
CHAM-128/256, respectively.

Second, Substitution Permutation Network (SPN) based block ciphers were
also actively investigated. Among them, AES implementations received the high
attention since the block cipher is international standard.

In [11], S-box pointer was maintained in Z address pointer for the fast memory
access. The mix-column computation was efficiently handled with the conditional
branch skip. In ICISC’19, the compact implementation of AES-CTR on micro-
controllers (i.e. FACE-LIGHT) was presented [12]. With the newly designed
cache table for low-end microcontrollers, implementations of AES-CTR achieved
138, 168, and 199 clock cycles per byte for 128-bit, 192-bit, and 256-bit security
levels, respectively.

3 Proposed Method

3.1 Optimized CHAM-CTR Mode Encryption

We present the optimized CHAM-CTR mode encryption on 8-bit AVR micro-
controllers. The counter mode utilizes nonce and counter as an input value. The
nonce is a fixed value, and the counter indicates the order of blocks. Generally,
the length of counter is set to a quarter of plaintext. CHAM-64/128, CHAM-
128/128, and CHAM-128/256 assigned 16-bit, 32-bit, and 32-bit counter values,
respectively. The remainder is set to nonce (i.e. 48-bit, 96-bit, and 96-bit for
CHAM-64/128, CHAM-128/128, and CHAM-128/256, respectively)1. By utiliz-
ing the fixed nonce value, operations for several rounds are replaced to look-up
table. Unlike the nonce value, the counter value increases in each encryption,

1 32-bit counter can be used for CHAM-64/128. In this case, pre-computed part is
slightly reduced to half but still this leads to performance improvements over basic
implementation.
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which updates the intermediate result. For this reason, some intermediate results
cannot be cached. In Fig. 1, the part affected by counter value is described.

Fig. 1. Data and operation affected by counter value for CHAM round function.

Round 0. X0[0] block is counter value and the result cannot be pre-computed,
while X0[1] block is nonce value and rotation to left by 1-bit and XOR operations
can be pre-computed, which can be accessible through memory access. For better
performance, LDI instruction is utilized, which directly assigns the 8-bit value
in 1 clock cycles. This approaches reduces 2 clock cycles than memory access in
each 8-bit assignment.
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Round 1. Round 1 can be skipped because all inputs are fixed values, such
as nonce, round key, and round counter. The result of this round is obtained
through look-up table as X4[1] block of Round 4.

Round 2. Similar to Round 1, Round 2 is also skipped. The result is loaded to
X5[1] of Round 5.

Round 3. Round 3 performs the following equation:

((X3[0] ⊕ i) � ((X3[1] ≪ 8) ⊕ RoundKey[3]) ≪ 1)

The i value is round counter. X3[0] block is from X0[3], which is the nonce
value. The first part (X3[0] ⊕ i) can be pre-calculated. This only requires word
assignment. In case of CHAM-128/128, this reduces 8 clock cycles. On the other
hand, X3[1] is from X0[0], which is counter value. The computation with X3[1]
value cannot be pre-computed.

Round 4. CHAM requires one word shift in each round. After Round 3, all
blocks are located in the initial word position. Computations with X4[1] (i.e.
rotation left by 1-bit and add-round key) are optimized, while computations
with X4[0] (i.e. counter-addition, two-word-addition, and rotation right by 8-
bit) should be performed.

Round 5. Similar to Round 1 and Round 2, all operations can be skipped. Only
loading X5[0] value for Round 8 is required. The operation takes 2 clock cycles.

Round 6. Round 6 performs the following equation:

((X6[0] ⊕ i) � ((X6[1] ≪ 1) ⊕ RoundKey[6]) ≪ 8)

X6[1] is from the counter value, while X6[0] is from the nonce value. The
round counter addition operation is only optimized.

Round 7. Since all operations are originated from counter value, all operations
should be implemented.

Round 8+. After Round 7, some operations are still pre-computed. In Round 8,
X8[1] is not affected by counter value, which is represented in Fig. 1. XOR oper-
ation between X8[1] and round key part can be pre-computed. The optimization
is only 0.6, 0.7, and 0.7 clock cycles per byte for CHAM64/128, CHAM-128/128,
and CHAM-128/256 respectively. For this reason, this case is not considered in
this paper. The optimized CHAM-CTR is given in Fig. 2. The green line indi-
cates the pre-computed part. The proposed design shows that only 5 memory
accesses for cache tables in Round 0, 3, 4, 6, and 7 are required.
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Fig. 2. Optimized CHAM-CTR mode encryption for round function. (Color figure
online)

32-Bit Counter for CHAM-64/128. Originally, CTR mode of operation
using 32-bit counter, but in this paper we implemented 16-bit counter CHAM-
64/128, since CHAM-64/128 defines the block size as 16-bit. For compatibility
with existing mode of operation, it needs to implement 32-bit counter CHAM-
64/128. It can be implemented by storing counter value in two blocks. In Fig. 3,
the counter value flow represented, the counter value is extended to X0[1] block
as following figure. So we can see that some sections are no longer available
pre-computation. It will result in slightly less performance than 16-bit counter
CHAM-64/128.
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Fig. 3. The counter value flow of 32-bit counter CHAM-64/128.

Optimized Memory Access. The round key is stored in SRAM and accessed
through LD instruction. This requires 2 clock cycles per byte. By aligning the
round key in 8-bit wise, the offset is only controlled with lower byte. In order to
access the pre-computed value, LDI instruction is utilized. This requires 1 clock
cycle per byte and does not require memory pointer setting.

Round Counter and Pointer Address Optimization. In the optimized
version, the round counter is only used in Round 0, 4, and 7. The round key
is used in Round 3, 6, and 7. Thus round counter or pointer address value is
assigned directly in each round. With this approach, 8 INC instructions for round
counter are replaced to 1 INC and 2 LDI instructions. Five ADIW instructions for
pointer address value are reduced to 2 ADIW. The ADIW instruction adds for
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pointer address in multiples of 2 and 4 for CHAM-64/128 and CHAM-128/128
or CHAM-128/256, respectively due to varied length of plaintext.

3.2 Parallel Implementations of CHAM Block Cipher

Parallel implementations generate multiple ciphertexts in one implementation.
Two types of parallel implementations have been investigated (i.e. 2-parallel and
3-parallel). Since the implementation requires intermediate result caching, the
register utilization should be optimized.

Target 8-bit AVR microcontrollers has 32 8-bit registers. For the CHAM-
64/128 block cipher, 8 registers are needed. For the case of 2-parallel implemen-
tation, it requires 16 registers to save two plaintexts. In addition, the opera-
tion requires control variables, including round counter, round key, and address
pointer for loading round keys and plaintexts storage. In Fig. 4 (a), the register
utilization for 2-parallel implementation is given. In this case, all values can be
maintained in registers.

On the other hand, 3-parallel implementation requires more registers than
2-parallel implementation. Twenty four registers are used for plaintexts. Since
there are not enough registers, STACK memory is utilized and some registers are
used for multiple purposes. Detailed optimization techniques are as follows:

– Total round variable: By using CPI instruction, total round value is not
maintained in the register.

– Plaintext block Only part of plaintext (i.e. Xi[0], and Xi[1]) is required to
perform the round. Other plaintext values are temporarily stored in STACK
memory.

– Address pointer: Round key and plaintext address pointers are required in
computations. However, the address pointer for plaintext is not used through-
out computations. The address pointer is stored in STACK.

– Round Key: Each round key access requires word-wise memory access. By
accessing byte by byte, only one register is utilized to access round key.

– Round counter Round counter is XORed with data in each round. After
the XOR operation, the round counter is stored in STACK.

– ZERO: R1 register is ZERO register. For 3-parallel implementation, R1 register
is assigned for plaintext. Some registers are temporarily initialized to act as
ZERO register.

In Fig. 4 (b), the register utilization for 3-parallel implementation is given.
The parallel computation of CHAM-64/128 is given in Algorithm 1. From

Step 3 to 7, rotation operations are performed depending on the counter. In Step
8, round key addition is performed. With these round keys, multiple blocks are
computed in parallel way. From Step 11 to 15, rotation operations are performed
depending on the counter. From Step 16 to 19, the intermediate result is re-
located by word-wise.

There are limitations to implement the parallel version of CHAM-128/128
and CHAM-128/256. CHAM-128/128 and CHAM-128/256 have twice much
longer plaintext then CHAM-64/128. For this reason, parallel implementations
for these algorithms are not considered.



136 H. Kwon et al.

Fig. 4. Register alignment for (a) 2-parallel and (b) 3-parallel of CHAM-64/128 imple-
mentations. Each block represents one register. Two color in one register is used for
various purposes. (Color figure online)

3.3 Adaptive Encryption of CHAM Block Cipher

The parallel computation is effective for huge data handling. The parallel com-
putation can be applied to adaptive encryption [13]. The adaptive encryption
performs parallel encryption operations when the length of data is long enough.
When only one block is remained, single block encryption is performed. Detailed
descriptions for 2-way adaptive encryption are given in Algorithm 2. The method
performs 2-parallel computations. From Step 3 to 5, parallel computation is per-
formed. Afterward, from Step 6 to 8, sequential computation is performed for
remaining data.

3.4 Optimized Implementations of Primitive Operations

The implementation is based on 8-round based implementation. In every 8
round, the 8-bit rotation operation on data for CHAM-64/128 is optimized away.
For CHAM-128/128 and CHAM-128/256, still 16-bit wise rotation operation is
required. This is performed in 16-bit wise move operation MOVW. The other opti-
mized 16/32-bit word rotation operations are given in Table 2.

4 Evaluation

Proposed implementations of CHAM block cipher were evaluated on low-end
8-bit AVR microcontrollers. The performance was measured in execution time
(clock cycles per byte). The software was implemented over Atmel Studio 7
and the code was complied in -O2 option. Comparison result of CHAM block
cipher is given in Fig. 5. Compared with previous works by [2], CHAM-64/128,
CHAM-128/128, and CHAM-128/256 are improved by 11.7%, 6.5%, and 7.4%.
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Algorithm 1. Parallel implementation of CHAM-64/128.
Input: Plaintext blocks (X[0][0 ∼ 3], ..., X[#parallel − 1][0 ∼ 3]).
Output: Ciphertext blocks (X[0][0 ∼ 3], ..., X[#parallel − 1][0 ∼ 3]).

1: for i = 0 to #round do
2: for j = 0 to #parallel do
3: if i mod 2 == 0 then
4: tmp[j][0] ← ROL1(X[j][1])
5: else
6: tmp[j][0] ← ROL8(X[j][1])
7: end if

8: tmp[j][1] ← tmp[j][0] ⊕ RK[i mod 16] //round key access optimization

9: tmp[j][2] ← X[j][0] ⊕ i
10: tmp[j][3] ← tmp[j][1]tmp[j][2]

11: if i mod 2 == 0 then
12: tmp[j][4] ← ROL8(tmp[j][3])
13: else
14: tmp[j][4] ← ROL1(tmp[j][3])
15: end if

16: X[j][0] ← X[j][1]
17: X[j][1] ← X[j][2]
18: X[j][2] ← X[j][3]
19: X[j][3] ← tmp[j][4]
20: end for
21: end for

Table 2. Optimized 16/32-bit word rotation operations on 8-bit AVR microcontroller.

16-bit ROL1 16-bit ROL8 32-bit ROL1 32-bit ROL8

LSL LOW

ROL HIGH

ADC LOW, ZERO

MOV TEMP, LOW

MOV LOW, HIGH

MOV HIGH, TEMP

LSL R0

ROL R1

ROL R2

ROL R3

ADC R0, ZERO

MOV TEMP, R3

MOV R3, R2

MOV R2, R1

MOV R1, R0

MOV R0, TEMP

3 cycles 3 cycles 5 cycles 5 cycles

The performance enhancement comes from the 8-round implementation and fast
memory for round key. For the case of counter mode of operation, the implemen-
tation improved the performance further by 4.2%, 3.0%, and 2.8% for CHAM-
64/128, CHAM-128/128, and CHAM-128/256, respectively. The implementation
utilized the repeated data (i.e. nonce) to improve the performance. The parallel
implementation of CHAM-64/128 shows 137.2 and 149 clock cycles per byte for
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Algorithm 2. 2-way adaptive encryption for CHAM64/128.
Input: Number of blocks N , Plaintext blocks P ∈ {P1, P2, ..., PN}.
Output: Ciphertext blocks

C ∈ {C1, C2, ..., CN}.

1: n ← N
2

2: m ← N mod 2

3: for i = 0 to n do
4: {C2·i+1, C2·i} ← ENC({P2·i+1, P2·i}) //parallel computation

5: end for

6: if m then
7: C2·n+2 ← ENC(P2·i+2) //sequential computation

8: end if
9: return C
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Fig. 5. Comparison of execution time for CHAM implementations on 8-Bit AVR micro-
controllers under the fixed-key scenario in terms of clock cycles per byte, 1c: counter
mode of operation (16-bit counter), 2c: counter mode of operation (32-bit counter), 2p:
2-parallel, 3p: 3-parallel.

2-parallel and 3-parallel versions, respectively. Due to limited number of reg-
isters, 2-parallel based implementation shows better performance than that of
3-parallel.
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Fig. 6. Comparison of execution time for CHAM with other block ciphers on 8-Bit
AVR microcontrollers in terms of clock cycles per byte, 1c: counter mode of operation
(16-bit counter), 2c: counter mode of operation (32-bit counter).

We also compared the result with other block ciphers in Fig. 6. SPN based
AES implementation achieved the highest performance among them, because
AES is designed to fit into 8-bit word architecture. Among ARX implementa-
tions, SPECK shows the fastest performance. Second winner is proposed CHAM
block cipher.

5 Conclusion

In this paper, we presented optimization implementations of lightweight CHAM
block ciphers on low-end 8-bit AVR microcontrollers. Proposed techniques
include pre-computed counter mode of operation, parallel implementation, and
optimized primitive operations. We evaluated our implementations in terms of
execution time. The result shows that our implementations achieved fast execu-
tion timing for practical IoT applications.

Future work is applying proposed method to other ARX–based block ciphers,
such as SIMON and SPECK. Furthermore, other microcontrollers including 16-
bit MSP and 32-bit ARM will be investigated.
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Abstract. The critical success of online games has led the industry to
global success, as the market size is expected to reach 18,194 USD by the
year 2020. However, the success of the online game market has led to the
growth of illegal activities, such as the use of game bots. Game bots are
software applications capable of collecting game items, which are often
banned from online game service providers. The illegal activities are not
limited to tax evasion and money laundering. In order to help detect
these bots, this study employs the dataset from an MMORPG called
Aion. By detecting the bots using the server-side analysis, this paper
analyzed user behavior and used features based on the experience, skill,
and gravy value that represents the cost-efficiency. We experimented with
machine learning algorithms such as MLP, SVM, and Random Forest.
As a result, the F-score for detecting the total sum of the accounts that
consists of the game bots and real users reached 0.9638. We believe our
study may help online game service providers, future researchers, and
governmental agencies to detect and classify the MMORPG game bots.

Keywords: BOT detection · Online game · MMORPG · Security ·
Machine learning

1 Introduction

The consumption values of online games can be attributed to the success of online
games, as purchasing online game items and virtual items have been a huge part
of the culture. By the year 2020, the global market for online games is expected
to reach 18,194 USD [7]. In the realm of online games, ‘time’ is a resource and a
fair commodity for everyone. However, purchasing online games have become an
integral part of the gaming phenomena, as players aim to enhance the players’
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ability in a short amount of time. As the consumption rate for online games has
continuously increased during the past decades, the online game market has been
forecasted to grow. Yet, with the increase in the demand for online games, the
use of BOTs have been considered a problem for online game service providers.

Automated accounts have posed a threat as game BOTs are capable of
repeating malicious tasks while creating obtrusive and distractive actions that
are intolerable for a regular player [5,13]. Past studies have aimed to detect and
prevent BOTs to diffuse the malicious behaviors. In addition, the items were
cashed in using game items collected through game BOTs and used for tax eva-
sion or money laundering. These BOTs are capable of disrupting and annoying
users with relative deprivation. The complaint from the players has a correlation
to the profit of the game company. As the number of dissatisfied users increases,
the profit of the game will also simultaneously decrease. From the perspective of
the gaming company, BOTs are considered a threat to the overall business. Var-
ious laws have been enforced by the Korean government to detect and prohibit
the game BOT. Article 32 of the Game Industry Promotion Act was revised in
2018, which prevents game BOTs from operating in the game.

Past studies have focused on detecting the malicious activities of the game
BOTs. As depicted in Table 1., BOT detection researches have been divided into
three types: (i) client-side detection, (ii) server-side detection, and (iii) network-
side detection [28].

Table 1. Three types of online game BOT detection: definitions, detection methods.

Category Definition Detection methods

Client-side detection Detecting BoT with user PC
level
(e.g. XIGNCODE)

Human interaction

Network-side detection Detecting BoT based on net-
work information
(e.g. DNS, IP, and VPN)

Network traffic

Server-side detection Detecting BoT based on the
user game log
which was saved in server

In-game logOut-game log

The client-side analysis focuses on analyzing the user’s PC that extracts the
information from the user’s PC. Yet, the drawback of the method is limited
usability and weak security measures. While the client-side detection method is
capable of detecting the BOTs patterns, the malicious actors are capable of easily
bypassing the security measures. Network-side analysis can bypass BOTs usage
by using only the low key values, and the usability of the client-side is poorly
designed. However, there are limitations that require constant key changes and
vulnerabilities due to simple encryption operation. Server-side based analysis is a
way to classify differences between BOTs and real game users. Using server-side
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analysis, online game companies can block accounts using BOTs whenever they
want. It has the advantage of detecting BOTs that were not detected by the
client-side and considered usability. This is due to the development of big data
analysis. Therefore, we used a method to detect BOTs in MMORPGs using the
server-side analysis.

Massively Multiplayer Online Role-Playing Game (MMORPG) focuses on
multi-users’ gameplay by taking on various characters’ roles. Often times in
MMORPG, game BOTs are capable of gaining experiences by performing redun-
dant tasks. The BOTs in the games can also break the balance in the game by
acquiring items and credits in a short duration of time. In the case of online
games in the MMORPG genre, each set of characters have different skills and
stats. In our study, we suggested the gravy value based on these skills and the
experience of the characters. Contrary to the previous research, this study imple-
mented a set of data that consisted of real accounts. We applied features that
were easy to apply for MMORPGs, instead of focusing on features that were
optimized for a single game.

The contributions of this paper are as such:

– We used a machine learning model to classify BOTs against the users.
– We generated widely adaptable features in MMORPGs.
– The algorithms generated in the game provides features without requiring a

specific domain knowledge.

The composition of this paper is as follows. Sect. 2 examines the existing
studies related to this paper. We then, introduce the existing research related to
methods of detecting server-side BOTs in the MMORPG. In Sect. 3, we intro-
duced a methodology that detects BOTs through features made through user
behavior-based features and gravy value. Section 4, we experimented with the
methodology presented through the actual Aion dataset and analyzed the results.
In the penultimate section, we provide our results in the discussion. Finally, we
conclude the paper with the conclusion.

2 Related Works

Past researchers have conducted studies on BOT detection in three areas. The
three categories of the game BOTs are client-side detection, network-side detec-
tion, and server-side detection, as shown in Table 1. Our study focuses on
the server-side detection method. The server-side detection method has higher
usability than other methods because it does not interfere with the user’s game
activity. This method does not waste system resources on the client-side, as the
bot detection process is performed by analyzing the logs in the server. As such,
we wanted to use a server-side detection method based on the game action log
of the Aion dataset. Table 2. Depicts the research from the server-side BOT
detection.
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Table 2. Research on Server-side BOT Detection in MMORPGs.

Methods of analysis Description References

Game-play styles Investigating user game style [2,6,9]

Movement Detecting the movement patterns of
users within the game

[3,4,12]

Window event sequences Evaluating the windows event sequence [8,14]

Social networks Comparing the users’ social network
activity

[10,11,21,27]

Similarity Analyzing behavioral similarity [15,18,25,26]

Trading network Measuring the user’s transaction pattern [16,17,24]

Action sequence Testing the user’s action sequence [19,20,23]

Prior studies have mainly analyzed the user behavior logs generated in the
games. These studies mainly analyzed the differences in the game patterns
between the game bots and real users, which is called the user behavior analysis.
User behavior analysis is an anomaly detection method that defines the patterns
of the bot as abnormal. We summarized the papers related to our research in the
Table 2. In this study, we showed the server-side BOT detection as a data mining
method. We have classified server-side detection methods into seven categories:
game-play styles, movement, window event sequences, social networks, similarity,
trading network, and action sequences. These methods analyzed patterns of bots
and real users through data mining and statistical analysis based on game action
logs. Lee et al. [17] and Song et al. [24] were analyzed based on the credits of
the characters. They used the credits from the game to measure the fluctuations
and one-way trading network analysis. Previous studies analyzed user behav-
ior [2,6,9] and user behavior sequence [19,20,23]. They also analyzed differences
in user movement patterns, such as in [3,4,12]. Prior studies were analyzed for
similarity [15,18,25,26]. Past studies conducted studies on guild activities and
social activities such as chatting and creating parties [10,11,21,27]. Gianvecchio
et al. [8] and Kim et al. [14] used windows event sequences such as mouse click
and keyboard input.

Existing research should be preceded by domain knowledge about the game,
which may not be easy to analyze for analysts with limited domain expertise.
There has been a lack of study that focuses on the MMORPGs characteristic’s
and character’s skills. We conducted the server-side analysis to minimize the
detection technique exposure to gold farming groups (GFGs) and bots makers.
In particular, we created a cost-efficiency features for a user’s behavioral action
based on skill, which generates widely adaptable features in the MMORPGs. We
used features that were easy to apply in various MMORPGs, instead of using
features that were suitable for a single game.
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3 Methodology

3.1 Datasets

We used the Game Bot Detection Challenge dataset, which was held on the 2019
Information Security R&D challenge [1]. The dataset contained the user activity
logs from Aion for a total of 22 d. For the past decade, Aion is an MMORPG
game that has been ranked 30th in South Korea. The duration of the dataset
expands from 2010-04-16 to 2010-05-07. The dataset contained enough detailed
information about each user. Sensitive information such as character names and
personally identifiable information was removed from the original data log to
avoid privacy issues. As such, there were fields in the dataset that were converted
to other random values to avoid exposing the real account’s information.

The dataset provided a label that helped validate the bots from the real
accounts. We excluded all of the accounts that were active for less than 3 h
during the log period. The banned list was provided by the game company to
serve as the ground truth, and each banned user has been vetted and verified by
human labor and active monitoring. We found 12,862 real users and 687 game
bots in this dataset.

3.2 Experimental Environment

For our experiment, we used Windows 10 for the operating system and Python
3.6. We used scikit-learn [22] for our machine learning library. Our computational
environment is 128 GB RAM with the Xeon CPU processor and over 20 TFLOPS
GPU provided by NIPA. Since we have log data that spans across 22 d, we used
5-fold cross-validation for evaluating our model. When we used 10-fold cross-
validation, the model cannot be trained to classify bots from real users, because
of the highly imbalanced class in the dataset. So we used 5-fold cross-validation
with randomly shuffled data.

3.3 Data Preprocessing

As we mentioned above, we had to pre-process all the dataset prior to training
and classifying the bots from the real users. In this research, we tried to sort the
bots from the real users based on the character’s skill data and user experience.
The data were prevalent for MMORPGs, so this approach was quickly adopted in
other MMORPGs. Based on the log description, we extracted the user behavior
log related to the game skills and experience.

3.4 Feature Extraction

With the preprocessed dataset, we made some features to classify between the
game bots and the real users. We used groupby to generate the user’s features
from a single day. Based on the groupby command, we can easily calculate the
pre-defined features. We made features based on the statistic approach: mean,
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sum, count, skewness, kurtosis, average, and standard deviation. The statisti-
cal approach is well known for extracting the distribution and attribution of
the dataset for a set of features in a timely manner. Hence, we attempted to
use the statistical approach that does not require the domain knowledge of the
MMORPG. The following Table 3 represents the features and detailed descrip-
tions. We wrap up all of the features used for this research in Table 3.

Table 3. Description of Feature sets and number of features used in the experiment.

Source Feature Num of feature Description

Experience Statistic method 7 Use statistic method to extract
time series data e.g. mean, sum,
count, standard deviation,
kurtosis

Count value 1 Count each day log related with
experience data

Skill Count value 200 The value consists of the top
200 frequent skills and count

Gravy value Eq. 1 200 The value consists of the top
200 frequent skills

Total - 409 -

Even if the account was identified as a bot, the account could play for more
than a single day. Thus, we had to consider the situation that some users played
on a certain set of days, while other users may play on a particular set of days.
In this experiment, we composed an approach that is similar to max-pooling,
which is widely used for deep learning. After we generated features for the players
within a single day, we calculated a maximum value per each feature and user.
We extracted the dataset of each account. We selected a single day with the
highest activity for each account that would allow us to obtain a maximized
feature within a day in a dataset. We also used the gravy value for the feature
to classify bots and real users. The gravy value was the calculated value of how
many actions were performed at the time in order to level up. This formula was
based on the assumption that the bot could cost-effectively improve a certain
set of skill levels. We defined as gravy value as follow:

Gravy value =
1

(index(skillk, levelm) − index(skillk, levelm−1)
(1)

k ∈ {Top 200 frequent skill},m ∈ {1, 2} (2)

The skillk represents the set of skills within the games that are given a numer-
ical value. The set consists of 200 skills with the most frequently used skill num-
bers. levelm indicates the number of user action values in the list function. By



148 S. Park and K. Lee

finding the difference between the levelm and levelm−1, and finding the number
of actions, skillk, required to level up will help solve the gravy value, as shown in
Eq. (1). Based on Equation (1) we were able to derive to Eq. (1) can obtain the
value of the user action required for skillk to level up. In this study, we experi-
mented with a machine learning algorithm using the feature set in Table 3.

4 Experiments

We used three machine learning algorithms in the classification problem, as
mentioned in the aforementioned section. We used Multi-Layer Perceptron (ML),
Support Vector Machine (SVM), Random Forest to classify the game bots and
real account users. We used the default parameter from the scikit-learn python
library. The cross-validation made the average evaluation of the model.

Table 4. Machine learning results by feature set algorithm.

Feature set Machine learning algorithm Accuracy Recall F-score

Statistics (experience) MLP 96.03% 54.00% 0.5801

SVM 94.82% 22.41% 0.3052

Random forest 96.34% 60.40% 0.6264

Skill counts MLP 96.38% 53.27% 0.5990

SVM 96.56% 38.71% 0.5330

Random forest 96.54% 48.90% 0.5894

Gravy value MLP 98.58% 72.05% 0.9927

SVM 99.80% 98.10% 0.9810

Random forest 99.80% 98.10% 0.9810

All MLP 99.63% 95.19% 0.9638

SVM 96.84% 43.08% 0.5809

Random forest 99.57% 97.96% 0.9586

We used feature sets to find out which feature set was the most useful. Table 4
depicts the results from the experiments on the feature sets, which we made
through three machine learning algorithms. We found that most of the feature set
achieved over 96% accuracy when training and testing the Aion game datasets.
MLP algorithm showed the highest score amongst the algorithms. Using all the
features, we could get over 99.63% accuracy over 0.9638 of the F-score from the
experiment. With the experimental result, we concluded that our approach to
detect bots that ruins the MMORPG game environment was practical that was
better than related works, in the aforementioned section. In Table 4., we can see
that only using the gravy value method showed better performance than other
features, even using all of the features which also contain the gravy value feature.
We thought this result come from the model that had overfitted. Therefore, we
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decided that we should not have to rely on the gravy value feature and considered
using other features to avoid overfitting. In this study, we adopted the results
using the MLP algorithm using all feature sets. We detected the bots using
machine learning using feature sets, and we confirmed that the experimental
result was an F-score of 0.9638.

5 Discussion

In this study, we confirmed that the results of using the model we proposed are
useful in classifying bots and real users. Through the results of this study, we
confirmed that the bot and the real user had different behavioral characteristics.
We posited that using the MLP algorithm would be the most effective. In order
to verify the hypotheses, we evaluated the feature importance. Moreover, we
evaluated the feature exploration to analyze the model fit. The MLP model does
not have interaction power. Hence, we used the random forest model to find
the model-agnostic interpretation. Even though we used MLP, we used the RF
model to evaluate the model-agnostic interpretation.

We previously assumed that bots were more cost-effective than real users. We
explored the skills and gravy value feature, which showed the most convincing
performance in this research. Before we set up the experiment, we posit that
bots are more efficient than human players. In order to test our hypothesis, we
measured the skills and levels of the various accounts. When we experimented
with the gravy value, we measured the efficiency of the bots against the real
accounts. As shown in Table 4., the F-score was 0.99. We found that the gravy
value was an accurate set of features to measure and detect the bots, which
proved our hypotheses.

Fig. 1. Experience based on the Feature Importance.

We assumed that bots gain experience with fewer actions than real users.
And we experimented to verify this. Figure 1. was about experience log-based
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feature importance results generated by statistic method. We founded that the
most powerful feature as a means of experience day by day. The Count feature
followed after the mean feature. In Fig. 1., the mean feature was mean feat,
and the count feature was count feat. Since the mean was count/sum, it was
found that the mean changed according to the count. The count was the number
of actions, so the number of actions was significant. We confirmed through the
experiment results that mean and count were important to distinguish bots from
real users. The importance of features was an essential criterion for classifying
bots and real users. As a result, the bot could get more experience with fewer
actions than the real user.

Fig. 2. Skills based upon the Feature Importance. (a) Skill Count Feature Importance.
(b) Gravy Value Feature Importance.

We evaluated a set of features that could be helpful to game analysts.
Through the use of the well-trained model, we believe game analysts may eval-
uate the set of features with little domain knowledge. Figure 2. (a). showed the
top 10 features which have useful in the classification model when using the skill
count feature set. This graph showed that skill number 551 had the most effec-
tive to discern bot and a real human. Figure 2. (b). showed the top 10 features
which have useful in the classification model when using the gravy value feature
set. This graph showed that skill number 1803 had the most effective to discern
bot and a real human. 551, 962, 555 follows after the first. Showed both feature
importance graphs, even if there were quite different between calculating skill
count and gravy value feature, there were intersection areas. Based on the top 10
of each feature, we selected six features intersection. We decided this skill 551,
962, 1803, 555, 564, 568 were useful to classify bots and real users. This result
will be useful information for analysts with little domain knowledge.

We did a feature exploration to make sure the model worked, and we analyzed
feature distributions to check the hypothesis that bots and real users behave
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Fig. 3. Feature exploration results. (a) Different distribution in gravy value feature
(skillk: 1803). (b) Different distribution in sum of experience feature.

differently. As we expected above, in Fig. 3. (a). showed a different distribution
of skill usage. This model can be useful knowledge for game bot analysts to
feature engineering further. Also, we checked the statistical feature especially,
the distribution of experiment values. We found in Fig. 3. (b). that the game
bots got more mean of experiment values as we expected above. We thought
that even the game log analyst who did not have domain information about
bots to give useful information about through feature exploration that comes
from a well-trained model. Furthermore, we identified some data that were quite
different from classifying bots and real human users.

6 Conclusion

In this study, we analyzed the user behavior log by using the server-side method,
and our study employed the Aion dataset. The study analyzed the experience
and skills from the user behavior log to see if the characteristics of the game
bots and the real user were indeed different. We proposed a gravy value, a cost-
effective feature. We experimented with three machine learning algorithms using
feature sets such as the experiment, skills, and gravy value. As a result, the MLP
algorithm classified game bots and real users with an F-score of 0.9638. This
paper distinguished the bots from real users with high performance. Since we
created the gravy value using a common set of features from the MMORPGs,
future researchers and game developers can analyze these sets of features by
applying it to various MMORPGs. This means that analysts who would want to
differentiate between the bots and real users do not need to have in-depth domain
knowledge in the MMORPGs realm. The methodology used in this study can be
used as a useful reference for game service providers and government agencies.
We have detected a BOT that interferes with the usual gameplay of the real
user, and we can prevent various issues caused by the bots. For our future study,
we would like to examine the user’s churn rate using the set of features using
in this study. Furthermore, one of the characteristics of the MMORPG ‘stat’,
a value that gives a kind of specific ability value of a character, can be further
analyzed and verified through data sets of various games.
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Abstract. The inversion circuit based on the Itoh-Tsujii algorithm,
used for many cryptography functions, requires a number of multipli-
cation and squaring operations in circuits. In the past, the optimized
inversion implementation has been actively studied in modern comput-
ers. However, there are very few works to optimize the inversion on the
quantum computer. In this paper, we present the optimized implemen-
tation of binary field inversion in quantum circuits. Reversible and non-
reversible multiplication circuits are finely combined to reduce the num-
ber of CNOT gate. In particular, we optimized the reversible circuit for
A ·B and A ·C case in the inversion operation. Afterward, the multipli-
cation and squaring routine efficiently initializes some of the qubits used
for the routine into zero value. Lastly, the-state-of-art multiplication and
squaring implementation techniques, such as Karatsuba algorithm and
shift-based squaring are utilized to obtain the optimal performance. In
order to show the effectiveness of the proposed implementation, the inver-
sion is applied to the substitute layer of AES block cipher. Furthermore,
the proposed method can be applied to other cryptographic functions,
such as binary field inversion for public key cryptography (i.e. Elliptic
Curve Cryptography).

Keywords: Quantum computers · Itoh-tsujii algorithm · Karatsuba
algorithm · Binary field multiplication

1 Introduction

The binary field is a finite field of characteristic 2, which is a binomial polynomial
consisting of an irreducible polynomials of n degrees. The binary field arithmetic
is widely used in cryptographic applications. For the high performance of cryp-
tography analysis, the optimized binary field arithmetic in the quantum circuit
is a fundamental building block. Among binary field arithmetic operations, the
most expensive operation is an inversion operation, which is a multiplicative
computation of finding a−1 of element a ∈ GF (2m), such that a · a−1 = 1.
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The inversion operation is mainly used in both symmetric and asymmetric cryp-
tography, such as the substitute layer of AES and inversion of Elliptic Curve
Cryptography (ECC) [1]. A number of optimization methods have been proposed
for computing the multiplicative inverse [2–4]. One of the well known algorithm is
the Itoh-Tsujii multiplicative inverse algorithm [5], which is a inverse algorithm
based on Fermat’s Little Theorem (FLT).

When computing the binary field inversion, multiplication and squaring oper-
ations are required. The multiplication in binary field involves multiplying two
polynomial multiplication and a modular reduction with an irreducible polyno-
mial. The reduction operation is a relatively simpler operation than the poly-
nomial multiplication, because the reduction consists of only eXclusive-or oper-
ations [6]. For this reason, an optimized polynomial multiplication for binary
fields has been studied [7–9]. Among them, Karatsuba algorithm is widely used
in practice. Karatsuba algorithm replaces the one n-bit multiplication operation
into three n

2 -bit multiplication operations. Although, Karatsuba multiplication
requires several extra addition operations (i.e. eXclusive-or), the method sig-
nificantly reduces the complexity of multiplication. By applying the Karatsuba
algorithm to quantum computing, the computation complexity in quantum cir-
cuits is also optimized.

By using the Karatsuba multiplication for the Itoh-Tsujii inversion algorithm,
the multiplication part of the inversion is optimized [10]. During the calculation,
there is a multiplication routine that proceeds A · B and A · C in this pattern,
where A, B, and C are operands for each operation. The value of A should be
maintained during the computation since it gets reused in both A ·B and A ·C
multiplications. Due to the nature of Karatsuba multiplication, operand A gets
changed to other value after A · B. For this reason, the direct reuse of operand
A in following A · C is not available. Therefore, a reverse circuit must be added
to revert the A value to its original value after A · B operation.

In this paper, we present a state-of-art multiplication based on [11] and squar-
ing method to implement the Itoh-Tsujii algorithm. [11] minimizes the number
of multiplications by recursively applying Karatsuba multiplication on quantum
computers. However, only A · B multiplication is considered. In order to apply
[11] in A · B and A · C multiplication, a additional reversible circuit is required
to calculate the A · B and A · C multiplication. We have successfully enhanced
the [11] multiplication. This can be applied to A · B and A · C multiplication
in Karatsuba approach. A · B and A · C structures are optimized by omitting
the reverse circuit. Furthermore, we proposed qubit re-use techniques for squar-
ing and multiplication routine. By initializing qubits, the circuit is implemented
with minimal circuit gates. Finally, the proposed technique is applied to the sub-
stitute layer of AES in order to show practicality and efficiency. The algorithm
can be applied to other cryptographic functions, such as binary field inversion
of Elliptic Curve Cryptography (ECC).
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1.1 Research Contributions

– Optimized implementation of binary field inversion The quantum cir-
cuit for multiplicative inversion based on Itoh-Tsujii algorithm is optimized
by utilizing the A ·B and A ·C pattern. By changing the reversible structure
of the algorithm into non-reversible structure, the number of CNOT gate is
optimized. Furthermore, the qubit of B is initialized with optimal routine.
The initialized qubit gets used in the following operation, which reduces the
total number of qubits required for the inversion operation. The binary field
polynomial multiplication is optimized with the-state-of-art Karatsuba mul-
tiplication and shift-based squaring method, which reduced the total number
of Toffoli and CNOT gates.

– Optimized cryptographic primitives for AES and ECC The proposed
method can be applied to the substitute layer of AES and binary field inver-
sion of ECC. We show the impact of proposed method by implementing
the substitute layer. The proposed circuit significantly reduces the required
resource in terms of CNOT gates and qubits.

1.2 Organization of the Paper

The organization of this paper is as follows. Section 2 presents the background of
binary field inversion. In Sect. 3, the proposed inversion operation is presented.
In Sect. 4, we evaluate the proposed inversion method for AES. Finally, Sect. 5
concludes the paper.

2 Related Work

2.1 Itoh-Tsujii Multiplicative Inverse Algorithm

Itoh-Tsujii multiplicative inverse algorithm is an exponentiation based algorithm
for the inversion in binary field [5]. In a normal basis representation, it reduces
the complexity of computing the inverse of a non-zero element in GF (2n) with
the binary exponentiation method.

2.2 Karatsuba Multiplication

Karatsuba algorithm reduces the complexity of multiplication by additional
addition operations. When multiplying the polynomial f and g of size n through
h = f · g, two input polynomials are divided into s = n/2 units as follows:

f = f1x
s + f0

g = g1x
s + g0

(1)

After splitting two input polynomials, Karatsuba multiplication can be per-
formed as follows:

f0 · g0 + {(f0 + f1) · (g0 + g1) + f0 · g0 + f1 · g1}xs + f1 · g1x2s (2)

With the Karatsuba multiplication, multiplication of O(n2) can be performed
in O(nlog2 3) with a few addition operations.
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2.3 Quantum Gates

Quantum computers have several gates that can represent the classical gates [12].
Two most representative gates are CNOT and Toffoli gates. The CNOT gate
performs a NOT gate operation on the second qubit when the first input qubit
of the two input qubits is one. This gate performs the same role as the add
operation on the binary field. The circuit configuration is shown in left side of
Fig. 1. The Toffoli gate receives three qubits. When the first and second qubits
are one, the gate performs a NOT gate operation on the last qubit. This serves
as an AND operation on the binary field, and the circuit configuration is shown
in right side of Fig. 1.

Fig. 1. Circuit configuration of the (left) CNOT and (right) Toffoli gate.

3 Proposed Method

In this paper, the Itoh-Tsujii algorithm for binary field inversion was optimized
on the quantum computer. First, the multiplication of Itoh-Tsujii algorithm
was optimized by applying the Karatsuba multiplication technique. Second,
the quantum circuit is optimized by changing the reversible circuit to a non-
reversible circuit when calculating A · B and A · C pattern in the Itoh-Tsujii
algorithm with Karatsuba algorithm. Lastly, some of qubits are reuse during
squaring and multiplication operations by using the initialization technique. Ini-
tialized qubits are used for following computations. With this technique, the
total number of qubits required for the operation is optimized.

3.1 Optimization of A · B, A · C Structure in Inversion

The proposed method optimized the A · B and A · C structure in inversion
algorithm by using non-reversible circuits rather than reversible circuits. Itoh-
Tsuji algorithm consists of squaring and multiplication operation. The squaring
operation is designed with few CNOT gates on a quantum circuit [13]. Unlike
the squaring operation, the multiplication operation is an expensive operation.
Therefore, it is necessary to apply an efficient multiplication technique to achieve
the optimal performance. There are a number of studies to implement the mul-
tiplication. Among them, one of the well known efficient multiplication method
is the Karatsuba multiplication. When performing the two polynomial f ·g mul-
tiplication on a quantum gate, the Karatsuba algorithm can reduce the usage
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Fig. 2. Circuit configuration of the CNOT gate.

Algorithm 1. Itoh-Tsuji-based inversion for p = x8 + x4 + x3 + x + 1
Require: Integer z satisfying 1 ≤ z ≤ p − 1.
Ensure: Inverse t = zp−2 mod p = z−1 mod p.
1: z2 ← z2 · z { cost: 1S+1M}
2: z3 ← z22 · z { cost: 1S+1M}
3: z6 ← z2

3

3 · z3 { cost: 3S+1M}
4: z7 ← z26 · z { cost: 1S+1M}
5: t ← z27 { cost: 1S}
6: return t

of Toffoli gates while increasing the number of CNOT gates. The Toffoli gate
consists of 6 CNOT gates and 9 single qubit gates as shown in Fig. 2. For this
reason, it is important to design a circuit with a minimum number of Toffoli
gates to implement the quantum algorithm.

In order to show the impact of proposed method, the substitute layer of AES
is selected as an example, which uses x8 +x4 +x3 +x+1 as a target polynomial.
The substitute layer requires binary field inversion operation of x8+x4+x3+x+1.
The inversion operation of AES is given in Algorithm1.

In Step 1, the squaring operation is performed. The squaring operation can be
obtained with 11 CNOT gates as shown in Fig. 3. The squaring directly reduces
the result due to the nature of squaring on binary field [13]. After the squaring
operation, a multiplication operation is performed on the squared value (i.e. z2)
and the input integer z. The integer z is reused in Step 2. This process follows
A · B, A · C structure (i.e z = A, z2 = B, z22 = C).

When the Karatsuba method is applied to the multiplication, the input value
(i.e. z) is updated due to the operand addition step of Karatsuba. Generally, the
operand is restored to the original z value for the following operation. The con-
dition is described with an example on 2-bit case in Fig. 4. The circuit describes
the condition after the 2-bit multiplication.

When the 2-bit multiplication operations on operands A(a0, a1) and B(b0, b1)
are performed, a1 and b1 are changed to a0 + a1 and b0 + b1, respectively. If
only the result of the multiplication is needed, reversible gates are not required.
However, the value of A(a0, a1) is used again in following calculations, (i.e. A·C).
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Fig. 3. Circuit configuration of the squaring operation on x8 + x4 + x3 + x + 1.

For this reason, the reversible circuit should be performed for the operand
A. The reversible gate is described in Fig. 5. In each n-bit multiplication, the
reversible gate requires (n − 1) CNOT gates for each operand.

In order to reduce this overhead, we present a non-reversible gate based A ·B
and A ·C structure of inversion. Detailed descriptions for 2-bit case are given in
Fig. 6.

First, the a0 · c0 operation is calculated. When the operation of a0 · c0 is
completed, the a0 value is no longer used in following operations, because the
value will not affect the following calculation. The second qubit, a0 + a1, then
performs a CNOT operation with a0 to change the value of the first qubit to
a1. Afterward, a1 · c1 operation gets calculated using c1 with the a1 value. The
(c0 + c1) is simply made through CNOT operation between c0 and c1. Finally,
the (a0 + a1) · (c0 + c1) gets calculated.

In conclusion, it is possible to make the same result of A·B and A·C, through
A · B and A′ · C structure, which excludes reversible circuits.

By using the proposed method, the inversion for x8 + x4 + x3 + x + 1 is
implemented. This implementation reduced the number of Toffoli gates used
compared to the basic multiplication method. Generic multiplication uses 64 (n2)
Toffoli gates per multiplication, while Karatsuba only uses 27 Toffoli gates per
multiplication. However, the Karatsuba method for the inversion operation uses
108 additional CNOT gates than the generic multiplication method. However
the number of Toffoli gates should be considered than CNOT gates since the
Toffoli gate consists of 6 CNOT gates with 9 one-gates.
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Fig. 4. Non-reversible multiplication of A · B with Karatsuba multiplication.

The Karachuba multiplication circuit of [11] is not designed to be reversible,
and all of the remaining operators A,B and input qubits get treated as garbage
qubits after multiplication, except for the qubits that contain the result of the
operation. This is because the calculation of A · C was not considered which
comes after A ·B during multiplication of Itoh-Tsuji algorithm. Conventionally,
in order to perform Itoh-Tsuji multiplication with Karatsuba, a reversible circuit
is required to recover the original values of the operand. In the case of inversion
for x8+x4+x3+x+1, 14 CNOT gates are required for the reverse circuit for the
Karatsuba algorithm. In the proposed method, the reverse process is omitted by
utilizing the A · B and A′ · C pattern, which optimizes 14 CNOT gates.

3.2 Reducing the Number of Qubits

In this section, we present the technique to reduce the total number of qubits
required for the operation during the multiplication and squaring operation of
Itoh-Tsujii’s algorithm.

In Steps 1 and 2 of Algorithm1, the value of B is the square of the A value
(i.e. z on the algorithm) and the value C is created through the square of A ·B.
Both B and C are originated from the value A.

The value of B is computed with the squaring operation as described in Fig. 3.
The squaring operation is performing the left-shifting and modular operations
on the input qubit. In other words, the value B is the result of left-shifting the
qubit of A and the modular operation on it.
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Fig. 5. Reversible multiplication of A · B with Karatsuba multiplication.

Using these features, some of the qubits are initialized to zero, which allows
the calculation to use less qubits than original multiplication computation.
Detailed descriptions of the method are presented in Fig. 7.

The first Step represents the value B, the second Step represents the value
A, and the third Step represents the value C from A ·B, A ·C multiplication of
Itoh-Tsujii algorithm.

First, B value is formed from A value through the square operation. In Step
2, A·B multiplication is performed. After the multiplication, the values of B and
A get changed into B′ and A′, respectively. The result of A · B calculation gets
stored in the third row. A gets changed into A′, because the calculation does not
require the reverse circuit. In Step 3, A ·B operation is calculated, and C value
is formed with the result. In Step 4, values A′ and C are multiplied. During
the multiplication process of Step 4, the value of A′ gets changed in order to
proceed with the Karatsuba operation (i.e A′ −→ A′′). During this process, the
changed value of multiplication (A′′) forms the same value with B′ during the
multiplication process of A′ ·C. By performing the CNOT operation on the same
value between A′′ and B′, some of the qubits of B′ is initialized back to zero (See
Step 5). In Algorithm 1, the value B is not used again after the A ·B operation.
For this reason, we can utilize these qubits for other purposes. Initialized qubits
of B are used as a extra qubit space during the following inversion operation.

Table 1 presents the values contained in the value B′ after A · B multiplied
by B and a formed through the squaring of A on x8 + x4 + x3 + x + 1.



162 K. Jang et al.

Fig. 6. Proposed non-reversible multiplication of A ·C with Karatsuba multiplication.

Table 1. Combination of A values of B′ after A · B computation on GF (28).

k Bk k Bk

0 a0 + a2 + a6 + a7 4 a2 + a3 + a4 + a5 + a7

1 a4 + a5 + a7 5 a5 + a7

2 a1 + a3 6 a3 + a5+a6 + a7

3 a4 + a5 7 a6 + a7

As shown in Table 2, it can be seen that the value of B′ after the operation
of A ·B consists of the addition of the A values. These combinations of A values
are made through the Karatsuba operation. This combination is also observed
in A′′, which are values that get formed during A′ ·C multiplication. Values are
shown in Table 2.

Using both Table 1 and Table 2, the combination can initialize the value of B
to zero. For example, in Table 1, the element of k0 is presented as a0+a6+a2+a7.
This value is initialized by using k6 and k14 value from Table 2 which are a0 +a2
in red and a6 + a7 in orange, respectively. By performing the CNOT operation
on B0 with k6 and k14, B0 is initialized into zero.

If the initialization is performed for multiplication with the conventional
multiplication method, it would require 18 additional CNOT gates in order to
form elements of kn. However, the Karatsuba multiplication makes it possible
to initialize the value of B to zero without having to take extra steps to form
elements of kn. During the multiplication process of Karatsuba, the elements
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Fig. 7. Overview of proposed method for initializing some of the qubits during Karat-
suba multiplication.

of kn gets created eventually in order to be used as a multiplication factor. By
utilizing this feature, we were able to initialize 8 qubits with 11 CNOT gates.

In the process of calculating the Step 3 of the Algorithm1, the qubit can be
reduced in a similar way. Unlike Steps 1 and 2 of the Algorithm1, the Step 3
does not have a exact same structure of A · B and A · C. However there is still
a part that can initialize the qubit to zero. 8 additional qubits can be initialized
to zero. Finally, 16 qubits can be initialized to zero and be used for the following
calculation.

4 Evaluation

In order to evaluate quantum gates, we utilized the quantum computer emulator.
We utilized the well-known IBM’s ProjectQ framework for evaluation of the
proposed method1. The framework provides quantum computer compiler and
quantum resource estimator. This is useful for accurate evaluation. Proposed
quantum gates are written in Python and follow the ProjectQ grammar.

We compare the number of Toffoli gates, CNOT gates, and qubit of imple-
mentation method based on x8 + x4 + x3 + x+ 1 inversion, which is used in the
substitute layer of AES. The inversion operation of x8 +x4 +x3 +x+ 1 consists
of 4 multiplications and 7 squaring operations using the Itoh-Tsuji’s algorithm.
We present two methods including CNOT reduction version and qubit recycle
version. The CNOT reduction version performs A · B and A · C pattern with
non-reversible multiplications. For the qubit recycle version, few CNOT gates
are used more than CNOT reduction version but some qubits are recycled. The
required quantum resources of proposed method is given in the Table 3. Com-
pared with Karatsuba approach by [11], the number of Toffoli gates is identical.
For the CNOT gate, CNOT reduction and qubit recycle versions reduces 14 and

1 https://github.com/ProjectQ-Framework/ProjectQ.

https://github.com/ProjectQ-Framework/ProjectQ
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Table 2. Combination of A values of A′′ during A · C computation on GF (28).

k Ak Rk

0 a0 a0c0
1 a1 a1c1
2 a0 + a1 (a0 + a1)(c0 + c1)
3 a2 a2c2
4 a3 a3c3
5 a2 + a3 (a2 + a3)(c2 + c3)
6 a0 + a2 (a0 + a2)(c0 + c2)
7 a1 + a3 (a1 + a3)(c1 + c3)
8 a0 + a1 + a2 + a3 (a0 + a1 + a2 + a3)(c0 + c1 + c2 + c3)
9 a4 a4c4
10 a5 a5c5
11 a4 + a5 (a4 + a5)(c4 + c5)
12 a6 a6c6
13 a7 a7c7
14 a6 + a7 (a6 + a7)(c6 + c7)
15 a4 + a6 (a4 + a6)(c4 + c6)
16 a5 + a7 (a5 + a7)(c5 + c7)
17 a4 + a5 + a6 + a7 (a4 + a5 + a6 + a7)(c4 + c5 + c6 + c7)
18 a0 + a4 (a0 + a4)(c0 + c4)
19 a1 + a5 (a1 + a5)(c1 + c5)
20 a0 + a1 + a4 + a5 (a0 + a1 + a4 + a5)(c0 + c1 + c4 + c5)
21 a2 + a6 (a2 + a6)(c2 + c6)
22 a3 + a7 (a3 + a7)(c3 + c7)
23 a2 + a3 + a6 + a7 (a2 + a3 + a6 + a7)(c2 + c3 + c6 + c7)
24 a0 + a2 + a4 + a6 (a0 + a2 + a4 + a6)(c0 + c2 + c4 + c6)
25 a1 + a3 + a5 + a7 (a1 + a3 + a5 + a7)(c1 + c3 + c5 + c7)

26 a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7
(a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7)
(c0 + c1 + c2 + c3 + c4 + c5 + c6 + c7)

3 CNOT gates, respectively. In particular, the qubit recycle version reduces the
number of qubit by 8.

Table 3. Comparison of quantum resource for A ·B and A ·C computation on GF (28).

Method Toffoli gate CNOT gate Qubit

Kepley et al. [11] 54 252 70

This work (CNOT reduction) 54 238 70

This work (qubit recycle) 54 249 62

The proposed method can be applied to the Itoh-Tsuji-based inversion of
binary field ECC. In Algorithm2, the inversion algorithm for sect283k1 and
sect283r1 is given. In Step 1, 5, 7, and 10, A ·B and A ·C pattern is observed.
This case can be optimized by using the proposed method in terms of CNOT
gates and qubits.
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Algorithm 2. Itoh-Tsuji-based inversion for p = x283 + x12 + x7 + x5 + 1
Require: Integer z satisfying 1 ≤ z ≤ p − 1.
Ensure: Inverse t = zp−2 mod p = z−1 mod p.
1: z2 ← z2 · z { cost: 1S+1M}
2: z4 ← z2

2

2 · z2 { cost: 2S+1M}
3: z8 ← z2

4

4 · z4 { cost: 4S+1M}
4: z16 ← z2

8

8 · z8 { cost: 8S+1M}
5: z17 ← z216 · z { cost: 1S+1M}
6: z34 ← z2

17

17 · z17 { cost: 17S+1M}
7: z35 ← z234 · z { cost: 1S+1M}
8: z70 ← z2

35

35 · z35 { cost: 35S+1M}
9: z140 ← z2

70

70 · z70 { cost: 70S+1M}
10: z141 ← z2140 · z { cost: 1S+1M}
11: z282 ← z2

141

141 · z141 { cost: 141S+1M}
12: t ← z2282 { cost: 1S}
13: return t

5 Conclusion

In this paper, we presented the optimized implementation of binary field inver-
sion in quantum circuits for A · B and A · C structure. First, non-reversible
circuits are used for A · B and A · C patterns. Second, qubit reuse technique
is suggested. Both techniques reduce the required number of CNOT gates and
qubits. The-state-of-art optimization techniques, such as Karatsuba algorithm
and modular squaring, are also utilized to reduce the number of Toffoli gates
and qubits. Finally, the quantum circuit for binary field inversion achieved the
optimal number of Toffoli gates, CNOT gates and qubits. The proposed method
is used to implement the substitute layer of AES. The result shows that proposed
method uses lesser CNOT and qubits than previous Karatsuba based approach.
Furthermore, the proposed method can be used for the binary field inversion of
ECC.

The future work is going to find another arithmetic structures to optimize
the quantum circuit for other cryptographic algorithms. In the inversion, the
consecutive multiplication and squaring structure is frequently used. We will
find the optimal computation routine for this structure.
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Abstract. Virtualization is used in various environments such as cloud
and network, but it was difficult to utilize it in mobile devices due
to computing resource problems. Technology such as containers that
are faster and lighter than traditional hypervisor-based virtualization is
being developed. In this paper, we implemented three virtualization tech-
nologies in the Android framework: hypervisor-based virtual machine,
lightweight hypervisor-based virtual machine, and container. In the pro-
cess of implementation, we created and applied the SEAndroid policy
for each virtualization technology. In addition, we measured performance
by considering the boot time for the implemented virtual instance. As
a result of empirical experiments, the container showed the best per-
formance, but it showed a problem with the compatibility of security
function SEAndroid. The lightweight hypervisor technology shows faster
performance than the legacy one and also provides safety by an addi-
tional kernel.

Keywords: Android · Virtualization · SEAndroid

1 Introduction

In the mobile market, the Android operating system is being used by various
vendors by taking advantage of open source. According to statistics, Android has
more than 70% share of the mobile device operating system market. As mobile
devices are closely related to the lives of users, personal financial information
and privacy are being used in Android, and the demand for security techniques
or additional functions to protect them is increasing. Various studies have been
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conducted to safely store the data of the app or to isolate the environment of
a specific process. One of the methods is to utilize the advantage of the virtual
environment by using a hypervisor in Android. Virtualization technology can
minimize the impact on the entire operating system by running untrusted appli-
cations such as malware in isolated spaces. However, when applying a method
using a traditional hypervisor-based virtual machine to a mobile device, a com-
puting resource problem of the device was presented. Advancements in hardware
and lightweight virtualization technologies, however, can solve these problems,
and mobile devices now have enough computing power to realize a virtual envi-
ronment.

The Android environment provides a closed environment compared to other
operating systems such as Linux. Since Android applications are isolated from
other applications and systems by Dalvik VM, it must perform the privileged
tasks provided by system services through the Android API. Therefore, all virtu-
alization technologies must be implemented at the software level because normal
applications can’t directly access the system or hardware. In order to solve these
problems, some users are using a technique such as rooting to obtain the author-
ity of the administrator, but this can cause a risk in terms of security [16].

In order to solve these problems, this paper proposed a method for imple-
menting virtualization without affecting the Android security framework such as
SEAndroid, and evaluated the performance of the implemented virtual environ-
ments simply. The following section describes virtualization technologies used in
other environments, and Sect. 3 describes studies using virtual environments in
Android. Section 4 describes methods for implementing a virtual environment
on Android, and its evaluation is in Sect. 5. Section 6 considers the scope and
limitations of existing security functions when applying a virtual environment,
and finally concludes in Sect. 7.

2 Background

2.1 Virtualization Methods

Hypervisor-Based Virtual Machine. The most common way to implement
a virtual environment is to use a hypervisor. The hypervisor emulates virtual
hardware and loads the kernel and operating system to create a new virtual
environment. There are two types of hypervisors: bare metal and hosted. In the
case of a bare metal hypervisor, it runs directly on the hardware and can run
the guest operating system directly without a host operating system. The hosted
hypervisor runs on the host operating system and the administrator can manage
guest operating systems through the executed hypervisor. It may cause a lot of
overhead because all hardware is emulated and operated. KVM can be used
together to utilize some kernel functions of the host operating system [6,7].

Container. Container technology, unlike hypervisors, implements a virtual
environment that shares the host’s kernel. Although it is actually a process,
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it uses the namespace and Cgroups provided by the Linux kernel to isolate the
process from the host operating system [4]. Container implements the guest oper-
ating system in the form of a process without a hypervisor and a guest kernel.
It has the advantage of low overhead. However, since the kernel is shared, some
file systems (/proc, /dev, etc.) can be shared. And some kernel vulnerability
may affect the isolation between the host OS and the guest OS [10,14]. Figure 1
shows the difference between a virtual machine and a container.

Fig. 1. Comparison of the virtual architectures

Lightweight Hypervisor-Based Virtual Machine. In order to solve the
overhead of the hypervisor-based virtual machine and the security problem of
the container, the concept of a lightweight hypervisor-based security container
has appeared [17]. The representative tool, kata container, implements an iso-
lated runtime environment using a lightweight hypervisor and enables container
images such as dockers to be executed in the environment. The lightweight hyper-
visor virtualized only the essential hardware and shortened the boot time to
reduce the overhead caused by hardware virtualization and implemented an iso-
lated environment from the host operating system.

2.2 Differences Between Android Framework and Linux

Android was developed based on the Linux kernel, but it has a very different
framework from normal Linux. Common Linux processes can easily communi-
cate with other processes using Unix sockets, but Android applications require
services to perform interprocess communication because they are isolated by
Dalvik VM [3]. Android applications that are not system processes are executed
by zygote, and each application is isolated from each other and does not affect the
outside. Applications are designed to perform communication through a binder
device using service APIs inherited through zygote [13].

For this reason, normal Android applications cannot perform any privileged
tasks. In order to perform a privileged operation such as network or storage
access, a request must be made to a service having the privilege and wait for the
service to deliver the result of processing the task [5].
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Another difference between Android and traditional Linux is the configu-
ration of the file system. The Linux system has a file system configuration to
support multi-users. Compared to Linux, Android may have executable files or
configuration files stored in different directories. This difference should be cor-
rected when applying programs provided as packages in Linux to Android.

Finally, one of the differences between Android and Linux is SELinux’s pol-
icy. In the case of Linux, in order to provide an appropriate security policy
for a multi-user operating system, files and processes are provided with labels
in “user/role/type” order [15]. SEAndroid uses the same LSM mechanism as
SELinux, but users and roles are unified with u and r, respectively, and only
rules are managed by type. This difference makes it difficult to provide SELinux
rules like existing Linux when running containers in the future.

Table 1. Differences between Android and Linux

Component Linux App Android App

IPC Socket Binder

Isolation None Dalvik VM

Parent process for Apps Init or other process Zygote

Permission for Apps Linux DAC SELinux context Android permission

User Multi-user Single user

2.3 SELinux and SEAndroid

One of the differences between Android and Linux is SELinux’s policy. SELinux
is one of the Linux Security Modules (LSM) provided by the Linux kernel. This
SELinux consists of policies including context, domain, etc., and uses this to
control access to specific objects by specific subjects. SELinux assigns context
to each user, process, and file and performs access control using the policy related
to the context. The SELinux context consists of user, role, and type [15]. User
and role can be set to distinguish multiple users or groups, and type represents
the authority of each object.

SEAndroid is a module modified to apply SELinux to the Android framework.
It is based on the existing SELinux system, but due to the characteristics of the
mobile phone, many parts have been omitted to be lightweight. SEAndroid does
not need user and role roles for multiple users, so it is unified with u and r [20].
Most of the rules of policy are organized based on type. This difference makes
it difficult to provide SELinux rules like existing Linux when running containers
in the future.
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3 Related Works

There have been many studies using virtualization technology on Android. Kevin
et al., proposed a method of creating an isolated environment using a bare metal
hypervisor and running the application for safe application execution on mobile
devices [9]. This study uses a bare metal hypervisor instead of implementing
a reliable operating system as part of the TCB in a mobile environment. This
virtual environment consists of fewer lines of code than a typical OS, making it
more suitable for TCB. This method provides a safe environment based on bare
metal and can provide a TCB, but requires a firmware level modification.

Guillaume et al., classified the application’s authority into four types of sys-
tem, OS, Framework, and Application using a bare metal hypervisor, and devel-
oped a policy and system to manage it [1]. These methods use a bare-metal
hypervisor and operate on the hardware directly in the form of TCB, thus cause
the device dependency. Also, There wasn’t an evaluation of performance.

Julian et al., proposed a method for encrypting RAM memory at the hyper-
visor level for small ARM devices [11]. Zhichao et al., proposed a method to
virtualize the function of TrustZone, a hardware-based trust execution environ-
ment, and apply it to mobile devices [12]. These methods utilized a method
of inheriting reliability from a hardware-based trust execution environment to
modify the hypervisor and provide the reliability of the virtual environment in
which the security function operates.

Dong et al., proposed a method to more safely isolate the guest operating
system by utilizing Hyp mode, which can be used in ARM [19]. The newly
developed H-binder hooks the Binder transaction to ensure the integrity and
safety of data transmission.

The ARM architecture provides hardware-based functions for virtualization
security. The HYP mode of ARM is a CPU mode that has higher privileges than
the existing user interrupt, and is also called Eception level 2. Figure 2 shows the
Exception mode in ARM architecture. When using this mode in a bare metal
hypervisor, hypervisor codes that can control each guest OS are executed in
HYP mode, so that they can have more authority. However, in the case of a
host-based hypervisor, the host operating system runs on EL1, and KVM also
belongs to EL1. To solve this problem, Dall et al. modified the existing KVM for
the virtualization support mode provided by the ARM architecture [6]. Among
the existing KVM codes, the codes to be executed in HYP mode are made into a
lowvisor and divided into highvisor and lowvisor. Figure 3 shows Highvisor and
Lowvisor in ARM Exception mode. This HYP mode can be applied to make
secure the VM of our idea. But we didn’t mention it, because enabling the hyp
mode is in firmware. And our goal is to find the best way to trigger the virtual
environment from the application by checking the compatibility.



172 J. Yoon et al.

Fig. 2. HYP mode in ARM Exception Modes

Fig. 3. KVM for ARM HYP mode by Dell et al.

4 Implementation

4.1 Environment Setup

As mentioned in Sect. 2.2, it is necessary to solve the dependency problem on
libraries and configuration files in order to run a virtual environment program
such as hypervisor on Android. To this end, all compilation work was performed
with the static option that does not require an external library. We hard-coded



Virtualization in the Android Framework and Compatibility with SEAndroid 173

the configuration values by modifying the parts that access and utilize the con-
figuration file.

The hypervisor was based on QEMU, and the lightweight hypervisor uti-
lized lkvm. In both cases, it was implemented using source code [2]. Container
is implemented based on LXC container. All compiled files are located in the
/system/bin directory, and the permissions are set so that test-app can access
them.

As shown in the Fig. 4, the Android application sends a request for the vir-
tualization to an authorized service(Virtual Environment Service) through the
binder(a). The requested service executes QEMU, lkvm, or LXC according to
the request. If there is an execution request for QEMU or lkvm, the KVM mod-
ule of the host kernel can be utilized by trigger(b,c). When a request for LXC
creation is received, the Virtual Environment Service can execute the container
immediately(d).

Android App. The Android app needs the help of the VE service to run the
virtual environment. There is no API related to the virtual environment in the
API provided by the general Android SDK. The Android app uses the VE Service
SDK developed to communicate with the VE service.

Virtual Environment Service. The virtual environment service can execute
the virtual environment according to the request received from the application.
This service operates as a system service. It runs QEMU, lkvm, lxc at the request
of the application.

Virtual Environment Trigger. The virtual environment trigger consists of
three executable binary files. QEMU, lkvm, lxc. Each executable binary file is
located in the system directory. Applications can’t directly access the executable
file.

Virtual Environment. The run virtual environment was created for testing.
We used a busybox-based image to remove various processes that could run
inside and to evaluate the performance until each virtual environment runs.

4.2 Kernel Reconfiguration

The kernel used in Android was developed based on the Linux kernel, but over
time, it includes additional new features, and features that have been used in
Linux but are not used well in Android are not set [18]. In the case of QEMU, it is
possible to operate without a KVM kernel module. In order to reduce overhead, a
KVM module is essential when used in the form of QEMU-kvm [8]. lkvm, which
will be used as a lightweight hypervisor, is also a program that can implement a
simple virtual environment based on KVM. It is also implemented by adding the
KVM function to the Android kernel. In addition, by enabling VitualIO-related
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Fig. 4. Operation flow to create the virtual environment

modules to be used in communication between the virtual environment and the
host, a virtual environment can be implemented. The kernel features needed to
implement a container are typically namespaces and cgroups, and the features
were applied through pre-compilation configuration.

4.3 SEAndroid Support for Virtualization

SELinux’s policy is created using the Type Enforcement(TE) file to define the
rule. In the case of SEAndroid, all relevant TE files for creating rules are included
in the Android source code [20]. However, there are no rules for programs like
QEMU or lkvm. As mentioned above, the rules used for QEMU and lkvm in
SELinux do not work properly in the Android environment, so a new TE file
must be created.

In order to create a new TE file for the virtualization, the kernel parameter
was changed to modify SEAndroid to permissive mode. In the permissive mode,
there is no access control according to the policy, and only an audit can log.
This allowed us to collect behaviors of virtualization technologies that are not
allowed in existing SEAndroid policies. Since all the operations of the virtualiza-
tion technique may not be performed, we have used the existing Linux rules to
fill in additional necessary parts. We created new rules for virtualization using
the generated audit log and existing Linux rules. The newly created rules are
integrated into the Android source code to implement SEAndroid policies that
can be virtualization function properly.
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5 Evaluation

For evaluation in the same environment, QEMU, lkvm, and lxc were installed
on one device. For compatibility with the Android operating system, the device
utilizes Hikey960. The Android version used 10, and the device performance is
shown in the following Table 2.

