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20.1	 �Introduction

In nuclear medicine, all studies are dynamic. Al-
though most studies performed in nuclear medi-
cine departments consist of a single static scan, 
the temporal dimension plays an important role 
in terms of the timing of the scan after adminis-
tration of the tracer as well as its length.

In general, a radiotracer is administered by in-
travenous injection and clinical information is 
obtained from the uptake of the tracer in different 
organs and tissues. The uptake is determined by 
the delivery, retention and clearance of the tracer 
[1]. The delivery and clearance rates are depen-
dent on the blood flow and the extraction of the 
tracer from blood to tissue while the retention is 
determined by metabolism of the tracer or 
binding of tracer molecules to specific or unspe-
cific binding sites. All these processes are dy-
namic which, together with the physical decay of 
the radionuclide, leads to the tracer uptake chang-
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ing over time in both concentration and spatial 
distribution. In order to determine quantitative 
parameters related to physiological or biochemi-
cal processes, it is necessary to determine the 
time-course of the tracer concentration in differ-
ent organs and tissues. This can be done with a 
dynamic data acquisition protocol, consisting of 
a series of scans performed over a period of time 
from the administration of the radiotracer. Once 
sufficient knowledge has been accumulated re-
garding the kinetic behaviour of a certain tracer, 
it may be possible to develop simplified study 
protocols, which can provide relevant clinical in-
formation while being more patient friendly [2].

Having performed a dynamic acquisition, 
quantitative values for physiological or biochem-
ical parameters can be determined by applying 
various mathematical tools to the data. This pro-
cedure is known as “kinetic analysis”. Time–ac-
tivity curves (TACs), representing the time-course 
of tracer concentration in the image, can be gen-
erated from dynamic PET or SPECT data. TACs 
can be obtained either for volumes of interest 
(VOIs) or for individual voxels, in the case para-
metric images are required. Absolute quantifica-
tion of radioactivity is needed and therefore 
correction for physical effects such as attenua-
tion, scatter, random coincidences (PET), and 
dead time are essential. Correction for partial 
volume effects (PVE) may also be needed. PVE 
correspond to contribution of information be-
tween adjacent image regions due to the limited 
spatial resolution in PET and SPECT [3]. Also, 
motion correction is obviously essential.

Kinetic analysis is done using a mathematical 
model of tracer behaviour [4], usually a compart-
mental model. In order to use such a model, it is 
necessary to have information about the tracer de-
livery in the form of an input function, ideally rep-
resenting the time-course of tracer concentration 
in arterial plasma. This type of analysis can be use-
ful within different clinical areas, such as cardiol-
ogy, oncology and neurology, where tracers such 
as 15O-H2O, 18F-FDG and 123I-IBZM are used for 
quantification of blood flow, metabolic rate and 
neuroreceptor binding, respectively. In this chap-
ter, we will describe the basic mathematical tools 
and concepts used in tracer kinetic modelling.

20.2	 �Compartmental Modelling

20.2.1	 �Definitions and Assumptions

In kinetic modelling theory, the term “steady 
state” is used for the situation when a certain pa-
rameter does not change with time. The term 
“equilibrium” is used for the situation when all 
compartments in a model are in steady state.

A series of assumptions are needed to proceed 
with tracer kinetic modelling. The most impor-
tant of these are [5]:

	1.	 The physiological processes that affect the 
measurements (e.g. blood flow) are in a steady 
state throughout the experiment.

	2.	 The radio-ligands used are administered in 
tracer concentrations, and therefore do not 
affect the physiological or biochemical pro-
cesses being studied.

	3.	 The tracer concentration within a compart-
ment is homogeneous—i.e. instantaneous 
mixing is assumed.

20.2.2	 �Compartmental Models

Physiological or biochemical systems are often de-
scribed using compartmental models, in which a 
tracer is assumed to be transferred between a num-
ber of compartments, which can represent separate 
regions in space (e.g. vascular, interstitial or intra-
cellular space), or alternatively different chemical 
states (e.g. parent compound, metabolic products or 
receptor bound tracer molecules). The rate of transfer 
from one compartment to another is proportional to 
the concentration in the compartment of origin and a 
first-order rate constant. In general, a compartmental 
model is described by a system of differential equa-
tions, where each equation corresponds to the sum of 
all transfer rates to and from a specific compartment:
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(20.1)

where Ci(·) is the tracer concentration in com-
partment i, kij is the rate constant for transfer to 
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compartment i from compartment j, and N is the 
number of compartments in the model.

Compartmental models can be either revers-
ible or irreversible. The irreversible models are 
those which contain at least one compartment 
that does not have an outflow.

In nuclear medicine, a single-index nomencla-
ture is normally used to denote the rate constants. 
The rate constants for transfer from blood to tis-
sue and from tissue to blood are called K1 and k2, 
respectively, and additional rate constants in the 
model are called k3, k4, etc. These symbols are 
sometimes qualified with asterisks or primes 
when necessary. Traditionally, a capital K is used 
in K1, while lower case k:s are used for the other 
rate constants. This is to reflect a distinction in 
terms of units. While ki, i ≥ 2, are expressed in 
units of [min−1], K1 is expressed in same units as 
blood flow: [mL/min/mL] (mL of blood per min-
ute per mL of tissue).

