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Preface

The 31st edition of the annual Benelux Conference on Attificial Intelligence (BNAIC
2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019)
were jointly organized by the Vrije Universiteit Brussel, the Université Libre de
Bruxelles, and the Université de Liége, under the auspices of the Benelux Association
for Artificial Intelligence (BN'VKI) and the Dutch Research School for Information and
Knowledge Systems (SIKS), in collaboration with Brewery of Ideas under the name Al
Synergies.

Held yearly, the objective of these conferences is to promote and disseminate recent
research developments in Artificial Intelligence (AI) and Machine Learning (ML) in the
Benelux. For the first time, we have combined these two conferences with a whole-day
business track (on November 6, 2019) and an ‘Art-AI’ evening (also November 6,
2019) into an overarching event called AI Synergies, with the goal of further expanding
the reach and impact of the two conferences and to allow people from industry to get in
touch with the academics and learn about their work. This part of the conference was
co-organized by the company Brewery of Ideas.

For the scientific part, we welcomed four types of contributions, namely A) regular
papers, B) compressed contributions, C) demonstration abstracts, and
D) bachelor/master thesis abstracts. We received 127 submissions, 66 for the Al and 61
for the ML tracks. In terms of the four types, we received 10 demonstration abstracts,
24 bachelor/master thesis’s, 50 regular paper submissions, and 43 compressed con-
tributions. Submissions were evaluated by three reviewers. From all these submissions,
the International Program Committee (see at end) selected 115 for the conference, to be
presented either as talk or research pitches in sessions organized around the most
important Al and ML topics.

Finally, the BNAIC/Benelearn Program Committee selected the most insightful and
relevant papers from both the ML and AI tracks to be included in these
post-proceedings. An additional peer-review process was single blind with three
reviewers per paper. In total 11 papers were withheld, resulting in the post-proceedings
you are currently reading.

For the Al part, the selected papers reflect the diversity of submissions that were also
presented at the conference. The post-proceedings include two contributions on the
topic of modular design of robot swarms and one contribution that aims to help in the
fight against HIV. Additionally, the Al part has a contribution on computational models
that can help understand how humans perceive language, as well as a novel method for
exploring latent spaces of datasets.

For the ML part, the ratio between fundamental and applied papers is quite bal-
anced: three for each. The applied part of the ML post-proceedings includes papers on
various fields: churn prediction in telecommunications, a recommendation system, and
a data visualization tool. On the fundamental side, the papers cover defense against
adversarial attacks, ordinal classification problems, and detrimental point processes.
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With the booming interest in Al and ML in both academia and companies, this
edition of the BNAIC/Benelearn conferences was an outstanding success. It revealed
that both communities are active and strong in the Benelux, and we hope that future
organizations of this event will surpass the one organized in 2019 in Brussels.
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AutoMoDe-IcePop: Automatic Modular
Design of Control Software for Robot
Swarms Using Simulated Annealing

Jonas Kuckling®™)®, Keneth Ubeda Arriaza, and Mauro Birattari

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{jonas.kuckling,mbiro}@ulb.ac.be

Abstract. Prior research has shown that the optimization algorithm
is an integral part of the automatic modular off-line design of control
software for robot swarms and can have great influence on the quality of
the control software produced. In this paper we investigate, whether a
stochastic local search metaheuristic—simulated annealing—can be used
as the optimization algorithm in the automatic modular design of robot
swarms. The results indicate that simulated annealing is indeed a viable
candidate. Additionally, we investigate the influence of some obvious
variations of simulated annealing on the performance of the automatic
modular design.

Keywords: Swarm robotics - Automatic design - Simulated annealing

1 Introduction

Designing control software for a robot swarm is a challenging task, as the global
desired behavior usually emerges from the interactions of the robots between each
other and the environment [10,37]. Manual software design therefore often relies
on trial-and-error [4] and a general methodology for designing control software
for robot swarms is still missing [12].

