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16.1  Introduction

In the early days of nuclear medicine, measure-
ment of radioactivity administered into a human 
body was simply acquired by placing a Geiger 
counter over the desired region of interest. 
Further progress was undertaken using a rectilin-
ear scanner. The breakthrough, as mentioned in 
Chap. 10, came from the development of the 
gamma camera and the use of the scintillation 
crystal coupled to photomultiplier tubes (PMTs). 
To this end, there was no available tool to mea-
sure the spatial extent of tracer distribution in 
three-dimensional (3D) fashion, and all measure-
ments were confined to two-dimensional (2D) 
planar imaging. The third dimension is important 
to fully depict radiopharmaceutical uptake, hence 
enabling the interpreting physician to make a 
confident decision. Another feature of 3D imag-

ing is the ability to quantify tracer concentrations 
more accurately than with 2D imaging. Tracer 
uptake, residence time, and clearance rates are 
important dynamics of tracer biodistribution in 
diseased and healthy tissues, in which temporal 
sampling is particularly useful for studying tracer 
or organ kinetics. Adding the time dimension to 
2D planar imaging is important in some scinti-
graphic studies, such as renal scintigraphy and 
planar equilibrium radionuclide angiocardiogra-
phy (ERNA). In the former case, kidney function 
is studied through a time course of about half an 
hour, dividing the examination time into two 
phases (perfusion and function) such that the first 
minute is assigned to depict organ perfusion 
while the rest of the study is used to assess renal 
function. In planar ERNA, the time dimension is 
essential to make snapshots of different phases of 
the heart cycle through identification of the R-R 
signal during heart contraction. This helps to 
obtain valuable information about heart motion 
and to assessment of functional parameters.M. M. Khalil (*) 

Medical Biophysics, Department of Physics, Faculty 
of Science, Helwan University, Cairo, Egypt

16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65245-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-65245-6_16#DOI
https://doi.org/10.1007/978-3-030-65245-6_10


410

Many nuclear medicine procedures are per-
formed by acquiring planar views of the area 
under investigation. However, planar images are 
manifested by poor image contrast and lack of 
quantitative accuracy. Nuclear examinations such 
as bone scintigraphy and thyroid, parathyroid, 
and lung scanning are among those studies for 
which planar imaging is commonly used; how-
ever, under many circumstances the 2D nature of 
the acquired data have shortcomings in their 
yield of accurate diagnostic results, especially 
when dense overlying structures obscure the 
inspection of tracer spread and accumulation. 
This directly influences the interpretation results 
and may lead to an inconclusive diagnosis.

Many nuclear medicine procedures have been 
revolutionized by use of 3D imaging in terms of 
the amount of information that can be extracted 
and incorporated into the decision-making pro-
cess. Among those are myocardial perfusions, 
brain, and bone imaging, for which tomographic 
acquisition provides a greater opportunity to 
visualize organs from different angular perspec-
tives. This allows reading physicians to thor-
oughly investigate pathological lesions from 
many directions, especially when appropriate 
visualization tools are available on the viewing 
workstation. This in turn has had a positive 
impact on the diagnostic accuracy of many 
nuclear medicine examinations. For example, a 
tomographic bone scan is more sensitive than 
planar imaging and has been reported to improve 
the diagnostic accuracy for detecting malignant 
bone involvement [1].

16.1.1  History

Emission and transmission CT rely on the fact 
that to obtain a 3D picture of the human body a 
set of multiple 2D projections is required for 
image reconstruction. This necessitates collec-
tion of a sufficient amount of information about 
the object under examination. Johann Radon 
(1887–1956) introduced the principles of data 
formation through what is called the radon trans-
form, which describes an object in 3D space as a 
sum of line integrals. In 1917, Radon developed a 

solution for image reconstruction utilizing pro-
jection data sets and applied his technique to non-
medical applications, namely, gravitational 
problems. In 1956, the reconstruction technique 
developed by Radon found another application 
by Bracewell in the field of radioastronomy [2]. 
Allan Cormack, a few years later after Bracewell, 
independently and without knowledge about 
Radon’s work, developed a method for calculat-
ing radiation absorption distributions in the 
human body based on transmission scanning. 
Kuhl and Edwards were the first to introduce the 
concept of emission tomography using backpro-
jection in 1963, and about 10 years later, Godfrey 
Hounsfield, the inventor of CT, succeeded to 
practically implement the theory of image recon-
struction in his first CT scanner. Shortly after the 
invention, Hounsfield and Cormack were recog-
nized by sharing the Noble Prize in Medicine and 
Physiology in 1979. By analogy to PET imaging, 
CT scanning was focused on brain imaging; how-
ever, body examinations were introduced a few 
years later, and the first body images taken in the 
body prototype machine were of Hounsfield him-
self on December 20, 1974 [3].

One of the earlier works on tomography was 
to move the object while keeping the imaging 
system stationary. This was in the late 1960s and 
early 1970s, when investigators used transaxial 
tomography to image a patient setting on a rotat-
able chair placed in front of a stationary gamma 
camera. After the mid-1970s, a gamma camera 
detector was mounted on a rotated gantry to take 
multiple images around the patient under investi-
gation [4].

16.1.2  SPECT and PET

There are two 3D techniques provided by nuclear 
imaging namely single-photon emission com-
puted tomography (SPECT) and positron emis-
sion tomography (PET). Both are noninvasive 
diagnostic modalities that are able to provide 
valuable metabolic and physiologic information 
about many pathophysiologic and functional dis-
orders. A remarkable feature of SPECT and PET 
is their ability to improve contrast resolution 
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manyfold compared to planar scintigraphic imag-
ing. The two imaging modalities have proved 
useful as applications in molecular imaging 
research and translational medicine. In addition, 
attempts to derive quantitative parameters are 
more accurate than planar imaging. Furthermore, 
when the timing factor is added to the 3D imag-
ing, the amount of information that can be 
obtained from analyzing the data is significantly 
high. Two examples are worth mentioning when 
SPECT or PET is used to collect tracer spatial 
distribution and its associated temporal compo-
nent. One of these is gated myocardial perfusion 
tomographic imaging, in which the tracer distri-
bution and heart function can be captured in one 
imaging session, providing an assessment of 
myocardial perfusion (or metabolic) parameters, 
such as defect extent and severity or tissue viabil-
ity, in addition to calculations of regional and 
global left ventricular function and ejection frac-
tion. Another important area of application is the 
study of tracer distribution during the time course 
of tracer uptake and clearance from biological 
tissues. In these acquisition protocols, dynamic 
frames are collected over predefined timing inter-
vals (or reframed in case of list-mode acquisi-
tion) to record tracer flow, extraction, retention, 
and clearance from the tissue of interest. The 
recorded data are then presented to an appropri-
ate mathematical model to obtain physiologically 
important parameters, such as transport rate con-
stants and calculation of tissue metabolic activity 
or receptor density (see Chaps. 20 and 21).

The addition of temporal sampling to tomo-
graphic imaging has other utilities, such as 
recording the respiratory cycle to correct for lung 
motion on myocardial perfusion imaging and to 
correct for spatial coregistration errors arising 
from temporal mismatch between computed 
tomography (CT) and PET in lung bed positions 
during whole-body fluorodeoxyglucose-F18 
(FDG) PET/CT examinations. The time informa-
tion required for motion characterization in four- 
dimensional (4D) imaging can be obtained either 
prospectively or retrospectively using respiratory- 
gating or motion-tracking techniques [5].

The advances in hybrid imaging and introduc-
tion of PET/CT and SPECT/CT to the clinic have 

added another dimension to the diagnostic inves-
tigations; currently, hybrid modalities provide 
greater opportunity to study functional as well as 
morphological changes that occur at different 
stages of disease progression or regression. The 
characterizing aspects that distinguish these 
imaging methods from other imaging modalities 
are the underlying physical principles, the way 
data are acquired, image reconstruction and cor-
rection techniques, and finally image visualiza-
tion, quantitation and display.

16.1.3  Resolution and Sensitivity

SPECT and PET imaging modalities have com-
mon and different characteristics in terms of spa-
tial resolution and sensitivity. In general, clinical 
PET systems have better spatial resolution than 
SPECT; the former can provide an intrinsic spa-
tial resolution of about 4–6 mm, and the latter can 
hardly achieve 10 mm full width at half- maximum 
(FWHM) using the conventional NaI(Tl) designs. 
The resolution of PET images is determined by 
many factors, which differ from those that affect 
SPECT resolution. Detector size, positron range, 
photon acollinearity, and some instrumental fac-
tors contribute by different degrees to the spatial 
resolution of PET images, as discussed in Chap. 
12. On the other hand, SPECT imaging uses mul-
tihole collimation to identify structures and to 
determine directionality of the emitted radiation. 
This type of data collection imposes constraints 
on the overall system sensitivity and spatial reso-
lution. There is often a trade-off between sensi-
tivity and spatial resolution in collimator design. 
For instance, collimators with high spatial resolu-
tion have reduced count efficiency and vice versa. 
Another aspect of this trade-off is realized in 
some other (divergent) collimator geometry, in 
which the spatial resolution is improved while 
keeping the sensitivity at the same level, but this 
comes with a reduced imaging field of view.