20.2.3	 �Solving Compartmental 
Models: The Laplace 
Transform

The Laplace transform is a useful tool when it 
comes to solving systems of linear first order dif-
ferential equation, such as Eq. (20.1). The La-
place transform is defined as:

	
F s f t tst� � � � �

�
��

0

e d
	

(20.2)

where s is a complex Laplace-space variable.
Using the properties listed in Table 20.1, it is 

possible to obtain solutions for complex com-
partmental systems. In particular, the property 
relating the transform of the derivative of a func-
tion to that of the original function is the key to 
the solution. After taking the Laplace transform 
of both sides in each equation, the terms are rear-
ranged into the transform of a simple function, 
such as a sum of constants and exponential func-
tions, and the inverse Laplace transform can then 
be found.

In the case of biological systems, the solution 
can often be expressed as:

	
C t H t C tNT a� � � � �� � � 	

(20.3)

where Ca(·) and CT(·) are the input and output 
functions, respectively, ⊗ represents the convo-
lution operation and HN(·) is the impulse response 
function (IRF) of the model, which has the fol-
lowing general form [6]:
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where ϕi and θi are functions of the individual 
rate constants of the model (K1, k2…), and N is 
the number of compartments. Irreversible com-
partments correspond to terms with θi = 0, i.e. a 
constant. The number of terms in the impulse re-
sponse function is equal to the number of com-
partments in the model.

Appendix 1 contains examples of Laplace 
transform derived solutions for different com-
partmental models. Sometimes it may be neces-
sary to use the technique of partial fractions 
expansion [7] to find the individual terms of the 
impulse response function.

20.3	 �The 1-Tissue Compartment 
Model: Blood Flow

From a physiological point of view, the term 
“blood flow” refers to the volume of blood deliv-
ered to an organ per unit of time, often expressed 
in [mL/min], while “perfusion” refers to blood 
flow per unit of tissue-volume [mL/min/mL]. In 
the context of tracer kinetic modelling, the two 
terms are used interchangeably with the latter 
definition.

Table 20.1  Laplace transform pairs

Time domain Laplace domain
f(t) F(s)
k k/s
ekt 1/(s-k)
ag(t) + bh(t) aG(s) + bH(s)

g′(t) sG(s) − g(0)

g(t) ⊗ h(t) G(s)H(s)

k, a and b are constants, t and s are variables, g(·), G(·), 
h(·) and H(·) are functions, ′ represents derivative and ⊗ 
convolution
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A model for quantifying blood flow was de-
veloped around the middle of the last century [8]. 
It was based on the Fick principle, which states 
that the rate of change of the tracer concentration 
in tissue is proportional to blood flow and to the 
difference in the arterial and venous concentra-
tions:

	

d

d T a vt
C t F C t C t� � � � � � � �� �

	
(20.5)

where CT(·), Ca(·) and Cv(·) are the tissue, arterial 
and venous tracer concentrations, respectively, F 
is blood flow and t is time.

Assuming that the tracer concentration in tis-
sue is at equilibrium with that in venous blood 
(CT(t)/Cv(t) = VD), Eq. (20.5) can be rewritten as 
follows [9]:
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(20.6)

The constant VD is the “distribution volume” 
or “volume of distribution”, representing the vol-
ume of tissue in which the tracer can move around 
freely. It is expressed in the units [mL/mL], i.e. 
mL per mL of tissue, and has a value in the range 
[0,1]. It is numerically equal to a quantity known 
as the partition coefficient.

The Kety–Schmidt model is only valid for 
tracers that are fully extracted from blood to tis-
sue. This is true for many of the tracers used for 
measuring blood flow, such as 15O-H2O, 13N-NH4 
and 133Xe. On the other hand, if the tracer is not 
fully extracted (as in the case of e.g. 82Rb), this 
may be taken into account using the extraction 
fraction, E, defined as the fraction of tracer ex-
tracted in a single pass through the capillary bed. 
The extraction fraction can be calculated using 
the Renkin–Crone formula [10, 11]:

	 E F� � �1 e PS/
	 (20.7)

where PS is the permeability surface area prod-
uct, expressed in the same unites as F [mL/min/
mL]. (NB: E is dependent on F.)

Replacing F by FE in Eq. (20.6) and defining 
the constants K1 = FE and k2 = K1/VD leads to:
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(20.8)

Equation (20.8) can be interpreted as the op-
erational equation for a simple 1-compartment 
system (Fig. 20.1), and has the solution (see Ap-
pendix 1):
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(20.9)

The model in Fig.  20.1 has in the past been 
referred to as a two-compartment model and rep-
resented with the arrow corresponding to k2 di-
rected from the tissue compartment back to 
blood. This may seem intuitively correct; how-
ever, it does not correspond to the actual mathe-
matical relationship between the input and output 
functions. In practice, the input function is deter-
mined separately, and blood is not treated as a 
compartment in a mathematical sense. For clari-
ty, it may therefore be appropriate to use a no-
menclature, in which a model is named after the 
number of compartments used for describing the 
tracer distribution in tissue. Hereby, the model in 
Fig. 20.1 would be called a 1-tissue compartment 
(1-TC) model.