Table 2. Testbed hardware spec

Component Spec

Model Hikey 960

SoC Kirin 960

CPU 4 Cortex A73 + 4 Cortex A53 Big.Little CPU architecture

RAM 3 GB LPDDR4 SDRAM

GPU ARM Mali G71 MP8

Storage 32 GB UFS Flash Storage

In order to compare the performance of the implemented virtual environ-
ments, the timestamp when the shell was obtained from the virtual environment
creation time was obtained and the difference was compared. The experiment
was repeated 30 times, and after each experiment, the device rebooted and had
sufficient idle time. Figure 5 shows the average time required. In the case of
a container environment, it was confirmed that “init” immediately launched a
shell, and the environment was configured in a very short time. In the case of
QEMU and lkvm, we can see that it takes relatively more time to configure the
environment and apply the kernel.

Fig. 5. Comparison of the boot time

6 Compatibility with SEAndroid

SEAndroid is a representative security module that can be used in Android.
The technologies to be used in Android need to provide proper security in con-
junction with SEAndroid. In the previous experiment, we experimented with
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porting virtualization techniques to Android. We created appropriate rules for
virtualization techniques using permissive mode and Linux’s SEAndroid rules.
Hypervisor-based virtualization techniques were not directly affected by SEAn-
droid using an additional kernel. However, these techniques also require rules
to communicate with some hardware of Android, so a new context is given to
hardware files or additional rules are created.

However, as shown in Fig. 6, the container running on Android caused a func-
tional crash. The container shares the kernel with the host operating system, and
SEAndroid is one of the LSMs, which is a security module that provides func-
tions in the kernel. The shared kernel is directly accessible inside Android and
the container. All system calls executed in the container are executed through
the same kernel. For this reason, all actions executed inside the container are
controlled by the SEAndroid policy provided by Android.

In order to solve this problem, unlike hypervisor-based virtualization, all
operations of specific processes running inside the container had to be specified
in advance and rules had to be created. However, it is very difficult to predefine
all the actions executed inside the container. Unlike SELinux, which is used
in Linux, SEAndroid is compiled with the Android framework, and subsequent
modifications are very difficult. In a recent version, a technique called Treble was
introduced. Treble allows device vendors to compile additional rules at device
boot time to create a single SEAndroid policy. However, this method is also very
difficult because Android’s vendor image must be created with SEAndroid rules.

Fig. 6. Access control by SEAndroid for container

Container technology may be limited by security functions in that it shares
the host and kernel. In the case of the Integrity Measurement Architecture(IMA)
namespace, the LSM function between the container and the host can be sepa-
rated [21]. However, it is still in the research level, so it is difficult to use it in most
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kernels. In addition, this study was developed in conjunction with Apparmor,
and technology integrated with SELinux has not been developed yet, making it
difficult to apply to the Android environment.

7 Conclusion

In this paper, we proposed how to apply a virtual environment without hardware
dependency in the Android framework, and compared the boot time by imple-
menting a hypervisor-based and lightweight hypervisor-based virtual machine
and container environment. Also, when using a virtual environment, we described
the compatibility of security mechanisms that can be used in existing Android.
The hypervisor-based virtual machine showed a lot of overhead as expected. The
container environment will need additional development due to the conflict with
the existing Android security mechanism. The lightweight hypervisor was tested
without optimization of the kernel. It is expected that if optimized work is done,
it will provide less overhead and better security environments. As the computing
power of the Android mobile device increases, various virtual environment-based
security functions may be additionally utilized. Future research can be about the
application using the lightweight hypervisor at the Android framework level.
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Abstract. In the untacted era of the recent COVID-19 virus outbreak,
the pedagogic value of Capture the Flag (CTF) has grown even more
as an effective means for students to learn knowledge about the overall
computer system and information security through active participation
without facing the teacher. However, in the process of successfully intro-
ducing CTF into the classroom, educators may suffer a high burden due
to factors such as time and economy in the process of crafting problems
and operating CTFs. Accordingly, various studies have been conducted
to reduce this burden. On the other hand, in introducing CTF to the
classroom, the burden of educators also exists in the aspect of an in-
depth evaluation of students’ academic achievement. This means that
educators need to evaluate students’ academic abilities in-depth so that
educators can provide clear feedback on the factors that caused students
to fail. Through this, educators can effectively increase student learning
efficiency by helping students correct their own weaknesses. The need for
such detailed evaluation can be said to be quite high in the pwnable field,
one of the representative fields of CTF. This is because pwnable requires
participants to have a comprehensive understanding of overall program
analysis, vulnerability, mitigation bypassing techniques, systems, and so
on. However, the evaluation manner of the existing CTF is not suitable
for an in-depth evaluation of students’ academic ability because they
simply measure whether or not they solve problems in a pass and/or
non-pass manner. Therefore, we designed a fine-grained evaluation CTF
platform that aims to help educators provide precise evaluation and feed-
back on learners’ failure factors in an attempt by educators to introduce
CTF into the classroom to educate pwnable to reduce the burden on
educators in properly evaluating student’s Academic achievement.

Keywords: Capture the flag · CTF · Pwnable · Control flow hijack ·
Exploit

1 Introduction

Recently, various studies are attempting to increase the effectiveness of informa-
tion security education [3,14,16]. Accordingly, pedagogics using the CTF (Cap-
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ture the Flag) manner in information security education has been recognized as
a new paradigm. Besides, in the present era of the recent outbreak of COVID-
19 virus, CTF is more valuable in that it is a pedagogical way of an untacted
manner that enables active participation of students in a non-face-to-face. As
the pedagogical value of CTF increases, various research and education plat-
forms are being developed to help educators increase student access to CTF and
increase learning efficiency [2,4,5,7,15,16].

Representatively, some recent studies on CTFs suggest a manner such as
automated problem creation to reduce the burden required for educators to
introduce CTFs into the classroom [1,8,17]. However, the burden of educators
in introducing CTF into the classroom also exists in the process of carefully
evaluating students. This means that if an educator can evaluate a student’s
academic ability in detail, the educator can provide clear feedback on the fac-
tors that caused the student to fail in learning, and effectively improves the
student’s learning efficiency in a manner that corrects the student’s weaknesses
[14]. However, the evaluation manner of the CTF platform, which is used for the
competition, evaluates the competency of participants in a pass and/or non-pass
manner. For example, in CTF competitions, CTF organizers use some kind of
computer science and information security knowledge to make problems. When
the organizer makes a problem system. The flag (generally in the form of a string)
is hidden so that it cannot be read without specific knowledge of programs and
files. The participant successfully acquires the flag hidden by the organizer using
the knowledge required by the problem and then submits it to the flag certifica-
tion server of the CTF competition. At this time, whether or not the participant
solves the problem is determined as whether or not the corresponding flag is
successfully acquired.

As such, the CTF for existing competition purposes only evaluates the partic-
ipant’s problem-solving capacity in a pass and/or non-pass manner. Therefore,
for problems that require comprehensive knowledge to solve a specific problem,
it is difficult to identify the participant’s failure point in this evaluation manner.
These features can be burdensome for educators attempting to introduce CTF
as an educational tool in the classroom. This is because if students are evaluated
only in a pass and/or non-pass manner, educators must invest additional time
and money to analyze the causes of learners’ failures and provide appropriate
feedback. A representative example of a field where the burden of educators is
prominent is the pwnable field that requires a comprehensive understanding of
binary and system knowledge and exploit technology and so on. For example,
the control flow hijack type of problem frequently asked in pwnable is solved
through the following complex process. First, the vulnerability of the program
must be identified through static and dynamic analysis of the problem provided
in the form of source code or binary file. Next, if you have successfully identified
the vulnerability, you need to create the input data of the program that allows
the program to trigger the vulnerability. Also, depending on the type of problem,
a single and/or multiple vulnerabilities might be utilized to hijack the control
flow of a program, and an appropriate payload must be configured to allow an
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Fig. 1. Comparison of existing CTF and fine-grained CTF.

attacker to craft or execute existing code in the application address space. In
some cases, when the mitigation policy is applied to the system and binary, a
bypassing technique is used to bypass it. As such, pwnable problems generally
require comprehensive knowledge of coding, system, attack, and defense, and
program analysis skills, so learners need a comprehensive understanding of the
overall process to solve single pwnable problem (see Table 1).

The existing CTF’s pass and/or non-pass evaluation manner has limitations
in accurately judging the learner’s failure factors because it is judged that the
problem itself has not been solved when a learner fails at some points in these
processes. Therefore, this paper helps educators to accurately evaluate learners’
failure factors in introducing CTF to the classroom, thereby reducing the burden
on educators in appropriately evaluating student capabilities. To achieve this,
we have defined a general problem solving process for control flow hijack type
problems, and based on this, we designed a pwnable CTF platform that aims to
enable precise evaluation and feedback on learners’ failure factors.

The rest of this paper is organized as follows. Chapter 2 describes the gen-
eral knowledge required to solve pwnable problems. Chapter 3 draws detailed
evaluation points for the overall composition of a pwnable problem. Chapter 4
describe the design and implementation of fine-grained pwnable CTF. Finally,
Chap. 4 presents the conclusions of this study.
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Table 1. Example of required knowledge for pwnable learning according to Evaluation
Points(EP)

EP Required Skills Example Description

Ep1 Program

Analysis

Static Analysis It is a technology that analyzes a program without

actually executing the program When the CTF

competition provides solvers with source code for

vulnerable programs, solvers need to understand the

programming language of the programs provided to

analyze them. Also, if the competition only provides

binaries instead of source code, the solver needs

knowledge of reverse engineering skills and system

architecture to analyze the program

Dynamic

Analysis

This is a method to dynamically analyze a program by

executing the program in a real or virtual environment.

Participants in CTF competitions use a debugger to

analyze the program during the execution process, and

may also use Fuzzing and Symbolic Execution

techniques to identify vulnerabilities in the program

Vulnerability

Identification

& Vulnerability

trigger

Stack Overflow Stack overflow is a vulnerability that can inject data

across the boundaries of variables allocated to the

process’ stack memory area. In the stack memory area,

information including the return address of the

function is stored, which can result in manipulating

arbitrary indirect calls

Integer

Overflow

In certain languages, including C/C++, when the

expression range of an integer data type is exceeds,

undefined behavior such as a change in the sign of the

data may occur. If the variable is used in conditional

expressions or memory allocation size, it may cause

fatal results

Use After Free

(UAF)

Most operating systems use their own memory

management policy to reduce fragmentation of heap

area. The UAF vulnerability can lead to information

leaks, code execution, etc., depending on conditions

when reusing freed memory

EP2 Control-Flow

Hijacking

Indirect Call

Overwrite

A skill that handles the program’s control flow by

manipulating data associated with the program’s

indirect call. The return address, function pointer,

global offset table, etc. are subject to tampering

Shellcoding The skill of creating a small-sized program that

executes specific instructions in the system, usually in

machine code

EP3 Mitigation

Bypassing

Return to

Library

A method that bypasses protection by modulating the

execution flow into a library code area that has

execution authority. It is mainly used in situations

where there is no write permission for the stack or heap

area due to the protection techniques such as NX

Return

Oriented

Programming

This method is used to bypass protection techniques

such as NX, DEP, and ASLR. This skill uses a gadget

in the program code area to control the call stack

2 Pwnable CTF Problem-Solving Workflow

In this study, we divide the required knowledge of the general pwnable problem
into four stages based on the overall stage for exploitation: program analysis, vul-
nerability identification, control flow hijacking, and mitigation bypassing. This
chapter describes the typical required knowledge for each step of solving pwnable
problems (see Table 1).
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2.1 Program Analysis

In general, pwnable systems are configured to acquire a flag by hijacking system
permissions using a security vulnerability in a program running on a remote
server. Accordingly, the attacker analyzes the program to identify the vulnera-
bilities of the program. Therefore, the knowledge required to solve the problem
varies depending on the architecture of the server on which the vulnerable pro-
gram is running. The process of analyzing the program is provided in competition
problems. This process requires skills such as reverse engineering depending on
whether the source code is provided and whether symbols and obfuscation are
present [6,9,11,12].

2.2 Vulnerability Identification

Once the solver has successfully analyzed the program, the single and/or multiple
vulnerabilities that exist within the given program are then identified to create
the appropriate program inputs to trigger it. Therefore, at this stage, the solver
must understand the various security vulnerabilities and sufficient programming
knowledge to trigger the vulnerability [13].

2.3 Control Flow Hijacking

Most pwnable problems aim to hijack the control flow of the program as a final
goal. To achieve this goal, attackers usually use the skill of manipulating areas
where arbitrary manipulation is possible because write permission remains in the
memory of application. For example, the return address of the function, function
pointer, vtable, Global Offset Table (GOT) area, etc. can be a target. Therefore,
the learner should understand the memory space and various techniques for
handling control flow.

2.4 Mitigation Bypassing

The final step for the exploit is to take control of the program on the remote
server. However, owing to mitigation policies developed over a long period of
time, many CTF competitions require participants to understand the methods
for bypassing these protection techniques. Accordingly, after control flow hijack-
ing, it is necessary to understand the protection techniques applied to systems
and binaries and various skills to bypass them.

3 Evaluation Point Derivation

The main idea of this study is as follows. If it is possible to automate and measure
the main steps for solving typical pwnable problems, the cause of failure can
be analyzed also through the learner’s failure point. Therefore, in this study,
four evaluation points were derived based on the general process of a control
flow hijacking attack, which uses the memory corruption exploit to derive clear
points of failure for learners: crash, control flow handling, mitigation bypassing,
and full exploit.
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Fig. 2. Design concept comparison of existing CTF and fine-grained CTF.

3.1 Evaluation Point 1 – Crash Check

In the pwnable CTF competition, a program containing a vulnerable is generally
provided to the solver by default, and in some cases, the source code of the
corresponding program is also provided. Therefore, the student first goes through
the static and dynamic analysis process in the problem solving process to identify
the vulnerability of the program. Evaluation Point 1 evaluates students’ ability
to analyze programs and identify vulnerabilities. To cause a crash associated with
a vulnerability in a running program for the solver, they must analyze the given
program, find the vulnerability in that program, and craft an appropriate input
payload that can trigger the vulnerability through programming. Accordingly,
in this study, a student who can cause a crash related to a vulnerability in a
running program is considered capable of analyzing basic problems. That is, if a
student successfully passes Evaluation Point 1, the educator can judge that the
student has the ability to analyze the program that contains the vulnerability,
identify the program’s vulnerability, and craft the input value that can trigger
it through programming. At this stage, the student can identify bugs in the
program by performing a source code auditing or reversing process to precisely
analyze the program. In addition, bugs in the program can be identified by using
dynamic testing techniques such as fuzzing and symbloic execution. Meanwhile,
students who do not pass Evaluation Point 1 can be judged to have insufficient
knowledge. Thus, educators can provide appropriate feedback to users to help
students overcome this learning hurdle.

3.2 Evaluation Point 2 – Control Flow Handling Check

The pwnable problem usually requires the solver the ability to craft an exploit
by exploiting single or multiple vulnerabilities in the program. To measure this,
evaluation point 2 checks students’ ability to exploit the program’s vulnerability
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to manipulate the program’s control flow. In other words, the evaluation point
is a step of measuring the user’s exploit capability in an environment where
mitigation techniques are not applied. At this point, the student that success-
fully handles the instruction pointer of the program as an arbitrary value has
successfully passed Evaluation Point 2. Such a student is judged to not only has
knowledge of the preceding steps (program analysis), but also skills that can trig-
ger potential vulnerabilities related to the instrument pointer by combining the
vulnerabilities that exist within the program. Meanwhile, a student who passed
Stage 1 but failed to pass the Evaluation Point 2 has the knowledge required in
the previous stage, but he or she has insufficient knowledge for manipulating the
instruction pointer as needed.

3.3 Evaluation Point 3 – Mitigation Bypassing Check

In the control flow hijacking scenario, a difference is observed between modulat-
ing the instruction pointer and seizing the complete control flow. This difference
depends on whether the program and system are mitigated, so passing this stage
requires the ability to bypass various mitigation techniques. For example, if a
stack canary protection technique is applied to a program, the solver may need
to utilize an information disclosure vulnerability such as leaking canary data
inserted in the program stack to avoid the exploit code failure. In addition,
when the program is executed in a system environment to which ASLR miti-
gation is applied, the solver can utilize an attack technique that can craft an
exploit by using a code gadget with a fixed address such as ROP. To check this,
evaluation point 3 reconstructs a given problem by partially applying various
mitigation techniques applied to the problem. To sum up, evaluation point 3
measures whether a user has the ability to bypass exploit mitigation configured
in various ways. Therefore, educators can judge that students who do not pass
Evaluation Point 3 have insufficient understanding of protection techniques and
the techniques to bypass them. Also, as with the previous evaluation point 2, if
the student successfully passes the level, the student is considered to have the
knowledge required for the previous evaluation point. Students who pass the
evaluation point 2 but do not pass evaluation point 3 may be considered to have
the necessary knowledge in previous steps, but not enough knowledge to bypass
certain mitigation techniques.

3.4 Evaluation Point 4 – Full Exploit Check

Evaluation Point 4 verifies whether the student has succeeded in obtaining a
flag of the remote system through a control flow hijacking exploit. This step
is the same as the scoring method in the general CTF platform. Students who
have completely passed the final evaluation point can be judged to have all the
knowledge required for the problem.
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Fig. 3. Design of the fine-grained CTF.

4 Design and Implementation of the Fine-Grained CTF

In this section, we describe the design for implementing fine-grained pwnable
CTF. Figure 3 shows the overall design overview of our fine-grained CTF archi-
tecture. The fine-grained CTF aims to automatically transform the evaluation
of the pass/non-pass manner of the existing jeopardy-style pwnable CTF into a
more fine-grained evaluation method. To achieve this, we used a method to build
a separate evaluation container environment for each evaluation point derived in
Sect. 3. For example, we configure a separate evaluation container environment
that measures whether control flow has been tampered with in order to evaluate
the user’s control flow handling capabilities. We also constructed each evaluation
container environment for all subsets of the mitigation technique applied to the
pwnable problem, to verify the user’s ability to bypass the various protection
techniques used in the problem. Our evaluation system is largely composed of a
preparation phase in which educators distribute problems and an exercise phase
in which students solve problems. The rest of this section describes the process
of deploying the pwnable problem by the educator in the preparation phase, and
the process by which the user’s exploit code is evaluated in our fine-grained CTF
during the exercise phase.
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Fig. 4. Change of code address offset according to the application of the code instru-
mentation protection technique.

4.1 Preparation Phase

In the preparation phase, the educator first submits the source code of the pwn-
able problem, the build script which builds the source code, and the mitigation
type to be applied to the problem through the web interface. Next, the Deploy
Engine checks the available port information of the system and constructs an
evaluation container corresponding to each port number. The container created
in the process consists of a power set for mitigation specified by the user. For
example, when the mitigation set for a specific container is {∅} (least mitigated),
the container corresponds to Evaluation Point 2, which evaluates a user’s con-
trol flow handling capability. In addition, when the mitigation is the same as
the mitigation set specified by the user (most mitigated), the container refers to
Evaluation Point 4. It means evaluating whether the user can bypass all mitiga-
tion techniques applied to the problem.

In each fine-grained evaluation container configuration, we reconstruct the
binary file so that the built binary file always has the same code address offset
and memory layout. A lot of memory corruption exploit techniques use code
address offset and memory layout information of binary files in exploit code
construction. The ROP is a representative exploit technique that uses a code
gadget which is in the binary file. However, the binary file applied with mitigation
technique through binary instrumentation such as stack canary has a difference
in code address offset in the program as shown in (a) and (b) of Fig. 4. Also, in
many exploit techniques such as buffer overflow and UAF, the memory layout
of the program has an important effect on exploit reliability. For this reason,
in a fine-grained evaluation system, it is necessary to reconstruct the problem
binary files executed in each evaluation container to have the same code offset
and memory layout. To achieve this, we implemented the dummy StackProtector
Pass by modifying the code that generates the canary check instruction of the
StackProtector Pass in the LLVM project [10]. As shown in Fig. 4, LLVM’s
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StackProtector pass inserts an arbitrary stack canary during the source code
build process, and inserts code that checks it during execution. Based on this, we
used the method to modify the instruction that the StackProtector pass checks
in the function epilogue for the stack canary inserted in the function prologue.
The assembly code of the binary file generated through this is as shown in Fig. 4
(b) and (c).

The host ip address, port number and evaluation type used in the process
of deploying the evaluation container are stored in the database. This data will
be used in the execution and judgment process of the exploit code submitted by
the user in the future exercise phase.

Also, during the deployment of our fine-grained CTF evaluation container, a
randomly generated flag is stored in each container. If the same flag is used in
each evaluation container, the user may maliciously bypass the high stage prob-
lem by simply printing the flag obtained through solving the low stage problem.
For example, consider the case where a malicious user submits exploit code that
causes a program crash to the judgment server. Then the user successfully passes
the evaluation point 1. Subsequently, a malicious scenario in which a malicious
user simply prints the flag data string of evaluation point 1 obtained through
the exploit code targeting evaluation point 1 to evaluation points other than
evaluation point 1 may exist. Because of the existence of this malicious scenario,
the flags existing in the containers constituting each evaluation point should not
only be difficult for the user to infer, but also must use different flag values for
each container. The flag strings of each evaluation container are also stored into
the database for the user’s exploit code judgment at a future exercise phase.

4.2 Exercise Phase

In the exercise phase, students submit exploit code through a web interface in
the form of an online judge system. Unlike the usual jeopardy-style CTF method,
which transmits an exploit payload over the network to remote servers where the
vulnerable binaries are operating, our proposed fine-grained CTF gets an exploit
code from users. This is because our fine-grained CTF is a system designed with
educators as the main target. Our fine-grained CTF system allows educators
to provide detailed feedback by investigating the exploit code written by the
student, as well as the point of failure of the student derived through a series of
evaluation processes.

Next, the exploit code submitted by the user is executed in an isolated con-
tainer environment. This is to restrict malicious behavior that can occur when
the user’s code is executed directly in the host environment of the system where
the fine-grained CTF is hosted. For example, if the exploit code uploaded by
the user is not isolated and operates directly in the host environment, the user
can directly perform various malicious actions such as reading flag information
stored in the database directly on the host computer. Because of the high risk
of executing code directly in the host computing environment, our fine-grained
CTF design forces user-submitted code to run only in an isolated environment.
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ALGORITHM 1: Evaluation process of the judgment container.
Input : N – problem number

E – exploit code submitted by the student
D – database
C – crash identifier (”SIGABRT”, ”SIGSEGV”)

Output: S – exploit status

1 P ← getPortNums (D, N) /* get the port numbers of evaluation containers. */

2 H ← getHost (D, N) /* get the host IP of evaluation containers. */

3 for p ← P do
4 F← getFlags (p) /* read the flag stored in the evaluation container. */

5 s ← tryExploit (E, H, p) /* try exploit and save output stream */

6 if isContain (s, F) then
7 S← updateExploitState (S, D, p) /* Update Exploit status. */

8 end
9 if isContain (s, C) then

10 S← updateExploitState (S, D, p) /* Update Exploit status(Crashed). */

11 end

12 end

The exploit code submitted by the user in the judgment container is executed
with the host ip address and port number stored in the database as arguments.
Therefore, the exploit code submitted by the student must be crafted with the
host ip address and port number as system arguments in our fine-grained CTF
system.

The process in which the exploit code submitted by the student in the judg-
ment container is evaluated in detail in a fine-grained manner is described in
detail in Algorithm 1. At this stage, our fine-grained system was built in the
ubuntu environment, so the characters “SIGABRT” and “SIGSEGV” are used
as identifier strings to identify crash in the linux system. Also, deploying a sep-
arate container for crash check, which is the purpose of evaluation point 1, can
cause unnecessary system overhead, so we have inserted a string matching pro-
cess for crash check into the evaluation process without constructing a separate
container.

5 Conclusions

Recently, CTF, which was mainly used for hackers to exchange technical exper-
tise and engage in competition, has now been widely implemented as an educa-
tional platform in the field of information security. Accordingly, various research
approaches have been applied to improve learning efficiency for beginners. In
addition, research has been conducted to reduce the costs and educators’ bur-
dens for operation of a CTF. This study subdivides the pwnable CTF, which
requires a comprehensive understanding of the entire system, into distinct eval-
uation points to improve the ability of educators to identify the failure factors of
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learners. However, for this approach to successfully relieve the educators’ burden,
it is necessary not only to propose evaluation points but also to automate the
detection of these points. Therefore, we design a CTF platform that can auto-
mate the detection of learner failure points based on these evaluation points.
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Abstract. With the inception of online betting in S. Korea, various
foreigner professional gambling groups have exploited the betting regu-
lations. This phenomenon has occurred mainly in Asia, because the regu-
lations on gambling in these countries are complex and robust. Our study
focuses on the horse racing in S. Korea, which is operated under the gov-
ernment funding. The foreigner gambling groups tried unlimited betting
by modifying the official IoT (Internet of Things) based APP arbitrarily.
We have checked that some abnormal transactions can occur by modify-
ing this application. Our study proposes a fraud detection method that
can help detecting abnormal activities and prevent them. Currently, the
Korea Racing Authority (KRA) has been criticized for being ill-equipped
to detect abnormal activities with the Walkerhill Incident. Our study
presents a new anomaly detection model that uses a flexible window.
In this study, we propose an idea that aims to detect abnormal betting
transactions.

Keywords: IoT (Internet of Things) based applications · Big data ·
Horse racing · Horse racing information security · Anomaly detection ·
Fraud detection

1 Introduction

The horse racing bets can be classified into the ‘Bookmaking’ (fixed-odds) and
“Pari-mutuel’ (not fixed-odds) forms of betting. Bookmaking can be defined by
determining the odds and paying off bets on the outcome of horse racing. Pari-
mutuel odds are a competition method among bettors who participate in the
game, and it is not fixed. During a pari-mutuel game, a computerized system usu-
ally calculates the real-time odds so that the gamblers can observe the updates
on the odds and participate in the game. Typically, a pari-mutuel game has a
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predefined, fixed maximal total dividend rates. The average rate in S. Korea
is around 73%, and 75.1% in Hong Kong. Even if the commission is between
20% and 30%, bettors will continue to bet because they have the possibility of
choosing “wins” and “winners” (two or three places). For this reason, the entity
operating the pari-mutuel game systems will be able to gain profits by collecting
the commissions.

To attract the gamblers to join the game, the expected dividend rates for a
gambler should be more than 70%. If the expected dividend rates are too low,
the gamblers will have no reason to join the pari-mutuel game. South Korea
has burdensome regulations on horse racing compared to other countries. For
example, there is a limit on the amount of bet per race and a controlled place
to bet online.

Online betting is carried out through the official Internet of Things (IoT)
based application in South Korea. The problem is the manipulation of the betting
transaction by modifying the application. If they buy the same amount less or
more, it can be an opportunity to avoid taxes, even if there is no change in
overall sales. This has the problem of damaging the game of horse racing.

In this paper, we studied the types of problems in a Korean horse racing
environment, which is more regulated than in other countries. Horse racing
transaction data were analyzed to make this possibility stand out. Moreover,
we have set a standard for judging unfair horse racing based on the number
of bets. Lastly, the statistical method was applied to identify actual cases and
reflect them in the testbed for periodic monitoring. It is impossible or may take
much time in a real horse racing environment to develop an optimal system by
implementing a complex algorithm. Therefore, we applied the anomaly detection
idea newly using a statistical idea, which can be applied in a unique environ-
ment called transaction data with repeatability (periodic) to the actual work.
Also, we would like to propose an idea to “flexible window” the periodic data.
Finally, this paper designed the basis for unfair horse racing that could occur
systemically.

2 Background

2.1 Official Online Betting Mobile App

The Korea Racing Authority (KRA) has developed and operated a mobile app
for official online betting called MyCard. The Mycard app can be downloaded
directly through the KRA’s official website, not through the PlayStore or App-
Store. Customers can bet within the 30 branch offices and three racetracks any-
time, anywhere with the app. The MyCard app is an IoT based application that
uses GPS and Bluetooth beacons to identify the current location and limit the
betting position.

2.2 Walkerhill Incident

KRA is the only organization that can legitimately hold horse racing games
in S. Korea. It operates three stadiums and 30 branches. In 2020, one of the
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30 operating branches, Walker Hill, reported operating problems through the
media [9]. The Walker Hill branch is operated exclusively for foreigners, thus
the domestic citizen’s entering is prohibited. The governor pointed out that the
dividend rates are excessively high compared to other branches. The dividend
rates set by country law is 73%, excluding tax and profit. The winners have to
pay an additional 22% tax (other income tax and local income tax) when the
dividends are over 2 million KRW (1,680 USD), or the odds for winning are
exceeded 100 times.

Six international betting teams (27 people) from professional gambling
groups bet 21 billion KRW (17.6 million USD) from June 2016 in South Korea.
The number of foreigner’s dividends received during the above period was 218.9
billion KRW (183.8 million USD), while the amount of 21.9 billion KRW (18.4
million USD) in profits was recorded at 197.9 billion KRW (166 million USD),
excluding taxes. Foreign professional gambling group’s dividend rates averaged
110%, far exceeding the overall average dividend rates of 70.3% [9].

The dividend rates are the percentage of the amount of money won by the
winner in the game. Excluding the Walker Hill branch, the remaining 29 branches
accounted for only 69.5%. The foreign gambling company used automatic bet-
ting programs and printers. They made money by concentrating on dozens to
hundreds of high odds while avoiding taxes by making small and double bets.
For Koreans can bet to 100,000 KRW (84 USD) per 1 race. However, foreigners
do not have a bet limit. Foreigners bet the same amount on a minimum basis,
such as 100 KRW (0.08 USD).

Foreigners in Walker Hill abused the exemption of income tax law, which
is not subject to taxation if the dividends are under 100,000 KRW (84 USD)
and bet a few hundred times 100 KRW (0.08 USD) to avoid taxes. In a game
where the odds for winning does not exceed 100 times, the tax was avoided by
distributing a small amount so that the dividends would not exceed 2 million
KRW (1,680 USD). At this time, it was found that they used the MyCard app to
purchase large quantities. Foreigners bet unlimitedly by modifying the MyCard
app arbitrarily. It is easy to buy a large amount through the modified app rather
than buying it at the window (counter).

2.3 Applying Fraud Detection to Horse Racing

Frauds have become a rather serious issue for banks [7]. Various studies have been
conducted in the financial sector to detect these frauds. In particular, research
on credit card fraud has been actively carried out [8]. Recently, there have been
many kinds of research trying to detect card fraud using AI techniques [6].

For instance, credit cards are not usually used multiple times in a short
duration of time at the same place. It is also not common for banks to send
money to the same person dozens of times a minute. In this regard, there is a
difference between financial and horse racing transactions. Horse racing can take
place dozens to hundreds of times a day, such as dividends, bets, deposits, and
withdrawals. Some people bet more the same number, and some people suddenly
bet different numbers within a minute. Alternatively, they bet a large amount at
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the last minute. Thus, the form of fraud detection used in the existing financial
sector is not suitable for the horse racing industry. Horse racing is likely to be
linked to organized crime because turnover is over the 1 trillion KRW (839 million
USD) [11]. For example, a typical organized crime may be money laundering [1].
Organized criminals also engage with horse race insiders to cause match-fixing
[3]. Therefore, horse racing operators in each country need a Fraud Detection
idea.

3 Approach

3.1 Previous Fraud Detection Idea

The fraud detection can be divided mainly into Misuse Detection and Anomaly
Detection methods [10]. The misuse detection method is the way to identify
cheating that matches the pattern in the past [4]. The anomaly detection is
a method of detection at the moment of a radically different form of activity
compared to a conventional transaction [5]. Horse racing is likely to be a par-
ticular private environment. Therefore, the Anomaly Detection method is more
advantageous than the Misuse Detection method.

Cybercriminals heavily target Internet banking services. The transfer can
be anomalous and existing researches find abnormal transactions by statistical
methods. FraudBuster effectively detects fraud scam called salami-slicing fraud
[2]. This detecting system consists of 2 parts. Firstly, the system finds a user’s
spending patterns to get time windows. This paper used Discrete Fourier Trans-
formation and Bartlett Filter to find patterns in the time-series data. When the
system finds a time window, features will be calculated in each time window,
such as the number of transitions, the total amount of transactions, etc. Feature
values from previous time windows will be calculated in one feature as average
and deviation. This paper used a z-score to distance the new window and the
model from previous windows. If the distance is considerable, it means that the
new window’s abnormality score is high.

3.2 Elastic Machine Learning Anomaly Detection Feature

The ‘Elastic’ is an open-source solution provider and solution name for big data
processing. Anomaly detection is provided as a paid feature of elastic. There
is a real-time detection method in the Application Performance Monitoring
(APM) domain. The Bayesian formulation is used for previous research [12].
That research proposes a statistical model which is based on Bayesian methods
to analyze performance data gathered for a real internet banking system. This
model acts effectively for very high dimensionality, high overall data rates, and
seasonality data.

The definition of outliers in the past is an observation that is far from the
others, and the observation is treated as an outlier because it could be generated
by a different situation than others. However, in the real-world outliers are not
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just a data point which is far from others. For example, some logs can be accruing
all day long, but the arrival rate could differ for each time range. It means that
each observation will not have any distance between each other because the
type of log is the same. However, when the logging mechanism has changed, the
logging frequency or behavior will be changed, and we can call it an abnormal
behavior. In this case, the traditional anomaly detection approach will not work
well. That research suggests a new definition of the outlier base of the p-value
concept. To identify an outlier, a hypothesis of the data generation mechanism
needs to be defined first. After that, each mechanism can be labeled as normal
or abnormal.

The anomaly detection of elastic is a method of dividing periods into a con-
stant division and creating an observation within those periods. In reality, how-
ever, it is rare for data to represent the same behavior within a specified period.
Some events can occur quickly or slowly within the same period. In horse racing,
for example, race time rarely starts on time due to weather, indoor conditions,
etc. The start time is different for each race. Because there are occasional delays,
most races have different start times and intervals. The anomaly detection of elas-
tic does not reflect the meaning of period, and the data is divided into periods
with an interval of a particular value. Then, after creating an observation, learn
the probability, and make it a model. Therefore, it is difficult for this model to
learn about normal data.

4 Fraud Detection Idea for the Horse Racing

4.1 Proposed Method

For the horse racing transmission data, repeated shapes appear over time. There-
fore, we would like to propose a simpler approach, not an algorithm that requires
a complex process.

We proposed a fraud detection idea, which is applicable in real-time in a very
simple way in horse racing. Banking and horse racing have similar but slightly
different types of business. Therefore, the considerations or data for designing
fraud detection may differ from bank data. The betting transaction of horse
racing data has the characteristic of an instant rush of traffic at a particular
time of race end. Before anything else, the betting pattern data of horse racing
is used to implement fraud detection idea dedicated to horse racing. The betting
pattern of horse racing is the history of the bettor’s bet. Every race betting
pattern is almost the same.

Pattern Analysis and Data Set. The Fig. 1 shows the real-time number of
bet each race (Blue line). An average of 13 to 17 races is held per day.

First of all, if we interpret the graph, the bets begin prior to the races. The
betting amounts are close to zero until the first 10 min. But the bets will begin to
surge as it approaches the end. The graph peaks at the last minute, as the betting
reaches zero towards the end. The last minute within the betting period is crucial,
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Fig. 1. A one-day Horse Racing betting data flow (Color figure online)

since the odds tends to match the end results. The bet has to consider many
factors. There are various environmental factors, such as horse/rider grades,
horse/rider conditions, weather, and competitors. The most important thing
among them is the odds. The pari-mutuel game is not fixed but continues to
change with people’s bets amount. The win is a betting type that picks one
thing. The win dividend rate formula is as follows.

WinOdds =
PoolT
PoolN

(1)

PoolT , win total turnover after takeout deduction, and PoolN , a turnover of
winning numbers help explains why the odds can be almost fixed, raising the
betting money just before the release deadline, as shown in Eq. 1.

Therefore, the real-time odds are most similar to the final odds just before
the deadline. If the bettor expects the horse to come in first with a 99% or higher
probability, the odds will be lowered. If so, it will take the form of raising the
betting money even if the odds of receiving the large dividends are low.

The number of bets does not affect the odds. Therefore, in situations where
the betting amount is the same, increasing the numb er of bets does not change
the flow of odds. Nevertheless, we focus on the number of bets to find bettor
making split bets for various reasons, including tax benefits. It is assumable that
if there is a large systemic operation, this can also affect the dividend rate. If it
is approached in splitting it and bet a lot, it can cause well-meaning victims due
to tax avoidance and changes in odds.

Pretest to Detect the Interval. We used pari-mutuel betting transaction
data within 2017–2018. We conducted a simple experiment with the data.
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Because it is difficult to define the time associated with the race, We collected
the data at intervals of 15 min, 30 min, and 60 min to draw a graph.

Just before the end of the release time (just before the start of the race), the
number of bets or the amount of money goes up quickly, and this pattern takes
the same form on any day. Therefore, betting transaction data have the same
pattern over a specific period. The problem is that the specific time is not same.
The race time is not every hour, 15 min, or 30 min, but it changes little by little
every time. If the data is grouped into one hour, and the race time is 10 min or
5 min are extended, a problem cannot be determined.

As a result of the experiment, problems were used if fixed intervals were
used for anomaly detection because every race does not end in 15/30/60 min.
For example, if the interval is fixed at 60 min, it splits into 1-to-2 h and 2-to-3 h
(Orange line). If there is a race at 1:15 and two races at 1:45, it is not easy to
find the exact buying pattern as two races will exist within an hour. Conversely,
even if it is divided into 15 min, the unit will be difficult to analyze because the
betting transaction data of a race is divided into several pieces. The Fig. 2 is a
30-min interval of Fig. 1. The races at later are similar, but the first four races
do not match. So our goal is to pull forward the yellow lines of the four races.

Fig. 2. A one-day Horse Racing betting data flow in a 30-min interval

Proposed the Flexible Window. We propose a new unit of time for anomaly
detection called a flexible window. Due to its nature, the races have the following
betting patterns depending on the schedule. Figure 1 shows the transaction data
flow for a day (1 day) race.

As we can see in the Fig. 1 and 2, the betting transaction has a similar pattern
in every race. Transactions are the most frequent just before the end of the race
and drop rapidly when the release is closed and at the beginning of the race.
Based on this data analysis, the start and endpoints where the betting climb
changes rapidly were calculated as a window.
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In this paper, a Flexible Window (FW) is proposed to determine the optimum
collection interval. xN is the sum of transactions at N-minute (1-min interval).
The simple formula for checking the rate of change per minute is as follows:

y = xN+1 − xN (2)

While if bets are increasing, the y-value is positive. y-value is negative just
before the start of the race. At the moment, this y-value becomes positive, the
next race begins. Figure 3 shows the process of determining Flexible Window.

To analyze data without splitting into fixed time to separate race intervals

– Step 1. [End Point] Find when the differential value of a transaction per
minute shifts from positive to negative and more than half the value of last
End Point (Red dot of top)

– Step 2. [Pre Start Point] Find when the y-value to change from negative to
positive again (Red dot of bottom)

– Step 3. [Start Point] If positive is maintain several times and get to the half
value of Step 1., the pre-start point of Step 2. is determined as the actual
starting point.

Fig. 3. The process of determining Flexible Window

This is an approach of finding inflection points through changes in the amount
of change, or differential values. Through this process, it is possible to pinpoint
repeated sections. The Flexible Window (FW) is the basic unit of the collection
interval. This is to use a cycle of horse racing (from betting transaction data to
termination) as a technique to find only through transaction analysis.
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Proposed the Safe Zone. Defining fraud in horse racing betting transactions
is a difficult problem. The betting transaction data can increase or decrease
momentarily, depending on the form or type of race. Therefore, it is necessary
to make predictions and a safe zone using historical statistical data through
additional information.

This safe zone measures fraud, whether the actual value exceeds the safe
zone. The safe zone generation Algorithm 1 is an important area for the Fraud
Detection method.

Algorithm 1. SAFEZONE Generation algorithm
1: procedure Safezone(F, R) � F is a number of transactions per minute and R is

a minutes that calculated FW size
2: while F �= MAX do
3: O = Overlap the group of F data cut into R size in one place
4: S = Sort O to endpoint (right alignment)
5: end while
6: while R �= MAX do
7: a ← 0
8: b ← 0
9: Check the max and min values every minute in S

10: a ← Maxvalue
11: b ← Minvalue
12: To paint between a,b
13: end while
14: end procedure

The period for training must be set first. If necessary, the data must be set as
required betting transaction period such as one week, one month, three months,
six months, one year, and so on. Then calculate Flexible Window (FW) and
overlap it into one place. At this point, the starting point is unknown, so it sorts
by the endpoint. The transaction data for each race is aggregated into one area
based on the period set as Fig. 4(a). The max and min values are identified every
minute, such as Fig. 4(b), which is used to create a safe zone.

4.2 Results

The horse racing data of January 2018 in a normal branch were used to check
if it was out of the safe zone. The Fig. 5(a) is a safety zone made from one-year
data in 2017, and the Fig. 5(b) uses one week data.

Based on the safe zone produced in five types, the experiment was conducted
by reflecting the data in 2016–2017. In this experiment, it is regarded as Anomaly
that the safe zone is out of range, as shown in Table 1.

The five safe zones are the last criteria. Inside the table is the total anomaly
number. In parentheses, the left is the upward anomaly, and the right is the
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(a) (b)

Fig. 4. (a) Overlapped 1 year’s transaction data (b) Overlapped 1 year’s transaction
data and create a Safe Zone with maximum and minimum values

(a) (b)

Fig. 5. (a) The Safe Zone using 12 months (b) The Safe Zone using 1 week

Table 1. The number of Anomalies detected (Normal branch)

1week 1 month 3 months 6 months 12 months

Sep 2017 483 56 52 40 4

Total: 6141 (482/1) (56/0) (52/0) (40/0) (4/0)

Sep–Oct 2017 800 88 83 61 4

Total: 10055 (792/8) (88/0) (83/0) (61/0) (4/0)

Sep–Nov 2017 1183 148 146 114 4

Total: 15375 (1173/10) (148/0) (146/0) (114/0) (4/0)

Sep–Dec 2017 1962 311 296 239 36

Total: 22165 (1937/25) (310/1) (296/0) (239/0) (36/0)



A Statistical Approach Towards Fraud Detection in the Horse Racing 201

downward anomaly. As a result of the experiment, the least anomaly was iden-
tified when data were put into the Safe Zone made from the last 12 months of
data in September 2017. On the other hand, if the safe zone is set to the previous
week, its size is small, indicating most abnormalities. As seen in Fig. 5(a) and
5(b) and Table 1, a shorter period, narrower min-max height, is likely to be seen
as an anomaly.

The next experiment was conducted on the Walkerhill branch that caused
the problem, as shown in Table 2. Only the branch transaction data was changed
to proceed in the same way as above.

Table 2. The number of Anomalies detected (Walkerhill branch)

1 week 1month 3 months 6 months 12 months

Sep 2017 963 234 162 125 113

Total: 4773 (159/804) (80/154) (79/83) (50/75) (38/75)

Sep–Oct 2017 1314 257 183 134 122

Total: 5913 (187/1127) (82/175) (80/103) (50/84) (38/84)

Sep–Nov 2017 1904 297 219 141 129

Total: 7676 (201/1703) (82/215) (81/138) (50/91) (38/91)

Sep–Dec 2017 2544 325 261 151 139

Total: 10177 (255/2289) (85/240) (83/178) (52/99) (40/99)

Compared to a normal branch, the Walkerhill branch detected a noticeably
amount of anomalous activities. In the future, by reflecting each branch’s data,
it will be possible to check in real-time how far the current transaction of the
branch is out of the safe zone. The safe zone interval was not modified arbitrarily,
and the experiment was conducted only with the historical data.

5 Future Work and Conclusion

In this paper, experiments and detection techniques for introducing fraud detec-
tion idea was conducted. In this study, we implemented the flexible window is
proposed to find the gap through inflection points for data that is repeated peri-
odically with the same type of trend. This method is commonly used in the
financial sectors, but we’ve also used for the horse racing. We also proposed a
basis for designing a safe zone and reflecting it in testbed that finds singulari-
ties in fraud detection. In the future, we plan to evaluate the safety zone and
conduct research to expand its flexibility. For instance, we are applying a Time-
Series Prediction-based ML algorithm with statistical techniques. This method
will make the safe zone stronger.

We proposed the base of the system for detecting anomalies in the cyclical
repeatable horse racing betting transaction. Furthermore, we believe our study
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contributed to laying down the foundation for studying periodic data areas where
a trend similar to research could occur in the future. This paper’s fraud detection
idea is specialized in the horse racing transactions but is flexible in repetitive
transactions. It is also applicable to financial FDS as an additional factor in view-
ing the number of transactions. In addition to financial transactions, it applies
to all areas where periodic transactions occur. Areas where data are collected
repeatedly, such as IoT systems, can be a good example. In particular, data
generated by IoT based applications such as MyCard has periodicity. We believe
it will be advantageous to detect fraud of all periodic data generated by sen-
sors, such as location and health information. Our study would contribute to
the detection of a similar form of an anomaly in the future by proposing an
algorithm to create a safe zone. The fraud detection idea proposed in this paper
has the advantage of being able to systematize immediately. Through our study,
the anomalous activities can be detected in real-time. For future studies, we rec-
ommend future researchers to focus on advanced statistical techniques to create
safe zones.
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Abstract. In recent years, research efforts have been made to develop
safe and secure environments for ARM platform. The ARMv8 architec-
ture brought in security features by design. However, there are still some
security problems with ARM. For example, on ARM platform, there
are risks that the system is vulnerable to cache-based attacks like side-
channel attacks. The success of such attacks highly depends on accurate
information about the victim’s cache accesses. Cortex-M series, on the
other hand, have some design so that the side-channel attack can be
prevented, but it also needs a security design to ensure the security of
the users’ privacy data. In this paper, we focus on TrustZone based app-
roach to defend against cache-based attack on Cortex-A and Cortex-M
series chips. Our experimental evaluation and theoretical analysis show
the effectiveness and efficiency of FLUSH operations when entering and
leaving TrustZone, which helps in design defense framework based on
our research.

Keywords: ARM platform · TrustZone · IoT security

1 Introduction

In Recent years, many research papers have been focusing on security design
on ARM platform. Some of security framework are designed and implemented
making use of TrustZone, a secure enclave provided by ARM on both Cortex-
A and Cortex-M series. These defense frameworks target to memory protection,
process protection and even cache protection. For example, some of the malicious
users can utilize the entry/exit of the TrustZone on ARM Cortex-A, launching
a cache-based attack, and compromising the message channel between victim
threads and the system. As a result, some research papers target to this problem
using access control of entry/exit operations, and some papers use isolated cache
protection design. The research papers and their implementations can cut down
the bandwidth of cache-based attack, with various level of overhead on the whole
system.

On the attacker side, many threats are threatening the IoT systems and
devices. Some of them focus on systems and some of them are based on ARM
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2020, LNCS 12583, pp. 203–214, 2020.
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chips. Cache in these devices becomes the research focus on both single device
environment and cloud with multiple devices, or even IoT network connecting
smart devices. The attacks can be very effective on extracting the users’ private
and secured data, without the permissions and access to the protected enclaves.
Side-channel attack among them is a research focus. Malicious hackers can col-
lect performance data, power consumption data or even some ‘trash’ data to
try retrieving useful information. Attackers derive users’ information like cryp-
tographic keys, protected or private data by launching attack on the cache, and
analyze the information from what they get. Some attackers just try to collect
the difference in access time with different memory blocks, and predict what is
accessed frequently by the users. The difference in access time can be collected
if the attacker and the victims are sharing data in the cache.

ARM platform, on the other hand, is a different environment from traditional
x86 structures. It has different privilege levels and sets some instructions as priv-
ileged operations. For example, cache FLUSH operation on ARM is privileged.
On ARMv8-M based on Cortex-M structures, there is a much simpler structure
of instructions than other platforms. This is because that ARMv8-M is designed
to use in small smart devices. They have limited energy input and are asked to
work in a long duration. Some of the devices are powered even by some batteries
we can find in grocery stores, so the performance limitation is a thing that must
be considered when designing something about security and privacy.

In this paper, we investigate the defense effectiveness to cache based side-
channel attacks on the ARM architecture. We design several tests based on
TrustZone on both ARM cortex-A and cortex-M series chips and get the per-
formance data. These can help in design and implementation of defense, while
keeping the performance and effectiveness balanced. Overall, we have following
contributions in this paper:

– We investigate the performance overhead of TrustZone related instructions.
We analyze the percentage of TrustZone instructions in real life use cases and
calculate the overhead brought by these instructions;

– We test FLUSH operation overhead and analyze clock cycles they take on
different platforms. This helps in the evaluation of cost-effectiveness on both
FLUSH-based attack and defense sides.

– We provide the best/worst case of defense performance based on our experi-
mental results and analysis.

The structure of this paper is as follows: in Related Work section, we intro-
duce previous research and recent research on this topic, analyzing their strong
contribution and weaknesses; in Overview section, we introduce our environ-
ments of development, structure of design and security assumptions; in Imple-
mentation section, we provide some details about our design and experiment
settings; in Evaluation section, we provide experimental results and discussion;
and in Conclusion section we have our conclusions on the research topic.
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2 Related Work

2.1 Cache-Based Attack

In a cloud computing system or a computer with multiple processes and threads,
the Last Level Cache (LLC) is shared among multiple processor cores, making
it vulnerable to LLC based side-channel attacks. Unlike L1 cache, LLC is much
slower than L1 cache, leading to more difficult set up for side channels. There
are different ways to launch side-channel attacks, e.g., FLUSH+RELOAD [6,17],
PRIME+PROBE [6,7,11], and bus-locking [16].

For example, the FLUSH+RELOAD involves three steps. The attacker first
flushes one or more of the desired cache contents using processor-specific instruc-
tions (e.g. clflush on x86 processors). Second, the attacker waits for sufficient time
for the victim to use (or not to use) the flushed cache area. Finally, the attacker
reloads previously flushed cache lines, measuring the reload time for each one
of them to infer if it was touched by the victim. FLUSH+RELOAD strategy
has been proven very effectively in many side channel attacks on x86 architec-
ture. For example, Gulmezoglu et al. [6] recovered the AES key of OpenSSL
within 15 s. Yarom and Falkner [17] recover a RSA encryption key across
VMware VMs using FLUSH+RELOAD attack, and Irazoqui et al. [8] recov-
ered AES keys using similar attack and exploiting the vulnerabilities in cache.
For PRIME+PROBE attack, Work [11] recover AES keys in a cross-VM Xen
4.1 using PRIME+PROBE attack. Liu et al. [10] presented a PRIME+PROBE
type side-channel attack model against the LLC, which is tested to be practical
and threatens the system.

2.2 Hardware-Based Defense

Bernstein [2] suggested to add L1-table-lookup instruction to load an entire
table in L1 cache, and also load a selected table entry in a constant number of
CPU cycles. Page [12] investigated a partitioned cache architecture. Wang and
Lee [13–15] proposed new security-aware cache designs to thwart the LLC side
channel attack with low overhead. In [15], the Partition-Locked cache (PLcache)
was able to lock a sensitive cache partition into cache, and Random Permutation
cache (RPcache) randomized the mapping from memory locations to cache sets.
In [10], a novel random fill cache architecture that replaces demand fetch with
random cache fill within a configurable neighborhood window was proposed.
While the hardware solutions provide strong isolations between the victim and
the attacker, they require special hardware features that are not immediately
available form commodity processors.

2.3 Software-Based Defense

Some researchers proposed to modify applications to better protect secrets from
side-channel attacks. Brickell et al. [3] proposed three individual mitigation
strategies: compact S-box table, frequently randomized tables, and pre-loading
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of relevant cache-lines. It compressed and randomized tables for AES. However,
it requires manually rewriting the AES implementation and is specific to AES.
Cleemput et al. [4] applied the mitigating code transformations to eliminate or
minimize key-dependent execution time variations. Crane et al. [5] proposed
a software diversity technique to transform each program unique. The app-
roach offers probabilistic protection against both online and off-line side-channel
attacks. In their work, using function or basic-block level dynamic control-flow
diversity along with static cache noise results in a performance slowdown of
1.76x–2.02x compared to the baseline AES encryption when using 10%–50%
cache noise insertion. Dynamic cache noise at 10%–50% has significantly impact
on performance (2.39–2.87x slowdown). However, above software solutions are
typically application specific or incur substantial performance overhead.

2.4 Recent Research on ARM TrustZone

In recent years, some papers have discussions and new research findings on ARM
platform, especially focusing on TrustZone protection. Zhang et al. [18] pro-
posed an Android protection framework using TrustZone on ARM, protecting
VoIP phone calls. It enclaves privacy data so the phone calls cannot be inter-
cepted easily by malicious eavesdropping. Amacher et al. [1] have evaluate the
performance of ARM TrustZone using TEEs and different benchmarks, but the
security concern is out of that paper’s scope. Keystone defense framework pro-
posed by Dayeol Lee and others [9] is a good example of defense framework based
on TrustZone. It enclaves protected operations and disables sharing in TLBs and
memory blocks so there’s no side-channel attack based on the vulnerability here.
However, the timing side-channel attack is out of that paper’s scope. In our dis-
cussion, there are still risks of side-channels when exiting from TrustZone, so we
need also investigate the vulnerability at the gate of security enclave.

3 Overview

3.1 Background

As multi-core processors become pervasive and the number of on-die cores
increases, a key design issue facing processor architects is the security layers
and policies for the on-die LLC. With LLC techniques, a CPU might only need
to get around 5% data from main memory, which can improve the efficiency
of CPU largely. In our implementations, we are using Intel i7-4790 processor,
with 8 Mb SmartCache. On ARMv8 Cortex-A platform, we are using Juno r1
Development Platform which has one A57 and one A53 processors on the board.
A57 has a 2M LLC on the processor. On Cortex-M platform, we are using ARM
Cortex-M4 series chips, the development platform has 3 pipeline stages and no
built-in cache.

With the increasing complexity of computing systems, as well as multiple
level of memory access, some registers are designed to store some specific hard-
ware events. These registers are usually called hardware performance counters.
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We have many tools getting information from those performance counters, thus
getting the performance information.

In our implementation, we use perf to collect the execution information of
the programs. However, we cannot use perf for collecting timing information
of memory access, since it cannot be accurate enough. On this paper we use
inline assemblies and consult some related registers to measure time associated
information with our side-channels.

3.2 Design on ARM Cortex-A

According to our evaluation on current on-the-market systems and applications,
we find out that more and more Trusted Execution Environment (TEE) tech-
nologies are being used on the implementations of secure system. Besides, most of
the implementations are utilizing ARM TrustZone to protect the memory access
and critical data. As we are interested in the performance overhead of defend-
ing using FLUSH operations on exiting TrustZone, the experiments should start
from the measurements of using TrustZone, like the time cost and performance
overhead.

Our experiments on ARM Cortex-A are in three different steps. For the first
step, we test the cost of entering and exiting from TrustZone. After we get
the exact data (clock cycles) related to TrustZone, the next step is to measure
how much it takes up for the TEEs to call TrustZone related instructions or
operations. On the third step, we try to clean the cache every time the system
exiting from TrustZone, and see the performance overhead by these FLUSH
operations added to the system. As the cache gets FLUSHed every time after the
using of TrustZone, the risk of being side-channel attacked can be theoretically
cut down to non-exist.

3.3 Overview on ARM Cortex-M

Unlike ARM Cortex-A series chips, M-series chips have different structure, and
with other limitations. Most IoT devices are based on Cortex-A platform, but
still a rising trend that more products are using Cortex-M platform. As a result,
it is still valuable to investigate the defense against malicious attackers with
TrustZone. In this paper, we have similar tests on ARMv8-M platform, measur-
ing the performance of TrustZone, as well as FLUSH operation overhead. Our
experiments on Cortex-M are using ARM Versatile V2M-MPS2 Motherboard
with ARM Cortex-M4 cores. It offers 8 Mb of single cycle SRAM, and 16 Mb of
PSRAM. It supports the application of different ARM Cortex-M classes, from
Cortex-M0, to M3, M4, and M7. Besides these support, the development board
supports simulation of ARMv8-M.

As mentioned above, on Cortex-M4 series chips, there is no built-in cache.
However, the memory structure on M4 is different from other structures like x86
and Cortex-A. On that platform, memory blocks are allocated in fixed order,
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taking their assigned responsibilities. It is quite different from dynamic alloca-
tion, and is to the consideration of power consumption and performance over-
head. Among these memory blocks, some are acting as ‘cache-in-memory’, so we
can still see them working like cache and operate some instructions to read the
working status of it.

The experiments are in two different steps. First, we measure the time cost
entering and exiting from TrustZone. Next, we implement a program with Trust-
Zone entry/exit instructions, as well as protected running steps. We then test
it with controlling of the frequency of entry/exit instructions. We measure the
FLUSH operation overhead according to different frequencies, and discuss the
defense using FLUSH when exiting from TrustZone.

3.4 Threat Model and Assumptions

In this paper, we assume that the operating system is not compromised so that
the attackers are forced to use covert channels or side channels without explic-
itly violating access control policies enforced by the operating system or other
protection mechanisms. We assume that the attacker has sufficient privilege to
access the memory access time. This is also needed for the covert channel, and
for the performance analysis of the covert channel.

4 Implementations

4.1 Process Structure on Cortex-A Platform

As mentioned above, the very first step for our experiment is to calculate the
cost of entering and exiting from the TrustZone. On ARM Cortex-A Platform,
an instruction smc is used for connecting the secure world and non-secure world.
While in normal non-secure world, some code could call privileged smc instruc-
tion. Then, secure world monitor will be triggered after validation. After execu-
tion of secure code, the return of the execution also calls smc to get back to the
normal world. There are many open-source test platform to measure the world
switch latency, and in this experiment, we use the well-known QEMU to test. It
had been developed since the first patch published in 2011, and been patched by
many manufacturers including Samsung, utilizing ARM TrustZone for security
design.

The process structure is show at Fig. 1. When there are smc instructions
trigger the TrustZone entry/exit, we trap the instructions and start using perf
and other time measurement tools to calculate clock cycles they take to finish
switching between trust environment and outside memory. We also FLUSH cache
every time when we exit from TrustZone and see the difference in performance
overhead by different frequency of TrustZone related instructions.
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4.2 Process Structure on Cortex-M Platform

On ARM-v8 platform, SG/BXNS instructions are used to enter and exit from
TrustZone. As there were almost no proper TEEs for ARMv8-M on the market as
we were testing, we use a testing program instead. SG (Secure Gate) instruction
is called by non-secure world code that wants to trigger TrustZone protection.
Unlike Cortex-A structure, on ARMv8-M, the page table is not used, so the
memory is fully mapped with different regions. When SG instruction is called,
the reserved regions for secure world are used to execute the protected part
of the code. After the secure execution within TrustZone, the code has an exit
called BXNS/BLXNS (Back to Non-Secure) that can lead the execution to other
region besides protected ones by TrustZone. We make use of the mechanism of
this, and the structure of the testing program is as Fig. 2 shows.

Non-Secure Memory TrustZone Memory

QEMU triggers TZ; smc Instructions

QEMU Protected
Environment

smc InstructionsOther Non-Secure Code;

Trap and calculate
Clock cycles

vTime
Measurement

FLUSH before 
EXIT

Fig. 1. Process structure
on Cortex-A

Non-Secure Memory TrustZone Memory

BL SecureFunc;
SG

ADDS r0, r0, #1
ADDS r0, r0, #1
…

BXNS/BLXNS lr
Other Non-Secure Code;

Flush Cache:
STR <Ry>,[<Rt>,#0xF64];
STR <Ry>,[<Rt>,#0xF58];
STR <Ry>,[<Rt>,#0xF78];

Outer Loop

Inner LoopTime
Measurement

Fig. 2. Process structure on Cortex-M

The term ‘cache’ here on ARMv8-M is part of normal memory being set
as ‘cacheable’. In other words, it is a region set aside for possible cache using.
On Cortex-A series chips or x86 chips, cache flush operations are just some
instructions with privileges. However, the case are different on ARMv8-M. The
allocation of a memory address to a cache address is defined by the designers
of the applications. Because of the special structure of ARMv8-M, the cache
FLUSH operations are sets of DSB (Data Synchronization Barrier) operations,
with address-related instructions.

5 Evaluation

In this section, we introduce our experimental results and discussions, both on
ARM Cortex-A and Cortex-M platforms.

5.1 Experimental Results

Cost of Entering and Exiting from TrustZone on Cortex-A. QEMU
with ARM TrustZone provides us a variety of tests. The tests behave as we
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users initiating secure operations from user mode. The test functions validate
the TrustZone features of QEMU, and utilizing the features of the functions
themselves. We have tests on read/write from non-secure world to secure world
and vice versa. The results are shown as Table 1 shows.

Table 1. TrustZone-related instruction cost on Cortex-A

Tests Direction Average cost (clock cycles) Time on 800Mhz

P0 nonsecure check register access Non-secure to Secure 1950 2.43 us

P0 secure check register access Secure to Non-secure 2200 2.75 us

Percentage of TrustZone-Related Instructions. We write a script based
on the above write/read code. In the script, there is a loop called in and runs
several times as a workload. We use Ubuntu 16.10 as the normal world OS,
with 26 processes running on background, including the workload we use for
testing. We count the smc-related instructions that belongs to TrustZone-related
operations, and analyze the attributions of them. According to our test, the
instructions takes up less than 6% of the total instructions running, with these
three different categories as shown on Table 2.

Table 2. Different categories of TrustZone-related instructions

Type Percentage

Non-secure to Secure Test R/W 2.87%

Secure to Non-secure Test R/W 2.91%

Others (Access from Background) 0.01%

In normal using conditions, however, the manufacturers are not using Trust-
Zone that often. Thus, the test here can be the upper bound or ‘worst case’
of the utilization of TrustZone-Related instructions. Normally, the non-secure
world does not have to call in the secure world too often.

Performance Overhead by FLUSH Operations. It is already known that
ARM TrustZone on Cortex-A series are not going to clean the cache when exit-
ing from the secure world to non-secure world. As a result, there are possi-
bilities for the attackers to make the most of the last level cache and conduct
cache-based attacks. For example, the side-channel attack of FLUSH+RELOAD,
PRIME+PROBE are both found practical on the environment with TrustZone
on ARM Cortex-A, some even with a fiercely high bandwidth. On the other
hand, if we can FLUSH the cache every time on the ‘exit’ to the normal non-
secure world, then it can be expected that the bandwidth of the side-channel
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attack can be limited to a number that is worthless to the attackers to gather
the information possibly leaked by the smc operations.

We still test the performance using our test model. In this test, we are adding
cache FLUSH operations on every smc instruction that calling exit from the
secure world to non-secure world. On that situation, we measure the performance
overhead by comparing the clock cycles of execution. At the same time, we
change the percentage of TrustZone-related instructions to see the difference in
the overhead. The results are shown on Fig. 3 and Fig. 4.
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Experimental Results on ARMv8-M. According to our experiments, the
testing case triggering TrustZone operations SG and BXNS. As every region
is fixed in the memory, the costs of entering and exiting from TrustZone are
surprisingly much lower than ARM Cortex-A series chips. The results are shown
at Table 3.

Table 3. TrustZone-related instructions cost on ARMv8-M

Operation Direction Cost on average (clock cycles)

SG Non-Secure to Secure 3.5

BXNS/BLXNS Secure to Non-Secure 5.2

We measure the performance of the FLUSH operations using our test-
ing program shown at Fig. 2. We add FLUSH operations before executing
BXNS/BLXNS operations to ensure there is nothing left when exiting from
TrustZone. We measure the overhead by the FLUSH operations, and we also
change the outer loop to have different frequencies of TrustZone entries and
exits. The results are shown at Fig. 5.



212 N. Liu et al.

5.2 Discussions

TrustZone Usage Frequency and Flush Overhead. According to our
experimental results, on ARMv8 platform, the system is connecting with Trust-
Zone with very low frequency, taking up less than 10% of the instructions at
most. Some specific instructions trigger the secure gate of TrustZone. However,
when the contexts running in secured memory finish, TrustZone does not clean
the cache before exit, leaving some risks here. Based on low frequency and over-
head from TrustZone related instructions, we can FLUSH the cache every time
when exiting from TrustZone, and still keep a low overhead of less than 20% on
Cortex-A chips. This design will let the system manufacturer to put protected or
private contexts into TrustZone and with no worries about side-channel attack
when exiting from it.

TrustZone Discussion on Cortex-M. Unlike Cortex-A series, ARMv8-M
based on Cortex-M structure is designed to have low energy cost and with much
simpler system, which is thought to fit for mobile or home devices. At this case,
the performance overhead brought by security protection should be controlled in
a very low number. According to our experimental results, on Cortex-M struc-
ture, the secure gate instructions take much less clock cycles to execute, making
it a good choice on the basis of security design. When we add FLUSH opera-
tions on exit instructions, we have even lower overhead comparing with Cortex-A
chips, having less than 10% overhead at most. It is a practical design for the man-
ufacturer to introduce and not hard to develop. On the other hand, they could
put protected data and instructions into the secure enclave of TrustZone.
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Cache Based Defense on ARM Platform. Though we have no perfect
way to take the place of validating cache and cleaning the TLB entries, we
still have some idea for possible solutions, because there are some potential for
speeding up and getting better performance. For example, we can move the
FLUSH operations out from the privileged level, and try implementing another
framework to ensure the security of this type of operations, while maintaining
low overhead. In this paper, we quantitatively discuss the security design for
dealing with FLUSH operation requests, and there are still some more topics to
research on.

6 Conclusion

In this paper, we have some discussion on the effectiveness and cost of attack and
defense based on ARM platform. We start from investigating the cache-based
attacks. Then we design and implement some tests on ARM platform, both on
ARM Cortex-A and ARMv8-M series chips. It is shown that the side-channel
attack and other types of exploitations are practical and serious, causing loss
to users’ privacy and security. From our experimental results, TrustZone can
be utilized to help defending against side-channel and covert channel attacks,
but it must have an adaptive ways to manage cache operations. On the other
hand, it is practical to implement FLUSH based defense on ARM platform, with
reasonable overhead and good effectiveness.

In the future, we need to develop some defense framework on ARM platform,
based on FLUSH operations and secure gate entry/exit instructions. The chal-
lenge will be the difference in structures of ARMv8 platform, and real-life limi-
tations like power consumption, portable needs and other challenges. However,
it is promising that ARM platform can provide the users with an environment
in balance of performance, privacy, security and good mobility as well.
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Abstract. The widely used Global Positioning System (GPS) provides
a handy way for electronic devices to locate their positions. Almost every
mobile device nowadays has GPS module equipped inside. Apart from
traditional location service applications, more and more eccentric appli-
cations are developed to utilize this functionality. Location based mobile
games such as Pokémon GO are one of the examples which make use
of location service to give players innovative experience. However, this
kind of location based mobile games are vulnerable to Location Spoofing
Attack (LSA), which malicious users can navigate freely in game using
location spoofing applications without travelling themselves physically.
Various approaches are being proposed to tackle this problem while none
of them give good performance in detecting spoofing in local area. In this
paper, we proposed a detection method on GPS spoofing in local area by
making use of the gyroscope commonly equipped in most mobile devices.
We compare the travelling direction of the GPS travelling path with the
facing direction of the mobile device to check if they match well with
each other. Experiment result shows that our method can efficiently dif-
ferentiate between location spoofing behavior and normal behavior with
easy implementation.