In PET imaging, there is also a trade-off of 
these performance parameters but not in a similar 
manner as the principles of photon detection in 
PET imaging obviate the need for such photon 
collimation, leading to increased system 
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 sensitivity. However, collimation also exists in 
PET imaging in a form of 2D acquisition modes 
by using collimating septa between scanner rings. 
In 3D scanner configuration where the interplane 
septa are removed, a significant increase in detec-
tion efficiency is obtained (four- to sixfold) than 
that when the scanner is operated in 2D mode. In 
the later mode, collimator septa are placed 
between detector rings to confine the acquired 
projections to a set of 2D projection arrays. This 
facilitates image reconstruction so that any 2D 
reconstruction algorithms can be used similar to 
2D SPECT data reconstruction. In this way, 
image reconstruction is implemented in an inde-
pendent slice-by-slice manner. Image reconstruc-
tion in 2D is a straightforward procedure, while 
in 3D some kind of data manipulation is required 
to utilize the increased system sensitivity in 
improving image quality. In septaless or 3D 
acquisition mode, however, the scanner sensitiv-
ity is not uniform across the axial field of view, 
and approaches to reconstruct images are either 
to use fully 3D reconstruction techniques or to 
rebin the data into a 2D projection array. 
Figure  16.1 shows the two acquisition modes 
offered by PET scanning.

16.1.4  Image Acquisition

Data sampling by gamma camera detector is 
implemented by computer digitization for the 
events detected on the scintillation crystal. The 
computer matrix varies according to system sen-

sitivity, resolution, and data storage capacity. A 
lower matrix size, such as 64 × 64 and 128 × 128, 
is commonly used in SPECT while being higher 
in PET due to the improved spatial resolution. 
The matrix size in X-ray CT is even higher than 
nuclear techniques due to the submillimeter reso-
lution capabilities and superior photon statistics. 
However, in nuclear PET and SPECT imaging, 
the relatively lower photon flux due to radioac-
tive decay properties, restrictions on the injected 
dose, lower detection efficiency, acquisition time, 
and the expected spatial resolution are among the 
factors for reducing the matrix size.

In planar imaging, the patient is positioned in 
front of the detection system, and adequate time 
is given to form an image. The resulting image is 
a depiction of tracer distribution in two dimen-
sions, x and y. The third dimension cannot be 
realized as the collected counts over a particular 
point of the detector matrix are a superimposition 
of tracer activities that lie along the accepted 
beam path. This manner of data acquisition does 
not allow for extracting valuable information 
about source depth. However, to solve such a 
problem additional information must be provided 
to obtain further details about tracer spatial distri-
bution. Moving the detector to another position 
can produce another image for the given tracer 
distribution, and another angular view would 
again reveal information that was not present in 
the previous two views. This process can be 
repeated several times to complete an acquisition 
arc of at least 180°, which is the smallest angular 
arc that can be applied to reliably reconstruct an 

3D PET Acquisition
Direct + Oblique

sinogram 

3D PET Acquisition
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sinogram 

2D PET Acquisition
Direct sinogram

Truncated 
oblique

Direct LOR

Fig. 16.1 Acquisition modes in positron emission tomographic (PET) scanning
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image [6]. Let us go though some basic geomet-
ric and mathematical principles of this type of 
data acquisition.

In SPECT imaging, data acquisition is per-
formed by a one-, two-, or three-head camera that 
is adjusted to rotate around the patient over small 
angular intervals to acquire an adequate set of 2D 
projections. The increased number of detector 
heads serves to improve study sensitivity and 
reduces the acquisition time. This is dissimilar to 
PET scanning, in which the circular ring design 
circumvents the patient in a 2π fashion; thus, 
detector rotation is not necessary. However, in the 
old dual-detector coincidence gamma camera 
and partial-ring design, detector motion is 
required to satisfy angular requirements imposed 
by reconstruction algorithms. The detection pro-
cess relies on annihilation photons (~180° apart) 
and coincidence circuitry to record events in an 
emission path, called the tube or line of response 
(LOR).

Fig. 16.2 shows one projection view for 
SPECT and PET cameras such that the former is 
positioned to acquire a cardiac study while the 
latter was chosen to scan a brain patient. Suppose 
that we select one-detector row (i.e., 1D) of the 
detector 2D matrix, and in 2D PET this corre-
sponds to one projection angle acquired using a 
single ring. The activity distribution within a 
patient injected by myocardial tracer or FDG is 
defined by f(x,y), where x and y are the coordi-
nates of the tracer uptake inside the patient 
boundaries. The counts collected over the ele-
ments of the projection row at an angle θ is 
denoted by the function p(s,θ), where θ is the 
angle subtended by the SPECT camera and the 
cartesian x and y coordinates as shown in 
Fig. 16.2. This is also the same angle at which the 
PET scanner was chosen to look at the brain 
study.

According to Radon, every projection bin of 
the 1D image is a result of count accumulation 
along the path traversed by the emitting radia-
tions and falling perpendicular on the detector 
plane. However, in PET it is the line that connects 
a detector pair in coincidence. One can therefore 
consider the acquired counts at a given angle as a 
compressed version of the slice under investiga-

tion. At the end of data acquisition, we obtain a 
multiple number of projection angles; each is a 
compressed version of the object distribution 
viewed from different angles. In PET imaging, 
data format is mostly represented by rebinning 
the coincidence data in a sinogram. Another for-
mat of data acquisition and event storage is list 
mode, in which events are individually recorded 
for their timing, position, and possibly any other 
relevant attributes, such as energy.

The problem now is how to reconstruct or get 
a solution for the tracer concentration given the 
information provided by the set of projections. It 
is easy to understand that once we are able to 
reconstruct or find a solution for one transverse 
image, then it becomes possible to obtain the 
contiguous slices following the same pathway. In 
the given examples, the function of the recon-
struction algorithm is to find the best estimate of 
the tracer spatial distribution within the slices 
taken across the myocardium or the brain tissues. 
Apart from considering the effect of photon scat-
ter and detector response, one can write the mea-
sured projection data as

 p s f x y tx y t, , e d, d� �� � � � � � � � � � �

 (16.1)

This is the attenuated radon transform, and solv-
ing the equation for f(x, y) is the way to find esti-
mates of tracer activity within the patient and 
hence image reconstruction. Here, t and s are ele-
ments of a coordinate system such that t is pass-
ing along the direction of the rays and 
perpendicular on the detector plane while s is the 
axis parallel to the detector. In terms of x and y 
directions, s and t are defined as follows:

 s x y� �cos sin� �  

 t x y� � �sin cos� �  

By neglecting the exponential term, the resulting 
formula will be the Radon transform equation, 
which states that the acquired count over a par-
ticular projection bin p(s, θ) is the integration of 
tracer activity along the line that passes through 
the object studied and, in SPECT, falling perpen-
dicular on the detector plane, while in PET it is 
the line that connects a coincident detector pair. 
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The process that maps the tracer activity f(x, y) 
onto the projection image p(s, θ) is defined as the 
X-ray transform.

In the case of SPECT, the exponential term of 
the formula denotes the amount of photon attenu-
ation that extends from the site of emission f(x, y) 

s

y

x

s

p(s,  )

f(x,y)

t

Count Profile

a b

s

x

yc d

θ

Fig. 16.2 (a) Projection profile for a one-dimensional 
(1D) row of the detector is displayed; a varying count 
intensity is evident. Any point on the profile is the line 
integral of all activity concentrations lying along the path 
of the ray. (b) The coordinate system (t, s) is defined so 
that s is parallel to the detector plane, while t is perpen-

dicular on it. This coordinate system is used to define the 
projection profile p(s, θ) in relation to the stationary coor-
dinate system (x, y). In (c, d) positron emission tomo-
graphic (PET) acquisition setting, similar projections are 
defined by sinogram variables s and θ, where both deter-
mine the location of the annihilation site on the sinogram
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to the detector plane, demonstrated in Fig. 16.3, 
whereas in PET it refers to the amount of attenu-
ation experienced by annihilation photons while 
traversing the corresponding patient thickness. 
Figure 16.4 shows how an attenuation correction 
in PET imaging can be solved by calculating the 

probability of detecting two coincident photons 
by a detector pair.

It is noted that the attenuation correction factor 
is a function of the patient thickness and indepen-
dent of the emission site given a recorded LOR. By 
moving the exponential term to outside the integra-

=p fie–milS
a

i = 1

Fig. 16.3 Photon attenuation in single-photon emission computed tomography (SPECT)

C1=f(x,y)*e-µ(d-x)

C2=f(x,y)*e-µx

C=P1P2. f(x,y) => C=f(x,y)e-µd

P2=C2/f(x,y)= e-µx

P1=C1/f(x,y)=e-µ(d-x)

Attenuation is the probability of
detecting the photon pair:

P1P2=e-µx *e-µ(d-x)= e-µd

d

x

d -x

Fig. 16.4 Photon 
attenuation in positron 
emission tomography 
(PET)
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tion, denoting the measured projection as I and the 
integration term as Io, and rearranging the formula, 
we can obtain the attenuation correction factors 
(ACF) required to correct a measured LOR:

 ACF o= I I/  

This is simply achievable in practice using a 
transmission source where Io is the measurements 
performed while the patient is outside the field of 
view (i.e., blank scan), and I corresponds to the 
data taken when the patient is positioned inside 
the field of view (i.e., transmission scan).

Each LOR can be corrected for attenuation by 
multiplication with the corresponding correction 
factors, or the latter data can be reconstructed to 
obtain a spatial distribution of attenuation coeffi-
cients. In SPECT attenuation correction, the direct 
multiplication of the emission data by the correc-
tion factors is not applicable due to dependence of 
photon attenuation on the emission site, which is 
unknown. Instead, the logarithmic ratios of the ini-
tial and transmitted projections are reconstructed 
to obtain a spatial distribution of attenuation coef-
ficients or what is known as an attenuation map.

The introduction of hybrid imaging such as 
SPECT/CT and PET/CT has allowed the use of 
CT images to correct the radionuclide emission 
data for photon attenuation. CT images provide 
low noise correction factors and faster scanning 
times, but corrected data may suffer from quanti-
tative bias and correction artifacts. A CT scan also 
provides high-resolution anatomical images and 
with image coregistration serves to strength the 
confidence of lesion localization detected in 
radionuclide images. Radioactive sources provide 
more noise, less bias, and increased imaging time. 
Different methodologies have been devised to 
correct for the bias introduced by CT-based atten-
uation correction and methods to reduce noise 
propagation into radionuclide emission images 
when radioactive transmission scanning is used.