20.4	 �Multi-tissue Compartment 
Models: Neuroreceptor 
Mapping

Neuroreceptor mapping deals with studies of the 
systems that control the chemical transmission of 
neuronal signals across the synapse between two 
neurons. When an electrical impulse reaches the 
end of a presynaptic nerve cell, a series of events 

Ca

K1 k2
CT

Fig. 20.1  The blood flow model (1-TC). Ca and CT are 
the tracer concentrations in arterial blood and in tissue, 
respectively, and K1 and k2 are rate constants
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are initiated: (1) Neurotransmitter substance is 
released from vesicles within the presynaptic cell 
into the synaptic cleft; (2) The neurotransmitter 
diffuses across to the postsynaptic cell where it 
binds to a specific type of receptors, triggering a 
new electrical impulse; (3) The neurotransmitter 
substance in the synapse is reabsorbed into the 
presynaptic cell via channels known as transport-
ers, in order to prepare the synapse for the arrival 
of a new signal. In psychiatric studies, it is of in-
terest to measure the concentration of different 
types of receptors or transporters in different 
brain regions. This can be achieved using radio-
tracers that bind selectively to the receptors or 
transporters of interest.

20.4.1	 �In Vitro Quantification

The theory for quantification of neuroreceptor 
binding in vivo is based on the theory for in vi-
tro binding assays, which involves incubation 
of a receptor-enriched preparation with a ra-
dio-ligand. The basis for this theory is the law 
of mass action, which states that the ligand 
binds to receptors (association) at a rate pro-
portional to the concentration of ligand and to 
the concentration of receptors, and that the re-
sultant ligand-receptor complex breaks down 
(dissociation) at a rate proportional to the con-
centration of the complex [12]. This is de-
scribed in the following equation:

	

d

d on offt
RL k R L k RL� � � � �� �� � �

	
(20.10)

where [R], [L] and [RL] are the concentrations of 
receptors, ligand and receptor–ligand complex, 
respectively, and kon and koff are the rate constants 
for association and dissociation, respectively. 
Equation (20.10) can be represented as a simple 
two-compartment model with the rate constants 
kon[R] and koff (Fig. 20.2). In practice, kon[R] can 
only be assumed to be constant if [R] ≫ [L] (trac-
er conditions).

During in vitro experiments, a state of equilib-
rium will be reached after a while, so that the rate 
of association is equal to the rate of dissociation, 
and the following relation is obtained:
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The constant KD is known as the equilibrium 
dissociation constant. Its reciprocal value is 
known as the affinity of the ligand for the recep-
tor. Thus, a low KD value corresponds to high af-
finity.

We now introduce a different set of symbols for 
free ligand, F = [L], bound ligand, B = [RL], and 
total receptor concentration, Bmax  =  [R]  +  [RL]. 
With these symbols we can rewrite Eq. (20.11) as 
follows:

	
B

B F

K F
�

�
max

D 	
(20.12)

This is known as the Michaelis–Menten equa-
tion, and describes the relation between bound 
and free ligand equilibrium concentrations [13]. 
If B is plotted as a function of F, this equation 
corresponds to a saturation curve, which initially 
rises linearly (B/F ≈ Bmax/KD, F ≪ KD) and then 
gradually plateaus, asymptotically approaching a 
constant level (B ≈ Bmax, F ≫ KD). By measuring 
a series of corresponding B and F values, it is 
possible to estimate the parameters Bmax and KD. 
A simple solution is obtained using the Scatchard 
method [14], by plotting (B/F) versus B, which 
should give a straight line with a slope of (−1/KD) 
and an intercept of (Bmax/KD), as can be seen after 
rewriting Eq. (20.12) as follows:
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The first part of the above equation is valid for 
any values of B and F, while the second part is an 
approximation valid only under tracer conditions 

konR

koff

L LR

Fig. 20.2  The in vitro model. L, R and LR represent con-
centration of ligand, receptors, and ligand–receptor com-
plex, respectively, and kon and koff are constants
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(B ≪ Bmax). The constant BP is the “binding po-
tential” [15], which is an important parameter in 
in vivo neuroreceptor studies. As human in vivo 
studies are always performed under tracer condi-
tions, in order to avoid pharmacological effects, it 
is not possible to estimate the values of Bmax and 
KD separately—only their ratio, BP, can be esti-
mated.

20.4.2	 �In Vivo Quantification

The in vivo neuroreceptor model is a combina-
tion of the two models discussed above; the blood 
flow model and the in vitro binding assay model. 
Apart from specific binding to receptors, most 
tracers will also exhibit so-called nonspecific 
binding, involving macromolecules such as pro-
teins. Nonspecific binding is not saturable and 
not displaceable. A general neuroreceptor model 
therefore requires three tissue compartments (see 
Fig. 20.3), and can be described as follows:
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where Cp(·), CF(·), CS(·) and CNS(·) are the tracer 
concentrations in plasma and in the compart-
ments for free, specifically bound and nonspecifi-
cally bound tracer, respectively, and K1, k2–k6 are 
rate constants.

With six free parameters (K1, k2–k6) the 3-TC 
model is normally too complex to be useful in 
practical situations. All the parameters may not 
be identifiable,1 given the limited amount of in-
formation available (one single TAC represents 
the sum of all tissue compartments) and the pres-
ence of noise in the measured data. Therefore, it 

1 Parameter identifiability means that a change in the 
parameter values should always lead to a change in the 
output function [16].

is often necessary to reduce the complexity of the 
model by reducing the number of compartments. 
The 3-TC model would thereby be converted to a 
2-TC or even a 1-TC model. At this point, it is 
important to note that when the compartmental 
structure of a model changes, so does the mean-
ing of the rate constants. It may therefore be ap-
propriate to use different symbols in different 
models. Hence, in the 2-TC model, k2 and k3 be-
come k2

′  and k3
′ , and in the 1-TC model, k2 be-

comes k2
″  [17]. When dealing with a single 

model, such distinction may not be necessary, 
however.

