
AutoMoDe-IcePop: Automatic Modular
Design of Control Software for Robot
Swarms Using Simulated Annealing

Jonas Kuckling(B) , Keneth Ubeda Arriaza, and Mauro Birattari

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{jonas.kuckling,mbiro}@ulb.ac.be

Abstract. Prior research has shown that the optimization algorithm
is an integral part of the automatic modular off-line design of control
software for robot swarms and can have great influence on the quality of
the control software produced. In this paper we investigate, whether a
stochastic local search metaheuristic—simulated annealing—can be used
as the optimization algorithm in the automatic modular design of robot
swarms. The results indicate that simulated annealing is indeed a viable
candidate. Additionally, we investigate the influence of some obvious
variations of simulated annealing on the performance of the automatic
modular design.

Keywords: Swarm robotics · Automatic design · Simulated annealing

1 Introduction

Designing control software for a robot swarm is a challenging task, as the global
desired behavior usually emerges from the interactions of the robots between each
other and the environment [10,37]. Manual software design therefore often relies
on trial-and-error [4] and a general methodology for designing control software
for robot swarms is still missing [12].

Automatic design offers a promising alternative, by transforming the design
problem into an optimization problem. Instead of writing control software that
performs a specific mission, a target architecture is optimized with regard to a
mission-dependent objective function. A popular automatic design approach is
neuro-evolutionary swarm robotics which uses evolutionary algorithms to design
artificial neural networks. While this approach has successfully been applied
to many missions [8,11,21,33,35,36], multiple challenges remain to be solved
[5,31,34]. The most important is the weak transferability of the generated control
software, resulting in performance drops when deployed in reality. This drop

JK and KUA contributed equally to this work and should be considered as co-first
authors. The experiments were designed by JK and performed by KUA. The paper was
drafted by JK and edited by MB; all authors read and commented the final version.
The research was directed by MB.

c© Springer Nature Switzerland AG 2020
B. Bogaerts et al. (Eds.): BNAIC 2019/BENELEARN 2019, CCIS 1196, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-65154-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65154-1_1&domain=pdf
http://orcid.org/0000-0003-2391-2275
http://orcid.org/0000-0003-3309-2194
https://doi.org/10.1007/978-3-030-65154-1_1


4 J. Kuckling et al.

in performance is often associated with the reality gap—inherent differences
between the design context of the simulation and the real world.

Francesca et al. [14] see in this phenomenon a resemblance to the problem of
over-fitting in machine learning. Analogous to the bias-variance trade-off [9,17],
they propose to introduce a bias to the automatic design process. Their proposed
bias is a restriction of possible control software, by defining a control architec-
ture which can be composed through the combination of predefined modules. As
a proof of concept, Francesca et al. implemented AutoMoDe-Vanilla, an auto-
matic modular design approach that generates finite-state machines with up to
four states. Such generated finite-state machines are composed of states, which
will execute an associated behavior as long as they are active, and transitions,
that have an associated probabilistic condition which can trigger the transition
from one state to another. Vanilla uses F-race [2] to combine the finite-state
machines out of a set of predefined modules (behaviors and conditions) and to
fine tune their parameters.

With AutoMoDe-Chocolate [13], Francesca et al. implemented a variant of
Vanilla that differs only in the optimization algorithm employed. Chocolate
uses Iterated F-race [3], instead of F-race. The results of their experiments show
that Chocolate performs significantly better than Vanilla on many missions.
Given that the only difference between the two methods is the optimization
algorithm it seems apparent that the optimization algorithm is an important
part of the automatic modular design approach and can have a great influence on
the performance of generated control software. Following up on this observation,
we create IcePop, another instance of AutoMoDe. It is functionally similar to
Chocolate and Vanilla but it uses simulated annealing as an optimization
algorithm. We choose simulated annealing because it is a well-studied algorithm
[6,19,26,29,32] that has found many applications (for surveys see for example
[1] and [32]).

