
Improving the Efficiency
of Optimally-Resilient Statistically-Secure
Asynchronous Multi-party Computation

Ashish Choudhury(B)

International Institute of Information Technology, Bangalore, India
ashish.choudhury@iiitb.ac.in

Abstract. We present an optimally-resilient, statistically-secure asyn-
chronous multi-party computation (AMPC) protocol for n parties, capa-
ble of corrupting up to t < n

3
parties. Our protocol needs a commu-

nication of O(n4) field elements per multiplication gate. This is to be
compared with previous best AMPC protocol (Patra et al., ICITS 2009)
in the same setting, which needs a communication of O(n5) field elements
per multiplication gate. To design our protocol, we present a simple and
highly efficient asynchronous verifiable secret-sharing (AVSS) protocol,
which is of independent interest.
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1 Introduction

Secure multi-party computation (MPC) [7,17,23,25] is a fundamental problem,
both in cryptography as well as distributed computing. Informally a MPC proto-
col allows a set of n mutually-distrusting parties to perform a joint computation
on their inputs, while keeping their inputs as private as possible, even in the
presence of an adversary Adv who can corrupt any t out of these n parties.
Ever since its inception, the MPC problem has been widely studied in various
flavours (see for instance, [16,18–20] and their references). While the MPC prob-
lem has been pre-dominantly studied in the synchronous communication model
where the message delays are bounded by known constants, the progress in the
design of efficient asynchronous MPC (AMPC) protocols is rather slow. In the
latter setting, the communication channels may have arbitrary but finite delays
and deliver messages in any arbitrary order, with the only guarantee that all
sent messages are eventually delivered. The main challenge in designing a fully
asynchronous protocol is that it is impossible for an honest party to distinguish
between a slow but honest sender (whose messages are delayed) and a corrupt
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sender (who did not send any message). Hence, at any stage, a party cannot
wait to receive messages from all the parties (to avoid endless waiting) and so
communication from t (potentially honest) parties may have to be ignored.

We consider a setting where Adv is computationally unbounded. In this set-
ting, we have two class of AMPC protocols. Perfectly-secure AMPC proto-
cols give the security guarantees without any error, while statistically-secure
AMPC protocols give the security guarantees with probability at least 1−εAMPC,
where εAMPC is any given (non-zero) error parameter. The optimal resilience for
perfectly-secure AMPC is t < n/4 [6], while that for statistically-secure AMPC
it is t < n/3 [8]. While there are quite a few works which consider optimally-
resilient perfectly-secure AMPC protocol [5,22], not too much attention has been
paid to the design of efficient statistically-secure AMPC protocol with the opti-
mal resilience of t < n

3 . We make inroads in this direction, by presenting a simple
and efficient statistically-secure AMPC protocol.

1.1 Our Results and Comparison with the Existing Works

In any statistically-secure AMPC protocol, the function to be computed is
abstracted as a publicly-known circuit cir over somefinite fieldF, consisting of addi-
tion and multiplication gates and the goal is to let the parties jointly and “securely”
evaluate cir. The field F is typically the Galois field GF(2κ), where κ depends upon
εAMPC. The communication complexity of any AMPC protocol is dominated by the
communication needed to evaluate the multiplication gates in cir (see the sequel for
details). Consequently, the focus of any generic AMPC protocol is to improve the
communication required for evaluating the multiplication gates in cir. The follow-
ing table summarizes the communication complexity of the existing AMPC proto-
cols with the optimal resilience of t < n

3 and our protocol.

Reference Communication Complexity (in bits) for Evaluating

a Single Multiplication Gate

[8] O(n11κ4)

[21] O(n5κ)

This paper O(n4κ)

We follow the standard approach of shared circuit-evaluation, where each
value during the evaluation of cir is Shamir secret-shared [24] among the par-
ties, with threshold t. Informally, a value s is said to be Shamir-shared with
threshold t, if there exists some degree-t polynomial with s as its constant term
and every party Pi holds a distinct evaluation of this polynomial as its share.
In the AMPC protocol, each party Pi verifiably secret-shares its input for cir.
The verifiability here ensures that if the parties terminate this step, then some
value is indeed Shamir secret-shared among the parties on the behalf of Pi. To
verifiably secret-share its input, each party executes an instance of asynchronous
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verifiable secret-sharing (AVSS). Once the inputs of the parties are secret-shared,
the parties then evaluate each gate in cir, maintaining the following invariant: if
the gate inputs are secret-shared, then the parties try to obtain a secret-sharing
of the gate output. Due to the linearity of Shamir secret-sharing, maintaining
the invariant for addition gates do not need any interaction among the parties.
However, for maintaining the invariant for multiplication gates, the parties need
to interact with each other and hence the onus is rightfully shifted to minimize
this cost. For evaluating the multiplication gates, the parties actually deploy the
standard Beaver’s circuit-randomization technique [4]. The technique reduces
the cost of evaluating a multiplication gate to that of publicly reconstructing
two secret-shared values, provided the parties have access to a Shamir-shared
random multiplication triple (a, b, c), where c = a · b. The shared multiplication
triples are generated in advance in a bulk in a circuit-independent pre-processing
phase, using the efficient framework proposed in [12]. The framework allows to
efficiently and verifiably generate Shamir-shared random multiplication triples,
using any given AVSS protocol. Once all the gates in cir are evaluated and the
circuit-output is available in a secret-shared fashion, the parties publicly recon-
struct this value. Since all the values (except the circuit output) during the
entire computation remains Shamir-shared with threshold t, the privacy of the
computation follows from the fact that during the shared circuit-evaluation, for
each value in cir, Adv learns at most t shares, which are independent of the
actual shared value. While the AMPC protocols of [8,21] also follow the above
blue-print, the difference is in the underlying AVSS protocol.

AVSS [6,8] is a well-known and important primitive in secure distributed
computing. On a very high level, an AVSS protocol enhances the security
of Shamir secret-sharing against a malicious adversary (Shamir secret-sharing
achieves its properties only in the passive adversarial model, where even the
corrupt parties honestly follow protocol instructions). The existing statistically-
secure AVSS protocols with t < n/3 [8,21] need high communication. This is
because there are significant number of obstacles in designing statistically-secure
AVSS with exactly n = 3t+1 parties (which is the least value of n with t < n/3).
The main challenge is to ensure that all honest parties obtain their shares of the
secret. We call an AVSS protocol guaranteeing this “completeness” property as
complete AVSS. However, in the asynchronous model, it is impossible to directly
get the confirmation of the receipt of the share from each party, as corrupt par-
ties may never respond. To get rid off this difficulty, [8] introduces a “weaker”
form of AVSS which guarantees that the underlying secret is verifiably shared
only among a set of n − t parties and up to t parties may not have their shares.
To distinguish this type of AVSS from complete AVSS, the latter category of
AVSS is termed an asynchronous complete secret-sharing (ACSS) in [8], while
the weaker version of AVSS is referred as just AVSS. Given any AVSS protocol,
[8] shows how to design an ACSS protocol using n instances of AVSS. An AVSS
protocol with t < n/3 is also presented in [8]. With a communication complexity
of Ω(n9κ) bits, the protocol is highly expensive. This AVSS protocol when used in
their ACSS protocol requires a communication complexity Ω(n10κ). Apart from
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being communication expensive, the AVSS of [8] involves a lot of asynchronous
primitives such as ICP, A-RS, AWSS and Two & Sum AWSS. In [21], a simplified
AVSS protocol with communication complexity O(n3κ) bits is presented, based
on only ICP and AWSS. This AVSS is then converted into an ACSS following
[8], making the communication complexity of their ACSS O(n4κ) bits.