Keywords: Location spoofing · GPS spoofing · Spoofing attack ·
Mobile games

1 Introduction

The Global Positioning System (GPS) has been widely used nowadays. It pro-
vides geolocation data to GPS receivers to locate their position anywhere on
the Earth when they are under the line of sights of four or more GPS satellites.
The precise location data helps a lot in many industry scenarios such as avia-
tion, marine and military. The development of the Global Positioning System
has become so mature that it has now been commonly used in our daily lives.
Almost every single mobile device nowadays has the GPS module equipped to
provide location services for mobile applications such as map navigation and
social platforms. In recent years, several mobile games are being developed uti-
lizing the GPS data of the mobile device. Pokémon GO [1] and Jurassic World
c© Springer Nature Switzerland AG 2020
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Alive [2] are two famous location based augmented reality games that make use
of the GPS data to provide an innovative gaming experience for gamers. They
integrate virtual elements (i.e. Pokémon and Dinosaurs) with real live environ-
ment (i.e. the neighborhood) to give players a totally different experience from
traditional mobile games. Player have to physically travel from place to place in
order to navigate and catch virtual creatures in game. Such kind of games gained
colossal popularity since launch and are continuously showing great success.

Although such kind of virtual reality gives some fun to players, playing the
game walking around for a long period of time can be tiring. Not every single
player has the ability, time or option to travel around physically. What’s more,
many people are not living in areas that are support by the games but would still
like to get a taste of the new gaming experience. In location-based mobile games
like Pokémon GO, players in-game are being located according to the GPS data
provided by their device. Such kind of games which solely rely on GPS data
for positioning are vulnerable to location spoofing attack (LSA). Cheater can
simply modify their GPS locations before sending them to the game so that they
can go to any place in game without travelling by themselves physically in the
real world. Due to the abovementioned concerns, many application developers
try to build applications that can spoof the location of the mobile device so
that the user need not to be at the same location as its GPS location data
indicates. Consequently, we can observe a flood of GPS Spoofing applications
hitting app stores to accomplish the desire of these players. Even worse, selling
these applications can lead to huge profit due to the large demand from the player
base of these highly popular location-based mobile games. As a result, more
and more spoofing applications with advanced features are developed, providing
different heuristic for players to ‘cheat’ in the game with minimal effort. The
abuse of these cheating applications would destroy the gaming experience of
other legitimate players and finally ruin the game itself. What’s more, currently
there is no authenticating mechanisms to verify the genuineness of the GPS
locations provided by the device. Malicious users can then easily spoof their
locations using these applications to gain advantage over other users in the
games. For instance, in Pokémon GO, cheaters can effortlessly travel from place
to place in-game to catch rare appearing Pokémon, or hatch Pokémon eggs
without moving physically in the real world.

To address this issue, Niantic [3] introduced several detection measures to
prevent location spoofing in Pokémon GO, such as malicious application check,
root detection, mock location application detection etc. Users can get shadow-
banned (i.e. only be able to see common Pokémon nearby) or even get permanent
banned on their accounts if they are found guilty on location spoofing. However,
the problem persists upon the third year since the game launched, as cheaters
can always find loopholes to bypass the detections by hiding the location spoofing
application with the help of privilege escalation. The approach of system check-
ing for potential spoofing behavior appears to be unable to solve the problem
entirely.
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In this paper, we focus on the detection for location spoofing using mobile
devices in local area which involves relatively small displacement of the user as
it is very difficult to tell whether a user spoofs on the location by looking solely
on the little changes in the GPS coordinates. We proposed a novel detection
method making use of the gyroscope equipped in mobile devices to verify the
travel direction given by the GPS data from the user’s device. Our detection
method works in any device orientation assuming a fixed horizontal orientation
of the device with respect to the user is maintained during the detection process.

The rest of the paper is organized as follow. Section 2 introduces some related
work on location spoofing detection using various approaches in different aspects
and directions. Section 3 discusses some prevention measures carried out by the
gaming companies against location spoofing. Section 4 explains the mechanism
of the GPS spoofing applications currently available in the market. Section 5
proposes and explains the idea of our detection method on location spoofing.
Section 6 presents and explains the experiment results. Section 7 points out the
limitation of our methodology and suggests possible future improvement. Section
8 gives conclusion in our work.

2 Related Work

Many location spoofing detection methods are being proposed while many of
them make use of the network profile (e.g. IP address) during the detection pro-
cess. [7] proposed a server-sided and network-based framework to detect location
spoofing attack users. It tries to verify whether the location of the user’s edge
router’s IP address matches with the GPS location provided by the user. This
method is not applicable on detecting local area location spoofing which occurs
only in the neighborhood within the range of one particular router. It also has the
constraint of using IMCP packet only. [9] proposed a location validation scheme
for participatory sensing (PS) systems without losing any quality of information
(QoI) in the system. It assumes that users under the same Wi-Fi range of a
mobile hotspot are directly connected with each other so that they can mutually
validate their locations and can therefore, identify users who are spoofing their
locations. [8] proposed a location validation system (LVS) which verifies user
locations in location-based service systems. It is based on a similar idea that
devices are practically sharing the same location if they are directly connected
through the same Wi-Fi. Due to the limited range of the Wi-Fi, devices in the
same Wi-Fi network can validate each other’s location mutually. Malicious users
would then be filtered out after multiple rounds of reputation updates. The sys-
tem works well in Wi-Fi connection, while lacks practicability under cellular
network due to the large signal range. [10] came up with location proofs which
are issued to devices connecting to an access point after being signed by it. It
acts as a digital certificate which can be verified later on by access points to
prove the devices’ current and previous locations. This approach is effective in
theory while it requires implementation of the module in every access point,
which is impractical in large scale.



218 S. K. Wong and S. M. Yiu

We can see that all the above approaches take advantage of the location
information provided by the Wi-Fi network for validations. Due to the wide
effective range of a router, these methods may not be practical in detecting
location spoofing in local area which occurs inside the range of the same router
as the connected devices will always report the same single location as the router
locates. Therefore, these approaches are not applicable in location-based mobile
games and unfortunately, there exist no methodology at the moment that can
tackle such situation.

3 Prevention Measures Against GPS Spoofing

Many different approaches are adopted to prevent GPS spoofing in mobile
devices. These methods, although work well in specific scenarios, cannot solve the
problem entirely. In this section, we summarize some common measures adopted
against location spoofing.

3.1 Travel Viability Check

Although it is not easy to check whether the provided GPS location is genuine or
not, it is still possible to check whether any two consecutive GPS locations are in
fact physically reachable in a certain amount of time. If the time elapsed between
two consecutive GPS locations is too short to be physically reachable, one can
determine that the user is using location spoofing. However, such detection is not
applicable for location spoofing in local area which only involves short distance
travels, as the time elapsed are too short to be deterministic.

3.2 Mock Location App Detection

Android OS provides developer options for application developers. The mock
location functionality is designed for devices without the GPS module to emu-
late GPS values. Mock location allows users to use produce fake information
about the location of their devices by GPS and network operator. By setting a
location spoofing application as mock location app, one can easily manipulate the
GPS location through the application. Therefore, the mock location application
setting should be checked to be disabled via the ALLOW MOCK LOCATION
attribute in the system to prevent the possibility on location spoofing in this
way. Nevertheless, cheater can convert the application into system application
to escape from the detection.

3.3 Malicious App Detection

The Game application would try to detect any malicious app installed in the
device during execution and prevent the game from running upon successful
detection. However, a list of these malicious app is needed to be maintained and
updated frequently with the rapid growth on the amount of location spoofing
applications. Furthermore, applications can easily change their package name
and hide themselves from the detection.



Detection on GPS Spoofing in Location Based Mobile Games 219

3.4 Emulator Detection

Emulators such as Bluestack [4] and Nox App Player [5] provide a wide range
of functionalities for gaming including location modification and device rooting.
Playing location-based games via emulators doubtlessly violate the terms and
condition of the game, while it is difficult to check whether the system is running
in a real device or via emulator. Generally, game developers can verify it by
looking at the FINGERPRINT value of the system. However, with the help of
privilege escalation, such value can be easily modified.

3.5 Jailbreak and Root Detection

By jailbreaking in IOS or rooting in Android, users can easily modify their GPS
locations by gaining privilege in the OS. Thus, checking whether a mobile device
is being jailbroken or rooted and prohibiting it from running the application
is one of the solutions. However, there are applications that can help to hide
the fact that the device is being jailbroken or rooted (e.g. magisk manager [6]).
User can even make use of the escalated privilege to convert location spoofing
applications into system applications to avoid the detection. This kind of hack
is still unsolvable at the moment when this paper is being written.

4 GPS Spoofing Application

In this section, we are going to talk about the mechanism of GPS spoofing
applications. In general, there are five variables that GPS spoofing applications
can modify in the location details, which are latitude, longitude, altitude, speed
and accuracy. It is sufficient for spoofing applications to perform GPS spoofing
on the device by only modifying the latitude and longitude values. Therefore,
for simplicity, most GPS spoofing applications available only update the lat-
itude and longitude values when they are simulating movements, keeping the
remaining three values constant. Figure 1 shows an example on a GPS spoof-
ing application running along with Pokémon GO. Most of these GPS spoofing
applications provide a joystick-like control in the user interface. By dragging
on the joystick, users can easily simulate their desired movement through the
application by modifying the corresponding GPS coordinates. As a result, users
can move around from place to place in game effortlessly.

However, when the device receives real GPS values, apart from latitude and
longitude which pinpoint the current location, the current altitude and speed
would also be updated if the device is in motion, plus the accuracy (in meters)
of how accurate the device believes those values are. That implies that all of the
GPS values fluctuate every second even when the device is sitting still, as the
GPS is constantly attempting to pinpoint our location and it changes slightly
every other second. Therefore, by studying on such “incomplete” GPS data, it
can be possible to tell whether a user is using location spoofing. Because of this,
some advanced applications start emulating what a real GPS should report by
adding random offsets to the GPS values and even provide customization on all
of the values via settings, making the detection even harder.
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Fig. 1. Location spoofing in Pokémon GO.

5 Proposed Method

Fig. 2. Illustration of our detection idea.

We have learnt that it is quite impossible to detect GPS spoofing through
system detections and GPS data behavioral analysis alone. In this section, we
propose a detection method on GPS spoofing by making use of the gyroscope
commonly equipped in most mobile devices. We focus on short walking distances
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where users walk around in the local area holding their phones on hand. To
preserve consistency, we assume that the horizontal orientation of the mobile
device with respect to the user remains the same throughout the whole detection
process, that is, the back of the mobile device always faces at the same direction
as the user does, which is a common scenario for a user using a phone. With
such a fixed horizontal orientation, we can then accurately verify whether the
user’s travel direction matches the device’s facing direction.

Figure 2 illustrates the idea with a scenario. Suppose the user is travelling
from A to C via B. The black arrows indicate the travelling direction of the user
from A to B and B to C, while the red arrows represent the facing direction
of the mobile device from A to B and B to C. θ is the difference between the
facing direction of the user and the mobile device. α is the angle of the change in
travel direction from AB to BC and β is the change of the facing direction of the
mobile device from AB to BC. If the user is legitimate, we would expect α ≈ β
as long as θ remains within a stable range. If the user is using GPS spoofing
application to manipulate travelling paths moving in different directions with
himself/herself actually stationary, β will not synchronize with α as the device
will be most likely facing in one single direction. As a result, by keeping tracking
of the change of α and β, we can differentiate legitimate users from users who
use GPS spoofing.

5.1 Methodology

Our methodology collects two sets of data. The first set of data is the GPS
coordinates provided by the GPS module of the device. The second set of data
is the orientation of the device provided by the gyroscope of the device. To
determine whether the travel direction of the user aligns with his/her facing
direction, we first compute the horizontal directions of travel using the GPS data,
and then compare it with the facing angles deduced from the orientation data.
We then calculate the average of the differences between the two direction angles,
denoted as Δθ, and compare it with the benchmark, which will be mentioned
in the following section, to identify potential location spoofing behaviors. Below
describes the detailed procedure of our algorithm.

Step 1. For each two consecutive GPS locations:

– Calculate the travel direction (in degree) with respect to the north from the
GPS coordinates.

– Calculate the average rotation (in degree) around the z-axis with respect to
the north in the same time interval between the two GPS coordinates are
being recorded.

– Calculate the absolute value of the angle difference (≤180◦) between the two
angles obtained above.

– Repeat until all locations are done.

Step 2. Calculate the average of the differences obtained in step 1.
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5.2 Benchmark

The efficiency of our detection algorithm is path dependent. If a user spoofs in
a path with travel directions that coincidently aligns with the phone’s facing
directions, the spoofing may not be successfully detected. In this section, we
set up a benchmark of Δθ for general spoofing behavior. We assume that in
general, the travelling path of a user will be arbitrary, with equal probability
in any direction in the long run. We can simulate it as a path with 361 GPS
positions and 360 path fragments, where each path fragment travels with a
direction ranging from 0◦ to 359◦ with respect to the north in random order.
During spoofing, the facing direction of the mobile device is constant. Therefore,
for such a path, the average of the angle differences between the device’s GPS
travel direction and facing direction in spoofing scenario would be

Δθ =
0◦ + 1◦ + ... + 179◦ + 180◦ + 179◦ + ... + 1◦ + 0◦

360
= 90◦

Claim. For a random spoofing path, the average of the angle differences between
the device’s GPS travel direction and facing direction with respect to the north
during spoofing is 90◦.

6 Evaluation

6.1 Experiment Setup

Fig. 3. Device moving in straight path. Fig. 4. Device moving in circular path.

We conducted our experiment by making sample walks in open areas of Hong
Kong. Figure 3 to 5 show the GPS mapping of walks with the mobile device
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(a) (b) (c)

Fig. 5. Device moving in complex path.

moving in (i) straight path (Fig. 3), (ii) circular path (Fig. 4) and (iii) complex
paths (Fig. 5). The mobile device is being handheld with its back facing forward
throughout each walk. The GPS values are being recorded with minimal and
desired update intervals of 5 and 10 s respectively and the facing angle direction
of the device with respect to the north are being recorded with an update interval
of 500 ms throughout the walk. In each interval between any two consecutive
GPS values, the horizontal direction of travel of the device and the average value
of the corresponding facing angle directions of the device in the same interval are
computed for the subsequent calculation of Δθ. We also simulate the location
spoofing scenarios of the walking paths by setting the device orientation at 0◦

all the time to obtain the corresponding Δθ when spoofing.
As we have assumed that the device orientation corresponding to the user

remains stable throughout the walk, we can expect that the GPS direction of
travel and the device’s facing angle direction matches as their rotational change
should be the same throughout the walk. If there exist notable difference between
the angle of the two directions (i.e. Δθ ≥ 90◦), we can suspect that location
spoofing occurs.

6.2 Results

Figure 6, 7 and 8 show the comparison between the bearings of the facing direc-
tion of the mobile device and the corresponding calculated bearings from the

Table 1. Average of the angle differences between the device’s GPS travel direction
and facing direction.

Path Δθ Δθ (spoofing) No. of steps

Straight 12.5105◦ 51.9088◦ 343

Circular 14.3276◦ 92.3563◦ 593

Complex (a) 17.1231◦ 99.8231◦ 526

Complex (b) 15.8670◦ 107.9607◦ 500

Complex (c) 14.2551◦ 141.4167◦ 771
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Fig. 6. Bearing comparison for device
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Fig. 7. Bearing comparison for device
moving in circular path.
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Fig. 8. Bearing comparison for device moving in complex path.

GPS values. Since the orientation of the mobile device will not align perfectly
with the facing direction of the user most of the time, we calculate the average
dispersion of the facing direction between the user and the device and apply a
shift to align the two angles to give a better visual comparison in graphs. We
can see that the bearings variate in similar trends, indicating that the device’s
movement matches with the user’s movement. Table 1 summarizes the average
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of the angle differences between the device’s GPS travel direction and facing
direction for different paths. We can see that in real travelling scenarios, Δθ

maintains at much lower values (<15◦) compared to that in spoofing scenarios
(>90◦ except for straight path). As mentioned in Sect. 5.2, our methodology
is path dependent. For straight paths which involve only very few direction
changes, the corresponding Δθ on spoofing depends heavily on the dominant
moving direction and can give relatively random results (51.9088◦ in our case).
However, for practical situations which involves more turning and changing in
travelling direction, the corresponding Δθ on spoofing falls into our expecta-
tion. For circular path which involves even distribution in travelling directions
(Fig. 4), Δθ on spoofing matches closely with our benchmark of 90◦ (92.3563◦).
For more complex paths in Fig. 5, the values of Δθ on spoofing are even higher
(99.8231◦, 107.9607◦ and 141.4167◦). Our methodology of the measurement with
Δθ shows high competence in spotting location spoofing behavior.

6.3 Practicability

In our experiment, we retrieve the GPS coordinates and device’s bearing via
the android API (location service for GPS values and sensor service for bearings
from gyroscope). The implementation is simple by calling respective functions
provided by the API. The corresponding instructions are well documented in
Android developer documentation. Energy consumption would be a concern for
frequent update of GPS values and sensor readings so a good balance between
updating and detection performance should be taken into consideration. How-
ever, it is totally adjustable depending on the need of the developer.

7 Limitation and Future Work

Although our detection method shows high competence in differentiating
between GPS spoofer and legitimate users, the detection effectiveness is path
dependent. Detection may fail if the travelling path simulated by location spoof-
ing application coincidentally matches with the devices facing direction. What’s
more, our detection method does not take displacement into account. If an adver-
sary performs GPS spoofing and at the same time turning himself to match the
direction of movement of the fake GPS path, he may escape from the detection
as our method only focuses on bearing comparison. To tackle these problems,
more sensors should be taken into account to keep track of the displacement of
the user. Footstep counting utilizing the accelerometer can give a good guide-
line on how far the user travels. It is being widely used in many health fitness
applications and could possibly give a notable improvement after being imple-
mented in our detection method. We will leave it to our future work with further
investigation.
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8 Conclusion

In this paper, we proposed a detection methodology by making use of the
gyroscope commonly equipped in most mobile devices to detect GPS spoofing
within local area which is difficult to be detected by detection methods using IP
addresses in Wi-Fi networks. We calculate the travel direction of the user from
the GPS data and compare it with the facing direction of the user’s mobile device
from the orientation data provided by the gyroscope. Experiment result shows
that the average of the angle differences between the device’s GPS travel direc-
tion and facing direction in real traveling cases and spoofing cases are highly
differentiable (<20◦ in real travels and >90◦ in spoofing scenarios). We show
that our method gives high competence in detecting location spoofing behavior
and is easy to implement.
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Abstract. Side-channel analysis has seen rapid adoption of deep learn-
ing techniques over the past years. While many paper focus on designing
efficient architectures, some works have proposed techniques to boost
the efficiency of existing architectures. These include methods like data
augmentation, oversampling, regularization etc. In this paper, we com-
pare data augmentation and oversampling (particularly SMOTE and
its variants) on public traces of two side-channel protected AES. The
techniques are compared in both balanced and imbalanced classes set-
ting, and we show that adopting SMOTE variants can boost the attack
efficiency in general. Further, we report a successful key recovery on
ASCAD(desync=100) with 180 traces, a 50% improvement over current
state of the art.

Keywords: Oversampling technique · Side-channel analysis · Deep
learning

1 Introduction

The security of cryptograhic algorithm has been widely investigated. One of the
possible vulnerabilities is due to the physical leakage from the implementation
of the cryptographic algorithm itself, which is commonly referred to as side-
channel analysis (SCA) [9]. Recently, many deep learning (DL) techniques have
been introduced to SCA after the renaissance of machine learning to improve
the performance of the attack. It can be naturally applied for profiled SCA, such
as template attack [5] since DL frameworks can be divided to two fold; training
and testing, similar to the framework of profiled SCA.

Related Works. The basic application of neural networks such as Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), Autoencoder were investigated by H. Maghrebi et al. [15] to
enhance profiled SCA. More improvements have been proposed in later works.
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2020, LNCS 12583, pp. 227–241, 2020.
https://doi.org/10.1007/978-3-030-65299-9_18
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By applying the data augmentation (DA) techniques, E. Cagli et al. [4] demon-
strated that it can overcome the jitter and noise countermeasures. In the same
manner, by adding the artificial noise to original traces, with application of VGG
architecture and blurring technique, J. Kim et al. [10] proposed the general archi-
tecture for open datasets of SCA and improvement of the attack performance.
G. Zaid et al. [7] recently suggested the efficient methodology on how to con-
struct the neural network structure for open dataset of SCA and reported most
efficient attacks in the current state of the art.

One of the recent work showed that, by adjusting the imbalanced data on
Hamming weight (HW) model, the distribution of the HW classes can be bal-
anced [16] and since the biased data is solved by oversampling technique from
data analysis, it can outperform the previous works, in particular Synthetic
minority oversampling technique (SMOTE). However, there are some restriction
in [16] owing to the fact that they only handled two oversampling techniques
and considered HW assumption. In other words, there are still open problems
on how to expand the oversampling techniques for improving the performance
in the SCA context.

Our Contributions. In this paper, we conduct in-depth investigation for over-
sampling techniques to enhance SCA. The main contributions of this work are
as follows. We conduct a comparative study of previously proposed DA [4] and
SMOTE [16] (and its variant) in context of SCA. The performance of DA and
various SMOTE variants are compared in both balanced (256 classes) and imbal-
anced (9 classes) setting. Experimental validation is performed on two pub-
lic databases with side-channel countermeasure (AES RD and ASCAD). Finally,
with optimised architectures as proposed in [7] and further adoption of SMOTE
variants, we break ASCAD(desync=100) dataset in as low as 180 traces, which
is a 50% improvements over the state of the art [7].

Paper Organization. This paper is organised as follows. Section 2 provides
brief background on profiled SCA and security metric for adequately measuring
the improvement. Afterwards, we explain the relationship between the oversam-
pling technique and DA, and how imbalanced/balanced models for oversampling
technique can affect SCA evaluation in Sect. 3. In Sect. 4, we highlight the
experimental results for our suggestions and compared with the previous works.
Finally, we provide the conclusion and further works in Sect. 5.

2 Preliminaries

2.1 Profiled Side-Channel Analysis

Profiled SCA [5] assumes a strong adversary with access to a clone of the target
device. Adversary can query the clone device with known plaintext and key pairs
while recording side-channel signature. These side-channel signature along with
plaintext, key pair help to characterize a model for device leakage. Further, on
the target device where key is unknown, the adversary queries a known plaintext
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to capture side-channel signature, which when queried with the characterized
model can reveal the secret key. Ideally more than one query to target device
might be needed to confidently recover the key due to presence of measurement
noise and countermeasures.

In the following, we target side-channel protected software implementation
of AES. The target operation is S-Box look up, which for a given plaintext t and
secret key k∗, can be written as:

y(t, k∗) = Model(Sbox[t ⊕ k∗]) (1)

where Sbox[·] indicates S-box operation and Model(·) means the assumption
for leakage model of side-channel information. We consider Hamming weight
(HW) [1] and Identity as models, leading to 9 and 256 classes for y respectively.
Classical profiled attacks use Gaussian templates [5], which are built for all values
of y(t, k∗).

2.1.1 Deep Learning Based Profiled Side-Channel Analysis
Novel profiled SCA have seen the adoption of deep neural networks (DNN [4,15]).
The most commonly used algorithms are MLP and CNN. The use of DNN in side-
channel evaluation has shown several advantages over classical templates. For
example, they can overcome traditional SCA countermeasure, such as jitter [4]
and masking [15], and they are also naturally incorporating feature selection.
Owing to these advantages, a line of research has focused on improving the
performance of SCA by techniques like DA [4], training set class balancing [16],
noise regularization, [10], finding optimised network architectures [7,10] etc.

2.2 Security Metric

In order to quantify the effectiveness of profiled SCA with a security metric, the
guessing entropy (GE) [12] is generally employed. Intuitively, the GE indicates
the average number of key candidates needed for successful evaluation after
the SCA has been performed. For measuring the GE, we repeat 100 times on
randomly chosen test set in this paper. Additionally, NtGE [7] which implies the
minimum number of traces when the GE reaches 1 is also utilized to compare
the improvement.

3 Oversampling Versus Data Augmentation

In this section, we briefly discuss the oversampling and data augmentation tech-
niques used in this paper.

3.1 Oversampling Techniques

Oversampling and undersampling are common data analysis techniques used to
adjust the class distribution of a data set (i.e. the ratio between samples in dif-
ferent classes). Oversampling is deployed more often than undersampling due
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to scarcity of training data in a general context. Oversampling and undersam-
pling are contrasted and roughly equivalent techniques. Oversampling is done
through applying transformation to existing data instances to generate new data
instances, in order to adjust the class imbalance.

3.1.1 Synthetic Minority Oversampling Technique
One of the main solution to adjust the balance for biased data is the synthetic
minority oversampling technique (SMOTE) [3]. The core idea is that the arti-
ficial instance for minority instances is generated using k-nearest neighbors of
sample. In the minority instance, k-nearest samples are selected from sample X.
Afterward, the SMOTE algorithm selects n samples randomly and save them as
Xi. Lastly, the new sample X ′ is generated based on the below equation.

X ′ = X + rand × (Xi − X), i = 1, 2, ..., n (2)

where rand follows a random number uniformly distributed in the range (0, 1).
By obtaining minority instances using SMOTE, the class imbalance is reduced
thus allowing machine learning and deep learning algorithms to learn better.
Naturally, it has been applied and shown working for SCA [16]. Picek et al. [16]
study a very common case of SCA literature, i.e. the HW model. HW model is
naturally biased. Considering one byte, the ratio of majority and minority class
population for HW model is 70:1. In such cases, SMOTE balances the dataset
improving the effectiveness of the DL based attack algorithm. In [16], authors
study SMOTE and SMOTE-ENN, where SMOTE was shown to work better on
the tested datasets. Recently, the candidates for SMOTE has increased quite a
lot [8].

3.2 Data Augmentation

Data augmentation (DA [13]) is well-known in the field of DL and applied to
overcome the overfitting issue while training phase. By applying artificial trans-
formation to training data, the overfitting factor can be reduced and learning
can be improved. In context of SCA, DA was applied as a solution to break jit-
ter based countermeasures. Jitter causes horizontal shifts in side-channel trace
resulting in misalignment which in turn reduces the attack efficiency. In [4], Cagli
et al. used the translational invariance property of CNN to counter jitter based
misalignment. Further, authors show that DA by applying small, random shift
to existing traces can avoid overfitting, resulting in a better training of CNN.
As S. Picek et al. [16] mentioned beforehand, this scheme can be considered as
one of oversampling techniques.

While [4] use dedicated code to apply shifts to datasets and thus implement
DA, we utilize the ImageDataGenerator1 class in the Keras DL library to provide
DA. Moreover, width shift range is only regarded as the variable for argument of
ImageDataGenerator, due to the unidimensionality for side channel leakage.
1 Refer to the Keras API description in https://www.tensorflow.org/api docs/python/

tf/keras/preprocessing/image/ImageDataGenerator.

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
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3.3 Case Study: Balanced (256) Classes Versus Imbalanced (9)
Classes

Hamming weight (and distance) models are some of the most popular leakage
models in side-channel literature, which are practically validated on range of
devices including microcontroller, FPGA, GPU, ASIC etc. However, as stated
earlier, this model follows a Binomial distribution and is highly imbalanced.
It was shown in [16], how imbalanced model can negatively affect SCA evalua-
tions [16]. As a result, most of DL based SCA consider the identity model. When
considering a byte as in AES, HW and identity model result in 9 and 256 classes
respectively.

While the main objective of SMOTE is minority class oversampling and DA
is to reduce overfitting. Thus SMOTE is ideal for imbalanced setting (9 classes),
however, balanced dataset should not have a negative impact. On the other hand,
DA does not consider class imbalance as a parameter. This can help overcoming
overfitting, however, augmentation preserve original distribution and does not
improve any imbalance. Thus, DA is expected to work better in balanced dataset
(256 classes). Note that, with limited size dataset even 256 classes might have
minor imbalances and SMOTE may improve the imbalance.

In the following, we study the performance of different SMOTE variants and
DA under 9 and 256 classes setting. The study is performed on two publicly
available datasets of side-channel protected AES implementation.

4 Experimental Validation

In this section, we describe the experimental setting and target datasets. Further,
experimental results on AES RD and ASCAD datasets are reported in 256 and 9
classes setting.

4.1 Target Datasets and Network

We use two popular datasets, AES RD2 and ASCAD3 containing side-channel
measurements of protected AES implementations running on a 8-bit AVR micro-
controller. The AES RD contains traces for the software implementation AES
with random delay countermeasure as described by J.-S. Coron et al. [6]. R.
Benadjila et al. [2] introduced the open dataset ASCAD with traces correspond-
ing to first order masking protected AES with artificially introduced random
jitter. In particular we use the worst case setting with jitter up to 100 sample
points (ASCAD(desync=100)).

The main motivation of this work is to investigate the effect of oversampling
techniques on best known attacks so for. The work of G. Zaid et al. [7] recently
published at CHES 2020, presents the best performing attacks and corresponding
network choices to achieve those result. The following experiments takes the
2 https://github.com/ikizhvatov/randomdelays-traces.
3 https://github.com/ANSSI-FR/ASCAD.

https://github.com/ikizhvatov/randomdelays-traces
https://github.com/ANSSI-FR/ASCAD
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result of G. Zaid et al. [7] as a benchmarking case to compare the affect of
oversampling and DA techniques.

For the following experiments, the number of training traces used are 5, 000
and 45, 000 for AES RD and ASCAD respectively. Moreover, 5, 000 traces are
used as validation set for all results and the number of epochs used are set as 20
(AES RD) and 50 (ASCAD).

Furthermore, we investigate the effect of 256 and 9 classes for the open
dataset. In the 256 classes, we accept the underlying network which is sug-
gested by [7]. On the other hand, for the 9 classes, the only modification is the
number of output layers. As all oversampling techniques in Appendix A and DA
can be regarded as pre-processing scheme, the modification to neural network
parameters is not required as we can use the networks proposed in [7] (except for
output layer modification in case of 9 classes). For parameter setting of SMOTE
variants, we employ the default setting because there are many SMOTE and
setting value for each techniques. According to previous claim in [16], we do not
provide the MCC, kappa, and G-mean results, since these values are not critical
information in the context of SCA. Moreover, we only represent the best result
in overall sampling techniques to definitely compare with the previous results.
All results can be referred to Appendix A and B.

4.2 Result for AES RD

As shown in Fig. 1, some variant SMOTE [8] and DA scheme [4] are outper-
forming the previous work [7], proposed in CHES 2020. DA(0.3)4 which has the
shift ratio 0.3 is best result in 256 classes. The attack needs only 11 traces to
recover the correct key, although it is not enough to find the correct key in orig-
inal scheme [7] where 15 traces are needed. CURE-SMOTE and Gaussian-based
SMOTE also outperform original scheme by a small margin in Table 1. The
main purpose of data augmentation and SMOTE schemes is to concentrate on
noise removal. As mentioned earlier, this effect works well to AES RD counter-
measure. Unlike [7], the number of profiling traces is reduced to 5, 000 for our
experiments and thus our reported NtGE is more than what was reported in
the original scheme. However, lower training set size allows us to evaluate the
impact of data augmentation and oversampling. Sometimes the profiling sets can
be restricted by the protocol effect. When considering it, our scheme can provide
faster convergence than original scheme in limited profiling sets. Moreover, tech-
niques like DA and oversampling become relevant when training set is limited
in sample size.

In case of HW model (9 classes), we can observe that the performance of
the method proposed by [7], is degrading. As such, several SMOTE techniques
are now outperforming it because the difference between majority and minority
is more distinguishable than 256 classes. In this case, more traces will be also
required in general (>20 × the traces required for 256 classes), since in HW

4 DA(x) indicates that x×100% of the whole points is randomly shifted while training
phase, which was suggested in [4].
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Fig. 1. Result for the best variant SMOTEs and DA against AES RD

model, the adversary cannot directly infer the actual value of sensitive interme-
diate variables.

As shown in Table 1 for 256 and 9 classes, CURE-SMOTE and Gaussian-
based SMOTE are useful oversampling techniques against AES RD. Depending
on the oversampling technique, the amount of traces added in the training set
is variable. More precisely, the training dataset size is increased to 5, 013(5, 125)
from 5, 000 for 256 classes (9 cases) in most of the oversampling techniques,
which does not critically impact the learning time.

4.3 Result for ASCAD(desync=100)

In Fig. 2, the results are plotted for ASCAD dataset. In this case, the benchmark-
ing attack of [7] performs better than the DA schemes. However, several SMOTE
variants are performing better. As shown in Table 1, ASMOBD, MSMOTE, and
SDSMOTE are especially ranked in top 10 results for all classes of ASCAD
dataset. In the case of 256 classes, ASMOBD can recover the key in under 200
traces while the original scheme needs over 256 traces.

The size of training dataset is increased from 45000 traces by 10 and 400
traces when applying the oversampling techniques to 256 and 9 classes, respec-
tively. When employing the HW model (9 classes), some oversampling techniques
such as MOT2LD and Borderline SMOTE2 have low GE, compared to original
scheme.

4.4 Analysis and Discussion

We tested 85 variants of SMOTE and 3 variants of DA under 4 experiments. We
have reported the best results in Table 1 for each datasets. In all the 4 cases, we
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Fig. 2. Result for the best variant SMOTEs and DA against ASCAD(desync=100)

Table 1. Top 10 results for AES RD and ASCAD(desync=100) datasets against variant
SMOTEs and DA techniques, (∗): GE when the maximum number of traces is used

No. AES RD (256 classes) AES RD (9 classes) ASCAD (256 classes) ASCAD (9 classes)
Scheme NtGE Scheme NtGE Scheme NtGE Scheme NtGE

- Original >15 (1.34) Original >300 (36) Original 267 Original >400 (7)

1 DA(0.3) 11 MCT 228 ASMOBD 190 MOT2LD >400 (2)

2 CURE
SMOTE

14 CURE
SMOTE

243 MDO 193 Borderline
SMOTE2

>400 (4)

3 Gaussian
SMOTE

15 Gaussian
SMOTE

265 DEAGO 212 MSMOTE >400 (5)

4 DA(0.2) 15 SMOTE
OUT

276 MSMOTE 224 Supervised
SMOTE

>400 (5)

5 distance
SMOTE

15 LLE
SMOTE

281 SMOTE
Cosine

234 LLE
SMOTE

>400 (6)

6 NoSMOTE 15 polynom
fit SMOTE

283 SMOBD 242 polynom
fit SMOTE

>400 (6)

7 SOI CJ 15 Borderline
SMOTE1

285 SDSMOTE 242 ASMOBD >400 (6)

8 SOMO 15 V SYNTH 285 Stefanowski 245 SDSMOTE >400 (6)

9 SMOTE
OUT

15 SMOTE
Cosine

286 SMOTE
RSB

248 SPY >400 (6)

10 MCT 15 ASMOBD 295 SL graph
SMOTE

249 cluster
SMOTE

>400 (6)

were able to report results better than best benchmarking results. However, it
was not possible to identify one single oversampling method which would work
best in all the cases. This is not surprising and in accordance with No Free
Lunch theorems [18]. In general, we can make the following observations from
the previously performed experiments.

– In general, SMOTE variants led to attack improvements in all the cases as
compared to DA which only outperforms in one case. DA also shows negative
impact in case of ASCAD, where the attack is worse than baseline benchmark-
ing attack of G. Zaid et al.
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– Dataset imbalance is a difficult problem for deep learning as already stated
in [16] which results in better performance of SMOTE variants when used in
256 classes as compared to 9 class setting. The discrepancy is better high-
lighted in ASCAD dataset, as there are >20 variants which recovers the secret
for 256 classes (though there are also a lot of methods which perform signifi-
cantly worse) and only around 2 or 3 which have the correct key in top 5 rank
candidates.

– Secondly, certain methods work better for a given dataset. For example, on
AES RD, CURE-SMOTE and Gaussian-based SMOTE are in top 3 in terms
of performance for both 256 and 9 classes. For ASCAD, ASMOBD, poly-
nom fit SMOTE and SDSMOTE are in top 10. However, there are no con-
sistents techniques which work for all the dataset and the scenarios.

– Some SMOTE variants has a negative impact on training datasets represented
to Appendix A. For example, in case of SMOTE-ENN, the training dataset
is shrunk from 5000 to 38. Not to surprise, the technique performs much
worse than benchmark case of CHES 2020, leave alone any improvement.
SMOTE-ENN also reported training set shrinking in other 3 experiments as
well. Similar observations were seen in other experiments too but not neces-
sarily for all experiments. We hypothesize that oversampling considers some
traces as noise and filters them out, resulting in shrinking of datasets. Note
that SMOTE-ENN was also shown to perform worse in [16].

5 Conclusion and Further Works

In this paper, we investigate the effect of various SMOTE variants and previously
proposed data augmentation against previously best known results. We outper-
form previous results with a decent margin. While DA improves the result in
one case, different variants of SMOTE resulted in a general improvement across
experiments. However, it was not possible to identify a single favorable SMOTE
variant, it varied by experiments. We also reported that some oversampling tech-
niques result in training set shrinking and thus lead to poor performance. Note
that we tested various SMOTE variants in their default settings and there are
other parameters to play with. Thus, a deeper investigations might help identify
few candidates better suited for SCA application. Moreover, testing oversam-
pling with more datasets could lead to better insights.

Acknowledgements. We gratefully acknowledge the support of NVIDIA Corpora-
tion with the donation of the Titan Xp GPU used for this research. The authors
acknowledge the support from the ‘National Integrated Centre of Evaluation’ (NICE);
a facility of Cyber Security Agency, Singapore (CSA).
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A Variants of Oversampling Techniques (SMOTE
Variants)

Two approaches were already introduced in [16] (SMOTE and SMOTE-ENN).
However, there are currently 85 variant of SMOTEs referring to [8]. To the best
of our knowledge, the investigation for effectiveness of these schemes has not
been properly conducted in terms of SCA.

The variant SMOTEs in Table 2 have developed to overcome the bias for
imbalanced data for DL context. As mentioned previously, only SMOTE and
SMOTE-ENN are utilized in [16]. Although the performance of SMOTE in [16]
is better, many variant SMOTEs have not been utilized. Moreover, they men-
tioned that the role of SMOTE and SMOTE-ENN is to only increase the number
of minority instance. However, in general, the oversampling techniques can be
further used as compared to previous suggestion. Naturally, these techniques
can be used beyond HW/HD model, because the data might be biased in prac-
tice. As such, variant SMOTEs provide benefit as preprocessing tool, which help
smoothing the distribution of the data.

Moreover, as mentioned earlier, these techniques are worth investigated in
the context of SCA, because there are several advantages offered by SMOTE
variants, such as the change of majority and noise removal. Among 85 variant
SMOTEs, we have conducted preliminary investigation on their effectiveness and
only reported those who are quite successful for SCA.

B Results for All Oversampling Techniques Against
AES RD and ASCAD(desync=100)

The legend of Fig. 3 and 4 is referred to Fig. 5.
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Fig. 3. Result for variant SMOTEs and DA against AES RD



Push for More: On Comparison of DA and SMOTE 237

T
a
b
le

2
.

A
P

I
fu

n
ct

io
n

li
st

fo
r

va
ri

a
n
t

S
M

O
T

E
s

in
[8

].
T
a
b
le

re
p
o
rt

s
th

e
n
u
m

b
er

o
f

tr
a
in

in
g

se
t

fo
r
A
E
S
R
D

(2
5
6

cl
a
ss

es
),

A
E
S
R
D

(9
cl

a
ss

es
),

A
S
C
A
D

(2
5
6

cl
a
ss

es
),

a
n
d
A
S
C
A
D

(9
cl

a
ss

es
),

re
sp

ec
ti

v
el

y
a
ft

er
a
p
p
ly

in
g

ea
ch

ov
er

sa
m

p
li
n
g

te
ch

n
iq

u
es

.
‘-
’
in

d
ic

a
te

s
th

a
t

w
e

d
o

n
o
t

p
er

fo
rm

it
s

ov
er

sa
m

p
li
n
g

te
ch

n
iq

u
es

d
u
e

to
th

e
ti

m
e

li
m

it
.

S
ch

e
m

e
#

T
ra

in
in

g
S
ch

e
m

e
#

T
ra

in
in

g
S
ch

e
m

e
#

T
ra

in
in

g
S
ch

e
m

e
#

T
ra

in
in

g
S
ch

e
m

e
#

T
ra

in
in

g

S
M

O
T
E

T
o
m

e
k
L
in

k
s

2
7
8
7

M
S
Y
N

5
0
1
3

R
W

O
sa

m
p
li
n
g

5
0
1
3

E
d
g
e

D
e
t

S
M

O
T
E

5
0
1
3

G
A
S
M

O
T
E

-
3
3
4
2

5
1
2
6

5
1
2
6

5
1
2
6

-
2
6
5
6
8

-
4
5
0
1
0

4
5
0
1
0

-
3
1
8
9
7

-
4
6
2
5
7

4
6
2
5
7

-

S
M

O
T
E

E
N
N

3
8

S
V
M

b
a
la

n
c
e

5
0
1
3

N
E
A
T
E
R

9
9
8
5

C
B
S
O

5
0
1
3

A
S
U
W

O
5
0
0
0

1
1
4
2

5
1
2
6

1
0
0
7
2

5
1
2
6

5
0
0
0

2
0
4

4
5
0
1
0

-
4
5
0
1
0

1
0
0
1

9
5
6
9

4
6
2
5
7

-
4
6
2
5
7

3
0
1
3
3

B
o
rd

e
rl
in

e
S
M

O
T
E
1

5
0
1
3

T
R
IM

S
M

O
T
E

5
0
0
0

D
E
A
G

O
5
0
1
3

E
S
M

O
T
E

-
S
M

O
T
E

F
R
S
T

2
T

5
5

5
0
0
0

5
0
0
0

5
1
2
6

-
3
3
0

4
5
0
1
0

4
5
0
1
0

4
5
0
1
0

-
3
2
2

4
6
2
5
7

4
6
2
5
7

4
6
2
5
7

-
5
0

B
o
rd

e
rl
in

e
S
M

O
T
E
2

5
0
1
3

S
M

O
T
E

R
S
B

5
0
1
7

G
a
z
z
a
h

2
8

D
B
S
M

O
T
E

5
0
0
0

A
N
D

S
M

O
T
E

5
0
0
0

5
0
0
0

5
1
4
5

2
2
8

5
0
0
0

5
0
0
0

4
5
0
1
0

4
5
0
2
0

2
3
8

4
5
0
1
0

4
5
0
1
0

4
6
2
5
7

4
7
5
1
4

1
9
3
9

4
6
2
5
7

5
0

A
D
A
S
Y
N

9
9
7
2

P
ro

W
S
y
n

5
0
1
3

M
C
T

5
0
1
3

A
S
M

O
B
D

5
0
1
3

N
R
A
S

5
0
0
0

9
9
4
6

5
1
2
6

5
1
2
6

5
1
2
6

5
0
0
0

8
9
6
9
8

4
5
0
1
0

4
5
0
1
0

4
5
0
0
0

4
5
0
0
0

8
9
6
9
8

4
6
2
5
7

4
6
2
5
7

4
5
0
0
0

4
5
0
0
0

A
H
C

5
4

S
L

g
ra

p
h

S
M

O
T
E

5
0
1
3

A
D

G
4
1

A
ss

e
m

b
le

d
S
M

O
T
E

5
0
1
3

A
M

S
C
O

7
2

2
0
6

5
0
0
0

1
8
0

5
1
2
6

6
8
4

4
6
2

4
5
0
1
0

3
2
3

4
5
0
1
0

3
2
6

1
7
0
9

4
6
2
5
7

3
5
6
7

4
6
2
5
7

2
7
1
3

L
L
E

S
M

O
T
E

5
0
1
3

N
R
S
B
o
u
n
d
a
ry

S
M

O
T
E

5
0
0
0

S
M

O
T
E

IP
F

2
7

S
D

S
M

O
T
E

5
0
1
3

S
S
O

-
5
1
2
6

5
1
2
6

2
8
9

5
1
2
6

-
4
5
0
1
0

-
1
7
0

4
5
0
1
0

-
4
6
2
5
7

-
2
6
8
8

4
6
2
5
7

-

d
is
ta

n
c
e

S
M

O
T
E

5
0
1
3

L
V
Q

S
M

O
T
E

5
0
1
3

K
e
rn

e
lA

D
A
S
Y
N

5
0
0
0

D
S
M

O
T
E

5
4

N
D

O
sa

m
p
li
n
g

5
0
1
3

5
1
2
6

5
1
2
6

5
0
0
0

3
0
6

5
1
2
6

4
5
0
1
0

4
5
0
1
0

4
5
0
1
0

3
2
2

4
5
0
1
0

4
6
2
5
7

4
6
2
5
7

4
6
2
5
7

2
8
1
6

4
6
2
5
7

S
M

M
O

5
0
0
0

S
O

I
C
J

5
0
0
0

M
O

T
2
L
D

5
0
0
0

G
S
M

O
T
E

5
0
1
3

D
S
R
B
F

-
5
1
2
6

5
0
0
0

5
0
0
0

5
1
2
6

-
4
5
0
1
0

4
5
0
0
0

4
4
8
7
0

4
5
0
1
0

-
4
6
2
5
7

4
5
0
0
0

4
6
1
1
5

4
6
2
5
7

-
(c

on
ti
n
u
ed

)



238 Y.-S. Won et al.

T
a
b
le

2
.
(c
o
n
ti
n
u
ed

)

S
ch

e
m

e
#

T
ra

in
in

g
S
ch

e
m

e
#

T
ra

in
in

g
S
ch

e
m

e
#

T
ra

in
in

g
S
ch

e
m

e
#

T
ra

in
in

g
S
ch

e
m

e
#

T
ra

in
in

g

p
o
ly

n
o
m

fi
t

S
M

O
T
E

5
0
1
3

R
O

S
E

5
0
1
3

V
S
Y
N
T
H

5
0
1
3

N
T

S
M

O
T
E

5
0
1
3

G
a
u
ss

ia
n

S
M

O
T
E

5
0
1
3

5
1
3
5

5
1
2
6

5
1
2
6

5
1
2
6

5
1
2
6

4
5
1
5
1

4
5
0
1
0

4
5
0
1
0

4
5
0
1
0

4
5
0
1
0

4
6
2
0
8

4
6
2
5
7

4
6
2
5
7

4
6
2
5
7

4
6
2
5
7

S
te

fa
n
o
w
sk

i
4
9
7
3

S
M

O
T
E

O
U
T

5
0
1
3

O
U
P
S

5
0
1
4

L
e
e

5
0
1
3

k
m

e
a
n
s

S
M

O
T
E

-
4
8
5
7

5
1
2
6

5
1
2
9

5
1
2
6

-
4
4
8
4
5

4
5
0
1
0

4
5
0
1
0

4
5
0
1
0

-
4
3
7
2
2

4
6
2
5
7

4
6
2
6
3

4
6
2
5
7

-

A
D

O
M

S
5
0
1
3

S
M

O
T
E

C
o
si
n
e

5
0
1
3

S
M

O
T
E

D
5
0
0
9

S
P
Y

5
0
1
3

S
u
p
e
rv

is
e
d

S
M

O
T
E

5
0
1
3

5
1
2
6

5
1
2
6

5
1
2
7

5
0
0
0

5
1
2
6

4
5
0
1
0

4
5
0
1
0

4
5
0
1
4

4
5
0
0
0

4
5
0
1
0

4
6
2
5
7

4
6
2
5
7

4
6
2
4
5

4
5
0
0
0

4
6
2
5
7

S
a
fe

L
e
v
e
l
S
M

O
T
E

5
0
0
1

S
e
le

c
te

d
S
M

O
T
E

5
0
1
3

S
M

O
T
E

P
S
O

-
S
M

O
T
E

P
S
O

B
A
T

-
S
N

S
M

O
T
E

5
0
1
3

5
0
0
6

5
1
2
6

-
-

5
1
2
6

4
5
0
0
1

4
5
0
1
0

-
-

4
5
0
1
0

4
5
0
3
6

4
6
2
5
7

-
-

4
6
2
5
7

M
S
M

O
T
E

5
0
0
0

L
N

S
M

O
T
E

5
0
0
0

C
U
R
E

S
M

O
T
E

5
0
1
3

M
D

O
5
0
0
0

C
C
R

5
0
1
4

5
0
0
0

5
1
2
6

5
1
2
6

5
0
0
0

5
1
3
5

4
5
0
1
0

4
5
0
0
0

4
5
0
1
0

4
5
0
0
0

4
5
0
0
0

4
2
5
7

4
5
0
0
0

4
6
2
5
7

4
5
0
0
0

4
6
2
0
8

D
E

o
v
e
rs

a
m

p
li
n
g

5
0
1
3

M
W

M
O

T
E

5
0
0
0

S
O

M
O

5
0
0
0

R
a
n
d
o
m

S
M

O
T
E

5
0
1
3

A
N
S

5
0
1
4

5
0
6
5

5
0
0
0

5
0
0
0

5
1
2
6

5
1
2
6

4
5
0
1
0

4
5
0
1
0

4
5
0
0
0

4
5
0
1
0

4
5
0
0
0

4
6
2
5
7

4
6
2
5
7

4
5
0
0
0

4
6
2
5
7

4
6
2
5
7

S
M

O
B
D

5
0
1
3

P
D

F
O

S
5
0
1
3

IS
O

M
A
P

H
y
b
ri
d

-
IS

M
O

T
E

4
1

c
lu

st
e
r

S
M

O
T
E

5
0
1
4

5
1
2
6

5
1
2
6

-
1
8
0

5
1
2
6

4
5
0
1
0

4
5
0
1
0

-
3
1
2

4
5
0
1
0

4
6
2
5
7

4
6
2
5
7

-
1
5
5
9

4
6
2
5
7

S
U
N
D

O
2
5
0
1

IP
A
D

E
ID

-
C
E

S
M

O
T
E

5
0
1
3

V
IS

R
S
T

5
0
1
3

N
o
S
M

O
T
E

5
0
0
0

2
5
1
5

-
5
1
2
6

5
1
2
6

5
0
0
0

2
2
5
0
2

-
4
5
0
1
0

4
5
0
1
0

4
5
0
0
0

2
2
5
4
8

-
4
6
2
5
7

4
6
2
5
7

4
5
0
0
0



Push for More: On Comparison of DA and SMOTE 239

180 200 220 240 260

10−2

10−1

100

Number of Traces

lo
g
(G

u
s
s
in

g
E
n
t
r
o
p
y
)

256 classes for ASCAD(desync=100)

320 340 360 380 400

10−0.5

100

Number of Traces

lo
g
(G

u
s
s
in

g
E
n
t
r
o
p
y
)

9 classes for ASCAD(desync=100)

Fig. 4. Result for variant SMOTEs and DA against ASCAD(desync=100)
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Abstract. Proxy re-encryption (PRE) securely enables the re-
encryption of ciphertexts from one key to another, without relying on
trusted parties, i.e., it offers delegation of decryption rights. PRE allows a
semi-trusted third party termed as a “proxy” to securely divert encrypted
files of user A (delegator) to user B (delegatee) without revealing any
information about the underlying files to the proxy. To eliminate the
necessity of having a costly certificate verification process, Green and
Ateniese introduced an identity-based PRE (IB-PRE). The potential
applicability of IB-PRE leads to intensive research from its first instanti-
ation. Unfortunately, till today, there is no unidirectional IB-PRE secure
in the standard model, which can withstand quantum attack. In this
paper, we provide, for the first time, a concrete construction of unidirec-
tional IB-PRE which is secure in standard model based on the hardness
of learning with error problem. Our technique is to use the novel trap-
door delegation technique of Micciancio and Peikert. The way we use
trapdoor delegation technique may prove useful for functionalities other
than proxy re-encryption as well.

1 Introduction

Blaze, Bleumer and Strauss [5] introduced the concept of Proxy Re-encryption
(PRE) towards an efficient solution that offers delegation of decryption rights
without compromising privacy. PRE allows a semi-trusted third party, called a
proxy, to securely divert encrypted files of one user (delegator) to another user
(delegatee). The proxy, however, cannot learn the underlying message m, and
thus both parties’ privacy can be maintained. This primitive (and its variants)
have various applications ranging from encrypted email forwarding [5], securing
distributed file systems [4], to digital rights management systems [25]. In addition
application-driven purposes, various works have shown connections between re-
encryption with other cryptographic primitives, such as program obfuscation
[8,9,14] and fully-homomorphic encryption [7]. Thus studies along this line are
both important and interesting for theory and practice.
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2020, LNCS 12583, pp. 245–257, 2020.
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PRE systems are classified as unidirectional and bidirectional based on the
direction of delegation. It is worth mentioning that the unidirectional construc-
tions are much desirable because bidirectional construction easily implementable
using a unidirectional one. Though the concept of PRE was initiated in [5],
the first unidirectional PRE proposed by Ateniese et al. in [4], where follow-
ing desired properties of a PRE are listed: Non-interactivity (re-encryption key,
rkA→B , can be generated by A alone using B’s public key; no trusted author-
ity is needed); Proxy transparency (neither the delegator nor the delegatees are
aware of the presence of a proxy); Key optimality (the size of B’s secret key
remains constant, regardless of how many delegations he accepts); Collusion
resilience (it is computationally infeasible for the coalition of the proxy and user
B to compute A’s secret key); Non-transitivity (it should be hard for the proxy
to re-delegate the decryption right, namely to compute rkA→C from rkA→B ,
rkB→C). To achieve the aforementioned properties (partially) with improved
security guarantee, there are elegant followup works which can be found in
[6,8,9,14,17]. For quantum-safe version of PRE, Gentry [11] mentioned the fea-
sibility of unidirectional PRE through fully homomorphic encryption scheme
(FHE). However, FHE costs huge computation. Xagawa proposed construction
of PRE in [26], but the construction lacks concrete security analysis. Further
development of lattice-based PRE can be found in [8,10,16,21].

Certificate management problem is a crucial issue in the PKI based schemes.
This crucial issue was addressed by Green et al. [13] in the area of PRE. For
lattice-based construction, Singh et al. [23] proposed a bidirectional identity-
based PRE. However, it is required to use secret key of both delegator and
delegatee to generate re-encryption key, which lacks one of the fundamental
properties of PRE. Further, they proposed unidirectional identity-based PRE
[24], termed as IB-uPRE, secure in the random oracle model. However, the size of
re-encrypted ciphertext blows up than the original encrypted one. Moreover, the
schemes encrypt the message bit by bit. Later, there are some further attempts
to construct lattice-based identity-based PRE, which are flawed1 [15,27].

Our Contribution and Technique: It is an interesting open research prob-
lem to construct post-quantum secure IB-uPRE in the standard model. In this
paper, we resolve this daunting task by constructing a concrete scheme based
on the hardness of learning with error (LWE) problem. The proposed construc-
tion is capable of encrypting multi-bit message and enjoy the properties like
non-interactivity, proxy transparency, key optimality, non-transitivity along with
other properties follow generically from IB-PRE. To construct the IB-uPRE, we
start with the construction of the identity-based encryption scheme by Agrawal
et al. [1]. In non-interactive IB-uPRE, it is required to construct re-encryption
key by the delegator alone. One of the feasible ways to adopt the non-interactive
feature is to provide a trapdoor to the delegator as a secret key. But, this tech-
nique is not supported by the design of [1]. In [1], the trapdoor is the master

1 In [15], authors claimed to proof IND-ID-CPA, but provide the proof for IND-CPA.
In [27], authors assumed a universally known entity (G matrix; see Sect. 2.1) as a
secret entity.
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secret key and the secret key of user is sampled by the master secret key. We
first trace the design of selective IBE, where the secret key of a user is also a
trapdoor, by using the trapdoor delegation technique of [18]. Then extend the
design to incorporate re-encryption feature based on the encryption scheme of
[18]. Here, the secret key of a user is a tuple of trapdoor, where one is used
for decryption and another one is used for re-encryption key (ReKey) genera-
tion. ReKey is generated as in [10,16] with a trick to resists proxy to get any
information regarding the underlying message of the corresponding re-encrypted
ciphertext. The underlying IBE of the proposed IB-uPRE may prove useful to
design expressive cryptographic primitives other than IB-PRE as well.

2 Preliminaries

We denote the real numbers and the integers by R,Z, respectively. We denote
column-vectors by lower-case bold letters (e.g. b), so row-vectors are represented
via transposition (e.g. bt). Matrices are denoted by upper-case bold letters and
treat a matrix X interchangeably with its ordered set {x1,x2, . . .} of column
vectors. We use I for the identity matrix and 0 for the zero matrix, where the
dimension will be clear from context. We use [∗|∗] to denote the concatena-
tion of vectors or matrices. A negligible function, denoted generically by negl.
We say that a probability is overwhelming if it is 1 − negl. The statistical dis-
tance between two distributions X and Y over a countable domain Ω defined as
1
2

∑
w∈Ω |Pr[X = w] − Pr[Y = w]|. We say that a distribution over Ω is ε-far if

its statistical distance from the uniform distribution is at most ε. Throughout
the paper, r = ω(

√
log n) represents a fixed function which will be approximated

by
√

ln(2n/ε)/π.

2.1 Lattices

A lattice Λ is a discrete additive subgroup of Rm. Specially, a lattice Λ in R
m

with basis B = [b1, · · · ,bn] ∈ R
m×n, where each bi is written in column form,

is defined as Λ := {∑n
i=1 bixi|xi ∈ Z ∀i = 1, . . . , n} ⊆ R

m. We call n the rank
of Λ and if n = m we say that Λ is a full rank lattice. The dual lattice Λ∗ is
the set of all vectors y ∈ R

m satisfying 〈x,y〉 ∈ Z for all vectors x ∈ Λ. If B is
a basis of an arbitrary lattice Λ, then B∗ = B(BtB)−1 is a basis for Λ∗. For a
full-rank lattice, B∗ = B−t.

In this paper, we mainly consider full rank lattices containing qZm, called
q-ary lattices, defined as the following, for a given matrix A ∈ Z

n×m
q and u ∈ Z

n
q :

Λ⊥(A) := {z ∈ Z
m : Az = 0mod q}; Λ(At) = {z ∈ Z

m : ∃ s ∈ Z
n
q s.t. z = Ats

mod q}; Λ⊥
u (A) := {z ∈ Z

m : Az = umod q} = Λ⊥(A) + x for x ∈ Λ⊥(A).
Note that, Λ⊥(A) and Λ(At) are dual lattices, up to a q scaling factor:
qΛ⊥(A)∗ = Λ(At), and vice-versa. Sometimes we consider the non-integral,
1-ary lattice 1

q Λ(At) = Λ⊥(A)∗ ⊇ Z
m.

Gaussian on Lattices: Let Λ ⊆ Z
m be a lattice. For a vector c ∈ R

m and
a positive parameter s ∈ R, define: ρc,s(x) = exp

(
π ‖x−c‖2

s2

)
and ρc,s(Λ) =



248 P. Dutta et al.

∑
x∈Λ ρc,s(x). The discrete Gaussian distribution over Λ with center c and

parameter σ is DΛ,c,s(y) = ρc,s(y)
ρc,s(Λ) ,∀y ∈ Λ.

Hard Problems on Lattices: There are two lattice-based one-way functions
associated with matrix A ∈ Z

n×m
q for m = poly(n):

– gA(e, s) = stA + et mod q for s ∈ Z
n
q and a Gaussian e ∈ Z

m and fA(x) =
Ax mod q, for x ∈ Z

m;
– The Learning With Errors (LWE) problem was introduced in [22]. The prob-

lem to invert gA(e, s), where e ← DZm,αq is known as search-LWEq,n,m,α

problem and is as hard as quantumly solving Shortest Independent Vector
Problem (SIVP) on n-dimensional lattices. The decisional- LWEq,n,m,α prob-
lem asks to distinguish the output of gA from uniform.

– The Small Integer Solution (SIS) problem was first suggested to be hard
on average by Ajtai [2] and then formalized by Micciancio and Regev [20].
Finding a non-zero short preimage x′ such that fA(x′) = 0, with ‖x′‖ ≤ β,
is an instantiation of the SISq,n,m,β problem. It is known to be as hard as
certain worst-case problems (e.g. SIVP) in standard lattices [3,12,19,20].

Trapdoors for Lattices: Here, we briefly describe the main results of [18] and
it’s generalized version from [16]: the definition of G-trapdoor, the algorithms
InvertO, SampleO and DelTrapO.

A G-trapdoor is a transformation (represented by a matrix R) from a public
matrix A to a special matrix G which is called as gadget matrix. The formal
definitions as follows:

Definition 1 ([18]). Let A ∈ Z
n×m
q and G ∈ Z

n×w
q be matrices with m ≥ w ≥

n. A G-trapdoor for A is a matrix R ∈ Z
(m−w)×w such that A

[
R
I

]

= HG, for

some invertible matrix H ∈ Z
n×n
q . We refer to H as the tag of the trapdoor.

Definition 2 ([16]). The generalized version of a G-trapdoor :
Let A =

[
A0 A1 · · · Ak−1

] ∈ Z
n×m
q for k ≥ 2, and A0 ∈

Z
n×m̄
q ,A1, . . . ,Ak−1 ∈ Z

n×w
q with m̄ ≥ w ≥ n and m = m̄ + (k − 1) · w

(typically, w = n�log q�). A G-trapdoor for A is a sequence of matrices
R =

[
R1 R2 · · · Rk−1

] ∈ Z
m̄×(k−1)w
q such that :

[
A0 A1 · · · Ak−1

]

⎡

⎢
⎢
⎢
⎣

R1 R2 · · · Rk−1

I 0 · · · 0
...

...
. . .

...
0 0 · · · I

⎤

⎥
⎥
⎥
⎦

=
[
H1G H2G · · · Hk−1G

]
,

for invertible matrices Hi ∈ Z
n×n
q and a fixed G ∈ Z

n×w
q .

InvertO(R,A,b,Hi) [16]: On input a vector bt = stA + et, a matrix
A =

[
A0 −A0R1 + H1G · · · −A0Rk−1 + Hk−1G

]
and corresponding G- trap-

door R =
[
R1 R2 · · · Rk−1

]
with invertible tag Hi, the algorithm computes
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b′t = bt

⎡

⎢
⎢
⎢
⎣

R1 R2 · · · Rk−1

I 0 · · · 0
...

...
. . .

...
0 0 · · · I

⎤

⎥
⎥
⎥
⎦

and then run the inverting oracle O(b′) for G to get (s′, e′). The algorithm out-
puts s = H−1

i s′ and e = b − Ats. Note that, InvertO produces correct output
if e ∈ P1/2(q · B−t), where B is a basis of Λ⊥(G); cf. [18, Theorem 5.4].

SampleO(R,A,H,u, s) [18]: On input (R,A′,H,u, s), the algorithm construct
A =

[
A′ −A′R + HG

]
, where R is the G-trapdoor for matrix A with invertible

tag H and u ∈ Z
n
q . The algorithm outputs, using an oracle O for Gaussian

sampling over a desired coset Λ⊥
v (G), a vector drawn from a distribution within

negligible statistical distance of DΛ⊥
u (A),s. To sample a Gaussian vector x ∈

Z
m
q for A =

[
A0 A1 · · · Ak−1

] ∈ Z
n×m
q with the generalized trapdoor R =

[
R1 R2 · · · Rk−1

]
and k−1 invertible Hi’s given a coset u ∈ Z

n
q , use generalized

version of SampleO from [16].

DelTrapO(A′ =
[
A A1

]
,R,H′, s)[18]: On input an oracle O for discrete Gaus-

sian sampling over cosets of Λ = Λ⊥(A) with parameter s, an extended matrix
A′ of A, an invertible matrix H′, the algorithm will sample (using O) each col-
umn of R′ independently from a discrete Gaussian with parameter s over the
appropriate coset of Λ⊥(A), so that AR′ = H′G − A1. The algorithm outputs
a trapdoor R′ for A′ with tag H′.

2.2 Identity-Based Unidirectional Proxy Re-Encryption

Definition 3 (Identity-Based Unidirectional Proxy ReEncryption (IB-
uPRE) [13]). A unidirectional Identity-Based Proxy Re-Encryption (IB-uPRE)
scheme is a tuple of algorithms (SetUp,Extract,ReKeyGen,Enc,ReEnc,
Dec) :

– (PP,msk) ←− SetUp(1n) : On input the security parameter 1n, the setup
algorithm outputs PP,msk.

– skid ←− Extract(PP,msk, id) : On input an identity id, public parameter
PP, master secret key, output the secret key skid for id.

– rki→j ←− ReKeyGen(PP, skidi
, idi, idj) : On input a public parameter

PP , secret key skidi
of a delegator i, and idi, idj, output a unidirectional

re-encryption key rki→j.
– ct ←− Enc(PP, id,m) : On input an identity id, public parameter PP and a

plaintext m ∈ M, output a ciphertext ct under the specified identity id.
– ct′ ←− ReEnc(PP, rki→j , ct) : On input a ciphertext ct under the identity i

and a re-encryption key rki→j, output a ciphertext ct′ under the identity j.
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– m ←− Dec(PP, skidi
, ct) : On input the ciphertext ct under the identity i and

secret key skidi
of i, the algorithm outputs a plaintext m or the error symbol ⊥.

An Identity-Based Proxy Re-Encryption scheme is called single-hop if a
ciphertext can be re-encrypted only once. In a multi-hop setting proxy can apply
further re-encryptions to already re-encrypted ciphertext.

Definition 4 (Single-hop IB-uPRE Correctness). A single-hop IB-uPRE
scheme (SetUp,Extract,ReKeyGen,Enc,ReEnc,Dec) decrypts correctly
for the plaintext space M if :

– For all skid, output by Extract under id and for all m ∈ M,
it holds that Dec(PP, skid,Enc(PP, id,m)) = m.

– For any re-encryption key rki→j, output by ReKeyGen(PP, skidi
, idi, idj)

and any ct = Enc(PP, idi,m),
it holds that Dec(PP, skidj

,ReEnc(PP, rki→j , ct)) = m.

Security Game of Unidirectional Selective Identity-Based Proxy Re-
Encryption Scheme against Chosen Plaintext Attack (IND-sID-CPA):
To describe the security model we first classify all of the users into honest (HU)
and corrupted (CU). In the honest case an adversary does not know secret
key, whereas for a corrupted user the adversary has secret key. Let A be the
PPT adversary and Π = (SetUp,Extract,ReKeyGen, Enc,ReEnc,Dec)
be an IB-uPRE scheme with a plaintext space M and a ciphertext space C. Let
id∗(∈ HU) be the target user. Security game is defined according to the following
game ExpIND-sID-CPA

A (1n) :

1. SetUp: The challenger runs SetUp(1n) to get (PP,msk) and give PP to A.
2. Phase 1: The adversary A may make queries polynomially many times in

any order to the following oracles:
– OExtract: an oracle that on input id ∈ CU , output skid; Otherwise, out-

put ⊥.
– OReKeyGen: an oracle that on input the identities of i-th and j-th users:

if idi ∈ HU \ {id∗}, idj ∈ HU or idi, idj ∈ CU or idi ∈ CU, idj ∈ HU ,
output rki→j ; otherwise, output ⊥.