Simulated annealing is a metaheuristic inspired by the thermodynamical pro-
cess of annealing [23]. At higher temperatures the particles in a crystal are
more excited and can move more freely than at lower temperatures. Similarly,
the simulated annealing algorithm has a “temperature” parameter. When it is
high, the algorithm has a chance to accept worsening solutions, mimicking the
free movement of the particles. At lower temperatures, the algorithm will select
worsening solutions less likely, thus constraining the movement of the solution
candidate. Simulated annealing has shown properties that are desirable for the
automatic design of control software. It has been shown to effectively traverse
the search space and to converge quickly towards promising solutions [22]. This
allows an efficient use of the allocated budget. Furthermore, simulated anneal-
ing contains mechanisms to escape local optima—e.g., by accepting worsening
moves at higher temperatures. Without any a priori knowledge of the shape of
the search space, this is an important property as it reduces the risk of premature
convergence to suboptimal solutions.

The rest of this paper is structured as follows: In Sect. 2 we present the
experimental setup that we used—the robotic platform, the design methods



Automatic Modular Design of Control Software Using Simulated Annealing 5

and the experimental protocol. In Sect. 3 we present four experiments and their
results. In Sect. 4 we summarize our findings and give an outlook to future work.

2 Experimental Setup

In this section we describe the experimental setup and protocol that was used
to obtain the results described in Sect. 3.

2.1 Robotic Platform

IcePop designs control software for a swarm of modified e-puck robots [16,30].
The e-puck robots are equipped with two wheels, whose velocity can be adjusted
independently, three ground sensors that can perceive the greyscale color value of
the floor, and eight IR transceivers that are spaced equally around the robot, that
can perceive proximity and light values. The robot is also equipped with a range-
and-bearing board [18] that comprises twelve IR emitters and twelve receivers
equally distributed along the perimeter of the board and pointed radially and
outwards, on the horizontal plane. The range-and-bearing board allows the e-
puck to send and receive messages within a range of 0.7m. In order to abstract
the actual sensor configuration, we use a reference model [20]. Specifically, we use
RM1.1 (see Table 1), the reference model that was used to define the modules
of Chocolate.

In this reference model, each robot has eight light and proximity sensors
returning floating point values between 0 and 1. proxi and lighti define the
proximity and light reading for the ith sensor respectively. Three ground sensors
(groundi) return one of three values, indicating whether the ground underneath
them is black, gray or white. The reference model uses the range-and-bearing
board to count the number of neighbors in communication range (n) and cal-
culates an attraction vector (Vd) towards the center of mass of all perceived
robots. Additionally the robot has two wheels, whose velocity can be adjusted
independently (vl and vr for the velocity of the left wheel and the right wheel
respectively).

2.2 Automatic Design Methods

We compare two automatic modular design methods: Chocolate and IcePop.
Chocolate [13] generates probabilistic finite-state machines with up to four
states. For that it uses a set of six behaviors and six conditions that are defined
on top of RM1.1 [20]. The six behaviors are: exploration, stop, phototaxis, anti-
phototaxis, attraction and repulsion. The six conditions are: black-floor, gray-
floor, white-floor, neighbor-count, inverted-neighbor-count and fixed-probability.
For a detailed description of the modules, we refer the reader to their original
definition [14]. The optimization algorithm used by Chocolate is Iterated F-race
[27].



6 J. Kuckling et al.

Table 1. Reference model RM1.1 [20]. Sensors and actuators of the e-puck robot. The
period of the control cycle is 100 ms.

Sensor/Actuator Parameters Values

proximity proxi, with i ∈ {0, . . . , 7} [0, 1]

light lighti, with i ∈ {0, . . . , 7} [0, 1]

ground groundi, with i ∈ {0, . . . , 2} {black, gray, white}
range-and-bearing n {0, . . . , 19}

Vd ([0, 0.7]m, [0, 2π] radian)

wheels vl, vr [−0.12, 0.12] m/s

Algorithm 1. Component-based simulated annealing algorithm
best solution s∗ := incumbent solution ŝ := s0
i := 0
T0 := initialize temperature according to initial temperature
while stopping criterion is not met do

choose a solution si+1 in the neighborhood of ŝ according to exploration criterion
if si+1 meets acceptance criterion then

ŝ := si+1

if ŝ improves over s∗ then
s∗ := ŝ

end if
end if
if temperature length steps since last temperature update then

update temperature according to cooling scheme;
end if
reset temperature according to temperature restart mechanism;
i := i + 1

end while
return s∗

In this paper, we propose IcePop. It is based on Chocolate, as it uses the
same modules and target architecture. The difference between the two methods
is that IcePop adopts the component-based simulated annealing algorithm (see
Algorithm 1) as the optimization algorithm. Franzin and Stützle proposed this
component-based algorithm in an effort to unify many variants of the simulated
annealing algorithm [15]. We choose to adopt this algorithm because it provides
the flexibility to easily change components should the need arise.