16.1.5  X-Ray CT

For a monoenergetic X-ray beam passing through 
an object of thickness L and linear attenuation 

coefficient μ, the transmitted radiation can be cal-
culated from

 I I L� �
oe

�
 

where I and Io are the transmitted and initial beam 
intensity, respectively. For an X-ray beam in CT, 
the rays traverse various body tissues of different 
attenuation properties due to their various com-
positions and effective Z number. Thus, the 
amount of attenuation that the beam encounters 
is equal to the total sum of all μ values that lie 
along the beam path.

Therefore, the measured transmission data for 
an X-ray beam of initial intensity Io passing 
through a human body can be written as

 p s I x y t, eo
, d� �� � � � � � �

 

Rearranging the formula and renaming the mea-
sured projection p(s,θ) as described, we obtain

 
ln

I

I
x y to , d� � � ��

 

where μ(x, y) is the linear attenuation coefficient 
for a pixel located at position (x, y), and the inte-
gration is the line integral of attenuation coeffi-
cients along the transmission beam (see 
Fig. 16.5).

The reconstruction algorithm here does not try 
to find the activity distribution of the tracer, but it 
estimates the spatial distribution of attenuation 
coefficients using two pieces of information, the 
initial beam intensity Io and the transmitted pro-
jection data. Note that this is the same equation 
used to derive the correction factors for PET 
emission data since it accounts for the total 
amount of photon attenuation experienced by the 
initial X-ray beam Io while moving through the 
object. Actually, in real practice and data analysis 
of X-ray CT, determination of the distribution of 
attenuation coefficients is not simply performed 
by solving the equation stated here; several pre- 
and postprocessing steps are taken to correct for 
many variables and confounders that deviate the 
practical measurements from being consistent 
with the theoretical ideal conditions; for further 
details, see [7].
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16.1.6  Sinogram

Rebinning the acquired data in a single diagram 
such that the projection bin represents the hori-
zontal axis while the projection angle is placed 
on the vertical direction produces a sine wavelike 
pattern called a sinogram. Representing the 
acquired data in a sinogram has several benefits 
in terms of data processing, image reconstruc-
tion, and correction techniques. Also, it is useful 
in inspecting detector failure, in which a diagonal 
black line in a PET sinogram indicates an artifact 
in a single detector element, while a diagonal 
band could indicate a malfunction of a detector 
block [8]. It can also be used to correct for patient 
motion and for other correction techniques. Note 
that one selected pixel on the sinogram should 
indicate the total counts collected for a particular 
LOR regardless of any contamination from any 

other events. In SPECT, it is the integral of counts 
that lie along the emission path and falling per-
pendicular on the detector surface (i.e., line- 
integral model).

For a point source located at the center of the 
field of view, the resulting sinogram is just a ver-
tical line that extends from the top to the bottom 
of the sinogram. Further, a horizontal line pass-
ing through the sinogram indicates a particular 
projection angle taken for a transverse slice. 
Figure 16.6 shows sinograms for an object hav-
ing one and two hot spots on the transverse sec-
tion. The figure clearly represents location (angle 
and position) and intensity of “two lesions” and 
also real complex emission similar to clinical 
studies (i.e. brain) where the object consists of a 
large number of points taken at multiple projec-
tion angles. Figure  16.7 shows also how sino-
gram formation relies on number of disintegrations 
collected from positron emission as opposed to 

Parallel beam Fan beam

Cone beam

Source

X-ray
beam

• • • •
m1 m2 m3 m4 m5 mn

a

c

b

Fig. 16.5 In X-ray CT, different geometries have been 
used in image acquisition which in turn posed different 
requirements on image reconstructions. (a) Image recon-
struction is straightforwardly implemented using direct 
filtered backprojection (FBP). The other geometry is 

shown in (b) where image can be either reconstructed 
using rebinning or direct FBP algorithm. (c) Cone beam: 
another design currently used in commercial CT scanners 
where image reconstruction is modified to adapt and 
account for beam geometry
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Fig. 16.6 Sinograms for different activity distributions. 
The sine wave pattern can be seen for a single hot lesion 
(a) and two hot lesions (b). The third sinogram (c) is more 

complicated due to its representation for many points in 
the projection profile, including all the angular views

S

θ

Fig. 16.7 The rebinning of the acquired events as the 
source decays into a sinogram that represents the projec-
tion bin on the horizontal axis, while the vertical axis 
denotes the projection angle. Note that each colored line 

of response (LOR) refers to a particular projection view; 
in other words, it points to a certain set of parallel LORs 
taken at a given angle
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conventional SPECT systems, in which detector 
rotation is necessary to build up a complete sino-
gram. This is one of the advantages provided by 
PET scanners based on circular design since all 
projections are acquired simultaneously and also 
possibly in 3D fashion. This characteristic is 
absent in most conventional designs of the 
gamma camera, for which detector rotation is 
essential to accomplish the task.

16.2  Image Reconstruction

16.2.1  Analytic Methods

16.2.1.1  Simple Backprojection
As described, a collected count from a projection 
element according to the Radon transform is a 
line integral of tracer concentration along the 
emission path length. The task placed on the 
reconstruction algorithms is to find the spatial 
distribution of tracer activity within the body seg-
ment in question. One way to reconstruct an 
image from the raw data is to redistribute the col-
lected counts (i.e., backproject) over the contrib-
uting individual pixels that lie along the path of 
the rays in the reconstruction matrix. Repeating 
this process for each projection element and for 
each acquired angle, one can obtain a picture of 
the tracer concentration as shown in Fig. 16.8. It 
can be seen that this method of image reconstruc-
tion cannot reveal useful information about tracer 

distribution due to the blurry appearance and sub-
stantially degraded signal-to-noise ratio.

Backprojection operation at point b can be 
represented as

 
f p x yBP , d� �� ��

0

�

� � � �cos sin
 

The backprojected image fBP at a particular point 
b is the result of summing all the corresponding 
projection bin values across all angular views 
taken during data acquisition. Here, s is the loca-
tion of the projection bin on the detector. In PET 
geometry, the backprojection operation is per-
formed for those LORs that connect detector 
pairs in coincidence. For obvious reasons, this 
process of count redistribution cannot determine 
the exact site where photon annihilation took 
place. Therefore, all pixels along the ray path are 
equally likely to get the same amount of counts. 
In PET systems with time of flight, calculation of 
the arrival of the two photons allows reduction of 
this LOR to a significantly smaller distance 
(based on system timing resolution) that, if 
included in image reconstruction, would result in 
an improvement of signal-to-noise ratio.

This is actually not the exact description of the 
backprojection operation since it is implemented 
on a grid of finite elements or computer matrix 
(and acquisition geometry), and thus it is possible 
that, for a given pixel, the backprojected ray can 
pass through a small part or intersect the pixel at 

4

3

2
23

4

Backprojection1

1

fb

Fig. 16.8 Image reconstruction using simple backprojection
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its full length. Therefore, a number of 
 backprojection methods have been developed to 
deal with this point. Methods used in forward- 
and backprojection are pixel driven, ray driven, 
distance driven, distance weighted, matrix rota-
tion, and others. Also, a combination of these 
methods, such as ray driven and pixel driven, can 
be used [9]. However, these methods differ in 
their computational efficiency, interpolation, and 
estimation accuracy. In iterative reconstruction, 
they should be carefully selected since several 
iterations may accumulate interpolation errors, 
introducing reconstruction artifacts.

Two clinical examples are shown in Fig. 16.9, 
one slice from a myocardial perfusion SPECT 
study and another one from brain-FDG PET 

study. The characteristic blurring appearance of 
simple backprojection is clear in both studies, 
with most low-frequency components overex-
pressed with a remarkable reduction of high fre-
quencies. This significant artifact is attributed to 
the fact that the sampling criteria do not match 
the model assumptions; hence, the reconstructed 
image is far from an accurate estimate of the 
tracer distribution. Simple backprojection 
assumes that data are collected with infinite lin-
ear and angular sampling, and the data collected 
are free from attenuation and scattered radiation 
in addition to shift-invariant and perfect system 
response (Fig.  16.10). These assumptions are 
violated in practice due to image digitization and 
the discrete angular intervals undertaken in image 

=

=

FT

* h(s)

* h(s)
+

Profiles across the
center

1/r effect

Noise

Noise+

Fig. 16.9 When the backprojection images are Fourier 
transformed the low frequencies are overemphasized 
while the low frequencies are reduced showing a pattern 
called 1/r effect. This backprojected blurry images are 
therefore corresponds to a convolution of the underlying 
true activity distribution with the h(s) function. Analytic 

approaches remove this effect by deconvolving the 
acquired data with the blurring function, neglecting the 
noise component and leading to a tremendous increase in 
image noise. As a result, regularization using a smoothing 
function is required
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acquisition. Furthermore, the emitted photons 
undergo different types of interactions, resulting 
in photon loss or recoiling from the original path, 
and hence invalidate the absence of photon atten-
uation and scatter assumption in data acquisition. 
The measured projections are noisy due to the 
Poisson statistics of the radioactive decay pro-
cess, and ignoring the noise component serves to 
alter the statistical properties of the reconstructed 
images and degrades image quality.