– OReEnc: an oracle that on input the identities of i, j-th users, ciphertext
of i-th user: if idi ∈ HU \ {id∗}, idj ∈ HU or idi, idj ∈ CU or idi ∈
CU, idj ∈ HU , output re-encrypted ciphertext; otherwise, output ⊥.

3. Challenge: A outputs two messages m0,m1 ∈ M and is given a challenge
ciphertext ctb ←− Enc(PP, id∗,mb) for either b = 0 or b = 1.

4. Phase 2: After receiving the challenge ciphertext, A continues to have access
to the OExtract, OReKeyGen and OReEnc oracle as in Phase 1.

5. ODecision: On input b′ from A, this oracle outputs 1 if b = b′ and 0 otherwise.

The advantage of an adversary in the above experiment ExpIND-sID-CPA
A (1n) is

defined as |Pr[b′ = b] − 1
2 |.
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Definition 5. An IB-uPRE scheme is IND-sID-CPA secure if all PPT adver-
saries A have at most a negligible advantage in experiment ExpIND-sID-CPA

A (1n).

Remark 1. In [13], ReKeyGen query is allowed from id∗ to HU to make the
IB-uPRE collusion resilient (coalition of malicious proxy and delegetee to com-
pute delegator’s secret key). Here, we have blocked ReKeyGen query from id∗

to HU and the proposed IB-uPRE scheme is not claimed to be collusion resilient.

3 Single-Hop Identity-Based Unidirectional Proxy
Re-Encryption Scheme (IB-uPRE)

3.1 Construction of Single-Hop IB-uPRE

In this section, we present our construction of single-hop IB-uPRE. We set the
parameters as the following.

– G ∈ Z
n×nk
q is a gadget matrix for large enough prime power q = pe = poly(n)

and k = O(log q) = O(log n), so there are efficient algorithms to invert gG
and to sample for fG

– m̄ = O(nk) and the Gaussian D = Dm̄×nk
Z,r , so that (Ā, ĀR) is negl(n)-far

from uniform for Ā
– the LWE error rate α for IB-uPRE should satisfy 1/α = O(nk)3 · r3

To start out, we first recall encoding techniques from [1,18].

– Message Encoding: In the proposed construction, message space is M =
{0, 1}nk. M map bijectively to the cosets of Λ/2Λ for Λ = Λ(Gt) by some
function encode that is efficient to evaluate and invert. In particular, letting
E ∈ Z

nk×nk be any basis of Λ, we can map m ∈ {0, 1}nk to encode(m)=
Em ∈ Z

nk [18].
– Encoding of Identity: In the following construction, we use full-rank dif-
ference map (FRD) as in [1]. FRD: Zn

q → Z
n×n
q ; id �→ Hid. We assume iden-

tities are non-zero elements in Z
n
q . The set of identities can be expanded to

{0, 1}∗ by hashing identities into Z
n
q using a collision resistant hash. FRD

satisfies the following properties: 1. ∀ distinct id1, id2 ∈ Z
n
q , the matrix

Hid1 − Hid2 ∈ Z
n×n
q is full rank; 2. ∀ id ∈ Z

n
q \ {0}, the matrix Hid ∈ Z

n×n
q

is full rank; 3. FRD is computable in polynomial time (in n log q).

The proposed IB-uPRE consists of the following algorithms:

SetUp(1n) : On input a security parameter n, do:

1. Choose Ā ← Z
n×m̄
q , R ← D, and set Ā′ = −ĀR ∈ Z

n×nk
q .

2. Choose four invertible matrices H1,H2,H3,H4 uniformly random from Z
n×n
q .

3. Choose two random matrices A1,A2 from Z
n×nk
q .

4. Output PP = (Ā, Ā′,A1,A2,H1,H2,H3,H4,G) and the master secret key
is msk = R.
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Extract(PP,msk, id) : On input a public parameter PP , master secret key msk
and the identity of i-th user idi, do:

1. Construct Ãi =
[
Ā Ā′+Hidi

G
]

=
[
Ā −ĀR+Hidi

G
] ∈ Z

n×m
q , where m =

m̄ + nk. So, R is a trapdoor of Ãi with tag Hidi
.

2. – Construct Ai1 = A1 + H3Hidi
G ∈ Z

n×nk
q and set A′

i1 =
[
Ãi Ai1

] ∈
Z

n×(m+nk)
q .

– Call the algorithm DelTrapO(A′
i1,R,H1, s) to get a trapdoor Ri1 ∈

Z
m×nk for A′

i1 with tag H1 ∈ Z
n×n
q , where s ≥ ηε(Λ⊥(Ãi)), so that

ÃiRi1 = H1G − Ai1.
3. – Construct Ai2 = A2 + H4Hidi

G ∈ Z
n×nk
q and set A′

i2 =
[
Ãi Ai2

] ∈
Z

n×(m+nk)
q .

– Call the algorithm DelTrapO(A′
i2,R,H2, s) to get a trapdoor Ri2 ∈

Z
m×nk for A′

i2 with tag H2 ∈ Z
n×n
q , so that ÃiRi2 = H2G − Ai2.

Output the secret key as skidi
=

[
Ri1 Ri2

] ∈ Z
m×2nk. Notice that,

[
Ãi Ai1 Ai2

]
⎡

⎣
Ri1 Ri2

I 0
0 I

⎤

⎦ =
[
H1G H2G

]
.

Enc(PP, idi,m ∈ {0, 1}nk) : On input a public parameter PP , the identity of
i-th user idi and message m ∈ {0, 1}nk, do:

1. Construct Ãi =
[
Ā −ĀR+Hidi

G
] ∈ Z

n×m
q .

2. Construct Ai1,Ai2 for idi same as in Extract algorithm and set Ai =[
Ãi Ai1 Ai2

]
.

3. Choose a uniformly random s ← Z
n
q .

4. Sample error vectors ē0 ← Dm̄
Z,αq and e′

0, e1, e2 ← Dnk
Z,s′ , where s′2 = (‖ē0‖2+

m̄(αq)2)r2. Let the error vector e = (e0, e1, e2) ∈ Z
m̄+nk ×Z

nk ×Z
nk, where

e0 = (ē0, e′
0) ∈ Z

m̄ × Z
nk.

5. Compute bt = (b0,b1,b2) = 2(stAi mod q) + et + (0,0, encode(m)t)
mod 2q, where the first zero vector has dimension m̄ + nk, the second has
dimension nk and b0 = (b̄0,b′

0).
6. Output the ciphertext ct = b ∈ Z

m̄+3nk
2q .

Dec(PP, skidi
, ct) : On input a public parameter PP , the secret key of i-th user

skidi
and ciphertext ct, do:

1. If ct has invalid form or Hidi
= 0, output ⊥. Otherwise,

– Construct Ãi =
[
Ā −ĀR+Hidi

G
] ∈ Z

n×m
q .

– Construct Ai1,Ai2 for idi same as in Extract algorithm and set Ai =[
Ãi Ai1 Ai2

]
.

2. Call InvertO(
[
Ri1 Ri2

]
,Ai,b,H2) to get z ∈ Z

n
q and e = (e0, e1, e2) ∈

Z
m̄+nk ×Z

nk ×Z
nk, where e0 = (ē0, e′

0) ∈ Z
m̄ ×Z

nk for which bt = ztAi +et

mod q. If the call to Invert fails for any reason, output ⊥.
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3. If ‖ē0‖ ≥ αq
√

m̄ or ‖e′
0‖ ≥ αq

√
2m̄nk · r or ‖ej‖ ≥ αq

√
2m̄nk · r for j = 1, 2,

output ⊥.
4. Let V = b − e mod 2q, parsed as V = (V0,V1,V2) ∈ Z

m̄+nk
2q × Z

nk
2q × Z

nk
2q ,

where V0 = (V0,V′
0) ∈ Z

m̄
2q × Z

nk
2q . If V0 /∈ 2Λ(Āt), output ⊥.

5. Output encode−1(Vt

⎡

⎣
Ri1 Ri2

I 0
0 I

⎤

⎦ mod 2q) ∈ {0, 1}nk if it exists, otherwise

output ⊥.

ReKeyGen(PP, skidi
, idi, idj) : On input a public parameter PP , the secret

key of i-th user skidi
and identity of j-th user idj , do:

1. Construct Ai =
[
Ãi Ai1 Ai2

]
, where Ãi =

[
Ā Ā′+Hidi

G
]

and Ai1,Ai2

are same as in Extract algorithm .
2. Construct Aj =

[
Ãj Aj1 Aj2

]
, where Ãj =

[
Ā Ā′+Hidj

G
]

and Aj1,Aj2

are same as in Extract algorithm .
3. Using SampleO with trapdoor Ri1(from the secret key of ith user ), with

tag H1, we sample from the cosets which are formed with the column of
the matrix Ā′+Hidj

G. After sampling nk times we get an (m̄ + 2nk) × nk
matrix and parse it as three matrices X00 ∈ Z

m̄×nk, X10 ∈ Z
nk×nk

and X20 ∈ Z
nk×nk matrices with Gaussian entries of parameter s. So,

[
Ãi −ÃiRi1 + H1G

]
⎡

⎣
X00

X10

X20

⎤

⎦ = Ā′ + Hidj
G, i.e.

[
Ãi Ai1

]
⎡

⎣
X00

X10

X20

⎤

⎦ =

Ā′ + Hidj
G.

4. Continue sampling for the cosets obtained from the columns of the matrix
Aj1 from Aj . This time, we increase the Gaussian parameter of the

resulting sampled matrix up to s
√

m̄/2:
[
Ãi −ÃiRi1 + H1G

]
⎡

⎣
X01

X11

X21

⎤

⎦ =

Aj1 , i.e.
[
Ãi Ai1

]
⎡

⎣
X01

X11

X21

⎤

⎦ = Aj1 .

For the last sampling, to get a correct re-encryption, we will use the cosets
which are formed with the column of the matrix Aj2 + ÃiRi2 − H2G :

[
Ãi −ÃiRi1 + H1G

]
⎡

⎣
X02

X12

X22

⎤

⎦ = Aj2 + ÃiRi2 − H2G , where X01,X02 ∈

Z
m̄×nk, X11,X12,X21,X22 ∈ Z

nk×nk with entries distributed as Gaussian
with parameter s

√
m̄.

5. Output re-encryption key rki→j =

⎡

⎢
⎢
⎣

I X00 X01 X02

0 X10 X11 X12

0 X20 X21 X22

0 0 0 I

⎤

⎥
⎥
⎦ ∈ Z

(m+2nk)×(m+2nk),

which satisfies: Ai · rki→j = Aj .
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ReEnc(rki→j , ct) : On input rki→j and i-th user’s ciphertext ct, Compute:
b′t = bt · rki→j = 2st

[
Ãj Aj1 Aj2

]
+ ẽt + (0,0, encode(m)t), where ẽ =

(ẽ0, ẽ1, ẽ2), ẽ0 = (˜̄e0, ẽ′
0) and ˜̄e0 = ē0, ẽ′

0 = ē0X00 + e′
0X10 + e1X20, ẽ1 =

ē0X01 + e′
0X11 + e1X21, ẽ2 = ē0X02 + e′

0X12 + e1X22 + e2.
Then output ct′ = b′.

3.2 Correctness and Security

In this section, we analyze the correctness and security of the proposed scheme.

Theorem 1 (Correctness). The IB-uPRE scheme with parameters proposed
in Section 3.1 is correct.

Proof. To show that the decryption algorithm outputs a correct plaintext, it is
required to consider both original and re-encrypted ciphertext. The arguments
for the original ciphertext follows from the Lemma 6.2 of [18]. For re-encrypted
ciphertext, the main point is to consider the growth of error due to re-encryption.
Argument for the controlled growth of error of re-encrypted ciphertext follows,
with some modifications, from Lemma 15 of [16]. Details proof is omitted due
to space constrained.

Theorem 2 (Security). The above scheme is IND-sID-CPA secure assuming
the hardness of decision-LWEq,α′ for α′ = α/3 ≥ 2

√
n/q.

Proof. First, using the same technique in [18], we transform the samples from
LWE distribution to what we will need below. Given access to an LWE distri-
bution As,α′ over Z

n
q × T, (whereT = R/Z) for any s ∈ Z

n
q , we can transform

its samples (a, b = 〈s,a〉/q + e mod 1) to have the form (a, 2(〈s,a〉 mod q)+ e′

mod 2q) for e′ ← DZ,αq, by mapping b �→ 2qb + DZ−2qb,s mod 2q, where
s2 = (αq)2 − (2α′q)2 ≥ 4n ≥ ηε(Z)2, ηε is smoothing parameter [18,20]. This
transformation maps the uniform distribution over Zn

q ×T to the uniform distri-
bution Z

n
q × Z2q. Once the LWE samples are of the desired form, we construct

column-wise matrix A∗ from these samples a and a vector b∗ from the corre-
sponding b. Let idi∗ be the target user. The proof follows by sequence of games.

Game 0: This is the original IND-sID-CPA game from definition between an
attacker A against scheme and an IND-sID-CPA challenger.

Game 1: In Game1, we change the way that the challenger generates Ā, Ā′,A1,
A2 in the public parameters. In SetUp phase, do as follows:

– Set the public parameter Ā = A∗, where A∗ is from LWE instance (A∗,b∗)
and set Ā′ = −A∗R − Hidi∗G, where R is chosen according to Game 0.

– Choose four invertible matrices H1,H2,H3,H4 uniformly random from Z
n×n
q .

– Choose Ri∗1,Ri∗2 ← D = Dm×nk
Z,r ; Set A′

1 = − [
A∗ −A∗R

] · Ri∗1 and
A′

2 = − [
A∗ −A∗R

] · Ri∗2; Construct A1 = A′
1 − H3Hidi∗G and A2 =

A′
2 − H4Hidi∗G.

– Set PP = (Ā, Ā′,A1,A2,H1,H2,H3,H4,G) and send it to A.
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To answer secret key query against idi ∈ CU , challenger will construct
Ãi =

[
A∗ −A∗R − Hidi∗G + Hidi

G
]

=
[
A∗ −A∗R + (Hidi

− Hidi∗ )G
]
. So,

R is a trapdoor of Ãi with invertible tag (Hidi
− Hidi∗ ). Then using Extract

algorithm, challenger gets the secret key skidi
=

[
Ri1 Ri2

]
for idi, sends skidi

to A. Challenger will send ⊥, against the secret key query for idi ∈ HU .
Note that for idi∗ , Ãi∗ =

[
A∗ −A∗R

]
, so A′

1 = −Ãi∗Ri∗1,A′
2 = −Ãi∗

Ri∗2 and Ai∗ =
[
Ãi∗ Ai∗1 Ai∗2

]
=

[
Ãi∗ A1 + H3Hidi∗G A2 + H4Hidi∗G

]

=
[
Ãi∗ A′

1 A′
2

]
=

[
Ãi∗ −Ãi∗Ri∗1 −Ãi∗Ri∗2

]
.

For the re-encryption key query and re-encryption query, challenger main-
tain the restrictions as in Definition 5 and computes rki→j , ReEnc(rki→j , ct)
according to the ReKeyGen and ReEnc algorithms to reply the adversary.
Due to left-over hash lemma [1, Lemma 14], (A∗,−A∗R,− [

A∗ −A∗R
] ·Ri∗1,

− [
A∗ −A∗R

]·Ri∗2) is statistically indistinguishable with uniform distribution.
Hence, (A∗,−A∗R−Hidi∗G,− [

A∗ −A∗R
]·Ri∗1−H3Hidi∗G,− [

A∗ −A∗R
]·

Ri∗2 − H4Hidi∗G) is statistically indistinguishable with uniform distribution.
Since Ā, Ā′,A1,A2 and responses to key queries are statistically close to those
in Game 0, Game 0 and Game 1 are statistically indistinguishable.

Game 2: In Game2 we change the way that the challenger generates challenge
ciphertext. Here Challenger will produce the challenge ciphertext b on a message
m ∈ {0, 1}nk for idi∗ as follows: Choose s ← Z

n
q and ē0 ← Dm̄

Z,αq as usual, but do
not choose e′

0, e1, e2. Let b̄t
0 = 2(stA∗ mod q)+ ēt

0 mod 2q and b′
0
t = −b̄t

0R+
êt
0 mod 2q, where ê0 ← Dnk

Z,s′ . So, b0 = (b̄0,b′
0). The last 2nk coordinates can

be set as bt
1 = −bt

0Ri∗1+ êt
1 mod 2q; bt

2 = −bt
0Ri∗2+ êt

2+encode(m) mod 2q,
where ê1, ê2 ← Dnk

Z,s′ . Finally, replace b̄0 with b∗ in all the above expression,

where (A∗,b∗) is the LWE instance. Therefore, b̄0
t = b∗t; b′

0
t = −b∗tR + êt

0

mod 2q; bt
1 = −b∗

0
tRi∗1+êt

1 mod 2q; bt
2 = −b∗

0
tRi∗2+êt

2+encode(m) mod 2q.
Set b∗

0
t = (b∗t,−b∗tR+ êt

0 mod 2q). Then the challenger output the challenge
ciphertext ct = b = (b∗

0,b1,b2).
We now show that the distribution of b is within negl statistical dis-

tance of that in Game 1 from the adversary’s view. Clearly, b∗ have essen-
tially the same distribution as in Game 0 by construction. By substitution we
have: b′

0
t = 2(st(−A∗R) mod q) + ēt

0R + êt
0 mod 2q; bt

1 = 2(st(−Ãi∗Ri∗1)
mod q) + (ēt

0, ē
t
0R + êt

0)Ri∗1 + êt
1 mod 2q; bt

2 = 2(st(−Ãi∗Ri∗2) mod q) +
(ēt

0, ē
t
0R + êt

0)Ri∗2 + êt
2 + encode(m) mod 2q.

By Corollary 3.10 in [22], the noise term ēt
0R + êt

0 of b′
0 is within negl sta-

tistical distance from discrete Gaussian distribution Dnk
Z,s′ . The same argument,

also, applies for the noise term of b1,b2. Hence, Game 1 and Game 2 are
statistically indistinguishable.

Game 3: Here, we only change how the b∗ component of the challenge ciphertext
is created, letting it be uniformly random in Z

m̄
2q. Challenger construct the public

parameters, answer the secret key queries, re-encryption queries and construct
the last 3nk coordinates of challenge ciphertext exactly as in Game 2. It follows
from the hardness of the decisional LWEq,α′ that Game 2 and Game 3 are
computationally indistinguishable.
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Now, by the left-over hash lemma [1, Lemma 14], (A∗,b∗,−A∗R,b∗tR,
−Ãi∗Ri∗1,b∗

0
tRi∗1,−Ãi∗Ri∗2, b∗

0
tRi∗2) is negl-uniform when R,Ri∗1,Ri∗2 are

chosen as in Game 2. Therefore, the challenge ciphertext has the same distribu-
tion (up to negl statistical distance) for any encrypted message. So, the advantage
of the adversary against the proposed scheme is same as the advantage of the
attacker against decisional LWEq,α′ . ��
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Abstract. Isogeny-based cryptography, such as commutative supersin-
gular isogeny Diffie-Hellman (CSIDH), has been shown to be promising
candidates for post-quantum cryptography. However, their speeds have
remained unremarkable. For example, computing odd-degree isogenies
between Montgomery curves is a dominant computation in CSIDH. To
increase the speed of this isogeny computation, this study proposes a new
technique called the “2-ADD-Skip method,” which reduces the required
number of points to be computed. This technique is then used to develop
a novel algorithm for isogeny computation. It is found that the proposed
algorithm requires fewer field arithmetic operations for the degrees of
� ≥ 19 compared with the algorithm of Meyer et al., which utilizes
twisted Edwards curves. Further, a prototype CSIDH-512 implementa-
tion shows that the proposed algorithm can give a 6.7% speedup over the
implementation by Meyer et al. Finally, individual experiments for each
degree of isogeny show that the proposed algorithm requires the lowest
number of clock cycles among existing algorithms for 19 ≤ � ≤ 373.

Keywords: Montgomery curves · Isogeny · Post-quantum
cryptography

1 Introduction

1.1 Overview

Post-quantum cryptography has been studied intensively in response to threats
brought about by the rapid development of quantum computing. Isogeny-based
cryptography, such as supersingular isogeny Diffie-Hellman (SIDH) [1] and com-
mutative SIDH (CSIDH) [2], has been considered as promising candidates for
post-quantum cryptography. In particular, supersingular isogeny key encapsu-
lation (SIKE) [3], an SIDH-based key encapsulation algorithm, has recently
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https://doi.org/10.1007/978-3-030-65299-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65299-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-65299-9_20


Efficient Algorithm for Computing Odd-Degree Isogenies 259

entered as an alternative algorithm the third round of the post-quantum cryptog-
raphy standardization process promoted by the National Institute of Standards
and Technology (NIST). Among all candidates in the competition, SIKE has the
smallest public key size [4]. In 2018, CSIDH was proposed as a non-interactive
key exchange protocol with an even smaller public key size than that of SIDH.
However, its speed performance is not as impressive and leaves a lot of room for
improvement.

There have been a series of research efforts attempting to tailor the CSIDH
algorithm and its parameters to increase its speed [5–8]. Researchers have also
focused on its two main subroutines, namely: scalar multiplication and odd-
degree isogeny computation on Montgomery curves. For example, Cervantes-
Vázquez et al. sped up the addition chain for scalar multiplication [9], while
Meyer-Reith reduced the cost of isogeny computation by using twisted Edwards
curves [5]. Specifically, for an elliptic curve E with a finite subgroup Φ, there
exists an elliptic curve E′ and an isogeny φ : E −→ E′ satisfying ker(φ) = Φ.
Isogeny computation consists of computing points in the kernel Φ, E′, and
φ(P ) ∈ E′ for P ∈ E. Meyer and Reith have found that E′ can be computed
more efficiently by using the isomorphic curve in the twisted form of the Edwards
curves. Additionally, Bernstein et al. have proposed a different sequence to com-
pute points in Φ [10]. It is noted that their approach still requires to compute
the same number of points in Φ.

The present work investigates the reduction of the cost of isogeny compu-
tation to realize compact and efficient post-quantum cryptography. While con-
ventional algorithms precisely compute the points in Φ, this study focuses on
reducing the number of points to be computed1. It may be noted that researches
have also been exploring constant-time algorithms and their optimizations for
protection against side-channel attacks [6,9,12]. The approach proposed herein
is also applicable to these constant-time algorithms.

1.2 Contributions

This study focuses on the isogeny computation with odd degrees � on Mont-
gomery curves. The “2-ADD-Skip method” is proposed to reduce the number of
points to be computed during isogeny computation. Specifically, a novel efficient
algorithm to utilize the technique is presented, and its computational cost is
analyzed in terms of the required amount of field multiplication, squaring, and
addition. The proposed algorithm is compared with the combined algorithm by
Costello et al. [13] and Castryck et al. [2]. The algorithm can reduce the compu-
tational cost and and lower the required number of field arithmetic operations
when � ≥ 13. Similarly, for the algorithm with twisted Edwards curves as shown
in [5], the proposed technique can be also applied. It is seen that the proposed
algorithm can reduce the computational cost and lower the required number of
field arithmetic operations when � ≥ 19. Experiments are conducted on an Intel

1 A new paper by Bernstein et al. [11] is discussed in Sect. 5.2.
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Core i7-8569U Coffee Lake processor by comparing a CSIDH-512 implementa-
tion whose isogeny computation is performed by the proposed algorithm with
that in [5]. The proposed algorithm is found to be faster by approximately 6.7%.
Furthermore, they also show that the proposed algorithm requires lower number
of clock cycles than any other algorithms for 19 ≤ � ≤ 373.

1.3 Organization

The reminder of this paper is organized as follows. Section 2 presents a brief
review of elliptic curves, isogenies, and CSIDH. Section 3 summarizes algorithms
for isogeny computation on Montgomery curves. Section 4 describes the proposed
2-ADD-Skip method as well as algorithms to utilize it. An analysis of the com-
putational cost of the proposed method is then discussed in terms of the required
number of field arithmetic operations. Section 5 reports the preliminary exper-
imental results of increasing the speed of CSIDH using the proposed approach.
Finally, Sect. 6 concludes this paper.

2 Preliminaries

2.1 Montgomery Curves

Let K be a field with char(K) �= 2. A Montgomery curve [14] over K with
coefficients a, b ∈ K, b(a2 − 4) �= 0 is given by

Ma,b : by2 = x3 + ax2 + x. (1)

The scalar multiplication by k is denoted as [k]P := P + · · · + P
︸ ︷︷ ︸

k

.

Alternatively, following the work of Costello, Longa, and Naehrig [15], Mont-
gomery curves can alternatively be written as

MA,B,C : BY 2Z = CX3 + AX2Z + CXZ2,

where (A,B,C), (X,Y,Z) ∈ P
2(K), C �= 0, Z �= 0, a = A/C, b = B/C, x = X/Z

and y = Y/Z. Let

ϕx : P2(K) −→ P
1(K), (X : Y : Z) �−→ (X : Z).

For the points (X : Z) ∈ P
1(K), Montgomery himself introduced efficient addi-

tion formulae as follows [14]. Let P,Q ∈ Ma,b(K), (XP : ZP ) = ϕx(P ), and
(XQ : ZQ) = ϕx(Q).

– When P �= Q,
⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

XP+Q = ZP−Q(XP XQ − ZP ZQ)2

= ZP−Q[(XP − ZP )(XQ + ZQ) + (XP + ZP )(XQ − ZQ)]2,

ZP+Q = XP−Q(XP ZQ − ZP XQ)2

= XP−Q[(XP − ZP )(XQ + ZQ) − (XP + ZP )(XQ − ZQ)]2.

(2)
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– When P = Q,
⎧

⎪
⎨

⎪
⎩

X[2]P = 4C(XP + ZP )2(XP − ZP )2,

Z[2]P = (4XP ZP )(4C(XP − ZP )2 + (A + 2C)(4XP ZP )),

4XP ZP = (XP + ZP )2 − (XP − ZP )2.

(3)

From these formulae in XZ-only coordinates, two functions are defined:

ADD : (ϕx(P ), ϕx(Q), ϕx(P − Q)) �−→ ϕx(P + Q),
DBL : (ϕx(P ), (A : C)) �−→ ϕx([2]P ).

Let M,S, and a denote the computational costs of multiplication, squaring, and
addition, respectively, in a field K. Then ADD requires 4M+2S+6a operations,
and DBL requires 4M + 2S + 8a operations as in [5].

2.2 Twisted Edwards Curves

A twisted Edwards curve [16] over a field K with char(K) �= 2, atE , dtE ∈
K, atEdtE �= 0, atE �= dtE , dtE �= 1 is given by

tEatE ,dtE
: atEu2 + v2 = 1 + dtEu2v2.

A twisted Edwards curve tEatE ,dtE
is birationally equivalent to a Montgomery

curve Ma,b:
⎧

⎪
⎪
⎨

⎪
⎪
⎩

atE =
a + 2

b
, dtE =

a − 2
b

, (x, y) �−→ (u, v) =
(

x

y
,
x − 1
y + 1

)

,

a =
2(atE + dtE)
atE − dtE

, b =
4

atE − dtE
, (u, v) �−→ (x, y) =

(

1 + v

1 − v
,

1 + v

(1 − v)u

)

.

As Montgomery curves, twisted Edwards curves have efficient addition for-
mulae in Y Z-only coordinates [17]. A point (X : Z) on the Montgomery curve
over P

1(K) can be transformed to a point (Y tE : ZtE) on the corresponding
twisted Edwards curve via

(X : Z) �−→ (Y tE : ZtE) = (X − Z : X + Z). (4)

2.3 Isogenies

Let E and E′ be elliptic curves. An isogeny from E to E′ is a morphism φ :
E −→ E′ satisfying φ(OE) = OE′ . If φ is separable, then #ker(φ) = deg φ. It is
denoted as �-isogeny for � = deg φ. Let Φ be a finite subgroup of E. Then, There
exist a unique elliptic curve E′ up to an isomorphism and a separable isogeny
φ : E −→ E′ satisfying ker(φ) = Φ. For a given E and Φ, the Vélu’s formula
provides explicit equations for E′ and φ [18]. Isogeny computation consists of
computing points in the kernel Φ, computing the coefficients of the new curve
E′ by referring to curve computation, and computing φ(P ) ∈ E′ for P ∈ E by
referring to image computation.
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2.4 CSIDH

CSIDH is a non-interactive key exchange protocol proposed by Castryck,
Lange, Martindale, Panny, and Renes in 2018 [2]. Let p be a prime number,
and E��p(Z[

√−p]) be a set of Fp-isomorphic classes of supersingular Mont-
gomery curves defined over Fp whose endomorphism ring is isomorphic to
Z[

√−p]. The ideal class group Cl(Z[
√−p]) acts freely and transitively on the

set E��p(Z[
√−p]). Then, Castryck et al. construct a Diffie–Hellman-style key

exchange protocol based on the Couveignes–Rostovtsev–Stolbunov scheme [19–
21]. Let E0 ∈ E��p(Z[

√−p]). Alice chooses a secret a ∈ Cl(Z[
√−p]) and generates

her public key Ea = a · E0 by computing the action given by a. Bob also com-
putes his public key Eb with his secret b. Now Alice and Bob can compute a
shared secret a · b · E0 = a · Eb = b · Ea by the commutativity of Cl(Z[

√−p]).
The action given by a class group element a ∈ Cl(Z[

√−p]) is defined by an
isogeny φ : E −→ E/E[a], where E[a] = ∩α∈a ker(α). In CSIDH, a prime of
the form p = 4

∏n
i=1 �i − 1 is used, where �i’s are odd primes. The principal

ideal (�i) splits into li = (�i, π − 1) and li = (�i, π + 1) over Z[
√−p], where π is

the Frobenius endomorphism. Hence, the action given by li corresponds to the
�i-isogeny whose kernel is generated by a point over Fp. Similarly, the action
given by li corresponds to the �i-isogeny whose kernel is generated by a point
over Fp2 \ Fp. We have li = l−1

i in Cl(Z[
√−p]). Then, an element in the class

group is sampled by a =
∏

lei
i for small integers ei’s. Hence, a secret key is

represented by a vector e = (e1, . . . , en). Therefore, given a secret vector e, the
main computation in CSIDH is the evaluation of the class group actions. This
requires |ei| operations to compute each �i-isogenies for all odd prime factors �i

of p+1. Furthermore, public keys and shared secrets are elements in Fp because
curves in E��p(Z[

√−p]) can be represented by supersingular Montgomery curves
of the form Ea : y2 = x3 + ax2 + x for a ∈ Fp.

The high-level concept of the class group action evaluation is given in Algo-
rithm1. It can be seen that the scalar multiplications in lines 6 and 8 and the odd-
degree isogeny computations in line 10 are the primary subroutines in this algo-
rithm. Furthermore, the computational cost of evaluation of class group actions
depends on the secret vector e, which can be a target in side-channel attacks. To
protect against the attacks, Meyer, Campos, and Reith proposed a constant-time
algorithm by constructing a dummy computation of �i-isogenies [6].

In a parameter set CSIDH-512, all ei’s are chosen from the interval
[−5, . . . , 5]. Further, p+1 has 74 odd prime factors: �1 = 3, �2 = 5, . . . , �73 = 373,
and �74 = 587. It is noted that �i happens to be the i-th smallest odd prime in all
cases except the last �74. This parameter set is estimated to provide a security
level of NIST-1.

3 Isogeny Computation on Montgomery Curves

This section summarizes algorithms for the isogeny computation on Montgomery
curves with odd degree � = 2d + 1, where an isogeny is given by φ : MA,B,C −→
MA′,B′,C′ . These algorithms are constructed based on an explicit formula derived
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Algorithm 1. Evaluation of the class group action
Input: a ∈ Fp, e = (e1, . . . , en)
Output: a′ ∈ Fp s.t. Ea′ = a · Ea where a =

∏
l
ei
i

1: while ∃ei �= 0 do
2: Sample a random x ∈ Fp.
3: s ← +1 if x3 + ax2 + x is square in Fp, else s ← −1
4: S ← {i | ei �= 0, sign(ei) = s}
5: if S �= ∅ then
6: k ← ∏

i∈S �i, Q ← [(p + 1)/k](x : 1)
7: for i ∈ S do
8: R ← [k/�i]Q
9: if R �= O then

10: �i-isogeny computation φ : Ea → Ea
′ , ker(φ) = 〈R〉

a ← a
′
, Q ← φ(Q), k ← k/�i, ei ← ei − s

11: end if
12: end for
13: end if
14: end while
15: return a

by Costello and Hisil. It is noted that given a generator (X1 : Z1), where (Xi :
Zi) := ϕx([i]P ) for ker(φ) = 〈P 〉, all points (X2 : Z2), . . . , (Xd : Zd) are precisely
computed using addition formulae. Moreover, a technique is described to speed
up the curve computation by using twisted Edwards curves.

Hereinafter, (Xi : Zi) is denoted as a point in the ker(φ), as given above.
Further, (X : Z) ∈ MA,B,C and (X ′ : Z ′) := φ((X : Z)) ∈ MA′,B′,C′ are defined
for image computation, and we denote (A′ : C ′) and (A : C) are denoted as
curve coefficients in curve computation.

3.1 Costello-Hisil Formula

Costello and Hisil derived an explicit formula for computing odd-degree isogenies
between Montgomery curves [13]. Given a field K with char(K) �= 2, let P be a
point of order � = 2d+1 on the Montgomery curve Ma,b : by2 = x3 +ax+x. We
write σ =

∑d
i=1 x[i]P , σ̃ =

∑d
i=1 1/x[i]P and π =

∏d
i=1 x[i]P , where x[i]P denotes

the x-coordinate of [i]P . The Montgomery curve Ma′,b′ : b′y2 = x3 + a′x + x
with

a′ = (6σ̃ − 6σ + a)π2 and b′ = bπ2 (5)

is the codomain of �-isogeny φ : Ma,b −→ Ma′,b′ with ker(φ) = 〈P 〉, which is
defined by the coordinate map

φ : (x, y) �−→ (f(x), yf ′(x)),

where

f(x) = x ·
d

∏

i=1

(

x · x[i]P − 1
x − x[i]P

)2

, (6)
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and f ′(x) is its derivative. It is noted that Renes gave a different proof and
generalized the formula for any separable isogeny whose kernel does not contain
(0, 0) [22].

In a projective space P
1(K), Eq. (6) leads to Eq. (7) for point computation:

(X ′ : Z ′) = (X · (SX)2 : Z · (SZ)2), (7)

where

SX =
d

∏

i=1

(XXi − ZiZ) and SZ =
d

∏

i=1

(XZi − XiZ). (8)

Similarly, Eq. (5) leads to equations for curve computation:

(A′ : C ′) = (τ(A − 3σ) : C) ,

where

τ =
�−1
∏

i=1

Xi

Zi
, σ =

�−1
∑

i=1

(

Xi

Zi
− Zi

Xi

)

.

Castryck et al. defined Ti as
∑�−1

i=0 Tiw
i =

∏�−1
i=1(Ziw + Xi) for efficient curve

computation [2].

(A′ : C ′)
(

AT0T�−1 − 3C(T0T�−2 − T1T�−1) : CT 2
�−1

)

, (9)

where ⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

T0 =
∏

i

Xi, T1 =
∑

i

(Zi

∏

j �=i

Xj),

T�−2 =
∑

i

(Xi

∏

j �=i

Zj), and T�−1 =
∏

i

Zi.
(10)

3.2 Conventional Algorithm for Isogeny Computation
on Montgomery Curves

In a conventional algorithm for odd-degree isogeny computation on Montgomery
curves, intermediate variables such as SX , SZ , T0, T1, T�−2, and T�−1 are com-
puted first. As shown in Eqs. (8) and (10), all these variables are polynomial
in (Xi : Zi) for i = 1, . . . , d; hence, they are computed by iteration. To begin
with, all intermediate variables are initialized with (X1 : Z1) as follows: SX =
(X−Z)(X1+Z1)+(X+Z)(X1−Z1), SZ = (X−Z)(X1+Z1)−(X+Z)(X1−Z1),
T0 = X1, T1 = Z1, T�−2 = Z1, and T�−1 = X1. Then, for all i = 2, . . . , d, a point
(Xi : Zi) is computed using the addition formula, and intermediate variables are
successively updated by following the formulae (11) and (12).

{

SX ← SX · ((X − Z) · (Xi + Zi) + (X + Z) · (Xi − Zi)) ,

SZ ← SZ · ((X − Z) · (Xi + Zi) − (X + Z) · (Xi − Zi)) ;
(11)
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⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

T1 ← T1 · Xi + T0 · Zi,

T0 ← T0 · Xi,

T�−2 ← T�−2 · Zi + T�−1 · Xi,

T�−1 ← T�−1 · Zi.

(12)

Here, the update formulae (11) and (12) require 4M+4a and 6M+2a operations,
respectively; this is because X +Z and X −Z can be reused over several updates
if they are computed once at the beginning of the algorithm. Finally, (X ′ : Z ′)
and (A′ : C ′) are computed by Eqs. (7) and (9).

Algorithm 2 summarizes the algorithm for (� = 2d + 1)-isogeny computation
on Montgomery curves. It requires a total of (14d−5)M+(2d+1)S+(12d−1)a
operations.

Algorithm 2. Isogeny computation on Montgomery curves
Input: d, (X : Z), (X1 : Z1), and (A : C)
Output: (X ′ : Z′) and (A′ : C′)
1: t+ ← X + Z, t− ← X − Z // 2a
2: t0 ← t− · (X1 + Z1), t1 ← t+ · (X1 − Z1) // 2M + 2a
3: (SX : SZ) ← (t0 + t1, t0 − t1) // 2a
4: (T0, T1, T�−2, T�−1) ← (X1, Z1, Z1, X1)
5: for i = 2 to d do
6: if i == 2 then
7: (Xi : Zi) ← DBL((X1 : Z1), (A : C)) // 4M + 2S + 8a
8: else
9: (Xi : Zi) ← ADD((Xi−1 : Zi−1), (X1 : Z1), (Xi−2 : Zi−2)) // 4M + 2S + 6a

10: end if
11: Update (SX : SZ) by (11) with (Xi : Zi) // 4M + 4a
12: Update (T0, T1, T�−2, T�−1) by (12) with (Xi : Zi) // 6M + 2a
13: end for
14: (X ′ : Z′) ← (

X · (SX)2 : Z · (SZ)2
)

// 2M + 2S
15: (A′ : C′) ← (

A · T0 · T�−1 − 3C(T0 · T�−2 − T1 · T�−1) : C · T 2
�−1

)
// 5M + S + 4a

16: return (X ′ : Z′) and (A′ : C′)

When Z1 = 1 or C = 1, ADD or DBL requires fewer multiplication operations.
Bernstein et al. pointed out that computing d points in the kernel in a different
way reduces computational cost [10]. For example, Montgomery ladder-like iter-
ations computes d points with more doubling (DBL) operations. However, Z1 �= 1
and C �= 1 are generally observed in CSIDH, unless inversion is computed with
a certain amount of field arithmetic operations. The effect of normalization will
not be considered as it is beyond the scope of this paper.

3.3 Curve Computation Through Twisted Edwards Curves

Meyer and Reith proposed a faster approach to curve computation by using
twisted Edwards curves [5].
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As per their approach, when b = 1, it is possible to convert a curve between
its Montgomery form and twisted Edwards form at the cost of a only few field
additions:

a′ = A + 2C, d′ = A − 2C,

(A : C) = (2(a′ + d′) : a′ − d′) .

In the context of isogeny computation, the efficient conversion is always available
due to an isomorphism between by2 = x3 + ax2 + x and ỹ2 = x̃3 + ax̃2 + x̃
given by y = ỹ/

√
b. Furthermore, Moody and Shumow presented an explicit

formula for isogeny computation on twisted Edwards curves [23]. Specifically,
curve computation in Y Z-only coordinates is given by Eq. (13):

a′
tE = a�

tE · π8
Z , d′

tE = d�
tE · π8

Y , (13)

where

πZ =
d

∏

i=1

ZtE
i and πY =

d
∏

i=1

Y tE
i . (14)

Considering Eq. (4), the update formula (12) for intermediate variables in curve
computation on Montgomery curves can be replaced by the following formula
(15):

{

πY ← πY · (Xi − Zi),
πZ ← πZ · (Xi + Zi).

(15)

Therefore, the computational cost per update for curve computation is reduced
from 6M+ 2a to 2M because Xi − Zi and Xi + Zi have already been computed
in the point computation formula (11) for point computation. The bit length
of � is denoted as �̃, and (�̃/2)M + �̃S is assumed to be required to compute
the �-th power. Isogeny computation on Montgomery curves can be sped up to
(10d + �̃ − 4)M + (2d + 2�̃ + 6)S + (10d + 3)a field arithmetic operations. This
requires (4d − �̃ − 5)M + (−2�̃ − 5)S + (2d − 2)a operations fewer than those in
the Algorithm 2.

4 Proposed Approach

In this section, a novel technique called the “2-ADD-Skip method” is proposed,
and its application to isogeny computation is discussed. Let us explain rough
sketch of our strategy.

In Algorithm 2, given a point (X1 : Z1), the points in the kernel (Xi : Zi)
for i = 2, . . . , d are precisely computed by the addition formulae, and used for
the corresponding update formulae. However, the coordinates of all d points are
not necessarily required as long as the image (X ′ : Z ′) and the new coefficient
(A′ : C ′) can be computed. Hence, the 2-ADD-Skip method is proposed, in
which new formulae for computing updates are shown in terms of two points,
namely: (Xm+n : Zm+n) and (Xm−n : Zm−n); this is achieved by using only
(Xm : Zm) and (Xn : Zn) for m �= n. By this method, two additions that are
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required to compute (Xm : Zm) and (Xn : Zn) are skipped. To apply the 2-
ADD-Skip method to isogeny computation, the notion of the complete chain is
introduced, describing the update process. In conventional methods, the chain
may be expressed as 1 → 2 → · · · → d. Here, a chain fill-in using the 2-ADD-Step
methods is proposed.

4.1 2-ADD-Skip Method

Equations for image computation (8) and curve computation (10) show that all
intermediate variables such as SX are symmetrical in terms of index i. For exam-
ple, on expressing T1(X1, Z1, . . . , Xn, Zn) as a polynomial in X1, Z1, . . . , Xn, Zn,
the relation T1(X1, Z1, . . . , Xn, Zn) = T1(Xσ(1), Zσ(1), . . . , Xσ(n), Zσ(n)) holds
true for any σ ∈ Sn, where Sn is the symmetric group of degree n. Addi-
tionally, the respective update formulae, (11) and (12), are expressed as linear
combinations of Xi and Zi. Therefore, if XiXj , ZiZj , and XiZj + XjZi exist
for some indices i and j, updates can be performed in terms of (Xi : Zi) and
(Xj : Zj) according to the new update formulae (16) and (17), respectively:

{

SX ← SX · ((X2) · XiXj − (XZ) · (XiZj + XjZi) + (Z2) · ZiZj),

SZ ← SZ · ((X2) · ZiZj − (XZ) · (XiZj + XjZi) + (Z2) · XiXj);
(16)

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

T1 ← T1 · XiXj + T0 · (XiZj + XjZi),
T0 ← T0 · XiXj ,

T�−2 ← T�−2 · ZiZj + T�−1 · (XiZj + XjZi),
T�−1 ← T�−1 · ZiZj .

(17)

The new formulae (16) and (17) require 7M + 4a and 6M + 2a respectively, as
X2,XZ and Z2 can be reused if they are computed once at the beginning of the
algorithm.

Furthermore, for any indices m and n with m �= n, Xm+nXm−n, Zm+nZm−n

and Xm+nZm−n +Xm−nZm+n can be computed from (Xm : Zm) and (Xn : Zn)
as follows. As in [14], let (x3, y3) = (x1, y1) + (x2, y2) and (x4, y4) = (x1, y1) −
(x2, y2), where (x1, y1) �= (x2, y2) ∈ Ma,b(K). By the addition law, x3x4 and
x3 + x4 can be expressed without using y-coordinates:

x3x4 =
(1 − x1x2)2

(x2 − x1)2
, x3 + x4 =

2(x1 + x2)(x1x2 + 1) + 4ax1x2

(x2 − x1)2
. (18)

Considering them over P
1(K), we have:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

Xm+nXm−n = C(XnXm − ZnZm)2,

Zm+nZm−n = C(XnZm − XmZn)2,
Xm+nZm−n + Xm−nZm+n = 2C(XnZm + XmZn)(XnXm + ZnZm)

+ 4AXnXmZnZm.

(19)
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Equation (19) can be computed by 9M + 3S + 7a field arithmetic operations
using the following transformation:

4AXnXmZnZm = A
(

(XnXm + ZnZm)2 − (XnXm − ZnZm)2
)

.

In summary, if we have (Xm : Zm) and (Xn : Zn) for some m �= n, then
updates for curve and image computation in terms of (Xm+n : Zm+n) and
(Xm−n : Zm−n) can be computed without using those points themselves. This
technique is called the “2-ADD-Skip method” because two executions of ADD for
(Xm+n : Zm+n) and (Xm−n : Zm−n) can be skipped.

Table 1 shows the computational cost of computing updates in terms of two
points, (Xi : Zi) and (Xj : Zj), with and without the 2-ADD-Skip method.

Table 1. Computational cost of updates in terms of two points (Xi : Zi) and (Xj : Zj)
with and without the 2-ADD-Skip method.

(i) Conventional approach(ii) 2-ADD-Skip methodDiff (ii)−(i)

Computing (Xi : Zi) and

(Xj : Zj) or XiXj , ZiZj and

XiZj + XjZi

8M + 4S + 12a 9M + 3S + 7a −1M + 1S + 5a

Updates for image

computation

8M + 8a 7M + 4a 1M + 4a

Updates for curve computationMon 12M + 4a 6M + 2a 6M + 2a

with tE4M 2M + 3a 2M − 3a

Total Mon 28M + 4S + 24a 22M + 3S + 13a 6M + 1S + 11a

with tE20M + 4S + 20a 18M + 3S + 14a 2M + 1S + 6a

Each time the proposed method is used for isogeny computation on Mont-
gomery curves, 6M + 1S + 11a operations can be saved. Therefore, increasing
the usage of this method leads to a faster algorithm for isogeny computation.

4.2 An Efficient Algorithm with 2-ADD-Skip Method

To apply the 2-ADD-Skip method to correct isogeny computations, the following
conditions should be satisfied:

– (Xi : Zi), (Xj : Zj), and (Xi−j : Zi−j) should be available before computing
the point (Xi+j : Zi+j);

– (Xm : Zm) and (Xn : Zn) should be available before computing updates in
terms of (Xm+n : Zm+n) and (Xm−n : Zm−n) with 2-ADD-Skip method; and

– the result is equivalent to that when each update is executed exactly once in
terms of (Xi : Zi) for i = 2, . . . , d without duplication nor omission.

Importantly, it is observed that for a point (Xmi
: Zmi

) and n points (X1 :
Z1), . . . , (Xn : Zn), updates in terms of 2n+1 points can be computed by using a
single update in terms of (Xmi

: Zmi
) and n 2-ADD-Skip methods as {(Xmi−1 :

Zmi−1), (Xmi+1 : Zmi+1)}, . . . , {(Xmi−n : Zmi−n), (Xmi+n : Zmi+n)}, as shown
in Fig. 1.
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2 mi

mi + 1mi − 1 mi + nmi − n . . .. . .

. . .. . .

. . . mk =
d− n

mk + 1mk − 1 dd− 2n . . .. . .. . .

. . .. . .

. . .

2-ADD-skip methods

strategic point

2n leaf nodes

Fig. 1. Complete chain with n-time 2-ADD-Skip methods

In this context, the pivot (Xmi
: Zmi

) is called the i-th strategic point.
Notably, the point addition that is required to compute points corresponding to
leaf nodes can be skipped. If the (i + 1)-th strategic point is set as mi + 2n + 1,
updates can be computed in terms of the next 2n + 1 points, which correspond
to mi + n + 1, . . . , mi + 3n + 1, without duplications nor omissions.

Consider a chain with nodes {2, . . . , d}. When a chain ends with an nth 2-
ADD-Skip method and covers all d−1 nodes without duplications nor omissions,
as shown in Fig. 1, it is defined as a complete chain. Essentially, in a complete
chain, for the last strategic point mk, mk + n = d is satisfied.

As an example, n = 1 is determined in advance, and a complete chain is
constructed as follows. Firstly, 2n + 1 = 3 points (X1 : Z1), (X2 : Z2), and
(X3 : Z3) are prepared via DBL and ADD operations. Given a degree of isogeny
� = 2d + 1, d = 3k + r + 1 can be expressed uniquely, with k ≥ 1 and 0 ≤ r < 3.
Starting from the first strategic point (Xm1 : Zm1) with m1 = 3 + r, then
mi = 3i + r holds for all strategic points. It is easy to verify that an update
can be reached for (Xd : Zd) when the 2-ADD-Skip method is executed with
(X1 : Z1) and (Xmk

: Zmk
). Hence, k 2-ADD-Skip methods can be expected to

be utilized during a complete chain of updates for 2, . . . , d. Algorithm 3 provides
an explicit sequence for the case of n = 1. Here, d ≥ 4 is assumed because the
2-ADD-Skip method is not executed when d ≤ 3 = 2n + 1.

As 6M+1S+11a operations are saved each time the 2-ADD-Skip method is
utilized, approximately 6kM + kS + 11ka operations can be saved as compared
to Algorithm 2. As shown in line 5, M+ 2S operations are additionally required
at the beginning. Moreover, some overheads are involved when r = 1 and r = 0,
where r satisfies d = 3k + r + 1. When r = 1, the first strategic point m1 =
4, as shown in line 12. Hence, an update with (X3, Z3) is computed by the
first 2-ADD-Skip method in lines 29–31, although we have (X3, Z3) in line 6.
Therefore, (6k − 5)M + (k − 4)S + (11k − 6)a operations can be saved because
4M + 2S + 6a operations cannot be saved, which is the cost of ADD to compute
(X3, Z3). Similarly, when r = 0, an update with (X2, Z2) is computed by the
first 2-ADD-Skip method, although it can be found in line 5. Furthermore, DBL
is required instead of ADD, as in line 23, which requires an additional 2a except
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in the case d = 4. Hence, (6k − 5)M + (k − 4)S + (11k − 8)a operations can be
saved for k ≥ 2.

Thus, the proposed algorithm can reduce at least (6k − 5)M + (k − 4)S +
(11k−8)a field arithmetic operations for k = (�−2)/6�. Therefore, it is superior
to the combined algorithm in [13] and [2] when d ≥ 6, � ≥ 13.

4.3 Renewed Isogeny Computation with Twisted Edwards Curves

The 2-ADD-Skip method can be applied to curve computation on twisted
Edwards curves as follows.

{

πY ← πY (XiXj + ZiZj − (XiZj + XjZi)) ,

πZ ← πZ (XiXj + ZiZj + (XiZj + XjZi)) .
(20)

It is noted that 3a additional operations are required here in contrast to the
conventional iterative algorithm, in which Xi ± Zi is obtained at no additional
cost by reusing the point computation results. As mentioned earlier, Table 1
shows that 2M + 1S + 6a operations can be saved each time the 2-ADD-Skip
method is utilized. Because the same overheads are involved as in Sect. 4.2, this
algorithm can avoid at least (2k − 5)M + (k − 4)S + (6k − 8)a field arithmetic
operations for k = (� − 2)/6� as compared to with the algorithm in [5]. Hence,
the proposed algorithm is fast even with the curve computation with twisted
Edwards curves, when d ≥ 9, � ≥ 19.

4.4 Constructing Dummy Isogenies for Constant-Time CSIDH

As mentioned in Sect. 2.4, CSIDH implementations can be protected against
side-channel attacks by always computing a constant number of �-isogenies
while choosing appropriately between a dummy and a real isogeny computa-
tions. Because �-isogeny inherently removes a factor of � from the order of the
image point φ(P ), the dummy isogeny computation must perform scalar multi-
plication [�]P . Using the proposed approach, a dummy isogeny computation can
also be performed with two extra ADD operations, resulting in similar overheads
as in [6]. Specifically, for any d, (Xd−3n+1 : Zd−3n+1) and (Xd−n : Zd−n) are
obtained as the last two strategic points. We can obtain (Xd+n+1 : Zd+n+1)
by ADD((Xd−3n+1 : Zd−3n+1), (Xd−n : Zd−n), (X2n+1 : Z2n+1)). Then, (X2d+1 :
Z2d+1) can be computed by ADD((Xd+n+1 : Zd+n+1), (Xd−n : Zd−n), (X2n+1 :
Z2n+1)). Thus, the proposed approach can also increase the speed of constant-
time CSIDH implementations.

5 Experimental Results

5.1 Results for CSIDH-512

To demonstrate the efficiency of the proposed method, it was applied to
CSIDH-512, which involves �i-isogenies for (�1, . . . , �74) = (3, . . . , 587), the
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first 73 smallest odd primes and 587. The proposed algorithm is imple-
mented in C by replacing the xISOG function in the reference implementa-
tion https://zenon.cs.hs-rm.de/pqcrypto/faster-csidh [5]. It is noted that twisted
Edwards curves were used for the curve computation in both cases. The exper-
iments were performed using bench.c from the same repository, by taking an
average of over 10000 runs on an Intel Core i7-8569U Coffee Lake processor
running Ubuntu 16.04LTS for both case. Table 2 shows a comparison between
the proposed algorithm and that in [5] with regard to the computational cost in
clock cycles and wall-clock time for the evaluation of the class group action in
CSIDH.

Table 2. Comparison of evaluation of class group action in CSIDH-512.

Previous work Proposed method Ratio

Clock cycles × 106 96.16 89.69 0.9327

Wall-clock time (ms) 48.20 44.97 0.9329

As seen in the table, the implementation of the proposed algorithm can increase
the speed of CSIDH-512 by approximately 6.7% as compared to that in [5].

5.2 Comparison with Bernstein et al.’s Algorithm

Toward the end of March in 2020, Bernstein et al. proposed a new algorithm to
compute �-isogeny by Õ(

√
�) [11]. Isogeny computation was treated as a poly-

nomial evaluation and performed in a systematic manner using the resultant
computation. As a result, they successfully reduced the number of points to be
computed in the kernel. Particularly, their biquadratic relation in [[3], Exam-
ple 4.4] is essentially identical to Eq. (18), although both works are conducted
individually.

Figures 2 and 3 compares the proposed algorithm, Bernstein et al.’s algo-
rithm, and the previous algorithm [5] for isogeny computation with each degree
in terms of required number of field multiplications and clock cycles, respectively.

3.898

5.000

6.461

3 10 20 30 50 100 200 300 587

Fig. 2. Required numbers of field multiplications during �-isogeny divided by � + 2
(Color figure online)

https://zenon.cs.hs-rm.de/pqcrypto/faster-csidh
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1263.74

1500.00

1638.14

3 10 20 30 50 100 200 300 587

Fig. 3. Required numbers of clock cycles during �-isogeny divided by �+2 (Color figure
online)

These experiments were performed by referring implementation in https://
velusqrt.isogeny.org [11]. Numbers of field multiplications and clock cycles were
obtained by a median across 15 experiments on an Intel Core i7-8569U Coffee
Lake processor running Debian 10.4 with Turbo Boost disabled. In these figures,

Algorithm 3. Isogeny computation on Montgomery curves with 2-ADD-Skip
method
Input: d ≥ 4, (X : Z), (X1 : Z1), and (A : C)
Output: (X′ : Z′) and (A′ : C′)
1: t+ ← X + Z, t− ← X − Z // 2a

2: t0 ← t− · (X1 + Z1), t1 ← t+ · (X1 − Z1) // 2M + 2a
3: (SX : SZ) ← (t0 + t1, t0 − t1) // 2a
4: (T0, T1, T�−2, T�−1) ← (X1, Z1, Z1, X1)

5: XX ← X2, XZ ← X · Z, ZZ ← Z2 // M + 2S
6: (X2 : Z2) ← DBL((X1 : Z1), (A : C)) // 4M + 2S + 8a
7: (X3 : Z3) ← ADD((X2 : Z2), (X1 : Z1), (X1 : Z1)) // 4M + 2S + 6a
8: (r, k) ← ((d − 1) mod 3, �(d − 1)/3	)
9: for i = 1 to k do
10: m ← 3 ∗ i + r
11: if i == 1 then
12: if r ≡ 1 (mod 3) then
13: (X4 : Z4) ← ADD((X3 : Z3), (X1 : Z1), (X2 : Z2)) // 4M + 2S + 6a
14: Update (SX : SZ) by (11) with (X2 : Z2) // 4M + 4a
15: Update (T0, T1, T�−2, T�−1) by (12) with (X2 : Z2) // 6M + 2a
16: else if r ≡ 2 (mod 3) then
17: (X5 : Z5) ← ADD((X3 : Z3), (X2 : Z2), (X1 : Z1)) // 4M + 2S + 6a
18: Update (SX : SZ) by (11) with (X2 : Z2) // 4M + 4a
19: Update (T0, T1, T�−2, T�−1) by (12) with (X2 : Z2) // 6M + 2a
20: Update (SX : SZ) by (11) with (X3 : Z3) // 4M + 4a
21: Update (T0, T1, T�−2, T�−1) by (12) with (X3 : Z3) // 6M + 2a
22: end if
23: else if m == 6 then
24: (X6 : Z6) ← DBL((X3 : Z3), (A : C)) // 4M + 2S + 8a
25: else
26: (Xm : Zm) ← ADD((Xm−3 : Zm−3), (X3 : Z3), (Xm−6 : Zm−6)) // 4M + 2S + 6a

27: end if
28: Update (SX : SZ) by (11) with (Xm : Zm) // 4M + 4a
29: Update (T0, T1, T�−2, T�−1) by (12) with (Xm : Zm) // 6M + 2a
30: Compute t = (Xm+1Xm−1, Xm+1Zm−1 + Xm−1Zm+1, Zm+1Zm−1)

by (16) with (Xm : Zm) and (X1 : Z1) // 9M + 3S + 7a
31: Update (SX : SZ) by (17) with t, XX, XZ and ZZ // 7M + 4a
32: Update (T0, T1, T�−2, T�−1) by (17) with t, XX, XZ and ZZ // 6M + 2a
33: end for
34: (X′ : Z′) ← (

X · (SX)2 : Z · (SZ)2
)

// 2M + 2S

35: (A′ : C′) ← (
A · T0 · T�−1 − 3C(T0 · T�−2 − T1 · T�−1) : C · T 2

�−1

)
// 5M + S + 4a

36: return (X′ : Z′) and (A′ : C′)

https://velusqrt.isogeny.org
https://velusqrt.isogeny.org
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the horizontal axis corresponds to degree � for 74 primes used in CSIDH-512,
which consists of the first 73 smallest odd primes and 587. The vertical axis
corresponds to required clock cycles, which is obtained by a median across 15
experiments, divided by �+2 as in [11]. The figure are displayed on a logarithmic
scale. Moreover, green, red, and blue dots represent the proposed algorithm,
Bernstein et al.’s algorithm, and the previous algorithm, respectively. It is shown
that the proposed algorithm has the lowest number of field multiplications and
clock cycles for 19 ≤ � ≤ 157 and 19 ≤ � ≤ 373, respectively. It is noted that
the proposed algorithm is not asymptotically faster than the Bernstein et al.’s
algorithm.

6 Conclusion

In this study, efficient algorithms for isogeny computation were investigated
to accelerate isogeny-based cryptography. A technique we call “2-ADD-Skip
method” was proposed for isogeny computation on Montgomery curves. This
method can reduce the amount of computation for points in the kernel (Xi : Zi).
Furthermore, the method was used to construct explicit algorithms for isogeny
computation with odd degree �. This study also shows that 2-ADD-Skip method
can also increase the speed of constant-time CSIDH implementations.

Moreover, the computational costs of the proposed algorithms were analyzed
in terms of number of field multiplication M, squaring S, and addition a. The
results show that, compared with the combined algorithm by Costello et al. [13]
and Castryck et al. [2], the proposed algorithm can save at least (6k − 5)M +
(k − 4)S + (11k − 7)a field arithmetic operations for isogeny computation for
k = (� − 2)/6�. Hence, the proposed approach can enable a lower number of
operations when � ≥ 13. Even when the curve computation is performed with
twisted Edwards curves, the proposed algorithm can save at least (2k−5)M+(k−
4)S+(6k−7)a field arithmetic operations compared with the algorithm by Meyer
et al. [5] In this case, it can enable a lower number of operations when � ≥ 19.
It was found that a CSIDH-512 implementation with the proposed algorithm for
isogeny computation is approximately 6.7% faster than that obtained by Meyer
et al. Although the proposed algorithm is not asymptotically faster than the
Bernstein et al.’s algorithm [11], experiments showed that it requires still lower
number of clock cycles for 19 ≤ � ≤ 373. It is noted that the number of leaf
nodes is fixed to n = 1 in the proposed algorithms, and exploring n will give
more efficient algorithms.
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Abstract. Recently, FACE-LIGHT was proposed on 8-bit AVR MCUs
for fast AES encryption. FACE-LIGHT is an extended version of Fast
AES-CTR mode Encryption (FACE) method which was firstly proposed
for high-end processors and it is tailored for performance on 8-bit AVR
MCUs. Even though it has achieved high performance, it has to suffer
from the overhead caused by table generation. Thus, when the num-
ber of blocks is less than a certain number, the table generation over-
head is greater than the gains from using the generated table in the
process of encryption. In other words, FACE-LIGHT needs to gener-
ate new tables whenever the Initial Vector (IV) is changed. Thus, fre-
quent table regeneration results in a significant performance degrada-
tion. In this paper, we present an efficient implementation of AES block
cipher on 8-bit AVR Microcontrollers (MCUs). Our method combines
ShiftRows, SubBytes, and MixColumns operations into one with column-
wise fashion and makes full use of registers of AVR MCUs for high per-
formance. With handcrafted assembly codes, our implementation has
achieved 2,251, 2,706, and 3,160 clock cycles for 128-bit, 192-bit, and
256-bit security, respectively. Our implementation outperforms FACE-
LIGHT with respect to overall performance including table generation
and block encryptions until around 1,850 blocks (resp. 15,000 blocks)
for 128-bit (resp. 192-bit) security. With respect to 256-bit security, our
implementation always outperforms FACE-LIGHT without considering
the table generation time. Our implementation operates in constant time
and can be used for not only CTR mode, but also CBC mode differently
from FACE-LIGHT.

Keywords: AES · Optimization · 8-bit AVR · Atmega · Embedded ·
WSN · Sensor node · Counter mode · CTR mode

1 Introduction

With development of Internet of Things (IoT) technology, Wireless Sensor Net-
works (WSNs) have been widely used for various applications such as smart
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factory, smart farm, military surveillance systems, and home automation sys-
tems. In WSNs, sensor nodes collect information at where they are deployed
and transmit it to the server with wireless communication. Thus, the data needs
to be encrypted in order to provide confidentiality of the sensitive data. How-
ever, applying encryption to transmitted data is challenging on WSNs because
the sensor nodes are very resource-constrained. For example, MICAz mote is
a popular sensor node in WSNs and it is equipped with 8-bit AVR Atmega128
microcontroller clocked at 7.3728 MHz and it has only 4 KB SRAM. Atmega328p,
our target MCU, is also widely used for various types of sensor nodes.

AES cipher is widely used in several communication standards for data confi-
dentiality in WSNs. Until now, many researchers have presented efficient imple-
mentations of AES on 8-bit AVR MCUs. Among them, recently FACE-LIGHT
was proposed for fast AES CTR encryption on 8-bit AVR MCUs [11]. FACE-
LIGHT is an extended version of FACE(Fast AES-CTR mode Encryption) [3],
originally proposed for high-end processors. Its main idea is to build Lookup
tables of 4 KB containing all possible values until Round 2, and to utilize them
for fast computation of the first two rounds. Actually, it can encrypt a 128-
bit data block in 2,218 clock cycles (cc) with 128-bit security. Although it has
achieved high performance, it has to suffer from the overhead caused by Lookup
table generation. Actually, FACE-LIGHT needs to rebuild the Lookup tables
whenever the nonce value in the IV(initialization vector) changes (In our esti-
mation, it requires around 61,440 cc for generating Lookup tables). Therefore,
FACE-LIGHT is not suitable for environments where the communication session
is frequently refreshed. In WSNs, the communication session can be frequently
refreshed because the sensor nodes are usually deployed on harsh environments.

In this paper, we present an efficient implementation of AES on 8-bit AVR
MCUs for data confidentiality in WSNs. Our method integrates ShiftRows, Sub-
Bytes, and MixColumns operations into one for fast round computation and
makes full use of registers in the target MCU. Differently from FACE-LIGHT
using 4 KB Lookup tables affected by IV value, our implementation utilizes con-
stant Lookup tables of just 512 Bytes which is affordable in SRAM of 8-bit AVR
MCUs. Furthermore, the table Lookup operations are optimized for high per-
formance in our implementation. Therefore, with handcrafted assembly codes,
our implementation can encrypt a 128-bit data block in 2,251 (resp. 2,706 and
3,160) cc with 128-bit (resp. 192-bit and 256-bit) security. Our implementation
outperforms all existing AES implementations including FACE-LIGHT on 8-
bit AVR with respect to overall performance including Lookup table generation
and block encryption. In detail, our implementation provides improved perfor-
mance compared with FACE-LIGHT until encrypting 1,850 blocks (resp. 15,000
blocks) for 128-bit (resp. 192-bit) security. Notably, our implementation always
outperforms FACE-LIGHT without considering Lookup table generation time
for 256-bit security. Our implementation executes in constant time, which pro-
vides the resistance against timing attack and it can be efficient executed with
not only CTR mode, but also CBC mode differently from FACE-LIGHT.
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Table 1. Notations

Symbol Meaning

state
Internal State composed of 16 bytes (typically 4 by 4
matrix)

Nb Number of Columns (32-bit words) comprising the
state

Nk Number of 32-bit words comprising the state

Nr Number of rounds depending on key length

Subbytes()
Transformation using a non-linear byte substitution
table (SBOX-Table)

ShiftRows()
Transformation cyclically Shifting the last three rows
of the state by different offsets

MixColumns()
Transformation taking all of the columns of the state
and mixing their data to produce new columns

AddRoundKey()
Transformation adding RoundKey to the state with
XOR operation

KeyExpansion()
Routine generating a series of Round Keys from a
master key

2 Overview of AES Block Cipher and 8-Bit AVR MCUs

2.1 Overview of AES Block Cipher

AES is the most widely used 128-bit block cipher providing 128, 192, and 256-
bit security. Table 1 defines notations used in this paper. Each round of AES
encryption except for the last round is composed of Subbytes(), ShiftRows(),
MixColumns(), and AddRoundKey() functions. MixColumns() function
is not executed in the last round. The number of rounds in the AES depends
on the length of the key initially entered [1]. AddRoundKey updates the state
by XORing the state with round key. Subbytes provides Confusion effect, and
ShiftRows and MixColumns cause Diffusion effect during AES operation. Sub-
Bytes is a single substitution operation for bytes. ShiftRows rotates the last
three rows of the state. Equation 1 is MixColumns process mixing bytes in each
columns. In the Eq. 1, each byte in a column is updated with Eq. 2.

