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Abstract Two common CSCL questions regarding analyses of temporal data, such
as event sequences, are: (i) What variables are related to event attributes? and (ii) what
is the process (or what are the processes) that generated the events? The first question
is best answered with statistical methods, the second with stochastic or deterministic
process modeling methods. This chapter provides an overview of statistical and
stochastic methods of direct relevance to CSCL research. Many of the statistical
analyses are integrated into statistical discourse analysis. From the stochastic model-
ing repertoire, the basic hidden Markov model as well as recent extensions is intro-
duced, ending with dynamic Bayesian models as the current best integration. Looking
into the near future, we identify opportunities for a closer alignment of qualitative with
quantitative methods for temporal analysis, afforded by developments such as
automization of quantitative methods and advances in computational modeling.

Keywords Statistical discourse analysis - Time analysis - Stochastic models -
Process mining

1 Definitions and Scope

In this chapter, we introduce two complementary approaches for the analysis of
temporal data, in particular for the analysis of discrete event sequences: statistical
and stochastic analysis. The basic distinction is that a stochastic process is what (one
assumes) generates the data that statistics analyze. To say that a process is

M. M. Chiu (&)

Special Education and Counseling, The Education University of Hong Kong, Tai Po, Hong
Kong

e-mail: mingchiu@eduhk.hk

P. Reimann
Centre for Research on Learning and Innovation, University of Sydney, Sydney, Australia
e-mail: peter.reimann @sydney.edu.au

© Springer Nature Switzerland AG 2021 533
U. Cress et al. (eds.), International Handbook of Computer-Supported Collaborative

Learning, Computer-Supported Collaborative Learning Series 19,
https://doi.org/10.1007/978-3-030-65291-3_29


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65291-3_29&domain=pdf
mailto:mingchiu@eduhk.hk
mailto:peter.reimann@sydney.edu.au
https://doi.org/10.1007/978-3-030-65291-3_29#DOI

534 M. M. Chiu and P. Reimann

“stochastic” is to say that at least part of it happens “randomly”; it can be studied
using probability theory and/or statistics. The analysis of stochastic processes is the
subject of probability theory, like statistics, a field of study in mathematics. In
probability theory, we have some given probability distribution and want to deter-
mine the probability of some specific event.

The following sections will be introducing regression models as a powerful
statistical modeling method and hidden Markov models as an example of a stochas-
tic method. In their combination, they can be used for both empirical and theoretical
modeling.

1.1 Statistical View of Sequential Processes

Computer-supported collaborative learning (CSCL) researchers often ask five types
of questions that involve time: (a) are there common sequences of actions/events
(e.g., disagree — explain)? (b) do these sequences have antecedents at various
levels? (c) are there pivotal events? (d) do these sequences differ across time
periods? and (e) are these sequences related to outcomes? First, are disagreements
more likely than other utterances to be followed by explanations in an online forum?
These types of questions ask whether one event (e.g., disagree) is more likely than
otherwise to be followed by another event (e.g., explain, Chiu 2008).

Second, are factors at other levels (e.g., gender of author or recipient; mean
writing grade of group) related to the likelihood of a disagree — explain sequence?
Such questions help build a comprehensive theoretical model of the different
attributes across levels that might influence the likelihood of such sequences (Chiu
and Lehmann-Willenbrock 2016).

Third, does a pivotal action/process (e.g., summary) change the likelihood of a
disagreement — explanation sequence across time (Wise and Chiu 2011)? Such
questions seek to identify actions/events that radically change the interaction (pivotal
events, Chiu and Lehmann-Willenbrock 2016).

Fourth, are disagree — explain sequences more likely at the beginning, middle, or
end of a discussion? Such questions ask whether a particular sequence is more likely
at different time periods, thereby examining their generality across time (Chiu 2008).

Lastly, do groups with more disagree — explain sequences than others show
superior group solutions or subsequent individual test scores? Such questions help
build a comprehensive theoretical model of the consequences of such sequences for
groups/individuals (Chiu 2018).

Before proceeding further, we define several terms: sampling unit, session, time
period, event, and sequence. The object under study (group, dyad, or individual) is
the sampling unit, which is observable during one or more sessions (occasions). If
warranted, we can divide each session into time periods. During a session, we
observe one or more learners’ behaviors, which we call events. One or more adjacent
events is a sequence.

A statistical analysis of data that address the above research questions has three
major assumptions (Teddlie and Tashakkori 2009), which we explicate in the
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context of online students chatting about designing a paper airplane to stay aloft
longer. First, instances of a category (e.g., disagree) with the same value (e.g.,
disagree vs. not disagree [coded as 1 vs. 0]) are sufficiently similar to viewed as
equivalent. Second, earlier events (disagree in parent message 87) or fixed attributes
(e.g., author gender) influence the likelihood of a specific event at a specific time
(explanation in message 88). Third, our statistical model fully captures our theoret-
ical model, so that unexplained aspects of the data (residuals) reflect attributes that
are not related to our theoretical model.

1.2 The Stochastic View of Sequential Processes

The stochastic perspective of sequential data in CSCL assumes that a recorded
sequence—for instance, a sequence of dialogue moves—is produced by a stochastic
process. Events are seen as different in kind from processes: Processes produce
(generate, bring about) events. While recorded events can be analyzed to identify
structure and properties of processes, they are not identical with the latter. The
ontological position that processes are different from events is foundational to
stochastic (and deterministic) models, but it is not shared by regression models
and most other variants of the general linear model, with the exception of structural
equation models under a certain interpretation of what latent variables mean (Loehlin
2004). Regression models’ variables are ontologically “flat”’; the only difference
between them is epistemic: the variation in the dependent variable is explained in
terms of the covariation with one or more independent variables. Note that multilevel
modeling (Cress 2008) does not change the ontological status of the variables
included either: The nesting relation in multilevel modeling is different from the
generative relation that links structure/process to events.