In the 2-TC model (Fig. 20.3, blue components) 
the free and nonspecific binding compartments are 
merged into the so-called “non-displaceable” (ND) 
compartment. The 2-TC model can be described as 
follows:
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(20.15)

Cp
K1

k2

k3 k4

k5

CF

CS

CNS

k6
k2'

k3'

k2''

CND
CT

Fig. 20.3  Combined illustration of the 3-TC, 2-TC and 
1-TC models for neuroreceptor quantification. Cp is the 
concentrations of unmetabolised tracer in plasma, CF, CNS 
and CS are the concentrations of free, nonspecifically 
bound and specifically bound tracer in tissue, respectively, 
CND is the concentration of non-displaceable tracer in tis-
sue (CND = CF + CNS), and CT is the total concentration of 
tracer in tissue. The sets of rate constants used in the dif-
ferent models are: {K1, k2–k6} (3-TC), K k k k1 2 3 4, , ,� �� �  
(2-TC) and K k1 2,

�� �  (1-TC model)
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where CND(·) is the total tracer concentration in 
the nondisplaceable compartment, and k2

′  and k3
′  

are rate constants specific to this model.
This simplification implicitly involves the as-

sumption that equilibrium is rapidly established 
between the F- and NS-compartments, and that 
the free fraction in tissue, fND, is constant during 
the experiment. fND is defined as:
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The last equality is obtained by setting dCNS(t)/
dt in Eq. (20.14) to 0 (equilibrium). The tissue 
free fraction, fND, cannot be measured directly. 
The relationships between the rate constants in 
the 2-TC and 3-TC models can be derived by 
equating the transport rates between compart-
ments in the two models, resulting in:

	 k f k k f k2 2 3 3
� �� �ND ND; 	 (20.17)

In the 1-TC model (Fig. 20.3, red components), 
one single compartment represents non-displaceable 
and specifically bound tracer in tissue. It can be de-
scribed by a single differential equation:
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where CT(·) is the total concentration of non-
displaceable and specifically bound tracer in tis-
sue, and k2

″  is a rate constants specific to this 
model. As above we obtain:
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The 1-TC model for neuroreceptor quantifica-
tion is mathematically equivalent to the one used 
for blood flow above (Fig. 20.1). The difference 
is that, while the main parameter of interest in the 
case of blood flow measurements is the uptake 
rate constant, K1 = FE, in the case of neurorecep-
tor studies, the main parameter of interest is the 
washout rate constant, k2

″ , which reflects the 
amount of tracer retention in tissue due to recep-
tor binding (sometimes quantified by the param-
eter BPND � �k k3 4/  (see below)).

Figure 20.4 shows an example of TACs cor-
responding to a SPECT study using the NMDA 
receptor tracer [123I]CNS-1261 [18]. The tissue 
curves were generated with the 2-TC model us-
ing averaged rate constants (Table 20.2).

20.5	 �Input Function

In vivo quantification requires knowledge of the 
time-course of tracer concentration in arterial plas-
ma, Cp(t), referred to as the arterial input function 
(AIF). Traditionally, the AIF is obtained by repeated 
arterial sampling throughout the experiment. The 
samples first need to be centrifuged, in order to sep-
arate plasma and blood cells, and estimate the plas-
ma-to-whole blood concentration ratio (fpob).
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Fig. 20.4  Time–activity curves corresponding to the 
NMDA receptor SPECT tracer 123I-CNS 1261 with bolus 
injection; (a) arterial plasma input function, (b) tissue 

curves for various brain regions: Frontal cortex (FC), stri-
atum (Str), temporal cortex (TC), thalamus (Tha) and 
white matter (WM)
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A factor that complicates the quantification pro-
cedure is the presence of radioactive metabolites, 
produced in peripheral organs (liver, kidneys, 
lungs, etc.), and released back into the blood 
stream. If the metabolites can cross the blood–brain 
barrier (BBB), it would be necessary to use a more 
complex model with more parameters, resulting in 
increased variability. This problem can be avoided 
by appropriate tracer selection. However, radioac-
tive metabolites in the blood stream can in general 
not be avoided, and metabolite correction of the 
AIF is therefore needed. For this purpose, high-
pressure liquid chromatography (HLPC) can be 
used to determine the fraction of radioactivity in 
arterial plasma corresponding to un-metabolised 
tracer. This “plasma parent fraction” (fpp) starts at 1 
for t = 0 and decreases with increasing time at a rate 
that depends on the tracer and on the individual 
subject. In order to apply a correction, measured 
data points are fitted with an analytical function, 
such as e.g. a bi-exponential or the Hill function: 
fpp(t) = 1 + (a − 1) ∙ tb/(c + tb), where a, b and c are 
parameters to be optimised. For a comprehensive 
list of functions used for different tracers, see [19].

The measured input function is also affected by 
nonspecific binding in plasma. Tracer bound to pro-
tein molecules is not available for transportation 
across the BBB. Usually it is assumed that equilib-
rium is reached quickly between free and protein-
bound tracer in plasma, and the free fraction in 
plasma, fp, is thereby assumed to be constant during 
the experiment. It is possible to measure fp (e.g. by 
ultrafiltration), but these measurements can have 
high variability, and this factor is often ignored. The 
concentration of free parent compound in arterial 
plasma can thus be obtained as follows:

	
C t f C t f f t f t C tp F p p p pp pob a, � � � � � � � � � � � � � � � 	

(20.20)

where fp is the plasma free fraction (assumed 
constant), fpp(⋅) the plasma parent fraction, fpob(⋅) 
the plasma over whole blood ratio, Cp(⋅) the total 
concentration of parent compound in plasma, and 
Ca(⋅) the total arterial activity concentration.