⎡
⎢⎢⎢⎣

S
′
0,c

S
′
1,c

S
′
2,c

S
′
3,c

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦

⎡
⎢⎢⎣
S0,c

S1,c

S2,c

S3,c

⎤
⎥⎥⎦ (1)
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S
′
0,c = (02 · S0,c) ⊕ (03 · S1,c) ⊕ S2,c ⊕ S3,c

S
′
1,c = S0,c ⊕ (02 · S1,c) ⊕ (03 · S2,c) ⊕ S3,c

S
′
2,c = S0,c ⊕ S1,c ⊕ (02 · S2,c) ⊕ (03 · S3,c)

S
′
3,c = (03 · S0,c) ⊕ S1,c) ⊕ S2,c ⊕ (02 · S3,c)

(2)

In the above equation, (02 ·Si,c) can be computed as a multiplication in GF (28)
with an irreducible polynomial x8 + x4 + x3 + x + 1. (03 · Si,c) can be executed
with a multiplication in GF (28) and additional addition in GF (28). Since all
bytes in the state need to be updated with following Eq. 2, MixColumns causes
the most computational load in AES.

2.2 Overview of 8-Bit AVR MCUs

Table 2. AVR Assembly Instructions

Instruction Operands Operation Clocks

MOV Rd,Rr Copy register from Rr to Rd, Rd ← Rr 1

LD Rd,X Load memory data from X to Rd ,Rd ← (X) 2

LPM Rd,Z Load program memory from Z to Rd ,Rd ← (Z) 3

ST Rr,X Store memory from Rr to X ,(X) ← Rr 2

EOR Rd,Rr Exclusive-OR two register, Rd ← Rd ⊕ Rr 1

LSL Rd Logical shift left, Rd(n) ← Rd(n), Rd(0) ← 0 1

BRCC
k Branch if Carry cleared, if (C = 0) then PC ← PC + k + 1

1/2

SET None Set T in SREG, T ← 1 1

RJMP k Relative jump, PC ← PC + k + 1 2

8-bit AVR is the most widely used embedded MCU for low-priced embedded
devices including sensor nodes in WSNs. The AVR’s commands consist of oper-
ation codes and operand, which have more than 130 commands. operand can use
registers, memory, and constant values as targets for the command, and some-
times, according to the command, it is included in the command code without an
operation [5]. All AVR commands require less than 4 clock cycles to execute [7].
Table 2 shows operand and clock cycles of commands used in this paper [6]. Cur-
rently, there are various types of AVR microcontrollers, and they have various
peripherals and memory sizes. AVR is divided into Flash memory, SRAM and
EEPROM with a Harvard architecture. the AVR-MCU has 32 general-purpose
resisters with an 8-bit size, which are used for various roles, including basic pri-
vate operation and bit operation. In particular, the R26 - R31 registers can be
combined into two each and used as three 16-bit registers, X, Y, and Z registers.
They are used as pointers to indirectly specify a 16-bit address for data mem-
ory. There is also a SREG(Status Register) that show the status and result after
ALU calculation.
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3 Analysis of Existing Implementations on 8-Bit AVR

3.1 Analysis of Otte et al.’s Implementation

In Otte et al.’s AES implementation [2], the state are stored in general-purpose
registers of AVR to minimize memory access time. SBOX-Table is stored in Flash
Memory and its value is loaded with LPM instruction. KeyExpansion is executed
before beginning encryption process and the generated round keys are stored in
memory. Otte et al.’s implementation requires 3 clock cycles to load a value in
SBOX-Table located at Flash memory. Since Arduino UNO, the most popular 8-
bit embedded device, has 2 KB of SRAM, SBOX-Table of 256-bytes is affordable
in SRAM. Therefore, storing SBOX-Table in SRAM could achieve performance
improvement because accessing a value in SRAM costs 2 clock cycles .

Algorithm 1. MixColumns of Otte et al.[2]

1: .irp row, in 0,1,2,3

2: MOV r0, ST\row\()2

3: EOR r0, ST\row\()3

4: MOV T2, r0

5: MOV T0, ST\row\()0

6: EOR ST\row\()0, ST\row\()1

7: EOR r0, ST\row\()0

8: LSL ST\row\()0

9: BRCC 3f

10: EOR ST\row\()0, 1B

11: 3: EOR ST\row\()0, ro

12: EOR ST\row\()0, T0

13: MOV T1, ST\row\()1

14: EOR T1, ST\row\()2

15: LSL T1

16: BRCC 3f

17: EOR T1, 1B

18: 3: EOR T1, r0

19: EOR ST\row\()1, T1

20: LSL T2

21: BRCC 3f

22: EOR T2, 1B

23: 3: EOR T2, r0

24: EOR ST\row\()2, T2

25: EOR T0, ST\row\()3

26: LSL T0

27: BRCC 3f

28: EOR T0, 1B

29: 3: EOR T0, r0

30: EOR ST\row\()3, T0

31: .endr

Algorithm 1 is the MixColumns implementation of Otte et al.’s. In Algo-
rithm1, STij(i, j ∈ [0, 3]) is a register for maintaining the byte located at i-th
row and j-th column in the state. Otte et al.’s implementation make full use
of Ti(i ∈ [0, 3]) register in order to recycle the computed values without mem-
ory accessing. Otte et al.’s implementation requires branch instruction and label
depending on the value of carry flag C in SREG to compute a multiplication in
GF (28). In other words, if the result of LSL instruction makes the carry flag set,
the result needs to be XORed with 0x1b. However, BRCC instruction requires a
2 clock cycles when the carry Flag is zero, and vice versa, 1 clock cycles occurs,
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which results in non-constant timing execution. Therefore, Otte et al.’s imple-
mentation provides additional information to the attackers in view of timing side
channel analysis.

3.2 Analysis of FACE-LIGHT

FACE-LIGHT is an optimized AES-CTR implementation on 8-bit AVR MCUs
by constructing Lookup tables related to IV and recycling them for performance
improvement [4]. Actually, FACE-LIGHT is an extended version of FACE [3]
which was proposed for general purpose CPU environments. Although FACE
is fast, however, it has the disadvantage of updating the Lookup tables every
256 encryption times. Furthermore, it requires 5 KB memory for storing Lookup
tables. FACE-LIGHT reduces the size of Lookup tables into 4 KB and does not
require to renew the Lookup tables during encryption process.

Fig. 1. Overview of FACE-LIGHT [4]

Figure 1 describes the process of FACE-LIGHT. It utilizes IV where first 4
bytes are used for counter value differently from the original CTR mode using
last 4 bytes as the counter value. In Round 0, only operation is AddRoundKey.
the plaintext and roundkey is XORed. Thus, as the counter value in IV increases,
only 4 bytes of state changes. Round 1 performs SubBytes, ShiftRows, and Mix-
Columns operations in the same way as a typical AES implementation. Through
SubBytes operation, only 4 bytes differs from the previous block. Namely, the
nonce parts in IV does not change (only counter parts change). This is the same
as ShiftRows operation. However, in MixColumns operation, 8-bit data is mixed
with 32-bit columns. Therefore, the counter value of IV is spread to the each
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column through MixColumns operation in Round 1. For example, S[0] affects
S[5], S[10] and S[15]. The same applies to other counters S[1], S[2] and S[3]. In
addition, there are only 256 cases for each counter. As the counter value of IV
changes, the difference from the previous block in the Round 0 is at most 4 bytes,
and the difference in the Round 1 is at most 16 bytes from the previous block.
However, even though the change of counter values updates each column, this
result can be saved as a Lookup table. SubBytes and ShiftRows operations in
Round 2 can be also optimized because the diffusion process does not take place
unlike Mixcolumns operation. The Lookup table used in FACE-LIGHT includes
the results up to the SubBytes in Round 2, and ShiftRows can be omitted by
assigning the results directly to the register.

Algorithm 2. Generation of Lookup table for S[3] of IV in FACE-LIGHT
Require: byte Counter[4], byte key[4]

Ensure: byte Lookuptable[4][256]

1: byte state[4]

2: for i = 0 to 255 do

3: state = Counter

4: MixColumns(state)

5: AddRoundKey(Counter,key)

6: Subbyte(state)

7: Lookuptable[4][i] = state

8: Counter = Counter + 1

9: i = i + 1

10: end for

Among the IV’s of FACE-LIGHT, S[0], S[1], S[2], and S[3] are counters and
can have 256 values each. Algorithm 2 shows the creation of 256 byte tables
for S[3] in FACE-LIGHT. During initial 256 encryptions, only S[3] changes,
and during AddRoundKey and Subbytes of Round 0, the difference from the
previous block is only 1 byte. The ShifRows of 1 Round is implemented by direct
means of bringing results, the actual necessary computations are MixColumns
and AddRoundKey operation transformations, and the Subbytes of Round 2.

The FACE implementation requires updating some parts of Lookup tables
after encryption 256 times. Furthermore, whole Lookup tables needs to be recon-
structed whenever the IV is refreshed. In [3], the time for generating Lookup
tables is almost same as time for encrypting 47 blocks on general purpose CPU
environments. However, in view of cryptographic protocol, timing for generat-
ing Lookup tables needs to be included in the timing cost of whole encryption
process. FACE-LIGHT basically follows the concept of FACE for optimizing
the performance of AES-CTR on 8-bit AVR MCUs. Thus, it also requires huge
timing for constructing Lookup tables of 4 KB. In other words, FACE-LIGHT



An Efficient Implementation of AES on 8-Bit AVR-Based Sensor Nodes 283

needs to generate new Lookup tables whenever the IV is changed. Frequent
regeneration of Lookup tables results in the significant performance degradation.
Furthermore, 4 KB of Lookup tables needs to be located at the flash memory
because it is larger than the size of SRAM in Arduino UNO which is the target
of FACE-LIGHT [4]. Even though the source codes of FACE-LIGHT is open
through github, the codes for generating Lookup tables are omitted [11]. Thus,
we need to estimate the timing for Lookup table generation. In order to estimate
the minimum timing of table generation, we have utilized the description of the
table generation presented in FACE-LIGHT. In addition, from the open source
codes of FACE-LIGHT, we have found out that FACT-LIGHT made use of Otte
et al.’s implementation from Round 2 to the last Round. Therefore, the number
of clock cycles for generating Lookup table is estimated based on the paper [4]
and the implementation of Otte et al. [2]. Since our estimation is conservative
(actually, we have excluded the timing for extra operations), it is likely that
more clock cycles will be required if it is implemented in practice. Algorithm 2
shows the implementation of Look up table for S[3] of IV.

It takes 3 clocks cycles to perform LD and EOR commands for AddRoundKey
operation of Round 0, and 4 clocks to perform MOV and LPM in the Subbytes
operation of Round 1. In Otte et al.’s implementation, it takes 25 cc to calculate
the each Columns [2]. The AddRoundKey in the Round 1 and Subbytes in
the Round 2 require 28 clocks cycles, because all 4 bytes must be calculated.
Therefore, a total of 15, 360 cc ((3+ 4+ 25+ 28) ∗ 256 = 15, 360) are required to
make the Lookup table[4][256] corresponding to S[3]. In an AVR environment,
FACE-LIGHT has the advantage of having a table of 4 KB and not renewing,
which is done by creating a table for each counter. In other words, a total of
61, 440(15360 ∗ 4 = 61, 440) is required to make a table for S[0], S[1], S[2], and
S[3]. The 4 KB Lookup table should be stored in the 32 KB Flash memory in
Atmega328P which is the target MCU of FACE-LIGHT. Since the Look up table
is stored during the encryption process, the boot-loader system must be used to
generate the Lookup table of FACE-LIGHT. Therefore, it is necessary to read the
pages in Flash memory, then change the data, and rewrite the entire page area.
Therefore, This incurs additional costs. Considering that both the Otte et al.
based on AES-128 bit implementation and the FACE-LIGHT implementation
require 2, 600 cc or less, the table generation time for FACE-LIGHT requires a
very large clock cycle. This is the same as the clock cycles that take about 24
encryption times.

Our estimation seems to be reasonable because the timing for Lookup table
generation is almost same as encrypting 24 blocks on 8-bit AVR MCUs, which is
less that that of FACE on conventional CPUs environments. Actually, 8-bit AVR
MCUs have much less computing capabilities than conventional CPUs. Thus, it
is more likely that Lookup table generation on 8-bit AVR MCUs requires more
clock cycles than on conventional CPUs. However, since we have conservatively
estimated the timing for Lookup table generation by omitting extra operations,
our result of our estimation is less than that presented in FACE [3], which
supports the rationale of our estimation.
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In the next Section, we will present an efficient AES implementation tech-
niques optimized on 8-bit AVR MCUs. Our implementation not only executes in
constant time and but also provide fast encryption timing with only 512 bytes
of constant Lookup table.

4 Proposed AES Implementation on 8-Bit AVR MCUs

4.1 Main Idea

Differently from implementation of Otte et al. and FACE-LIGHT, our imple-
mentation optimizes the process of encryption in a constant time manner. In
addition, we propose a more generic AES implementation techniques which can
be used for various mode of operations. Our main idea is to combine the trans-
formations of SubBytes, ShiftRows, and Mixcolumns operations into one by
column-wise fashion differently from row-wise implementations from the works
of Otte et al. and FACE-LIGHT.

Fig. 2. Register scheduling for proposed implementation in the target AVR MCUs

In the row-wise implementation of Mixcolumns, it is effective to use branch
instruction aforementioned in Sect. 3. However, this results in non-constant time
execution. In addition, both works from Otte et al. and FACE-LIGHT locate
SBOX-Table in Flash memory (Since the Lookup table in FACE-LIGHT is 4 KB
it needs to be stored in Flash memory). However, in our implementation, we store
SBOX-Table and MIX-Table in SRAM. We make use of MIX-Table containing
the values of (02 · Si,c, (i ∈ [0, 3]) in Eq. 2) rather than computing it. Thus,
our implementation requires only 512 bytes of Lookup tables having constant
values. The 512 bytes of SBOX-Table and MIX-Table is constant and does not
change for each encryption session. Furthermore, we minimize the number of
Lookup tables accesses in the MixColumns operation, which will be described
in detail with Sect. 4.2. With this approach, we can optimize the performance of
the MixColumns operation with a constant time manner.

For efficiency, we maintain the state of the encryption process in 16 general-
purpose registers in AVR MCUs. Figure 2 shows the register scheduling of our
implementation. Through this scheduling, we can use assembly instruction such
as MOVW that can be only applicable on even-numbered registers, which can reduce
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by 1 clock cycle from 2 calls of MOV instructions. R0-R15 are used to maintain
the values of the state in the encryption process. Thus, all states are updated
in the register without memory accesses. Eight registers (R16-R23, aliased as
M0, M1, M2, M3, T0, T1, T2, and T3) are used as temporary registers to
recycle the intermediate values in MixColumns. (R26:R27) keeps the address
value of the generated round keys required for the AddRoundKey operation,
(R28:R29) keeps the address of MIX-Table, and (R30:R31) keeps the address of
SBOX-Table.

4.2 Proposed Register Scheduling and Implementation

S̄i,c = SBOX(Si,c�i) and S̃i,c = MIX(Si,c�i), for i ∈ [0, 3]⎡
⎢⎢⎢⎣
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(3)

In our implementation, for efficiency, we combine SubBytes, ShiftRows, and
MixColumns on a column-wise operation as shown in Eq. 3.

The c-th column of state is updated with Eq. 3. In other words, for computing
four bytes of the c-th column, the results of A, B, C, and D parts in Eq. 3 need
to be XORed. We maintain the intermediate result of each part in M0, M1, M2,
and M3 registers. Namely, the value of the first row in each part is maintained
at M0. Likewise, the second, the third, and the fourth bytes of each part are
maintained in M1, M2, and M3 registers, respectively. For optimizing the usage
of limited registers in AVR MCUs, we accumulate the results of each part in Eq. 3
in four registers M0, M1, M2, and M3. In other words, at first, the four bytes
result from the computation of the part A are stored in M0, M1, M2, and
M3. Then, when computing the part B, C, and D, each byte result is directly
accumulated into one of M0, M1, M2, and M3. Finally, the accumulated bytes
in M0, M1, M2, and M3 are stored in ST registers holding state bytes. Our
implementation processes SubBytes operation with Table Lookup by accessing
SBOX-Table in RAM. In other words, a S̄i,c corresponding to S0,c is retrieved
from SBOX-Table. Similarly, (02 ·S0,c) is efficiently computed with simple Table
Lookup by accessing MIX-Table in RAM. (03·S0,c) can be computed by XORing
the result of SBOX-Table and the result of MIX-Table. For the efficiency of
ShiftRows operation, we store the intermediate result of each part in Eq. 3 at the
shifted position in the scheduled registers rather than actual shifting registers.

Algorithm 3 shows codes for computing the proposed Eq. 3 when c = 0 which
is the combined operation for the first column of the state. The same logic can
be used to compute columns of index c ∈ 1, 3. Note that the addresses for SBOX-
Table and MIX-Table should be loaded Z and Y registers with LDI instruction.
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Algorithm 3. Codes for proposed combined Subbytes, ShiftRows and Mix-
Columns operations with equation 3 when c = 0

Part A Computation

1: MOV r30, ST00
2: LD M1, Z
3: MOV M2,M1 // M2 ← S̄0,0

4: MOV M3,M2
5: MOV r28, ST00
6: LD M0, Y // M0 ← S̃0,0

7: EOR M3,M0 // M3 ← S̃0,0 ⊕ S̄0,0

Part B Computation

8: MOV r30, ST11
9: LD T0, Z

10: EOR M0, T0
11: EOR M2, T0 // M2 ← M2 ⊕ S̄1,0

12: EOR M3, T0 // M3 ← M3 ⊕ S̄1,0

13: MOV r28, ST11
14: LD T0, Y
15: EOR M1, T0 // M1 ← M1 ⊕ S̃1,0

16: EORM0, T0 // M0 ← M0⊕S̃1,0⊕S̄1,0

Part C Computation

17: MOV r30, ST22
18: LD T0, Z
19: EOR M0, T0 // M0 ← M0 ⊕ S̄2,0

20: EOR M1, T0
21: EOR M3, T0 // M3 ← M3 ⊕ S̄2,0

22: MOV r28, ST22
23: LD T0, Y
24: EOR M2, T0 // M2 ← M2 ⊕ S̃2,0

25: EOR M1, T0 // M1 ← M1⊕S̃2,0⊕S̄2,0

Part D Computation

26: MOV r30, ST33
27: LD T0, Z
28: EOR M0, T0 // M0 ← M0 ⊕ S̄3,0

29: EOR M1, T0 // M1 ← M1 ⊕ S̄3,0

30: EOR M2, T0
31: MOV r28, ST33
32: LD T0, Y
33: EOR M3, T0 // M3 ← M3 ⊕ S̃3,0

34: EOR M2, T0 // M2 ← M2⊕S̃3,0⊕S̄3,0

At the beginning of Algorithm3, state registers ST0c, ST1c, ST2c, and ST3c
contain the value of S0,c, S1,c, S2,c, and S3,c where c ∈ 0, 3. Lines 1–7 compute
the part A of Eq. 3. Lines 1–2 load ST00’s corresponding SBox value (S̄0,0)
from SBOX-Table and store it in M1 register. Likewise, lines 5–6 load ST00’s
corresponding value (S̃0,0) from MIX-Table and store it in M0 register. With
line 7, the result of XOR operation with M3 and M0 is stored in M3. Through
lines 1–7, M0, M1, M2, and M3 maintain the result of S̃0,0, S̄0,0, S̄0,0, and
S̃0,0 ⊕ S̄0,0 which are the result of the part A in Eq. 3, respectively. Lines 8–16
accumulate the result of the part B to M0, M1, M2, and M3 registers. Note
that we load ST11 rather than actually computing ShiftRows. The operation
sequences of lines 8–16 (for computing the part B), lines 17–25 (for computing
the part C), and lines 26–34 (for computing the part D) are identical except
for the related registers. After finishing Algorithm3, M0, M1, M2, and M3
registers contain S

′
0,0, S

′
1,0, S

′
2,0, and S

′
3,0, respectively.

The implementations in row-wise fashion, as shown in Eq. 2, calculate
(S′

i,c, (i ∈ [0, 3])) for each row, there are memory accesses for Si,c, (i ∈ [0, 3])
for each calculation of rows. Also, non-constant time execution occurs by cal-
culating in both (02 · Si,c) and (03 · Si,c) directly with branch instruction. The
proposed column-wise implementation focuses on optimizing memory accesses
for each (Si,c, (i ∈ [1, 3])) by reducing the duplicate memory accesses. Since our
method requires only 512 bytes of Lookup Tables they can reside in SRAM, which



An Efficient Implementation of AES on 8-Bit AVR-Based Sensor Nodes 287

enables fast access compared with accessing data in flash memory. In addition,
the proposed combined round transformations execute in constant-time, which
makes the proposed implementation secure against timing attacks.

4.3 CTR Optimization

Our implementation is not limited to a specific mode of operation differently
from FACE-LIGHT. In addition, it’s performance can be improved by using the
characteristics of CTR mode like FACE and FACE-LIGHT. Similar to FACE-
LIGHT, our implementation makes use of four bytes of the counter. Among 16
bytes of the state, 12 bytes are the same in the result of Round 0 (namely,
AddRoundKey) of each block processing. Thus, we can store these 12 bytes as
a Lookup table like [3]. When receiving a new nonce value, our implementation
creates a Lookup table. The creation time for this Lookup table is negligible com-
pared to generation time for Lookup table in FACE-LIGHT, and it contributes
saving of clock cycles during Round 0.

Currently, 8-bit AVR MCUs are used for a variety of applications in WSNs
(Wireless Sensor Networks) [8]. In WSN environments, since session-based cryp-
tographic protocols require too much overhead for resource-constrained sensor
nodes, broadcast-based communication protocols are mainly used. Therefore,
using a long sequence of counter values is not easy for these protocols. In other
words, encrypting many blocks sharing the same nonce value is not suitable for
WSNs using 8-bit AVR MCUs [10]. In Sect. 3.2, we have shown that FACE-
LIGHT requires a large number of clock cycles for creating a Lookup table.
In environments where the nonce value is changed frequently, the overhead for
creating a Lookup table surpasses the benefit of using the generated Lookup
table.

5 Performance Analysis

Table 3. Comparison of AES implementations on AVR in terms of clock cycles

Security Dinu et al. [9] Otte et al. [2] FACE-Light [4] This work This work (CTR)

AES-128 2,835 2,507 2,218 2,289 2,251

AES-192 N/A 2,991 2,702 2,746 2,706

AES-256 N/A 3,473 3,184 3,209 3,160

In this section, we compare our implementation with other existing implementa-
tions including FACE-LIGHT [4] on 8-bit AVR MCUs. Atmega328p is the target
MCU and it is the most popular AVR MCU for Arduino UNO and various sen-
sor nodes in WSNs. It equips Flash memory of 32 KB, EEPROM of 1 KB and
internal SRAM of 2 KB. The measurement environment is Atmel Studio 7 and
the source codes were compiled with -OS option. Table 3 represents a comparison
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of AES’s clock cycles for each implementation. The implementation of both Otte
et al. [2] and Dinu et al. [9] are AES-ECB, and the FACE-LIGHT implemen-
tation is AES-CTR. In this paper, we present an efficient AES implementation
that can be used in various operating mode and AES-CTR with optimization
of FACE in Round 0. Creation time of Lookup Table is not included in Table 3.
Our implementation improves performance over implementation of both Dinu
et al. and Otte et al. and the performance of our implementation increases more
in the AES-CTR. In particular, in AES implementation for 256-bit security,
our implementation has better performance than both Otte et al. and FACE-
LIGHT. Our AES-CTR implementation is more efficient as the key bit length
increases, because FACE-LIGHT optimizes only Round 0 and Round 1. However,
in this work, we optimize AES with combining the three operations(SubBytes,
ShiftRows, MixColumns) and apply to all Rounds except the Round 0 and 10
Round(resp. 12 and 14 Round) for 128-bit (resp. 192-bit and 256-bit) security.
Thus, our implementation is effective rather than FACE-LIGHT as the number
of encryption rounds increases.

Table 4. Running time comparison of AES implementations using 128-bit key (Timings
are measured by clock cycles. NB means the number of blocks.)

NB 1 50 100 200 800 1,850

Otte et al. [2] 2,507 125,350 250,700 501,400 2,005,600 4,665,527

( - ) ( - ) ( - ) ( - ) ( - ) ( - )

FACE-Light. [4] 63,658 172,340 283,240 505,040 1,835,840 4,189,138

(-2,439%) (-37.49%) (-12.98%) (-0.73%) (+8.46%) (+10.2%)

This Work 2,251 112,550 225,100 450,200 1,800,800 4,189,111

(CTR) (+10.2%) (+10.2%) (+10.2%) (+10.2%) (+10.2%) (+10.2%)

Table 4 is a performance table of AES-CTR according to the number of
encryption blocks. The value of the non-sets changes in all sessions. In the cryp-
tographic protocol, the nonce value should change for each session. The table
creation time must be considered in order to use FACE-LIGHT. In Github,
the FACE-LIGHT code for the AVR environment exists [11], however no code
for Lookup table generation exists, thus we estimate it based on the FACE-
LIGHT implementation in Sect. 3. The estimated cost of generating the Lookup
table is 61,440 clock cycles. The creation time of the Lookup table of proposed
implementation in this paper is omitted because it is much smaller than the
memory access time omitted during the estimation of generating the Lookup
table of FACE-LIGHT. Table 4 shows that our implementation requires a lower
clock cycles than the FACE-LIGHT up to 1,850 blocks for 128-bit security. The
performance of our implementation and FACE-LIGHT are compared with the
performance of Otte et al.’s implementation. Thus, our implementation always
provides around 10.2% improvement performance compared with Otte et al.’s
implementation. However, the entire performance of FACE-LIGHT is lower than
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Otte et al.’s implementation until encryption 200 blocks. Based on Table 3, our
implementation outperforms FACE-LIGHT until encrypting 15,000 blocks for
AES-192. Regarding AES-256, our implementation is always faster than FACE-
LIGHT without including table generation time based on Table 3.

6 Concluding Remarks

Due to the development of IoT technology, research to develop optimized per-
formance in a limited environment is required. This is true not only for the basic
performance of IoT, but also for encryption that needs to be additionally per-
formed to protect personal information. Previously, a implementation such as
FACE-LIGHT that optimizes AES in an 8-bit AVR MCUs has been proposed.
In this paper, we present an AES implementation in an 8-bit AVR MCUs that
is more efficient than FACE-LIGHT. We integrated major operations in AES
and implemented them to make the most of the registers on the target MCU.
Unlike FACE-LIGHT, the memory size used for the Lookup tables is reduced
and optimized for use in SRAM. In addition, by using assembly instructions, we
have completed an efficient implementation that eliminates unnecessary opera-
tions. Through the proposed optimization implementation, we obtained 2,251,
2,706, and 3,160 clock cycles for the key lengths of AES, 128-bit, 192-bit, and
256-bit, respectively. These results show up to 10.2% performance improvement
over Otte et al. In this paper, only the optimization implementation for AES in
the 8-bit AVR MCU is presented, but we will study various lightweight block
encryption algorithms in various MCU in the future. This study can be used in
a MCU in a constrained environment used in IoT devices.
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Abstract. The minrank problem is often considered in the cryptanal-
ysis of multivariate cryptography and code-based cryptography. There
have been many multivariate cryptosystems proven insecure due to their
weakness against the minrank attack, which is an attack that transforms
breaking a cryptosystem into solving a minrank problem instance.

In this paper, we review two existing methods, the Kipnis-Shamir
method (KS), and minors modeling for solving a minrank instance, and
then propose a mixed method that merges these two methods. Our
method uses a bilinear subsystem from the KS method and a subsys-
tem from minors modeling. It is at least as effective as the KS method,
and does not require as many minors as minors modeling. Moreover,
we consider applying the hybrid approach on multivariate polynomials
solved in our mixed method to further improve our method. We then
revisit the minrank attack on Rainbow and conclude the previous com-
plexity analysis of the minrank attack on Rainbow is overestimated, and
provide the correct complexity of the minrank attack on NIST PQC 2nd
round Rainbow parameters.

Keywords: Minrank problem · Multivariate cryptography · Gröbner
basis

1 Introduction

With currently widely used cryptosystems, RSA [30] and ECC [25], being threat-
ened by the development of quantum computers because of Shor’s quantum
algorithm [31], research on the post-quantum cryptography has become more
urgent. NIST [1,11] anticipated a realization of quantum computers that are
capable enough of breaking 2048-bit RSA by the year of 2030, and they have
taken actions on standardizing post-quantum cryptosystems.
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Among all candidates of post-quantum cryptosystems, multivariate public
key cryptosystems often face some challenges from a so-called minrank attack,
that is an attack that transforms breaking a cryptosystem into solving a min-
rank problem instance. The rank metric decoding problem, which is the main
problem considered in code-based cryptography, can be reduced to the minrank
problem as well. The minrank problem (MR(q, n,m, r)) asks one to find a lin-
ear combination of given m + 1 matrices M0,M1, . . . ,Mm over a finite field of
order q that has rank between 1 and r. This problem is proven to be an NP-
complete problem [8], and in the field of multivariate cryptography, by far there
are three different methods proposed for solving it, that are the Kipnis-Shamir
(KS) method [24], minors modeling [5] and linear algebra search method [23].

In multivariate cryptography, many attempts on building secure cryptosys-
tems failed due to their weakness against the minrank attack, for example,
HFE [24], SRP [28], ZHFE [9], and TTM [23]. Techniques such as enlarging
parameters or applying modifiers are applied to some multivariate cryptosys-
tems such as Rainbow [16] and HFEv- [27,29] because of the minrank attack.

Unlike fairly well-understood minors modeling and linear algebra search
method, there were not many results published on the complexity analysis of the
KS method until Verbel et al. [33] gave their analysis. They gave a method of
constructing non-trivial syzygies (see definition in Sect. 2.1) for super-determined
minrank instances, and hence understanding the first fall degree (see definition
in Sect. 2.1) of the polynomial system obtained from the KS method, which indi-
cates a tighter complexity bound. This result is used on cryptanalysis on rank
metric code-based cryptosystems [2]. As its advantage, the KS method gives
low first fall degrees for super-determined minrank instances. As its drawback,
it introduces many new variables and its analysis on using subsystems are not
thorough. On the other hand, various analyses on the complexity of minors
modeling are given [10,18,21]. This method does not introduce new variables
but requires a heavy computation of many minors.

Contribution. The first contribution of this paper is to propose a new method
of solving the minrank problem called the mixed method. It uses a bilinear
subsystem (say Sμ) from the KS method and a subsystem (say Tμ) from minors
modeling. When Sμ is an under-determined subsystem, adding Tμ to Sμ means
adding more equations to Sμ without introducing any new variables, and it can
possibly decrease the overall degree of regularity. Conversely, adding Sμ to Tμ

significantly reduces the number of spurious solutions of Tμ. Therefore, when
Sb is under-determined, the proposed mixed method possibly improves the KS
method. When Sμ is an over-determined subsystem, Tμ is not needed, which
means our mixed method reduces to the KS method.

Another contribution of this paper is to consider applying the hybrid app-
roach [4] on multivariate polynomials solved in the mixed method. The hybrid
approach is a combination of exhaustive search and Gröbner basis computation
for solving a set of multivariate polynomials. The values of a few variables of a
polynomial system are specified randomly before solving this system, the process
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terminates once the correct values are used. A bilinear subsystem is used in the
mixed method, which means there are two sets of variables. The more significant
set of variables being specified expects to bring more degree drops in the first fall
degree of a polynomial system. For the mixed method, specifying every variable
from the set that has fewer variables, according to our experiments, expects to
decrease its first fall degree by 1. We also revisit the minrank attack on NIST
PQC 2nd Rainbow proposal by considering the KS, minors modeling and the
mixed method all together. We find that the previous complexity analysis of
the minrank attack on Rainbow Ia, IIIc and Vc parameters [13] are overesti-
mated, that are 2156.1, 2578.0 and 2771.7. We update the new complexity to be
2138.1, 2308.1, 2405.4, and our investigation shows that the proposed parameters
for Rainbow are secure from the minrank attack.

The paper is organized as follows. Section 2 explains about multivariate
quadratic problem and bilinear systems. In Sect. 3, we review the minrank prob-
lem, the KS method and minors modeling. In Sect. 4, we propose a mixed method
for solving the minrank problem and discuss the behavior of the mixed method
coupling with the hybrid approach. In Sect. 5, we present experimental results
on scaled-down Rainbow and application of our method on Rainbow. Finally,
Sect. 6 gives a conclusion.

2 Multivariate Quadratic Problem and Bilinear Systems

2.1 Multivariate Quadratic Problem

Let F be a finite field of order q, m,n ∈ N, and R := F[x1, . . . , xn] be the
polynomial ring in variables x1, . . . , xn over F.

Problem 1 (Multivariate Qudratic Problem). Given a set of quadratic
polynomials f1, . . . , fm ∈ R and a vector y = (y1, . . . , ym) ∈ F

m, find z ∈ F
n

such that f1(z) = y1, . . . , fm(z) = ym.

An effective method for solving this problem is through Gröbner basis com-
putation [7]. Efficient algorithms for computing a Gröbner basis include XL [12],
F4 [19] and F5 [20]. A good indicator of the complexity of computing a Gröbner
basis is the degree of regularity (dreg) [3], which is the maximal polynomial
degree appeared during a process of computing a Gröbner basis. This complex-
ity mainly comes from a computation of the row echelon form of a Macaulay
matrix of degree dreg. Suppose such a Macaulay matrix has size Rdreg

× Cdreg
,

then the complexity of the fast algorithm proposed in [32] for computing its
row echelon form is given by O(Rdreg

Cω−1
dreg

), where 2 ≤ ω ≤ 3 is the linear
algebra constant. The degree of regularity dreg for random systems can be pre-
cisely evaluated, but hard to estimate for specific families of polynomial systems.
Therefore, in cryptographical studies, dreg is often approximated by the first fall
degree (dff ). To define the first fall degree, we need to be familiar with a notion
called non-trivial syzygies.
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Definition 1 (Syzygy). Let {h1, . . . , hm} ∈ R be a set of polynomials. A
syzygy of (h1, . . . , hm) is an m-tuple (s1, . . . , sm) ∈ Rm such that

∑m
i=1 sihi = 0.

The degree of a syzygy s = (s1, . . . , sm) is defined as deg(s) = max
1≤i≤m

deg(sihi).

The linear combinations of m-tuples (s1, . . . , sm) ∈ Rm with si = hj , sj =
−hi for some i, j (i �= j) and st = 0 for t �= i, j are called trivial syzygies.
The syzygies that are not linear combinations of the trivial syzygies are called
non-trivial syzygies. Non-trivial syzygies of the homogeneous components of the
highest degree of h1, . . . , hm account for the non-trivial degree falls during a
Gröbner basis computation.

Definition 2 (First fall degree dff). Let {f1, . . . , fm} ⊂ R be a set of poly-
nomials and {fh

1 , . . . , fh
m} ⊂ R be their homogeneous component of the highest

degree. Its first fall degree is the smallest degree dff such that there exist non-
trivial syzygies (s1, . . . , sm) ∈ Rm of (fh

1 , . . . , fh
m) with maxi(deg(sif

h
i )) = dff ,

satisfying deg(
∑m

i=1 sifi) < dff but
∑m

i=1 sifi �= 0.

Many results on multivariate cryptosystems are based on analyzing dff [14,15,
17], although it is not always true that dff and dreg are very close, experimental
and theoretical evidences in these results have shown it seems to be true for
some cryptographic schemes.

2.2 Bilinear System

A bilinear polynomial is defined as follows.

Definition 3 (Bilinear polynomial). Let x = (x1, . . . , xn1), y =
(y1, . . . , yn2) be variables, F[x,y] be the polynomial ring in x and y over a field
F. A bilinear polynomial f ∈ F[x,y] is a quadratic polynomial, and linear in
each set of variables, i.e. degx(f) = degy(f) = 1.

Regarding a set of bilinear polynomials, there are some special properties,
and we will use Jacobian matrices to explain these properties. The Jacobian
matrix of a set of bilinear polynomials is defined as follows.

Definition 4 (Jacobian matrix). Given a set of bilinear polynomials F =
(f1, . . . , fm) ∈ F[x,y]m, then the Jacobian matrices of F with respect to variables
x and y are given by

Jacx(F ) =
[

∂fi

∂xj

]

1≤i≤m,1≤j≤n1

, Jacy(F ) =
[

∂fi

∂yk

]

1≤i≤m,1≤k≤n2

.

And we have the following proposition for a set of bilinear polynomials:

Proposition 1 (See proof in Appendix). Let F = (f1, . . . , fm) ∈ F[x,y]m be a
set of bilinear polynomials. For G = (g1, . . . , gm) ∈ F[y]m, it is a syzygy of F if
G · Jacx(F ) = 0. Moreover, if G is non-zero, then G is a non-trivial syzygy of
F. Similar statement holds for Jacy(F ).
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From the above proposition, we can construct some non-trivial syzygies of
a set of homogeneous bilinear polynomials F = (f1, . . . , fm) ∈ F[x,y]m using
its Jacobian matrices, which have linear polynomials as its entries, and we need
to compute their left kernels. By Cramer’s rule, see [22], we know the kernel of
such matrices have elements in the span of its maximal minors (also see example
1 and 2 in Appendix). Here, maximal minor refers to determinants of square
submatrices with the maximal size of a matrix.

3 The Minrank Problem

In this section, we introduce the minrank problem and two existing methods for
solving the minrank problem, the KS method and minors modeling.

3.1 The Minrank Problem

The minrank problem is defined as follows.

Problem 2 (Minrank Problem). Given a field F of order q, a positive integer
r ∈ N and n × n matrices M0,M1, . . . ,Mm ∈ F

n×n, find x1, . . . , xm ∈ F such
that Δ = M0 +

∑m
i=1 xiMi, 0 < Rank (Δ) ≤ r. A minrank instance is denoted by

MR(q, n,m, r).

3.2 Minors Modeling

Minors modeling [5] is based on the fact that all (r + 1) × (r + 1) minors of
Δ = M0 +

∑m
i=1 xiMi vanish at (x1, . . . , xm) when Δ has rank no larger than

r. This method gives a system of
(

n
r+1

)2 equations in m variables. The property
of this polynomial system is related to the so-called determinantal ideal. In [10,
18,21], intensive analyses on the property of the ideal generated by polynomials
from minors modeling are given. Minors modeling, as its advantage, does not
introduce any other variables except x1, . . . , xm. But it requires a computation
of as many as

(
n

r+1

)2 minors of a matrix with linear polynomial entries. If we
consider the XL algorithm, there are

(
m+r+1

r+1

)
monomials up to degree r + 1,

and we need
(
m+r+1

r+1

)
independent equations to terminate the XL algorithm,

which means the complete
(

n
r+1

)2 equations are unnecessary to achieve dreg

being r + 1 when
(

n
r+1

)2
>

(
m+r+1

r+1

)
. Every minor is a degree r + 1 polynomial

in variables x1, . . . , xm, which has
(
m+r+1

r+1

)
terms at most. Suppose obtaining

every coefficient takes complexity O(1), computing min{(
n

r+1

)2
,
(
m+r+1

r+1

)} minors

requires a complexity of O
(
min{(

n
r+1

)2
,
(
m+r+1

r+1

)} · (
m+r+1

r+1

))
. Note that when

partial minors are used, dreg turns to be higher and spurious solutions appear.
Moreover, solving the polynomials obtained from making those minors vanish
takes complexity O

((
m+r+1

r+1

)ω
)

, where 2 ≤ ω ≤ 3 is a linear algebra constant.
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3.3 The Kipnis-Shamir Method

The KS method [24] was first used to break the HFE cryptosystem [26]. This
method is based on the fact that the dimension of the right kernel of M0 +∑m

i=1 xiMi should be no smaller than n − r, since it has rank no larger than
r. There exists a canonical echelonized basis for this right kernel, we put these
basis vectors into a matrix as column vectors, then this matrix should be in the

form of
[
In−r

K

]

, where In−r is the identity matrix of size n − r and K is an

r × (n− r) matrix. We denote the column vectors of
[
In−r

K

]

by k̂1, k̂2, . . . , k̂n−r.

Then we have

Δ

[
In−r

K

]

= Δ
[
k̂1, k̂2, . . . , k̂n−r

]
= 0. (1)

If we regard the entries of K as new variables:

K =

⎡

⎢
⎢
⎢
⎣

k1 kr+1 · · · kr(n−r−1)+1

k2 kr+2 · · · kr(n−r−1)+2

...
...

. . .
...

kr k2r · · · kr(n−r)

⎤

⎥
⎥
⎥
⎦

,

then we obtain a system of n(n − r) bilinear equations in variables x =
(x1, . . . , xn) and k = (k1, k2, . . . , kr(n−r)) from (1). Moreover, n − r subsystems
can also be obtained from (1), which are denoted by S1, S2, . . . , Sn−r as follows:

Δ · k̂1 = 0
︸ ︷︷ ︸

S1

, Δ · [
k̂1 k̂2

]
= 0

︸ ︷︷ ︸
S2

, · · · , Δ · [
k̂1 k̂2 · · · k̂n−r

]
= 0.

︸ ︷︷ ︸
Sn−r

Solving a subsystem may take less time than solving the full system. How-
ever, the dff of a subsystem is no smaller than the dff of the full system, i.e.
dff (Si) ≥ dff (Sn−r) for i = 1, . . . , n−r−1. In [33], this is pointed out and they
suggest using subsystems that are determined or over-determined since under-
determined subsystems tend to have higher dff and give spurious solutions.

In [33], Verbel et al. gave a tight bound on the dff of Sn−r, and they exper-
imentally showed the dreg is close to their bound as well. As its advantages,
the KS method can construct a polynomial system more easily compared to
minors modeling, optionally determined or over-determined subsystems can be
used, and for super-determined minrank instances, over-determined subsystems
from the KS method have low dff . However, this method introduces more vari-
ables than minors modeling, i.e. variables k1, k2, . . . , kr(n−r). Moreover, precise
bounds on the dff of the subsystems S1, . . . , Sn−r−1 are not yet clear. Accord-
ing to [33], when Sn−r is used, by only multiplying monomials in variables from
k in the XL algorithm, a complexity of O

((
μr+dff

dff

)ω
)

can be achieved, where

dff = min
1≤d≤r−1

{

d

∣
∣
∣
∣

(
r
d

)
n >

(
r

d+1

)
m

}

+2. And with high probability, dff remains

the same when Sμ is used, where max{ m
n−r , dff − 1} ≤ μ ≤ n − r.
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4 Our Proposed Method

In this section, we propose a new method that combines the KS method and
minors modeling.

4.1 The Mixed Method

Let b1, . . . ,bn be the row vectors of Δ, i.e.

Δ =
[
b1

� b2
� · · · bn−r

� bn−r+1
� bn−r+2

� · · · bn
�]�

.

Since the rank of a matrix is the maximal number of linearly independent column
vectors, we assume the last r rows bn−r+1, . . . ,bn are linearly independent. Then
{bi,bn−r+1, . . .bn} for each i = 1, . . . , n − r is linearly dependent, which gives
us in total n − r linear relations. We can translate the linear dependence of
{bi,bn−r+1, . . . ,bn} into either “find kj for

∑r
j=1 kjbn−r+j = bi” or “(r +1)×

(r +1) minors of the matrix
[
b�

i b�
n−r+1 · · · b�

n

]� vanish.” The approach where
new variables ki are introduced corresponds to a subsystem in the KS method.

Let 1 ≤ μ ≤ n − r be an integer, in the mixed method, we first realize the
linear dependence of {bi,bn−r+1, . . . , bn} for i = 1, . . . , μ by introducing new
variables, the resulting polynomial system is the same with Sμ in the KS method.
Then we compute (r + 1) × (r + 1) minors of the matrices

[
b�

i b�
n−r+1 · · · b�

n

]�

for i = μ + 1, . . . , n − r, we denote this system as Tμ. Finally we solve the Sμ

and Tμ combined polynomial system.
As shown in [33], the more kernel vectors k̂1, k̂2, . . . , k̂n−r are used in the KS

method, the smaller its dff and dreg will become, and when a subsystem Sμ is over-
determined, its dff is smaller than r+2. In the mixed method, the Sμ and Tμ com-
bined polynomial system is used, and polynomials in Tμ have degree r + 1, which
means adding Tμ to an over-determined Sμ does not reduce the overall dff . Hence
we only use an under-determined Sμ in our mixed method, i.e. μ = 1, . . . , � m

n−r �.
The motivation of our method is, on one hand, adding Tμ to an under-determined
Sμ to make all subsystems in the KS method usable and substantially reduces spu-
rious solutions of those under-determined subsystems. On the other hand, mixing
two methods to achieve the lowest dff possible without introducing many addi-
tional variables and computing many minors.

4.2 Complexity Analysis

In this subsection, we investigate the complexity of the mixed method.

I. Case μ = 1

Since F1 = S1 ∪ T1, where S1 is a bilinear polynomial system and T1 has poly-
nomials of degree r + 1. We first analyze the first fall degree of S1, and we have
the following proposition.
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Proposition 2. Let Sh
1 be the homogeneous components of the highest degree of

S1. Sh
1 has non-trivial syzygies in variables k of degree m + 2 and non-trivial

syzygies in variables x of degree r + 2.

Proof. Let Sh
1 be the degree two homogeneous components of S1, then the lowest

degree of its non-trivial syzygies coincide with the dff of S1. The left kernel of
Jack(Sh

1 ) gives non-trivial syzygies of Sh
1 in variables x. Since Jack(Sh

1 ) is an
n × r matrix, and has maximal minors of degree r, we know it gives us non-
trivial syzygies of degree r + 2. On the other hand, the left kernel of Jacx(Sh

1 )
gives non-trivial syzygies of Sh

1 in variables k. Since Jacx(Sh
1 ) is an n×m matrix,

and it has maximal minors of degree min{m,n}, and gives non-trivial syzygies
of degree min{m + 2, n + 2}. 
�

From Proposition 2, we have the first fall degree dff of S1 is no larger than
min{r + 2,m + 2}. Furthermore, we know the left kernel of Jack(Sh

1 ) (resp.
Jacx(Sh

1 )) are n-tuples with polynomial entries, which can be computed from
the maximal minors of Jack(Sh

1 ) (resp. Jacx(Sh
1 )), if there exist common divisors

among those polynomial entries, we would have non-trivial syzygies with lower
degrees. These common divisors are difficult to compute mathematically, but
can be confirmed using experiments. We found that when n ≥ m+ r holds, such
common divisors appear, which means when n ≥ m + r, there exists non-trivial
syzygies of degree ≤ min{r + 1,m + 1}. Related experimental results are shown
in Table 1, it verifies the correctness of using Jacx(Sh

1 ) and Jack(Sh
1 ) to analyze

the dff of S1, and also confirms the existence of the aforementioned common
divisors when n ≥ m + r.

Table 1. Experiments on the dff and dreg of S1, and degrees of the non-trivial
syzygies of Sh

1 from the left kernel of Jacx(Sh
1 ) and Jack(Sh

1 ). ker(Jacx(Sh
1 )) (resp.

ker(Jack(Sh
1 ))) are computed on Magma using the function “Kernel”, where the F4

algorithm is used. Note that when n ≥ m + r satisfies, we have dff = dreg

(q, n, m, r) kerleft(Jacx(Sh
1 )) kerleft(Jack(Sh

1 )) dff (S1) dreg(S1)

(7,6,5,3) 7 5 5 7

(7,7,5,3) 7 5 5 7

(7,8,5,3) 5 4 4 4

(7,9,5,3) 4 3 or 4 3 or 4 4

(7,10,5,3) 3 or 4 3 3 3

(7,11,5,3) 3 3 3 3

Therefore, we conclude with the following upper bounds for the dff of S1 :

n < m + r, dff (S1) ≤ min{r + 2,m + 2},

n = m + r, dff (S1) ≤ min{r + 1,m + 1},

n > m + r, dff (S1) < min{r + 1,m + 1}.

(2)

Regarding the first fall degree of F1 and its relation to the first fall degree of
S1, we have the following proposition.
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Proposition 3 (See proof in Appendix). Let dff (S1) be the first fall degree of
S1, which depends on either the non-trivial syzygies in variables k of degree no
larger than m + 2 or non-trivial syzygies in variables x of degree no larger than
r + 2. From these non-trivial syzygies of S1, non-trivial syzygies of F1 can be
constructed, and the first fall degree of F1 is no larger than dff (S1).

According to this proposition, we have Eq. (2) holds also for F1.

II. Case μ = 2, . . . , � m
n−r �

When 1 < μ ≤ n − r, our method solves a polynomial system Fμ = Sμ ∪ Tμ,
where Sμ is an under-determined bilinear system and Tμ consists of polynomials
of degree r + 1. Similarly, an upper bound for the dff of Fμ can be obtained
by analyzing the first fall degree dff of Sμ and Tμ. Let Sh

μ be the degree two
homogeneous components of Sμ, then we have

Jack(Sh
μ) = Iμ ⊗ Jack(Sh

1 ),

Jacx(Sh
μ) =

⎛

⎜
⎜
⎜
⎝

In ⊗

⎡

⎢
⎢
⎢
⎣

k1 k2 · · · kr

kr+1 kr+2 · · · k2r

...
...

. . .
...

k(μ−1)r+1 k(μ−1)r+2 · · · kμr

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

· Lμ,
(3)

where Lμ ∈ F
nr×m is a matrix derived from the matrices M1, . . . ,Mm.

By (3), the non-trivial syzygies from the left kernel of Jack(Sh
μ) and Jack(Sh

1 )
should have same degree, so Jack(Sh

μ) gives non-trivial syzygies of degree r + 2
when n < m + r and less than or equal to r when n ≥ m + r. Similarly, the
left kernel of Jacx(Sμ) also gives non-trivial syzygies of Sμ. But analyzing their
precise degree is difficult as aforementioned common divisors have to be analyzed.
Nevertheless, we know the dff and dreg of Sμ should be decreasing with μ
increasing from 1 to � m

n−r � since Sμ becomes less under-determined. Therefore,
the dff of the mixed method of μ = 2, . . . , � m

n−r � is upper bounded by the first
fall degree of the mixed method of μ = 1 given in (2).

4.3 Further Improvement

In this section, we consider applying the hybrid approach [4] on the mixed
method. That is to exhaustively guess a few variables before applying Gröbner
basis computation algorithms on the polynomial system obtained by the mixed
method. The question here is to guess which variables. In both the KS method
and the mixed method, we have bilinear systems, which means there are two sets
of different variables. We want to find the set of variables to guess that minimizes
the total complexity. Table 2 presents results about applying the hybrid approach
on S1 under (q, n,m, r) = (7, 13, 8, 5), which should have dff ≤ 6 because of the
non-trivial syzygies from Jack(Sh

1 ). Note that specifying variables from x does
not change the degree of polynomials in T1, therefore its first fall degree will
always be no smaller than r + 1.
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Table 2. Results of hybrid approach on S1 under (q, n, m, r) = (7, 13, 8, 5), and
ker(Jacx(Sh

1 )) (resp. ker(Jack(Sh
1 ))) are computed on Magma using the function “Ker-

nel”, where the F4 algorithm is used. �x� means the nearest integer to x.

# variables specified in x 0 1 2 3 4 5 6 7 8 0 ≤ i ≤ m

deg of syzygies from kerleft(Jacx(Sh
1 )) 8 6 5 4 3 3 2 2 - ≈ 8 − �m·i

m
�

deg of syzygies from kerleft(Jack(Sh
1 )) 6 5 5 4 3 3 2 2 - ≈ 6 − � r·i

m
�

dff 6 5 5 4 3 3 2 2 1 ≈ 6 − � r·i
m

�

# variables specified in k 0 1 2 3 4 5 0 ≤ j ≤ r

deg of syzygies from kerleft(Jacx(Sh
1 )) 8 6 5 3 2 - ≈ 8 − �m·j

r
�

deg of syzygies from kerleft(Jack(Sh
1 )) 6 5 4 3 2 - ≈ 6 − � r·j

r
�

dff 6 5 4 3 2 1 ≈ 6 − � r·j
r

�

The table tells us specifying every variable from k (resp. x) brings −1 to the
degree of syzygies from the left kernel of Jack(Sh

1 ) (resp. Jacx(Sh
1 )), and this can

be rationalized as this specification changes the size of Jack(Sh
1 ) (resp. Jack(Sh

1 ))
to n×(r−1) (resp. n×(m−1)), which gives non-trivial syzygies of 1 less degree.
Moreover, specifying every variable from k (resp. x) decreases approximately the
degrees of the non-trivial syzygies from Jacx(Sh

1 ) (resp. Jack(Sh
1 )) by �m

r  (resp.
� r

m�). Note that this technique can be applied to the mixed method and the KS
method.

Practically, Fμ = Sμ ∪ Tμ is used in the mixed method, Tμ is for decreasing
the overall dff and reducing spurious solutions. When either variables in x or k
are specified, Sμ may turn into a less under-determined or an over-determined
system. In this case, less polynomials or no polynomials from Tμ are needed.
Moreover, specifying either m variables from x or r variables from k leads to a
complete solve of a minrank instance.

Summarizing the discussion, we assume using XL algorithm and only multi-
plying by monomials from variables k or x, let dx (resp. dk) be the lowest degree
of the non-trivial syzygies from Jacx(Sh

μ) (resp. Jack(Sh
μ)), then the complexity

of our mixed method is bounded by1

m ≥ r O

(
min

1≤k<r

{
qk ·

(
min

{(rµ − k + dx − � km
r

�
dx − � km

r
�

)ω

,
(m+ dk − k

dk − k

)ω
}

+ knm

)})

m < r O

(
min

1≤k<r

{
qk ·

(
min

{(m − k + dk − � rk
m

�
dk − � rk

m
�

)ω

,
(rµ+ dx − k

dx − k

)ω
}

+ kn2

)})
4

where 2 ≤ ω ≤ 3 is the linear algebra constant. Note that the complex-
ity given above are for polynomial solving only. For computing minors, sup-
pose Sμ after specifying k variables is under-determined, (n − r − μ)

(
n

r+1

)

minors will be used in the mixed method, which requires a complexity of

1 Note that the computation involving kn2 and kmn can be done in parallel.
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O
(
(n − r − μ)

(
n

r+1

)(
m−k+r+1

r+1

))
when k variables from x are specified, and

O
(
(n − r − μ)

(
n

r+1

)(
m+r+1

r+1

))
when k variables from k are specified. This com-

putation of minors can be done in parallel and its complexity is neglectable
compared to that of polynomial solving.

5 Experiments and Application

5.1 Experiments

The parameters we choose to run experiments on proportionally coincide with
Rainbow [16], which is (q, v, o1, o2) = (16, 5, 5, 5). Note that the first layer of
Rainbow central map polynomials have rank v+o1, and second layer polynomials
have full rank. Its public key has o1 + o2 polynomials. Therefore, we can recover
some first layer Rainbow central map polynomials by solving some minrank
instances MR(q, v + o1 + o2, o1 + o2, v + o1). However, the span of the low rank
polynomials hidden in Rainbow, say Sc (dimension o1), is a subspace of the span
of the public key, say Sp (dimension o1 + o2). The intersection of Sc with any
dimension o2 + 1 subspace of Sp is a subspace of dimension no smaller than 1.
Therefore, using o2+1 polynomials p1, . . . , po2+1 from the public key of Rainbow,
we are able to recover partial Rainbow secret key by solving MR(q, v+o1+o2, o2+
1, v + o1). Moreover, if we fix the variable x1 from x1, . . . , xm in the minrank
problem to be 1, with probability q−1

q , we can still obtain a solution. Therefore,
breaking Rainbow is almost equivalent to solving MR(q, v + o1 + o2, o2, v + o1).

Table 3. Experimental results on MR(16, 15, 5, 10), which is equivalent to breaking
Rainbow(q, v, o1, o2) = (16, 5, 5, 5). The best complexity is 223.4, which is when we
use S1 with hybrid approach of specifying 3 variables out of x1, . . . , xm. dx (resp. dk)
denotes the lowest degree of the non-trival syzygies derived from the Jacobian matrix
of S1 w.r.t variables x (resp. k), and t denotes the total time for computing minors
and solving the obtained polynomials with F4 algorithm

MR(16, 15, 5, 10)

Method dff dreg dk dx t [s] Complexity (ω = 2.8)

Minors 11 11 − − *a
(

m+r+1
r+1

)ω
=

(
5+11
11

)ω ≈ 233.9

KS S2 5 5 − − 615.57
(
2·r+5

5

)ω
=

(
2·10+5

5

)ω ≈ 244.0

S3 4 4 − − 30.49
(
3·r+4

4

)ω
=

(
3·10+4

4

)ω ≈ 243.4

New S1 6 6 10 = r 6 67.20 min{(
m+10

10

)ω
,
(

r+6
6

)ω} ≈ 232.3

fix x1 5 5 8 5 10.80 q ·
(
min{(

m−1+10−2
10−2

)ω
,
(

r+6−1
6−1

)ω} + n2
)

≈ 229.1

fix x1, x2 4 4 6 4 5.12 q2 ·
(
min{(

m−2+10−4
10−4

)ω
,
(

r+6−2
6−2

)ω} + 2n2
)

≈ 225.9

fix x1, ..., x3 3 3 4 3 4.73 q3 ·
(
min{(

m−3+10−6
10−6

)ω
,
(

r+6−3
6−3

)ω} + 3n2
)

≈ 223.4

fix x1, ..., x4 2 2 2 2 4.34 q4 ·
(
min{(

m−4+10−8
10−8

)ω
,
(

r+6−5
6−5

)ω} + 4n2
)

≈ 225.8

fix x1, ..., x5 − − − − − qm · (5n2 + n3

6
) ≈ 230.7

aDue to the limited computation resources, we were not able to obtain this timing.
The computation of minors did not finish in 2 days, which is the maximal time limit
for our platform.
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All of our experiments are executed on a 2.10 GHz Intel
R©

Xeon
R©

Gold 6130
Processor with Magma V2.24-8 [6], where F4 algorithm [19] is implemented. We
run 5 experiments for each set of parameter.

Table 3 shows results on breaking Rainbow(16, 5, 5, 5) by solving a minrank
instance MR(q, n,m, r) = MR(16, 15, 5, 10). Since m + r = n satisfies, S1 in KS
and the mixed method is determined, no extra minors are needed. Hence, in the
mixed method, we only consider using S1 coupling with the hybrid approach.
Namely, we randomly specify variables from x1, . . . , xm in S1, and try to solve
S1. Note for this scaled down Rainbow parameter with m ≤ r and n = m + r,
when only S1 is used, the degree of the non-trivial syzygies from the Jacobian
matrix of S1 w.r.t variables x is r = 10, and the degree of the non-trivial syzygies
from the Jacobian matrix of S1 w.r.t variables k is m + 1 = 6. Comparing to
the KS method and minors modeling, specifying 3 variables in S1 gives the best
complexity, 223.4.

To testify that our mixed method is indeed efficient, we also conduct experi-
ments on MR(16, 9, 6, 6) and MR(16, 11, 6, 8). The results are shown in Table 4.
For minors modeling and the mixed method, computing minors are necessary,
and they are computed on Magma in our experiments, the timings are recorded
under the label tminors in Table 4. tF4 means timings for polynomial solving
using F4 algorithm with graded reverse lexicographical monomial order. This
table shows that minors modeling requires a long time on computing all the
minors needed, but takes shorter time on polynomial solving compared to the
KS and mixed method. As for the KS method, computations of minors are not
required, but it can take a considerably long time on polynomial solving for some
minrank instances, such as parameters presented in Table 4. As for the mixed
method, not as many minors as minors modeling are needed, and it is faster
in polynomial solving than the KS method for certain parameters such as ones
shown in Table 4.

Table 4. Experimental results on solving minrank instances with minors modeling (see
Sect. 3.2), the KS method (see Sect. 3.3) and the mixed method (see Sect. 4.1)

(q, n, m, r) (16, 9, 6, 6) method dff dreg tminors [s] tF4 [s] tminors + tF4 [s]

minors 7 7 39.01 1.56 40.57

KS S2 5 6 0 234.42 234.42

S3 4 5 0 114.29 114.29

mixedμ = 1 8 8 2.17 8.54 10.71

μ = 2 5 6 1.08 247.88 248.96

(q, n, m, r) (16, 11, 6, 8) method dff dreg tminors [s] tF4 [s] tminors + TF4 [s]

minors 9 9 1183.59 14.40 1197.99

KS S2 6 6 0 13375.86 13375.86

S3 5 5 0 3296.61 3296.61

mixedμ = 1 8 10 43.04 395.57 438.61

μ = 2 6 6 21.52 16823.13 16844.65
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5.2 Application on Multivariate Cryptography

Rainbow. A public key from Rainbow(q, v, o1, o2) gives an MR(q, n,m, r) =
MR(q, v+o1+o2, o2, v+o1). For example, Rainbow(16, 32, 32, 32), which achieves
NIST type I security, gives us MR(q, n,m, r) = MR(16, 96, 32, 64). If we use
minors modeling, dff is estimated to be 65, assuming ω = 2.8 gives us a
complexity

(
m+r+1

r+1

)ω
= 2238.5. Note that computing minors has a complex-

ity of min{(
m+r+1

r+1

)2
,
(

n
r+1

)2(m+r+1
r+1

)} = min{2170.39, 2337.59} = 2170.39. If we
use KS method considering [33] with n − r = 32 kernel vectors, dff is esti-
mated to be 18 and we assume using dff − 1 = 17 out of 32 kernel vectors
and multiply only by monomials from kernel variables in the XL algorithm still
has dff = 18, then we have a complexity

(
17r+dff

dff

)ω
= 2362.0. Using exhaus-

tive search on variables x1, . . . , xm and verifying the solution cost a complex-
ity of qm ·

(
mn2 + n3

6

)
≈ 2146.8, here mn2 accounts for the computation of

∑m
i=1 xiMi, which can be done in parallel and n3

6 accounts for verifying the rank
of M0 +

∑m
i=1 xiMi using Gaussian elimination. Since for the given minrank

instance, m + r = n satisfies, we only need to use S1 in the mixed method.
Similar to the results in Table 3, by specifying k = 30 variables from x1, . . . , xm,
non-trivial syzygies from Jack(S1) will have degree 64 − 30 · 2 = 4, namely we
have dk = 4, which gives us a complexity of qk ·

((
m−k+r−2k

r−2k

)ω
+ kn2

)
≈ 2138.1.

It is much lower than the claimed value 2156.1 presented in NIST PQC Rainbow
proposal [13] (see Table 5).

For parameter IIIc, Rainbow(256, 68, 36, 36), there is a minrank instance
MR(q, n,m, r) = MR(256, 140, 36, 104). Exhaustive search on variables
x1, . . . , xm and verifying the correctness of the solution require a complexity
qm ·

(
mn2 + n3

6

)
= 2308.1. Minors modeling has a complexity

(
m+r+1

r+1

)ω ≈ 2313.2.

When n−r = 36 kernel vectors are used in the KS method, its dff is expected to
be 23. Assuming using dff −1 = 22 kernel vectors also has dff = 23 gives a com-
plexity of

(
22r+23

23

)ω ≈ 2510.7. When the mixed method is used, since m + r = n
satisfies, we only need to use S1. The non-trivial syzygies from Jacx(S1) have
degree m + 1 and ones from Jack(S1) have degree r considering experiment
results in Table 3. Moreover, since the cardinality of the field is 256, applying
the hybrid approach will not bring any benefit. Therefore, the mixed method
has a complexity of min{(

m+r
r

)ω
,
(
r+m+1

m+1

)ω} ≈ 2312.0, which is also much lower
than the claimed complexity 2578.0 given in [13].

Similarly, for parameter Vc, Rainbow(256, 92, 48, 48), its complexities of min-
rank attack using exhaustive search on variables x1, . . . , xm and verifying the
correctness of the solution, minors modeling, the KS method and the mixed
method are 2405.4, 2421.7, 2705.8 and 2420.5, respectively.

From the above-mentioned discussions, we know the previous complexity
analysis on the minrank attack presented in the NIST PQC standardization 2nd
round Rainbow proposal is overestimated, but the minrank attack is not enough
to break Rainbow.
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Table 5. Complexity of the minrank attack on NIST PQC standardization 2nd round
Rainbow proposal with different methods, minrank exhaustive represents the attack
that exhaustively searches the values of x1, . . . , xm, and verify whether the solution
gives a matrix of the target rank

Security (q, v, o1, o2) MR(q, n,m, r) Complexity Minrank Minors KS Mixed

in [13] exhaustive

Ia (16, 32, 32, 32) (16, 96, 32, 64) 2156.1 2146.8 2238.5 2362.0 2138.1

IIIc (256,68,36,36) (16,140,36,104) 2578.0 2308.1 2313.2 2510.7 2312.0

Vc (256,92,48,48) (256,188,48,140) 2771.7 2405.4 2421.7 2705.8 2420.5

6 Conclusion

In this paper, methods for solving the minrank problem were considered. We
reviewed two of the existing methods, the KS method and minors modeling, and
some results on their complexities. We proposed a mixed method that combined
the KS method and minors modeling. The new system used an under-determined
bilinear subsystem from the KS and a subsystem from the minors modeling.
When the bilinear subsystem is under-determined, the mixed method possibly
outperforms the KS method and minors modeling. When the bilinear subsys-
tem is over-determined, the mixed method has the same complexity as the KS
method.

We also considered applying the hybrid approach on multivariate polyno-
mials solved in our mixed method. A bilinear subsystem is used in the mixed
method, so we considered specifying the set of variables that could minimize
the complexity, which is the set that had fewer variables, and every variable
specified at least reduced the first fall degree by 1. Finally we revisit the min-
rank attack on NIST PQC 2nd round Rainbow proposal, and found that orig-
inally estimated complexities of the minrank attack on Rainbow Ia, IIIc and
Vc, which are 2156.1, 2578.0, 2771.7, are overestimated. We updated them to be
2138.1, 2308.1, 2405.4, and concluded Rainbow is secure from the minrank attack.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Num-
ber JP18J20866, JP19K20266, JP20K19802 and JST CREST Grant Number
JPMJCR14D6.

1. Proof of Proposition 1

Proof. By the definition of the Jacobian matrix, we have Jacx(F )x = F�. Given

G · Jacx(F ) = 0, we easily obtain
m∑

i=1

gifi = G · Jacx(F )x = 0. Therefore, G is a

syzygy, and it also lies in the left kernel of Jacx(F ).
Since the trivial syzygies of F contains variables x and y, and G can only

contain variables x, we know if G is non-zero, it is a non-trivial syzygy.
Similar proof can be applied to Jacy(F ) case. 
�
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2. Examples

Example 1. Let Q be the field of rational numbers. We consider solving
[
a1 a2 a3

b1 b2 b3

]

·
⎡

⎣
x1

x2

x3

⎤

⎦ = 0 for x1, x2, x3 over the field Q(a1, a2, a3, b1, b2, b3).

We convert it to the echelon form:
[
a1 a2 a3

0 b2a1−b1a2
a1

b3a1−b1a3
a1

]

·
⎡

⎣
x1

x2

x3

⎤

⎦ = 0. Let

x3 = t for any t ∈ Q then x2 = −t
(

b3a1−b1a3
b2a1−b1a2

)
, x1 = t

(
b2a3−b3a2
b2a1−b1a2

)
. If we

reparametrize x3 = t

∣
∣
∣
∣
a1 a2

b1 b2

∣
∣
∣
∣, we finally obtain x1∣

∣
∣
∣
∣
∣

a3 a2

b3 b2

∣
∣
∣
∣
∣
∣

= −x2∣
∣
∣
∣
∣
∣

a1 a3

b1 b3

∣
∣
∣
∣
∣
∣

= x3∣
∣
∣
∣
∣
∣

a1 a2

b1 b2

∣
∣
∣
∣
∣
∣

= t.