A profile drawn over the Fourier transform 
(FT) of the backprojected image shows a damp-
ing function that extends from the center of the 
spectrum (low-frequency region) toward the 
periphery (high-frequency region). This is 
referred to as the 1/r effect, in which the recon-
structed image can be described as a convolution 
of the underlying activity distribution and a 1/r 
blurring function (Fig. 16.9). This situation can 
be written in the frequency domain as

 

F
v v

F v v
v
F v v
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where the backprojected image FBP is equal, in 
theory, to the original image F(vx, vy) multiplied 
by the inverse of the function h(s) in the fre-
quency space. The latter function is defined as the 
system output to an ideal point source object and 
describes the system blurring effects on image 
formation. It is usually called the system spread 
function or point spread function (PSF). It is the 
key to solving the problem of backprojection by 
removing the blurring effect shown in Fig. 16.9 
by either convolving the measured projections 
with the function h(s) or multiplication in the fre-
quency domain as described by the equation. 
Similarly, in 3D image reconstruction without 
data truncation, the backprojected image can be 
convolved with an appropriate 3D filter function 
to get an estimate of the original object distribu-
tion; alternatively, the measured projections are 
convolved with the 3D filter function. Before 
proceeding further to use this approach in image 
reconstruction, an important theorem that is cen-
tral to many analytic reconstruction techniques 
should be discussed.

Analytic Approach
Perfect system response

No attenuation
No scatter or randoms

No Noise Model
Infinite Sampling

Realistic Approach
Beam divergence

Photon attenuation
Photon scatter

Noise
Finite Sampling

Fig. 16.10 Ideal versus realistic model of analytic image reconstruction
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16.2.1.2  Fourier Reconstruction 
Theorem

Fourier analysis has a wide range of applications 
in many disciplines of science and engineering. 
This includes image and signal processing, filter-
ing, image reconstruction, and many other bio-
medical applications. It has also been used in 
radioastronomy, electron microscopy, optical 
holography, magnetic resonance imaging (MRI), 
CT, and radionuclide SPECT and PET imaging 
[10]. Refer to Chap. 15, in which the FT is applied 
to a number of useful applications in nuclear 
medicine. In short, projection data and recon-
structed slices can be represented in two different 
domains: spatial and frequency. The FT for a 
given input function can be represented by the 
sum of the sine and cosine waves with different 
amplitudes and phases.

Image reconstruction based on the FT is dif-
ferent from simple backprojection, and both can 
be combined to yield a variety of reconstruction 
approaches, as will be discussed further. The con-
cept can easily be understood if we reversely 
assumed that we already have a transverse sec-
tion of a patient thorax in which we can see the 
myocardium, and the 2D FT of this section has 
been calculated. The reconstruction theorem 
based on Fourier analysis states that a profile 
taken at a certain angle (θ) from the 2D FT of the 
transaxial section is equal to the 1D FT of the 
projection profile computed at the same angle. 
This is the underlying assumption of Fourier 
reconstruction theorem or the central section 
theorem, which relates the acquired projection 

data to the reconstructed image by the aid of 
Fourier transformation (Fig. 16.11).

Suppose the Fourier coefficients (intensity 
values in the frequency domain) are defined by 
the function F(u, v), which is the 2D FT of the 
activity distribution f(x, y) for a given cross- 
sectional slice; then, it can be proven that

 F v v P vx y, ,� � � � ��  

where P(v, θ) is the FT of the projection p(s, θ), 
which is the function we have used to describe 
the counts collected over a 1D detector row.

Figure 16.12 summarizes the steps involved in 
Fourier reconstruction for a myocardial perfusion 
study, where the 1D FT of projection data is first 
calculated for all angular views, then data are col-
lected in a 2D format and interpolated to account 
for gaps between views. Finally, inverse 2D FT is 
computed to yield a reconstructed myocardial 
image. Here, u and v are the spatial frequencies in 
the Fourier space and are defined in a square 
matrix; however, the polar sampling regime taken 
by the detector does not match the rectangular 
requirements, and therefore interpolation is 
required. Such a problem could be dealt with 
using standard interpolation methods or interpo-
lation by gridding, taking into account that the 
accuracy of the results depends strongly on the 
interpolation method [11].

By analogy to 2D Fourier image reconstruc-
tion, a central plane through the FT of the 3D 
activity distribution is equal to the 2D FT of the 
2D parallel projection data taken at the same ori-

Projection view taken at
at angle q

q˚
FT of the

drawn profile

1D FT 2D FT

2D FT

y

x

Activity distribution defined by
the funtion f(x,y)

Fig. 16.11 The principle of two-dimensional (2D) 
Fourier reconstruction. The one-dimensional Fourier 
transform (1D-FT) of a horizontal profile drawn over a 

projection image at angle θ° is equal to the 2D-FT of the 
reconstructed image taken at the same angle
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entation. However, the 3D transform of the object 
has different and more complex structure 
 manifested by local sampling density when com-
pared to 2D and thus requires special interpola-
tion and weighting approaches [12].

The central section theorem and simple back-
projection can be combined in different forms of 
image reconstruction utilizing the mathematical 
properties of FT and convolution theorem, which 
states that convolution in the spatial domain is 
equivalent to multiplication in the frequency 
domain. However, these methods differ in the 
order of reconstruction steps regarding whether 
convolution or backprojection is accomplished 
first and if convolution is implemented in the spa-
tial or frequency domain, together with their 
computational efficiency.

Backprojection filtering (BPF) or filtering of 
the backprojection is one of these reconstruction 
approaches that combines Fourier reconstruction 
and backprojection in one procedure. BPF starts 
first by backprojecting the image into a recon-
struction matrix, 2D FT is then computed, the 
result is multiplied by 2D ramp filter, and finally 
image reconstruction is performed by taking the 
inverse 2D FT. Image reconstruction can also be 
implemented by convolving the projection data 
with a convolution kernel, and then the product is 
simply backprojected to produce an image of the 
object activity distribution. However, the most 
computationally efficient and easy to implement 
is filtered backprojection, which has been exten-
sively used in the routine practice of image 
reconstruction.
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Fig. 16.12 Fourier transform reconstruction theorem 
states that the Fourier transform of a one-dimensional 
(1D) projection profile is equal to the two-dimensional 
(2D) Fourier transform of the corresponding activity dis-
tribution imaged at the same angle. This example shows a 
1D profile taken across the patient’s heart for all angles; 

then, the FT was calculated and interpolated in a rectan-
gular array to obtain a 2D data set. Finally, the inverse 
Fourier transform is computed to generate the corre-
sponding activity distribution represented here by the 
transaxial myocardial slice
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16.2.1.3  Filtered Backprojection
The most analytic approach that is used in SPECT 
and PET reconstruction is filtered backprojec-
tion. It has a historical dominance in many appli-
cations due to its speed and easy implementation 
in software reconstruction programs. It relies on 
filtering the projection data after Fourier transfor-
mation of all the acquired angular views; then, 
backprojection is carried out to give an estimate 
of the activity distribution. Data filtering is per-
formed to eliminate the 1/r effect that works to 
blur the reconstructed images and is implemented 
in the Fourier space. Backprojection alone yields 
an image dominated by low-frequency compo-
nents. By looking at the reconstructed brain and 
cardiac slices in Fig. 16.9, one can perceive the 
smoothing appearance of the images due to the 
prevalence of low frequencies with difficulty in 
identifying small details, a situation that results 
in a significant loss of signal-to-noise ratio. This 
problem can be tackled by using a ramp filter, 
which serves to suppress low frequencies and 
enhance high-frequency components of the pro-
jection data.

The ramp filter function |v|, as can be seen in 
Fig. 16.13, is a diagonal line that extends from 
the center in the frequency space to a sharp cutoff 
value. This significantly reduces the drawbacks 
of the backprojection step in image reconstruc-
tion. However, the sharp cutoff value has a disad-
vantage of producing count oscillations over 

regions of sharp contrast [13]. Further, it increases 
the image noise due to the enhancement of the 
high-frequency components. To overcome this 
problem, an additional filter function is often 
used with the ramp filter to roll off this sharp cut-
off value and to suppress high frequencies to a 
certain level.

The steps involved in reconstructing one slice 
using filtered backprojection (FBP) are demon-
strated in Fig. 16.14 and summarized as follows:

 1. 1D FT is calculated for each projection 
profile.

 2. The Fourier transformed projections are mul-
tiplied with the ramp filter (plus a smoothing 
filter) in the frequency domain.

 3. The inverse FT of the product is computed.
 4. The filtered data are backprojected to give an 

estimate of the activity distribution.

These steps can be written mathematically as

f x y p s p x yF F, , d , d� � � � � �� � �� �
0 0

� �

� � � � � �cos sin

The reconstructed image f(x,y) is obtained by 
filtering the projection data in the frequency 
space (by multiplication with the ramp- smoothing 
function); then, the filtered data pF are backpro-
jected in the spatial domain to obtain the object 
activity distribution. 2D FBP is used in the 

a b |V|

-V V

Fig. 16.13 Ramp filter in (a) spatial and (b) frequency domain
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 reconstructions of the 2D PET (septa extended) 
and SPECT images acquired with parallel hole or 
fan beam collimators. An image reconstructed 
with FBP is demonstrated in Fig. 16.15 using dif-
ferent projection angles.

16.2.1.4  Filtering
As shown in Fig. 16.13, a ramp is a high-pass fil-
ter that does not permit low frequencies to appear 
in the image; therefore, it is used to overcome the 
problem of simple backprojection in image 
reconstruction. However, this filter has positive 
coefficients near the center and negative values at 
the periphery, as can be seen in Fig.16.13a, in 
which the filter is plotted in the spatial domain. 
These characteristics of a ramp filter can intro-
duce artifacts at regions that lie close to areas of 

high activity concentrations. This can be noted in 
the clinic in patients with full bladder activity 
undergoing bone SPECT imaging over the pelvic 
region. A severe cold artifact could be seen on the 
femoral head due to multiplying the ramp nega-
tive values with the projection counts. This could 
adversely affect the interpretation process and 
might be resolved by emptying the bladder and 
repeating the scan or reconstructing the image 
using iterative techniques [15]. Another example 
can be seen in patients scheduled for whole-body 
FDG scanning and who have full bladder activity. 
This negative lobe effect introduced by a ramp 
filter can also cause a reduction of the inferior 
wall counts in myocardial perfusion SPECT 
studies if there are increased extracardiac activity 
concentrations in close proximity to the heart 
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For all views

Reconstructed
image
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Inverse FTFiltered projection in
the spatial domain

Backprojection

Filtered projection in the
frequency space

Ramp filter with
smoothing function

Multiplication

x

Fig. 16.14 [14] Steps involved in filtered backprojection 
(FBP) image reconstruction. The projection profiles are 
Fourier transformed and are then multiplied by the ramp 
function to yield filtered data in the frequency domain. 