What are the “practical” consequences of this distinction for the learning
researcher? For one, stochastic models are not dependent on distribution assump-
tions, such as normal distribution. Secondly, stochastic modeling allows to simulate
the implications of changes to theoretical assumptions; they afford counterfactual
(“what if?”) reasoning. And thirdly, with this kind of model one can determine the
likelihood of an individual event sequence being producible by the process the
model describes. Thus, they are not so much an alternative to statistical models
than they allow to answer additional questions.

2 History and Development

2.1 Early Statistical Analyses

Early researchers analyzed their data with simple, mathematics calculations, namely
conditional probabilities. To test hypotheses, researchers developed statistical
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Table 1 A comparison of conditional probabilities, sequential analysis, and regressions

Conditional Sequential Vector auto-
Properties probability analysis regression

Discrete outcomes (explain vs. not) v
Discrete explanatory variables v

Significance test
Goodness of fit
Continuous outcomes

'NENENEN

N PNCYENENEN

Continuous explanatory variables
(notably time)
Explanatory variables at other levels

Nonconsecutive events

Complex models

NENENEN

Small sample size v

methods, such as sequential analysis and regressions (see Table 1). We explicate
these methods using examples from online students chatting about paper airplane
design.

2.1.1 Conditional Probability

The probability of an event (e.g., explain) given that another event (disagree) has
occurred is its conditional probability (CP, e.g., Farran and Son-Yarbrough 2001).
To compute it, we divide the overall probability (OP) of the disagree — explain
sequence (e.g., 13%) by the overall probability of disagreeing (e.g., 39%), yielding
33% (=13%/39% = OP [disagree — explain]/OP[disagree]) via Bayes’ theorem.
CPs apply to sequences of any length. However, CP has no significance tests or
goodness-of-fit measures, so researchers must subjectively decide whether a CP
supports or rejects their hypotheses.

2.1.2 Sequential Analysis

To test hypotheses, researchers developed statistical methods, such as sequential
analysis (SA). Building on CP, SA supports hypothesis testing. SA models events
across time as a discrete process in which the current event (state) determines the
probability of the next event (Gottman and Roy 1990). For example, a group in a
state of disagreement without explanation is more likely than otherwise to move to a
state of disagreement with explanation (Chiu and Lehmann-Willenbrock 2016). SA
tests for significant differences (z-score) and evaluates the goodness-of-fit of each
explanatory model (via likelihood ratio chi-squared tests, Bakeman and Gottman
1986). Like CP, SA only applies to discrete outcomes and explanatory variables at
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the same level (message), requires consecutive events, and can require enormous
sample sizes to test somewhat complex explanatory models.

2.1.3 Vector Auto-Regression

Addressing these three limitations of CP and SA, vector auto-regressions (VAR,
Kennedy 2008) model continuous variables, explanatory variables at different
levels, nonconsecutive events, and complex phenomena with small samples. For a
continuous outcome variable, an ordinary least squares regression fits a line to the
data (or more generally a curve), which enables analyses of outcomes as a function
of time (traditional time-series data, Kennedy 2008). For a dichotomous outcome
(explanation vs. no explanation), a logit, probit, or gompit regression fits an S-curve
to the data (see Fig. 1 for an example with a continuous, explanatory variable age;
Cohen et al. 2003). This example also shows how regressions can test explanatory
variables at any level (message, person, group, etc., Kennedy 2008). Furthermore,
regressions can model nonconsecutive relations, such as whether a student who
disagreed two messages ago (grandparent message: disagree [—2]) raises the likeli-
hood of an explanation in the current message (explain), namely, disagree
(—=2) — — explain (Chiu and Lehmann-Willenbrock 2016). In general, we can
test whether an attribute of an earlier event is related to an attribute of the current
event (Kennedy 2008).

Also, a regression can create simpler models of complex phenomena via
multidimensional coding. For example, to model sequences with five events from
four dimensions with two choices per dimension (e.g., female [vs. male], student

Age and Probability of Explaining
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e
N
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Probability of Explaining
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Fig. 1 Logit regression fitting an S-curve to data on age and explanation
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[vs. teacher], disagree [vs. agree], and explain [vs. not], SA requires a sample size of
5,242,880 (=5 x [211%; = 5 x [event combinations]**"<"* """ Gottman and Roy
1990). In contrast, a regression only requires 20 explanatory variables (20 = 4
dimensions X sequence length of 5) and a much smaller sample (Cohen et al.
2003). Applying Greene’s (1997) sample size formula for regressions
(N > 8 x [1 — R*J/R* + M — 1; with expected explained variance R* = 0.1 and
number of explanatory variables M = 20), testing this explanatory model requires a
sample size of only 91 (=8 x (1 — 0.10)/0.10 + 20 — 1). Hence, a multidimensional
coding scheme can capture the complexity of the model, reduce the number of
needed variables, and reduce the minimum sample size needed for a regression (Chiu
and Lehmann-Willenbrock 2016).

2.2 Early Applications of Stochastic Analysis

An important method to modal temporal data probabilistically is the hidden Markov
model (HMM). It has been applied in CSCL research for analyzing discourse
sequences, for example. This formalism is an extension of the (discrete) Markov
Process model, which we introduce first.