The component-based simulated annealing algorithm contains placeholders
for commonly used components. In Table 2, we present our choices of compo-
nents that we use in the implementation of the simulated annealing for IcePop.
The initial solution supplied to the algorithm is a minimal valid instance of con-
trol software. In our case this is a finite-state machine with exactly one state
executing the stop behavior. The neighborhood function is implicitly defined
through the application of a random valid perturbation operator. In IcePop, we



Automatic Modular Design of Control Software Using Simulated Annealing 7

Table 2. Configuration of the simulated annealing algorithm.

Component Type Parameter

Initial solution Minimal controller Stop behavior

Neighborhood Defined through perturbation operators

Initial temperature Fixed value T0 = 125.0

Stopping criterion Budget of simulations 50000 simulations

Exploration criterion Random exploration Valid perturbation operators

Acceptance criterion Metropolis condition Mean with 10 samples

Temperature length Fixed value Tlength = 1

Cooling scheme Geometric cooling α = 0.9782

Temperature restart Fixed value Every 5000 simulations

have defined eleven perturbation operators: adding a state, removing a state,
adding a transition, removing a transition, changing the initial state, chang-
ing the starting point of a transition, changing the end point of a transition,
changing the behavior associated with a state, changing the condition associ-
ated with a transition, changing the parameters of a behavior, and changing the
parameters of a condition. The initial temperature is set to 125.0. The stopping
criterion is defined as a maximum budget of simulation runs. That is, after the
allocated budget of simulation runs is exhausted, the algorithm should return
the final instance of control software. The exploration criterion selects a ran-
dom valid perturbation operator and applies it on the incumbent solution. The
acceptance criterion is the Metropolis condition [23,28] that accepts or rejects
new solutions based on their performance. The Metropolis condition will always
accept an improving solution, and will accept a worsening solution with proba-
bility exp(−(e − e′)/T ) where T is the current temperature, e is quality of the
currently best solution and e′ is the quality of the perturbed solution. Because
the performance of each instance of control software is stochastic, e and e′ will
be computed as the mean of a sample of 10 runs of the respective instance of
control software. The temperature length determines the number of steps before
the temperature cools down again. We set the value to 1, so that the cooling
happens in every step. The cooling scheme that is then applied is the geometric
cooling [23]. In geometric cooling, the updated temperature is computed as T ∗α,
where T is the current temperature and α is the cooling coefficient, which we
set as α = 0.9782. Additionally, the temperature resets to the initial value every
5000 simulations.

The source code of our implementation of IcePop is available at: https://
github.com/keua/design-of-robot-swarms-by-optimization

2.3 Missions

All experiments were conducted with 20 robots on two missions Aggregation
with Ambient Cues (AAC) and Foraging.

https://github.com/keua/design-of-robot-swarms-by-optimization
https://github.com/keua/design-of-robot-swarms-by-optimization


8 J. Kuckling et al.

Fig. 1. The two missions: AAC (left) and Foraging (right).

AAC. The arena contains two circles, one black, one white. A light source
is placed on the side of the arena that contains the black circle (Fig. 1, left).
The robots are tasked to aggregate on the black spot. The objective function
FAAC =

∑T
t=0 Nt where Nt is the number of robots on the black circle at time

step Nt.

Foraging. The arena contains two source areas in the form of black circles and
a nest, as a white area. A light source is placed behind the nest to help the
robots to navigate (Fig. 1, right). As the robots have no gripping capabilities,
we consider an idealized version of foraging, where a robot is deemed to retrieve
an object when it enters a source and then the nest. The goal of the swarm is to
retrieve as many objects as possible. The objective function is Ff = Ni, where
Ni is the number of retrieved objects.