In this work, we further improve upon the communication complexity of
the ACSS of [21]. We first design a new AVSS protocol with a communication
complexity O(n2κ) bits. Then using the approach of [8], we obtain an ACSS
protocol with communication complexity O(n3κ) bits. Our AVSS protocol is
conceptually simpler and is based on just the ICP primitive and hence easy to
understand. Moreover, since we avoid the usage of AWSS in our AVSS, we get
a saving of Θ(n) in the communication complexity, compared to [21] (the AVSS
of [21] invokes n instances of AWSS, which is not required in our AVSS).

2 Preliminaries, Definitions and Existing Tools

We assume a set of n parties P = {P1, . . . , Pn}, connected by pair-wise pri-
vate and authentic asynchronous channels. A computationally unbounded active
adversary Adv can corrupt any t < n/3 parties. We assume n = 3t + 1, so
that t = Θ(n). In our protocols, all computation are done over a Galois field
F = GF(2κ). The parties want to compute a function f over F, represented
by a publicly known arithmetic circuit cir over F. For simplicity and without
loss of generality, we assume that each party Pi ∈ P has a single input x(i)

for the function f and there is a single function output y = f(x(1), . . . , x(n)),
which is supposed to be learnt by all the parties. The circuit cir consists of cM

multiplication gates. We require |F| > n. Additionally, we need the condition
n5κ

2κ−(3cM+1) ≤ εAMPC to hold. Looking ahead, this will ensure that the error
probability of our AMPC protocol is upper bounded by εAMPC. We assume that
α1, . . . , αn are distinct, non-zero elements from F, where αi is associated with Pi

as the “evaluation point”. By communication complexity of a protocol, we mean
the total number of bits communicated by the honest parties in the protocol.
While denoting the communication complexity of a protocol, we use the term
BC(�) to denote that � bits are broadcasted in the protocol.

2.1 Definitions

A degree-d univariate polynomial is of the form f(x) = a0 + . . . + adx
d, where

each ai ∈ F. A degree-(�,m) bivariate polynomial F (x, y) is of the form F (x, y) =
∑i=�,j=m

i,j=0 rijx
iyj , where each rij ∈ F. Let fi(x) def= F (x, αi), gi(y) def= F (αi, y).

We call fi(x) and gi(y) as ith row and column polynomial respectively of F (x, y)
and often say that fi(x), gi(y) lie on F (x, y). We use the following well-known
lemma, which states that if there are “sufficiently many” degree-t univariate
polynomials which are “pair-wise consistent”, then there exists a unique degree-
(t, t) bivariate polynomial, passing through these univariate polynomials.
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Lemma 1 (Pair-wise Consistency Lemma [1,10]). Let fi1(x), . . . , fi�
(x),

gj1(y), . . . , gjm
(y) be degree-t polynomials where �,m ≥ t + 1 and i1, . . . , i�, j1,

. . . , jm ∈ {1, . . . , n}. Moreover, let for every i ∈ {i1, . . . , i�} and every j ∈
{j1, . . . , jm}, fi(αj) = gj(αi) holds. Then there exists a unique degree-(t, t)
bivariate polynomial, say F (x, y), such that the row polynomials fi1(x), . . . , fi�

(x)
and the column polynomials gj1(y), . . . , gjm

(y) lie on F (x, y).

We next give the definition of complete t-sharing.

Definition 1 (t-sharing and Complete t-sharing). A value s ∈ F is said to
be t-shared among C ⊆ P, if there exists a degree-t polynomial, say f(x), with

f(0) = s, such that each honest Pi ∈ C holds its share si
def
= f(αi). The vector

of shares of s corresponding to the honest parties in C is denoted as [s]Ct . A set
of values S = (s(1), . . . , s(L)) ∈ F

L is said to be t-shared among a set of parties
C, if each s(i) ∈ S is t-shared among C.

A value s ∈ F is said to be completely t-shared, denoted as [s]t, if s is t-shared
among the entire set of parties P; that is C = P holds. Similarly, a set of values
S ∈ F

L is completely t-shared, if each s(i) ∈ F is completely t-shared

Note that complete t-sharings are linear: given [a]t, [b]t, then [a+ b]t = [a]t +[b]t
and [c · a]t = c · [a]t hold, for any public c ∈ F.

Definition 2 (Asynchronous Complete Secret Sharing (ACSS) [8,21]).
Let CSh be an asynchronous protocol, where there is a designated dealer D ∈ P
with a private input S = (s(1), . . . , s(L)) ∈ F

L. Then CSh is a (1 − εACSS) ACSS
protocol for a given error parameter εACSS, if the following requirements hold.

• Termination: Except with probability εACSS, the following holds. (a): If D
is honest and all honest parties participate in CSh, then each honest party
eventually terminates CSh. (b): If some honest party terminates CSh, then
every other honest party eventually terminates CSh.

• Correctness: If the honest parties terminate CSh, then except with probabil-
ity εACSS, there exists some S ∈ F

L which is completely t-shared, where S = S
for an honest D.

• Privacy: If D is honest, then the view of Adv during CSh is independent
of S.

We stress that all the existing works on asynchronous VSS/CSS [2,5,6,8,22]
follow the above “property-based” definition. Even in the synchronous setting,
to the best of our knowledge, all the works on VSS/CSS follow a correspond-
ing property-based definition, except the work of [1]. The work of [1] presents
an ideal-world functionality of VSS/CSS and give a corresponding simulation-
based security proof of their VSS protocol. To the best of our knowledge, an
ideal-world functionality to model VSS/CSS in the asynchronous setting has not
been done till now. There are inherent technical challenges to model VSS/CSS
(and in general any secure distributed computing task) in the asynchronous set-
ting, specifically to deal with asynchronous message delivery, controlled by the
adversary. As the main focus of this work is to design a communication-efficient
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ACSS (and AMPC), we defer the formalization of the ideal-world functionality
of AVSS/ACSS and corresponding simulation-based security proof of our ACSS
to the full version of the paper.

We next give the definition of asynchronous information-checking protocol
(AICP), which will be used in our ACSS protocol. An AICP involves three
entities: a signer S ∈ P, an intermediary I ∈ P and a receiver R ∈ P, along
with the set of parties P acting as verifiers. Party S has a private input S. An
AICP can be considered as information-theoretically secure analogue of digital
signatures, where S gives a “signature” on S to I, who eventually reveals it to R,
claiming that it got the signature from S. The protocol proceeds in the following
three phases, each of which is implemented by a dedicated sub-protocol.

• Distribution Phase: Executed by a protocol Gen, where S sends S to I along
with some auxiliary information and to each verifier, S gives some verification
information.

• Authentication Phase: Executed by P through a protocol Ver, to verify
whether S distributed “consistent” information to I and the verifiers. Upon
successful verification I sets a Boolean variable VS,I to 1 and the information
held by I is considered as the information-checking signature on S, denoted
as ICSig(S → I,S). The notation S → I signifies that the signature is given by
S to I.