2.2.1 Markov Models

The underlying assumption of probabilistic models is that the event sequence can be
characterized as a parametric random process and that the parameters of the stochas-
tic process (the structure, not the event sequence) can be determined (estimated) in a
precise, well-defined manner (Rabiner 1989, p. 255). A Markov process model
describes a system made out of N distinct states, Sy, S», ..., Sy. At equally spaced
discreet times (¢ = 1, 2, . . .), the system undergoes a change of state, with the state at
time ¢ denoted as g;. A full description of the system would require the specification
of the current state (time 7) as well as all the predecessor states. For the important
special case of a discrete first-order Markov chain, it is assumed that this description
can be truncated to just the current and the predecessor state, i.e.,

P[% = SJ} = P[‘]t = Sj|‘]t—1 = Si]~
We further assume that the transitions between states are independent of time, that

the system itself doesn’t change over time. This leads to a set of state transition
probabilities a;; of the form.

aij :P[qt :Sj|q,,1 :Si},] S l».]SN
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and with the property that the sum of all transitions probabilities across the states S; is
equal to 1:

N
E a,-jzl
=1

To provide an example, let’s assume we want to describe a (hypothetical) group
with three states: (1) forming, (2) storming, or (3) norming (Tuckman 1965).
Recording observations of group communication as they unfold, we can describe
the system in terms of transition probabilities between these three states:

04 03 03
A={a;}={02 06 02
0.1 0.1 08

The value in middle, 0.6, for instance, means that the probability that if the group
is in the storming phase at time t; it will be in that phase at time #; , | as well is 0.6;
and the 0.2 to the left refers to the chance of changing from forming to storming. One
question this model can be used to answer is: What is the probability of the group
over the next days being “forming—storming—forming—norming...,” or any other
specific sequence? Another question that can be answered from the model is: Given
that the model is in a known state, what is the probability that it will stay there for
exactly # number of interactions? Note that the transition matrix is also the place
where theoretical assumptions can be varied, to the extent that they can be expressed
as (transition) probabilities. For instance, to express that it should not be possible to
move from forming to norming directly one can set the corresponding transition
probability to a very small number.

2.2.2 Hidden Markov Models

With HMMs, we can account for the relation between states and observed events by
making the observation a probabilistic function of the state. The resulting hidden
Markov model is “...a doubly embedded stochastic process with an underlying
stochastic process that is not observable (it is hidden), but can only be observed
through another set of stochastic processes that produce the sequence of observa-
tions” (Rabiner 1989, p. 259). To describe an HMM, we need to specify (1) the
number of states in the model, (2) the number of distinct observation symbols per
state, i.e., the observables; (3) the stafe transition probability distribution, (4) the
observation probability distribution for each state, and (5) the initial state distribu-
tion (a vector with the probabilities of the system being in state j). Based on this
specification, an HMM can be used in three main ways: (a) for generating
(“predicting”) observations; (b) for modeling how a given observation sequence
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was generated by an appropriate HMM; (c) for parsing a given observation sequence
and thereby deciding if the observed sequence is covered by (or explained by) the
model.

The best-known early example of HMM use in CSCL is likely (Soller 2004).
Here, chat contributions from pairs of learners involved in a problem-solving task
were first coded into categories and HMM models were then trained on the chat
sequences (observations) for successful and unsuccessful pairs, respectively. The
method proved useful to identify sequences that led to successful knowledge sharing
from those that did not. In general, training an HMM on known observations
requires specification of the initial state probability distribution as well as the state
transition matrix and observation probability distribution for each state. Based on
these initial specifications, programs such as ssqHMM (Helske and Helske 2017)
can calculate values for parameters in the HMM that lead to a best fit with the
observed data. Boyer et al. (2009) used HMMs in a similar fashion. Here the pairs
were formed by a student and a tutor, and the dialogue acts were coded in terms of
categories relevant for tutor-student discourse. States were interpreted as “dialogue
modes.” As in the Soller study, the number of states were determined by balancing
the number of states with the fit to training data.

3 State of the Art

3.1 Recent Developments in Statistical Analysis

CP, SA, and simple regressions all assume: (a) sequences, (b) identical task diffi-
culties, (c) no group/individual differences, (d) no time periods, (e) a single outcome,
(f) observed events only, (g) direct effects only, (h) no measurement error and (i) an
immediate outcome (see Table 2). Specifically, researchers addressed them via:

Table 2 Analytic issues and suitable statistical strategies

Analytic issue Statistical strategy

Parallel chats or trees

Store parent message

Task difficulty

Item response theory (IRT)

Group/individual differences

Multilevel analysis (ML)
(hierarchical linear models, HLM)

Pivotal event

Breakpoint analysis

Time periods

Breakpoint analysis and multilevel analysis

Multiple target events

Model latent processes underlying events,
indirect, mediation effects and measurement
error

Multilevel structural equation modeling
(ML-SEM)

Later group/individual outcomes

Add outcome and its interaction as explanatory
variables and multilevel moderation via random
effects
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(a) stored parent message, (b) item response theory, (c) multilevel analysis,
(d) breakpoint analysis, (e, f, g, h) multilevel structural equation model, and
(i) multilevel moderation via random effects.

3.1.1 Parallel Chats and Trees

Although much talk occurs in sequence with one speaker after another, sometimes
learners separate into parallel conversations or online participants engage with
messages according to their thread structure (often trees) rather than in temporal
order (Chiu and Lehmann-Willenbrock 2016). To analyze such nonsequential data,
researchers can identify and store the previous message of each message in a variable
parent message; specifically, a computer program can create this variable by tra-
versing parallel chats/conversations or trees of messages/turns of talk (this program
is available in Chen and Chiu 2008).