2.4 Protocol

As each design process is stochastic, we run 20 independent designs for each
design method, resulting in 20 instances of control software. The so obtained
instances are then each assessed 10 times in the design context (what we call
simulation) and another 10 times in a different simulation setting (what we call
pseudo-reality). Pseudo-reality is a concept to evaluate the transferability of
control software [25]. Instead of assessing the performance directly in reality, a
different simulation context is used. Research has shown that control software
that transfers well into reality also transfers well into pseudo-reality, while control
software that transfers badly into reality also transfers badly into pseudo-reality.

The results are presented in notched box-and-whisker boxplots, giving a
visual representation of the samples. In such a notched box-and-whisker box-
plot, the horizontal thick line denotes the median of the sample. The lower and
upper sides of the box are called upper and lower hinges and represent the 25th
and 75th percentile of the observations, respectively. The upper whisker extends
either up to the largest observation or up to 1.5 times the difference between
upper hinge and median—whichever is smaller. The lower whisker is defined



Automatic Modular Design of Control Software Using Simulated Annealing 9

Fig. 2. Performance of control software created by IcePop for different budgets.

analogously. Small circles represent outliers (if any), that are observations that
fall beyond the whiskers. Notches extend to ±1.58IQR/

√
n, where IQR is the

interquartile range and n = 20 is the number of observations. Notches indicate
the 95% confidence interval on the position of the median. If the notches of two
boxes do not overlap, the observed difference between the respective medians is
significant [7].

3 Results

In this section we describe four experiments we conducted and the results we
obtained. The instances of control software produced, the details of their per-
formances, and videos of their execution on the robots are available as online
supplementary material [24]. We also discuss possible reasons for the results.

3.1 Influence of the Budget

We conduct one experiment to investigate the influence of the budget on the
performance of the generated control software. Designs with a smaller budget
need less time to finish but usually produce results that perform less well in
simulation. The higher the time the better usually the performance in simula-
tion, but an overdesigning effect might be observed, where the improvement in
simulation does not carry over to reality. We tested IcePop with five different
budgets (5000, 10000, 25000, 50000 and 100000 simulations respectively).

The results displayed in Fig. 2 show the influence of the budget on the perfor-
mance of the control software generated by IcePop. One trend that is apparent
from the data, is that, as expected, a larger design budgets leads to control
software that performs better in simulation. However the relative improvement
diminishes and the performance seems to reach a peak around a budget of 50000
simulations.



10 J. Kuckling et al.

Furthermore the performance in pseudo-reality improves initially with an
increased budget. Here, however, the performance levels after the budget of
25000 simulations is reached and does not improve any further. This could be
an indicator that the design reached the peak performance that is still trans-
ferable. Further designs might improve the performance in simulation but the
transferability will suffer in return.

3.2 Influence of the Sample Size

We chose the Metropolis condition as the acceptance criterion in the component-
based simulated annealing for IcePop. In its original definition it was defined to
compare two single performance measures. As the evaluation of the performance
of an instance of control software is stochastic, we sample several simulation
runs. The mean of this sample is then supplied to the Metropolis condition.

In a second experiment, we investigate the influence of the sample size on
the performance of the generated control software. Smaller sample sizes use less
of the budget to evaluate one solution, allowing more solution candidates to be
investigated. On the other hand, outliers will have a greater impact on the mean
of the samples and thus the perceived performance. Larger sample sizes lead
to the inverse effect. Fewer total solution candidates would be investigated but
the performance of each individual solution candidate is more robust to outliers.
We study the influence of the sample size on the performance of the generated
control software by evaluating the performance in simulation and in pseudo-
reality for three sample sizes: 5, 10, and 15. Additionally we test every variant
on the three budgets that showed peak performance in the previous experiment
(25000, 50000, and 100000 simulations).