• Revelation Phase: Executed by I,R and the verifiers by running a protocol
RevPriv, where I reveals ICSig(S → I,S) to R, who outputs S after verifying S.

Definition 3 (AICP [21]). A triplet of protocols (Gen,Ver,RevPriv) where S
has a private input S ∈ F

L for Gen is called a (1 − εAICP)-secure AICP, for a
given error parameter εAICP, if the following holds for every possible Adv.

• Completeness: If S, I and R are honest, then I sets VS,I to 1 during Ver.
Moreover, R outputs S at the end of RevPriv.

• Privacy: If S, I and R are honest, then the view of Adv is independent of S.
• Unforgeability: If S and R are honest, I reveals ICSig(S → I, S̄) and if
R outputs S̄ during RevPriv, then except with probability at most εAICP, the
condition S̄ = S holds.

• Non-repudiation: If S is corrupt and if I,R are honest and if I sets VS,I

to 1 holding ICSig(S → I, S̄) during Ver, then except with probability εAICP, R
outputs S̄ during RevPriv.

We do not put any termination condition for AICP. Looking ahead, we use
AICP as a primitive in our ACSS protocol and the termination conditions in
our instantiation of ACSS ensure that the underlying instances of AICP also ter-
minate. Finally, we give the definition of two-level t-sharing with IC-signatures,
which is the data structure generated by our AVSS protocol, as well as by the
AVSS protocols of [8,21]. This sharing is an enhanced version of t-sharing, where
each share is further t-shared. Moreover, for the purpose of authentication, each
second-level share is signed.
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Definition 4 (Two-level t-Sharing with IC-signatures [21]). A set of val-
ues S = (s(1), . . . , s(L)) ∈ F

L is said to be two-level t-shared with IC-signatures
if there exists a set C ⊆ P with |C| ≥ n − t and a set Cj ⊆ P for each Pj ∈ C
with |Cj | ≥ n − t, such that the following conditions hold.

• Each s(k) ∈ S is t-shared among C, with each party Pj ∈ C holding its primary-
share s

(k)
j .

• For each primary-share holder Pj ∈ C, there exists a set of parties Cj ⊆ P,
such that each primary-share s

(k)
j is t-shared among Cj, with each Pi ∈ Cj

holding the secondary-share s
(k)
j,i of the primary-share s

(k)
j .

• Each primary-share holder Pj ∈ C holds ICSig(Pi → Pj , (s
(1)
j,i , . . . , s

(L)
j,i )), cor-

responding to each honest secondary-share holder Pi ∈ Cj.

We stress that the Cj sets might be different for each Pj ∈ C.
Formalizing the security definition of MPC is subtle, and in itself is an inter-

esting field of research. The standard security notion in the synchronous setting is
that of universal composability (UC), based on the real-world/ideal-world based
simulation paradigm [11]. Informally, a protocol Πreal for MPC is defined to be
secure in this paradigm, if it securely “emulates” an ideal-world protocol Πideal.
In Πideal, all the parties give their respective inputs for the function f to be com-
puted to a trusted third party (TTP), who locally computes the function output
and sends it back to all the parties. Protocol Πreal is said to securely emulate
Πideal if for any adversary attacking Πreal, there exists an adversary attacking
Πideal that induces an indistinguishable output in Πideal, where the output is the
concatenation of the outputs of the honest parties and the view of the adversary.

In the case of the asynchronous setting, the local output of the honest par-
ties is only an approximation of the pre-specified function f over a subset C of
the local inputs, the rest being taken to be 0, where |C| ≥ n − t. This is to
model the fact that in a completely asynchronous setting, “input-provision” is
impossible and inputs of up to t (potentially honest) parties may be ignored for
computation. Protocol Πreal is said to be statistically-secure in the asynchronous
setting if the local outputs of the honest players are correct (except with some
error probability for a given error parameter), Πreal terminates eventually for
all honest parties (except with some error probability for a given error parame-
ter), and the output of Πreal is statistically-indistinguishable from the output of
Πideal (which involves a TTP that computes an approximation of f). We refer
to [13,14] for the complete formalization of the UC-security definition of MPC
in the asynchronous communication setting, with eventual message delivery.

2.2 Existing Asynchronous Protocols Used in Our ACSS Protocol

We use the AICP protocol of [21], where εAICP ≤ nκ
2κ−(L+1) and where Gen,

Ver and RevPriv has communication complexity of O((L + nκ)κ), O(nκ2) and
O((L + nκ)κ) bits respectively. In the AICP, any party in P can play the role
of S, I and R. We use the following terms while using the AICP of [21].
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• “Pi gives ICSig(Pi → Pj ,S) to Pj” to mean that Pi acts as a signer S and
invokes an instance of the protocol Gen, where Pj plays the role of interme-
diary I.

• “Pj receives ICSig(Pi → Pj ,S) from Pi” to mean that Pj as an intermediary
I holds ICSig(Pi → Pj ,S) and has set VPi,Pj

to 1 during Ver, with Pi being
the signer S.

• “Pj reveals ICSig(Pi → Pj ,S) to Pk” to mean Pj as an intermediary I invokes
an instance of RevPriv, with Pi and Pk playing the role of S and R respectively.

• “Pk accepts ICSig(Pi → Pj ,S)” to mean that Pk as a receiver R outputs S,
during the instance of RevPriv, invoked by Pj as I, with Pi playing the role
of S.

We also use the asynchronous reliable broadcast protocol of Bracha [9], which
allows a designated sender S ∈ P to identically send a message m to all the par-
ties, even in the presence of Adv. If S is honest, then all honest parties eventually
terminate with output m. If S is corrupt but some honest party terminates with
an output m�, then eventually every other honest party terminates with output
m�. The protocol has communication complexity O(n2 · �) bits, if sender’s mes-
sage m consists of � bits. We use the term Pi broadcasts m to mean that Pi acts
as S and invokes an instance of Bracha’s protocol to broadcast m. Similarly, the
term Pj receives m from the broadcast of Pi means that Pj (as a receiver) com-
pletes the execution of Pi’s broadcast (namely the instance of broadcast protocol
where Pi is S), with m as output.

3 Verifiably Generating Two-Level t-sharing with IC
Signatures

We present a protocol Sh, which will be used as a sub-protocol in our ACSS
scheme. In the protocol, there exists a designated D ∈ P with a private input
S ∈ F

L and the goal is to verifiably generate a two-level t-sharing with IC
signatures of S. The verifiability allows the parties to publicly verify if D behaved
honestly, while preserving the privacy of S for an honest D. We first present the
protocol Sh assuming that D has a single value for sharing, that is L = 1. The
modifications needed to share L values are straight-forward.