Automatic design offers a promising alternative, by transforming the design
problem into an optimization problem. Instead of writing control software that
performs a specific mission, a target architecture is optimized with regard to a
mission-dependent objective function. A popular automatic design approach is
neuro-evolutionary swarm robotics which uses evolutionary algorithms to design
artificial neural networks. While this approach has successfully been applied
to many missions [8,11,21,33,35,36], multiple challenges remain to be solved
[5,31,34]. The most important is the weak transferability of the generated control
software, resulting in performance drops when deployed in reality. This drop

JK and KUA contributed equally to this work and should be considered as co-first
authors. The experiments were designed by JK and performed by KUA. The paper was
drafted by JK and edited by MB; all authors read and commented the final version.
The research was directed by MB.
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in performance is often associated with the reality gap—inherent differences
between the design context of the simulation and the real world.

Francesca et al. [14] see in this phenomenon a resemblance to the problem of
over-fitting in machine learning. Analogous to the bias-variance trade-off [9,17],
they propose to introduce a bias to the automatic design process. Their proposed
bias is a restriction of possible control software, by defining a control architec-
ture which can be composed through the combination of predefined modules. As
a proof of concept, Francesca et al. implemented AutoMoDe-Vanilla, an auto-
matic modular design approach that generates finite-state machines with up to
four states. Such generated finite-state machines are composed of states, which
will execute an associated behavior as long as they are active, and transitions,
that have an associated probabilistic condition which can trigger the transition
from one state to another. Vanilla uses F-race [2] to combine the finite-state
machines out of a set of predefined modules (behaviors and conditions) and to
fine tune their parameters.

With AutoMoDe-Chocolate [13], Francesca et al. implemented a variant of
Vanilla that differs only in the optimization algorithm employed. Chocolate
uses Iterated F-race [3], instead of F-race. The results of their experiments show
that Chocolate performs significantly better than Vanilla on many missions.
Given that the only difference between the two methods is the optimization
algorithm it seems apparent that the optimization algorithm is an important
part of the automatic modular design approach and can have a great influence on
the performance of generated control software. Following up on this observation,
we create IcePop, another instance of AutoMoDe. It is functionally similar to
Chocolate and Vanilla but it uses simulated annealing as an optimization
algorithm. We choose simulated annealing because it is a well-studied algorithm
[6,19,26,29,32] that has found many applications (for surveys see for example
[1] and [32]).

Simulated annealing is a metaheuristic inspired by the thermodynamical pro-
cess of annealing [23]. At higher temperatures the particles in a crystal are
more excited and can move more freely than at lower temperatures. Similarly,
the simulated annealing algorithm has a “temperature” parameter. When it is
high, the algorithm has a chance to accept worsening solutions, mimicking the
free movement of the particles. At lower temperatures, the algorithm will select
worsening solutions less likely, thus constraining the movement of the solution
candidate. Simulated annealing has shown properties that are desirable for the
automatic design of control software. It has been shown to effectively traverse
the search space and to converge quickly towards promising solutions [22]. This
allows an efficient use of the allocated budget. Furthermore, simulated anneal-
ing contains mechanisms to escape local optima—e.g., by accepting worsening
moves at higher temperatures. Without any a priori knowledge of the shape of
the search space, this is an important property as it reduces the risk of premature
convergence to suboptimal solutions.

The rest of this paper is structured as follows: In Sect.2 we present the
experimental setup that we used—the robotic platform, the design methods
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and the experimental protocol. In Sect. 3 we present four experiments and their
results. In Sect. 4 we summarize our findings and give an outlook to future work.

2 Experimental Setup

In this section we describe the experimental setup and protocol that was used
to obtain the results described in Sect. 3.

2.1 Robotic Platform

IcePop designs control software for a swarm of modified e-puck robots [16,30].
The e-puck robots are equipped with two wheels, whose velocity can be adjusted
independently, three ground sensors that can perceive the greyscale color value of
the floor, and eight IR transceivers that are spaced equally around the robot, that
can perceive proximity and light values. The robot is also equipped with a range-
and-bearing board [18] that comprises twelve IR emitters and twelve receivers
equally distributed along the perimeter of the board and pointed radially and
outwards, on the horizontal plane. The range-and-bearing board allows the e-
puck to send and receive messages within a range of 0.7m. In order to abstract
the actual sensor configuration, we use a reference model [20]. Specifically, we use
RM1.1 (see Table 1), the reference model that was used to define the modules
of Chocolate.