Example 2. Consider solving
[
a1 a2 a3 a4

b1 b2 b3 b4

]

·

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦ = 0 for x1, . . . , x4 over the

field Q(a1, a2, a3, a4, b1, b2, b3, b4).

We convert it to the echelon form :
[
a1 a2 a3 a4

0 b2a1−b1a2
a1

b3a1−b1a3
a1

b4a1−b1a4
a1

]

·
⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦ = 0. Let x3 = t, x4 = s for any t, s ∈ Q. Then we have x1 =

−
∣
∣
∣
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a2 a4

b2 b4

∣
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∣
∣
∣
∣
a2 a3

b2 b3

∣
∣
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∣ t, x2 =

∣
∣
∣
∣
a1 a4

b1 b4

∣
∣
∣
∣ s+

∣
∣
∣
∣
a1 a3

b1 b3

∣
∣
∣
∣ t, x3 = −

∣
∣
∣
∣
a1 a2

b1 b2

∣
∣
∣
∣ t, x4 = −

∣
∣
∣
∣
a1 a2

b1 b2

∣
∣
∣
∣ s.

3. Proof of Proposition 3

Proof. Suppose (s1, . . . , sn) is a non-trivial syzygy of degree d. Then we can
construct a syzygy of degree d for Fh

1 , which is (s1, . . . , sn, 0, . . . , 0), where Fh
1

consists of the homogeneous components of the highest degree of F1.
If (s1, . . . , sn) is a non-trivial syzygy in variables k, si(1 ≤ i ≤ n) are poly-

nomials of degree no larger than m, then (s1, . . . , sn, 0, . . . , 0) is a non-trivial
syzygy of Fh

1 by Proposition 1. On the other hand, if (s1, . . . , sn) is in variables
x, si(1 ≤ i ≤ n) will have degree no larger than r. Since T1 consists of poly-
nomials of degree r + 1, we know (s1, . . . , sn, 0, . . . , 0) can only be a non-trivial
syzygy of Fh

1 by Proposition 1. According to the definition of dff , we know the
dff of F1 is at most d since there may exist other non-trivial syzygies of Fh

1 that
have a smaller degree than d. Therefore, the statement is proved. 
�



306 Y. Wang et al.

References

1. Alagic, G., et al.: Status report on the first round of the NIST post-quantum cryp-
tography standardization process. NIST Internal Report 8240, National Institute
of Standards and Technology (2018)

2. Bardet, M., et al.: An algebraic attack on rank metric code-based cryptosystems
(2019, preprint)

3. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behavior of the
index of regularity of quadratic semi-regular polynomial systems. In: 8th Inter-
national Symposium on Effective Methods in Algebraic Geometry - MEGA 2005
(2005)

4. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3, 177–197 (2009)

5. Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of HFE, multi-HFE and vari-
ants for odd and even characteristic. Des. Codes Crypt. 69(1), 1–52 (2013)

6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb. Comput. 24(3–4), 235–265 (1997)

7. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Universitat
Innsbruck (1965)

8. Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some
problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999)

9. Cabarcas, D., Smith-Tone, D., Verbel, J.A.: Key recovery attack for ZHFE. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 289–308.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 17

10. Caminata, A., Gorla, E.: The complexity of minrank. arXiv:1905.02682 [cs.SC]
(2019)

11. Chen, L., et al.: Report on post-quantum cryptography. NIST Interagency Report
8105, National Institute of Standards and Technology (2016)

12. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

13. Ding, J., Chen, M.-S., Petzoldt, A., Schmidt, D., Yang, B.-Y.: Rainbow. NIST
PQC Submission, University of Cincinnati (2017)

14. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 41

15. Ding, J., Kleinjung, T.: Degree of regularity for HFE-. Cryptology ePrint Archive,
Report 2011/570 (2011). https://eprint.iacr.org/2011/570

16. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

17. Ding, J., Yang, B.-Y.: Degree of regularity for HFEv and HFEv-. In: Gaborit, P.
(ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 52–66. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38616-9 4

18. Faugeère, J.-C., El Din, M.S., Spaenlehauer, P.-J.: Computing loci of rank defects of
linear matrices using gröbner bases and applications to cryptology. In: Proceedings
of the 2010 International Symposium on Symbolic and Algebraic Computation,
ISSAC 2010, pp. 257–264. ACM (2010)

https://doi.org/10.1007/978-3-319-59879-6_17
http://arxiv.org/abs/1905.02682
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-642-22792-9_41
https://eprint.iacr.org/2011/570
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-642-38616-9_4


Revisiting the Minrank Problem on Multivariate Cryptography 307

19. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J.
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Abstract. A solution is proposed in this paper to implement paid and
anonymous use of cloud software. It addresses a popular cloud comput-
ing service, cloud software, and considers the requirement of some users
to protect their privacy. It enables a software user to access a paid cloud
software anonymously such that his input to the software and the out-
put of the software to him cannot be linked to his identity. Firstly, a
software user buys an anonymous token from a software provider. The
anonymous token proves the user’s access privilege to the software and
does not reveal his identity. Then the user communicates with the soft-
ware provider anonymously through a two-way onion routing network,
submitting his input and anonymous token and obtaining the output
from the software. The two-way onion routing network employs symmet-
ric encryption and decryption and an efficient key exchange mechanism
and so does not compromise efficiency of the new scheme.

1 Introduction

In the era of cloud computing, it is very popular for software users to rent the
softwares they need and use them on-line instead of buying them and installing
them locally. After paying the renting cost to a software provider, a user can
use the rented cloud software on-line in two steps. Firstly, he sends the software
provider his input to the software. Then, the software provider runs the software
with the input and returns the user the output. Software renting in the cloud has
some obvious advantages as the user does not need to care about the software
(e.g. its secure execution environment) except knowing that it runs somewhere
securely in the cloud. Firstly, renting a software is cheaper than buying it. Sec-
ondly, the users do not need to provide local hardware (computing power) to run
the software. Thirdly, the users do not need to worry about system maintains
and software update. Fourthly, the software provider does not need to worry
for copyright violation. However, this new trend raises some security concerns.
One of them is privacy of the users as both their inputs to the software and
the software’ outputs to them are transmitted on-line between the users and the
software providers. Many users do not want to reveal their inputs to the software
and the returned outputs to other parties as they may be sensitive information.
For example, users of financial management software will not reveal their finan-
cial data and users of market analysis software will not reveal the analysis result.
Privacy of users of cloud rent software has the following two requirements.
c© Springer Nature Switzerland AG 2020
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– Their inputs to the software and the software’s outputs to them are confiden-
tial when being transmitted on the Internet.

– Their inputs to the software and the software’s outputs to them are confiden-
tial to the software providers. At least the software providers cannot link the
identities of the users to their inputs and outputs. Even if a software provider
receives an input and process it in plaintext to obtain an output, he has no
idea which user they belong to.

The first requirement is not hard to satisfy: encrypting the inputs and outputs
when they are transmitted on the Internet is enough. Of course, key exchange
between the software users and software providers is needed. The second require-
ment is harder to satisfy. A software provider has to inject an input into the
software and extract an output from it. The only way to hide the input and
the output from the software provider is to design a software able to process
encrypted input and returns an encrypted output. Although in theory secure
computation techniques [1,2,7–9,14,15,22,23] can process inputs in ciphertext
and calculate their functions, in practice there are some difficulties in apply-
ing them to private usage of cloud software. Practical software usually car-
ries out complex computations and implementing them through secure com-
putation is complex and costly, especially when fully homomorphic encryption
[17–21,24] must be employed. So, to the best of our knowledge, no cloud software
provider employ the inefficient whole-course-encrypted computation to process
users’ inputs in practical software services.

A practical solution to private usage of cloud software is anonymising the
users. Namely, although a software provider receives an input from a user, runs
it on the software and returns an output to the user, he cannot link the input and
the output to the user as the user is anonymous. More precisely, although the
software provider knows the input and the output in plaintext, he cannot link
them to their owners, who accesses the software service anonymously. Privacy
protection of personal data through anonymisation is an effective method and
even strict legislation like GDPR [11] recognises that it is not necessary to limit
processing and transfer of anonymised data. However, anonymity of the software
users raises another question: how to authenticate the anonymous users and
guarantee that only qualified users can access the software. An obvious solution
for anonymous authentication is pseudonym. In private usage of cloud software,
pseudonym technique must cooperate with a billing system as very often paid
usage to a cloud software is not permanent. A legal user usually buys a certain
times of usage of a software such that his access to the software is permitted until
his credits run out. Therefore, anonymous authentication for a limited number
of times must be supported.

After anonymous authentication for a limited number of times is imple-
mented, there is another practical consideration: the software users’ network
connection to the software providers must be anonymous and not traceable.
Otherwise, even if a user uses a pseudonym to access a software, he can still be
traced through his network connection (e.g. his IP address). So an anonymous
communication network is needed. The most common anonymous communica-
tion network is onion routing [3,12,13], whose most popular real-world instance
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is Tor [10]. However, application of onion routing to private usage of cloud soft-
ware faces a challenge: onion routing is usually present as a one-way channel
and only deals with a transmit from a sender to a receiver where the receiver
does not respond to the sender. More precisely, although a software user can
submits his pseudonym and input to a software provider through onion routing,
the software provider still need additional support to return the output of the
software to the software user as the user is anonymous and his whereabout is
unknown. Therefore, a two-way anonymous communication network is needed.

In this paper two new techniques are designed to support anonymous usage of
cloud software. Firstly, an anonymous token technique is proposed to enable the
software users to buy tokens from the software providers and use them anony-
mously. A token from a software provider permits a software user to use the
software of the software provider once. A special mechanism prevents the users
to tamper with their tokens or reuse them. Secondly and more importantly,
a two-way onion routing technique is implemented to support two-way anony-
mous communication between the software providers and the software users. As
efficiency of onion routing deteriorates after being extended to two-way, a new
key exchange technique is proposed as an efficiency improvement mechanism to
prevent efficiency of onion routing from being compromised.

2 Preliminaries

Background knowledge and symbol denotions to be used in this paper are intro-
duced and recalled in this section.

2.1 Onion Routing

Anonymous communication network is a very useful tool in e-commerce, e-
finance, e-government and other cryptographic applications, which often require
anonymity and privacy. In an anonymous communication network, the mes-
sages are untraceable, so can be transmitted anonymously. A common method
to implement anonymous networks is onion routing [3,12,13], which employs
multiple nodes to route a message. A node in an onion routing communication
network can send a message to any node in the network. The sender can flexibly
choose any route from all the connection paths between him and the receiver.
Each message is contained in a packet called an onion. In the packet, a message is
encrypted layer by layer using the encryption keys of all the routers on its route
and the receiver. Each layer of encryption is just like a layer of onion bulb. In
onion routing, given a message packet, each router unwraps a layer of encryption
by decrypting the message packet using its decryption key, finds out the identity
of the next router and forwards the partially unwrapped message packet to the
next router. Unless gaining collusion of all the routers on the routing path of his
received message, the receiver cannot trace the message back to the sender, who
then obtains anonymity. When a packet is routed together with a large number
of other packets, onion routing prevents it from being traced, even if the traffic
in the whole onion routing network is monitored.
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Tor [10] is the second generation of onion routing. It proposes a few optimisa-
tions for onion routing. A suggested optimisation in Tor is to replace asymmetric
cipher with much more efficient symmetric cipher to improve efficiency of onion
routing. It is a common sense that symmetric cipher is much more efficient than
asymmetric cipher in encryption and decryption. The key point in using sym-
metric cipher is how to distribute the session keys using public key operations,
while a simple solution to the key-exchange problem in application of symmetric
ciphers is the Diffie-Hellman key exchange protocol recalled in Sect. 2.3. So it is
suggested in Tor [10] to employ “Diffie-Hellman handshake” to implement key
changes and generate session keys for the routers and the receiver. Although
more efficient symmetric cipher is employed in TOR, it does not provide an
efficient implementation of key distribution, which is necessary to make full use
of the advantage of symmetric cipher. It is only simply mentioned in [10] that
the secret key for every router is generated by the sender and the router using
a separate Diffie-Hellman handshake and the communication between them is
routed by the routers between them on the route of the transfered message. This
key distribution mechanism greatly increases communicational cost.

2.2 Parameter Setting and Symbols

The following symbols are used in this paper.

– p and q are large primes and q is a factor of p − 1. G is the cyclic subgroup
with order q in Z∗

p . g is a generator of G.
– Encryption of m using key k is denoted as Ek(m) where a block cipher (e.g.

AES) is employed.
– Encryption chain of m using block cipher and key k1, k2, . . . , ki is denoted as

Ek1,k2,...,ki
(m). The encryptions are performed layer by layer. k1 is the the

key used in the most outer layer; k2 is the key used in the second most outer
layer; . . . ; ki is the the key used in the most inner layer.

– In onion routing, the routers and receiver are denoted as P1, P2, . . . ,.
– The private key of Pi is xi, which is randomly chosen from Zq. The corre-

sponding public key is yi = gxi mod p.

2.3 Diffie-Hellman Key Exchange

Symmetric ciphers like block cipher are very efficient in encryption and decryp-
tion. However, unlike asymmetric cipher they depend on key exchange protocols
to distribute keys. The most common key exchange protocol is Diffie-Hellman
key exchange protocol. Two parties A and B can cooperate to generate a session
key as follows.

1. A randomly chooses α from Zq and sends his key base μ = gα mod p to B.
2. B randomly chooses β from Zq and sends his key base ν = gβ mod p to A.
3. A can calculate the session key k = να mod p, while B can calculate the

session key k = μβ mod p.



312 K. Peng

Security of this key exchange protocol depends on hardness of the famous
Diffie-Hellman problem as recalled in the following.

Definition 1 (Diffie-Hellman problem defined in Page 28 of Chapter 3 of [16]).
Given μ and ν, it is difficult to calculate k if the discrete logarithm problem is
hard.

3 How to Obtain Anonymous Usage Permit of a Cloud
Software: Anonymous Token

The main idea in [5] about blind signature is adopted to generate the anonymous
token permitting the clients to anonymously buy and use the cloud software.
Suppose a software provider wants to sell online usage permit of a cloud software,
he can act as follows.

– He publishes detailed information about the software like its functionality and
performance. He publishes the price of online usage permit of the software as
well.

– He choose an RSA composite N = pq where p and q are large primes. He
chooses his RSA private key d and publishes his public key e = d−1 mod N .

A user wanting to buy the usage permit of the cloud software can buy an
anonymous token as his access privilege to the software as follows.

1. He employs a one-way and collision-resistent hash function H() from Zl to
ZN where l is a security parameter.

2. He randomly chooses an integer t from Zl and calculates t′ = H(t).
3. He randomly chooses another integer r from ZN and calculates T = t′re mod

N .
4. He pays the price for the software to the software provider and asks the

software provider to sign T .
5. The provider receives the money and returns the user T ′ = T d mod N .

The user can extract an anonymous token from T ′ and employ it to use the
cloud software anonymously as follows.

1. He calculate κ = T ′/r mod N .
2. When he wants to use the cloud software, he submits (t, κ) as his anonymous

token to the software provider together with his input to the software.
3. The software provider verifies validity of the token as follows.

(a) He firstly checks his database, which stores the used tokens. The received
token cannot exist in the database.

(b) He verifies κ = H(t)d mod N , which must be satisfied.
If and only if both verifications are passed, the user has the access privilege
to the software. When the verifications are passed, the software provider runs
the software with the user’s input and sends the output of the software to the
user. Otherwise, the user’s request is rejected.
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4. The software provider inserts the used token into his database and it cannot
be used any longer.

Hardness to factorize N and thus find d given e and onewayness and collision-
resistence of the employed hash function guarantees that anonymous token can-
not be forged or malleated. This security assumption is similar to the popu-
lar security assumption for the hash-and-sign technology in digital signature
(Chapter 11 of [16]), which assume that when a digital signature is the hash
function of the message to sign raised to the power of an RSA private key it
cannot be forged if RSA assumption is solid and the employed hash function is
one way and collision-resistent. So under the security assumption no polynomial
adversary can forge an anonymous token or malleated a used token into a new
token. Moreover, as a random integer r is involved in generation of T and its
influence is removed when the anonymous token, (t, κ), is extracted, the software
provider cannot link the anonymous token (t, κ) to the corresponding T he signs
earlier. So anonymity of the software user is achieved.

Any user can buy multiple tokens for multiple-time usage of a cloud soft-
ware. A software provider can sell a permanent token to users frequently using
a software. When buying a permanent token, the software user and the software
provider use a special public/private key pair different from (e, d). When a per-
manent token is used, the software user and the software provider employ the
special public/private key pair to generate and verify the token and there is no
database to record the used tokens.

So far we have not discussed how the software users and the software
providers communicate to each other when purchasing and consuming anony-
mous tokens. When a software user buys an anonymous token, he can visit the
software provider in person and make the payment in the normal way. Alterna-
tively, the software user can buy the token online using credit card or e-cash [4,6].
Choice of the employed communication network for the purchase communication
depends on whether the software user wants to hide his identity completely. If a
software user wants to buy a token using his real identity and use it anonymously
later, he can buy it through normal network connections. If a software user does
not want to reveal his identity when buying a token, he needs to employ the
anonymous communication network proposed in Sect. 4 to communicate with
the software provider and pay by anonymous e-cash [4,6]. Communication net-
work for the software accessing communication must be anonymous in this paper
and so must employ the anonymous communication network proposed in Sect. 4.

A main difference of our anonymous token from anonymous e-coin (e-cash)
is that the receiver of any anonymous token is unique, its issuer, while an e-
coin is issued by a finance institute (e.g. bank) and may be received by any
vender. So the database of used e-coins is maintained by their issuing bank and
needed to be checked by any vender. Therefore, to detect invalid e-coin in real
time a vender needs to have a real time network connection to the bank. In
our design of anonymous token every software provider can maintain his own
database and does not need any help from any third party. Another difference is
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that our anonymous token is simpler than e-coin as it does not need to contain
information like issuing party and value etc.

4 How to Communicate with a Cloud Software
Anonymously: Efficient Two-Way Onion Routing

As mentioned before, even if a software user has an anonymous token to access a
cloud software he still needs an anonymous communication network to communi-
cate with the software provider. As the most popular anonymous communication
network, onion routing network, usually only supports one-way anonymous com-
munication, it is extended to a two-way communication pattern in this section.
The new design adopts two ideas. Firstly, two-way onion routing is implemented
such that the initial sender of an onion packet can fetch some information from a
receiver of the onion. More precisely, an onion packet is routed back to its initial
sender after obtaining some information from the router in the end of its route.
Secondly, like in Tor symmetric cipher is employed in encryption and decryp-
tion of the onion layers, while every router’s secret session key is distributed by
the sender using Diffie-Hellman handshakes. The new protocol describes a more
detailed implementation of symmetric cipher operations and the supporting key
distribution mechanism in onion routing as key distribution for symmetric cipher
is not implemented in detail in the description of TOR in [10].

To avoid efficiency compromise in two-way communication, its efficiency is
optimised by employing a more efficient key exchange mechanism than that in
Tor. We notice that direct application of Diffie-Hellman key exchange in mul-
tiple separate instances to onion routing like in Tor cannot achieve satisfactory
advantage in efficiency. To reduce the additional communication cost and addi-
tional encryption and decryption operations in the key exchange mechanism in
Tor, a novel technique, compact Diffie-Hellman handshakes, is designed. It seals
the Diffie-Hellman key bases for all the routers and the software provider in a
single integer. For each router, to generate his session key, he needs his private
key and a key base initially sealed by the software user and then recovered by
cooperation of all the previous routers in the course of routing. As only one
single integer is needed in each onion packet to commit to all the Diffie-Hellman
key bases, a very small amount of additional communication is employed and
very few additional encryption (decryption) operations are needed.

In the efficient two-way onion routing, an onion packet consists of three parts:
message, route list and key base, where Route list contains the identities of all
the nodes on the route. Key base is the base to generate the session keys dis-
tributed to the routers. The message part in the efficient two-way onion routing
is similar to that in most onion routing schemes. The message is encrypted in
a encryption chain using the sessions keys of all the routers. An efficient block
cipher is employed in the encryption chain. In the efficient two-way onion rout-
ing, the route list is similar to that in other onion routing schemes. It consists
of all the routers’ identities. One block cipher encryption chain is used to seal
each router’s identity using the session keys of the all the routers before it.
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The most important novel technique is generation and update of the key base,
which enables key exchanges for all the routers’ session keys. Each router builds
his session key on the base of the key base using his private key and updates the
key base for the next router. The key generation function employs the principle
of Diffie-Hellman assumption, but it does not employ separate Diffie-Hellman
handshakes to distribute the session keys to the routers. Instead the key base
updating mechanism actually generates a key base chain and so all the session
keys and their generation functions are linked in a compact chain structure. So
the key exchange technique is called compact Diffie-Hellman key exchange. After
obtaining his session key, each router extracts the identity of the next router
from the route list using his session key, removes one layer of encryption from
the message and the route list using his session key and then forwards the onion
packet to the next router. Compact Diffie-Hellman key exchange only needs the
bandwidth of one integer, and thus is much more efficient than separate key
exchanges in communication.

For simplicity of description, in description of the efficient two-way onion
routing protocol simple denotations are employed. Suppose an inquiry package
m (which contains at least the input to a cloud software and an anonymous token
enabling him to use the software) is sent by a software user S through n routers
P1, P2, . . . , Pn to a software provider Pn+1. Encryption of the inquiry package
may actually contain multiple symmetric ciphertext blocks as the inquiry pack-
age may be long and is divided into multiple blocks when being encrypted. For
convenience of description encryption of the inquiry package is still denoted as
a single variable and the readers should be aware that it is the encryption of
the whole inquiry package and may contain multiple blocks. Although a differ-
ent number of routers can be chosen to route the inquiry result (output of the
software) back to the software user, for simplicity of description, we suppose
that it is sent by the software provider back to the software user through n
routers Pn+2, Pn+3, . . . , P2n+1. In practice it is very probable that the number
of routers to transfer the inquiry result is different from the number of routers
to transfer the inquiry package. The two sets of routers are not necessary to be
completely different and some routers may be employed in both transfers. The
efficient two-way onion routing protocol is as follows.

1. Firstly, the software user generates the session keys k1, k2, . . . , k2n+1 respec-
tively for P1, P2, . . . , P2n+1 as follows.
(a) The software user randomly chooses an integer s1 from Zq.
(b) The software user calculates P1’s session key k1 = ys1

1 mod p.
(c) The software user calculates s2 = s1 + k1 mod q.
(d) The software user calculates P2’s session key k2 = ys2

2 mod p.
. . . . . .
. . . . . .

(e) The software user calculates s2n+1 = s2n + k2n mod q.
(f) The software user calculates P2n+1’s session key k2n+1 = y

s2n+1
2n+1 mod p.

Generally speaking, for i = 1, 2, . . . , 2n + 1, the software user
(a) if i > 1 then calculates si = si−1 + ki−1 mod q as his secret seed to

generate ki;
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(b) calculates ki = ysi
i mod p

where s1 is randomly chosen from Zq. In summary, the software user uses the
sum of the previous router’s session key and his secret seed in generating the
previous router’s session key as his secret seed to generate a router’s session
key. The other secret seed to generate the router’s session key is the router’s
own private key.

2. The software user generates an onion packet containing an inquiry package,
a key base and a route list. The inquiry package m contains at least the
input to a cloud software and an anonymous token enabling him to use the
software and is encrypted into e = Ek1,k2,...,kn+1(Pn+1,m). The key base is
gs1 . The route list consists of p1, p2, . . . , p2n+2 where pi = Ek1,k2,...,ki

(Pi+1)
for i = 1, 2, . . . , 2n + 1 and Pn+2 = S. The initial onion

O1 = (a1, b1, c1,1, c1,2, . . . , c1,2n+1) = (e, gs1 , p1, p2, . . . , p2n+1)

is sent to P1.
3. Generally, for i = 1, 2, . . . , n each Pi receives Oi = (ai, bi, ci,1, ci,2, . . . , ci,2n+1)

and operates as follows.
(a) Pi generates his session key ki = bxi

i mod p.
(b) Pi uses ki to decrypt ci,1 and obtains Pi+1 = Dki

(ci,1).
(c) Pi calculates the new key base bi+1 = big

ki mod p.
Finally, Pi sends

Oi+1 = (ai+1, bi+1, ci+1,1, ci+1,2, . . . , ci+1,2n+1)

to Pi+1 where ai+1 = Dki
(ai) and ci+1,j = Dki

(ci,j+1) for j = 1, 2, . . . , 2n
and ci+1,2n+1 is a random ciphertext in the ciphertext space of the employed
symmetric encryption algorithm.

4. After the routing by P1, P2, . . . , Pn, the software provider Pn+1 receives

On+1 = (an+1, bn+1, cn+1,1, cn+1,2, . . . , cn+1,2n+1)

and operates as follows.
(a) Pn+1 generates his session key kn+1 = b

xn+1
n+1 mod p.

(b) Pn+1 uses kn+1 to decrypt cn+1,1 and obtains Pn+2.
(c) Pn+1 uses kn+1 to decrypt an+1 and obtains the inquiry package m and

his own identity Pn+1. He knows that he himself is the software provider
as Pn+1 is its own identity. So he verifies validity of the anonymous token,
runs the software using the input in m, obtains an output R and generates
an+2 = (Em(R),H(m)) where Em() denotes symmetric encryption using
key m and H() is a one-way and collision-free hash function.

5. For i = n+1, n+2, . . . , 2n+1 each router Pi routes the onion packet as follows
where the onion he receives is in the form Oi = (ai, bi, ci,1, ci,2, . . . , ci,2n+1).
(a) Pi generates his session key ki = bxi

i mod p.
(b) Pi uses ki to decrypt ci,1 and obtains Pi+1 = Dki

(ci,1).
(c) Pi calculates the new key base bi+1 = big

ki mod p.
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Finally, Pi sends

Oi+1 = (ai+1, bi+1, ci+1,1, ci+1,2, . . . , ci+1,2n+1)

to Pi+1 where ai+1 = Dki
(ai) and ci+1,j = Dki

(ci,j+1) for j = 1, 2, . . . , 2n
and ci+1,2n+1 is a random ciphertext in the ciphertext space of the employed
symmetric encryption algorithm.

6. After the routing by Pn+2, Pn+3, . . . , P2n+1, the software user S receives

O2n+2 = (a2n+2, b2n+2, c2n+2,1, c2n+2,2, . . . , c2n+2,2n+1)

and operates as follows.
(a) S calculates k = bx

2n+2 mod p where x is his own private key.
(b) S tries to use k to decrypt c2n+2,1 but does not obtain a legal identity. He

knows that he is not a router or software provider of the onion packet. The
only possibility is that his own onion packet is returned by the software
provider.

(c) S calculates (ρ, τ) = Ekn+2,kn+3,...,k2n+1(a2n+2). If τ = H(m), he is
ensured that the software provider Pn+1 returns him an encrypted inquiry
result. He can extract the inquiry result as R = Dm(ρ) where Dm()
denotes symmetric decryption using key m.

Note that although the encryption chain for the next router’s identity is
completely decrypted and discarded by each router, the length of the encrypted
route list is kept unchanged in the routing protocol for the sake of untraceabil-
ity. If an onion packet becomes shorter after each router’s routing, its change in
length can be observed and exploited to trace it. So we keep the length of the
encrypted route list constant to maintain the size of an onion packet. This is
implemented in the routing protocol by inserting a random tag into the onion
packet after an encryption chain is discarded. The new key exchange mecha-
nism improves efficiency of the two-way onion routing technique. As most of its
operations depend on symmetric encryptions and decryptions and employ small
(in comparison with the large integers in asymmetric cipher operations) integers
and the number of asymmetric cipher operations is minimized, efficiency of onion
routing is not compromised after it is extended to support two-way anonymous
communication.

5 Security Analysis

Security of the efficient two-way onion routing scheme depends on hardness of
Diffie-Hellman problem as its key exchange mechanism is an extension of Diffie-
Hellman key exchange. Its main trick is combining key exchanges into a compact
chain such that every router can obtain his session key with the help the previous
routers. As security of Diffie-Hellman key exchange has been formally proved
and hardness of Diffie-Hellman problem is widely accepted, no further proof of
security is needed except for Theorem 1, which shows that the session keys can
be correctly exchanged.
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Theorem 1. For i = 1, 2, . . . , 2n + 1, the same session key ki is generated,
respectively by the software user as ki = ysi

i mod p and by Pi as ki = bxi
i mod p.

To prove Theorem 1, a lemma has to be proved first.

Lemma 1. For i = 1, 2, . . . , 2n + 1, bi = gsi mod p.

Proof: Mathematical induction is used.

1. When i = 1, b1 = gs1 mod p.
2. Suppose when i = j and j ≥ 1 it is still satisfied that bi = gsi mod p. Then a

deduction can be made in next step.
3. When i = j + 1, bj+1 = bjg

kj = gsjgkj mod p as it is supposed in last step
that bi = gsi when i = j. So

bj+1 = gsjgkj = gsj+kj = gsj+1 mod p

Therefore, bi = gsi mod p for j = 1, 2, . . . , 2n + 1 as a result of mathematical
induction. �

Proof of Theorem 1:
According to Lemma 1,

ysi
i = gxisi = bxi

i mod p

for i = 1, 2, . . . , 2n + 1. �

6 Conclusion

The new solution proposed in this paper allows users caring about their privacy
to use paid cloud software online anonymously. The users buy anonymous tokens
to access the software they need and employ an efficient two-way onion routing
network to communicate with the software providers.
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Abstract. Password-Based Key-Derivation Function 2 (PBKDF2) is
commonly employed to derive secure keys from a password in real life
such as file encryption and implementation of authentication systems.
Nevertheless, owing to the limited entropy of the password, the secu-
rity of the generated keys is lower than that of the normally generated
keys. To address this, issue increase the number of iterative operations
during the PBKDF2 may increase. However, the higher the number of
iterative operations, the more time it takes to generate the key. This
paper presents various techniques for optimizing the performance of
PBKDF2. The main idea of our proposed methods is to reduce redun-
dant block operations and to optimize Pseudo Random Function (PRF)
itself by combining operations and making full use of fixed values within
PBKDF2. As the underlying hash function in PRF, we utilize two algo-
rithms: Hash-based Message Authentication Code-Secure Hash Algo-
rithm 256 (HMAC-SHA256) and HMAC-Lightweight Secure Hash 256
(HMAC-LSH256) (SHA256 is the most widely used hash function and
LSH256 was recently developed hash function in South Korea). With the
proposed techniques, the proposed implementation of PBKDF2-HMAC-
SHA256 provides a performance enhancement of about 135.27% over
the reference implementation provided by Korea Internet & Security
Agency (KISA) and about 80.21% over OpenSSL. Concerning PBKDF2-
HMAC-LSH256, the proposed implementation provides a huge perfor-
mance enhancement of about 330.48% over the reference implementation
provided by KISA. With the proposed implementation, more iteration
operations can be possible for higher security. Furthermore, we can use
the proposed techniques to optimize PBKDF2 performance on embedded
MCUs.
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1 Introduction

Although the development of Internet of Things (IoT) and Cloud computing
technologies enable users to utilize various convenient services, users’ data has
become more easily exposed. To protect users’ data, many secure applications or
services depend on the knowledge of one or more secrets. Passwords are common
examples of these secrets. Even if short and predictable passwords can be easier
to remember, they can be more effectively attacked by exhaustive search and
dictionary attacks. To avoid the use of user-chosen passwords as a secret key to
cryptographic systems, several techniques have been developed. Among them,
Password-Based Key Derivation Function 2 (PBKDF2) [2] is widely used for
generating secret keys from a user-chosen password and for several applications
including file encryption software, authentication systems, and Android data
backup systems. As an example, when we backup the data in Android file system,
the system requires a user’s password. The entered password is used to generate
secret keys for encrypting the data in the Android system.

Typically, the entropy of password entered into PBKDF2 is much lower than
the typical random secret. Thus, PBDKF2 utilizes a random salt and iteration
counts to prevent the construction of dictionary table. The iteration count needs
to be at least 1,000 and it needs to be scaled to 10,000,000 for applications
requiring higher security. In other words, more iterations needs to be executed
for higher security. However, increasing the iteration counts causes performance
degradation. Therefore, it is required to optimize the performance of PBKDF2
to apply the increased number of iteration counts for higher security.

Unlike other crypto algorithms like symmetric and public key algorithms, the
importance of PBKDF2 optimization has recently been recognized. Until now,
some studies have been performed to enhance the performance of PBKDF2 [4,5].
The works from [4,5] presented several techniques for PBKDF2 using Hash-based
Message Authentication Code - Secure Hash Algorithm 160 (HMAC-SHA160) as
the underlying Pseudo Random Function (PRF). However, in 2017, Marc Stevens
et al. published a paper on finding collision pairs of SHA-1 [6]. Furthermore,
PBKDF2 algorithm in the approved algorithm list of Korean Cryptographic
Module Validation Program (KCMVP) limits the use of HMAC-SHA-2 family
and HMAC-Lightweight Secure Hash (LSH) (LSH is a hash function developed
in South Korea in 2014) as its PRF [14].

This paper presents several optimization techniques to enhance the perfor-
mance of PBKDF2-HMAC-SHA256 and PBKDF2-HAMC-LSH256 on general
purpose Central Processing Unit (CPU). The main idea of our proposed opti-
mization techniques is to reduce the redundant operations and omit the unnec-
essary operations in the process of PBKDF2 operation. For PBKDF2-HMAC-
SHA256, we present a total of four optimization techniques: two for HMAC
and two for SHA256. By applying the proposed optimization techniques, our
optimized PBKDF2-HMAC-SHA256 outperformed the reference implementa-
tion provided by Korea Internet & Security Agency (KISA) (resp. OpenSSL
1.1.1d) by 135.27% (resp. 80.21%). For PBKDF2-HMAC-LSH256, we propose
a total of five optimization techniques. By applying the proposed methods, our
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optimized PBKDF2-HMAC-LSH256 implementation provides 330.48% of per-
formance enhancement compared with the naive implementation.

2 Overview of PBKDF2 and Existing Results

In this section, we firstly define notations used throughout this paper and intro-
duce what PBKDF2 and its operational process. The existing implementations
of PBKDF2 will be also described in this section.

2.1 Introduction to PBKDF2

Table 1. PBKDF2 parameters

Parameter Meaning

PRF Pseudo random function to be used in PBKDF2

p, s, c Input password, salt, and iteration count

dklen the length of derived Key

hlen the length of PRF Output

DK Derived key of length dklen

The high entropy of cryptographic keys is essential in cryptographic applica-
tions. For some applications requiring data encryption, passwords may be the
only input that users can access data. However, typically the entropy of users’
passwords much lower than that of the secret keys generated from Deterministic
Random Bit Generator (DRBG). Thus, the passwords need not directly be used
as cryptographic keys for security. PBKDF is widely used to solve this problem.

PBKDF is a kind of key derivation function that generates a series of secure
keys using PRF from input parameters such as a user password, random salt, and
iteration count. There are mainly two versions of PBKDF: PBKDF1 (PBKDF
version 1) and PBKDF2 (PBKDF version 2) [2]. PBKDF1 uses SHA-1 or Mes-
sage Digest 5 (MD5) as its PRF. However, recently, many researchers have ques-
tioned the security of MD5, and SHA-1 as well as and their applications. Actu-
ally, PBKDF1 is deprecated and is only recommended for compatibility with
legacy systems. Therefore, currently PBKDF2 is recommended for generating
keys from a use password for secure applications [2,3].

Table 1 defines the parameters used in PBKDF2. Based on Table 1, PBKDF2
can be expressed as DK = PBKDF2(PRF, p, s, c, dklen). Since PBKDF2 gen-
erated a series of internal Ti blocks and the block length of Ti is the same as
hLen, DK can be expressed as DK = T1||T2||T3||...||T�dklen/hlen�. PBKDF2
makes use of HMAC with any one of approved hash functions as it PRF. In
PBKDF2, HMAC function is executed c× len and the number of iteration count
c needs to be large enough to provide security of the generated keys (c needs to
be at least 1,000 and for higher security it needs to be 10,000,000) [2,3].
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2.2 Existing Results of PBKDF2 Implementation on CPU Side

In 2018, A. Visconti and F. Gorla presented some techniques for optimizing the
performance of PBKDF2-HMAC-SHA-1 on CPU environment [4]. They sug-
gested how to reduce unnecessary XOR operations in SHA-1 and how to reduce
redundant operations in the structure of HMAC-SHA-1. In 2019, A. Francesco
and A. Visconti presented the extended idea from [4] in their work [5]. They
explained a total of six optimization methods (two for HMAC optimization, three
for SHA-1 optimization, one for optimization in the certification process) in the
context of the CPU/Graphics processing unit. They compared their implementa-
tion with OpenSSL 1.1.0e version on AMD FX-8320 8 cores 4 GHz as parameters
of c = 1, 000 and dklen = 32 bytes and their implementation achieved 2.1 times
enhancement compared with OpenSSL.

NIST deprecated the use of SHA-1 in 2011, and disallowed its use for digital
signatures at the end of 2013 [9]. Thus, governmental institutions and companies
have been using stronger hash algorithms, SHA-2 and SHA-3, instead of SHA-
1. In 2017, M. Stevens et al. presented how to generate a collision of SHA-1
hash values [6]. As a result of this, Google, Microsoft, and Mozilla published the
termination of SHA-1 support on their browsers. This requires the use of hash
function providing higher security levels such as SHA-2 and SHA-3. Moreover,
KCMVP in South Korea allows only HMAC-SHA-2 and HMAC-LSH families
as PBKDF’s PRF . Therefore, we have chosen SHA-2 and LSH hash functions
providing higher hash security level than SHA-1 as hash function in PRF , and
presented optimized PBKDF2-HMAC-SHA256 and PBKDF2-HMAC-LSH256.

3 Proposed Techniques for PBKDF2-HMAC-SHA256

In this section, we propose four optimization techniques for PBKDF2-HMAC-
SHA256:a Block-Reduction (BR) technique and a technique using known Input
Size (IS) in HMAC, and a technique of Zero-Based optimization (ZB) and a Block
Operation (BO) technique in SHA256. The HMAC optimization, techniques are
merely extension of the concept of optimization techniques from [4,5], while
those of SHA256 are new.

3.1 Proposed HMAC Optimization Techniques

This section proposes two techniques—a BR technique and a technique using
known-IS—that can reduce redundant and unnecessary operations during
HMAC process in PBKDF2-HMAC-SHA256. In HMAC optimization techniques
U1 = HMAC(p, s || i) is excluded.

Block-Reduction in HMAC (BR). DK consists of Ti with || operation.
To create a single Ti, a total of c iterations should be executed for generating
intermediate U1, . . . Uc values. According to [8], c needs to be at least 1,000. And
for systems requiring strong security, c needs to be 10,000,000. The computation
speed of PBKDF2-HMAC-SHA256 is closely related to the speed of computing
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Ui where 1 ≤ i ≤ c. Therefore, it is necessary to optimize the performance of
computing Ui value in order to enhance the overall performance of PBKDF2-
HMAC-SHA256.

Fig. 1. Ui value computation process in PBKDF2-HMAC-SHA256 (IPAD = 0x36
OPAD=0x5c. L: Message length info.) (Color figure online)

The BR technique uses the fact that the input password p does not change
during PBKDF2-HMAC-SHA256 operation. Figure 1 shows the process of gen-
erating a single Ui value. In the process of PRF generating Ui value, SHA256
hash functions are executed twice. In each hash function, two 512-bit blocks need
to be processed. The first and second blocks in the first hash function contains
p ⊕ IPAD and the concatenation of Ui−1 and padded length information (L),
respectively. Similarly, the first and the second blocks in the second hash func-
tion contains p ⊕ OPAD and the concatenation of hash′ and padded length
information (L), respectively. Since the (p ⊕ IPAD) and (p ⊕ OPAD) do not
change in the process of PBKDF2, their intermediate hash values also do not
change. Thus, we can compute the intermediate hash values of (p ⊕ IPAD) and
(p ⊕ OPAD) when computing U1 and reuse them for computing U2, . . . , Uc. In
other words, in Fig. 1, the blocks represented in gray rectangles do not need to
be computed by recycling the values computed from the process of U1.

With the proposed BR technique, the number of processed blocks decreases
from (4× c) to (2× c+2), where c is the number of the iteration count. In other
words, in our implementation, U1 requires computing four blocks (each of the
two hash function processes two 512-bit blocks) and a total of (2c − 2) (each
of the two hash function reuses the precomputed value and processes only one
512-bit block) are required for computing U2, . . . , Uc.

Using Known Input Size (IS). The IS technique uses the fact that the
second block of each hash function during the computation of Ui value in Fig. 1
is a 256-bit data, namely either hash′ or Ui−1. With the BR technique, since
the first block of each hash function in Ui computation except for U1 can be
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processed by reusing the precomputed value from the U1 process, we need to
manage only the second block of each hash function for efficiency. The size
of the second block in each hash function is always 256-bit (either hash′ or
Ui−1), We have not divided the message for the block operation. In addition,
the length of the padding in each hash function is fixed (orange rectangles in
Fig. 1) and the value of 64-bit input length information L is also fixed as 768-bit.
Therefore, this optimization provides us the possibility to avoid length checks
and the chunk splitting operations during the computation of U2, . . . , Uc, thus
reducing the overhead necessary to compute an HMAC implementation and the
fixed padding part can be extended with SHA256 optimization method [10].

3.2 Proposed SHA256 Optimization Technique

This section presents two optimization techniques—a ZB optimization and a BO
reduction technique—for SHA256 function used in PBKDF2-HMAC-SHA256.

Zero-based Optimization in SHA256 (ZB). This technique uses the fact
that a specific part becomes zero during PBKDF2-HMAC-SHA256 operation.
Algorithm 1 is SHA256 WordExpansion process.

Algorithm 1. SHA256 Word Expansion Process [7]

Require: Message M = (M [0], M [1], ......, M [15])
Ensure: Expansion Data W = (W [0], W [1], ......, W [63])
1: Define Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z)
2: Define Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)
3: Define

∑ 256
0 (x) = ROTR2(x) ⊕ROTR13(x) ⊕ ROTR22(x)

4: Define
∑ 256

1 (x) = ROTR6(x) ⊕ROTR11(x) ⊕ ROTR25(x)
5: Define σ256

0 (x) = ROTR7(x) ⊕ROTR18(x) ⊕ (x � 3)
6: Define σ256

1 (x) = ROTR17(x) ⊕ROTR19(x) ⊕ (x � 10)
7: for i=0 to 15 do
8: W [i] = M [i];
9: end for
10: for i=16 to 63 do
11: W[i] = σ256

1 (W [i − 2]) � W [i − 7] � σ256
0 (W [i − 15]) � W [i − 16]

12: end for
13: return W

According to Algorithm 1, if W [i] is zero, it does not affect the computation
of the other W [t]. In Fig. 1, the rectangles in orange color are represented with six
32-bit word expansion data (from W [9] to W [14]), and the values are always fixed
as zero. Thus, they can be excluded from actual computation during SHA256
word expansion process. With the proposed ZB technique, when 16 ≤ t ≤ 30,
19 of 45 � operations, six of 30 σ256

0 operations, and one of 30 σ256
1 operations

can be reduced in SHA256 WordExpansion process.
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Reduction of Block Operation in SHA256 (BO). This technique combines
multiple rounds in the process of hash block computation into one to reduce
redundant operations for efficiency.

Algorithm 2. SHA256 Block operation process [7]

Require: Expansion Data W = (W [0], ..., W [63])
Require: Working variables (a, b, c, d, e, f, g, h) in hash state
Ensure: Updated working variables (a, b, c, d, e, f, g, h) in hash state
1: for t =0 to 63 do
2: T1 = h + σ256

1 (e) � Ch(e, f, g) � K256
t � W [t]

3: T2 = σ256
0 (a) � Maj(a, b, c)

4: h = g,
5: g = f ,
6: f = e,
7: e = d � T1,
8: d = c,
9: c = b,
10: b = a,
11: a = T1 � T2

12: end for
13: return Hash value (a, b, c, d, e, f, g, h)

Table 2. Changes of intermediate values in eight working Variables in block operation
process of Algorithm 2 (T (m, n) is the Tm value of n-th round in Algorithm2.)

Variables 0R 1R 2R 3R

a T (0, 1) + T (0, 2) T (1, 1) + T (1, 2) T (2, 1) + T (2, 2) T (3, 1) + T (3, 2)

b a T (0, 1) + T (0, 2) T (1, 1) + T (1, 2) T (2, 1) + T (2, 2)

c b a T (0, 1) + T (0, 2) T (1, 1) + T (1, 2)

d c b a T (0, 1) + T (0, 2)

e d + T (0, 1) c + T (1, 1) b + T (2, 1) a + T (3, 1)

f e d + T (0, 1) c + T (1, 1) b + T (2, 1)

g f e d + T (0, 1) c + T (1, 1)

h g f e d + T (0, 1)

Algorithm 2 describes the block computation process in SHA256. In Algo-
rithm2, σ256

1 (x), σ256
0 (x),

∑
256
0 (x),

∑
256
1 (x), Ch(x, y, z), and Maj(x, y, z) are

same as in Algorithm 1 and K256
t is the round constant given in [7]. Algorithm 2

updates hash state consisting of eight working variables (a, b, c, d, e, f , g, and
h) through 64 rounds.
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Table 2 shows that the change of intermediate values in the eight working
variables a ∼ h during the first four iterations (0R ∼ 3R) of the block computa-
tion process. Since the computation of these four round iterations are repeated
16 times in Algorithm 2, we can combine the four iterations into one. Therefore,
the proposed BO technique directly computes the fourth round computation (3R
in Table 2), omitting the first three rounds computation (0R ∼ 2R in Table 2),
resulting in saving of redundant operations and memory accesses. With the pro-
posed BO technique, the number of block rounds can be reduced from 64 to 16
rounds also, the redundant operations can be reduced.

4 Proposed Techniques for PBKDF2-HMAC-LSH256

We propose six optimization techniques for PBKDF2-HMAC-LSH256. We have
utilized the concept of BR technique in HMAC-LSH256 presented in Sect. 3 and
newly proposed four techniques for LSH256 itself.

4.1 Proposed HMAC-LSH256 Optimization Technique

Fig. 2. Ui value computation process in PBKDF2-HMAC-LSH256v (Color figure
online)

Figure 2 shows the process for computing Ui value in PBKDF2-HMAC-LSH256.
There are two differences between HMAC-LSH256 and HMAC-SHA256. The
first is that the block size of hash function changed from 64 to 128 bytes, and
the second is that LSH256 does not require the information of message length
(L in Fig. 1).

The optimization techniques are the same as those of HMAC-SHA256 (BR
and IS techniques). In other words, when computing U1 value, we precalculate
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the first block of each hash function (gray rectangles in Fig. 2) and reuse the
values in all the subsequent HMAC invocations. Then, whenever a Ui operation
(2 ≤ i ≤ c) is required, the precalculated values are set to the initial hash value
of the second block of each hash function (BR technique). Since the second
block of each hash function always inputs 256-bit data, the length of padded
data in the second block is fixed (orange rectangles in Fig. 2) (IS technique).
In addition, LSH256 does not require message length information. Thus, the
number of padded zero values increases in LSH256 optimization compared to
SHA256 optimization.

4.2 Proposed LSH256 Optimization Techniques

There are a total of four methods to optimize LSH256 (ZB optimization in
LSH256 and three optimization methods of LSH256 itself). The Compression
function in LSH256 consists of three stages: Message Expansion, Mix, and
WordPerm.

Zero-Based Optimization in LSH256 (ZB). In Fig. 2, the second block of
hash function is allocated 767 bits of 1024 bits as a fixed value of zero (orange
rectangles). That is, 23 words of 32-bit are allocated as zero, and these are stored
in W [10]–W [31]. Zero words can exclude operations from the LSH Message
Expansion. The LSH256’s Message Expansion is executed as follows:

M i
0 ← (M (i)[0],M (i)[1],M (i)[2], · · ·,M (i)[15])

M i
1 ← (M (i)[16],M (i)[17],M (i)[18], · · ·,M (i)[31])

M
[I]
j =(M (i)

j−1[I] � M
(i)
j−2[τ [I]]) where (0 ≤ I ≤ 15, 2 ≤ j ≤ 15) (1)

W [i] containing zero value can be excluded from the operation. The proposed
technique reduces � operations by 32 times and τ by 22 times.

Reduction of Compression Process in LSH256. Here, we propose three
optimization techniques in LSH256 Compression function. In detail, we propose
optimization techniques in Mix and WordPerm operations. Figure 3 shows Mix
function process.

Fig. 3. LSH256 Mix function process[1]
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The first technique is to precalculate SC values because SC values are
constant values calculated by ⊕ in Mix function. The SC value expansion for-
mula is as follows [1]:

SCj [I] ← SCj−1[l] � SCj−1[l]≪8, for (0 ≤ l ≤ 7, 1 ≤ j ≤ Ns − 1) (2)

Subsequent SC values in each round can be precalculated with the initial
SC values and the above formula. The precalculated SC values are stored in a
lookup table, and at each round, the SC values are loaded from the table and
used in Mix function. Using this proposed technique, the operational cost for
computing SC values in Mix function can be removed.

The second technique is to divide the entire rounds into odd and even rounds.
The values of αj and βj are different depending on whether the round is even
or odd. In Fig. 3, α and β are assigned as follows [1]:

αj =
{

29 if j is even
5 if j is odd βj =

{
1 if j is even
17 if j is odd (3)

Except for the actual values of α and β, the structure of the even and odd
rounds in Mix function are identical. Using this, Mix function is implemented
by separating the even and odd rounds. With the proposed technique, there is no
need to check whether the current round is odd or even in Compression function.

Table 3. LSH256 WordPerm process[1]

I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ[I] 6 4 5 7 12 15 14 13 2 1 0 3 8 11 10 9

The third technique is to combine Mix and WordPerm functions during
LSH256 operation. The WordPerm function is the last process of LSH256 Com-
pression function. It is a function that permutes the output of Mix function.
Table 3 shows WordPerm process among the Compression function. Subsequent
Mix and WordPerm functions can be combined by directly storing the output
of Mix function at the permuted output location. The final computation of Mix
function, represented by the blue rectangle in Fig. 3, is defined as follows:

output[I] = X[σ[I]] � Y [σ[I]] (0 ≤ I ≤ 3 or 8 ≤ I ≤ 11)
output[I] = ROTLγi(Y [σ[I] − 8]) (4 ≤ I ≤ 7 or 12 ≤ I ≤ 15)

With this approach, Mix and WordPerm functions can be combined.

5 Performance Analysis

In this section, we measure the performance of the proposed implementation and
compare it with other implementations. We used Intel(R) Core(TM) i7-8750H
2.20 GHz, 2.21 GHz CPU for the measurement environment, and Release x64
mode. The measurement unit is clock cycles (average of 1,000 executions).
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Table 4. Performance of LSH256 and SHA256

Hash function Message byte length

1,600 576 64 8

KISA-SHA256 13,819 7,177 1,615 864

KISA-LSH256 26,866 17,221 3,328 2,609

Table 5. Parameters used for measuring the performance of PBKDF2-HMAC-SHA256

parameter byte length

case1 case2 case3 case4 case5 case6

p (byte) 32 64 128 32 64 128

s (byte) 32 64 128 32 64 128

c 1 1,024 2,048 1,000,000 1,000,000 10,000,000

dkLen (byte) 32 64 128 32 64 128

Table 6. Running time of PBKDF2-HMAC-SHA256 (figures in bracket are the per-
formance improvement compared with Naive)

Case Naive OpenSSL All version

Case 1 2,888(−) 12,074(−76.08%) 2,408(+19.93%)

Case 2 4,956,071(−) 3,781,868(+31.04%) 2,245,814(+120.68 %)

Case 3 19,755,982(−) 15,132,401(+30.55%) 8,397,092(+135.27%)

Case 4 24,468,430(−) 18,707,809(+30.79%) 11,287,813(+116.76%)

Case 5 47,931,052(−) 37,638,738(+27.34%) 22,196,116(+115.94%)

Case 6 95,190,746,667(−) 75,665,227,762(+25.80%) 43,869,999,588(+116.98%)

Performance of LSH256 and SHA256. In [1], LSH performs more than
twice better than SHA-256 in single instruction multiple data (SIMD) environ-
ments [1]. In other words, the structure of LSH is suitable for parallel processing
with SIMD instructions. However, the performance of LSH256 is lower than that
of SHA256 on general CPU without using the SIMD instructions. Table 4 shows
the running time of LSH256 and SHA256 on our target CPU. In Table 4, KISA-
SHA256 and KISA-LSH256 used the SHA256 and LSH256 open-source codes
provided by KISA[11,12]. Based on the open-source codes from KISA, SHA256
performs more than twice better than LSH256 on the target CPU without using
the SIMD instructions.

Performance of PBKDF2-HMAC-SHA256. We used three versions for
PBKDF2-HMAC-SHA256 performance measurement. Naive is KISA HMAC-
SHA256 Open Code [11], OpenSSL is OpenSSL version 1.1.1d version [13], All
Version is proposed implementation with all proposed techniques. For measure-
ment, different input parameters are used as Table 5. Table 6 shows the running
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time of each implementation. It shows that the performance of openSSL is much
slower than other implementations when c is 1. Except case 1, for each case, if c
is small, All version programs about 68.39% (resp. 120.68%) and 80.21% (resp.
135.27%) performance measures combined with OpenSSL (resp. Naive). If c is
increased to a practical size, All version programs about 65.73% (resp. 116.76%),
69.57% (resp. 115.94%) and 72.47% (resp. 116.98%) performance measures com-
bined with OpenSSL (resp. Naive).

Table 7. Parameters used for measuring the performance of PBKDF2-HMAC-LSH256

parameter Length

case1 case2 case3 case4 case5 case6

p (byte) 32 64 128 32 256 256

s (byte) 32 64 128 32 256 256

c 1 1,024 2,048 1,000,000 1,000,000 10,000,000

dkLen (byte) 32 64 128 32 128 128

Table 8. Performance of PBKDF2-HMAC-LSH256 (figures in bracket are the perfor-
mance improvement compared with Naive-LSH256 )

Case Naive-LSH256 LSH-OP LSH-ALL-version

Case 1 14,496(−) 5,202(+178.66%) 4,512(+221.27%)

Case 2 19,209,253(−) 9,023,197(+112.88%) 4,588,082(+318.67%)

Case 3 77,250,239(−) 36,232,054(+113.20%) 18,823,101(+310.40%)

Case 4 9,944,714,429(−) 4,510,556,803(+120.47%) 2,310,098,377(+330.48%)

Case 5 38,185,287,325(−) 18,166,313,812(+110.19%) 9,194,434,665(+315.30%)

Case 6 383,772,203,768(−) 182,129,663,126(+110.71%) 92,000,036,153(+317.14%)

Performance of PBKDF2-HMAC-LSH256. We used three versions for
PBKDF2-HMAC-LSH256 performance measurement. Naive-LSH256 is KISA-
HMAC-LSH256 open code [12], LSH-OP is proposed implementation with LSH2
-56 optimization and LSH-All-version is proposed implementation with HMAC
optimization and LSH256 optimization. Table 7 shows the parameters used for
measuring the performance of PBKDF2-HMAC-LSH256. From Table 7, LSH-
All-verion provides about 318.67% and 310.40% performance improvements
compared with Naive-LSH256 for case 2 and case 3, respectively. [2,3] proposes
10,000,000 or more c sizes in a higher security system. For each case in which
c is applied a practical size, LSH-All-verion provides about 330.48%, 315.30%
and 317.14% performance improvements compared with Naive-LSH256 for case
4, case 5 and case 6, respectively (Table 8).
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6 Concluding Remarks

In this paper, we have presented several optimization techniques for PBKDF2-
HMAC-SHA256 and PBKDF2-HMAC-LSH256. The proposed PBKDF2-
HMAC-SHA256 outperforms openSSL over 80.21% which is a significant
improvement and the proposed PBKDF2-HMAC-LSH256 provides more than
330.48% of performance improvement compared with naive implementation.
With the proposed PBKDF2 implementations, the iteration counter can be
increased for higher security. The proposed techniques can be applied for embed-
ded devices MCUs including 8-bit AVR, 16-bit MSP430, and ARM. In the future,
we will extend our optimization techniques in embedded deivces and SIMD envi-
ronments.
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Abstract. Attribute-based group signature (ABGS) is a new variant of
group signature, and it allows any group member with certain specific
attributes to sign a message on behalf of the whole group anonymously,
without revealing the member’s identity or attributes information; once
a dispute arises, an opening authority (OA) can effectively reveal the
anonymity and track the real identity and attributes of the signer. In
order to support for membership revocation and resist against quan-
tum computers, Perera et al. (NSS 2019, WISA 2019) recently proposed
two (traceable or not) fully anonymous ABGS schemes with verifier-local
revocation (VLR) from lattices. Unfortunately, in this paper we show that
their two constructions do not satisfy the full-anonymity and present an
improved scheme which obtains the strongest security, full-anonymity, in
a relatively simple manner.

Keywords: Attribute-based group signature · Lattices · Verifier-local
revocation · Full-anonymity · Random oracle model

1 Introduction

Group signature. Group signature (GS), first introduced by Chaum and van
Heyst [8], is accepted as a central cryptographic primitive, which enjoys two
key privacy-preserving properties: anonymity and traceability. For the former,
it means that any member can sign a message on behalf of the whole group,
meanwhile, without divulging the signer’s identity information; for the latter, it
means that there exists an opening authority (OA) who owns certain secret-key
to reveal the anonymity and track the signer’s real identity efficiently. With these
two appealing properties, GS has found several applications in real-life, such as in
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the trusted computing, anonymous online communications, e-commerce systems,
and much more.

Attribute-basedgroup signature.Attribute-based group signature (ABGS),
first put forward by Khader [10] in 2007, is a subgroup of GS. In this new cryp-
tosystem, each member possesses a secret signing key depending on his identity
and attributes information, and the member is only allowed to sign a message on
behalf of the whole group if and only if his attributes set satisfies the signing policy
(frequently expressed as predicates). Of course, unlike the traditional GS schemes,
in ABGS, the members do not enjoy the same signing privileges, instead, the group
member can sign a message only if he possesses the sufficient attributes required
by the signing predicates. Compared with traditional GS [8], ring signatures (RS)
[16] and attribute-based signatures (ABS) [14], the signer inABGS needs to anony-
mously prove to verifiers that he is indeed a valid member, meanwhile owning cer-
tain attributes or signing privileges, and the generated signature can also obtain
traceability. Therefore, ABGS is more suitable for the environment that needs to
provide anonymous authentication and fine-grained access control simultaneously.

At a theoretical level, to design such an efficient ABGS scheme, three rel-
atively independent cryptographic ingredients are required and within some
sophisticated combinations, these key building blocks include: a digital signa-
ture (DS) scheme, a public-key encryption (PKE) scheme and an efficient non-
interactive zero-knowledge proof (NIZKP) protocol. Since it was first introduced
by Khader [10], much progress have been made for the design of ABGS over the
nearly fifteen years, and some creative constructions based on different math-
ematical hardness assumptions and with different levels of operating efficiency
are proposed (e.g., [2–4,11,17–19]).

Lattice-based ABGS. As the conventional number-theoretic problems (such as
big integer factoring problem or discrete logarithm problem) and ABGS schemes
based on these hardness assumptions are vulnerable to quantum computers, it is
urgent to construct a secure and efficient ABGS in post-quantum cryptography
(PQC) era. Believed to be one of the promising candidates for PQC, lattice-based
cryptography enjoys some competive advantages over number-theoretic cryptog-
raphy: security reduction in the worst-case hardness assumptions, simpler arith-
metic operations, provision of rich cryptographic functionality and services. The
first lattice-based ABGS scheme was introduced by Kuchta et al. [11] in 2017,
however their construction can only handle the candidate members enrollment,
and the members cannot be revoked once they join the group.

As a flexible revocation approach for group-type cryptographic constructions,
the verifier-local revocation (VLR) mechanism [6] is quite practical because it
only requires verifiers to download the up-to-date revocation information for
signature verification, and no signer is required. So Zhang et al. [19] creatively
adopted this technique to ABGS construction, and they proposed the first lattice-
based ABGS scheme with VLR in 2018, and thus, the first lattice-based ABGS
scheme supporting for membership revocation, an orthogonal problem of mem-
bers enrollment. However one main flaw in [19] is that it only achieves the selfless-
anonymity, a weaker anonymity as in all lattice-based VLR group-type schemes.
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Motivations and contributions. Recently, Perera et al. [17,18] proposed two
(traceable or not) fully anonymous lattice-based ABGS schemes with VLR, which
aimed at achieving the following goals simultaneously: achieving full-anonymity
and supporting explicit-traceability (only for their traceable construction [17]).
They claimed that their two new designs are proven secure under two well-known
hardness assumptions of lattice problems: learning with errors (LWE) and short
integer solution (SIS). But in this paper we show that their both lattice-based
ABGS schemes are not fully anonymous, only achieving the selfless-anonymity
as in [19], the reason is that one of their core building blocks, the group member
revocation token (RT) is not secure, that is to say, in the full-anonymity proof,
once the members signing secret-keys are compromised, the adversary can easily
calculate the members RTs to trace the real identity and attributes information
for the signature. Furthermore we propose an improved design for the members
RTs and an improved Stern-type ZKP protocol for our new construction.

Organization. Our paper is organized as follows, we first recall the background
knowledge on lattice-based cryptography in Sect. 2. Section 3 turns to review
the definition and full-anonymity for Perera et al.’s lattice-based ABGS schemes
with VLR. In Sect. 4, we review Perera et al.’s members RTs design. In Sect. 5,
we give our detailed attacks to show that their members RTs and Stern-type
ZKP protocols are not secure and cannot fulfill the full-anonymity they claimed.
Our improvement is constructed and analyzed in Sect. 6.

2 Preliminaries

Notations. Let Sk denote the set of all permutations of k elements, ‖ · ‖ and
‖ · ‖∞ denote Euclidean norm and infinity norm respectively. log e denotes the
logarithm of e with base 2, and PPT stands for “probabilistic polynomial-time”.

For integers n, m, q ≥ 2, a random matrix A ∈ Z
n×m
q , the m-dimensional

q-ary lattice Λ⊥
q (A) is defined as: Λ⊥

q (A) = {e ∈ Z
m | A · e = 0 mod q}.

Lemma 1. ([1,5,15]). Let n ≥ 1, q ≥ 2, m = 2n�log q�, there is a PPT algo-
rithm TrapGen(q, n,m) outputting A ∈ Z

n×m
q and RA, such that A is statisti-

cally close to a uniform matrix in Z
n×m
q and RA is a trapdoor for lattice Λ⊥

q (A).

Lemma 2. ([9,15]). Let n ≥ 1, q ≥ 2, m = 2n�log q�, given A ∈ Z
n×m
q , a

trapdoor RA of Λ⊥
q (A), a Gaussian parameter s = ω(

√
n log q log n) and u ∈

Z
n
q , there is a PPT algorithm SamplePre(A,RA,u, s) returning a short vector

e ∈ Λu
q (A) sampled from a distribution statistically close to DΛu

q (A),s, where
Λu

q (A) = {e ∈ Z
m | A · e = u mod q} is a coset of Λ⊥

q (A).

Definition 1. The SIS∞
n,m,q,β problem is defined as follows: given a uniformly

random A ∈ Z
n×m
q and a real β > 0, to get a vector e ∈ Z

m such that A · e =
0 mod q and 0 < ‖e‖∞ ≤ β.
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The ISIS problem is an variant of SIS, additionally given a random syndrome
u ∈ Z

n
q , the ISIS∞

n,m,q,β problem is asked to get a vector e ∈ Z
m such that A ·e =

u mod q and ‖e‖∞ ≤ β. For both problems, they are as hard as certain worst-
case lattice problems, such as shortest independent vectors problem (SIVP).

Lemma 3 ([9]). For m, β = poly(n), q ≥ β · ˜O(
√

n), the average-case SIS∞
n,m,q,β

and ISIS∞
n,m,q,β problems are at least as hard as the SIVPβ· ˜O(n) problem in the

worst-case.

Definition 2. The LWEn,q,χ problem is defined as follows: given a random s $←−
Z

n
q , a probability distribution χ over Z, let As,χ be a distribution obtained by

sampling A $←− Z
n×m
q , e $←− χm, output (A,A�s + e), and make distinguish

between As,χ and uniform distribution U $←− Z
n×m
q × Z

m
q .

Let β ≥ √
n·ω(log n), and for a prime power q, given a β-bounded distribution

χ, the LWEn,q,χ problem is at least as hard as SIVP
˜O(nq/β).

3 Definition and Security Model

We review the definition and full-anonymity model for Perera et al.’s two ABGS
schemes with VLR mechanism introduced into GS by Boneh and Shacham [6].

3.1 Definition

Perera et al.’s traceable lattice-based ABGS scheme [17] consists of the following
six polynomial-time algorithms: Setup, KeyGen, Sign, Verify, Open and Revoke.
For their untraceable design [18], the fifth algorithm, Open, as in [19], is replaced
by an implicit tracing algorithm as in any group-type signatures, thus no tracing
secret-key Gmsk is generated in KeyGen.

Setup(1λ): A PPT algorithm takes as input security parameter λ, and it outputs
the system’s public parameters pp which contains universe of attributes Att.

KeyGen(pp, N): A PPT algorithm takes as input pp and group size N , and it
outputs the group public-key Gpk, the tracing secret-key Gmsk, a set of group
members secret-keys Gsk= (gsk0, gsk1, · · · , gskN−1) and members revocation
tokens Grt= (grt0, grt1, · · · , grtN−1).

Sign(pp, T ,Gpk, id, gski, grti,Si,m): A PPT algorithm takes as input pp, Gpk, a
predicate T , a signing secret-key gski and a revocation token grti of a member
id with an index i ∈ {0, 1, · · · , N −1} and an attributes set Si ⊆ Att satisfying
T , a message m ∈ {0, 1}∗, and it outputs a signature σ.

Verify(pp, T ,Gpk,RL, σ,m): A deterministic algorithm takes as input pp, Gpk, a
list of revocation tokens RL ⊆ Grt, a predicate T , a signature σ on a message
m ∈ {0, 1}∗, and it outputs either 0 or 1. The output 1 indicates that σ is a
valid signature on m, the signer and its corresponding attributes set have not
been revoked.
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Open(pp,Gpk,Gmsk, σ,m): A PPT algorithm takes as input pp, Gpk, Gmsk and a
message-signature pair (m, σ), and it outputs an index i ∈ {0, 1, · · · , N − 1},
a list of attributes or ⊥. The output ⊥ indicates that the tracing is failure.

Revoke(pp,Gpk,RL, j,Sr ⊆ Att): A deterministic algorithm takes as input pp,
Gpk, RL, a revoking member j ∈ {0, 1, · · · , N −1} and a revocation attributes
set Sr ⊆ Att, and it outputs an updated RL.

3.2 Security Model

Perera et al. claimed that their two lattice-based ABGS schemes with VLR [17,18]
are fully anonymous following the experiment given below (For the definition of
selfless-anonymity, the readers can refer to [19]).