To share s, D hides s in the constant term of a random degree-(t, t) bivariate
polynomial F (x, y). The goal is then to let D distribute the row and column
polynomials of F (x, y) to respective parties and then publicly verify if D has
distributed consistent row and column polynomials to sufficiently many parties,
which lie on a single degree-(t, t) bivariate polynomial, say F̄ (x, y), which is
considered as D’s committed bivariate polynomial (if D is honest then F̄ (x, y) =
F (x, y) holds). Once the existence of an F̄ (x, y) is confirmed, the next goal
is to let each Pj who holds its row polynomial F̄ (x, αj) lying on F̄ (x, y), get
signature on F̄ (αi, αj) values from at least n − t parties Pi. Finally, once n − t
parties Pj get their row polynomials signed, it implies the generation of two-level
t-sharing of s = F̄ (0, 0) with IC signatures. Namely, s will be t-shared through
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degree-t column polynomial F̄ (0, y). The set of signed row-polynomial holders
Pj will constitute the set C, where Pj holds the primary-share F̄ (0, αj), which
is the constant term of its row polynomial F̄ (x, αj). And the set of parties Pi

who signed the values F̄ (αi, αj) for Pj constitute the Cj set with Pi holding
the secondary-share F̄ (αi, αj), thus ensuring that the primary-share F̄ (0, αj) is
t-shared among Cj through degree-t row polynomial F̄ (x, αj). For a pictorial
depiction of how the values on D’s bivariate polynomial constitute the two-level
t-sharing of its constant term, see Fig. 1.

[s = F (0, 0)]Ct P1 . . . Pi . . . P2t+1

⇓ ⇓ ⇓ ⇓
P1 ⇒ F (0, α1) F (α1, α1) . . . F (αi, α1) . . . F (α2t+1, α1) ⇐ [F (0, α1)]C1

t

...
...

...
...

...
...

...
...

Pj ⇒ F (0, αj) F (α1, αj) . . . F (αi, αj) . . . F (α2t+1, αj) ⇐ [F (0, αj)]
Cj
t

...
...

...
...

...
...

...
...

P2t+1 ⇒ F (0, α2t+1) F (α1, α2t+1) . . . F (αi, α2t+1) . . . F (α2t+1, α2t+1) ⇐ [F (0, α2t+1)]
C2t+1
t

Fig. 1. Two-level t-sharing with IC signatures of s = F (0, 0). Here we assume that
C = {P1, . . . , P2t+1} and Cj = {P1, . . . , P2t+1} for each Pj ∈ C. Party Pj will possess
all the values along the jth row, which constitute the row polynomial fj(x) = F (x, αj).
Column-wise, Pi possesses the values in the column labelled with Pi, which lie on the
column polynomial gi(y) = F (αi, y). Party Pj will possess Pi’s information-checking
signature on the common value fj(αi) = F (αi, αj) = gi(αj) between Pj ’s row polyno-
mial and Pi’s column polynomial, denoted by blue color. (Color figure online)

The above stated goals are achieved in four stages, each of which is imple-
mented by executing the steps in one of the highlighted boxes in Fig. 2 (the
purpose of the steps in each box appears as a comment outside the box). To
begin with, D distributes the column polynomials to respective parties (the row
polynomials are currently retained) and tries to get all the row polynomials
signed by a common set M of n − t column holders, by asking each of them to
sign the common values between their column polynomials and row polynomials.
That is, each Pi is given its column polynomial gi(y) = F (αi, y) and is asked
to sign the values fji for j = 1, . . . , n, where fji = fj(αi) and fj(x) = F (x, αj)
is the jth row polynomial. Party Pi signs the values f1i, . . . , fni for D after ver-
ifying that all of them lie on its column polynomial gi(y) and then publicly
announces the issuance of signatures to D by broadcasting a MC message (stand-
ing for “matched column”). Once a set M of n−t parties broadcasts MC message,
it confirms that the row polynomials held by D and the column polynomials of
the parties in M together lie on a single degree-(t, t) bivariate polynomial (due
to the pair-wise consistency Lemma 1). This also confirms that D is committed
to a single (yet unknown) degree-(t, t) bivariate polynomial. The next stage is
to let D distribute the row polynomials of this committed bivariate polynomial
to individual parties.
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To prevent a potentially corrupt D from distributing arbitrary polynomials
to the parties as row polynomials, D actually sends the signed row polynomials
to the individual parties, where the values on the row polynomials are signed
by the parties in M. Namely, to distribute the row polynomial fj(x) to Pj , D
reveals the fj(αi) values to Pj , signed by the parties Pi ∈ M. The presence of
the signatures ensure that D reveals the correct fj(x) polynomial to Pj , as there
are at least t+1 honest parties in M, whose signed values uniquely define fj(x).
Upon the receipt of correctly signed row polynomial, Pj publicly announces it by
broadcasting a MR message (standing for “matched row”). The next stage is to
let such parties Pj obtain “fresh” signatures on n − t values of fj(x) by at least
n − t parties Cj . We stress that the signatures of the parties in M on the values
of fj(x), which are revealed by D cannot be “re-used” and hence M cannot be
considered as Cj , as IC-signatures are not “transferable” and those signatures
were issued to D and not to Pj . We also stress that the parties in M cannot be
now asked to re-issue fresh signatures on Pj ’s row polynomial, as corrupt parties
in M may now not participate honestly during this process. Hence, Pj has to
ask for the fresh signatures on fj(x) from every potential party.

The process of Pj getting fj(x) freshly signed can be viewed as Pj recom-
mitting its received row polynomial to a set of n− t column-polynomial holders.
However, extra care has to be taken to prevent a potentially corrupt Pj from
getting fresh signatures on arbitrary values, which do not lie in fj(x). This is
done as follows. Party Pi on receiving a “signature request” for fji from Pj signs
it, only if it lies on Pi’s column polynomial; that is fji = gi(αj) holds. Then after
receiving the signature from Pi, party Pj publicly announces the same. Now the
condition for including Pi to Cj is that apart from Pj , there should exist at least
2t other parties Pk who has broadcasted MR messages and who also got their
respective row polynomials signed by Pi. This ensures that there are total 2t+1
parties who broadcasted MR messages and whose row polynomials are signed by
Pi. Now among these 2t + 1 parties, at least t + 1 parties Pk are honest, whose
row polynomials fk(x) lie on D’s committed bivariate polynomial. Since these
t + 1 parties got signature on fk(αi) values from Pi, this further implies that
fk(αi) = gi(αk) holds for these t + 1 honest parties Pk, further implying that
Pi’s column polynomial gi(y) also lies on D’s committed bivariate polynomial.
Now since fji = gi(αj) holds for Pj as well, it implies that the value which Pj

got signed by Pi is gi(αj), which is the same as fj(αi). Finally, If D finds that
the set Cj has n − t parties, then it includes Pj in the C set, indicating that Pj

has recommitted the correct fj(x) polynomial.
The last stage of Sh is the announcement of the C set and its public ver-

ification. We stress that this stage of the protocol Sh will be triggered in our
ACSS scheme, where Sh will be used as a sub-protocol. Looking ahead, in our
ACSS protocol, D will invoke several instances of Sh and a potential C set is
built independently for each of these instances. Once all these individual C sets
achieve the cardinality of at least n − t and satisfy certain additional properties
in the ACSS protocol, D will broadcast these individual C sets and parties will
have to verify each C set individually. The verification of a publicly announced
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C set as part of an Sh instance is done by this last stage of the Sh protocol. To
verify the C set, the parties check if its cardinality is at least n− t, each party Pj

in C has broadcasted MR message and recommitted its row polynomial correctly
to the parties in Cj .