Figure 3 shows the results for the three different variants of the sample size
over the three investigated budgets. For a budget of 25000 simulations, all vari-
ants perform similar and no differences can be seen, both in simulation and
pseudo-reality. In the case of a budget of 50000, the variant with a sample size
of 10 samples performs slightly better than the other two variants, in the mis-
sion Foraging when assessed in simulation. In pseudo-reality, this difference
however is not present anymore. It could therefore very well be that this is sim-
ply a statistical artifact of the stochastic design process. For 100000 simulation
runs, the three variants achieve a comparable performance again and only minor
differences can be observed. All in all, the three different sample sizes that we
compared show no noticeable differences.

3.3 Influence of the Restarting Mechanism

We conduct a third experiment, to investigate the influence of the restarting
mechanism. Restarting resets the temperature to a higher value, allowing the
design process to make bigger movements in the search space again. We inves-
tigate four different restarting mechanisms: fixed length (restarts after a fixed
number of simulations, in this case every 5000 simulations), no restart (the tem-
perature cools over the whole design process and is never restarted), reheat (the



Automatic Modular Design of Control Software Using Simulated Annealing 11

Fig. 3. Influence of the sample size.



12 J. Kuckling et al.

Fig. 4. Influence of the restart mechanism.



Automatic Modular Design of Control Software Using Simulated Annealing 13

Fig. 5. Comparison between Chocolate and IcePop.



14 J. Kuckling et al.

temperature is reset every 5000 simulations, the new temperature is set to the
one that generated the biggest improvement so far), restart once (after the half
of the budget is exhausted the temperature resets). We test all restarting mech-
anisms on budgets of 25000, 50000 and 10000 simulations.

Figure 4 shows the results for the different restarting mechanisms. The results
for a budget of 25000 simulation runs show no difference between the four vari-
ants. In case of a budget of 50000 simulation runs all variants perform similarly
in the mission AAC. In the mission Foraging, the restarting mechanism that
restarts every 5000 simulation runs performs worse than the other three vari-
ants. For a budget of 100000 simulation runs, all four variants perform similarly
again. In the mission Foraging, however, the fixed length restarting mechanism
(default) shows a larger distribution than the other three variants.

In conclusion, the four different variants fail to produce noticeable differences
in the performance of the generated control software.

3.4 Comparison with Chocolate

In the last experiment, we compare the performance of IcePop with Chocolate
across three different budgets (25000, 50000 and 100000 simulations).

Figure 5 shows the comparison results of IcePop with Chocolate for bud-
gets of 25000, 50000, and 100000 simulations respectively. Throughout all three
budgets, it is apparent that IcePop performs better in simulation than Choc-
olate in both missions. In the mission AAC, the difference in performance is
statistically significant.

Unfortunately the drop of performance when assessed in pseudo-reality is
slightly larger for IcePop than for Chocolate. This could indicate that IcePop
might be less transferable to real robots than Chocolate. Despite the larger
performance drop, IcePop still performs better in pseudo-reality, and in AAC
this difference in performance is also statistically significant.

Additionally, we have taken the best performing instance of control software
of IcePop and Chocolate (with a design budget of 100k simulations) for each
mission and directly applied it to a swarm of twenty real e-pucks. Videos of the
performance of the control software on real robots can be found online [24].

4 Conclusions

In this work we have investigated a default configuration for simulated annealing
in the context of automatic modular design. The results indicate that simulated
annealing can be a viable candidate for the automatic modular design of robot
swarms. Additionally, we have investigated the influence of some obvious varia-
tions to the simulated annealing on the performance of the automatic modular
design. The component-based simulated annealing approach allowed us to easily
implement these variants.

Simulated annealing is a well studied optimization algorithm with many pro-
posed extensions, improvements and variants. A next step could be finding a



Automatic Modular Design of Control Software Using Simulated Annealing 15

suitable configuration of components that satisfies best the demands of the auto-
matic modular design. Also, it would be interesting to apply IcePop to a broader
range of missions.

Acknowledgements. The project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 681872). Jonas Kuckling and Mauro Birattari acknowl-
edge support from the Belgian Fonds de la Recherche Scientifique – FNRS.