3.1.2 Task Difficulty

Tasks differ in difficulty, so ignoring these differences can mask a student’s learning
progress (or difficulties). Item response theory simultaneously models the difficulty
of each task and each student’s overall competence (along with guessing success on
multiple choice questions, Embretson and Reise 2013). An IRT model that incor-
porates a time parameter enables modeling of learning (or changes across time,
additive factors model, Cen et al. 2000).

3.1.3 Group/Individual Differences

Groups and individuals likely differ. Specifically, messages written by the same
student likely resemble one another more than those by different students. Likewise,
messages in the same thread/topic likely resemble one another more than those in
different threads/topics. CP and SA cannot model these differences, and a regression
would negatively bias the standard errors. Hence, we apply a multilevel analysis to
yield unbiased results (Goldstein 2011; also known as hierarchical linear modeling,
Bryk and Raudenbush 1992). In general, such nested data (students within groups
within classrooms within schools, etc.) require multilevel analysis for accurate
results (Goldstein 2011).

3.1.4 Differences Across Time
An outcome (e.g., explanation) might be more likely at the beginning, the middle,

the end, or in a specific time interval (Chiu and Lehmann-Willenbrock 2016).
Furthermore, the relations among explanatory variables and outcomes might differ
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across time (Chiu and Lehmann-Willenbrock 2016). Although humans can decide
how to divide a stream of data into time periods, past studies show that such
subjective methods are unreliable (e.g., Wolery et al. 2010).

In contrast, breakpoint analysis objectively identifies pivotal events that substan-
tially increase (or decrease) the likelihood of an outcome (e.g., explanation, Chiu and
Lehmann-Willenbrock 2016). Researchers can then test explanatory models to
characterize when these pivotal events occur. For example, discussion summaries
were often breakpoints that sharply elevated the quality of online discussions, and
students assigned the roles of synthesizer or wrapper were far more likely than others
to create discussion summaries (Wise and Chiu 2011).

These pivotal events divide the data series into distinct time periods of signifi-
cantly higher versus lower likelihoods of the outcome (e.g., explanations are much
more likely in one time period than another, Chiu and Lehmann-Willenbrock 2016).
These time periods provide an additional level to the above multilevel analysis (Chiu
and Lehmann-Willenbrock 2016). Researchers can then test whether relations
among variables are stronger in some time periods than in others. For example,
when groups of high school students worked on an algebra problem, a correct
evaluation of a groupmate’s idea raised the likelihood of a correct contributions in
most time periods, but not all of them; the effect ranged from —0.3% to +9% across
time periods (Chiu 2008).

3.1.5 Multiple Target Events, Latent Process, Indirect Effect,
and Measurement Error

Often, researchers are interested in how processes affect multiple types of targeted
events (e.g., explanations and correct, new ideas [micro-creativity], Chiu and
Lehmann-Willenbrock 2016). As multiple types of target events might be related
to one another, standard analyses designed for a single dependent variable can yield
biased standard errors (Kennedy 2008). Hence, researchers have developed methods
such as multilevel structural equation models (ML-SEM, Joreskog and Sorbom
2015) that simultaneously test multiple dependent variables; in the above algebra
group, problem-solving example, a justification might yield both another justifica-
tion and micro-creativity (justification [—1] — justification; justification
[—1] — micro-creativity). ML-SEMs also properly test indirect mediation effects
[X — M — Y] and combine multiple measures of a single construct into a single
index that increases precision, such as tests to measure intelligence (Muthén and
Muthén 2018); continuing with the algebra group problem-solving example, for
example, a correct evaluation often followed by another correct evaluation, which in
turn is followed by micro-creativity (correct evaluation [—2] — correct evaluation
[—1] — micro-creativity.
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3.1.6 Later Group/Individual Outcomes

In addition to the immediate consequences of processes on target events, researchers
are often interested in whether such sequences have longer term effects, such as the
quality of a group’s final solution to the current problem or later individual test
scores (Chiu 2018). The traditional approach of aggregating event-level data to the
individual or group level (or any higher level) discards substantial information and
yields inaccurate results (Goldstein 2011).

Instead, researchers can use an event-level analysis to utilize all the available data
(Chiu 2018). Consider groups of students designing plans to reduce climate change
(e.g., reduce cafeteria beef dishes to reduce cow methane). A researcher wants to
know if a group that has more disagree — explain sequences than others creates a
superior group plan. Chiu (2018) showed how to test this hypothesis via a regression
with the dependent variable explain and the following explanatory variables: dis-
agree [—1], group plan, and the interaction term disagree [—1] x group_plan. This
message-level specification asks, “In groups with higher plan scores, is a disagree
message more likely to be followed by an explain message?” The message
sequences occur before the group plan, and time cannot flow backward, so the
group plan cannot influence the message sequences.

Likewise, a researcher can also test whether individuals that participate in more
disagree — explain sequences than others have higher subsequent science test
scores by adding the following explanatory variables to the above regression spec-
ification: test score and disagree [—1] X test score. Hence, this elaborated specifi-
cation simultaneously tests whether disagree — explain sequences link to group
plans or individual science test scores. More generally, a regression does not
mathematically dictate the direction of causality, so traditional outcomes can serve
as independent variables (Chiu 2018). For nested data (e.g., messages within time
periods, see above), modeling such interactions requires a multilevel moderation via
random effects (Chiu and Lehmann-Willenbrock 2016).