The inverse Fourier transform is then computed for the 
filtered data to move back to the spatial domain, and then 
backprojection is implemented. The filtration step can be 
performed prior to or after backprojection
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boundaries. This could result in an impression of 
diseased myocardial segments, causing false- 
positive results.

Another drawback of a ramp filer is its prop-
erty of elevating the high-frequency components, 
thus increasing the noise level of the recon-
structed images. An analytic solution for data 
acquired with noise is an ill-posed problem in 
which small perturbations (noise) in the input 
data cause a significant impact on the solution. 
Thus, a smoothing filter (regularization) is com-
monly used with a ramp filter to eliminate the 
noisy appearance of the ramp-filtered data and to 
improve image quality. Many filter functions 
were used with a ramp filter in several applica-
tions of nuclear medicine, such as Shep-Logan, 
parzen, hann, Hamming, and the commonly used 
Butterworth filter. Another class of filters has 
been proposed to correct for detector response 
function in image reconstruction, such as Metz 
and Wiener. Both filters rely on a system modula-
tion transfer function taken at a certain depth and 
thus do not match the requirement of the shift- 

variant response imposed by the detector system. 
The inclusion of the detector response function in 
iterative reconstruction showed superior perfor-
mance over other methods of image restoration.

A low cutoff value may smooth the image to a 
degree that does not permit perceiving small 
structures in the image, leading to blurred details 
and resolution loss. On the other hand, higher 
cutoff values serve to sharpen the image, but this 
occurs at the expense of increasing the amount of 
noise in the reconstructed images. The optimum 
cutoff value is therefore the value at which a fair 
suppression of noise is achieved while maintain-
ing the resolution properties of the image. This 
trade-off task of the cutoff frequency is important 
to properly use a given filter function and to 
improve the image quality as much as possible. 
The cutoff value depends on factors such as the 
detector response function, spatial frequencies of 
the object, and count density of the image [16]. 
Better isotropic resolution properties are pro-
duced with 3D smoothing, and therefore it is pre-
ferred over 1D filters applied for individual slices. 

2 views 4 views 10 views 18 views

36 views 60 views 90 views Original

Fig. 16.15 Filtered backprojection (FBP) using different viewing angles
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However, a 2D filter for the projection data may 
produce almost equal smoothing effects and is 
also computationally less intensive.

16.2.2  Summary of Analytic Image 
Reconstructions

Analytic approaches for image reconstruction in 
emission tomography seek to find an exact solu-
tion for tracer activity distribution. There are a 
number of assumptions that are invalid under the 
imaging conditions encountered in practice. 
Thus, the results provided by FBP are suboptimal 
to restore the true activity concentrations accu-
mulated in target tissues. Images reconstructed 
with FBP need a number of corrections to 
improve the reconstruction results. As mentioned, 
effects of attenuation, scatter, and detector 
response are potential degrading factors that FBP 
does not account for in the reconstruction pro-
cess. Nevertheless, this reconstruction method 
has the advantages of being fast and easy to 
implement, and nuclear physicians have long- 
term experience working with its outcome. Most 
image reconstruction in SPECT is implemented 
on a 2D slice-by-slice basis, so that at the end of 
image reconstruction one can obtain a complete 
set of transverse slices that, if stacked together, 
would represent the tracer distribution within the 
reconstructed volume. In PET image reconstruc-
tion, however, the same situation exists when 
data are acquired using 2D acquisition mode or 
the 3D data set are sorted into 2D projection 
arrays. Analytic image reconstruction can be 
summarized as follows:

 1. Analytic reconstruction using FBP does not 
account for the inherent statistical variability 
associated with radioactive decay, and data 
collected are assumed to follow Radon trans-
form, for which the object measured is 
approximated by line integrals. Regularization 
using linear filtering is necessary to control 
the propagation of noise into the reconstructed 
images. However, the noise is signal depen-
dent, and filtering to achieve an optimal noise 
resolution trade-off is not an appropriate solu-

tion. Therefore, to solve the problem as accu-
rately as possible, iterative refinement can be 
a better alternative.

 2. Images reconstructed by FBP show streak 
artifacts as a result of the backprojection step 
along with the possibility of generating nega-
tive reconstruction values in regions of low 
count or poor tracer uptake. Both artifacts can 
be treated using iterative reconstruction 
techniques.

 3. While many factors affect the PET LORs and 
serve to deviate the data to be approximated as 
line integrals when reconstructed by analytic 
image reconstruction, it remains an approxi-
mate reasonable approach in PET rather than 
SPECT [17]. Photon attenuation is an exact 
and straightforward procedure to implement 
in PET scanning, and the detector response 
function is not substantially degraded with 
source depth. In contrast, SPECT images suf-
fer from photon attenuation in a more compli-
cated way in addition to significant resolution 
loss as the source position increases.

 4. The assumption of line integrals does not hold 
true for some imaging geometries, such as 
SPECT systems equipped with coded aper-
tures and PET scanners based on hexagonal or 
octagonal detectors. In the former, analytical 
inversion of the acquired data is not a simple 
task and constitutes a considerable challenge, 
while for the latter the gaps between detector 
modules (e.g., C-PET and HRRT) need to be 
filled before applying the analytic approach. 
Methods to account for the missed data were 
therefore developed, such as linear and bilin-
ear interpolation or constraint Fourier space 
gap filling [18, 19].

 5. In 3D data acquisition, coincidence events are 
allowed to be recorded among all scanner 
rings; accordingly, the collected data result in 
direct as well as oblique sinograms. For a 
point source located in a scanner operating in 
2D mode, the in-plane system sensitivity does 
not depend on source location when compared 
to 3D imaging. In the latter scenario, the solid 
angle subtended by the scanner detectors dif-
fers from one position to another, especially 
when the source moves in the axial direction.
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 6. Another point that must be discussed is data 
truncation due to the fact that the axial extent 
of the PET scanner is limited. However, in 
the 3D situation, the oblique LORs are 
redundant in the sense that their statistical 
contribution to data reconstruction is unex-
ploited. Direct 2D reconstruction uses LORs 
that arise from the direct planes to form an 
image, but this leads to compromising a lot 
of useful coincident events recorded as 
oblique LORs. The incorporation of these 
events into image reconstruction serves to 
improve the statistical quality of the scan by 
increasing count sensitivity. Analytic FBP 
with using a Colsher filter can reconstruct the 
oblique projection if data are not truncated 
[20]. In the case of data truncation, however, 
the missed information due to the limited 
axial extent of the scanner can be estimated 
by reconstructing the direct planes of the 2D 
projections (they are adequate for data recon-
struction) and then reprojecting the resulting 
images to get an estimate of the truncated 
oblique projections. This method is called 
3D reconstruction by reprojection (3DRP) 
[11]. In other words, 3DRP estimates the 
missed information of the oblique sinogram 
in the forward projection step, assuming the 
scanner axis is extended beyond the practical 
limit of data acquisition. This step is impor-
tant to satisfy the requirements of (axial) data 
shift invariance. Image reconstruction is then 
carried out using 3D FBP with a 2D Colsher 
filter. 3DRP is computationally demanding 
and was extensively used as a standard ana-
lytic 3D method of choice for volumetric 
PET imaging.

 7. The other alternative to make use of the 
oblique LORs is to rebin the data so that the 
3D data set is reduced to a 2D problem. A 
number of rebinning approaches have been 
developed to overcome the increased recon-
struction times and to utilize the count sensi-
tivity of the scanner, yet this occurs with some 
drawbacks placed on spatial resolution and 
image noise.

16.2.3  Rebinning Methods

For many reasons, 3D PET imaging was not the 
acquisition mode of choice; an important one is 
the lack of an acceptable algorithm suited to pro-
vide clinically feasible reconstruction times. 
Another problem is the large amount of data that 
need to be processed along with extensive com-
putational demands. An alternative way to handle 
this problem is to rearrange the oblique LORs 
into a direct array of parallel projections or a 2D 
data set. The latter allows for reconstruction 
times that are practically acceptable when com-
pared to 3D reconstruction as the data can be 
reconstructed by any available 2D reconstruction 
algorithm. As mentioned, rebinning methods 
have been developed to benefit from the increased 
system sensitivity and to reduce computational 
speed requirements imposed by 3D reconstruc-
tion. Some of these rebinning approaches are 
summarized as follows:

 1. Single-slice rebinning (SSRB) is a simple 
geometric approach to reduce the 3D PET 
data into 2D parallel sinograms [21] 
(Fig. 16.16a). The method is implemented by 
rebinning an oblique sinogram that connects a 
two-detector pair into a parallel sinogram that 
lies midway between the two detectors. 
Although this method can simply be applied 
to rearrange the 3D information into direct 
planes consisting of parallel sinograms, it is 
valid when the oblique lines are close to the 
center of the field of view and in systems with 
small aperture size.