Arterial sampling is an invasive and labour-
intensive procedure, and it would be a clear ad-
vantage if it could be avoided. In some cases, the 
input function can be obtained directly from the 
images, if an appropriate blood pool can be iden-
tified. This is known as an image derived input 
function (IDIF) [20]. In thoracic studies, the heart 
ventricles or the aorta can be used to obtain an 
IDIF. In brain studies, the carotid arteries can be 
used but, as they are relatively small, accurate 
partial volume correction is needed [21]. Also, 
when using an IDIF, it may be necessary to take a 
few blood samples for metabolite and plasma-to-
whole blood correction, but these samples could 
be venous samples rather than arterial.

20.6	 �Outcome Measures

The most fundamental parameters in compartmen-
tal modelling are the rate constants (K1, k2…). 
These so-called micro-parameters can usually not 
be determined with a high degree of precision 
(apart from K1), due to noise present in the data 
(mainly related to limited counting-statistics in the 
photon detection process). Therefore various so-
called macro-parameters are usually determined, 
by combining two or more micro-parameters, in 
order to obtain more robust outcome measures. 
For reversible tracers, the macro-parameters of in-
terest are the total volume of distribution (VT) and 
the binding potential (BP), and for irreversible 
tracers it is the influx rate (Ki).

20.6.1	 �Total Volume of Distribution

One of the most robust outcome measure is the 
“total volume of distribution”, VT, defined as the 
ratio between tracer concentration in tissue and 

Table 20.2  Averaged rate constants for the 2-TC model 
for the SPECT tracer [123I]CNS-1261

K1 (mL/min/mL)
k2
′  

(min−1)
k3
′  

(min−1) k4 (min−1)
FC 0.172 0.023 0.018 0.036
Str 0.215 0.018 0.016 0.058
TC 0.145 0.019 0.039 0.037
Tha 0.227 0.033 0.106 0.049
WM 0.076 0.025 0.078 0.075

FC frontal cortex, Str striatum, TC temporal cortex, Tha 
thalamus, WM white matter

K. Erlandsson



539

in plasma at equilibrium. VT is expressed in units 
of [mL/mL]. VT is useful in neuroreceptor studies 
since it is dependent on the receptor concentra-
tion in the target tissue but independent of blood 
flow (see below). In theory, it corresponds to the 
integral of the impulse response function of the 
model [6].

When using compartmental modelling, VT can 
be calculated from the rate constants with expres-
sions derived by equilibrium-analysis of the dif-
ferential equations that describe each model. 
Thus we obtain the following expressions for the 
3-TC, 2-TC and 1-TC models:
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This equation shows that VT is independent of 
blood flow: Both K1 and k2 depend on blood flow, 
but their ratio does not, and neither do the rate 
constants k3–k6.

The use of the term “volume of distribution” 
for quantification of tracer binding may seem a 
bit confusing. It is used for historical reasons as 
its calculation is similar to that of the actual dis-
tribution volume of a tracer that exhibits neither 
specific nor nonspecific binding (see blood flow 
section above). As an afterthought, it may be in-
terpreted as the volume of plasma containing the 
same total activity as 1 mL of tissue.

20.6.2	 �Binding Potential

The principal outcome measure in neuroreceptor 
studies is the binding potential, BP, but in prac-
tice it can be difficult to estimate BP according to 
the definition in Eq. (20.13). In the past several 
alternative definitions were used, which would 
sometimes lead to confusion. Therefore, a con-
sensus was reached among researches in the field, 
and three different types of in vivo binding poten-

tials definitions were proposed: BPF, BPp and 
BPND [22]. All three are defined in terms of the 
ratio at equilibrium of the concentration of spe-
cifically bound tracer (CS) vs. a reference concen-
tration. The difference between the three lies in 
the reference used. For BPF, it is the free tracer 
concentration in plasma (Cp,F  =  fpCp), which at 
equilibrium is equal to the free concentration in 
tissue (CF = fNDCND); for BPp, it is the total con-
centration of parent compound in plasma (Cp); 
and for BPND, the concentration of non-
displaceable tracer in tissue (CND).

Another difference with in vitro studies is that 
in vivo measurements do not reflect the total re-
ceptor concentration, Bmax. Some fraction of the 
receptors may be occupied by the endogenous 
transmitter substance (dopamine, serotonin…), 
by some drug administered to the patient, or by 
the tracer itself. In vivo studies reflect the con-
centration of available receptors, Bavail.

As in the case of VT, the various BP-values can 
be derived from the model parameters. Also, if a 
brain region exists that is known not to have any 
specific binding, this can be used as a reference 
region with the volume of distribution VND. BP-
values can then be derived from VT and VND val-
ues. This approach usually yields more robust 
results as compared to estimating the BP-values 
directly from the rate constants. The relationships 
between BP, VT and model parameters is sum-
marised below and illustrated in Fig. 20.5.