In short, statistical methods enable researchers to test hypotheses regarding
sequences of events, their antecedents at any level, parallel chats and trees, task
difficulty differences, group/individual differences, pivotal events, time periods,
multiple target events, latent processes, indirect links, measurement error, and later
group/individual outcomes. See Chiu and Lehmann-Willenbrock’s (2016) statistical
discourse analysis (SDA) regarding integration of most of the above analyses, along
with statistical methods for addressing related issues (e.g., missing data, inter-rater
reliability, false positives, etc.).
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3.2 Recent Developments in Stochastic Modeling
3.2.1 Extensions of Hidden Markov Models

In CSCL research, HMMs have been mainly applied for practical purposes: to
provide a compact representation of long interaction sequences, one that is useful
for making predictions. Learning is reflected not only in talk and conversation, but
also in eye gaze, movement, and gestures. HMMs can be used on such kinds of data
as well. This has been made easier as recent years have seen a vast expansion of the
use of HMMs, enabled by the introduction of software packages that remove
constraints on data modeling. Focusing on what is available in R, HMM packages
have been developed that can learn from multiple channel observation sequences
(Visser and Speekenbrink 2010), relevant for instance for cases where eye-tracking
is combined with observations of interaction and verbal data (Schneider et al. 2018).
In the same package, covariates can be added for initial and transition probabilities.
This allows us, for instance, to model cases in which the participants are provided
with time-dependent additional information, such as observations on a peer tutor
(Walker et al. 2014). Another important extension concerns multiple observation
sequences: the hidden states are seen as representing a distribution of states
(O’Connell and Hgjsgaard 2011; Turner and Liu 2014). There are also extensions
for modeling continuous time processes (Jackson 2011), relevant in CSCL for
research that includes, for instance, physiological measurements (Mandryk and
Inkpen 2004). One of the most comprehensive HMM packages for R currently
available that reflects a range of these extensions is seqHMM (Helske and Helske
2017).

3.2.2 Dynamic Bayesian networks

An important development in stochastic modeling of temporal processes is dynamic
Bayesian networks (DBNs). They provide a perspective for probabilistic reasoning
over time that unifies (hidden) Markov modeling in all its variants with the Bayesian
approach to modeling diagnostic reasoning, decision-making, and measurement.

The ontology of a DBN is such that the world is a series of snapshots—of time
slices—each of which contains a number of (unobservable) state variables and a
number of observable variables that are indicators for states. For the simplest case of
a DBN, we assume that the variables and their links are exactly replicated from slice
to slice and that the DBN itself represents a first-order Markov process: each variable
has “parents” (is linked to) only in its own slice and/or the immediately preceding
slice (Russell and Norvig 2016, p. 590).

To provide an example, the study on math learning by peer tutoring described in
(Bergner et al. 2017) uses an input—output HMM to model the relation between tutor
input, tutee’s capability (the hidden state), and the correctness of observed tutee
actions (see Fig. 2). This model makes it explicit that a capability increase on side of
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(Coded) tutor inputs: ()

Assisted capability of tutee:

)

Observed tutee
correctness:

200
HO LB
25O A

Fig. 2 DBN model of learning in a tutorial dialogue after Bergner et al. (2017)

the tutee depends on the tutor as well as the tutee. Linking the variables of a system
makes it computationally much more tractable than when only the set of variables is
provided. Because a DBN can express more structure than an HMM, it becomes
more efficiently computable and it allows expression of a wider set of theoretical
assumptions.

As regards software support, the bnlearn package in R, for instance, can be used
to construct DBNs theory-driven or to learn them from data (Nagarajan et al. 2013).

4 The Future

On the horizon are dynamic social network analysis, massive data, automatic
analyses, and qualitative/quantitative analysis cycles. While social network analyses
can examine attributes of fixed networks of learners or ideas (epistemic network
analysis), dynamic social network analysis offers the promise of examining how
networks of learners, ideas, or both change over time (Oshima et al. 2018; Sarkar and
Moore 2006; Shaffer et al. 2009).

Massive data (colloquially, big data) encompass sharply greater volume, com-
plexity, and velocity (e.g., from massive, open, online courses or MOOCsS; National
Research Council 2013). The increasing addition of computer chips into objects
around us (colloquially, internet of things) and their technological embrace by
educators to aid student learning is creating voluminous amounts of electronic data
(Picciano 2012). Greater volumes of data largely enhance statistical analyses and
enable greater precision in the results (Cohen et al. 2003). Although some data are in
the familiar form of numbers, much of it is text, images, or videos (Gandomi and
Haider 2015). These data require substantial effort before conversion into numbers
for statistical analyses (e.g., 1 for presence of an image vs. O for its absence), so
collaborations among experts in computational linguistics, image processing, acous-
tics, and statistics will likely become necessary (Bello-Orgaz et al. 2016). Also, high-
velocity data collection entails repeated dynamic analyses to yield updated results
(each day, hour, minute, etc.; Zikopoulos and Eaton 2011).
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The growing size, complexity, and velocity of massive data and the accompany-
ing demand for comprehensive, nuanced, updated analyses of them exceed human
capacity, so they motivate automated, computer programs to take over increasingly
greater statistics responsibilities (Assuncdo et al. 2015). After computer programs
informed by computational linguistics, image processing, and acoustics create the
databases (Bello-Orgaz et al. 2016), artificial intelligence expert systems can select
and run the statistical analyses (repeatedly for high-velocity incoming data), interpret
the results, and produce reports for humans (Korb and Nicholson 2010).

