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Abstract In recent years, it has been found that lowering the dimensionality
of halide perovskites leads to enhanced photoluminescence and stability than
their three-dimensional counterparts. Further, the change in the dimensionality of
an inorganic halide perovskite can evoke surprising ramifications to its intrinsic
behavior. The dimensionality in perovskites is governed by its octahedral cages.
In zero-dimensional perovskites, the octahedral cages are discrete, whereas in two-
dimensional perovskites, they are connected with one another resulting in the forma-
tion of a layer. Likewise, in three-dimensional perovskites, the octahedral cages share
the corner atoms with each other. This study describes the two-dimensional coun-
terpart of cesium lead bromide perovskites. The structural, electronic and optical
properties, in conjunction with their three-dimensional structure, are presented. The
emergence of new physical phenomenawith respect to the decreasing dimensionality
of cesium lead bromide perovskites is analyzed.

Keywords CsPbBr3, CsPbBr4, CsPb2Br5 · Structural properties · Electronic
properties · Optical properties

Introduction

Perovskite solar cells have gained notoriety in the last few years as their light-
harvesting capacity has been augmented from 3.8% in 2009 to over 24.2% in 2019
[1]. Despite the demonstration of increasing efficiency of perovskite solar cells in a
short time, there are several issues such as fabrication processes, stability, degrada-
tion, predictability in behavior, durability, toxicity that have hindered their use in the
commercial realm [2–4]. Methylammonium lead halide has been extensively studied
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from the very beginning due to its potential as a perovskite solar cell material [5,
6]. However, this material deteriorates rapidly when exposed to light, heat, air or
moisture [7, 8]. As an alternative to methylammonium lead halide, it has been found
that lead-based and tin-based inorganic halide perovskites show better stability under
external conditions and qualify as suitable materials for solar cells and other opto-
electronic devices [9–12]. From the environmental perspective, tin-based perovskites
are considered as a better choice than lead-based perovskites [13]. Nevertheless, the
efficiency and stability of tin-based perovskites are inferior. Furthermore, it has been
found that lead-based perovskite solar cells pose a minor environmental hazard [14–
17]. Among several inorganic halide perovskites, cesium lead bromide, CsPbBr3,
shows promise as a candidate for the fabrication of solar cells and optoelectronic
devices due to its stability, inherent direct band gap, broad absorption spectrum and
good transport properties [18–20].

In recent years, it has been found that lowering the dimensionality of halide
perovskites leads to enhanced photoluminescence and stability than their three-
dimensional counterparts [21–24]. Further, the change in the dimensionality of
an inorganic halide perovskite can evoke surprising ramifications to its intrinsic
behavior. The dimensionality in perovskites is governed by their octahedral cages.
In zero-dimensional perovskites, the octahedral cages are discrete, whereas they are
connected with one another forming a layer in two-dimensional perovskites. Like-
wise, in three-dimensional perovskites, the octahedral cages share the corner atoms
with each other. Generally, 2D perovskites are synthesized by inserting some suitable
chemical that sits in the intercalated region and acts as a spacer between the layered
structures. This technique is profound in 2D organic–inorganic hybrid perovskites.
Moreover, the variation of such a spacer not only produces the desired stability to the
structure but also yields different functionalities of significant interest to the required
2D system. This is illustrated in Fig. 1.