BPP

BPF

BPND

VT

NSND

S

F P

k4

K1 k2’

k3’

F

NS

VS

VND

Fig. 20.5  Illustration of the relationships between vari-
ous binding potentials (BPX) and volumes of distribution 
(VX). (NB: BPp = VS = VT − VND)
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Of the three in vivo BP-measures, BPF is the 
one that comes closest to the in vitro definition in 
Eq. (20.13), but it can be difficult to determine in 
practice. The use of BPp requires the assumption 
that fp is constant between scans or across groups 
of subjects. BPND requires the same assumption 
regarding fND, but has the advantage that it can be 
estimated using the reference tissue model, which 
does not require arterial sampling (see below).

It is generally assumed that a change in BP 
reflects a change in Bavail. Thereby, the fraction of 
receptors occupied by a drug (occupancy, O) can 
be estimated by measuring BP before (BPbase) and 
after giving the drug (BPdrug) [22]:
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BP
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,

, 	

(20.23)

where BP in BPbase and BPdrug can be either BPF, 
BPp or BPND.

20.7	 �Parameter Estimation

20.7.1	 �AIF Models

Once the AIF has been determined and the IRF of 
the model has been defined, the individual pa-
rameters (K1, k2...) can be estimated. This is an 
inverse problem, where an equation of type 
(Eq.  20.3) represents the forward model, and 
which can be solved using an iterative procedure, 
such as the Levenberg–Marquardt algorithm 
[23]. The goal is to minimise the difference be-
tween the measured data (TAC) and the model 
output function in a least-squares sense. Usually, 
some kind of weighting scheme is used before 
combining the data from different time points, to 

take into account differences in variability due to 
the changing activity concentration and differ-
ence in the length of each timeframe. It is neces-
sary to take into account the fact that a measured 
tissue TAC will always contain a contribution 
from blood. This can be done by estimating an 
extra parameter, representing the blood volume 
(Vb), or by assuming it is constant (e.g. Vb = 5%). 
It is important to remember that the total arterial 
concentration should be used in this term.

The forward model can be implemented using 
either an analytic solution for the IRF or a numeri-
cal calculation based on the differential equations, 
with e.g. the Runge–Kutta method [24].

20.7.2	 �Simultaneous Estimation

As an alternative, the input function can be built 
into the model itself, utilising the fact that different 
tissue regions have the same AIF. In this case, the 
AIF is described by an analytical function with a 
number of parameters, which are estimated simul-
taneously with those of several tissue TACs [25]. 
These TACs should be as different from each other 
as possible. A bonus with this method is that no 
metabolite correction is needed.

20.7.3	 �Reference Tissue Models

Another approach, which is often used in brain 
studies, is the reference tissue model. Here the 
TAC for a brain region, devoid of specific bind-
ing (reference region), is used as an indirect in-
put function. Two alternative models that have 
been proposed are: The full reference tissue 
model (FRTM) [26, 27], based on the 2TC-mod-
el, and the simplified reference tissue model 
(SRTM) [28], based on the 1-TC model (see 
Fig.  20.6). The IRFs for these models are de-
rived in Appendix 2.

In principle FRTM is dependent on the six rate 
constants: K1, k2

′ , k3
′ , k4, RK1 and R k2

′ , where the 
first four belong to the target region and the latter 
two to the reference region. However, K1 and RK1 
only appear in the model equation as a ratio: 
R1 = K1/RK1. Furthermore, it can be assumed that 
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the volume of distribution of the non-displaceable 
compartment (VND) is the same for both regions: 
K k K k k R kR R R

1 2 1 2 2 1 2/ /� � � �� � � , and thereby 
the number of model parameters can be reduced 
to four. SRTM has the following three parame-
ters: R1, k2

″  and R k2
′ . A method for noise-

reduction in SRTM has been proposed, taking 
into account the fact that R k2

′  should be indepen-
dent of the target region analysed [29].

As an illustration, Fig. 20.7 shows simulat-
ed data corresponding to the SPECT tracer 123I-
ADAM, which binds to serotonin transporters 

(presynaptic reuptake channels; 5-HTT), and 
can be used for measuring occupancy of anti-
depressant drugs. The data were generated 
based on averaged parameters obtained with 
SRTM [30]. Time–activity curves are shown 
for the midbrain, which is the region with high-
est 5-HTT concentration, and for cerebellum, 
which was the reference region. The parame-
ters used were: R1  =  0.85, R k2

10 030� �� . min  
and BPND = 1.14.

20.7.4	 �Spectral Analysis

From Eqs. (20.3) and (20.4) we obtain:
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In the method of spectral analysis [31], a li-
brary of basis-functions, ψi(t), is first generated 
for a suitable range of θi values. The problem is 
then solved using a non-negative least-squares 
fitting algorithm, resulting in a limited number 
of components, with non-zero coefficients, ϕi. 
The number of non-zero components corre-
sponds to the number of model compartments, 
which therefore does not need to be fixed be-
forehand. (Two adjacent non-zero coefficients, 
ϕi and ϕi+1 should in this context be regarded as 

Cp CND
K1

k4

SC

k2'

k3'

RK1
Rk2'

CR

k ''

CT

2

Fig. 20.6  Combined illustration of the full and the sim-
plified reference region models. Cp is the (unknown) con-
centrations of non-metabolised tracer in plasma, CND and 
CS are the concentrations of non-displaceable and specifi-
cally bound tracer in the target tissue, respectively, CT is 
the total concentration of tracer in tissue, and CR is the 
tracer concentration in the reference region. The sets of 
rate constants corresponding to the full and simplified 
models are: K k k k K kR R

1 2 3 4 1 2, , ,� � �� �, ,  and K k K kR R
1 2 1 2, � �� �, , , 
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123I-ADAM. The two 
curves represent 
midbrain (MB) and 
cerebellum (Cer), which 
was used as a reference 
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one single component, with a θ value some-
where between θi and θi+1.)