The automation of statistical analyses also frees up human time for detailed
qualitative analyses, so that both analyses mutually inform each other’s subsequent
analyses, provide mutually supportive evidence, and complement each other’s
strengths and weaknesses (Teddlie and Tashakkori 2009). For example, an initial,
qualitative case study can select and scrutinize important phenomena in context to
develop theory by identifying constructs, operationalizing them, recognizing pat-
terns, and specifying hypotheses (possibly aided by data mining, Feldman and
Sanger 2007). Next, a statistical analysis tests these hypotheses, identifies pivotal
breakpoints, and pinpoints instances in the data that fit the theory extremely well or
extremely poorly (Chiu 2013). The hypothesis testing results, breakpoints, well-fit
instances, and poorly fitting instances target specific data for another round of
qualitative analysis (Chiu 2013). This qualitative analysis can refine the hypotheses,
develop new ones for breakpoints or poorly fitting instances for another round of
statistical analyses, and so on (Teddlie and Tashakkori 2009). Researchers can
flexibly start or stop at any point in the above multistep qualitative/quantitative
cycle (Chiu 2013).

Also interesting for bringing qualitative and quantitative approaches into closer
contact are deterministic process models. Deterministic modeling applies when the
structure of the process is known and one is interested in the behavior of the process
under certain conditions. Deterministic models are particularly relevant for CSCL
research when processes are designed, such as for the study of collaboration and
argumentation scripts (Weinberger and Fischer 2006).

A deterministic process differs from a fixed, invariant sequence of steps (activ-
ities, events). With known start and end states, it is a finite set of both states and
activities (or actions) that can yield to an infinite number of different event sequences
(e.g., chess). Computer science and operations research have examined deterministic
process models expressed in forms such as finite-state machines and Petri Nets
(Reimann 2009). As these models can represent choice and parallelism, they can
help answer questions such as: Is an observed, sequence of events alignable with a
particular designed process? Given a set of sequences of events, can a single
deterministic model describe them?

Deterministic models are also relevant in situations where the learners involved
have knowledge about the process as a whole; for instance, participants in a formal
discussion know the “moves” allowed as well as the end state (Schwarz and Baker
2016). We can therefore assume that their behavior in the discussion will to some
extent be guided by this knowledge, by a sense of well-formedness. In human affairs,
such situations abound, from social conduct in general to work processes. Although
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obviously relevant for CSCL research, applications have been rare so far (Bannert
et al. 2014; Reimann et al. 2009). The same can be said about the type of determin-
istic models that represent knowledge and beliefs of individual agents and simulate
the interaction with other agents and resources, such as agent-based models. While
of high relevance to phenomena studied in CSCL, applications are very rare. To
appreciate the role they could play, Abrahamson et al.’s model of stratification of
learning zones in the collaborative (math) classroom provides an excellent example
(Abrahamson et al. 2007).

In conclusion, a wide range of methods for analyzing and modeling temporal data
is available to CSCL researchers, ranging from stochastic and statistical to deter-
ministic computational. Our recommendation is to embrace the notions of model and
modeling to a much deeper and much more comprehensive extent than has been the
case in the past, by exploiting the potential that lies in combining theoretical with
empirical modeling. We hope this chapter will make a small contribution to this
widening of minds.

References

Abrahamson, D., Blikstein, P., & Wilensky, U. (2007). Classroom model, model classroom:
Computer-supported methodology for investigating collaborative-learning pedagogy. In
C. Chinn, G. Erkens, & S. Puntambekar (Eds.), Proceedings of the 8th international conference
on computer supported collaborative learning (CSCL) (Vol. 8, part 1, pp. 49-58). International
Society of the Learning Sciences.

Assuncdo, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015). Big data
computing and clouds: Trends and future directions. Journal of Parallel and Distributed
Computing, 79, 3—15.

Bakeman, R., & Gottman, J. M. (1986). Observing interaction: An introduction to sequential
analysis. Cambridge: Cambridge University Press.

Bannert, M., Reimann, P., & Sonnenberg, C. (2014). Process mining techniques for analysing
patterns and strategies in students’ self-regulated learning. Metacognition and Learning, 9(2),
161-185.

Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent achievements and new
challenges. Information Fusion, 28, 45-59.

Bergner, Y., Walker, E., & Ogan, A. (2017). Dynamic Bayesian network models for peer tutoring
interactions. In A. A. von Davier, M. Zhu, & P. C. Kyllonen (Eds.), Innovative assessment of
collaboration (pp. 249-268). New York: Springer.

Boyer, K. E., Ha, E. Y., Phillips, R., Wallis, M. D., Vouk, M. A., & Lester, J. (2009). Inferring
tutorial dialogue structure with hidden Markov modeling. In Proceedings of the Fourth Work-
shop on Innovative Use of NLP for Building Educational Applications—EdAppsNLP ‘09
(pp. 19-26). Association for Computational Linguistics.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. London: Sage.

Cen, H., Koedinger, K., & Junker, B. (2006). Learning factors analysis—a general method for
cognitive model evaluation and improvement. In M. Ikeda, K. D. Ashley, & T. W. Chan (Eds.),
Intelligent tutoring systems, lecture notes in computer science (Vol. 4053, pp. 164-175).
New York: Springer.

Chen, G., & Chiu, M. M. (2008). Online discussion processes: Effects of earlier messages’
evaluations, knowledge content, social cues and personal information on later messages.
Computers and Education, 50, 678-692.



548 M. M. Chiu and P. Reimann

Chiu, M. M. (2008). Flowing toward correct contributions during groups' mathematics problem
solving: A statistical discourse analysis. Journal of the Learning Sciences, 17(3), 415-463.
https://doi.org/10.1080/10508400802224830.

Chiu, M. M. (2013). Cycles of discourse analysis <=> statistical discourse analysis. In 10th
International conference on computer supported collaborative learning, Madison, W1, USA.

Chiu, M. M. (2018). Statistically modelling effects of dynamic processes on outcomes: An example
of discourse sequences and group solutions. Journal of Learning Analytics, 5(1), 75-91.