Fig. 1 Illustration showing the role of intercalated atoms as a spacer between the layer of octahedral
cages in 2D (left) perovskites whereas the corner atoms link octahedral cages in all directions in
3D (right) perovskites. (Color figure online)
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This paper describes the two-dimensional (2D) counterpart of CsPbBr3. One
plausible model for 2D-CsPbBr3 would be Ruddlesden–Popper (RP) phase [25]—
Cs2PbBr4. Unfortunately, the RP phase is not so frequent in halide perovskites in
contrast to oxide perovskites [26]. Nevertheless, it is of interest to proceed with
the theoretical study of RP phase of CsPbBr3. On the other hand, the most likely
second model for 2D counterpart of CsPbBr3 would be ternary halogen-plumbate
CsPb2Br5. In contrast to Cs2PbBr4, CsPb2Br5 can be synthesized at room temper-
ature, different from CsPbBr3 which requires a higher temperature. The first report
on the synthesis of CsPb2Br5 was probably mentioned by Yu et al. [27] describing
its efficient photoluminescence in the visible region (512 nm) with a quantum yield
of 87%. In the paper of Sun et al. [28], the authors have reported that CsPb2Br5
results as a byproduct during the synthesis of CsPbBr3, yielding higher photolumi-
nescence by transitioning to CsPb2Br5. However, the work of Jiang et al. [29] has
some contradiction by reporting CsPb2Br5 as an indirect band gap material with
inactive photoluminescence. Further, Zhang et al. [30], in their paper, have clarified
from the luminescence mechanism that CsPb2Br5 exhibits a band edge emission in
the ultraviolet region and photoluminscence is associated with CsPbBr3 byproduct
in CsPb2Br5.

The need for a theoretical study of Cs-Pb-Br variants is significant due to the
complexity in the synthesis and characterization of these materials. The aim of this
paper is to study the structural, electronic and optical properties of 3D-CsPbBr3
in conjunction with its 2D counterparts both RP phase Cs2PbBr4 and CsPb2Br5,
utilizing the framework of density functional theory (DFT). The emergence of new
physical phenomena with respect to the decreasing dimensionality of CsPbBr3 is
analyzed. It is anticipated that thisworkwill be beneficial in the design and fabrication
of solar cells and other potential optoelectronic devices.

Computational Details

This work utilizes first principles calculations based on DFT in which projector
augmented wave (PAW) method was implemented using the Vienna Ab initio Simu-
lationPackage (VASP) [31, 32].All the calculationswere performedwithin the gener-
alized gradient approximation (GGA) using Perdew, Burke and Ernzerhof (PBE) as
exchange-correlation functional [33, 34]. The plane wave basis functions with large
cut off energy—400 eV (greater than 1.3 times the maximum cut off energy) were
used in all the three variants of Cs-Pb-Br along with a sufficiently large Monkhorst
K-mesh for Brillouin zone integration. The lattice optimizations were performed
with total energy convergence criteria of 10−6 eV and final force acting on each atom
smaller than 0.02 eV/Å. The resultant optimized structures, along with the lattice
parameters, are summarized in Table 1. For post processing, simulation tools such
as Vesta [35], Vaspkit [36], Phonopy [37] and Sumo [38] are used in this study.
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Table 1 Calculated structure of unit cell geometry with lattice parameters (a, b, c) along with their
corresponding literature values in Angstrom

Material Crystal system Space group Unit cell dimensions Others work
Experimental
(Theoretical)

CsPbBr3 Orthorhombic Pnma (62) a = 8.34, b = 8.40
c = 11.97

a = 8.21, b =
8.25
c = 11.76 [39]

Cs2PbBr4 Tetragonal I4/mmm (139) a = b = 5.97
c = 18.33

(a = b = 5.95 c
= 18.19) [40]

CsPb2Br5 Tetragonal I4/mcm (140) a = b = 8.61
c = 15.47

a = b = 8.49
c = 15.19 [41]

Results and Discussion

Structure and Stability

The computed structure of CsPbBr3 crystallizes in the orthogonal space group of
Pnma (62) and its 2D counterpart Cs2PbBr4 and CsPb2Br5 in the tetragonal space
group of I4/mmm (139) and I4/mcm (140), respectively. Their structures are shown
in Fig. 2.