The spectral analysis method is not strictly 
valid for reference tissue models, where negative 
components in theory can occur. Therefore a 
more general method was developed using the 
basis pursuit technique [32].

20.7.5	 �Graphical Analysis

An alternative approach to compartmental mod-
elling can be found after integrating the differen-
tial equations describing the kinetic models. This 
yields equations which lend themselves to 
graphical analysis. The basic idea is that, after an 
appropriate transformation, the data can be plot-
ted as a graph and a straight line fitted to the 
points. The slope and intercept of the fitted line 
will reflect certain characteristics of the tracer 
uptake or binding. The Logan method [33] was 
developed specifically for reversible tracers, and 

is obtained by plotting y t C C t
t

� � � � � � ��
0

T Td� � /  

vs. x t C C t
t

� � � � � � ��
0

p Td� � / . After some time 

(t*), a straight line is obtained with a slope equal 
to VT. This result is independent of the assumed 
compartmental structure of the model, as shown 
in Appendix 3.

This approach is also known as linearisation, 
since it converts a nonlinear parameter estimation 
problem into a linear one. For this reason, it is 
also quite fast, and thereby useful in voxel-based 
analysis. A limitation of the approach is that it 
may result in bias with noisy data due to correla-
tion in the noise structure between the dependent 
and independent variables [34]. A more robust 
approach has been proposed [35]. A reference re-
gion version of the Logan method has also been 
developed [36].

There is a corresponding method for 
irreversible tracers, known as the Patlak plot 
[37]. Here y(t)  =  CT(t)/Cp(t) is plotted 

vs. x t C C t
t

� � � � � � ��
0

p pd� � / , and the slope of the 

linear part of the curve (after equilibrium has 
been reached) is the influx rate, Ki  =  K1  ⋅  k3/
(k2 + k3). The intercept is the sum of the blood 
volume, Vb, and the reversible volume of distribu-
tion, VD = K1  ⋅ k2/(k2 + k3)2. The method can be 
described by an uncoupled 2-TC model with one 
reversible and one irreversible compartment 
(Fig. 20.8). This approach is often used for analy-
sis of 18F-FDG data, including the dynamic 
whole-body imaging technique, based on a multi-
pass, multi-bed acquisition protocol [38].

20.7.6	 �The Bolus/Infusion Approach

In conventional studies, the tracer is administered 
with a single injection over a short time period—
a so-called “bolus injection”. An alternative ap-
proach is to use a constant infusion protocol, 
where tracer is being continuously administered 
slowly throughout the experiment. The aim is to 
establish a true equilibrium situation, which al-
lows for direct estimation of VT as the ratio of 
tissue and plasma activity concentration, in ac-
cordance with the definition (Eq.  20.21) [39]. 
Equilibrium can be reached more rapidly by us-
ing a combination of constant infusion and an 
initial bolus injection (a “bolus/infusion”, B/I, 
protocol) [40]. This approach is particularly use-
ful in “challenge studies”, in which the radiotrac-
er is displaced by a cold competitor. It is also 
useful in situations when a linear model is not 
applicable, such as in the case of “multiple ligand 
concentration receptor assays” [41, 42]. In these 

CIR

CR

Cp

CTKi

K1' k2'

Fig. 20.8  Illustration of the Patlak model. Cp is the con-
centration of tracer in plasma, CR and CIR the concentra-
tions of reversible and irreversible tracer uptake, 
respectively, and CT is the total concentration of tracer in 
tissue. The rate constants are: Ki  =  K1⋅k3/(k2  +  k3), 
K K k k k1 1 2 2 3

� � � �� �/  and k k k2 2 3
� � � . The outcome 

parameters are the irreversible uptake rate, Ki, and the 
reversible volume of distribution, V K kD � � �

1 2/
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studies, low concentration of the radio-ligand is 
used in order to estimate Bmax and KD separately. 
A B/I paradigms was also used in order to avoid 
arterial sampling by replacing it with venous 
sampling at equilibrium with the SPECT tracer 
[123I]CNS-1261 [43].

20.7.7	 �Model Comparison

Choosing a quantification method involves a 
trade-off between bias, variance and practicality. 
A model with more parameters will always give a 
better fit to the data (as judged by the residual 
sum of squares), but this may be because it is fit-
ting the noise in the data rather than the actual 
signal. A model with less parameters will lead to 
less variability in the results, but can also lead to 
bias, if the model does not properly describe the 
underlying physiological or biochemical pro-
cesses. There are various statistical methods for 
determining the best model, based on the residu-
als of the fit and on the number of parameters 
[44–46]. In principle, these methods correspond 
to application of the old philosophical principle 
known as “Occam’s razor”. If two models can de-
scribe the data equally well,2 the best model is the 
simplest one.

The use of various different models and com-
parison of the estimated outcome measures is an 
approach that has been recommended in order to 
avoid systematic errors related to one particular 
model. In terms of practicality, it may be appro-
priate to also consider methods based on simpli-
fied data acquisition protocols, such as reference 
tissue methods, bolus/infusion methods or even 
single scan protocols. However, these methods 
should always first be validated versus more 
complex and accurate ones (see e.g. [47]).