We stress that there is no termination condition in Sh. The protocol will
be used as a sub-protocol in our ACSS and terminating conditions of ACSS
will ensure that all underlying instances of Sh terminate, if ACSS terminates.
Protocol Sh is presented in Fig. 2.

Comparison with the AVSS Protocol of [21]. The sharing phase protocol
of the AVSS of [21] also uses a similar four-stage approach as ours. However,
the difference is in the first two stages. Namely, to ensure that D is committed
to a single bivariate polynomial, each row polynomial fj(x) is first shared by
D using an instance of asynchronous weak secret-sharing (AWSS) and once the
commitment is confirmed, each polynomial fj(x) is later reconstructed towards
the corresponding designated party Pj . There are n instances of AWSS involved,
where each such instance is further based on distributing shares lying on a degree-
(t, t) bivariate polynomial. Consequently, the resultant AVSS protocol becomes
involved. We do not involve any AWSS instances for confirming D’s commitment
to a single bivariate polynomial. Apart from giving us a saving of Θ(n) in com-
munication complexity, it also makes the protocol conceptually much simpler.

We next proceed to prove the properties of protocol Sh protocol. In the
proofs, we use the fact that the error probability of a single instance of AICP in
Sh is εAICP, where εAICP ≤ nκ

2κ−2 , which is obtained by substituting L = 1 in the
AICP of [21].

Lemma 2. In protocol Sh, if D is honest, then except with probability n2 · εAICP,
all honest parties are included in the C set. This further implies that D eventually
finds a valid C set.

Proof. Since D is honest, each honest Pi eventually receives the degree-t column
polynomial gi(y) from D. Moreover, Pi also receives the values fji from D for
signing, such that fji = gi(αj) holds. Furthermore, Pi eventually gives the sig-
natures on these values to D and broadcasts MCi. As there are at least 2t + 1
honest parties who broadcast MCi, it implies that D eventually finds a set M of
size 2t + 1 and broadcasts the same.

Next consider an arbitrary honest party Pj . Since D is honest, it follows that
corresponding to any Pi ∈ M, the signature ICSig(Pi → D, fji) revealed by D
to Pj will be accepted by Pj : while this is always true for an honest Pi (follows
the correctness property of AICP), for a corrupt Pi ∈ M it holds except with
probability εAICP (follows from the non-repudiation property of AICP). Moreover,
the revealed values {(αi, fji)}Pi∈M interpolate to a degree-t row polynomial. As
there can be at most t ≤ n corrupt parties Pi in M, it follows that except with
probability n·εAICP, the conditions for Pj to broadcast MRj are satisfied and hence
Pj eventually broadcasts MRj . As there are at most n honest parties, it follows
that except with probability n2 · εAICP, all honest parties eventually broadcast
MR.
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%Distribution of values and identification of signed column polynomials.

– Distribution of Column Polynomials and Common Values on Row Poly-
nomials by D: The following code is executed only by D.
• Select a random degree-(t, t) bivariate polynomial F (x, y) over F, such that

F (0, 0) = s.
• Send gj(y) = F (αj , y) to each Pj ∈ P. And send fj(αi) to each Pi ∈ P, where

fj(x) = F (x, αj).
– Signing Common Values on Row Polynomials for D: Each Pi ∈ P (including

D) executes the following code.
• Wait to receive a degree-t column polynomial gi(y) and for j = 1, . . . , n the

values fji from D.
• On receiving the values from D, give ICSig(Pi → D, fji) to D for j = 1, . . . , n

and broadcast the message MCi, provided fji = gi(αj) holds for each j =
1, . . . , n.

– Identifying Signed Column Polynomials: The following code is executed only
by D:
• Include Pi to an accumulative set M (initialized to ∅), if MCi is received from

the broadcast of Pi and D received ICSig(Pi → D, fji) from Pi, for each
j = 1, . . . , n.

• Wait till |M| = 2t + 1. Once |M| = 2t + 1, then broadcast M.

Protocol Sh(D, s)

% Distribution of signed row polynomials by D and verification by the parties.

– Revealing Row Polynomials to Respective Parties: for j = 1, . . . , n, D
reveals ICSig(Pi → D, fji) to Pj , for each Pi ∈ M.

– Verifying the Consistency of Row Polynomials Received from D: Each
Pj ∈ P (including D) broadcasts MRj , if the following holds.
• Pj received an M with |M| = 2t + 1 from D and MCi from each Pi ∈ M.
• Pj accepted {ICSig(Pi → D, fji)}Pi∈M and {(αi, fji)}Pi∈M lie on a degree-t

polynomial fj(x).

%Recommitment of row polynomials.

– Getting Signatures on Row Polynomial: Each Pj ∈ P (including D) executes
the following.
• If Pj has broadcast MRj , then for i = 1, . . . , n, send fj(αi) to Pi for getting Pi’s

signature. Upon receiving ICSig(Pi → Pj , fji) from Pi, broadcast (SRj , Pi),
if fji = fj(αi) holds.

• If Pi sent fij and has broadcast MRi, give ICSig(Pj → Pi, fij) to Pi, provided
fij = gj(αi) holds.

– Preparing the Cj Sets and C Set: the following code is executed only by D.
• Include Pi in Cj (initialized to ∅), if (SRk, Pi) is received from the broadcast of

at least 2t + 1 parties Pk (including Pj) who have broadcasted the message

Fig. 2. Two-level secret-sharing with IC signatures of a single secret.
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MRk.
• Include Pj ∈ C (initialized to ∅), if |Cj | ≥ n− t. Keep on including new parties

Pi in Cj even after including Pj to C, if the above conditions for Pi’s inclusion
to Cj are satisfied.

%Public announcement of C and verification. This code will be triggered by our
ACSS protocol..

– Publicly Announcing the C Set: D broadcasts C and Cj for each Pj ∈ C.
– Verification of the C Set by the Parties: Upon receiving C and Cj sets from

the broadcast of D, each party Pm ∈ P checks if C is valid by checking if all the
following conditions hold for C.
• |C| ≥ n − t and each party Pj ∈ C has broadcast MRj .
• For each Pj ∈ C, |Cj | ≥ n−t. Moreover, for each Pi ∈ Cj , the message (SRk, Pi)

is received from the broadcast of at least 2t + 1 parties Pk (including Pj)
who broadcasted MRk.

Fig. 2. (continued)

Finally, consider an arbitrary pair of honest parties Pi, Pj . Since D is honest,
the condition fj(αi) = gi(αj) holds. Now Pi eventually receives fji = fj(αi) from
Pj for signing and finds that fji = gi(αj) holds and hence gives the signature
ICSig(Pi → Pj , fji) to Pj . Consequently, Pj eventually broadcasts (SRj , Pi). As
there are at least 2t + 1 honest parties Pk, who eventually broadcast (SRk, Pi),
it follows that Pi is eventually included in the set Cj . As there are at least 2t+1
honest parties, the set Cj eventually becomes of size 2t + 1 and hence Pj is
eventually included in C.

Lemma 3. In protocol Sh, if some honest party receives a valid C set from D,
then every other honest party eventually receives the same valid C set from D.