CsPbBr3 has interconnected or corner-sharing octahedron cage [BX6]-1 and Cs+1

residing at the center formed by eight such octahedral cages, whereas they are disjoint
in Cs2PbBr4. Similarly, the structure of CsPb2Br5 reveals that Cs+ resides in the
intercalated region of [Pb2Br5]− layers. Further, the stability of these molecules can
be verified by calculating their cohesive energy. The cohesive energy per atom (ΔEc)
for any molecule, say AaBbXx, is quantified through the relation,

Fig. 2 Structure of 3D and 2D variants of Cs-Pb-Br. (Color figure online)
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Fig. 3 Phonon dispersion diagram-a CsPbBr3, b Cs2PbBr4 and c CsPb2Br5 under harmonic
approximation. (Color figure online)

�Ec(AaBbXx ) = aE(A) + bE(B) + xE(X) − E(AaBbXx )

a + b + x
(1)

where E(i), i = A, B, X is the energy of an isolated atom i and E(AaBbXx) repre-
sents the total energy of AaBbXx. The calculated values of cohesive energy per atom
in eV for CsPbBr3, Cs2PbBr4 and CsPb2Br5 are 2.89, 2.87 and 2.88, respectively.
Therefore, it appears easy to dissociate Cs2PbBr4 among the three compounds of
Cs-Pb-Br. Moreover, the orthorhombic phase is possibly the ground-state structures
of CsPbBr3, and tetragonal phases of their 2D counterparts are unstable at 0 K
temperature. This can be seen by the presence of soft modes in their phonon disper-
sion diagram, as illustrated in Fig. 3. It has been reported that the stability can be
affected by temperature as well as with the number of layers, in the case of 2D [42,
43]. Henceforth, one has enough room to suspect that these tetragonal structures
might be stable at room temperature or higher, unless they have low phase transition
temperature.

Electronic Properties

For simulating their electronic properties, we have computed the band structures, the
total density of states (DOS) and partial density of states (PDOS); these are shown in
Figs. 4(i) and (ii). One can notice that exceptCsPb2Br5, the other variants showdirect
band gap. Due to heavy atom Pb, the spin-orbit coupling (SOC) is included in all our
calculations. In all three variants of Cs-Pb-Br, there is no significant change in the
topography of the valence band with the inclusion of SOC. However, to demonstrate
the conduction band degeneracy or split due to SOC, an illustration has been shown
for CsPb2Br5. The calculated values of the band gap with SOC and without SOC,
along with their literature values, are shown in Table 2.

It is well known that DFT calculations, using standard functional, severely under-
estimate the band gap, and due to the intrinsic error cancellation between SOC and
neglect of quasi-particle corrections, the band gap computed without SOC has higher
proximity to the correct value. Further, the orbital contribution of the valence band
maximum (VBM) and the conduction band minimum (CBM) can be analyzed from
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Fig. 4 (i). Top—Calculated band structure diagrams with SOC-a CsPbBr3, b Cs2PbBr4. c and
d represent CsPb2Br5 with SOC and WSOC (without SOC), respectively. (ii). Bottom—Their
corresponding DOS and PDOS are shown. (Color figure online)

Table 2 Calculated values of band gap (Eg) with SOC and WSOC along with their corresponding
literature values in electron volts

Material Eg
SOC; WSOC

Experimental; Theoretical

CsPbBr3 0.95; 2.0 2.25 [44]; 2.16 [45]

Cs2PbBr4 0.98; 2.26 −; 2.29 [46]

CsPb2Br5 2.55; 3.04 3.87 [47]; 3.08 [45]

their DOS and PDOS. In all three variants, the VBM is dominated by Br p state and
the CBM mainly constitute Pb p state. It is interesting to note that Cs has no direct
contribution to the band edge state.