20.8	 �Applications: Schizophrenia

PET and SPECT studies have been used for many 
years in psychiatric research. A wide range of 
tracers have been developed for imaging different 

2 No statistically significant difference.

neurotransmitter (especially dopamine and sero-
tonin) systems. These tracers have allowed for 
studies which aid in the drug development pro-
cess by providing information on drug delivery, 
mechanism of action and occupancy levels at tar-
gets of interest. Below we present some illustra-
tive examples, based on work from the research 
career of the late Prof. Lyn S Pilowsky.

Antipsychotic drugs are used for treatment of 
schizophrenic patients, and their therapeutic ef-
fect is believed to be related to blockade of post-
synaptic dopamine D2-receptors. They can be 
classified into two groups: Typical and atypical 
(or first and second generation) drugs. The atypi-
cal antipsychotics are advantageous in that they 
produce less Parkinsonian side effects than the 
typical ones, while preserving high clinical effi-
cacy. Pilowsky et al. [48] used the SPECT tracer 
123I-IBZM to compare the atypical drug Clozap-
ine with the typical drug Haloperidol. They 
showed that Clozapine produced a lower level of 
D2/D3 receptor blockade in the striatum (a central 
brain structure), which would explain the lower 
level of Parkinsonian side effects.

Different theories emerged regarding the 
mechanism of action of atypical drugs, involving 
either different receptor types or different brain 
regions. To investigate the importance of block-
ing serotonin-(5-HT) 2A receptors, Travis et al. 
[49] used the SPECT tracer 123I-R91150, and 
found no correlation between clinical efficacy of 
atypical antipsychotics and 5-HT2A receptor 
blockade. In order to investigate the extra-striatal 
D2 receptor blockade, Pilowsky et al. [50] used 
123I-epidepride, a D2/D3 receptor tracer with high-
er affinity than 123I-IBZM.  The higher affinity 
was needed due to the much lower concentration 
of D2 receptors outside the striatum. They found 
that, while typical antipsychotics produce high 
D2 receptor occupancy in both striatal and extra-
striatal regions (temporal cortex), Clozapine pro-
duced high occupancy only in extra-striatal 
regions. This could explain the clinical efficacy 
of atypical drugs with low Parkinsonian side-
effects. However, this finding remained contro-
versial for some time due to methodological 
issues, which were eventually solved [51]. The 
finding was also supported by the results of a 
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meta-analysis, which pools data from several 
published PET and SPECT studies [52].

20.9	 �Conclusions

In this chapter, we have described the basic math-
ematical tools and concepts used in tracer kinetic 
modelling for quantification of physiological or 
biochemical parameters in  vivo with PET or 
SPECT. Summaries of the basic theory discussed 
here can be found in [53, 54]. The next chapter 
will describe various methods used in practice for 
parameter estimation and discuss some examples 
of practical applications.

�Appendix 1: Compartmental 
Models

Expressions for the impulse response functions 
for the 1-TC and 2-TC models are derived below. 
L{·} represents the Laplace transform, Laplace 
domain functions are identified with a tilde, and s 
is a complex Laplace domain variable.
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Impulse response function:
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�2-TC Model
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With initial conditions, CND(0) = CS(0) = 0:
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Find poles:
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�Appendix 2: Reference Tissue 
Models

�1-TC Model
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From Eq. (20.24):
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where δ(t) is the Dirac delta-function.
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�2-TC model
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From Eqs. (20.24) and (20.28):
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�Appendix 3: Logan Graphical 
Analysis

�1-TC Model
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with CT(0) = 0:
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�2-TC Model
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with CND(0) = CS(0) = 0:

	

�

� � � � � � � �

� � � � � �

� �

�

�

�

C t K C k C

C t k C k

t t

t

T p ND

S ND

d d

d

1

0

2

0

3

0

4

0

� � � �

� �
tt

C� � �

�

�

�
�

�

�
� S d� �

	

	

�

� �
� �

�
� �
� �

�

� �
� �

� �

�

� �
0 1

2

0

2

0

1
t t

t

C

C t

K

k

C

C t k

C

C t

ND

T

P

T

S

T

d d

d

� � � �

� �
��

� �
� �

�
� �
� �

�

�

�
��

�

�
�
�

� �k

k

C

C t k

C t

C t

t

3

4

0

4

1ND

T

S

T

d� �

	

�

� �
� �

�
� � � � �

� �

�
� �

� �

�
�

0 0

1

2

0

t t

t

C

C t

C C

C t

K

k

C

C t

T

T

ND S

T

P

T

d d

d

� � � � �

� �

�� �
�

�
� �
� �

�
�

�

�
��

�

�

�
��
�

� �

�

�

� �

�

1

1 1

2

3

4

1

2

0

2 4

k

k

k

K

k

C

C t k k

C t
t

P

T

S
d� �

CC t

K

k

k

k

C

C t

k

k

k

t

T

P

T

d

� �

� �
�

�
�

�

�
�

� �
� �

� �
�

�
�

�

�
�

�

�

�

�

�1

2

3

4

0

2

3

4

1

1
1

� �

��
� �
� �

1

4k

C t

C t
S

T
	

	

�

� �
� �

�
� �
� �

� �
� �
� �

�

� �
�

0 0

2 4

1 1
t t
C

C t
V

C

C t k k

C t

C t

T

T
T

P

T

S

T

d d� � � �

	

with CS(t)/CT(t) = constant (pseudo-equilibrium):
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