 2. The geometric simplification provided by 
SSRB has been refined by the multislice 
rebinning (MSRB) method, in which the sino-
grams that lie across two detectors that con-
nect an oblique LOR are incremented as 
shown in Fig. 16.16b. Stated another way, for 
each oblique LOR, the transverse slices inter-
sected are identified, and the corresponding 
sinogram is incremented. Thus, it can be 
viewed as a backprojection on the z-direction 
[22]. This process depends on the number of 
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sinograms to be incremented, and the incre-
ment varies with different oblique lines. 
However, axial blurring and amplification of 
noise are the drawbacks of MSRB.

 3. By utilizing the properties of FT, the estimate 
of the FT of direct sinograms can be exactly 
and approximately derived in the frequency 
domain from the FT of the oblique sinograms 
using the frequency–distance relationship 
[23]. It is based on an acceptable equivalence 
between the Fourier transformed sinograms 
arising from direct and oblique LORs. This is 
called Fourier rebinning or FORE. It has sig-
nificantly improved the computation time 
required to rearrange the 3D data sets into 
2D direct sinograms with an order of magni-
tude gain in reconstruction times when com-
pared to the 3DRP.  FORE showed little 
differences compared to 3DRP, with good 
accuracy and stability in a noisy environ-
ment, but was less accurate in scanners with 
a large aperture [24, 25].

 4. Besides the reconstruction time gained from 
FORE, it can be combined with statistical 
iterative 2D image reconstruction techniques 
[26] to improve image quality when compared 
to FORE plus FBP or 3DRP and to exploit the 
incorporation of the imaging physics into the 
reconstruction model.

 5. Several studies have shown that iterative tech-
niques have the capabilities to improve image 
quality and quantitative accuracy when com-
pared to analytic techniques or hybrid 
approaches (rebinning  +  2D reconstruction) 
with the drawback of increased computational 

burdens. However, this has been tackled using 
accelerating reconstruction algorithms imple-
mented on fast computer systems.

16.2.4  Iterative Reconstructions

The task of the reconstruction algorithm is to 
solve p = Af to find the best estimate of f. Here, p 
is the measured projection data, and A is a matrix 
that maps the tracer activity to the projection 
space. The presence of image noise does not 
allow finding a unique solution for the problem, 
or the solution might not exist or might not 
depend continuously on the data.

The better alternative to find a solution is to 
perform the task in an iterative manner. In this 
way, an initial estimate is assumed for the recon-
structed image (solution), and the image is for-
ward projected, simulating and accounting for all 
possible factors that work together to form the 
projection data. This initial estimate or guess can 
be a uniform image or FBP image and can be a 
zero image for additive-type algorithms. Many 
physical factors can be handled in the projection 
step to produce a projection image that is a close 
match to the acquired projections. Then, the mea-
sured and estimated projections are compared in 
such a way that allows derivation of a correction 
term. This last step allows the algorithm to mod-
ify the reconstructed slice through what is known 
as image update, and the process is controlled by 
the cost function or the objective likelihood func-
tion, as in the maximum likelihood (ML) algo-
rithm. It is clear that the initial estimate will be 

a bFig. 16.16 (a) Single- 
slice rebinning and  
(b) multislice rebinning
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far from the solution; thus, the process is contin-
ued by repeating the same steps to reach the best 
estimate of the solution: convergence. This means 
that the algorithm will alternate through several 
steps of forward- and backprojection, in contrast 
to direct analytic methods, for which the esti-
mated solution is obtained through a few pre-
defined steps.

Most iterative techniques share the aforemen-
tioned idea and generally differ in the objective 
function, the optimization algorithm, and the 
computation cost [17]. The combined selection 
of the cost function and the optimization algo-
rithm, as underlined above, is important in opti-
mizing the iterative reconstruction technique. 
Both should not be confused and are distin-
guished in terms of their functionality as the first 
denotes the governing principle or the statistical 
basis on which the best estimate of the solution is 
determined, while the latter is the “driving” tool 
to achieve that estimate through a number of 
defined steps [27].

Iterative reconstructions have the advantages 
of incorporating corrections for image-degrading 
factors in the system matrix to handle an incom-
plete, noisy, and dynamic data set more effi-
ciently than analytic reconstruction techniques. 
An important outcome of these advantages is that 
the final results enjoy better qualitative features 
in addition to more accurate estimation of tracer 
concentration, improved image contrast, spatial 
resolution and better noise properties.

Iterative reconstruction can be statistical, such 
as ML or ordered subset (OS) expectation maxi-
mization (EM) algorithms, or nonstatistical, as in 
conventional algebraic reconstruction methods 
like algebraic reconstruction techniques (ARTs), 
steepest descent, simultaneous iterative recon-
struction, and others. Another group of iterative 
methods based on FBP image reconstruction has 
also been proposed. Statistical methods can fur-
ther be categorized into Gaussian or Poisson 
based on the noise model assumed. In Gaussian 
methods, the objective function can be weighted 
or nonweighted least square, while in Poisson- 
based models the objective function is the log 
likelihood function. The latter guarantees positiv-
ity constraint so that the pixel value is always in 

the positive direction, while in the Gaussian least 
square model, additional requirements are needed 
to maintain positivity.

Another possible classification for the statisti-
cal techniques is whether they consider prior 
information. The inclusion of prior information 
in image reconstruction allows driving the recon-
structed images to the desired solution using pen-
alty terms or prior function. This can be applied 
when Bayes’s theorem is used in defining the 
objective function so that information regarding 
image distribution can be included in the recon-
struction formula in advance. Morphological or 
patient anatomy, pixel smoothness, or nonnega-
tivity constraints are different types of prior that 
can be used in Bayesian-based image reconstruc-
tion. The increased variance as the number of 
iterations increases is one of the noticeable but 
undesired features of statistical reconstruction 
techniques such as ML.  Regularization using a 
smoothness penalty function can thus be applied 
to reduce image noise and to improve detectabil-
ity of the reconstructed images.

16.2.4.1  System Matrix
A projection or system matrix (and also a transi-
tion matrix) is a key component in iterative tech-
niques. It is based on the fact that the projection 
data are constructed by differential contributions 
of the object voxels being imaged. This transition 
from the image space to the projection space 
(Fig.  16.17) is the forward projection and is 
described in a matrix form as

 P Af=  

Unlike FBP, a system matrix in iterative recon-
struction takes into account that each image voxel 
has a probability to contribute to a particular pro-
jection bin or sinogram. The system matrix A is 
the information reservoir that describes how the 
projection image is formed. It contains the coef-
ficients aij that denote the probabilities of detect-
ing a photon (or LOR) emitted from a particular 
site and detected in a particular bin.

Many physical phenomena can therefore be 
incorporated as far as they significantly contrib-
ute to data formation. In other words, the image 
space is mapped to the projection space by the 
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aid of the transition matrix that describes the 
probability of detecting a photon emitted from 
pixel j and measured in projection bin i such that

 
p a fi

j
ij j� �

 

where f is the image vector representing the activity 
distribution indexed by pixel j, and p is the mea-
sured projection and indexed by pixel i. A is the 
transition matrix of elements and is equal to i × j.

However, this is not only for a one-detector 
row at one angle but also for all the acquired 
views, including all the detector elements. The 
situation becomes more problematic in building 
up a transition matrix for 3D image reconstruc-
tion when the interslice plane (3D SPECT) or 
oblique LOR (3D PET) is considered. Overall, 
the size of the system matrix is a function of the 
type and dimension of the data acquisition, num-
ber of detectors, number of projection angles, 
and size of the reconstructed image [28].

The system matrix can be structured so that it 
can account for the imaging physics and detector 
characteristics. In the context of SPECT imaging, 
attenuation, scatter, and detector response are 

major degrading factors that can be incorporated 
in the iterative scheme. An accurate correction 
for these image-degrading elements can lead to a 
significant improvement in image quality and 
quantitative accuracy. In PET imaging, the sys-
tem matrix can also be built to handle geometric 
components and many physical parameters of 
positron emission and detection. It can be decom-
posed into individual matrices so that each matrix 
can account for particular or combined physical 
effects [29]. The accuracy of the system matrix is 
essential to ensure that the sources of degrading 
effects are well addressed and to realize the ben-
efits underlying the modeling procedure. 
Otherwise, oversimplification or inaccuracies of 
the system matrix would transfer the signal into 
noise due to inconsistencies that would arise as 
the estimated projection will no longer match the 
measured data [30, 31].

It can be calculated on the fly using efficient 
geometric operators, or it can be computed and 
stored prior to image reconstruction. Analytical 
derivation, Monte Carlo simulation, experimen-
tal measurements, or a combination of these tech-
niques can be used to compute the system matrix. 
However, these estimation approaches vary in 
terms of their complexity, computational bur-
dens, accuracy, and validity. To reduce storage 
capacity, the sparseness and intrinsic symmetry 
of the scanner is utilized to generate a com-
pressed version of the probability matrix. Also, 
for efficient use of the 3D-PET matrix, it can be 
decomposed into individual matrices, such as 
geometric, attenuation, sensitivity, detector blur-
ring, and physics of positron emission.

The inclusion of many effects that degrade 
image quality and contribute to image formation 
has expensive computational requirements. 
Attempts made to overcome these computational 
demands have been the development of acceler-
ated image reconstruction approaches such as 
OSEM (ordered subset expectation maximiza-
tion), the rescaled block iterative expectation 
maximization (RBI-EM) method [32], and the 
row action ML algorithm (RAMLA). Other 
approaches were to use an unmatched pair of pro-
jection–backprojection in the iterative scheme to 
accelerate the reconstruction process by not 

Projection space P

Image space f

i

A

Fig. 16.17 The system matrix maps the data from the 
image space to the projection space

16 Emission Tomography and Image Reconstruction



432

 taking into account the effect of all degrading 
factors in both operations [33, 34]. Efficient algo-
rithms that include dual-matrix and variance 
reduction techniques have significantly reduced 
the processing times of Monte-Carlo-based 
 statistical reconstructions to clinically feasible 
limits [34].