Proof. Since the C set is broadcasted, it follows from the properties of broadcast
that all honest parties will receive the same C set, if at all D broadcasts any C
set. Now it is easy to see that if a broadcasted C set is found to be valid by
some honest party Pm, then it will be considered as valid by every other honest
party. This is because in Sh the validity conditions for C which hold for Pm will
eventually hold for every other honest party.

Lemma 4. Let R be the set of parties Pj, who broadcast MRj messages during
Sh. If |R| ≥ 2t + 1, then except with probability n2 · εAICP, there exists a degree-
(t, t) bivariate polynomial, say F (x, y), where F (x, y) = F (x, y) for an honest
D, such that the row polynomial fj(x) held by each honest Pj ∈ R satisfies
fj(x) = F (x, αj) and the column polynomial gi(y) held by each honest Pi ∈ M
satisfies gi(y) = F (αi, y).
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Proof. Let l and m be the number of honest parties in the set R and M respec-
tively. Since |R| ≥ 2t + 1 and |M| = 2t + 1, it follows that l,m ≥ t + 1. For
simplicity and without loss of generality, let {P1, . . . , Pl} and {P1, . . . , Pm} be
the honest parties in R and M respectively. We claim that except with prob-
ability εAICP, the condition fj(αi) = gi(αj) holds for each j ∈ [l] and i ∈ [m],
where fj(x) and gi(y) are the degree-t row and column polynomials held by Pj

and Pi respectively. The lemma then follows from the properties of degree-(t, t)
bivariate polynomials (Lemma 1) and the fact that there can be at most n2 pairs
of honest parties (Pi, Pj). We next proceed to prove our claim.

The claim is trivially true with probability 1, if D is honest, as in this case, the
row and column polynomials of each pair of honest parties Pi, Pj will be pair-wise
consistent. So we consider the case when D is corrupt. Let Pj and Pi be arbitrary
parties in the set {P1, . . . , Pl} and {P1, . . . , Pm} respectively. Since Pj broadcasts
MRj , it implies that Pj accepted the signature ICSig(Pi → D, fji), revealed by
D to Pj . Moreover, the values (α1, fj1), . . . , (αm, fjm) interpolated to a degree-t
polynomial fj(x). Furthermore, Pj also receives MCi from the broadcast of Pi.
From the unforgeability property of AICP, it follows that except with probability
εAICP, the signature ICSig(Pi → D, fji) is indeed given by Pi to D. Now Pi gives
the signature on fji to D, only after verifying that the condition fji = gi(αj)
holds, which further implies that fj(αi) = gi(αj) holds, thus proving our claim.

Finally, it is easy to see that F (x, y) = F (x, y) for an honest D, as in this
case, the row and column polynomials of each honest party lie on F (x, y).

Lemma 5. In the protocol Sh, if D broadcasts a valid C, then except with prob-
ability n2 · εAICP, there exists some s ∈ F, where s = s for an honest D, such that
s is eventually two-level t-shared with IC signature.

Proof. Since the C set is valid, it implies that the honest parties receive C and
Cj for each Pj ∈ C from the broadcast of D, where |C| ≥ n − t = 2t + 1 and
|Cj | ≥ n−t = 2t+1. Moreover, the parties receive MRj from the broadcast of each
Pj ∈ C. Since |C| ≥ 2t+1, it follows from Lemma 4, that except with probability
n2 · εAICP, there exists a degree-(t, t) bivariate polynomial, say F (x, y), where
F (x, y) = F (x, y) for an honest D, such that the row polynomial fj(x) held by
each honest Pj ∈ C satisfies fj(x) = F (x, αj) and the column polynomial gi(y)
held by each honest Pi ∈ M satisfies gi(y) = F (αi, y). We define s = F (0, 0)
and show that s is two-level t-shared with IC signatures.

We first show the primary and secondary-shares corresponding to s. Consider

the degree-t polynomial g0(y) def= F (0, y). Since s = g0(0), the value s is t-
shared among C through g0(y), with each Pj ∈ C holding its primary-share

sj
def= g0(αj) = fj(0). Moreover, each primary-share sj is further t-shared among

Cj through the degree-t row polynomial fj(x), with each Pi ∈ Cj holding its
secondary-share fj(αi) in the form of gi(αj). If D is honest, then s = s as
F (x, y) = F (x, y) for an honest D. We next show that each Pj ∈ C holds the
IC-signatures of the honest parties from the Cj set on the secondary-shares.

Consider an arbitrary Pj ∈ C. We claim that corresponding to each honest
Pi ∈ Cj , party Pj holds the signature ICSig(Pi → Pj , fji), where fji = F (αi, αj).
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The claim is trivially true for an honest Pj . This is because fj(αi) = F (αi, αj)
and Pj includes Pi in the set Cj only after receiving the signature ICSig(Pi →
Pj , fji) from Pi, such that the condition fji = fj(αi) holds. We next show that
the claim is true, even for a corrupt Pj ∈ C. For this, we show that for each honest
Pi ∈ Cj , the column polynomial gi(y) held by Pi satisfies the condition that
gi(y) = F (αi, y). The claim then follows from the fact that Pi gives the signature
ICSig(Pi → Pj , fji) to Pj , only after verifying that the condition fji = gi(αj)
holds.

So consider a corrupt Pj ∈ C and an honest Pi ∈ Cj . We note that Pj is allowed
to include Pi to Cj , only if at least 2t + 1 parties Pk (including Pj) who have
broadcasted MRk, has broadcast (SRk, Pi). Let H be the set of such honest parties
Pk. For each Pk ∈ H, the row polynomial fk(x) held by Pk satisfies the condition
fk(x) = F (x, αk) (follows from the proof of Lemma 4). Furthermore, for each
Pk ∈ H, the condition fk(αi) = gi(αk) holds, where gi(y) is the degree-t column
polynomial held by the honest Pi. This is because Pk broadcasts (SRk, Pi), only
after receiving the signature ICSig(Pi → Pk, fki) from Pi, such that fki = fk(αi)
holds for Pk and Pi gives the signature to Pk only after verifying that fki = gi(αk)
holds for Pi. Now since |H| ≥ t + 1 and gi(αk) = fk(αi) = F (αi, αk) holds for
each Pk ∈ H, it follows that the column polynomial gi(y) held by Pi satisfies the
condition gi(y) = F (αi, y). This is because both gi(y) and F (αi, y) are degree-t
polynomials and two different degree-t polynomials can have at most t common
values.

Lemma 6. If D is honest then in protocol Sh, the view of Adv is independent
of s.

Proof. Without loss of generality, let P1, . . . , Pt be under the control of Adv. We
claim that throughout the protocol Sh, the adversary learns only t row poly-
nomials f1(x), . . . , ft(x) and t column polynomials g1(y), . . . , gt(y). The lemma
then follows from the standard property of degree-(t, t) bivariate polynomials
[1,3,15,21]. We next proceed to prove the claim.