References

1. Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Burke, E.K., Kendall,
G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Deci-
sion Support Techniques, pp. 187–210. Springer, Boston (2005). https://doi.org/
10.1007/0-387-28356-0 7

2. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Langdon, W.B., et al. (eds.) GECCO 2002: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18.
Morgan Kaufmann Publishers, San Francisco (2002)

3. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race:
an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.
(eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp.
311–336. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-
9 13

4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

5. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics:
a review. Front. Robot. AI 5, 12 (2018). https://doi.org/10.3389/frobt.2018.00012

6. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Eur. J. Oper.
Res. 258(1), 70–78 (2017). https://doi.org/10.1016/j.ejor.2016.07.012

7. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods
For Data Analysis. CRC Press, Belmont (1983)

8. Christensen, A.L., Dorigo, M.: Evolving an integrated phototaxis and hole-
avoidance behavior for a swarm-bot. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A.,
Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Artificial Life - ALIFE, pp.
248–254. MIT Press, Cambridge (2006). A Bradford Book

9. Dietterich, T.G., Kong, E.B.: Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms. Technical report, Department of Computer
Science, Oregon State University, Corvallis, OR, USA (1995)

10. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014). https://doi.org/10.4249/scholarpedia.1463

11. Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E.A., Dorigo, M., Wenseleers, T.:
Evolution of self-organized task specialization in robot swarms. PLoS Comput.
Biol. 11(8), e1004273 (2015). https://doi.org/10.1371/journal.pcbi.1004273

12. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. AI 3(29), 1–9 (2016). https://doi.org/10.3389/frobt.2016.
00029

https://doi.org/10.1007/0-387-28356-0_7
https://doi.org/10.1007/0-387-28356-0_7
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.3389/frobt.2018.00012
https://doi.org/10.1016/j.ejor.2016.07.012
https://doi.org/10.4249/scholarpedia.1463
https://doi.org/10.1371/journal.pcbi.1004273
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.3389/frobt.2016.00029


16 J. Kuckling et al.

13. Francesca, G., et al.: AutoMoDe-Chocolate: automatic design of control software
for robot swarms. Swarm Intell. 9(2–3), 125–152 (2015). https://doi.org/10.1007/
s11721-015-0107-9

14. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014). https://doi.org/10.1007/s11721-014-0092-4

15. Franzin, A., Stützle, T.: Revisiting simulated annealing: a component-based analy-
sis. Comput. Oper. Res. 104, 191–206 (2019). https://doi.org/10.1016/j.cor.2018.
12.015

16. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Technical report TR/IRIDIA/2015-004,
IRIDIA, Université libre de Bruxelles, Belgium (2015)

17. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Comput. 4(1), 1–58 (1992). https://doi.org/10.1162/neco.1992.
4.1.1

18. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open e-puck range & bearing miniaturized board for local commu-
nication in swarm robotics. In: Kosuge, K. (ed.) IEEE International Conference
on Robotics and Automation, ICRA, pp. 3111–3116. IEEE, Piscataway (2009).
https://doi.org/10.1109/ROBOT.2009.5152456

19. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13(2), 311–
329 (1988). https://doi.org/10.1287/moor.13.2.311

20. Hasselmann, K., et al.: Reference models for AutoMoDe. Technical report
TR/IRIDIA/2018-002, IRIDIA, Université libre de Bruxelles, Belgium (2018)

21. Hauert, S., Zufferey, J.C., Floreano, D.: Evolved swarming without positioning
information: an application in aerial communication relay. Auton. Robots 26(1),
21–32 (2009). https://doi.org/10.1007/s10514-008-9104-9

22. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications, 1st
edn. Morgan Kaufmann Publishers, San Francisco (2005). https://doi.org/10.1016/
B978-1-55860-872-6.X5016-1

23. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983). https://doi.org/10.1126/science.220.4598.
671

24. Kuckling, J., Ubeda Arriaza, K., Birattari, M.: AutoMoDe-IcePop: automatic mod-
ular design of control software for robot swarms using simulated annealing (2020).
Supplementary material. http://iridia.ulb.ac.be/supp/IridiaSupp2020-003/

25. Ligot, A., Birattari, M.: Simulation-only experiments to mimic the effects of the
reality gap in the automatic design of robot swarms. Swarm Intell. 14(1), 1–24
(2019). https://doi.org/10.1007/s11721-019-00175-w