16.2.4.2  Maximum Likelihood 
Expectation Maximization

Maximum likelihood expectation maximization 
(MLEM) is a popular iterative reconstruction 
technique that gained wide acceptance in many 
SPECT and PET applications. The technique 
comprises two major steps:

 1. Expectation
 2. Maximization

The algorithm works to maximize the proba-
bility of the estimated slice activity given the 
measured projection data with the inclusion of 
count statistics. Stated another way, the ML algo-
rithm seeks to find the best estimate of the recon-
structed image f that with the highest likelihood 
can produce the acquired projection counts p. 
The probability function is derived from the 
Poisson statistics and is called the likelihood 
objective function:

L p f p f
q

pi

q i
k p

i

i
k

i

| prob | e� � � � � � � �
� �

!  
(16.2)

where qi
k is the estimated forward projection data 

and equal to 
j

ij j
ka f∑ , while the measured projec-

tion data are represented by pi . The ML estimate 
can be calculated by Eq. 16.2 but it is more con-
venient and easier to work with the log of the 
likelihood function. The selection of Poisson 
function is appropriate since it maintains positiv-
ity of the pixel values and agrees with the statis-
tics of photon detection. As a result, ML 
reconstruction has good noise properties and is 
superior to FBP, especially in areas of poor count 
statistics. One important issue in implementing 
the ML algorithm is that the input data (projec-
tions/sinograms) should be matched with the 

noise hypothesis of the ML model, and prior 
treatments or corrections for the acquired data 
would serve to alter the noise properties assumed 
by the algorithm. This can be solved by either 
modifying the noise model (e.g., shifted Poisson) 
or feeding the data directly into the iterative pro-
cess without a prior correction for any of the 
noise-disturbing elements.

Expectation maximization is the algorithm of 
choice to solve the likelihood function and works 
to estimate the projection data from knowledge 
of the system matrix and the current estimate of 
the image. The estimated and measured projec-
tion data are then compared by taking the ratio, 
which in turn is used to modify the current esti-
mate of the slice. An image update takes place by 
multiplying that ratio with the current estimate to 
get a new image estimate “update.” This process 
continues for several iterations until convergence 
is obtained and can be summarized as follows for 
iteration numbers k and k + 1:

 1. The slice activity in the kth iteration is for-
ward projected using the proposed imaging 
model to form a new projection image.

 2. The ratio of the measured and estimated pro-
jection is calculated for each bin.

 3. The result of the previous step is backpro-
jected and normalized by dividing over the 
coefficients aij (see Eq. 16.3).

The new image fk+1 is produced by the multi-
plying the image in the kth iteration with the nor-
malized backprojected data.

The equation used to define the MLEM recon-
struction algorithm is [36]

 

f
f
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p
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(16.3)

It tells us that the (k + 1)th iteration is equal 
to the immediate previous iteration k multiplied 
by a correction term. The correction term is a 
normalized backprojection of the ratio of the 
measured projection pi and the estimated projec-
tion of the slice activity resulting from iteration 
k, or qi

k.
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The drawback of using the Poisson formula is 
that it makes the algorithm reach a solution 
(reconstructed image) that is statistically consis-
tent with the proposed activity distribution of the 
acquired projections. The reconstructed images 
therefore tend to be noisy, especially at a high 
number of iterations. As the number of iterations 
increases and the algorithm approaches the solu-
tion, the log-likelihood of the function also 
increases but with image deterioration due to 
high variance estimate. This is one of the major 
drawbacks of the ML algorithm, which can be 
overcome using stopping criteria, postreconstruc-
tion smoothing filters, or regularization by 
Gaussian kernels: “the method of sieves” [35, 
36]. This last approach is implemented by 
restricting the range of the optimization in least 
squares or ML to a subset of smooth functions on 
the parameter space.

Penalized likelihood and Bayesian algorithms 
are also applied to regularize the solution and 
reduce noise artifacts. In practice, however, noise 
reduction is accomplished mostly using postre-
construction smoothing filters. However, in ana-
lytic image reconstruction, regularization is 
implemented using linear filtering, compromis-
ing spatial resolution.

Convergence of the MLEM is slow, but guar-
anteed, and depends on the spatial frequency 
(object dependent) such that low-frequency 
regions converge faster than high-frequency 
regions. At a large number of iterations, however, 
resolution tends to be uniform across the recon-
structed slice.

The second limitation of ML is the computa-
tion requirements since it converges slowly, and 
high-speed computer devices are needed to make 
it feasible in practice. However, new computer 
technology is continuously advancing to resolve 
this issue (Moore’s law). The other alternative to 
ML estimation is the OS algorithm, which has 
gained wide acceptance in many areas of research 
and clinical practice as it provides a significant 
improvement in computation time by accelerat-
ing the reconstruction process.

16.2.4.3  Ordered Subset Expectation 
Maximization (OSEM)

The accelerated version of the ML algorithm is 
the OS.  This type of algorithm is also called 
block iterative or row action as it relies on using 
a single datum or subset of data at each iteration. 
OSEM was derived by Hudson and Larkin to 
speed up the iteration process [37].

The underlying concept of OSEM reconstruc-
tion is that instead of using the whole data set to 
obtain an update for the reconstructed image, all 
projection data are divided into smaller groups of 
projections, or subsets, and thus the image update 
is implemented when one subset is used; this is 
called subiteration. However, full iteration takes 
place when the algorithm uses all the available 
subsets in the image reconstruction.

The number of projections is divided equally 
into subsets. For example, in SPECT acquisition 
of 72 projections, the data set can be divided into 
8 subsets, each with 9 projections. The  projections 
in each subset are not contiguous but are spread 
over the whole set of angular views such that the 
first subset includes the projection numbers 1, 9, 
18, and so on, and the second subset would have 
the projection numbers 2, 10, 19, and so on, and 
the same holds for the remaining subsets. The 
standard EM reconstruction of projection/back-
projection is applied to each subset, one by one, 
so that the resulting reconstruction from subset 1 
is the starting value for subset 2 and so on. In that 
example, a reduction of the reconstruction time 
by a factor of 8 can be achieved when using the 
OSEM technique as the rate of convergence is 
accelerated by a factor proportional to the num-
ber of subsets [37].

The properties of OSEM are similar to 
MLEM. Low-frequency regions converge faster 
than high-frequency regions. Thus, stopping iter-
ations at an early stage may result in suboptimal 
results represented in a biased contrast; however, 
running a large number of iterations produces 
noisy images. Therefore, a trade-off between the 
number of iterations and detail recovery should 
be considered [38]. In regions of low tracer con-
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centration, OSEM reconstruction might underes-
timate tracer activity concentration. This has 
been shown in a number of reports, including 
myocardial FDG studies and brain DatScan 
SPECT imaging [38, 39]. The spatially variant 
and object dependency convergence of iterative 
reconstruction is a limitation in determining the 
optimal number of iterations particularly with the 
increased noise as the iteration progresses. It is 
therefore of importance to optimize the recon-
struction parameters, including the filtration step, 
given a particular detection task to exploit the full 
potential of the iterative technique in improving 
the observer performance or quantitative mea-
surements [40].

Both 2D- and 3D-OSEM have found a num-
ber of successful applications in the reconstruc-
tion of SPECT and PET images, including 
corrections for many potentially degrading fac-
tors in addition to noise handling. These results 
have been exploited and commercialized in dif-
ferent software packages provided by scanner 
manufacturers. Attenuation-weighted OSEM 
reconstruction has been implemented in commer-
cial PET scanners. Instead of precorrecting for 
photon attenuation before image reconstruction 
and presenting the data to the iterative technique 
in a Poisson-corrupted form, attenuation correc-
tion factors can be included in the system matrix 
to yield images with less noise and superior qual-
ity than data precorrected for attenuation. Not 
only attenuation but also other degrading factors, 
such as system response, has been incorporated 
into iterative OSEM and resulted in remarkable 
improvement of PET image quality and spatial 
resolution [41]. Also, it has become evident that 
including all corrections starting from random, 
dead time, normalization, geometric scatter, 
attenuation, and arc correction (the problem of 
unevenly spaced acquired projections) in the sys-
tem matrix of iterative reconstruction allows 
preservation of the statistical nature of the raw 
data and satisfies the Poisson likelihood function 
of OSEM or MLEM, yielding an image with 
superior noise properties [42, 43].

16.2.4.4  Maximum A Posteriori
Maximum a posteriori (MAP) is a Bayesian 
reconstruction method that found several appli-
cations in SPECT and PET imaging [44]. It has a 
superior performance over analytic image recon-
struction, especially when image-degrading fac-
tors are taken into account [45, 46]. However, in 
contrast to the ML mentioned here, MAP recon-
struction uses prior knowledge to force the solu-
tion in the preferred or desired direction. 
According to Bayes’s theorem, the probability of 
estimating an image provided the measured pro-
jection data is given by the posterior density 
function

 
prob

prob prob

prob
f p

P f f

p
�� �� �
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� �  

The first term of the nominator refers to the 
likelihood, while the second term denotes the dis-
tribution of the prior. The denominator is a con-
stant (not a function of f     ) and can be dropped 
[40]. Note that in ML no preferences are placed 
on the reconstructed image; therefore, the objec-
tive function returns to the ML form once no 
information about the prior is assumed. The 
property given by MAP reconstruction to incor-
porate prior knowledge in the iterative procedure 
allows the associated noise elevation to be over-
come as the number of iterations increases, as 
mentioned. This is implemented by penalizing 
the likelihood function by a prior term, driving 
the log-likelihood to the favored solution. The 
prior function is often selected to smooth the 
reconstructed images; however, this occurs with 
drawbacks of blurring sharp edges. Functions 
designed to smooth the image while being able to 
preserve edges have also been suggested. Another 
type of prior attempts to utilize morphological 
information provided by anatomical imaging 
modalities such as CT and MRI and based on the 
assumption that tracer uptake within a given 
structure or organ is uniformly distributed. 
However, using MAP reconstruction with ana-
tomical priors has a number of limitations that, if 
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properly addressed, could significantly improve 
lesion detectability and image quality.