In this experiment, an adversary A’s goal is to determine which of the two
adaptively chosen members id0 with an index i0 and an attributes set Si0 ⊆ Att,
id1 with an index i1 and an attributes set Si1 ⊆ Att, both of which satisfying T ∗,
generated the signature σ∗ on m∗ ∈ {0, 1}∗. A is given all the members secret-
keys, A can make opening queries for any message-signature pair (m, σ) except
for the challenge one (m∗, σ∗) �= (m, σ) and the revoking queries for member
revocation token of any member id except for the challenge ones id0 and id1.

a. Initialization: The challenger C runs the Setup and KeyGen algorithms to obtain
(pp,Gpk,Gmsk,Gsk,Grt), in Perera et al.’s untraceable construction [18] no
Gmsk is generated, and only provides (pp,Gpk,Gsk) to A.

b. Query phase: A adaptively makes a polynomially bounded number of queries
as follows:

– Opening: Request for an identity and an attributes set of a message-
signature pair (m, σ), the opening oracle returns Open(pp,Gpk,
Gmsk,m, σ) or uses the implicit-tracing algorithm to A.

– Revoking: Request for a revocation token of member id with an index i
and an attributes set Si ⊆ Att, C returns grti to A.

c. Challenge: A outputs a message m∗ ∈ {0, 1}∗, a predicate T ∗, two members
id0 with index i0 and attributes set Si0 , id1 with index i1 and attributes set

Si1 , both of whose attributes set satisfying T ∗. C chooses a bit b
$←− {0, 1},

computes σ∗ ← Sign(pp, T ∗,Gpk, gskib
, grtib ,Sib ,m

∗) as a signature on m∗ by
idb and returns it to A.

d. Restricted query: Once obtain a challenge signature σ∗, A can still make queries
as before, but with the restrictions that it is not allowed to make revoking
query for id0 or id1, and opening query for (m∗, σ∗).

e. Guessing: A outputs a bit b′ ∈ {0, 1}, and it wins if b′ = b.

The advantage of A wining the fully anonymous experiment described above
is defined as

Advfull-anonA = |Pr[b′ = b] − 1/2|
Thus, a ABGS with VLR satisfies the full-anonymity if Advfull-anonA is negligible.
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4 Review of Perera et al.’s Revocation Token

Perera et al.’s (traceable or not) fully anonymous lattice-based ABGS schemes
supporting for membership revocation are with VLR mechanism [6], and consist
of 6 algorithms: Setup, KeyGen, Sign, Verify, Open (for untraceable construction
[18], this algorithm is not needed) and Revoke. Here we only focus on KeyGen, in
Perera et al.’s two schemes this algorithm is same, for it is the core of not being
fully anonymous. Concretely it is the following KeyGen algorithm:

KeyGen(pp, N): Take as input the public parameters pp = (param,Att, list,H,G)
and group size N = 2� = poly(λ), here λ is the security parameter, param
defines these parameters: n = poly(λ), modulus q = O(�n2), dimension m =
2n�log q�, Gaussian parameter s = ω(log m), norm bound β = ˜O(

√
�n), num-

ber of universal attributes u = poly(λ); attributes set Att = {u1,u2, · · · ,uu},
where ui ∈ Z

n
q is a random vector, each attribute atti is associated to

ui via an attribute list list = {(atti,ui)}i∈{1,2,··· ,u}, two hash functions,
H : {0, 1}∗ → {1, 2, 3}κ=ω(log n), G : {0, 1}∗ → Z

n×m
q , to be modeled as

random oracles, and this PPT algorithm works as follows:
1. Generate � + 2 matrices A,A0, · · · ,A� ∈ Z

n×m
q as the verification key

and a trapdoor RA as a signing key for the modified Boyen’s signature
scheme proposed in [15].

2. For a member id = d1d2 · · · d� ∈ {0, 1}�, a binary representation of
its index i ∈ {0, 1, · · · , N − 1} and with an attributes set Si =
{uj1 ,uj2 , · · · ,ujp} ⊆ Att, the group manager does the following steps:
(a). Let Aid = [A|A0 +

∑�
i=1 di · Ai] ∈ Z

n×2m
q .

(b). Sample ei,ja = (ei,ja,1, ei,ja,2) ∈ Z
m × Z

m such that Aid · ei,ja =
A · ei,ja,1 + (A0 +

∑�
i=1 di · Ai) · ei,ja,2 = uja mod q, ‖ei,ja‖∞ ≤ β

for a ∈ {1, 2, · · · , p}, i.e., uja ∈ Si. (Note: these short vectors can be
got by using SamplePre(Aid,RA,uja , s).)

(c). Sample ei,ja = (ei,ja,1, ei,ja,2) ∈ Z
m
q × Z

m
q such that Aid · ei,ja =

A · ei,ja,1 + (A0 +
∑�

i=1 di · Ai) · ei,ja,2 = uja mod q, ‖ei,ja‖∞ > β
for a ∈ {p + 1, p + 2, · · · , u}, i.e., uja ∈ Att\Si. (Note: these vectors,
not short, can be got by using basic linear algebra algorithm.)

(d). Let A′
id = [0|

∑�
i=1 diAi] and vja = A′

id · ei,ja mod q, a ∈
{1, 2, · · · , u}.

(e). Sample fi,ja ∈ Z
m such that A ·fi,ja = uja −vja mod q, ‖fi,ja‖∞ ≤ β

for a ∈ {1, 2, · · · , u}, i.e., uja ∈ Att. (Note: these short vectors can be
got by using SamplePre(A,RA,uja − vja , s).)

(f). Let id’s signing secret-key be gski = {ei,a}a∈{1,2,··· ,u} and its revo-
cation token be grti = {ri,a = A · fi,a mod q}a∈{1,2,··· ,u}.

3. Output the group public-key Gpk = (A,A0,A1, · · · ,A�), the mem-
bers secret-keys Gsk = (gsk0, · · · , gskN−1) and revocation tokens Grt =
(grt0, · · · , grtN−1).
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5 Our Attacks

In this section, we show that Perera et al.’s two lattice-based ABGS schemes with
VLR are not fully anonymous, only achieving the selfless-anonymity as Zhang et
al.’s lattice-based ABGS scheme [19].

We define a function bin to denote the binary representation of the member
index, i.e., the member id = bin(i) ∈ {0, 1}� for i ∈ {0, 1, · · · , N − 1}, where
N = 2� = poly(λ) is the maximum number of members. The detailed attacks are
as follows:

(1). For a specific case, i.e., the member id with an index i = 0.
In this case, id = bin(i) = 0�, for id with an attributes set S0 ⊆ Att, we have:
(a). Aid = [A|A0 +

∑�
i=1 di · Ai] = [A|A0] ∈ Z

n×2m
q .

(b). Let id’s signing secret-key be gsk0 = {e0,a}a∈{1,2,··· ,u}.
(c). A′

id = [0|
∑�

i=1 di · Ai] = 0n×2m, va = A′
id · e0,a = 0, a ∈ {1, 2, · · · , u}.

(d). f0,a ∈ Z
m satisfies A · f0,a = ua − va = ua mod q and ‖f0,a‖∞ ≤ β,

a ∈ {1, 2, · · · , u}.
(e). id’s revocation token grt0 = {r0,a = A · f0,a = ua mod q}a∈{1,2,··· ,u}.

According to the above analysis, for member id = 0�, its revocation token
grt0 is exactly equivalent to universal attributes set Att. And for member id �= 0�,
A′

id �= 0 mod q and ei,a �= 0 mod q, i ∈ {1, · · · , N −1}, a ∈ {1, · · · , u}, then va =
A′

id · ei,a mod q is unform over Z
n
q , i.e., va �= 0 mod q is with a high probability

1−1/qn, so as for grti = {ri,a = A ·fi,a = ua−va �= ua mod q}a∈{1,2,··· ,u} �= Att.
Therefore, we have the following conclusions:

(i). If a universal attribute vector, e.g., ui ∈ Att, is included in RL, we can infer
that the corresponding attribute vector for id = 0� is revoked. Therefore,
attribute-anonymity for Perera et al.’s two schemes is unavailable.

(ii). If a given message-signature pair, e.g., (m, σ), is rejected by Verify for an
attribute vector in RL, we can infer that the signature is indeed issued by id =
0�. Therefore, identity-anonymity for Perera et al.’s schemes is unavailable.

Therefore, for the case id = bin(i) = 0�, Perera et al.’s ABGS schemes [17,18]
are completely not fully anonymous, even not selfless-anonymous.

(2). For a more general case, i.e., member id with an index i ∈ {0, 1, · · · , N −1}.
In this case, id = bin(i) = d1d2 · · · d� ∈ {0, 1}�, thus for id with an attributes
set Si ⊆ Att, we have:
(a). Aid = [A|A0 +

∑�
i=1 di · Ai] ∈ Z

n×2m
q .

(b). Let id’s secret-key be gski = {(ei,a,1, ei,a,2)}a∈{1,2,··· ,u}, so A · ei,a,1 +
(A0 +

∑�
i=1 di · Ai) · ei,a,2 = ua mod q.

(c). A′
id = [0|

∑�
i=1 diAi] ∈ Z

n×2m
q , va = A′

id·ei,a =
∑�

i=1 di·Ai·ei,a,2 mod q,
a ∈ {1, 2, · · · , u}.

(d). fi,a ∈ Z
m satisfies A · fi,a = ua − va = A · ei,a,1 + A0 · ei,a,2 mod q,

‖fi,a‖∞ ≤ β, a ∈ {1, 2, · · · , u}.
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(e). id’s token grti = {ri,a = A·fi,a = A·ei,a,1+A0 ·ei,a,2 mod q}a∈{1,2,··· ,u}.

According to the above analysis, for id = bin(i) ∈ {0, 1}�, its revocation token
grti is exactly dependent on its secret-key gski = {(ei,a,1, ei,a,2)}a∈{1,2,··· ,u}, and
once i’s secret-key gski is compromised, anyone (including adversary) can com-
pute its revocation token grti with the public matrices A and A0 in a polynomial-
time. Therefore we have the following conclusions:

(i). If the secret-key for challenge one is provided, for each universal attribute
vector, the corresponding revocation token can be computed, such as ui ∈
Att, we can infer that the corresponding attribute vectors for member id =
bin(i) are used for the challenge signature generating by using Verify for these
two different attributes subsets satisfying the predicate. Therefore, attribute-
anonymity for Perera et al.’s two schemes is unavailable.

(ii). If the secret-keys for challenge ones are provided, for a universal attribute
vector, the corresponding revocation token can be computed, such as ui ∈ Att,
given a valid message-signature pair (m, σ), rejected by Verify for these two
challenge ones, we can infer that the signature is issued by a corresponding
member id = bin(i). Therefore, identity-anonymity for Perera et al.’s two
schemes is unavailable.

To avoid the above flaws, not giving the secret-keys for the challenge ones is a
better measure. Therefore, for the case id = bin(i) ∈ {0, 1}�, Perera et al.’s both
constructions are only selfless-anonymous (i.e., completely not fully anonymous).

To summarize, by showing the detailed attacks for a specific case id = 0�

and a more general case id = bin(i) ∈ {0, 1}� of the members revocation tokens
design for Perera et al.’s two lattice-based ABGS schemes with VLR, it indicates
that these two constructions cannot obtain the full-anonymity, and only achieve
the selfless-anonymity as in [19].

6 Improved Revocation Token and Stern-Type Protocol

In this section, we give an improved revocation token to achieve the full-
anonymity. Furthermore, an improved shorter group public-key and the cor-
responding Stern-type ZKP protocols for the new members tokens are also pro-
vided.

6.1 Improved Revocation Token Design

We add the � + 3-th matrix A�+1
$←− Z

n×m
q , whose columns can generate Z

n
q ,

to Gpk, and � + 2 others all stay the same, i.e., Gpk = (A,A0, · · · ,A�,A�+1).
Then we can obtain the member signing secret-key as in Perera et al.’s original
schemes following (a), (b) (given in Sect. 4), and obtain the member RT following
(c), (d) and (e) (given in Sect. 4), while modifying (f) to (f′), where

(f′). Let member id’s secret-key be gski = {ei,a}a∈{1,2,··· ,u} and its new member
RT be grti = {ri,a = A�+1 · fi,a mod q}a∈{1,2,··· ,u}.
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The improved member revocation token can resist our attacks since the adversary
can no longer compute RTs or get any useful information on RTs from the given
member secret-keys, and further, grti is statistical close to a uniform distribution
over Zn

q . Therefore, the full-anonymity for lattice-based ABGS scheme with VLR
is really achieved.

In addition, we notice that Perera et al.’s both lattice-based ABGS schemes
with VLR are within the structure of Bonsai Tree [7], which feature the bit-size of
group public-key proportional to log N , and thus for a large group Perera et al.’s
both constructions are not that efficient. By adopting a creative idea introduced
by Zhang et al. [20], we utilize identity-encoding technique to encode the identity
index and obtain a shorter key-size, that is, saving a O(log N) factor for bit-size
of group public-key. Our improvement is as follows:

KeyGen(pp, N): Take as input the public parameters pp as in original schemes
(we restate, in this present paper, the group size N = 2� = poly(λ)), and this
PPT algorithm works as follows:
1. Sample A ∈ Z

n×m
q and a trapdoor RA. (Note: these matrices can be got

by using TrapGen(q, n,m).)

2. Sample 3 matrices A0, A1,A2
$←− Z

n×m
q .

3. For member id with an index i ∈ {0, 1, · · · , N − 1} and an attributes
set Si = {uj1 ,uj2 , · · · ,ujp} ⊆ Att, the group manager does the following
steps:
(a). Let Aid = [A|A0 + iA1] ∈ Z

n×2m
q .

(b). Sample ei,ja = (ei,ja,1, ei,ja,2) ∈ Z
m × Z

m such that Aid · ei,ja =
A · ei,ja,1 + (A0 + i · A1) · ei,ja,2 = uja mod q, ‖ei,ja‖∞ ≤ β for
a ∈ {1, 2, · · · , p}, i.e., uja ∈ Si. (Note: these short vectors can be got
by using SamplePre(Aid,RA,uja , s).)

(c). Sample ei,ja = (ei,ja,1, ei,ja,2) ∈ Z
m
q × Z

m
q such that Aid · ei,ja =

A · ei,ja,1 + (A0 + i · A1) · ei,ja,2 = uja mod q, ‖ei,ja‖∞ > β for
a ∈ {p + 1, p + 2, · · · , u}, i.e., uja ∈ Att\Si. (Note: these vectors, not
short, can be got by using basic linear algebra algorithm.)

(d). Let A′
id = [0|iA1] ∈ Z

n×2m
q , vja = A′

id·ei,ja mod q, a ∈ {1, 2, · · · , u}.
(e). Sample fi,ja ∈ Z

m such that A ·fi,ja = uja −vja mod q, ‖fi,ja‖∞ ≤ β
for a ∈ {1, 2, · · · , u}, i.e., uja ∈ Att. (Note: these short vectors can be
got by using SamplePre(A,RA,uja − vja , s).)

(f). Let id’s signing secret-key be gski = {ei,a}a∈{1,2,··· ,u} and its revo-
cation token be grti = {ri,a = A2 · fi,a mod q}a∈{1,2,··· ,u}.

4. Output the group public-key Gpk = (A,A0,A1,A2), the members
secret-keys Gsk = (gsk0, · · · , gskN−1) and revocation tokens Grt =
(grt0, · · · , grtN−1).

From the above new design, we can construct a (traceable or not) fully anony-
mous lattice-based ABGS scheme with VLR, meantime, with a constant number
of public matrices in Gpk to encode the member’s identity index and attributes.
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6.2 Improved Fully Anonymous Stern-Type ZKP Protocol

We first summarize our main idea of Stern-type ZKP protocol corresponding to
the new design of RTs and Bonsai Tree structure, and then turn to a new protocol
with identity-encoding technique.

Given a vector e = (e1, e2, · · · , en) ∈ R
n, we define Parse(e, k1, k2) to denote a

vector (ek1 , · · · , ek2) ∈ R
k2−k1+1 for 1 ≤ k1 ≤ k2 ≤ n. Let k = �log β� + 1, β1 =

�β
2 �, β2 = �β−β1

2 �, β3 = �β−β1−β2
2 �, · · · , βk = 1. Given a threshold predicate

T = (t,S ⊆ Att) and 1 ≤ t ≤ |S|, member id = d1d2 · · · d� ∈ {0, 1}� with
index i and attributes set Si ⊆ Att satisfying T , i.e., there exists an attributes
set St ⊆ S ∩ Si, t = |St|. For convenience of describing our idea, define St =
{u1,u2, · · · ,ut} ⊆ Att, S = {u1,u2, · · · ,up} ⊆ Att. Obviously, t ≤ p ≤ u.

(1). For Bonsai Tree structure.
In this case, we proof the following 4 relations:

(a). Aid · ei,a = ua mod q, ‖ei,a = (ei,a,1, ei,a,2)‖∞ ≤ β, a ∈ {1, 2, · · · , t}.
(b). Aid · ei,a = ua mod q, ‖ei,a = (ei,a,1, ei,a,2)‖∞ > β, a ∈ {t + 1, · · · , p}.
(c). A · fi,a = A · ei,a,1 + A0 · ei,a,2 mod q, ‖fi,a‖∞ ≤ β, a ∈ {1, 2, · · · , p}.
(d). ri,a = A�+1 · fi,a mod q, a ∈ {1, 2, · · · , p}.

For (a), we utilize the classical Dec-Ext, Mat-Ext techniques first introduced
in [13] on short vectors ei,a for a ∈ {1, 2, · · · , t} and Aid = [A|A0+

∑�
i=1 diAi] ∈

Z
n×2m
q , then do the followings:

(a1). id → id∗ = (id, id′), a vector enjoying the Hamming weight �.
(a2). Aid → A∗ = [A|0n×2m|A0|0n×2m| · · · |A�|0n×2m|0n×3m�] ∈ Z

n×(2+2�)3m
q .

(a3). ei,a → e′
i,a = (ei,a,1, ei,a,2, d1ei,a,2, · · · , d�ei,a,2) ∈ Secβ(id), a set owning

special form and norm.
(a4). e′

i,a → e′1
i,a, e′2

i,a, · · · , e′k
i,a ∈ SecExt(id∗), a set owning a special form (for

precise definition, refer to [20]).
(a5). A∗ · (

∑k
j=1 βje

′j
i,a) = ua mod q.

(a6). Sample tk vectors rj
i,a

$←− Z
(2�+2)3m
q to mask e′j

i,a, thus
A∗ · (

∑k
j=1 βj(e

′j
i,a + rj

i,a)) − ua = A∗ · (
∑k

j=1 βjr
j
i,a) mod q, a ∈ {1, · · · , t}.

For (b), we first decompose and extend ei,a for a ∈ {t + 1, t + 2, · · · , p} to
e′1

i,a, e′2
i,a, · · · , e′k

i,a ∈ Z
(2�+2)3m
q , and others stay the same, then do the followings:

(b1). e′1
i,a, e′2

i,a, · · · , e′k
i,a /∈ SecExt(id∗).

(b2). A∗ · (
∑k

j=1 βje
′j
i,a) = ua mod q.

(b3). Sample (p − t)k vectors rj
i,a

$←− Z
(2�+2)3m
q to mask e′j

i,a, thus
A∗(

∑k
j=1 βj(e

′j
i,a + rj

i,a)) − ua = A∗(
∑k

j=1 βjr
j
i,a) mod q, a ∈ {t + 1, · · · , p}.

(b4). Sample 4 permutations π, ϕ
$←− S3m, τ

$←− S2�, φ
$←− Sp, it can be

checked that: Fπ,ϕ,τ (e′j
i,φ(a)) ∈ SecExt(τ(id∗)) is valid for at least t sets of

vectors and for all j ∈ {1, 2, · · · , k}, where Fπ,ϕ,τ (e′j
i,φ(a)) = Fπ,ϕ,τ,φ(e′j

i,a) is
a composition of 4 permutations as described in [19].
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For (c), we utilize the classical Dec-Ext, Mat-Ext techniques on short vectors
fi,a for a ∈ {1, 2, · · · , p}, and matrix A,A0 ∈ Z

n×m
q , then do the followings:

(c1). A → Â
∗

= [A|0n×2m] ∈ Z
n×3m
q .

(c2). fi,a → f 1
i,a, f 2

i,a, · · · , f k
i,a ∈ B3m, a set owning a special form (for precise

definition, refer to [18–20]).
(c3). Define e′j0

i,a = Parse(e′j
i,a, 1,m), e′j1

i,a = Parse(e′j
i,a, 3m + 1, 4m).

(c4). Define rj0
i,a = Parse(rj

i,a, 1,m), rj1
i,a = Parse(rj

i,a, 3m + 1, 4m).

(c5). Pick pk vectors f(j)i,a
$←− Z

3m
q to mask f j

i,a, thus Â
∗ · (∑k

j=1 βj(f
j

i,a + f(j)i,a))−
A · (∑k

j=1 βj(e
′j0
i,a + rj0

i,a))−A0 · (∑k
j=1 βj(e

′j1
i,a + rj1

i,a)) = Â
∗ · (∑k

j=1 βjf
(j)
i,a)−

A · (
∑k

j=1 βjr
j0
i,a) − A0 · (

∑k
j=1 βjr

j1
i,a) mod q, a ∈ {1, 2, · · · , p}.

(c6). Sample a permutation ζ
$←− S3m, it can be checked that ζ(f j

i,a) ∈ B3m.

For (d), we utilize the creative idea introduced in [12] to bound the revocation
token grti to a one-way and injective LWE function described in Definition 2. As
in [12], draw a matrix Bi,a ∈ Z

n×m
q , a ∈ {1, 2, · · · , p}, from the random oracle

G, then do the followings:

(d1). Sample ei,a,0
$←− χm.

(d2). Define Ci,a = B�
i,a · A�+1 ∈ Z

m×m
q , bi,a = Ci,a · fi,a + ei,a,0 mod q ∈ Z

m
q .

(d3). ei,a,0 → e1i,a,0, e
2
i,a,0, · · · , ek

i,a,0 ∈ B3m.
(d4). Ci,a → C∗

i,a = [Ci,a|0n×2m|Im|0n×2m], bi,a = C∗
i,a · (

∑k
j=1 βj(f

j
i,a, ej

i,a,0)).

(d5). Pick rj
i,a,0

$←− Z
3m
q to mask ej

i,a,0, C∗
i,a · (

∑k
j=1 βj(f

j
i,a + f(j)i,a , ej

i,a,0+

rj
i,a,0)) − bi,a = C∗

i,a · (
∑k

j=1 βj(f
(j)
i,a , rj

i,a,0)) mod q, a ∈ {1, 2, · · · , p},

(d6). Sample a permutation ψ
$←− S3m, it can be checked that ψ(ej

i,a,0) ∈ B3m.

Putting the above creative techniques together, we can obtain a new Stern-
type interactive statistical ZKP protocol, and then transformed to a non-
interactive one by using Fiat-Shamir heuristic in the random oracle model.

(2). For identity-encoding technique.

In this case, we proof the following 4 relations:
(a). Aid · ei,a = ua mod q, ‖ei,a = (ei,a,1, ei,a,2)‖∞ ≤ β, a ∈ {1, 2, · · · , t}.
(b). Aid · ei,a = ua mod q, ‖ei,a = (ei,a,1, ei,a,2)‖∞ > β, a ∈ {t + 1, · · · , p}.
(c). A · fi,a = A · ei,a,1 + A0 · ei,a,2 mod q, ‖fi,a‖∞ ≤ β, a ∈ {1, 2, · · · , p}.
(d). ri,a = A2 · fi,a mod q, a ∈ {1, 2, · · · , p}.

The main differences from (1) are: in (a) and (b), Aid is replaced to Aid =
[A|A0 + iA1] ∈ Z

n×2m
q ; in (d), A�+1 is replaced to A2 since we only need 4

matrices to encode member’s identity index.
For (a) and (b), we only need to replace Aid → A∗, and others stay the same,

where the new Aid → A∗ transformation is Aid → A∗ ∈ Z
n×(2+2�)3m
q , where

A∗ = [A|0n×2m|A0|0n×2m| · · · |2�−1A1|0n×2m|0n×3m�].
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For (c), all operations remain the same.
For (d), we replace A�+1 with A2 and other operations remain the same.
Similarly, a new Stern-type statistical ZKP protocol can be achieved by com-

bining the above transformations ideas with the Stern-extension argument sys-
tem also adopted in [18–20]. This concludes the whole ZKP protocol design.

7 Conclusion

In this paper, we showed that two recent attribute-based group signature schemes
with verifier-local revocation from lattices do not satisfies full-anonymity they
claimed, the main reason is that one core building block of their constructions,
the member revocation token is not secure. Finally we proposed an improved
design for member revocation token and an improved Stern-type zero-knowledge
proof protocol for a new fully anonymous lattice-based attribute-based group
signature scheme with verifier-local revocation.
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Abstract. A residential IP Proxy is a proxy service that provides a
traffic relay using hosts on residential networks. Although the service
providers claim that hosts voluntarily participate in the service and use it
for various high-quality applications, in fact, the service provides avoiding
detection and blocking by pretending as apparently benign users, they
exploited the residential hosts to perform malicious acts such as DoS
attacks. In 2019, Mi et al. studied that malicious hosts participating in
the Residential IP Proxy service, and profiled the hosts, and clarified the
infrastructure, scale, and malignancy of the such services. They found
that most malicious activities were sending SPAMs and hosting fake
websites that were performed by routers and WAP devices. However,
residential WAP devices are commonly inside of firewall and these are
not likely to be feasible in well managed residential networks. To answer
to the concern, in this paper, we analyze datasets of Residential-IP-Proxy
hosts, collected by Mi et al. and report an analysis of the communica-
tion that Residential IP Proxies perform in Japan. We use NONSTOP,
the analysis platform, provided by the Information Technology Research
Organization, in the analysis. Our analysis found that most of devices
used in Japan were mobile laptop PCs and port-scanning was the most
frequent malicious activity. Consequently, more RESIP hosts are becom-
ing involved in serious threat and we need countermeasures aimed at
minimizing the abuse of RESIP hosts.

1 Introduction

Recently, a new service called Residential IP Proxy as a Service (RPaaS) have
been provided in the market of proxy Internet connection via proxy hosts. Table 1
lists the major RPaaS service providers. RPaaS plays a useful role in enabling
users access to arbitrary sites without any restriction. For example, Luminati,
the largest Residential IP Proxy (RESIPs) service provider, is located in the
United States, but has many clients who reside in Turkey, and who may be try-
ing to avoid Turkey’s network censorship. Web proxy services are studied for
many researchers. Chung et al. studied a paid proxy services to be manipulat-
ing contents [13]. A measurement to reveal the purpose of proxy services was
conducted by Weaver et al. in [14].
c© Springer Nature Switzerland AG 2020
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In [1], Mi et al. reported that the presence of likely compromised hosts as
residential IPs, identified from 6.18 million unique IPs, distributed over 238 coun-
tries and 52,905 ISPs. Among the hosts, they identified 237,029 IoT devices and
4,141 hosts running PUP networks. The traffic relayed via the RESIP involved
ad clicking, SPAM messaging, and malicious IP hosting activities. They found
that these malicious activities were performed by routers and WAP devices in
residential networks. However, residential WAP devices are commonly inside of
firewall and are not vulnerable to be compromised if these are under control.

Hence, our analysis of this study is motivated by the following questions.

1. What kinds of networks do RESIPs belong to (residential, institutional, or
academic networks?)

2. How are RESIPs distributed geometrically in Japan, countryside, or
metropolitan regions?

3. Who are the major RPaaS providers?
4. What is the impact of malicious RESIPs?
5. For what purposes are the RESIPs abused (advertisement, phishing, port

scanning, or exploring)?

Our objective is to answer above research questions by investigating up-to-
date RESIP activities.

To answer questions (1) and (2), we investigate the detailed properties of
the RESIP addresses. For each of the IP addresses detected by Mi et al. [1] in
2017, we examine the geolocation query using the GeoLite2 city database [3]
from MaxMind, Inc. We use the Registration Data Access Protocol (RDAP)
service provided by the Asia–Pacific Network Information Center (APNIC)[4] to
identify the domain and registry to which RESIP addresses belong.

To answer questions (3) to (5), we need to observe the malicious packets
sent from the RESIP addresses. We, therefore, use the darknet database, NON-
STOP [6], serviced by the National Institute of Information and Communica-
tions Technology (NICT). Using NONSTOP, we examine whether suspicious
addresses detected as RESIPs had performed port-scanning to NICT’s darknet.
Since a darknet is unknown and unused network segment, we regard any packets
designated for the darknet as malicious.

Our contributions of this work are as follows.

– We have found new trends in RESIP host activities based on the darknet
traffic observed in Japan. Our new findings is that the main devices used in
Japan were mobile laptop PCs, whereas router, firewall and WAP devices
were identified from the profiles in the previous study [1].

– We have identify the malicious activities performed by RESIP hosts. Our
analysis shows that the most frequent activity was port-scanning to look for
vulnerable hosts, whereas the heaviest traffic was associated with SPAM-
related activities, according to Mi et al.’s work [1].

– Our analysis reveals that the RESIP hosts are distributed widely across all
regions in Japan. The statistics for RESIP hosts show that hosts are mainly
associated with residential and mobile ISPs.
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Table 1. RESIP service providers and basic specifications

RESIP Provider Fee (2017) Fee (2019) IPs[1]

Proxies Online (United States) $25/Gb certificate expired 1,257,418

Geosurf (Netherlands) $300/month $450–2000/month 432,975

ProxyRack (United States) $40/month $60–120/month 857,178

Luminati (United States) $500/month $12.5/GB+$500/month 4,033,418

IAPS Security $500/month site unavailable

2 Residential IP Proxy

Residential IP proxy services are a new business. The RESIP providers control a
large number of residential hosts to proxy their customers’ communication with
any destination on the Internet.

Figure 1 illustrates how the RESIP service model works. Three parties are
involved here, namely, the RESIP client, the Proxy gateway and the Residential
hosts. Once a client signs up with a RESIP service, it receives a gateway’s IP
address or URL for the service. The gateway forwards the client’s requests to
one of residential hosts, which sends the request to the target hosts that the
client wishes to visit. The responses are sent back to the client via the same
routing arrangements. The forwarding proxies are assigned randomly and are
periodically updated to confound analysis of traffic.

According to the study [1], the followings were discovered from their crawling,
and analysis.

– A total of 6,183,876 unique RESIP addresses were collected. Their classifier
estimated that 95.22% of RESIPs were residential addresses and that 237,029
addresses (43.2%) were assigned to IoT devices.

– RESIP service providers claimed that their proxies were all common users
who willingly join their network. However, none of the five major providers
operated a completely consent-based proxy system.

– The new RESIP service became a booming business. Table 1 shows that most
providers have increased their service fees in the two years from 2017 [1] to our
work (2019). On the other hand, some providers have already abandoned the
business.

3 Investigation Methodology

3.1 Datasets

Table 2 lists the four databases examined in this study.
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RESIP Client Proxy
Gateway

Residential 
Host

Target Server
Residential 

Host

Residential 
Host

……

Inside RESIP Service

RESIP User

Fig. 1. RESIP service overview

Rpaas Dataset This comprises records containing of the detected RESIP
address, and the duration of its activities for the five major RESIP providers:
Proxies Online (PO)1 Geosurf (GO)2, ProxyRack (PR)3, Luminati (LU)4 IAPS
Security (IS)5 The dataset of RESIP addresses and the source code of the pro-
filing tools used are available at [2].

NICTER Darknet Dataset NICT provides the source IP addresses sent to
the NICT darknet of /20 block. Their analysis infrastructure, NONSTOP, pro-
vides the remote access to the attributes stored in packet headers, including
capturing time, source and destination of the address and port, and the coun-
tries involved.

GeoLite2 City Dataset This is a geolocation database provided by MaxMind
Inc. The attribute information includes countries, region, latitude and longitude.

APNIC Whois Dataset APNIC is one of the five Regional Internet Registries
(RIRs) offering a Whois directory service to resources of IP addresses and domain
names, and Autonomous System number (ASN). These information are provided
in JSON format object from Registration Data Access Protocol (RDAP)[7].

1 Proxies Online. http://proxies.online.
2 Geosurf: Residential and data center proxy network. https://www.geosurf.com/.
3 Proxyrack. https://proxyrack.
4 Luminati: largest business proxy service.
5 IAPS security.

http://proxies.online
https://www.geosurf.com/
https://www.proxyrack.com/
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All RESIP Hosts

rpaas dataset

RESIP Hosts 
observed by NICTER

RESIP Hosts
in Japan

48,956

6,183,876

59,816

Fig. 2. Relationships among some subsets of RESIP addresses

3.2 Attributes of RESIP Hosts

To investigate the attributes of RESIP hosts, we focus on those RESIP addresses
that are under the management of Japanese organizations for which we know
the region, name of organization, and address blocks used. The steps were as
follows.

1. Lookup GeoLite2 city dataset for RESIP addresses to identify the addresses
belonging to Japanese regional networks (JP). Estimate the prefecture names
for the addresses.

2. Perform nslookup query to the extracted address to find the domain infor-
mation.

3. Use RDAP query to obtain the CIDR block information and the registration
organization.

3.3 Suspicious Traffic from RESIP Hosts

Assume that any host whose source address has been captured in the NICT
darknet is performing port scans to look for new vulnerable hosts. We use the
NICT NONSTOP service on the first and last days for which a RESIP address
has been detected. We examine if the target RESIP address has been observed.
Of so, we identify the corresponding port numbers that indicate the type of
service the host is interested in.
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Table 2. Resources in this study

rpaas dataset NICTER Darknet

dataset

GeoLite2 City datasetAPNIC whois dataset

Year 2017 2017 2019 2019

Details The list of IP

addresses

participating RESIP

service collected in [1]

Source and

destination data of

packets observed on

/20 darknet by the

National Institute of

Information and

Communications

Technology

IP address and

geographic

information database

provided by

MaxMind, Inc.

IP address and

domain database

operated by APNIC

registry

Records 6,183,876 About 150 billion

Usage Published Access from NICTER

NONSTOP

Datebase access from

Python

RDAP request from

Python

4 Results

4.1 Attributes of RESIP Hosts in Japan

Figure 2 illustrates the relationships between address subsets, RPaas datasets,
and the target addresses; in a Venn diagram. Among the RESIP addresses
(RPaas dataset), we found 48,956 IP addresses managed by Japanese organi-
zations.

Table 3 lists the top 10 prefectures (states) as well as the numbers of RESIP
addresses with regard to RESIP providers. Tokyo is the greatest in the number
of RESIP addresses. The most common RESIP provider in Japan is ProxyRack
(18,502 addresses).

Tables 4 and 5 shows the top ten domains (with third level) and the ISPs,
respectively. The biggest RESIP owner was NTT Communication Corp. , which
is known as the largest IPS under which the greatest RESIP domain ocn.ne.jp
is management of.

Table 6 shows the numbers of RESIP addresses classified by the type of net-
work. Following the domestic convention in Japan, the second level of a domain
indicates the characteristics of the network, e.g., “ne” (network service), “or”
(organization), “ad” (administrative) and so on. Table shows that the “ne”
domain (usually used for residential networks) has the greatest number of RESIP
addresses in Japan.

Note that 91 addresses are for “ac” (academic network, such as universities),
nine are for “co” (companies), and one is for “go” (government). Obviously, these
addresses are not residential and have not yet detected via Mi et al.’s analysis [1].

We should comment on the accuracy of the datasets. First, the estimated
country is not always consistent. For example, 43 domains with a .ru top-level
domain were estimated with Tokyo in the GeoLite2 City database. The unde-
termined domain (pinspb.ru) has some webpages written in Russian and was
classified as Russian in [10] but Israel in [11].

https://www.ocn.ne.jp/
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Table 3. List of top 10 prefectures for RESIP hosts with service providers. PO: Proxies
Online, GS: Geosurf, PR: ProxyRack, LU: Luminati, IS: IAPS Security

Prefecture RESIPs % PO GS PR LU IS Fraction of mobile
phone and PHS
users(%)[8]

Tokyo 12,766 26.1 2,709 84 4,442 5,027 4 26.0

Kanagawa 3,094 6.3 721 17 1,145 1,087 0 6.4

Aichi 2,940 6.0 715 15 1,163 942 0 5.2

Osaka 2,917 5.9 769 17 1,148 880 1 6.7

Saitama 2,544 5.1 605 14 1,082 754 0 4.7

Tiba 1,912 3.9 484 32 726 557 0 4.0

Hyogo 1,722 3.5 460 21 693 493 0 3.5

Hukuoka 1,266 2.5 426 9 436 320 0 4.0

Sizuoka 1,083 2.2 251 7 484 308 0 2.2

not found 6,619 13.5 1,741 52 2,108 2,507 8

Total 48,956 100 11,918 304 18,502 16,325 13 100

Table 4. List of TOP 10 TLD+2 domains for RESIP hosts

TLD+2 RESIPs %

ocn.ne.jp 7,468 15.2

au-net.ne.jp 5,616 11.4

plala.or.jp 2,900 5.9

dion.ne.jp 2,528 5.1

not found 2,441 4.9

so-net.ne.jp 1,966 4.0

mesh.ad.jp 1,935 3.9

eonet.ne.jp 1,305 2.6

home.ne.jp 1,209 2.4

nttpc.ne.jp 1,116 2.2

Total 48,956 100

4.2 Traffic from RESIPs

Figure 4 shows the daily numbers of packets observed in the NICTER dark-
net. There were a total 1,683,440 packets sent from 59,816 RESIP addresses.
The results show that the durations detected in Mi et al.’s analysis [1] has the
intersection with the NICTER datasets.

Table 7 lists the top 10 RESIP addresses in terms of the cumulative observed
packets. Note that the very busy activities (62,669 scans) were performed by only
a few RESIP hosts. The durations of port-scanning from these 10 hosts are plotted
in Fig. 5, where the scans are indicated at the IP addresses along the Y-axis.

Table 8 shows the top 10 destination port numbers specified by RESIP hosts.
The corresponding services are given in the table. For example, the Telnet service
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Table 5. Top 10 domains for RESIP hosts

Organization Domains RESIPs %

Share of

FTTH users

(%)[9]

NTT Communication Corporation ocn.ne.jp, plala.or.jp 10,941 22.3 34.2

KDDI CORPORATION au-net.ne.jp, dion.ne.jp 8,301 16.9 12.8

Japan Nation-wide Network of
Softbank Corp.

bbtec.net, access-internet.ne.jp 7,781 15.8

Japan Network Information Center nttpc.ne.jp, mesh.ad.jp 4,756 9.7

Sony Network Communications Inc. so-net.ne.jp, ap.nuro.jp 2,544 5.1

OPTAGE Inc. eonet.ne.jp 1,274 2.6 5.4

BIGLOBE Inc. mesh.ad.jp 1,230 2.5

Jupiter Telecommunication Co.,Ltd home.ne.jp 1,209 2.4

Chubu Telecommunications Co.,Inc. commufa.jp 1,125 2.2

ARTERIA Networks Corporation ucom.ne.jp, vectant.ne.jp 965 1.9 2.3

Total 48,956 100

designated for the well-known port number 23 was observed in 613,606 packets,
which accounts for 36.4% of the total.

Any possible relationship between the designated port number and the dura-
tion of the scan would be brought out by the scatterplot of Fig. 6. Note that no
significant correlation between the target of the service and its duration can be
seen. However, major services MSSQL and SMTP are constantly observed.

4.3 Discussion

Let us remark each of questions.

Table 6. Counts of RESIP hosts for the various network types (second-level domains)

2LD RESIPs %

ne 28,824 74.1

or 4,340 11.1

ad 2,208 5.6

ac 91 0.2

co 9

go 1

gr 1

ed 1

Total(.jp) 38,946 100
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Fig. 3. Number of RESIP addresses for
network types (second-level domains)

Fig. 4. Daily counts of RESIP hosts
observed in NICTER darknet

Fig. 5. Active durations for RESIP source
addresses

Fig. 6. Active durations for destination
port numbers

(1) For the various kinds of networks, we found that 90.8% of the RESIP
hosts could be classified as residential, based on Table 6 and Fig. 3. The
subdomains “ne”, “ad”, and “or” were the most used in RESIP prox-
ies. According to the domain name convention, these are known to be
residential. Note that some exceptions “ac” and “co” domains, assigned
for academic and company business, were also found. We consider that,
for mobile laptop computers with a RESIP library installed, the instal-
lation was without consent of their owners and was being operated for
malicious purposes.

(2), (3) Tables 3, 4 and 5 confirm that the RESIPs are distributed widely in all
prefectures (regions) and that the distribution matches the statistics for
cell phone users. This implies that residential and mobile ISPs are the
main RESIP hosts in Japan, which differs with the earlier observation [1]
that most RESIP devices (69.8%) could be identified as routers, firewalls,
or WAP devices. Table 5 shows no skew in the relationship between
RESIP hosts and the number of ISPs.

(4) Tables 7, Figs. 4 and 5 demonstrate that constant port-scanning was
performed from RESIP hosts. In contrast to the report [12], there are
now many cyberattacks form identified RESIP hosts. Therefore, we can
infer that the threat from RESIP service is becoming more serious.
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Table 7. List of top 10 RESIP addresses
for the frequency of observations in dark-
net

Address Days RESIP provider # Packets

43.249.57.255 8 ProxyRack 62,669

187.120.17.2 34 Proxies Online
Geosurf

35,353

200.170.223.50 7 Luminati 21,676

103.29.97.2 8 Proxies Online
Geosurf
Luminati

17,004

165.73.122.29 14 Luminati 16,127

212.90.62.209 5 Luminati 15,142

43.248.73.6 90 Proxies Online
Geosurf
Luminati

13,425

190.57.236.230 18 Luminati 13,388

112.196.77.202 27 Proxies Online
Geosurf

13,061

125.99.100.22 10 Proxies Online
Luminati

12,952

Table 8. List of top 10 destination port
numbers in frequencies

Destination
port

Service # Packets %

23 Telnet 613,606 36.4

445 SMB 399,250 23.7

21 FTP 193,917 11.5

1433 MSSQL 144,928 8.6

80 HTTP 97,780 5.8

22 SSH 49,767 2.9

2323 (Telnet) 43,310 2.5

25 SMTP 21,732 1.3

2222 (SSH) 16,838 0.1

3389 RDP 9,782 0.5

(5) Table 8 shows that the major RESIP activities were related to port-
scanning. This observation is not consistent with the result from Mi et
al.’s work [1], which claimed that the most frequent activity was ad mail
(SPAM) at 36.55%. Our analysis shows that the SPAM traffic accounts
for only 1.3 % of activity and that its duration is limited, as shown in
Fig. 6.
This may be a feature of Japanese networks, where ad messages are shift-
ing from email to SNSs. Another possible reason might be limitations
in the observation. Our estimations were based on the darknet, which
carries only a small fraction of the Internet traffic. We need additional
investigations to be able to distinguish clearly between the objectives of
RESIP hosts.

5 Conclusions

We have studied RESIP host activities detected from networks under the con-
trol of organizations in Japan, which accounts for 0.79% of the all Internet
RESIP hosts. Our analysis of 1,683,550 RESIP packets observed from the dark-
net revealed that 90.8% RESIP were residential and the RESIP proxies were
distributed evenly across all prefectures and IPSs. New finding is that most of
devices that became RESIP hosts in Japan were mobile, whereas routers, fire-
walls and WAP devices were identified from the profiles in the previous study [1].
Another distinct aspect of the RESIP behavior is the distribution of malicious
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activities. In [1], the SPAM and malicious website hosting were the most com-
mon (36.5% and 32.7%, respectively), whereas the SPAM traffic accounted for
only 1.3% of all traffic in our analysis. We found that port-scanning was the most
frequent malicious activity. Despite these evolving trends, we conclude that more
RESIP hosts are becoming involved in serious threat and we need countermea-
sures aimed at minimizing the abuse of RESIP hosts.

A 47 prefectures for RESIP

Table 9 shows the number of RESIP addresses for each of 47 prefecture of Japan,
with numbers for major five service providers.

Table 9. List of 47 prefectures for RESIP hosts with service providers. PO: Proxies
Online, GS: Geosurf, PR: ProxyRack, LU: Luminati, IS: IAPS Security

Prefecture RESIPs PO GS PR LU IS

Tokyo 12,766 2,709 84 4,442 5,027 4

Kanagawa 3,094 721 17 1,145 1,087 0

Aichi 2,940 715 15 1,163 942 0

Osaka 2,917 769 17 1,148 880 1

Saitama 2,544 605 14 1,082 754 0

Chiba 1,912 484 32 726 557 0

Hyogo 1,722 460 21 693 493 0

Hukuoka 1,266 426 9 436 320 0

Sizuoka 1,083 251 7 484 308 0

Hokkaido 1,061 324 9 448 225 0

Kyoto 997 213 0 438 310 0

Mie 638 115 1 300 208 0

Hiroshima 589 168 2 257 138 0

Gifu 584 118 1 299 139 0

Ibaragi 568 107 1 264 179 0

Okinawa 543 89 3 153 284 0

Tochigi 473 125 1 186 134 0

Gunma 432 112 1 144 158 0

Nagano 418 80 0 172 144 0

Niigata 409 95 0 200 100 0

Shiga 380 99 1 131 135 0

Miyagi 372 104 5 150 97 0

Okayama 316 89 0 129 97 0

Nara 302 74 1 121 85 0

Kumamoto 297 98 1 108 82 0

Ehime 271 94 0 97 68 0

Yamaguchi 242 79 0 97 57 0

Fukushima 241 72 0 113 42 0

Kagawa 227 60 2 128 27 0

Toyama 216 57 0 92 56 0

Ishikawa 210 61 0 65 73 0

Yamanashi 201 54 0 81 62 0

(continued)
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Table 9. (continued)

Prefecture RESIPs PO GS PR LU IS

Oita 186 48 1 77 52 0

Wakayama 177 51 0 88 34 0

Aomori 168 34 0 85 46 0

Fukui 159 36 1 57 61 0

Kagoshima 157 41 1 72 38 0

Kouchi 154 53 0 67 27 0

Yamagata 148 31 1 68 38 0

Iwate 139 36 0 61 32 0

Akita 131 36 0 60 31 0

Nagasaki 128 25 0 49 52 0

Saga 126 38 0 54 28 0

Tokushima 125 37 0 46 33 0

Miyazaki 124 33 0 51 36 0

Tottori 94 38 0 37 14 0

Shimane 90 13 0 30 43 0

not found 6,619 1,741 52 2,108 2,507 8

Total 48,956 11,918 304 18,502 16,325 13
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Abstract. DDoS attacks are an immense threat to online services, and
numerous studies have been done to detect and defend against them.
DDoS attacks, however, are becoming more sophisticated and launched
with different purposes, making the detection and instant defense as
important as analyzing the behavior of the attack during and after it
takes place. Studying and modeling the Spatio-temporal evolvement of
DDoS attacks is essential to predict, assess, and combat the problem,
since recent studies have shown the emergence of wider and more power-
ful adversaries. This work aims to model seven Spatio-temporal behav-
ioral characteristics of DDoS attacks, including the attack magnitude, the
adversaries’ botnet information, and the attack’s source locality down to
the organization. We leverage four state-of-the-art deep learning meth-
ods to construct an ensemble of models to capture and predict behavioral
patterns of the attack. The proposed ensemble operates in two frequen-
cies, hourly and daily, to actively model and predict the attack behavior
and evolvement, and oversee the effect of implementing a defense mech-
anism.

Keywords: DDoS Attacks Prediction · Deep learning

1 Introduction

Distributed Denial-of-Service (DDoS) attacks are explicit malicious attempts to
prevent legitimate users from accessing a service by sending an overwhelming
amount of traffic to the service server. According to Netscout’s annual world-
wide infrastructure security report [15], the traffic generated for launching DDoS
attacks exceeded 1 TBPS in size in 2019. On a more recent event, an attack of
size 1.7 TBPS has been recorded. These attacks, if successful, result in a service
shutdown that costs a provider an average of $221,836 per attack [15].
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The growing threat of DDoS attacks has inspired many recent research stud-
ies to contribute to the efforts toward the analysis and characterization of the
attacks [16,17], including methods for the attacks detection and prediction [6,14].
These efforts have made the field of detecting DDoS attacks widely-explored
and resulting in highly-accurate detection systems [8,10,18]. However, there are
limited studies that explore behavioral patterns and characteristics of the DDoS
attacks during the progression of the attack and after the detection. Understand-
ing the Spatio-temporal behavior and characteristics of the attack is crucial for
defending against the attack, limiting its impact, and planing countermeasures
to prevent it from occurring in the future. This study aims to contribute to this
area by providing in-depth analyses and insights for modeling seven behavioral
characteristics of DDoS attacks using deep learning-based methods. This analy-
sis and modeling task takes place after the detection of the attack and continues
as the attack progresses (in space and time). The Spatio-temporal analysis of
DDoS behavior can be done by addressing various characteristics, such as the
attack magnitude, botnet information, and attack source location.

This paper is dedicated to investigating several Spatio-temporal character-
istics of the DDoS attacks, namely, attack magnitude, botnet family and ID,
attack source locations including countries, ASNs, cities, and organizations. Due
to the underlying nature of patterns to be extracted for separate characteristics,
we leverage current state-of-the-art machine learning methods, including Deep
Neural Networks (DNN), Long Short Term Memory (LSTM), Transformer, and
Convolutional Neural Networks (CNN), to model separate characteristics and
construct an ensemble of models to predict at different frequencies the behav-
ioral patterns of DDoS attacks. The ensemble incorporates 14 different models,
two for each characteristic, and operates in two frequencies, hourly-based, and
daily-based frequencies, to actively monitor and account for the latest status of
the attack while in progress. The ensemble is built and evaluated on a large-scale
real-world dataset that includes 50,704 verified DDoS attacks launched by eleven
botnet families and 674 botnet IDs on 9,026 targets from August 2012 to March
2013. This work sheds light on different aspects and patterns of DDoS attacks.

Contribution. This work presents an ensemble of models to predict the Spatio-
temporal behavioral patterns of DDoS attacks. The contribution is as follows:

– Modeling Spatio-temporal Characteristics: Predicting seven different
characteristics of the ongoing DDoS attacks using Spatio-temporal behavioral
patterns of the attack, namely: attack magnitude, botnet family, botnet ID,
attack source country, ASN, city, and organization, using large-scale real-
world dataset of approximately nine million records of verified DDoS attacks.

– Constructing Predictive Ensemble: Implementing an ensemble of seven
models based on four machine learning architectures, namely, DNN, LSTM,
Transformer, and CNN, to actively predict the attack behavior on different
operational frequencies (hourly and daily bases).

– Addressing Unseen Attacks and Targets: Evaluate the performance of
the ensemble on a real-world large-scale dataset of known and unseen targets
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and DDoS attacks. The ensemble offers high accuracy over targets with no
attacking history, and new represented DDoS attacks.

– Addressing the Cold Start Problem: We investigate the effect of cold
start problem, i.e., modeling with insufficient information such as at the begin-
ning of the attack. We show that the ensemble can achieve high accuracy even
under the cold start situation.

2 Dataset Overview

2.1 Dataset Collection

The dataset is provided by the monitoring unit of a DDoS mitigation com-
pany [3]. Traces of malicious infected hosts were collected by collaborating with
over 300 major Internet Service Providers (ISPs) globally monitoring attacks
launched by specific malicious actors worldwide across America, Europe, Asia,
Africa, and Australia. The activities of the participating hosts in the given botnet
attacks, by either communicating with the infected infrastructure or launching
the actual DDoS attack on the monitored targets, were monitored and analyzed
over time. To this end, the traces of the traffic associated with various botnets
were collected using different sensors on the Internet, in corporation with several
ISPs, where the source of the collected traffic is an infected host participating
in botnet attacks, and the destination is a verified targeted client. Afterward,
malware botnets used in launching various attacks were reverse engineered and
labeled to a known malware family using best practices (i.e., AMAL, a fully
automated system for analysis, classification, and clustering of malware sam-
ples) [12,13]. The dataset consists of 50,704 verified DDoS attacks collected in
the period of 08/29/2012 to 03/24/2013, a total of 207 days, targeting 9,026
clients, represented as hourly snapshots of each family activities over the mon-
itored period, including the botnet information, targeted client IP, and the IPs
of the hosts associated with the botnet attack.

2.2 Behavioral Characteristics of DDoS Attacks

We focus on three groups of characteristics: attack magnitude, botnet informa-
tion, and attack source location. The following is a description of each group.

Attack Magnitude (AM). This attribute refers to the number of DDoS
attacks launched by infected hosts on a specific target over a period of time,
regardless of their malicious families and attack objectives. It is important to
understand the magnitude of the attack to estimate and allocate a suitable
amount of resources to counter the attack.

Botnet Information. The importance of knowing the attacking botnet families
lies in implementing the correct defense against the attack since popular bot-
nets have well-known attack patterns. Therefore, two characteristics have been
extracted: botnet family (BF) and ID. The DDoS attacks reported in our dataset
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originated mainly from eleven popular botnet families: dirtjumper, darkshell,
ddoser, nitol, pandora, blackenergy, optima, aldibot, yzf, colddeath, and armaged-
don. Botnet families may evolve over time. Therefore, new botnet generations
are marked by their unique MD5 and SHA-1 hashes. We consider the botnet ID
as a standalone characteristic, as the behavior of the botnet may change over
several generations. Table 1 shows the number of botnet IDs associated with
DDoS attacks for each family. Note that the eleven botnet families have a total
of 674 different botnet IDs, indicating the continuous evolvement of botnets over
time. The number of records represents the instances of recorded DDoS attacks
associated with infected hosts from a malicious botnet family.

Table 1. Distribution of the botnet IDs over botnet families.

Family # Botnet IDs # Records

dirtjumper 251 6, 902, 882

darkshell 166 80, 129

ddoser 102 37, 172

nitol 43 20, 411

pandora 41 1, 397, 027

blackenergy 28 95, 330

optima 25 41, 321

aldibot 9 269

yzf 6 113, 923

colddeath 2 28, 259

armageddon 1 906

Total 674 8, 717, 629

Attack Source Location. It has been shown that botnets have strong geo-
graphical and organizational localities [2]. Therefore, such information can be
used to predict future attack source locations and the shifting patterns of attack-
ers across geographical locations to help in planning defenses and countermea-
sures. To this end, the hosts IP addresses were used to extract the attack source
country (CN), city (CT), organization (OG) and (ASN), using the IP-to-region
dataset and MaxMind online database [11]. In the monitored duration in which
the dataset is collected, the attack source locations were distributed over 186
countries, 2,996 cities, 4,036 organizations, and 4,375 ASNs, The distribution of
the infected hosts indicates the existence of worldwide botnet infections.

2.3 Dataset Splitting

The dataset is split into three parts as follows. 1 Training dataset: The train-
ing dataset contains the traces and records of 80% (7220) of DDoS attacks’
victims (i.e., targeted clients). For the purpose of predicting the behavioral pat-
terns of the attacks during the attack progression, we considered the records



366 A. Abusnaina et al.

that occurred at the first 80% of the attack duration for each victim (target)
as the actual training dataset. 2 Known targets testing dataset: This dataset
contains the remaining records that occurred during the last 20% of the attack
duration per target. This sub-dataset is used to evaluate the prediction mod-
els in modeling the behavioral pattern of DDoS attacks on targets with known
history (by observing the earlier 80% of the attack duration). 3 Unseen targets
testing dataset: This dataset consists of DDoS attack records of the remaining
20% (1806) of targeted clients that are not considered in the training dataset.
The aim of this dataset is to evaluate the prediction models over targets with
no attack history available to our model. Table 2 shows the distribution of the
dataset characteristics over each partition of the dataset.

Table 2. Overall characteristics of the dataset distribution.

Partition # Targets # Families # IDs # IPs # Countries # ASN # Cities # Org.

1 Train Dataset 7,220 11 605 841,471 186 4,150 2,877 3,831

2 Known Targets 7,220 11 606 158,230 179 3,275 2,275 3,024

3 Unseen Targets 1,806 10 248 234,113 151 2,571 1,800 2,382

Overall 9,026 11 674 880,451 186 4,375 2,996 4,036

3 System Design

The proposed design aims to predict the seven different characteristics of the
DDoS attack. The system design is shown in Fig. 1.
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Fig. 1. The general flow of the DDoS attacks prediction design. Here, T refers to the
attacked target, whereas H represents one hour in the attack duration.
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3.1 Operational Frequency and Data Pre-processing

We adopted two operational frequencies to model and analyze behavioral pat-
terns of DDoS attacks. The data pre-processing and handling follows the same
manner in both approaches with slight modifications.

Operational Mode. For studying attack behavior manifested with the con-
sidered characteristics, data records were aggregated at different frequencies
(i.e., Agile with hourly frequency and Passive with daily frequency). The agile
mode requires six hours of data to be fully-functional at an hourly frequency,
while the passive mode requires three days of information to be full-functional
in modeling behavioral patterns at a daily frequency.

Data Processing and Sequence Generation. Addressing different charac-
teristics of DDoS attacks captured by their records, the data is represented as
ΦX = {φ1, φ2, . . . , φt} ∈ R

N×T , where φα ∈ R
1×T is a vector of the attribute

in hand (Φ) for the attack targeting X at a given time step α (e.g., φ1 and φt

represent the vectors of the first and last time step), T is the maximum length of
the reported attacks, and N is the total number of targeted clients. For instance,
addressing the botnet ID of an attack targeting X , the data is represented as a
matrix IDX = {id1, id2, . . . , idt} ∈ R

N×T , where idα ∈ R
1×T is a vector of

botnet IDs targeting X at a given time step α. We achieve such representation
by the following steps. A Tokenization and Encoding: We assign identifiers for
unique elements (e.g., botnet IDs are assigned to unique identifiers when pro-
cessing the ID attribute). Assuming an attack at target X in a time step α,
the ID attribute is represented with a vector of all unique botnet IDs identi-
fiers occurring in the attack record within α. For example, assuming the IDs
appear in a certain attack record at the first time step are {id32, id105, id12},
then, we present the vector as ID0 = {id12, id32, id105}. B Sequence Extraction:
The sequence of attribute behavior of DDoS attacks is extracted with differ-
ent frequencies. Sequence extraction refers to the length of the previous time
steps required to predict future steps. In the agile approach, we chose six-time
steps (i.e., six hours) to be a sufficient time needed to predict future behaviors
based on our experiment. For example, IDs sequences are generated as follows:
Seq1 = {ID1, ID2, . . . , ID6}, Seq2 = {ID2, ID3, . . . , ID7}, and so on. Operating
with the passive approach, we chose three time steps (three days) as sufficient
information to predict daily future behavior. C Attribute Vector Padding: The
input data for each attribute are presented with different lengths based on the
attribute magnitude at each time step. To allow efficient processing and tensor
calculation, all vectors are padded to the maximum length enabling the packing
of several attribute vectors in one sequence as well as packing several sequences in
one batch. D Attribute Vector Embedding: Attribute vectors are forwarded to an
embedding layer in all deep learning-based models in our ensemble, to enable the
compact representation of vectors. Vectors represented with attribute identifiers
φα ∈ R

T , where T is the maximum occurrence of unique identifiers in an attack,
will be embedded to γα ∈ R

128, where 128 is the size of the vector embedding.
We chose the size of the embedding based on several experiments that showed
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128 is adequate to incorporate the information present in the attribute vector.
Sequences are then viewed as matrices of Γα ∈ R

ts×128, where ts is the number
of time steps.

Attack Magnitude. The approach to predict and study attack magnitude is
different from the one adopted for other characteristics. The magnitude of the
attack is calculated per targeted client at each time step and presented as one
real value (instead of attribute vector). Thus, only step B is required from the
aforementioned approach, which aims to generate sequences of the calculated
value of magnitude at each time step. To present the values of magnitude to the
deep learning model, we normalize the values in the range of zero to one.

3.2 Prediction Models Architectures

Our approach adopts an ensemble of powerful classifiers to predict different
behaviors of DDoS attacks including DNN, Transformer, LSTM, and CNN. We
chose different model architectures for modeling different tasks (i.e., character-
istics behaviors) since certain architectures are proven to work better than the
others in certain circumstances. In particular, the best performing deep learning
architecture in predicting each DDoS attack characteristic is reported.

DNN for Attack Magnitude. The model architecture consists of four dense
layers of size 1,000 units with ReLU activation function. Each dense layer is
followed by a dropout operation with a rate of 30%. The last layer is connected
to a sigmoid layer of size one signaling the normalized number of the attack
magnitude (i.e., the scale of the magnitude from zero to one).

Transformer for Botnet Information. The model is adopted from the model
proposed by Vaswani et al. [19]. It consists of stacked layers in both encoder
and decoder components. Each layer has eight sub-layers comprising multi-head
attention layers. The prediction is done by conducting a beam search with a
length penalty (λ = 0.6). The Transformer is used to train two models perform-
ing two separate tasks, predicting botnet family and ID.

LSTM for Wide Attack Locality. The model consists of one LSTM layer
with a size of 128 units. The LSTM layer is followed by a dense layer of size 128
and a dropout operation with a rate of 20%. Then, a dense layer with a sigmoid
activation function is used to output the prediction of attack source locality. The
LSTM is used to predict attack source country and ASN.

CNN for Specific Attack Locality. The model architecture consists of one
convolutional layer with 64 kernels of size 1×3 convolving over the input vector,
followed with a sigmoid output layer of size equals to the size of the addressed
attribute vector (i.e., to predict the future status of the attack). The CNN archi-
tecture is used to predict the specific attack locality (i.e., city and organization).
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4 Evaluation and Discussion

We report our results using two evaluation metrics, namely True Positive Rate
(TPR) and True Negative Rate (TNR). TPR represents the number of correctly
predicted elements over all the elements that occurred within the duration of
the prediction. For instance, if the DDoS attack launched from four countries,
of which, the prediction model predicts three correctly, the TPR is equal to
75% (3/4). TNR is referred to as 1 − (FP/N) where FP is the number of the
incorrectly predicted elements and N represents all the elements that did not
occur within the duration of the prediction. For instance, if the DDoS attack
launched from four countries out of 186, and the prediction model incorrectly
predicts two elements, the TNR is equal to 98.90% (1−(2/182)). Note that TPR
and TNR are preferred metrics in evaluating the systems as true indicators of
performance in different scenarios. For example, achieving a TNR of 100% means
zero false alarms. On the other hand, TPR indicates the precision of predicting
attack behavior. Therefore, it’s important for all models to maintain high TPR
and TNR to ensure the usefulness of the classifier prediction.

(a) Botnet Family (b) Botnet ID (c) Attack Country

(d) Attack ASN (e) Attack City (f) Attack Organization

Fig. 2. Evaluation of the prediction models over known and unseen targets.

4.1 Attack Characteristics Evaluation

Figure 2 summarizes the results of six attack characteristics using both known
and unseen test targets when adopting the agile and passive approaches. The
seventh attribute (i.e., the attack magnitude) is evaluated separately due to the
data nature of the attribute. Two models were implemented for each attribute,
one for each operational frequency (agile and passive operational modes), and
evaluated on known and unseen targets.

Attack Magnitude. We evaluate the DNN model for predicting the attack
magnitude using the mean error metric. Since the data observations were nor-
malized, the output of the model indicates the magnitude as a fraction of the
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maximum recorded magnitude. Then, to calculate the magnitude, we multiply
the model’s output by the maximum magnitude rounded to the decimal point.
We report the results in Table 3. Here, the shift error is reported by the actual
number of attacking hosts contributed to the attacks. For instance, the error rate
of the agile model on unseen data is 0.0014% which is off by roughly 86 hosts
from the actual number of the attacking hosts. Even though this number might
seem large at first, it appears to be a good estimate knowing that the average
attack magnitude on the agile data sampling rate (i.e., per the hour) equals
551 hosts (15.60% deviation). Similarly, the average shift rate for the passive
approach is roughly 1,977 hosts for predicting the magnitude of unseen targets,
which is also acceptable estimation knowing the average of magnitude is 15,394
hosts per day (12.97% deviation).

Table 3. Attack magnitude prediction evaluation.

Approach Target Mean Error Rate Avg. Shift Error

Agile Known 0.015% ∓88.64

Unseen 0.014% ∓85.87

Passive Known 0.012% ∓1,734.40

Unseen 0.014% ∓1,976.65

Botnet Family. Figure 2a shows the evaluation of the Transformer architecture
trained to predict botnet family using different settings. The models achieve TPR
of 95.97% and TNR of 99.65% for predicting botnet families of known targets
on one-hour frequency, while maintaining TPR of 79.50% and TNR of 98.94%
for unseen targets. The TPR score increases to 96.97% and 93.62% when using
lower frequency (i.e., one-day) for known and unseen targets, respectively.

Botnet ID. Figure 2b shows the evaluation of the performance of the
Transformer-based prediction model on known and unseen targets for agile
and passive operational frequencies. The model achieved a TPR of 90.16% and
76.42% for predicting known targets, and unseen targets with a TNR of 99.97%
and 99.95%, respectively, using agile operational frequency. For passive opera-
tional frequency, the model achieved a TPR of 62.96% and 52.74% for predicting
known targets, with a TNR of 99.95% and 99.93% for unseen targets, respec-
tively.

Attack Source Country. Figure 2c shows the performance of the LSTM-based
model on known and unseen targets for agile and passive operational frequencies.
Using the agile approach, we achieved a TPR and TNR of 85.26% and 98.62% for
known targets, and 83.83% and 99.95% for unseen targets, respectively. Similarly,
the model achieved a TPR and TNR of 90.19% and 93.21% in predicting known
targets attack source countries using passive frequency, and a TPR and TNR of
82.60% and 95.39% in predicting unseen target attack source countries.
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Attack Source ASN. Figure 2d shows the evaluation of the LSTM-based mod-
els in predicting the attack source ASNs operating in two frequencies, agile and
passive. The model achieved a TPR and TNR of 73.59% and 99.41% on known
targets, and 65.68% and 99.96% on unseen targets, respectively, operating in
agile frequency. Similarly, the model achieved a TPR and TNR of 27.06% and
97.53% on known targets, and 26.66% and 97.60% on unseen targets, respec-
tively, on the passive approach. While the passive frequency-based LSTM model
performance is low, it maintains a high TNR, reducing the false alarms.

Attack Source City. Using the agile frequency-based CNN model to predict
the attack source city, we achieved a TPR and TNR of 72.23% and 99.72% for
known targets, and 44.61% and 99.98% for unseen targets, respectively. For daily-
based frequency, we achieved a TPR and TNR of 62.81% and 99.02% for known
targets, and 17.39% and 99.34% for unseen targets, respectively. Figure 2e shows
evaluation results of the CNN-based models. The high TNR (low false alarms)
makes it possible to utilize the provided information by the model to implement
a proper defense with high confidence.

Attack Source Organization. Figure 2f shows the evaluation of the perfor-
mance of the prediction models on known and unseen targets for both oper-
ational frequencies. We achieved a TPR and TNR of 80.42% and 99.40% on
known targets, and 84.48% and 99.72% on unseen targets, respectively, using
agile frequency operational mode.

4.2 Discussion and Limitation

DDoS Attack Behavior Prediction. This work focuses on predicting the
DDoS attack behavioral patterns after the detection of the attack. Therefore,
the ensemble operates on top of the DDoS attack detection system. The purpose
of the ensemble is to provide critical information and insights to help the targeted
victims in designing and planning a proper defense mechanism.