During the protocol Sh, the adversary gets f1(x), . . . , ft(x) and
g1(y), . . . , gt(y) from D. Consider an arbitrary party Pi ∈ {P1, . . . , Pt}. Now cor-
responding to each honest party Pj , party Pi receives fji = fj(αi) for signature,
both from D, as well as from Pj . However the value fji is already known to Pi,
since fji = gi(αj) holds. Next consider an arbitrary pair of honest parties Pi, Pj .
These parties exchange fji and fij with each other over the pair-wise secure
channel and hence nothing about these values are learnt by the adversary. Party
Pi gives the signature ICSig(Pi → D, fji) to D and ICSig(Pi → Pj , fji) to Pj and
from the privacy property of AICP, the view of the adversary remains indepen-
dent of the signed values. Moreover, even after D reveals ICSig(Pi → D, fji) to
Pj , the view of the adversary remains independent of fji, which again follows
from the privacy property of AICP.

Lemma 7. The communication complexity of Sh is O(n3κ2) + BC(n2) bits.
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Proof. In the protocol D distributes n row and column polynomials. There are
Θ(n2) instances of AICP, each dealing with L = 1 value. In addition, D broad-
casts a C set and Cj sets, each of which can be represented by a n-bit vector.

We finally observe that D’s computation in the protocol Sh can be recast as if D
wants to share the degree-t polynomial F̄ (0, y) among a set of parties C of size at
least n − t by giving each Pj ∈ C the share F̄ (0, αj). Here F̄ (x, y) is the degree-
(t, t) bivariate polynomial committed by D, which is the same as F (x, y) for an
honest D (see the pictorial representation in Fig. 1 and the proof of Lemma 5).
If D is honest, then adversary learns at most t shares of the polynomial F (0, y),
corresponding to the corrupt parties in C (see the proof of Lemma 6). In the
protocol, apart from Pj ∈ C, every other party Pj who broadcasts the message
MRj also receives its share F̄ (0, αj), lying on F̄ (0, y), as the row polynomial
received by every such Pj also lies on F̄ (x, y). Based on these observations, we
propose the following alternate notation for invoking the protocol Sh, where the
input for D is a degree-t polynomial, instead of a value. This notation will later
simplify the presentation of our ACSS protocol.

Notation 1 (Sharing Polynomial Using Protocol Sh). We use the nota-
tion Sh(D, r(·)), where r(·) is some degree-t polynomial possessed by D, to denote
that D invokes the protocol Sh by picking a degree-(t, t) bivariate polynomial
F (x, y), which is otherwise a random polynomial, except that F (0, y) = r(·). If
D broadcasts a valid C, then it implies that there exists some degree-t polyno-
mial, say r̄(·), where r̄(·) = r(·) for an honest D, such that each Pj ∈ C holds a
primary-share r̄(αj). We also say that Pj (who need not be a member of C set)
receives a share rj during Sh(D, r(·)) from D to denote that Pj receives a degree-t
signed row polynomial from D with rj as its constant term and has broadcast MRj

message.

3.1 Designated Reconstruction of Two-Level t-shared Values

Let s be a value which has been two-level t-shared with IC signatures by protocol
Sh, with parties knowing a valid C set and respective Cj sets for each Pj ∈ C.
Then protocol RecPriv (see Fig. 3) allows the reconstruction of s by a designated
party R. Protocol RecPriv will be used as a sub-protocol in our ACSS protocol. In
the protocol, each party Pj ∈ C reveals its primary-share to R. Once R receives
t + 1 “valid” primary-shares, it uses them to reconstruct s. For the validation of
primary-shares, each party Pj actually reveals the secondary-shares, signed by
the parties in Cj . The presence of at least t + 1 honest parties in Cj ensures that
a potentially corrupt Pj fails to reveal incorrect primary-share.

The properties of RecPriv are stated in Lemma 8, which simply follows from
its informal discussion and formal steps and the fact that there are Θ(n2)
instances of RevPriv, each dealing with L = 1 value.

Lemma 8. Let s be two-level t-shared with IC-signatures. Then in protocol
RecPriv, the following hold for every possible Adv, where εAICP ≤ nκ

2κ−2 .
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– Revealing the signed secondary-shares: Each Pj ∈ C executes the following
code.
• Corresponding to each Pi ∈ Cj , reveal ICSig(Pi → Pj , fji) to R.

– Verifying the signatures and reconstruction: The following code is executed
only by R.

Protocol RecPriv(D, s,R)

• Include party Pj ∈ C to a set K (initialized to ∅), if all the following holds:
• R accepted ICSig(Pi → Pj , fji), corresponding to each Pi ∈ Cj .
• The values {(αi, fji)}Pi∈Cj lie on a degree-t polynomial, say fj(x).

• Wait till |K| = t+1. Then interpolate a degree-t polynomial, say g0(y), using
the values {αj , fj(0)}Pj∈K. Output s and terminate, where s = g0(0).

Fig. 3. Reconstruction of a two-level t-shared value by a designated party.

• Termination: An honest R terminates, except with probability n2 · εAICP.
• Correctness: Except with probability n2 · εAICP, an honest R outputs s.
• Communication Complexity: The communication complexity is O(n3κ2)

bits.

The computations done by the parties in RecPriv can be recast as if parties
enable a designated R to reconstruct a degree-t polynomial r(·), which has been
shared by D by executing an instance Sh(D, r(·)) of Sh (see Notation 1). This is
because in RecPriv, party R recovers the entire column polynomial g0(y), which
is the same as F (0, y). And as discussed in Notation 1, to share r(·), the dealer D
executes Sh by setting F (0, y) to r(·). Based on this discussion, we propose the
following alternate notation for reconstructing a shared polynomial by R using
RecPriv, which will later simplify the presentation of our ACSS protocol.

Notation 2 (Reconstructing a Shared Polynomial Using RecPriv). Let
r(·) be a degree-t polynomial which has been shared by D by executing an instance
Sh(D, r(·)) of Sh. Then RecPriv(D, r(·),R) denotes that the parties execute the
steps of the protocol RecPriv to enable R reconstruct r(0), which implicitly allows
R to reconstruct the entire polynomial r(·).

3.2 Protocols Sh and RecPriv for L Polynomials

To share L number of degree-t polynomials r(1)(·), . . . , r(L)(·), D can execute L
independent instances of Sh (as per Notation 1). This will cost a communication
of O(L · n3κ2) + BC(L · n2) bits. Instead, by making slight modifications, we
achieve a communication complexity of O(L · n2κ + n3κ2) + BC(n2) bits. In the
modified protocol, each Pi while issuing signatures to any party, issues a single
signature on all the required values, on the behalf of all the L instances. For
instance, as part of recommitment of row polynomials, party Pj will have L row
polynomials (one from each Sh instance) and there will be L common values on
these polynomials between Pi and Pj , so Pi needs to sign L values for Pj . Party Pi



Improving the Efficiency of Optimally-Resilient Statistically-Secure AMPC 827

issues signature on the common values on all these L polynomials simultaneously
and for this only one instance of AICP is executed, instead of L instances. Thus
all instances of AICP now deal with L values and the error probability of single
such instance will be εAICP where εAICP ≤ nκ

2κ−(L+1) . To make the broadcast
complexity independent of L, each Pj broadcasts a single MRj , MCj and (SRj , Pi)
message, if the conditions for broadcasting these messages are satisfied with
respect to each Sh instance. Finally, each Pj recommits all its L row polynomials
to a common set Cj and similarly D constructs a single C set with respect to
each value in S. We call the resultant protocol as MSh(D, (r(1)(·), . . . , r(L)(·))).