26. Lundy, M., Alistair, M.: Convergence of an annealing algorithm. Math. Program.
34(1), 111–124 (1986). https://doi.org/10.1007/BF01582166

27. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

28. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–
1092 (1953). https://doi.org/10.1063/1.1699114

https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1016/j.cor.2018.12.015
https://doi.org/10.1016/j.cor.2018.12.015
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1109/ROBOT.2009.5152456
https://doi.org/10.1287/moor.13.2.311
https://doi.org/10.1007/s10514-008-9104-9
https://doi.org/10.1016/B978-1-55860-872-6.X5016-1
https://doi.org/10.1016/B978-1-55860-872-6.X5016-1
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
http://iridia.ulb.ac.be/supp/IridiaSupp2020-003/
https://doi.org/10.1007/s11721-019-00175-w
https://doi.org/10.1007/BF01582166
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1063/1.1699114


Automatic Modular Design of Control Software Using Simulated Annealing 17

29. Mitra, D., Romeo, F., Sangiovanni-Vincentelli, A.: Convergence and finite-time
behavior of simulated annealing. In: 1985 24th IEEE Conference on Decision and
Control, pp. 761–767. IEEE Press, Piscataway (1985). https://doi.org/10.1109/
CDC.1985.268600

30. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de
Castelo Branco, Castelo Branco (2009)

31. Nedjah, N., Silva Junior, L.: Review of methodologies and tasks in swarm robotics
towards standardization. Swarm Evol. Comput. 50, 100565 (2019). https://doi.
org/10.1016/j.swevo.2019.100565

32. Nikolaev, A.G., Jacobson, S.H.: Simulated annealing. In: Gendreau, M., Potvin,
J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations
Research & Management Science, vol. 146, pp. 1–39. Springer, Boston (2010).
https://doi.org/10.1007/978-1-4419-1665-5 1

33. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homo-
geneous system of physical robots: structured cooperation with minimal sensors.
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361(1811), 2321–2343
(2003). https://doi.org/10.1098/rsta.2003.1258

34. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues
in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016). https://doi.org/
10.1162/EVCO a 00172

35. Trianni, V., López-Ibáñez, M.: Advantages of task-specific multi-objective optimi-
sation in evolutionary robotics. PLoS One 10(8), e0136406 (2015). https://doi.
org/10.1371/journal.pone.0136406

36. Trianni, V., Nolfi, S.: Self-organizing sync in a robotic swarm: a dynamical system
view. IEEE Trans. Evol. Comput. 13(4), 722–741 (2009). https://doi.org/10.1109/
TEVC.2009.2015577

37. Yang, G.Z., et al.: The grand challenges of Science Robotics. Sci. Robot. 3(14),
eaar7650 (2018). https://doi.org/10.1126/scirobotics.aar7650

https://doi.org/10.1109/CDC.1985.268600
https://doi.org/10.1109/CDC.1985.268600
https://doi.org/10.1016/j.swevo.2019.100565
https://doi.org/10.1016/j.swevo.2019.100565
https://doi.org/10.1007/978-1-4419-1665-5_1
https://doi.org/10.1098/rsta.2003.1258
https://doi.org/10.1162/EVCO_a_00172
https://doi.org/10.1162/EVCO_a_00172
https://doi.org/10.1371/journal.pone.0136406
https://doi.org/10.1371/journal.pone.0136406
https://doi.org/10.1109/TEVC.2009.2015577
https://doi.org/10.1109/TEVC.2009.2015577
https://doi.org/10.1126/scirobotics.aar7650

	AutoMoDe-IcePop: Automatic Modular Design of Control Software for Robot Swarms Using Simulated Annealing
	1 Introduction
	2 Experimental Setup
	2.1 Robotic Platform
	2.2 Automatic Design Methods
	2.3 Missions
	2.4 Protocol

	3 Results
	3.1 Influence of the Budget
	3.2 Influence of the Sample Size
	3.3 Influence of the Restarting Mechanism
	3.4 Comparison with Chocolate

	4 Conclusions
	References