– Magnitude driven defenses: DDoS attacks with a low magnitude will unlikely
result in total denial of service, while high magnitude attacks can cause shut-
ting down the service. Understanding the ongoing attack magnitude within
a continuous time window allows a better decision making process and allo-
cating resources to combat and mitigate the attack.

– Botnet-based driven defenses: Certain botnet families have repetitive attack-
ing patterns. In addition, botnet families can collaborate to conduct a DDoS
attack. Understanding the attack nature and behavior through its associate
botnet families and IDs create a better awareness of how the attack will
progress, and better defend against it.

– Region-based driven defenses: DDoS attacks have regional dependencies, as
the infected hosts may be originated from the same region, or related regions.
Understanding the regional distribution of the infected hosts, and the over-
time shifting will provide better insights to implement region-based defenses.
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First-Hour Attack: The Cold Start. We implemented the ensemble to
operate on the specified frequency using the available information aggregated
using the sampling time while padding the unavailable sequence steps with zero-
vectors. For example, assume an attack with only two-hours information is avail-
able, the agile approach will process the two-hours vectors and pad four-steps of
zero-vectors to predict the third hour. This approach has shown to be effective
in our experiments, especially for predicting botnet families and attack source
countries. For instance, using six-hours information, the agile approach predicts
the attack source cities with TPR of 72.23% and 44.61%, for known and unseen
targets; while using only one-hour information results in TPR of 65.56% and
17.49% for the same settings, while maintaining a high TNR (≈99%).

5 Related Work

DDoS Attacks Detection. DDoS attacks detection is well explored in dif-
ferent environments. Sekar et al. [18] proposed LADS, a triggered, multi-stage
in-network DDoS detection system to overcome the scalability issues in detect-
ing DDoS attacks over the large-scale monitored network. In addition, Chang et
al. [1,2] performed an in-depth analysis of botnet behavior patterns. Their anal-
ysis showed that different botnets start to collaborate when launching DDoS
attacks. Similarly, they conducted an in-depth analysis measurement study show-
ing that bots recruitment has strong geographical and organizational locality.
Lu et al. [9] clustered botnet traffic into C&C channels using the K-mean clus-
tering algorithm on large-scale network traffic payload signatures. In more recent
work, Doshi et al. [4] distinguished normal traffic from DDoS traffic using limited
packet-level features.

DDoS Attacks Behavior Prediction. Recent studies predicted different
aspects of the attack behavior, such as Gupta et al. [7], where they estimated
the number of bots involved in a flooding DDoS attack with high accuracy by
calculating various statistical performance measures. In addition, Fachkha et
al. [5] proposed a systematic approach for inferring DDoS activities, predicting
DDoS attack characteristics, and clustering various targets to the same DDoS
campaign. Furthermore, Wang et al. [20] designed three DDoS attacks mod-
els from temporal (attack magnitudes), spatial (attacker origin), and Spatio-
temporal (attack inter-launching time) perspectives by analyzing 50,000 verified
DDoS attacks. Even though recent studies investigated the attack detection and
behaviors, only a few of them provided information that would assist the client in
implementing a proper defense on the spot. Our design provides the victim with
essential information that can be utilized to properly implement a magnitude-,
region-, and malware-based DDoS attacks mitigation techniques and defenses.

6 Conclusion

This work proposes an ensemble approach for studying and predicting the behav-
ioral characteristics of DDoS attacks. Toward this, we built an ensemble of deep
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learning models to predict seven behavioral characteristics of DDoS attacks, pro-
viding insights for handling such attacks. Evaluating our approach on a large-
scale real-world dataset that contains records of more than fifty thousand verified
attacks, the results of our approach show remarkable performance when operat-
ing on different sampling frequencies and under different settings. This success
of efficient and accurate modeling of DDoS attack characteristics can help to
implement proper defenses for mitigating the attack.
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Abstract. Android’s permission system is asked to users before installing appli-
cations. It is intended to warn users about the risks of the app installation and gives
users opportunities to review the application’s permission requests and uninstall it
if they find it threatening. However, not all android permissions ask for the user’s
decision. Those who are defined as ‘Dangerous’ in the permission protection level
are only being confirmed by the users in Android Google Market. We exam-
ine whether the ‘Dangerous permissions’ are actually being a main component
of detection when it comes to defining the app as malicious or benign. To collect
important features and to investigate the correlation between themalicious app and
the permission’s protection level, feature selection and deep learning algorithms
were used. The study evaluates the feature by using the confusion matrix. We used
10,818 numbers of malicious and benign applications, and 457 permission lists to
investigate our examination, and it appeared that ‘Dangerous’ permissions may
not be the only important factor, and we suggest a different perspective of viewing
permissions.

Keywords: Android application · Permission · Protection level · Malware
detection · Feature selection · Classification · Deep learning

1 Introduction

An investigation report by International Data Corporation (IDC) expects that the overall
smartphonemarketwill reach to 1.511 billion units in 2024. In the same year, theAndroid
market will still be in the first place of the OS Market with 87% share, while Apple’s
iOS will be accounted for second place with 13% share [11]. As of December 2019, the
Google Play Store consists of 2.87 million applications which are consisting of a wide
range of contents, such as music, magazines, books, film, games, and TV [18].

Permissions are divided into four levels of protection level. Among them, dangerous
level permissions are defined as higher-risk permissions, which is required to be con-
firmed by an Android user since they can cause harmful impact to the user and device.
In our paper, we performed a research to examine how effective dangerous level permis-
sions are when detecting malware applications. Therefore, we made a feature selection
of our dataset to see which permissions are being important factors. 70 different types
of permissions were selected via the Weka tool to detect malware applications. We used
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four different deep learning algorithms to see the accuracy of the detection and calculated
themwith the confusionmatrix. All of the selected features resulted in a high score; all of
them were above 90% accuracy. We now look in-depth to see what kind of permissions
were being selected to be important and figured out what particular protection level was
considered more when detecting malware applications.

2 Background

2.1 The Android Permission System

Android uses permission to protect an Android user’s privacy, so all Android apps must
request permission to alert users about the risks that applications can contain [8]. Per-
missions that are askedmust be approved by the user in order to access to user’s sensitive
data. Android provides API framework for applications to interact with the Android sys-
tem, and API is consisted of packages and classes [15]. If the device’s API level is 23 or
higher, app permissions are notified to users at runtime, and if the device is running under
API level 22, app permissions are automatically asked to users at install-time. Therefore,
users can choose whether they want to accept or deny the permissions request [1]. Per-
missions that are reviewed by users are defined as “Dangerous” permissions, according
to the Android Developer’s protection level. Permissions are categorized into four threat
levels [3], [6]:

Normal permissions are default values. They are lower-risk permissions that are
automatically granted by the system without needing the user’s approval. However, if
needed, users can review these permissions before installing them.

Dangerous permissions are higher-risk permissions that are needed to be reviewed
by the user. These permissions request access to the user’s private data or can control
the device. Since these permissions can cause a negative impact on the user, they are
not automatically granted by the system which means that they are asked for a review
before proceeding. Dangerous permissions potentially have harmful API calls that are
related to the user’s private information. These permissions, for instance, can read and
send user’s text messages.

Signature permissions are granted by the system only if the requesting application
has the same certificate as the application that declared the permission. Permissions are
automatically granted without asking for the user’s review when the certificates match.

SignatureOrSystem permission is an old synonym for signature|privileged which
was deprecated in API level 23. These permissions are used in some special cases and
are granted only to applications in the dedicated folder of the Android system image or
to applications signed with the same certificate as those that have declared permissions.
Since this protection level is sufficient to most cases, permissions in this protection level
can be activated regardless of the exact area of installation.

2.2 Feature Selection

When using machine learning, large data can be redundant or irrelevant. These data
can cause overfitting, increase run time and model complexity, and mislead the learning
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algorithm. In order to run files in an efficient way, reducing unnecessary features can
help the program perform well with a higher level of accuracy. In particular, permission-
based analysis require feature selectionmethodswith classification algorithms.However,
choosing the right feature selection method is a challenge because the result of feature
selection can be impacted with not only the characteristic of the dataset but also the
interaction with the classification algorithms [17].

The feature selection method is consisted of three types of methods; filter, wrapper,
and embedded method. The filter method removes the least important features one by
one, the wrapper method finds which feature subset has the best performance in running
the algorithm, and the embedded method adds itself a feature selection function [4],
[20].

In our paper, to reduce the dimension size of the dataset, we performed a feature
selection method with the Weka tool. 16 different algorithms were used to get the best
feature set, and with the selected features, we were able to perform permission-based
malware application detection.

3 Related Work

Barrera et al. performed an empirical analysis of the permission-based security models
by analyzing 1,100 popular Android apps with the SOM algorithm. The study was to
find what permissions were used by the Android developers. They found out that out of
many permissions, only a small amount of numbers of permissions are used by them.
Also, they found that permissions do not exactly matter or correlate with the category of
the application [2]. Jesse Obiri-Yeboah et al. discussed how people relate their privacy
issues with the Android permission system, and studied about security issues that come
along [12]. Ontang et al. [14] propose access control policy infrastructure to prevent
applications. They also propose that Android permissions should be in more detail with
notifying some specific requirements for configurations or software versions for instance.
Felt et al. conducted a usability study on the effectiveness of the Android permissions.
The study came upwith the result that permissions do not help users to be informed about
the malware threat that could impact their security [7]. Aung et al. detected malware
applications by extracting permission-based applications at Google’s Play market. They
extracted the data from AndroidManifest.xml files. In order to calculate the accuracy
of their detection method, they compared the performances with true positive, false
positive, precision, and recall rates. J48 and Random Forest outperformed CART [21].
Enck et al. paper proposes Kirin security service to check on the permissions when
installing applications to reduce the risks of malware applications. The study is relied
on developer’s perspective of requesting permissions [5].

4 Data

In order to conduct this research, 6414 benign apps and 4404 malware apps were used.
These applications were collected from 2017 to 2019 by NSHC and Google. Out of 457
lists of permission that were provided byAndroid API features, we have figured out what
permissions were being used for each application that we have. For those permissions
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that were being used, we marked them as “1”, and “0” for those that weren’t being used,
and saved as a CSV file. In order to perform various algorithms for Feature Selection,
we used all of 457 permissions for features.

10,818 applications that we have collected used 182 different kinds of permissions.
We have matched all of used permissions with protection levels. 23 dangerous per-
missions, 54 normal permissions, 49 signature permissions, and 56 signature|privileged
permissions were used.

We wanted to check howmany protection levels existed in each benign and malware
app in total. We counted the actual numbers of permissions by its protection level.
Out of 6,414 benign applications, and 4,404 malware applications, 10,699 and 22,283
dangerous permissions were used respectively, and the detailed numbers are in Table 1.

Table 1. Percentage of Dangerous Protection Level Permissions

Dangerous Normal signature signature|privileged

Benign App (6,414) 10,699 17,286 800 1,391

Malware App (4,404) 22,283 37,460 8,386 8,829

5 Methodology

5.1 Weka Attribute Selection

To perform Feature Selection, we used WEKA’s Attribute Selection, which is great for
measuring the utility of attributes and finding the subsets that are predictive of the data
[9], [10]. Both wrapper and filter approaches are included in Attribute Selection. For
Attribute Evaluator, for example, correlation-based feature selection, chi-square statis-
tic, gain ratio, information gain, symmetric uncertainty, and support vector machine-
based criterion is provided. For search methods, the best-first search, ranker method,
and random search methods are provided, for example.

In this paper, we have used 16 algorithms for Feature Selection that were provided
in Weka’s interface, and 3 search methods. We are to select those that are the main
features to detect malware applications. The following Table 2 shows which algorithms
and methods were used in Feature Selection.

12 out of 16 algorithms were required to use the ranker method for the search
methods in Weka. Ranker methods rank all the features by their individual evaluations.
Therefore, they ranked all 457 features, which were not intended, so we made another
experiment with python to select the right features for malware detection. We calculated
the accuracy of the first ranked feature. Then, the next ranked feature was added to
calculate the accuracy, and then the next ranked feature was added, and so on until the
program calculates all 457 features. We continued this for 12 algorithms. After all the
features were calculated, we figured out the best feature selection for each algorithm by
the accuracy that they have reached (see Fig. 1).
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Table 2. Algorithms used for Feature Selection in Weka.

Attribute Evaluator Search Method

CfsSubsetEval BestFirst

ChiSquaredAttributeEval Ranker

ClassifierAttributeEval Ranker

ClassifierSubsetEval GreedyStepwise

CorrelationAttributeEval Ranker

FilteredAttributeEval Ranker

GainRatioAttributeEval Ranker

InfoGainAttributeEval Ranker

OneRAttributeEval Ranker

ReliefAttributeEval Ranker

ConsistencySubsetEval GreedyStepwise

SignificanceAttributeEval Ranker

SVMAttributeEval Ranker

FilteredSubsetEval GreedyStepwise

SymmetricalUncertAttributeEval Ranker

WrapperSubsetEval GreedyStepwise

Fig. 1. An example of Ranker Method feature selection. The circle shows the peak of accuracy.
We selected all features until this point.

In Fig. 1, we are showing one example of how we performed a feature selection
for the ranker method. This figure is about the CorrelationAttributeEval algorithm. The
circle that surrounds the peak of the graph is the 28th feature. It was the highest peak,
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which eventually means that 28 features all together scored the highest accuracy. We
used this 28 features as a feature set to perform malware detection.

After the peak, when we continue to add permissions to calculate its accuracy, some
do reach up to the point where we first considered to be the highest accuracy. However,
we considered all the results after the peak to be overfitting, so they were not reviewed
in our study.

5.2 Deep Learning Algorithms

After selecting all the features that are relevant to detect malware applications, we now
put it into practice to see the accuracy of detection by using deep learning algorithm.
This method was intended to check if selected features are actually being meaningful
when detecting malware applications. The detection rate could differ by the dataset and
algorithm’s characteristics; we chose four different deep learning algorithms to see the
detection rate; MLP (Multilayer Perceptron), CNN (Convolutional Neural Networks),
LSTM (Long Short-Term Memory), and DBN (Deep Belief Network) [16].

Performance Evaluation Criteria. To evaluate the performance of our features, we
used a confusion matrix, which is a summary of prediction results that are used in the
field of machine learning. We used recall, precision, f-measure, and accuracy [19].

Accuracy calculates the percentage of correctly identified applications as shown in
Eq. (1):

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Recall calculates the percentage of correctly identifying malicious applications as
malicious as shown in Eq. (2):

Recall = TP

TP + FN
(2)

Precision calculates the percentage of actual malicious applications among those
predicted to be malicious as shown in Eq. (3):

Precision = TP

TP + FP
(3)

F-measure calculates the harmonic average of precision and recall as shown in
Eq. (4):

F − measure = 2 ∗ Recall*Precision

Recall + Precision
(4)

6 Results and Evaluation

6.1 Accuracy of Malware Detection

With selected features from Weka’s attribution selection, we evaluated its efficiency
with deep learning algorithms. According to Table 3, all of the detection rates are above
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90% which scored a high percentage of malware detection. This percentage proves
that the selected features are meaningful to determine malware applications. Selected
features included all protection levels, and 324 permissions were used, with 70 types
of permissions. The confusion matrix was used to calculate the accuracy, and we only
scored the accuracy part on our Table 3.

Table 3. Malware application detection results

CNN (%) MLP (%) LSTM (%) DBN (%)

CfsSubsetEval 94.4778 94.5779 94.2814 92.7911

ChiSquaredAttributeEval 95.5869 96.1799 95.7139 94.4778

ClassifierAttributeEval 94.9399 96.5496 95.0439 93.2070

ClassifierSubsetEval 95.1017 95.1325 94.9168 95.0323

CorrelationAttributeEval 96.7421 97.2274 96.8807 94.8013

FilteredAttributeEval 96.3725 97.0425 95.9681 94.7551

GainRatioAttributeEval 94.9630 96.1491 95.2403 93.7384

InfoGainAttributeEval 96.1414 96.4571 96.1183 94.5702

OneRAttributeEval 96.0259 96.1183 95.9681 93.6922

ReliefAttributeEval 97.2505 97.0425 97.3198 95.6099

ConsistencySubsetEval 97.0425 96.9808 96.9039 95.6099

SignificanceAttributeEval 95.1248 96.2723 95.8872 94.4778

SVMAttributeEval 95.4251 95.0708 95.3905 94.1312

FilteredSubsetEval 94.4547 94.3931 94.0850 92.4445

SymmetricalUncertAttributeEval 97.0656 97.1965 96.6266 94.9399

WrapperSubsetEval 96.7190 97.2581 96.8115 95.5175

From the process of selecting features that are important to detect malware appli-
cations, MLP’s accuracy was all above 94% which performed better than the other
three methods. The highest detection rate was conducted with a combination of
ReliefAttributeEval and LSTM methods.

Out of selected permissions, that were consisted of 370 permissions with 70 different
types,we counted each protection level to seewhich onewasmore used to detectmalware
applications. Table 4 shows exactly counted numbers of protection levels, and it appears
that the normal protection level is more used than a dangerous level. This is based on
permissions.

Out of 70 types of permissions, 19 were dangerous, 22 were normal, 10 were sig-
nature, and 19 were signature|privileged (Table 5). We divided 70 types of permissions
into four protection levels to use for malware application detection.

Four different deep learning algorithmswere used for the detection, and the confusion
matrix was used to calculate the accuracy. Table 6 shows the accuracy.



382 C. Lee et al.

Table 4. Total number of Protection Levels in Selected Features via Weka

Dangerous Normal Signature signature|privileged

# of Protection Levels 119 147 54 50

Table 5. Protection Level counted for 70 types of permissions in Feature Selection

Dangerous Normal Signature signature|privileged

# of Protection Levels 19 22 10 19

Table 6. Malware application detection with protection level

CNN (%) MLP (%) LSTM (%) DBN (%)

Dangerous 92.4676 92.2982 92.3406 89.2329

Normal 94.0619 94.3007 94.1774 90.5961

Signature 89.2791 88.3240 88.5166 88.3318

signature|privileged 91.1275 91.5280 91.5434 90.1571

When we detected malware applications with protection levels, CNN’s overall per-
formance was good, but the highest accuracy was detected with LSTM, 94.1774%,
with Normal protection level. This would let us assume that permissions with normal
protection are important factors to consider when detecting malware applications.

6.2 Classification

With the accuracy results from what we performed with various feature selection algo-
rithms and deep learning methods, it appeared that Relief Attribute Evaluator and
LSTM method detects higher accuracy. Relief Attribute Evaluator repeatedly samples
the instance and evaluates the value of the attribute by taking the value into account
of the given attribute for the nearest instance of the same and different classes. It can
perform on both discrete and continuous class data [13].

Out of 70 types of permissions that were selectedwith feature selection, wewanted to
investigate which are more important to consider when detecting malware applications,
and figure out what kinds of protection levels exist. Therefore, we chose to follow the
steps we made in 5.1, and used Relief Attribute Evaluator and LSTM for detection.

Relief Attribute Evaluator uses Ranker for the search method, and Fig. 2 shows the
peak of accuracy; 94.66%. 11 permissions as a set scored the highest accuracy when we
ran it through LSTM. 11 permissions are listed in Table 7. We also counted how many
applications have used them, and counted them in two ways; malware applications, and
bothmalware and benign applications. It appears that selected permissions are waymore
used in malware applications.
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Fig. 2. ReliefAttributeEval’s accuracy. 11 permissions together scored highest.

Table 7. Relief Attribute Evaluator Feature Selection results

ReliefAttributeEval Protection Level Malware/Total

android.permission.BIND_DEVICE_ADMIN signature 2012/2032

android.permission.GET_TASKS normal 2638/2965

android.permission.VIBRATE normal 1780/3420

android.permission.WRITE_SETTINGS signature 2343/2564

android.permission.SEND_SMS dangerous 3668/4055

android.permission.RECEIVE_SMS dangerous 3436/3729

android.permission.READ_SMS dangerous 2832/2960

android.permission.WRITE_SMS normal 2308/2384

android.permission.WRITE_EXTERNAL_STORAGE dangerous 3793/6025

android.permission.READ_PHONE_STATE normal 4077/6073

android.permission.RECEIVE_BOOT_COMPLETED normal 3572/4284

Permissions that were selected again with Relief Attribute Evaluator algorithm con-
sists of 4 dangerous, 5 normal, and 2 signature levels. These selected permissions repre-
sent important factors in determining malware applications. Once again here, the normal
protection level was the most. While dangerous permissions are to ask users to review
their usage, other levels in these selected features are not notified to a user unless users
intend to look up for them. Permissions in Table 7 are all related to user’s privacy and
security, and many permissions were related to SMS and the device. Not only dangerous
level permissions are important factors that users should be noticed and be aware of, but
also all other permission levels. Therefore, we will name lastly selected permissions to
be “Risky”, and other remaining ones rather “Safe”.
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The result of choosing the right feature selection method with the right deep learning
study varies with the dataset. The suggested study set that we propose is not definitely
the right answer, but we propose a way to select risky features with a way to follow along
(see Fig. 3).

Fig. 3. How to choose risky features when detecting malware applications.

7 Conclusion

As Android has defined each permission with its permission levels, some are required to
be reviewed by the user, and some are not. Dangerous permissions are correlated with
user’s privacy issues, which we would all consider it being a really dangerous factor
when it comes up to detecting malware applications. In our research, we wanted to
find out what features are being considered to be the main elements to detect malware
applications, and proposed a way to follow. To detect malware applications, feature
selection and a way to evaluate it needs to be done. With our data, feature selection
was well done with the Relief Attribute Evaluator method, and malware detection was
done well with LSTM. However, we emphasize that this combination varies with the
character of the dataset. Selected features were closely related to the user’s privacy and
device, but most of the permissions were not required to be reviewed by the user. Four
levels of protection level are classified by the Android Google Homepage, but they are
divided into developer-friendly ways. Users must understand that other levels can also
be dangerous, and change their view of understanding the protection level. Therefore,
in our perspective, we view selected features as the same level, and define it “Risky”.

Our studywas to investigate important features and see how these feature’s protection
level was organized by the developer’s view. How we defined some permissions as
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“Risky” is just a start of defining them in the user’s view. In future work, some user-
friendly views should be made, and we would like to categorize the views in more
detail. Usability studies and empirical analysis should be conducted to fully understand
the user’s view. Dividing up permissions with the user’s viewwould be another challenge
coming up.
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Abstract. The Correlation Power Analysis (CPA) is one of the pow-
erful Side-Channel Analysis (SCA) methods to reveal the secret key
using linear relationship between intermediate values and power con-
sumption. To defense the analysis, many crypto-systems often embed
the shuffling implementation which shuffles the order of operations to
break the relationship between power consumption and processed infor-
mation. Although the shuffling method increases the required number of
power traces for deploying the CPA, it is still vulnerable if an attacker
can classify or group the power traces by operations. In this work, we pro-
pose a new CPA technique by efficiently clustering the power traces using
signal envelopes. We demonstrate theoretically reduced time complexity
and tested our approach with the eight-shuffling AES implementations.

Keywords: Side-Channel Analysis · Correlation Power Analysis
(CPA) · Shuffling method · Envelope · Clustering algorithm

1 Introduction

Nowadays many crypt-analysts use the Side-Channel Analysis (SCA) in order to
reveal secret keys. The analysis does not explore the theoretical defects of cipher
algorithms but analyzes side signals which can be obtained from hardware or
systems. Therefore, SCA becomes a robust and practical approach to analyzing
even highly secure crypto-systems which are extremely impossible to understand
or break in theory.

The Correlation Power Analysis (CPA) is one of the well known SCA methods
with electrical power signals [4,13,15]. In CPA, the attacker gathers a sufficient
amount of power traces while randomly changing plain texts as inputs. Based
on electrical power consumption model such as Hamming weight or Hamming
distance, CPA estimates the power ratios between the gathered power traces for
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each guessed key. By computing the correlation between estimated power ratio
and gathered power traces, we can infer that the most correlated power trace is
obtained from correctly guessed key [4].

Compared to the brute-force analysis, CPA does not guess the whole keys
simultaneously but each single byte and this reduces the computational complex-
ity of crypto-system. To prevent this cryptanalysis, shuffling techniques are used
to randomize the execution time of operations to break the linear relationship
between the power traces. To apply the CPA to crypto-system against shuffling,
an attacker needs more electrical power traces than original AES implementa-
tion to deal with the noise. Let us assume that the simple crypto-system, which
does not embed shuffling scheme, needs at least M power traces for analyzing. If
1/K is the probability that there exists the same operation appears in the shuf-
fling based approaches, we statistically need at least MK2 power traces [5,7,11]
which make attackers to spend more time to obtain sufficient power traces to
analyze the crypto-system.

However, we find that attackers can identify and analyze the used crypto-
system with reduced computational complexity although the shuffling technique
is applied. In this paper, we introduce the outline patterns of signals for iden-
tifying and analyzing the crypto-system and they are called envelope in signal
processing domain. Using the envelope, we demonstrate the vulnerability of the
shuffling approach. We show that attackers can save a lot of time to identify and
analyze the crypto-system by efficiently clustering the signals with the envelope.
Our contributions are listed as follows:

– We demonstrate that the practical execution time to analyze the shuffling
based crypto-system is much shorter than its expected time because our pro-
posed method reduces the minimum number of power traces from MK2 to
MK. We discovered that the power envelope can be used as powerful feature
for distinguishing the power traces of macro-scale shuffling techniques.

– We also applied our CPA approach to the eight-shuffling AES implementa-
tions [1]. We found that the time complexity of the eight-shuffling AES imple-
mentation is reduced from O (K

∑
k Mk) to O (K min(M1,M2, · · · ,MK)) if

our proposed SCA is used. Here, K is the number of implementations and
Mi is the minimum number of power traces of the ith implementation to be
analyzed.

2 Background

2.1 Correlation Coefficient

The correlation coefficient is a general method to investigate the quantitative
similarity between two signals. The Pearson correlation coefficient (PCC), which
normalizes the coefficient values between −1 and 1 using standard deviation, can
be defined as:

pcc(X,Y ) =
E[(X − μx)(Y − μy)]

σxσy
(1)
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where X and Y are two real-valued random variables, while μx and μy are means
and σx and σy are standard deviations of X and Y , respectively. The numerator
of Eq. (1) is also known as covariance of X and Y . By Cauchy-Schwarz inequality,
we can ensure that the PCC value always locates between −1 and 1.

2.2 Correlation Power Analysis (CPA) for AES Algorithm

The basic idea of CPA is guessing the secret key using the linear relationship
between measured power traces and hypothetically expected power consump-
tion [4]. The following procedure is the detailed explanation of exploiting the
First-Order CPA to obtain the secret key ν of original AES algorithm.

– Power traces measurement. First of all, we measure a number of power
traces xn,t for CPA and record them with corresponding plain texts Pn where
t is the time index from 1 to T and n is the index of power traces from 1
to N . The power traces should be aligned in time sequence since CPA uses
the concurrent information of power trace. The power amplitude fluctuates
as the encryption module runs. The number of encryption rounds in AES can
be 10, 12 or 14 which depends on key size [6]. In each round except the initial
and final rounds, all SubBytes, ShiftRows, MixColumns and AddRoundKey
steps are operated.

– Power consumption model. In the phase of AddRoundkey, AES performs
the XOR in each byte of the plain texts and secret key [6,9], which is Pn ⊕ ν.
Then it substitutes XOR’s values with S-box in the phase of SubBytes such as
S(Pn ⊕ν). At the moment the module uses this output value of SubBytes, we
can expect the power consumption with a specific power consumption model.
One of the general power consumption models is Hamming weight [4,14].
It assumes the power consumption is proportional to the number of ‘1’s in
the operating byte sequence. Let HW be a Hamming weight function which
calculates the number of ‘1’s in the byte sequence and then HW (0xa3) is 4
because 0xa3 = 101000112.

– Power analysis of guessing each key. Since all operations are byte-wise,
we can estimate the power trace followed by the operation of each single byte.
Firstly, we guess the ith byte of secret key νi from 0 to 255 and then we have
the power consumption as

y(i)
n (ν(i)) = HW (S(P (i)

n ⊕ ν(i))).

At the time of the operation of S-box, the estimated power consump-
tion is proportional to the real power. To find the most likely correct
key, we measure the correlation between estimated power consumption and
actual power amplitude for each guessed key, which can be represented as
pcc(y(i)

1:N ,x1:N,t) where y
(i)
1:N (ν(i)) = [y(i)

1 (ν(i)), y(i)
2 (ν(i)), · · · , y

(i)
N (ν(i))] and

x1:N,t = [x1,t, x2,t, · · · , xN,t].
– Monitoring PCC values for a whole period. In the aligned sequences of

the power traces, we have to compare the estimated power ratio with actual
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power ratio for all period of the sequences since the starting time of the
operation is not known. Summing up, we can obtain a correct secret key by
calculating the PCCs for a whole period of the sequences with each guessing
key ν(i), which is expressed as:

(ν̂(i), t̂) = arg max
ν(i),t

pcc
(
y(i)(ν(i)),x1:N,t

)
. (2)

If the bytes of the key have been correctly guessed, relatively high correlation
coefficient will appear at a specific time. Otherwise, we will not be able to
find such trace.

If we guess the whole key of 16 bytes (128 bits) of AES algorithm, the time
complexity will be 2128. However, if we can guess every single byte of the key,
it will decrease the time complexity to 16 × 28 = 212. To guess the key with the
method, we need a sufficient number of power trace as correlation coefficient is
covered by observation error. The minimum number of power traces for analyzing
is considered as one of the criteria of time complexity of the CPA attack since
the measuring power traces is the most laboring task [1,4].

2.3 Shuffling Techniques

As we mentioned in the previous section, the feasibility of exploiting CPA comes
from linear relationship between power consumption and intermediate value. To
break this linear relationship, several countermeasures appeared such as masking
and shuffling [1,5,7,8,11,16,18]. Masking shades the intermediate information
with other values and shuffling randomizes the execution time of functional oper-
ations. Let us assume that the shuffling method has K different operations with
equal probability of 1/K. It is known that at least MK2 power traces are needed
to succeed the CPA against the shuffling method [5,7,11], where M is the min-
imum number of power traces to deploy the CPA to original crypto-system.

The Eight-shuffling AES (Advanced Encryption Standard) implementa-
tions [1] is one of the shuffling methods. In the eight-shuffling AES, it executes
the AES algorithm with 8 different types of implementations while operating the
encryption module, which are listed in Table 1. The traces gathered from the
encryption modules look different as shown in Fig. 1. The shape of traces varies
as experimental setup changes.

3 Proposed Approach

In this section, we propose the efficient CPA algorithm using envelope to break
the eight-shuffling AES implementations. In general, the traditional approach
applies CPA to whole mixed-up signals. It seems like we need a myriad of power
traces to reveal the secret key in the implementation but we can eventually obtain
the key value in a practical time since the same types of traces will be repeatedly
gathered. In spite of using whole power traces for analysis, we can classify all
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Table 1. Eight-shuffling AES implementations

No AES Implementation method Feature

(1) Original 1 S-Box Lookup Table 256× 1

(2) Original 2 S-Box Lookup Table 16× 16

(3) Bertoni Suggested method by Bertoni

(4) T-Table The Round Transformation

(5) Original 1 Macro AES Original 1 Macro Implementation

(6) Original 2 Macro AES Original 2 Macro Implementation

(7) Bertoni Macro AES Bertoni Macro Implementation

(8) T-Table Macro AES T-Table Macro Implementation

(1) 0 500 1000 1500 2000 2500 3000 3500
-0.2

0

0.2

(2) 0 500 1000 1500 2000 2500 3000 3500
-0.2

0

0.2

(3) 0 500 1000 1500 2000 2500 3000 3500
-0.2

0

0.2

(4) 0 500 1000 1500 2000 2500 3000 3500
-0.2

0

0.2

(5) 0 500 1000 1500 2000 2500 3000 3500
-0.2

0

0.2

(6) 0 500 1000 1500 2000 2500 3000 3500
-0.2

0

0.2
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Fig. 1. Eight types of electrical power traces extracted from the eight-shuffling AES
implementations using the experimental setup described in Sect. 4.1. Each signal from
(1) to (8) is listed in Table 1, respectively.

signals which are gathered from the same implementation method. Therefore,
we do not need to process the whole signals but focus to analyze only related
signals which are extracted using power envelop with clustering algorithms. The
overall process is well depicted in Fig. 2.

3.1 Extracting Envelopes

The envelopes are outlines which cover the extrema of fluctuating signal. The
frequency of power signal will basically follows the clock rate of the integrated
circuit. Since the signal rapidly fluctuates, measuring the similarity with the
only raw signals is unstable since it is sensitive to the high frequency noise and
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Fig. 2. Overall process of proposed approach.
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Fig. 3. (a) Upper and lower envelope of electrical power traces of window size of 16.
(b) Different shapes of envelopes depend on the size of window.

fine time-alignment. Therefore, we can remove the high frequency noise of the
signals using envelopes so we can analyze the signals in a stable way.

Among the various envelopes, the peak envelope obtains the outline of oscil-
lating signals. It uses local maxima or minima within the given window size w.
Figure 3-(a) demonstrates both upper and lower envelopes obtained from one
signal. We use local maxima to find upper envelope, and local minima to get
lower envelope. To extract the envelopes from original power trace, we should
find peaks of each extrema and applies spline interpolation. The time indexes
of the peaks from maxima and minima of the nth power trace xn,1:T with the
window size w are defined as:

Γupper(xn,1:T ) = {m | max(xn,m−j , xn,m−j+1, ..., xn,m−j+w) = xn,m,∃j ∈ W}
Γlower(xn,1:T ) = {m | min(xn,m−j , xn,m−j+1, ..., xn,m−j+w) = xn,m,∃j ∈ W}

where W = {0, 1, ...w − 1} and m = 1, 2, · · · , T . After extracting the upper and
lower peaks, we applied cubic spline interpolation [12] to those selected peaks.
Cubic spline interpolation provides the smooth curve connecting the selected
peaks with third degree polynomial piecewise function S(x). As the properties
of cubic spline, S(x) passes all peaks and S(x), S′(x) and S′′(x) are continuous



Filtering-Based Correlation Power Analysis (CPA) with Signal Envelopes 395

for interval between all peaks points. As setting the second derivative of the first
and last piece of S(x) to be zero, S(x) is unique which is called natural spline [12].
The upper envelope ut(x) and lower envelope lt(x) of sequence xt at time t can
be defined as ut(xn,1:T ) = S(Γupper(xn,1:T )), and lt(xn,1:T ) = S(Γlower(xn,1:T )).

3.2 Filtering Power Traces

If the attacker can classify the power traces, the expected time complexity of
CPA can be significantly reduced. Considering current shuffling techniques use
big number of K [7], reduced amount of time complexity can be regarded as
quite critical issue. To filter/group the whole power traces from the same imple-
mentation method, we need to measure the similarities. There are two scenarios
depending on whether the number of implementation methods is known or not.
If we do not know the number of implementation methods K, we choose any
power trace from a specific implementation method and refine the other power
traces which seemed to be gathered from the same implementation method.
Kernel Density Estimation (KDE) is one of the possible methods for this case
which is well described in Sect. 3.2. However, if K is known, we can directly
apply the parametric clustering algorithms to envelopes, such as K-means and
Expectation-Maximization (EM) algorithm, which is described in Sect. 3.2.

Kernel Density Estimation (KDE) with PCC. Clustering with the ker-
nel density estimation (KDE) [17] method is based on measuring similarities
between traces. First, we choose a power trace as a template signal for classifi-
cation. As we mentioned in Sect. 2.1, we can estimate the similarities between
the power traces from the chosen implementation method and those from the
other implementation methods by calculating PCCs of envelopes. That is, we
can define the similarity between two aligned signals x and y as

dsim(x,y) =
pcc(u(x), u(y)) + pcc(l(x), l(y))

2
.

where u(·) and l(·) are the whole upper and lower envelops of the given signal
respectively. As the result of pcc is locating in range from −1 to 1, the two metrics
of similarity are scalar values between −1 and 1. The higher value indicates the
target signal has higher probability of being extracted from same implementation
method.

With these calculated one-dimensional similarity scores of length N , we can
set the threshold and classify the target trace. To decide the threshold, we esti-
mate the probability density with KDE and use derivative to find the local
minimum. KDE uses specific kernel function φ such as normal distribution or
rectangle. Those functions have their bandwidth, which are standard deviation
and width of rectangle respectively. For the ith data x(i), probability density
function p(x) can be estimated by summing all the kernel function of mean of
x(i) and given bandwidth, which is

∑N
i φ(x − x(i)). The only parameter which

decides the shape of the p(x) is the bandwidth. Low bandwidth makes p(x) rough
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Fig. 4. (a) Similarity scores obtained from envelope between the power trace from
Bertoni Macro method and others. (b) Estimated probability density function by adap-
tive KDE.

and empirical, and high bandwidth makes it smooth and conjectural. Moreover,
optimal bandwidth can be chosen by minimizing the expected integrated squared
error of x(i) [3]. Figure 4-(a) is the similarity scores between an envelope from
Bertoni Macro and rest of the traces. With normal distribution kernel function
and optimally obtained bandwidth, we can obtain the probability distribution
as Fig. 4-(b). As shown in the figure, we can observe a few local minima and
maxima. We can simply infer that the biggest local minimum value cannot be
appropriate as plotted in Fig. 4-(b) so we choose the threshold which takes a
sufficient number of power traces as 1% of the total number of traces.

K-Means. K-means algorithm is a well-known clustering approach using simi-
larity with K centroids when the number of cluster K is known [2]. As the high
frequency noise in the original power traces is removed by extracting envelope, we
can use the envelope data itself rather than raw power traces. K-means searches
for the optimal solutions to find appropriate clusters by minimizing the sum of
all distances between the means of the clusters and the assigned data. It initially
sets K random centroids of clusters. Then, all data are assigned to the closest
cluster. For all data in each assumed cluster, we calculate the means of the clus-
ters again and reassign the data to the newly calculated cluster, and repeat these
tasks iteratively. Finally, K-means searches for the optimal K clusters until the
number of iteration reaches the configured maximum number, which is 1000 in
this work. To measure similarity, we use 1 − pcc(ck ,xn,1:T ) as distance metric,
where ck is the centroid of the kth cluster and xn,1:T is the nth power trace.

Expectation-Maximization (EM) Algorithm. Expectation-Maximization
(EM) algorithm for Gaussian mixture model is based on maximum likelihood
estimation [2]. Similar to K-means algorithm, EM assumes the parameters for
clusters and update the parameters to find a optimal solutions of clusters by
maximizing the sum of log likelihood. While K-means algorithm only uses the
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distances between the means of clusters and involved data, EM uses the prior,
mean and covariance which has higher computational cost. As we also use the
envelope itself as a data to find a cluster, the nearby data point on the envelopes
are correlated each other. Thus, we can expect the higher performance of clus-
tering than K-means algorithm.

4 Evaluation

4.1 Experimental Setup

We use CW1173 Chip Whisperer Lite board for extracting power trace. It is gen-
erally used for side-channel analysis. It is based on FPGA and uses AVR/Xmega
programming. The power traces are extracted by Chip Whisperer Capture V2
and sampling rate is 7.38 MS/s. We measure the power trace for 2 or 3 rounds
of each AES, and the number of collected power traces was 80, 000. Each traces
have 3, 500 points with about 0.47 ms long. To analyze the performance of our
proposed method, we used the computer equipped with Intel(R) Xeon(R) CPU
E5-2609 0 @ 2.40 GHz, 32 GB RAM, and Ubuntu 18.04 LTS (64-bit) operating
system. We used MATLAB as a programming language. Any multiprocessing or
parallelization techniques are not used. We apply our proposed approaches into
Eight Shuffling AES implementation.

4.2 Filtering Performance

As we mentioned in Sect. 3.2, we filtered the power traces with three different
clustering algorithms (KDE, K-means and EM clustering) with envelopes. Total
80,000 power traces are used to evaluate the filtering performance. We extract
the envelopes from all power traces with a fixed window size (w = 16). We picked
sample template traces in each algorithm. Based on chosen template traces, we
applied our three different filtering methods and measure precision, recall and
accuracy. We repeat this whole process 30 times and calculate the mean of
obtained those metrics.

Table 2 demonstrates the results of our proposed approaches with the power
traces which are generated from the 8-shuffling AES implementations. Compared
to other filtering methods, KDE is deterministic since we fixed the bandwidth of
the kernel. Other algorithms have several probabilistic factors such as random
initial means and covariances. Thus, we repeated evaluation process for those
algorithms and averaged. First of all, KDE has roughly high performance of
precision while recall is relatively low for Original 1 and T-Table. Meanwhile,
K-means and EM algorithm have relatively high recall. Since the distance of
power trace gathered from Original 2 and T-Table is close to each other, it
is hard to distinguish the two power traces. It is obvious that the appropriate
method for each implementation is different so we need to select proper approach
to obtain high precision and recall. For all implementation methods, at least one
filtering method exists that can have perfect precision and recall. Furthermore,
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t-Distributed Stochastic Neighbor Embedding (t-SNE) [10] shows the distances
of raw traces and envelopes between them as we can see in Fig. 5. We can also
observe the effect of envelope which removes the high frequency components and
makes signals from the same implementation method to get closer.

Table 2. Precision, recall and accuracy of three filtering methods (KDE, K-means,
EM) using envelopes conduct on the implementation method of eight-shuffling AES.

Implementation
Method

KDE K-means EM

Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc.

Original 1 1.0000 0.4406 0.9299 1.0000 1.0000 1.0000 0.7991 1.0000 0.9494

Original 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6178 1.0000 0.8498

Bertoni 1.0000 1.0000 1.0000 1.0000 0.4481 0.9318 0.7649 1.0000 0.9244

T-Table 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5334 1.0000 0.8493

Original 1 Macro 1.0000 1.0000 1.0000 1.0000 0.5796 0.9483 1.0000 0.8968 0.9873

Original 2 Macro 1.0000 1.0000 1.0000 0.4983 1.0000 0.8736 0.8004 0.9080 0.9384

Bertoni Macro 0.9999 0.9768 0.9971 1.0000 1.0000 1.0000 1.0000 0.8255 0.9784

T-Table 1.0000 0.4626 0.9318 1.0000 1.0000 1.0000 0.8866 0.6211 0.9268
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Fig. 5. t-SNE results of 8,000 samples of (a) original power traces and (b) upper
envelopes of window size 15, gathered from eight-shuffling AES implementations. The
data labels from (1) to (8) are listed in in Table 1. The figure is best viewed in color.
(Color figure online)

4.3 CPA Performance

To compare the CPA performance of our approach to original CPA for eight-
shuffling AES algorithm, we first measure the required minimum number of
power traces for the original CPA, which is well depicted as Fig. 6. The metrics
for measuring CPA is accuracy, which is the ratio of the number of two correct
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Fig. 6. Accuracy of First-order CPA vs The used number of power traces of (a) eight-
shuffling AES and (b) each of the implementation method in eight-shuffling AES.

bytes of guessed key to those of real secret key. To obtain the valid results, we
repeat the test for 30 times and take the average of all accuracy. Since we can
use more power correlation information from the large number of power traces,
the accuracy increases as the number of power trace increases. To obtain high
accuracy applying only CPA to whole mixed-up power traces, we need at least
45, 000 power traces as we can see in Fig. 6-(a). Meanwhile, if we apply the
CPA to perfectly refined power traces for each implementation method, we can
dramatically reduce the required number of power traces as shown in Fig. 6-(b)
and column pure in Table 3. It is ideal to be perfectly refined that the wrong
power traces are not mixed up among the analyzed traces and also any power
trace is not excluded from analyzed traces. The minimum numbers of power
traces in ideal case for each implementation method are also written in Table 3
in column ideal, which is simple 8 times to pure column since the probability of
each implementation appearance is equally distributed which is 1/8.

To measure the performance of ours, we filtered the power traces with our
three approaches for each target implementation and applies CPA to refined
power traces. We also repeat the procedure 30 times. The evaluation results for
our approaches are filled in Table 3. Corresponding to Table 2, the accuracy of
CPA is high as the filtering performance increases. We can also see how much
precision and recall affects to the CPA performance by comparing the perfor-
mances conduct on each approach. Observing the cases of perfect precision and
low recall such as Original 1 of KDE, we can infer that the CPA performances
are dropped in inverse proportioned to recall. The performance drop is due to
the shuffling complexity, which makes the probability of certain power traces
lower. While low recall drops the probability of appearance, precision pollute
the power traces with those from the other implementation method which can
be inferred in case of Original 2 of K-means. However, we could see the huge
performance improvement compared to the only CPA. We could also obtain the
sufficiently low complexity for each implementation method using at least one
approach compared to ideal case when the traces are perfectly refined.
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Table 3. The minimum numbers of power trace for analyzing eight-shuffling AES
algorithm in our approaches and ideal case. The hyphen (-) indicates the case which
needs the power traces more than 45,000 or cannot be analyzed with one round of
power traces. The numbers of bold face indicate the lowest number of power traces
among the clustering algorithms for exploiting CPA.

Target implementation method KDE K-means EM ideal pure

Proposed approach Original 1 15,000 5,000 4,200 4,800 600

Original 2 – – – – –

Bertoni 600 1,500 700 560 70

T-Table – – – – –

Original 1 Macro 1,000 1,500 900 800 100

Original 2 Macro 1,000 – 900 880 110

Bertoni Macro 2,400 2,400 2,400 2,240 280

T-Table Macro 3,300 1,800 1,400 1,760 220

Original First-Order CPA 45,000

5 Discussion

We showed that our approach can extremely reduce the required minimum num-
ber of power traces against shuffling from MK2 to MK. Our approaches can
be used even when we do not know the number of implementation methods.
The shuffling techniques are commonly used to avoid the vulnerability from
CPA since it have relatively low cost for computation compared to masking
techniques. In this case, the filtering techniques using envelopes and several
clustering algorithms simply exploits the shuffling algorithm.

In case of the eight-shuffling AES implementation, each implementation
has different required number of power traces. In addition, it is known that
the 8-shuffling AES implementation has complexity with O

(∑K
k=1 Mk

K K2
)

=

O
(
K

∑K
k=1 Mk

)
. However, as we can observe from the experiment, if an attacker

can effectively distinguish and group the power traces, the complexity signifi-
cantly decreased to O (K min(M1,M2, · · · ,Mk, · · · ,MK)) where Mk is the min-
imum number of power trace to analyze the kth implementation. The vulner-
ability is derived from the exposure of the weakest implementation among the
shuffled operations.

6 Conclusion

In this paper, we proposed a novel technique to exploit the vulnerability of
the shuffling technique by using envelopes and clustering algorithms. The main
idea of our proposed approaches is to refine the power traces gathered from the
target implementation to reduce the minimum number of power traces to apply
CPA. We used the envelopes to avoid and filter the high frequency noise. In
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addition, we found that the envelops is robust to temporal lags and it results
in raising the filtering performance. The proposed approach can be easily used
in the case where the number of implementation methods is known. However,
even in case the number is not known, we can still use our proposed algorithm
in non-parametric way.

With our approach, the required minimum number of power trace can be
reduced from MK2 to MK. Especially for eight-shuffling AES implementations,
it decreases from K

∑K
k=1 Mk to K min(M1,M2, · · · ,MK). For shuffling imple-

mentations to be used safely, we recommend to use implementations with suffi-
ciently high complexity for the shuffling technique for the attacker not to group
the power traces.
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Abstract. In April 2019, the world’s first 5G mobile communication
was commercialized in South Korea. 5G mobile communication aims to
provide 20 Gbps transmission speed which is 20 times faster than 4G
mobile communication, connection of at least 1 million devices per 1 km2,
and 1 ms transmission delay which is 10 times shorter than 4G. To meet
this, various technological developments were required, and various tech-
nologies such as Massive MIMO (Multiple-Input and Multiple-Output),
mmWave, and small cell network were developed and applied in the area
of 5G access network. However, in the core network area, the components
constituting the LTE (Long Term Evolution) core network are utilized as
they are in the NSA(Non-Standalone) architecture, and only the changes
in the SA(Standalone) architecture have occurred. Also, in the network
area for providing the voice service, the IMS (IP Multimedia Subsys-
tem) infrastructure is still used in the SA architecture. Here, the issue is
that while 5G mobile communication is evolving openly to provide var-
ious services, security elements are vulnerable to various cyber-attacks
because they maintain the same form as before. Therefore, in this paper,
we will look at what the network standard for 5G voice service provision
consists of, and what are the vulnerable problems in terms of security.
We also want to consider whether these problems can actually occur and
what is the countermeasure.

Keywords: 5G Voice communication · Voice over 5G · Mobile
network · IMS · SIP · 5G Security

1 Introduction

In April 2019, the world’s first 5G mobile communication was commercialized in
South Korea. 5G mobile communication aims to provide 20 Gbps transmission
speed which is 20 times faster than 4G mobile communication, connection of
at least 1 million devices per 1 km2, and 1 ms transmission delay which is 10
times shorter than 4G. To meet this, various technological developments were
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2020, LNCS 12583, pp. 403–415, 2020.
https://doi.org/10.1007/978-3-030-65299-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65299-9_30&domain=pdf
https://doi.org/10.1007/978-3-030-65299-9_30


404 S. Park et al.

required, and various technologies such as Massive MIMO (Multiple-Input and
Multiple-Output), mmWave, and small cell network were developed and applied
in the area of 5G access network.

Meanwhile, the voice service of the conventional mobile communication net-
work was provided using circuit switch-based network (2G and 3G), and the
packet switch-based network at the time was used for data communication pur-
poses and from the 4th generation mobile communication, it began to provide
voice services with packet switch-based network by supporting the ALL-IP struc-
ture of the mobile communication network. The 4th generation mobile commu-
nication voice service based on VoIP(Voice over IP) is called VoLTE(Voice over
LTE) and currently provides stable voice service in 4th generation mobile com-
munication.

As the competition for commercialization of 5G mobile communication has
been increasing, voice services in 5G mobile communication are expected to
be commercialized soon. Voice service in 5th generation mobile communication
is called Vo5G(Voice over 5G), and it uses VoIP related technologies such as
VoLTE. VoIP is widely used through online voice chat, internet phone, and
mobile communication voice services. Research on related vulnerabilities has
been actively conducted since long time ago and security measures have been
developed [8–14].

VoIP is also used in 5G mobile communication, and 3GPP(Third Generation
Partnership Project) has defined security measures for mobile communication
networks and voice services. However, despite the definition of security mea-
sures in the standard, there may be still vulnerabilities caused by implementa-
tion errors, and occurred by the non-forced security items in the standard and
the resulting loose security level. In this paper, we examine the security vulner-
ability of SIP(Session Initiation Protocol)/RTP(Real-Time Transport Protocol)
according to the application of mobile voice service in traditional VoIP and secu-
rity vulnerability according to non-forced security items in the standard from
three perspectives. First, SIP protocol, which is a representative session control
protocol of VoIP, allows easy manipulation of headers based on text. Second, the
traffic of the RTP protocol, which is a data transmission protocol of VoIP, is easy
to be reproduced. Third, in the 3GPP standard, LTE or 5G voice communica-
tion is defined to be encrypted through IPSec(IP Security), but it is defined as a
non-forced item and can be selectively operated as required by the manufacturer
or carrier. Therefore, we want to check whether there are any vulnerabilities that
can occur based on these weaknesses, and to find out the countermeasures.

In this regard, Sect. 2 in this paper examines the standards and status related
to 5G mobile communication. Section 3 identifies problems related to 5G voice
service and presents test methods. Section 4 tries to derive problems based on the
test results. Section 5 proposes countermeasures to problems. The final Sect. 6
makes a conclusion.
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2 Mobile Communication Network Standards and Status

2.1 5G Mobile Communication Network Status

5G mobile communication network is a next generation mobile communication
technology led by 3GPP standardization group. Currently, technology competi-
tion for 5G commercialization is actively taking place worldwide, and 5G mobile
communication service to public is in progress, starting with commercialization
services in China, Korea, the United States, and Japan in 2019 [1]. Starting
from the NSA structure, the 5G mobile communication network is currently
commercializing the SA structure (see Fig. 1). When it is commercialized, the
5G voice communication might be serviced by 5GC(5G Core) which is the SA
core network and is called Vo5G [5] (see Fig. 2).

Fig. 1. Evolution of 5G mobile communication network (Simplification)

Fig. 2. 5GC Vo5G Protocol Stack



406 S. Park et al.

2.2 3GPP IMS Security Standard

In 3GPP, IMS security standards specify security-related matters in TS 33.210,
TS 33.328, and TS 33.203 standard documents. In 3GPP, the IPSec-based secu-
rity mechanism is applied all control plane IP communication to the external
network through the Security Gateway (SEG). IPSec has so many options, there-
fore it is difficult to provide full interoperability, and the options of IPSec has
reduced in 3GPP. Communication with the different network domain is per-
formed through SEG, and the Za interface, which is an external network con-
nection section, must be implemented with IPSec, and is optional in the Zb
interface which is an internal network connection section. In the Zb interface,
authentication must always be provided, but encryption is optional (see Fig. 3).
In addition to Z-interface, the Gm interface is defined as interface of UE and
P-CSCF of IMS. In case of the Gm interface, use of IPsec is not depends on
network domain but local policy of the P-CSCF.

Fig. 3. NDS(Network Domain Security) architecture for IP-based protocols. [4]

The 3GPP IMS security architecture is specified in TS 33.203. In the IMS
security architecture, four entities (UE, P-CSCF, I-CSCF, and S-CSCF) interact
and aim for subscriber authentication and integrity protection. Confidentiality
protection does not apply to IMS [2,3].

2.3 SIP/RTP Protocol

The SIP protocol is defined in IETF(Internet Engineering Task Force)
RFC(Request for Comments) 3261 [6] and is an application layer signaling pro-
tocol. The 3GPP standard has been adopted in the IMS(IP Multimedia Subsys-
tem) architecture since November 2000 and is still in use. The RTP protocol is a
protocol for end-to-end, real-time transmission of streaming media and is defined
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in IETF RFC 3550 [7], and is used for the purpose of voice data transmission
with SIP protocol in mobile communication networks.

The SIP protocol is a text-based message, and the SIP message format con-
sists of Starting Line, Header Field, Separator, and Message Body. For basic
SIP session connection, when the caller sends an Invitation message, the Callee
responds with 100 Trying, 180 Ringing, and 200 OK messages. When the caller
sends an ACK message, a session is established and voice data is exchanged.
When the call ends, the callee sends a BYE message, and the caller responds
with a 200 OK message [6] (see Fig. 4). Voice data is transmitted through RTP
which is for real-time delivery and multitasking [7].

Fig. 4. SIP Message Format and SIP Call Flow

3 Problems and Test Methods

3.1 Related Work

Several related studies have been conducted about VoIP and SIP attacks and
countermeasures. For example, there are billing bypass [8], man-in-the-middle
attack [9], and authentication neutralization [10]. If 5G mobile communication
using SIP/RTP protocol was not considered, these attacks could also be a poten-
tial threat to Vo5G.

According to the VoLTE attack paper published in CCS’15 ACM, attacks
such as DoS(Denial of Service), overcharge, free video calls, and sender forgery
are possible through the VoLTE hidden channel [14].

In 5G mobile communication, voice calls are supported in the form of Vo5G.
If Vo5G is implemented without complementing VoLTE-related attacks, these
attacks can be a potential threat in Vo5G.

3.2 Problems of 5G Voice Communication (The Proposed
Approach)

This section shows the problem of IMS, a network that provides 5G voice commu-
nication. The problems of the IMS standard can be divided into three categories.
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Easy Manipulation of Text-Based SIP Protocol Headers. The SIP
packet has a header name and a header value in text format, so a malicious
attacker can easily change the text if desired. In particular, the Initial Register
message for registering a user device on the IMS server is delivered before the
encryption setting even if it uses IPSec encryption, so it can be easily obtained
through a packet dump on the device. Among them, an attacker can manipulate
several header values to change the information of the user who delivers the
message. The headers of Contact, To, From, and Authorization can be changed
to the subject’s IMSI or URI, and the Expire value can be changed to set up or
cancel the registration (see Table 1).

Table 1. Headers that require manipulation for malicious use of the Register message.

Header Requiring Change Register User Information Changes

Via Change IP address

Contact Change UE URI

To Change UE URI

From Change UE URI

Cseq Change to higher value

Expires Change to 3600 or 0

Authorization IMSI or UE Calling Number

Subscribe messages used to provide real-time PTT(Push to Talk) services,
such as RCS(Rich Communication Services) services, can also be used mali-
ciously. Like the Register, the Subscribe message requires the manipulation of
several header values to change user information (see Table 2).

Table 2. Headers needed to change user information in Subscribe message.

Header Requiring Change Subscribe User Information Changes

Request URI Change IP address

Via Change IP address

Contact Change UE URI

To Change UE URI

From Change UE URI

Cseq Change to higher value

P-Preferred-Identity IMSI or UE Calling Number
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Easy Reproduction of RTP Traffic. RTP traffic is exposed through sniff-
ing when SRTP(Secure Real-time Transport Protocol) is not used. The exposed
RTP traffic can be reproduced through Wireshark. When going to the RTP,
RTP Streams menu on the Telephony tab, information about RTP packets
is summarized and displayed. If you request Analyze by selecting the desired
source and destination, you can show the Stream Analysis result between specific
peers and request Play Streams. Wireshark can output audio for PCMU(Pulse
Code Modulation Mu-Law)/PCMA(Pulse Code Modulation A-Law) codec and
for AMR(Adaptive Multi-Rate) or AMR-WB(Adaptive Multi-Rate Wideband)
codec, a separate program is required together with file dump. File dumps can
be created using tshark -nr rtp.pcap -R rtp -T fields -e rtp.payload, and audio
playback can be played through AMRPlayer [15].

Non-mandatory for IPSec Encryption. As described above, the interface
for using IPSec SAs(Security Associations) is divided into Gm interface and Z-
interface. The Za interface is used for different network domain entities, therefore
the use of IPSec is mandatory in the Za interface. The Zb interface is used for
same network domain entities, therefore the use of IPSec is optional in the Zb
interface. In 3GPP, the use of IPSec on Za is defined as mandatory, while reduc-
ing the range of options related to IPSec configuration to ensure compatibility. In
this case, the operation mode is divided into transport and tunnel mode. In the
case of using the tunneling mode, the entire original IP packet can be encrypted
to maintain the confidentiality of the origin and destination. However, IPs of
two IPSec VPN(Virtual Private Network) Nodes are exposed through the new
IP header. In the transmission mode, only data is encrypted, and confidentiality
of the traffic flow is not provided (see Table 3).

Table 3. Requirements on Za interface for IPSec SAs settings for 5G voice communi-
cation.

Requirements Setting value

Protocol (prot) Use EPS only

Operation mode (mod) Always use Tunnel Mode

Integrity Algorithm HMAC-SHA-1

Encryption Algorithm 3DES

In the Zb interface, the process for using IPSec in a 5G voice service terminal
is as follows. First, in order to use IPSec, the device inserts the Security-Client
header with the Require header and sends it to the first Register message. The
Require header is a request for the use of IPSec encryption, and the Security-
Client header contains configuration requests for setting various IPSec encryp-
tion (see Table 4).

However, in the Gm interface, whether UE and P-CSCF is in the same net-
work domain or not, the use of IPSec is depends on local policy of the P-CSCF.
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Table 4. Requirements on Zb interface for IPSec SAs settings for 5G voice communi-
cation.

Requirements Setting value

Protocol (prot) EPS

Operation mode (mod) Transport

spi-c, port-c Client Index & Port Number

spi-s, port-s Server Index & Port Number

Integrity Algorithm HMAC-MD5-96 or HMAC-SHA-1-96

Encryption Algorithm AES-CBC or AES-GCM

Therefore, if the IMS uses IPSec on Gm interface as optional, even if an UE
located in different network domain is registered to IMS without using IPSec at
the device, communication is performed in decrypted text if authentication is
made [4].

3.3 Test Method (Implementation)

The IMS network that provides 5G voice communication supports IPSec and
uses the IPSec mechanism for user registration of the device. If IPSec is not
used, it can be very vulnerable to threats such as Rogue base stations, and
it is possible to manipulate the outgoing number by capturing SIP messages
that communicate in plain text. 5G Android devices released so far have been
developed to use IPSec, and if you dump the packet of the device, you can see
that in addition to the first Register message and 401 Un-authorization message.
And next messages are encrypted using IPSec ESP(Encapsulating Security Pay-
load). However, there is a hidden menu for developers on the device to disable
IPSec SAs and communicate without that. We tested using the representative
5G device, Galaxy S10, and the test devices used are as follows (see Table 5).

Table 5. Security Testing device information for 5G Voice Communication

Testing Components Components Details

Test device Galaxy S10 (SM-G977N)

Android OS version 9(Pie)

Kernel version 4.14.85

IPSec Disable. When accessing the hidden menu of the test device, there is a
‘VoLTE Settings’ menu, and there are context menus that can change the IMS
service settings of the device. Among them, if you access the ‘VoLTE Profile’ by
entering the ‘IMS Profile’ setting, there is SIP menu with CSCF(Call Session
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Control Function) settings. In the SIP menu, there are sub-menus for setting
the SIP port, IP version, etc. Among them, you can see that the option, Enable
IPSec is checked. If you disable this option and reboot the device, the setting is
completed.

Packet Sniffing. When the IPSec disabling process of the device is finished,
procedure for sniffing the terminal packet should be performed. Packets can
be sniffed with tcpdump from the device and must be rooted in advance. The
rooting process using Odin is divided into 4 steps. The first step is to pre-
pare for rooting. Download and install and run the Magisk Manager app on
the device. The second is the Un-LOCK stage of the bootloader, which unlocks
OEM(Original Equipment Manufacturing) lock in the developer options of the
device. The third step is to install custom recovery. Flashing the device through
Odin program and installing custom recovery. Last step is acquiring root author-
ity. Afer factory reset in recovery mode, the root authority is acquired using the
Magisk patch created using the Magisk Manager app. Linux OS and open sources
such as tcpdump were installed on the rooted device as follows (see Table 6).

Table 6. Installation elements on Security Testing device for 5G Voice Communication

Installed Components Components Details

Linux OS Distributor ID: Ubuntu

Description: Ubuntu 16.04 LTS

Release: 16.04

Codename: xenial

tcpdump 4.7.4

libpcap 1.7.4

OpenSSL 1.0.2 g

Packet Analysis. Dumped packets from the device can be analyzed by moving
to PC. Wireshark is used, and the header value inside the SIP packet can be
checked through SIP filtering. We conducted this process using two Operators’
USIM(Universal Subscriber Identify Module)s and compared the differences.

4 Test Results and Problem Identification

Test Result. Packets can be captured by using tcpdump in the environment
where the device is rooted. When the captured packets are checked with Wire-
shark, SIP messages and RTP traffic in plain text can be viewed.

As a result of testing the USIMs of the two operators, IPSec is disabled when
using the first Operator(A)’s USIM, and it is decrypted. However, when using the
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USIM of the other Operator(B), IPSec is not disabled, and voice communication
is performed with encryption even though we set off for the IPSec configuration
on the testing devices.

Comparing the packets for the two Operators’ USIMs, you can see that the
Initial Register message is different. In the case of Operator A (see Fig. 5), there
is no Require, Supported and Security-Client header in the Initial Register mes-
sage, and if you send a SIP message, you can see that it is sent in plain text.

Fig. 5. SIP decryption testing on IPSec disabled device with Operator A’s USIM.

Fig. 6. SIP decryption testing on IPSec disabled device with Operator B’s USIM.
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However, in the case of Operator B (see Fig. 6), you can clearly see that Require,
Supported and Security-Client headers were added to the Initial Register mes-
sage and transmitted. Which means, when using B Operator’s USIM, it can be
assumed that security settings for use in 5G voice communication are obtained
from the network, not from the device. A packet captured in the test using Oper-
ator A’s USIM can be altered using open source such as HxD. In addition, by
using an open source such as sendip, it is possible to generate a threat such as
forgery of the originating number by sending an altered packet (see Table 7).

Table 7. Characteristics of 5G Voice Communication on tested Operators.

Type Operator A Operator B

Network Protocol IPv6 IPv6

Transport protocol UDP UDP

Use of IPSec V V

Integrity Algorithm AES-CBC AES-CBC

Encryption Algorithm HMAC-SHA-1-96 HMAC-SHA-1-96

IPSec disable by UE V X

5 Countermeasures

There are various ways to respond to these threats. We considered approach to
countermeasures for 5G Voice Security Threats at total of four levels.

Countermeasures at Security Appliance Level. You can think of intro-
ducing physical system such as IPS(Intrusion Prevention System) at the secu-
rity device level. Packets flowing into the core network are monitored using a
dedicated IPS capable to detect voice communication protocol such as SIP or
RTP, and then detected and blocked in the case of an attacking or manipulated
packet. Depending on the policy, it may be possible to alert the operator after
detection without blocking it immediately to secure the availability of the voice
service. However, in this case, the cost of investing in security equipment will be
considerable and the efficiency of the investment must be considered.

Countermeasures at IMS Server Level. Among the IMS servers, CSCF
or SBC(Session Border Controller) might be able to play a role of SEG. When
manipulating SIP packets by disabling IPSec, CSCF or SBC can be supple-
mented to go through the verification procedure on the mismatch between the
IP of the terminal and the manipulated field value, and the manipulated packet
would be able to be blocked. In this case, there is no need to invest in addi-
tional security equipment, but performance degradation in CSCF or SBC can
be expected.
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Countermeasures at IPSec Configuration Level. There may be a way
to prevent 5G users from essentially disabling IPSec. That is, when a terminal
accesses a 5G network, it receives information such as IPSec settings from a
separate server and communicates without depending on the IPSec setting val-
ues set in the terminal. This method must satisfy two conditions; Development
of server to send IPSec configuration information and IPSec configuration con-
trol through USIM. If the operator is equipped with DM (Device Management)
system, it will be very effective method against the investment to block IPSec
disabling in advance. However, if you need to build new server, you will need to
consider the operator’s point of view.

Countermeasures at 3GPP Standard Level. In 3GPP, the application of
IPSec on Gm interface is depends on local policy of the P-CSCF. However, it
is necessary to review at the 3GPP standard level for the change to compulsory
by making the IPSec on Gm interface mandatory. However, it is considered that
the 3GPP standard revision is very time consuming and requires lots of efforts
and there must be a reason to define the IPSec on Gm interface as optional.
Therefore, it can be expected that it will be difficult to respond at the 3GPP
standard level.

6 Concluding Remarks and Future Work

Through this study, we can see that there is security problems with voice com-
munication in 5G networks, and it is very easy to access the problem with a
device. First, security problems for 5G voice communication can be divided into
three categories, easy operation, easy RTP traffic reproduction, and non-force of
IPSec encryption due to text-type SIP protocol header. This paper focused on
two problems, and further research seems to be needed for the other. Besides,
the procedure for 5G voice communication security test can be divided into three
steps. The first is the process of disabling the IPSec of the device, and it was
easy to enter through the hidden menu. The second is to make it sniff-able by
rooting the device. The third step is to analyze the actual 5G voice packet by
sniffing it. Here, it is necessary to take further action to analyze the third voice
packet analysis process by dividing it into SIP, RTP protocols and reproducing
threats such as bugging or tampering. However, since 5G mobile communication
network is a private communication network, it is obviously illegal to threaten or
bug on the network. Therefore, it is desirable to proceed it by using test network.
In the future, operators will build 5G SA environment that has never existed
before, and provide customers with new and convenient services that utilize its
advantages. However, before launching a service, it is also necessary to think
about what security threats exist in new services and countermeasures.
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