To enable R reconstruct the polynomials r(1)(·), . . . , r(L)(·) shared using MSh,
the parties execute RecPriv L times. But each instance of signature revelation
now deals with L values. The communication complexity will be O(L·n2κ+n3κ2)
bits.

4 Asynchronous Complete Secret Sharing

We now design our ACSS protocol CSh by using protocols Sh and RecPriv as sub-
protocols, following the blueprint of [21]. We first explain the protocol assuming
D has a single secret for sharing. The modifications for sharing L values are
straight forward.

To share a value s ∈ F, D hides s in the constant term of a random degree-(t, t)
bivariate polynomial F (x, y) where s = F (0, 0) and distributes the column poly-
nomial gi(y) = F (αi, y) to every Pi. D also invokes n instances of our protocol Sh,
where the jth instance Shj is used to share the row polynomial fj(x) = F (x, αj)
(this is where we use our interpretation of sharing degree-t univariate polynomial
using Sh as discussed in Notation 1). Party Pi upon receiving a share fji from
D during the instance Shj checks if it lies on its column polynomial (that is if
fji = gi(αj) holds) and if this holds for all the n instances of Sh, Pi broadcasts
a MC message. This indicates that all the row polynomials of D are pair-wise
consistent with the column polynomial gi(y). The goal is then to let D publicly
identify a set of 2t + 1 parties, say W, such that W constitutes a common C
set in all the n Sh instances and such that each party in W has broadcast MC
message. If D is honest, then such a common W set is eventually obtained, as
there are at least 2t + 1 honest parties, who constitute a potential common W
set. This is because if D keeps on running the Sh instances, then eventually every
honest party is included in the C sets of individual Sh instances. The idea here
is that if such a common W is obtained, then it guarantees that the row poly-
nomials held by D are pair-wise consistent with the column polynomials of the
parties in W, implying that the row polynomials of D lie on a single degree-(t, t)
bivariate polynomial. Moreover, each of these row polynomials is shared among
the common set of parties W. The next goal is then to let each party Pj obtain
the jth row polynomial held by D, for which the parties execute an instance of
the protocol RecPriv (here we use our interpretation of using RecPriv to enable
designated reconstruction of a shared degree-t polynomial). We stress that once
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the common set W is publicly identified, each Pj obtains the desired row poly-
nomial, even if D is corrupt, as the corresponding RecPriv instance terminates
for Pj even for a corrupt D. Once the parties obtain their respective row poly-
nomials, the constant term of these polynomials constitute a complete t-sharing
of D’s value. For the formal details of CSh, see Fig. 4.

– Distribution of Column Polynomials and Sharing of Row Polynomials
by D:
• D selects a random degree-(t, t) bivariate polynomial F (x, y) over F, such that

F (0, 0) = s.
• For i = 1, . . . , n, D sends the column polynomial gi(y) = F (αi, y) to Pi.
• For j = 1, . . . , n, D executes an instance Shj = Sh(D, fj(x)), where fj(x) =

F (x, αj).
– Pair-wise Consistency Check: Each Pi ∈ P (including D) executes the following

code.
• Wait to receive a degree-t column polynomial gi(y) from D.
• Participate in the instances Sh1, . . . , Shn.
• If a share fji is received from D during the instance Shj , then broadcast the

message MCj , if the condition fji = gi(αj) holds for each j = 1, . . . , n.
– Construction of W and Announcement: The following code is executed only

by D.
• Let C(j) denote the instance of C set constructed during the instance Shj .

Keep updating the C(j) sets till a set W = C(1) ∩ . . .∩C(n) is obtained, where
|W| = n − t and MCi message is received from the broadcast of each party
Pi ∈ W.

• Once a set W satisfying the above conditions are obtained, broadcast W.
– Verification of W: Each party Pj ∈ P (including D) executes the following code.

• Upon receiving W from the broadcast of D, check if W is a valid C set for
each of the instances Sh1, . . . , Shn and if MCi message is received from the
broadcast of each Pi ∈ W.

• If the set W satisfies the above conditions, then invoke an instance RecPrivj =
RecPriv(D, fj(x)) to reconstruct the polynomial fj(x). Participate in the
instances RecPrivk, for k = 1, . . . , n.

– Share Computation and Termination: Each party Pj ∈ P (including D) does
the following.
• Wait to terminate the instance RecPrivj and obtain the row polynomial fj(x).
• Upon terminating RecPrivj , output the share sj = fj(0) and terminate the

protocol CSh.

Protocol CSh(D, s)

Fig. 4. Complete sharing of a single secret.

To generate a complete t-sharing of S = (s(1), . . . , s(L)), the parties execute
the steps of the protocol CSh independently L times with the following modifi-
cations: corresponding to each party Pj , D will now have L number of degree-t
row polynomials to share. Instead of executing L instances of Sh to share them,
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D shares all of them simultaneoulsy by executing an instance MShj of MSh.
Similarly, each party Pi broadcasts a single MCi message, if the conditions for
broadcasting the MCi message is satisfied for Pi in all the L instances. The proof
of the following theorem follows from [21] and the fact that there are n instances
of MSh and RecPriv, each dealing with L polynomials.

Theorem 3. Let εAICP ≤ nκ
2κ−(L+1) . Then CSh constitutes a (1 − εACSS) ACSS

protocol, with communication complexity O(L · n3κ + n4κ2) + BC(n3) bits where
εACSS ≤ n3 · εAICP.

5 The AMPC Protocol

Our AMPC protocol is obtained by directly plugging in our protocol CSh in the
generic framework of [12]. The protocol has a circuit-independent pre-processing
phase and a circuit-dependent computation phase. During the pre-processing
phase, the parties generate cM number of completely t-shared, random and pri-
vate multiplication triples (a, b, c), where c = a · b. For this, each party first
verifiably shares cM number of random multiplication triples by executing CSh
with L = 3cM . As the triples shared by corrupt parties may not be random, the
parties next apply a “secure triple-extraction” procedure to output cM number
of completely t-shared multiplication triples, which are truly random and pri-
vate. The error probability εAMPC of the pre-processing phase will be n5κ

2κ−(3cM+1)

and its communication complexity will be O(cMn4κ + n4κ2) + BC(n4) bits (as
there are n instances of CSh).

During the computation phase, each party Pi generates a complete t-sharing
of its input x(i) by executing an instance of CSh. As the corrupt parties may
not invoke their instances of CSh, to avoid endless wait, the parties agree on a
common subset of n− t CSh instances which eventually terminate for every one.
For this, the parties execute an instance of agreement on common-subset (ACS)
primitive [8,10]. The parties then securely evaluate each gate in cir, as discussed
in Sect. 1. As the AMPC protocol is standard and obtained using the framework
of [12], we refer to [12] for the proof of the following theorem.

Theorem 4. Let F = GF(2κ) and f : Fn → F be a function, expressed as a cir-
cuit over F consisting of cM multiplication gates. Then there exists a statistically-
secure AMPC protocol, tolerating Adv, where all the properties are satisfied
except with probability εAMPC ≤ n5κ

2κ−(3cM+1) . The communication complexity for
evaluating the multiplication gates is O(cMn4κ + n4κ2) + BC(n4) bits.
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