One of the commonly used is Gibbs distribu-
tion prior, which penalizes a given pixel based on 
differences with the neighboring pixels. It has the 
following mathematical representation:
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where Z is a normalization constant, and β is a 
weighting parameter that determines the strength 
of the prior. U(x) is the energy function and often 
contains potentials, U(·), defined on a pairwise 
cliques of neighboring pixels [46]. Prior func-
tions based on absolute pixel differences have 
been devised as well as functions that use relative 
pixel differences. It is the selection and design of 
the potential function that allows penalization of 
the reconstructed images in favor of smoothing 
the images or preserving sharp edges, and this is 
implemented by increasing or decreasing the 
probability of the desired solution [47]. In the 
same vein, MAP-based reconstruction techniques 
produce an image with complex and object- 
dependent spatial resolution; this again can be 
controlled by the prior function. A nonuniform 
spatial resolution is obtained if a shift-invariant 
prior is used, whereas a uniform resolution com-
parable to postsmoothed ML (with a sufficient 
number of iterations) can be achieved with appro-
priate tuning of the prior [48, 49].

The availability of multimodality imaging 
devices such as SPECT/CT, PET/CT, and PET/
MRI allows the introduction of morphological 
information in the iterative algorithm and thus 
has the potential to improve the quality of the 
diagnostic images. However, some problems 
could arise, such as image coregistration errors, 
identification of lesion location within the ana-
tomical structures or segmentation errors, addi-
tion of lesion or organ boundaries or both, and 
selection of the penalty function and optimal 
prior strength [50]; ultimately, research efforts 
need to optimize the technique and prove an 

improved diagnostic confidence over other meth-
ods that do not rely on prior information. 
Furthermore, an underutilized application of 
MAP-type reconstruction is the unexploited fea-
ture of incorporating an anatomical prior to cor-
rect for the partial volume effect. There is an 
interest in improving the spatial resolution of 
PET images using resolution recovery 
approaches; however, investigations could also 
be directed to make use of the anatomical data 
provided by CT or MRI images to formulate fea-
sible correction schemes in multimodality imag-
ing practice [50–52].

16.2.5  Time of Flight Reconstruction

Time of flight as explained in Chap. 13 has 
received a renewed interest after its initial incep-
tion in 1980s. Initial results presented due to TOF 
image reconstruction in commercial LSO scan-
ner have shown measurable gain in signal-to- 
noise ratio despite the use of relatively poor 
timing resolution of 1.2 ns [53]. Once the timing 
resolution of the PET scanner is very short such 
that the time arrival of the individual photons of 
the coincidences can be precisely measured, the 
theory of image reconstruction of the PET data is 
no longer required as photons “point” of annihi-
lation can be determined. The current clinical 
PET systems still have not reached that goal and 
hence image reconstruction is required while 
having TOF data as additional piece of informa-
tion to the reconstruction algorithm. PET data 
acquired with 3D mode are four dimensional and 
the additional TOF information increases data 
sparsity (a matrix with many zero elements) [54]. 
A Gaussian distribution function, the kernel, is 
then given instead of using the whole line of 
response in estimating the location of positron 
annihilation. The Gaussian is determined primar-
ily by the system timing resolution (denoted by 
full width at half-maximum, FWHM) using the 
time-distance relationship Δx = cΔτ/2 where c is 
the speed of light.

List-mode data format is an efficient method 
for storing uncompressed PET containing TOF 
information. While being very slow in image 
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reconstruction due to handling the coincidences 
on an event-by-event basis, some advantages are 
obtained for the sake of image quality. Full utili-
zation of the 3D PET data including TOF infor-
mation and plugging into reconstruction without 
data reduction or rebinning could provide an 
improved image characteristics including uni-
form spatial resolution and noise-contrast trade- 
off [55, 56]. However, this process is 
computationally intensive and computer clusters 
are used in commercial TOF systems. A factor 
that may enhance the computation time and speed 
up the process is kernel truncation but inaccurate 
assignment of the TOF kernel could result in 
image quality deterioration [57]. In Philips 
GEMINI TOF, for example, the optimal kernel 
width was found less critical for the recovered 
contrast but influential on the background unifor-
mity. Moreover, a smaller or wider kernels 
yielded less uniform background and reduced 
contrast recovery [58].

The 3D TOF data can also be transformed into 
different format including TOF as well as non- 
TOF in the 2D and 3D domains. This comes at 
the expense of increased image noise in the direc-
tion of going from 3D to 2D and also from TOF 
to non-TOF [59]. However, data rebinning via 
optimal weightings may have better variance and 
contrast recovery assessments in contrast to data 
without optimal weightings [60]. Furthermore, 
data rebinning into non-TOF sinograms retains 
significant signal to noise ratio over sinograms 
collected in absence of TOF information [61].

SSRE can also be implemented for TOF data 
in a similar fashion described for data acquired 
without TOF information [21, 62]. Fourier rebin-
ning mapping in frequency space or native coor-
dinate were also devised to reduce the size and 
dimensionality of the 3D TOF data into 2D data 
set [56, 63]. Fast accelerating methods employ-
ing graphics processing units (GPUs) using the 
compute unified device architecture (CUDA) 
framework was also presented to reconstruct 
TOF list-mode data set [54].

Earlier methods of TOF data reconstruction 
was the analytic methods [53, 64]. As described 
above, the analytic TOF reconstruction is carried 
out through backprojection of the sinogram data 
using confidence weighting function that utilize 

the uncertainty of the time resolution window of 
the system and then an inverse filter is employed 
to reconstruct the activity distribution in the 
image space. Various TOF reconstruction filters 
were proposed such as the most likely position 
(MLP), confidence weighting (CW), transverse 
ramp (TR), convolved ramp and Gaussian and 
others. The confidence weighting was shown to 
have minimal noise variance when having 
Poisson data derived from infinite uniform source 
distribution [64].

While analytic methods can be utilized to 
reconstruct the TOF PET data providing more 
speed and consistent quantification, model based 
statistical methods such as ML (or OSEM) are 
the most commonly used [65]. Direct reconstruc-
tion of the list-mode data is computationally 
demanding and used in some clinical systems but 
rebinning or transverse mashing methods could 
serve in data reduction and time saving.

16.2.6  Machine Learning

The topic of machine learning has been dis-
cussed in more than on instance in this textbook. 
There are several reasons behind this interest 
among which is the successful implementation 
of machine and deep learning in several aspects 
of radiology and nuclear medicine including 
image processing, classification, segmentation, 
super- resolution, and denoising, and many other 
disciplines related to disease detection, charac-
terization and monitoring [66–68]. However, 
there are continued interests in improving net-
work performance and more applications are 
emerging. Image reconstruction using convolu-
tional neural networks or deep learning has been 
reported in several reports. DeepPET is a convo-
lutional network devised as end-to-end encoder-
decoder PET image reconstruction technique 
[69]. The method reconstructs the PET image 
from the sinogram data with high quality and 
quantitative accuracy. Initial results showed bet-
ter relative error, peak signal to noise ratio, struc-
tural similarity index, and faster performance 
than iterative and analytic image reconstruction. 
On the SPECT side, a specialized method called 
SPECTNet was developed such that it split the 
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deep network into two subsystems and trained 
them separately; thus, avoiding training diffi-
culty [70]. The projection space was mapped and 
compressed to a low-dimensional space in the 
image domain and then the compressed image 
was upscaled to the original dimension. More 
accurate images were obtained with less sensi-
tivity to noise. Another approach was used to 
utilize the convolutional neural network in deriv-
ing SPECT images with quality comparable to 
Monte-Carlo-based image reconstruction but in 
a faster rate of processing [71]. In a similar man-
ner, it was also demonstrated that deep learning 
reconstruction of scattered data in Y90 studies 
could provide comparable performance to 
Monte-Carlo based scatter estimates in the con-
text of patient dosimetry and safety [72]. The 
merits achieved are accelerated image recon-
struction by orders of magnitude faster than 
Monte-Carlo approach while able to maintain 
high accuracy.

Image noise in tomographic PET and SPECT 
is one of the most annoying factors in image 
reconstruction. Neural network may be trained 
on a predetermined noise level but this prior may 
lose generalizability due to noise sparsity in 
training or testing data and introduce additional 
bias if not properly treated. An approach to incor-
porate a local linear fitting function with denois-
ing convolutional network was reported to robust 
versus noise level disparities while the network 
was trained with a predetermined noise level. A 
better quantitative and qualitative results were 
obtained in comparison to conventional methods 
[73]. The future of machine and deep learning in 
tomographic image reconstruction looks promis-
ing and would be able to overcome many of the 
current limitations providing a significant 
improvement in image quality, quantitative accu-
racy, and diagnostic performance.

16.3  Conclusions

Image reconstruction is a key element in convey-
ing the diagnostic information given an activity 
distribution within different tissues. Analytic 
approaches are simple, fast, and easy to imple-

ment in research and clinical practice. However, 
they have some drawbacks that can be eliminated 
using iterative techniques. These provide 
improved image quality and quantitative accu-
racy, with some efforts to be done on optimizing 
the reconstruction parameters given a particular 
detection task. The system matrix of iterative 
reconstruction can be considered an information 
reservoir that allows the technique to reach the 
most accurate solution and thus should be opti-
mally constructed. The future of machine and 
deep learning in tomographic image reconstruc-
tion looks promising and would be able to over-
come many of the current limitations providing a 
significant improvement in image quality, quanti-
tative accuracy, and diagnostic performance.
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