The absorption of photons in halide pervoskite solar cells leads to the generation of
electrons and holes. These charge carriers are coupled with each other via Coulomb
interaction to form quasiparticles in the form of excitons. The effective mass (m*) is
estimated by the parabolic fitting of energy (E) with momentum (k),

m∗ = h2
[
∂2E

∂k2

]−1

(2)
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and the exciton binding energy (Eb) is calculated by utilizing the Wannier exciton
model [48],

Eb = 2μe4

(h8πε(∞))2
(3)

where μ and è are the reduced effective mass and Planck constant, respectively, e
is the electronic charge and ε (∞) is the permittivity at high wavelength limit (low
frequency—static). In the case ofCsPbBr3, the computed values ofm*

e andm
*
h, under

the effect of SOC, are 0.157me and 0.124me, respectively, and Eb is 51.72meV. The
literature values of m*

e /m
*
h are slightly greater/less than 0.2 me, indicating m*

h < m*
e

[49]. The calculated values of exciton binding energy for CsPbBr3 are in the range
of 27-63 meV [50]. Likewise, the values of m*

e , m
*
h and Eb for Cs2PbBr4 are 0.17

me, 0.19 me and 102.5 meV, respectively. The values of me and mh for Cs2PbBr4 are
0.194 me and 0.316 me, respectively [51]. Similarly, for CsPb2Br5, the values of m*

e ,
m*

h and Eb are 0.52 me, 2.41 me and 292.30 meV, respectively. It should be noted that
the high value ofm*

h can be justified by the flat valence band, as shown in Fig. 4c and
d. The relative permittivity values, used in the calculations for CsPbBr3, Cs2PbBr4
and CsPb2Br5, are 4.29, 3.45 and 4.47, respectively. These values are the geometric
mean of their respective anisotropic values.

Optical Properties

For investigating the optical properties, the absorption coefficient spectra have been
studied for all the three variants of Cs-Pb-Br. The absorption spectra of materials are
of paramount significance as the first and foremost criterion for solar cells should
exhibit very high values of the absorption coefficient in the visible range of the solar
spectra. Secondly, they play a major role in determining the thickness of cells and
therefore in influencing the aspects of cell design. For instance, materials having a
higher absorption coefficient are not only suitable for solar cells, but also compara-
tively thin cells can be designed. The absorption coefficients of materials depend
on the frequency of incident photons. The absorption spectral characteristics of
CsPbBr3, Cs2PbBr4 and CsPb2Br5 are shown in Fig. 5. The absorption coefficients
were calculated from frequency (ω) dependent dielectric functions, ε(ω) = ε1(ω) +
iε2(ω) according to the relation [52],

α(ω) = 2ω

c

[
(ε21(ω) + ε22(ω))

1
2 − ε1(ω)

2

] 1
2

, (4)

The absorption edge values found in the literature for CsPbBr3 and CsPb2Br5
are 2.4 eV [53] and 3.26 eV [54], respectively, which indeed agree well with our
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Fig. 5 Calculated absorption coefficients of Cs-Pb-Br variants in 100 directions. CsPbBr3 is
anisotropic in all directions, whereas its counterparts Cs2PbBr4 and Cs2Pb2Br5 are isotropic in
100 and 010 directions. (Color figure online)

computed values. It can be seen that there is no absorption below the band edge
of these materials. CsPbBr3 and Cs2PbBr4 show broad absorption ranging from
the visible to UV region, whereas CsPb2Br5 shows absorption prominent in the
UV region. Therefore, CsPbBr3 and Cs2PbBr4 are more suitable for photovoltaic
applications.

Conclusions

In summary, we have studied the structural, electronic and optical properties of
CsPbBr3 along with its 2D variants-Cs2PbBr4, CsPb2Br5. There is no significant
difference in the cohesive energy of these compounds. All of them show anisotropy,
and their band structures show noticeable variation in the conduction band region,
due to spin-orbit coupling. ExceptCsPb2Br5, the other two variants possess intrinsic
direct band gap. The optical properties reveal that CsPbBr3 and Cs2PbBr4 have
absorption edge in the wavelength range of visible to lowUV, whileCsPb2Br5 shows
dominant absorption in the UV region. The calculations show that the excitons are
loosely bound in CsPbBr3 than its 2D counterparts.
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