Chiu, M. M., & Lehmann-Willenbrock, N. (2016). Statistical discourse analysis: Modeling
sequences of individual behaviors during group interactions across time. Group Dynamics:
Theory, Research, and Practice, 20(3), 242-258. DOI: 10.1037/gdn0000048

Cohen, J., West, S. G., Aiken, L., & Cohen, P. (2003). Applied multiple regression/correlation
analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum.

Cress, U. (2008). The need for considering multilevel analysis in CSCL research—an appeal for the
use of more advanced statistical methods. International Journal of Computer-Supported Col-
laborative Learning, 3, 69-84.

Embretson, S. E., & Reise, S. P. (2013). Item response theory. Hove, East Sussex, UK: Psychology
Press.

Farran, D. C., & Son-Yarbrough, W. (2001). Title I funded preschools as a developmental context
for children's play and verbal behaviors. Early Childhood Research Quarterly, 16(2), 245-262.

Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing
unstructured data. Cambridge: Cambridge University Press.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics.
International Journal of Information Management, 35(2), 137-144.

Goldstein, H. (2011). Multilevel statistical models. London: Edward Arnold.

Gottman, J. M., & Roy, A. K. (1990). Sequential analysis: A guide for behavioral researchers.
Cambridge: Cambridge University Press.

Greene, W. H. (1997). Econometric analysis (3rd ed.). London: Prentice-Hall.

Helske, S., & Helske, J. (2017). Mixture hidden Markov models for sequence data: The seqHMM
package in R. Retrieved from http://arxiv.org/abs/1704.00543

Jackson, C. H. (2011). Multi-state models for panel data: The msm package for R. Journal of
Statistical Software, 38(8), 1-29.

Joreskog, K., & Sorbom, D. (2015). LISREL 9.2. New York: Scientific Software International.

Kennedy, P. (2008). Guide to econometrics. New York: Wiley-Blackwell.

Korb, K. B., & Nicholson, A. E. (2010). Bayesian artificial intelligence. Boca Raton, FL: CRC
Press.

Loehlin, C. (2004). Latent variable models: An introduction to factor, path, and structural equation
analysis. Hove, East Sussex, UK: Psychology Press.

Mandryk, R. L., & Inkpen, K. M. (2004). Physiological indicators for the evaluation of co-located
collaborative play. In Proceedings of the 2004 ACM conference on Computer Supported
Cooperative Work—CSCW ‘04 (pp. 102—111). Association for Computing Machinery.

Muthén, L. K., & Muthén, B. O. (2018). Mplus 8.1. Los Angeles, CA: Muthén & Muthén.

Nagarajan, R., Scutari, M., & Lebre, S. (2013). Bayesian networks in R. New York: Springer.

National Research Council. (2013). Frontiers in massive data analysis. Washington, DC: National
Academies Press.

O’Connell, J., & Hgjsgaard, S. (2011). Hidden semi Markov models for multiple observation
sequences: The mhsmm package for R. Journal of Statistical Software, 39(4), 1-22.

Oshima, J., Oshima, R., & Fujita, W. (2018). A mixed-methods approach to analyze shared
epistemic agency in jigsaw instruction at multiple scales of temporality. Journal of Learning
Analytics, 5(1), 10-24.

Picciano, A. G. (2012). The evolution of big data and learning analytics in American higher
education. Journal of Asynchronous Learning Networks, 16(3), 9-20.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), 257-286.


https://doi.org/10.1080/10508400802224830
http://arxiv.org/abs/1704.00543

Statistical and Stochastic Analysis of Sequence Data 549

Reimann, P. (2009). Time is precious: Variable- and event-centred approaches to process analysis
in CSCL research. International Journal of Computer-Supported Collaborative Learning, 4,
239-257.

Reimann, P., Frerejean, J., & Thompson, K. (2009). Using process mining to identify models of
group decision making processes in chat data. In C. O’Malley, D. Suthers, P. Reimann, &
A. Dimitracopoulou (Eds.), Computer-supported collaborative learning practices: CSCL2009
conference proceedings (pp. 98—107). International Society for the Learning Sciences.

Russell, S., & Norvig, P. (2016). Artificial intelligence: A modern approach (global edition).
London: Prentice-Hall.

Sarkar, P., & Moore, A. W. (2006). Dynamic social network analysis using latent space models. In
Y. Weiss, B. Scholkopf, and J. Platt (Eds.) Advances in neural information processing systems
18 (pp. 1145-1152). Cambridge, MA: MIT Press.

Schneider, B., Sharma, K., Cuendet, S., Zufferey, G., Dillenbourg, P., & Pea, R. (2018). Leveraging
mobile eye-trackers to capture joint visual attention in co-located collaborative learning groups.
International Journal of Computer-Supported Collaborative Learning, 13(3), 241-261.

Schwarz, B., & Baker, M. (2016). Dialogue, Argumentation and education. Cambridge: Cambridge
University Press.

Shaffer, D. W., Hatfield, D., Svarovsky, G. N., Nash, P., Nulty, A., Bagley, E., Frank, K., Rupp,
A. A., & Mislevy, R. (2009). Epistemic network analysis: A prototype for 21st-century
assessment of learning. International Journal of Learning and Media, 1(2), 33-53.

Soller, A. (2004). Computational modeling and analysis of knowledge sharing in collaborative
distance learning. User Modeling and User-Adapted Interaction, 14, 351-381.

Teddlie, C., & Tashakkori, A. (2009). Foundations of mixed methods research: Integrating
quantitative and qualitative approaches in the social and behavioral sciences. London: Sage.

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin, 63(6),
384-399.

Turner, R., & Liu, L. (2014). Hmm.discnp: Hidden Markov models with discrete non-parametric
observation distributions. R Package Version 0.2-3. Retrieved from http://CRAN.R-project.org/
package=hmm.discnp

Visser, 1., & Speekenbrink, M. (2010). depmixS4: An R Package for Hidden Markov Models.
Journal of Statistical Software, 36, 1-21.

Walker, E., Rummel, N., & Koedinger, K. R. (2014). Adaptive intelligent support to improve peer
tutoring in algebra. International Journal of Artificial Intelligence in Education, 24(1), 33-61.

Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construc-
tion in computer-supported collaborative learning. Computers & Education, 46(1), 71-95.

Wise, A., & Chiu, M. M. (2011). Analyzing temporal patterns of knowledge construction in a role-
based online discussion. International Journal of Computer-Supported Collaborative Learning,
6, 445-470.

Wolery, M., Busick, M., Reichow, B., & Barton, E. E. (2010). Comparison of overlap methods for
quantitatively synthesizing single-subject data. The Journal of Special Education, 44(1), 18-28.

Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class Hadoop
and streaming data. New York: McGraw-Hill Osborne Media.

Further Readings

Abrahamson, D., Blikstein, P., & Wilensky, U. (2007). Classroom model, model classroom:
Computer-supported methodology for investigating collaborative-learning pedagogy. In
C. Chinn, G. Erkens, & S. Puntambekar (Eds.), Proceedings of the eighth International
Conference on Computer Supported Collaborative Learning (CSCL) (Vol. 8, Part 1, pp.
49-58). International Society of the Learning Sciences. A powerful demonstration of how


http://cran.r-project.org/package=hmm.discnp
http://cran.r-project.org/package=hmm.discnp
http://cran.r-project.org/package=hmm.discnp

550 M. M. Chiu and P. Reimann

(deterministic) computational modeling can interact with empirical (classroom) research. Using
the agent-based modeling tool, NetLogo, the authors provide an analysis of the mechanisms that
lead to the emergence of stratified learning zones in a prototypical collaborative classroom
activity. Also important because it highlights the tension between collaborative solving prob-
lems and learning from collaboration.

Bergner, Y., Walker, E., & Ogan, A. (2017). Dynamic Bayesian Network models for peer tutoring
interactions. In A. A. von Davier, M. Zhu, & P. C. Kyllonen (Eds.), Innovative assessment of
collaboration (pp. 249-268). Springer. This chapter provides a nice illustration of the use of
modern HMM approaches to analyzing (peer) tutorial dialogue. While an important area of
collaborative learning, research on tutor—tutee dialogue is only partially reflected in the CSCL
literature, with this chapter providing a welcome connection between CSCL, Al in Education,
and assessment research. It includes an application in the context of an empirical study.

Chiu, M. M. (2008). Flowing toward correct contributions during groups’ mathematics problem
solving: A statistical discourse analysis. Journal of the Learning Sciences, 17(3), 415-463. This
empirical study applied statistical discourse analysis to test whether (a) groups that created more
correct, new ideas (micro-creativity) were more likely to solve a problem and (b) students’
recent actions (microtime context of evaluations, questions, justifications, politeness, and status
differences) increased subsequent micro-creativity.

Chiu, M. M., & Lehmann-Willenbrock, N. (2016). Statistical discourse analysis: Modeling
sequences of individual behaviors during group interactions across time. Group Dynamics:
Theory, Research, and Practice, 20(3), 242-258. This article showcases statistical discourse
analysis, a method that integrates most of the above methods (parallel chats, trees, group/
individual differences, pivotal events, time periods, multiple target events, indirect effects,
later group outcomes) and addresses related issues (e.g., missing data, inter-rater reliability,
false positives, etc.).

Reimann, P. (2009). Time is precious: Variable- and event-centred approaches to process analysis
in CSCL research. International Journal of Computer-Supported Collaborative Learning, 4,
239-257. This methodological paper provides an overview of qualitative, quantitative, and
computational methods for analyzing temporal data in CSCL. It argues that there is a rather
fundamental difference between explaining collaboration over time in terms of variables versus
explaining them in terms of events. Implications for doing temporal analysis are discussed.

NAPLES Video

Chiu, M. M. (2018). How to statistically model processes? Statistical discourse analysis. Network of
Academic Programs in the Learning Sciences (NAPLeS) webinar. http://isls-naples.psy.Imu.de/
intro/all-webinars/chiu/index.html


http://isls-naples.psy.lmu.de/intro/all-webinars/chiu/index.html
http://isls-naples.psy.lmu.de/intro/all-webinars/chiu/index.html

	Statistical and Stochastic Analysis of Sequence Data
	1 Definitions and Scope
	1.1 Statistical View of Sequential Processes
	1.2 The Stochastic View of Sequential Processes

	2 History and Development
	2.1 Early Statistical Analyses
	2.1.1 Conditional Probability
	2.1.2 Sequential Analysis
	2.1.3 Vector Auto-Regression

	2.2 Early Applications of Stochastic Analysis
	2.2.1 Markov Models
	2.2.2 Hidden Markov Models


	3 State of the Art
	3.1 Recent Developments in Statistical Analysis
	3.1.1 Parallel Chats and Trees
	3.1.2 Task Difficulty
	3.1.3 Group/Individual Differences
	3.1.4 Differences Across Time
	3.1.5 Multiple Target Events, Latent Process, Indirect Effect, and Measurement Error
	3.1.6 Later Group/Individual Outcomes

	3.2 Recent Developments in Stochastic Modeling
	3.2.1 Extensions of Hidden Markov Models
	3.2.2 Dynamic Bayesian networks


	4 The Future
	References
	Further Readings