In this reference model, each robot has eight light and proximity sensors
returning floating point values between 0 and 1. proz; and light; define the
proximity and light reading for the ith sensor respectively. Three ground sensors
(ground;) return one of three values, indicating whether the ground underneath
them is black, gray or white. The reference model uses the range-and-bearing
board to count the number of neighbors in communication range (n) and cal-
culates an attraction vector (V) towards the center of mass of all perceived
robots. Additionally the robot has two wheels, whose velocity can be adjusted
independently (v; and v, for the velocity of the left wheel and the right wheel
respectively).

2.2 Automatic Design Methods

We compare two automatic modular design methods: Chocolate and IcePop.
Chocolate [13] generates probabilistic finite-state machines with up to four
states. For that it uses a set of six behaviors and six conditions that are defined
on top of RM1.1 [20]. The six behaviors are: exploration, stop, phototaxis, anti-
phototaxis, attraction and repulsion. The six conditions are: black-floor, gray-
floor, white-floor, neighbor-count, inverted-neighbor-count and fixed-probability.
For a detailed description of the modules, we refer the reader to their original
definition [14]. The optimization algorithm used by Chocolate is Iterated F-race
[27].
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Table 1. Reference model RM1.1 [20]. Sensors and actuators of the e-puck robot. The
period of the control cycle is 100 ms.

Sensor/Actuator | Parameters Values
proximity prox;, with ¢ € {0,...,7} [0,1]
light light;, with i € {0,...,7} [0, 1]
ground ground;, with i € {0,...,2} | {black, gray, white}
range-and-bearing | n {0,...,19}

Va ([0,0.7]m, [0, 27] radian)
wheels vy, Uy [—0.12,0.12] m/s

Algorithm 1. Component-based simulated annealing algorithm

best solution s* := incumbent solution 3 := sg
1:=0
Ty := initialize temperature according to initial temperature
while stopping criterion is not met do
choose a solution s;+1 in the neighborhood of § according to exploration criterion
if s;41 meets acceptance criterion then
§:= Si+1
if § improves over s* then
s":=3
end if
end if
if temperature length steps since last temperature update then
update temperature according to cooling scheme;
end if
reset temperature according to temperature restart mechanism;
ti=14+1
end while
return s*

In this paper, we propose IcePop. It is based on Chocolate, as it uses the
same modules and target architecture. The difference between the two methods
is that IcePop adopts the component-based simulated annealing algorithm (see
Algorithm 1) as the optimization algorithm. Franzin and Stiitzle proposed this
component-based algorithm in an effort to unify many variants of the simulated
annealing algorithm [15]. We choose to adopt this algorithm because it provides
the flexibility to easily change components should the need arise.

The component-based simulated annealing algorithm contains placeholders
for commonly used components. In Table 2, we present our choices of compo-
nents that we use in the implementation of the simulated annealing for IcePop.
The initial solution supplied to the algorithm is a minimal valid instance of con-
trol software. In our case this is a finite-state machine with exactly one state
executing the stop behavior. The neighborhood function is implicitly defined
through the application of a random valid perturbation operator. In IcePop, we
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Table 2. Configuration of the simulated annealing algorithm.

Component Type Parameter

Initial solution Minimal controller Stop behavior
Neighborhood Defined through perturbation operators
Initial temperature Fixed value To =125.0
Stopping criterion Budget of simulations | 50000 simulations

Ezxploration criterion | Random exploration | Valid perturbation operators

Acceptance criterion | Metropolis condition | Mean with 10 samples

Temperature length | Fixed value Tiength =1
Cooling scheme Geometric cooling a = 0.9782
Temperature restart | Fixed value Every 5000 simulations

have defined eleven perturbation operators: adding a state, removing a state,
adding a transition, removing a transition, changing the initial state, chang-
ing the starting point of a transition, changing the end point of a transition,
changing the behavior associated with a state, changing the condition associ-
ated with a transition, changing the parameters of a behavior, and changing the
parameters of a condition. The initial temperature is set to 125.0. The stopping
criterion is defined as a maximum budget of simulation runs. That is, after the
allocated budget of simulation runs is exhausted, the algorithm should return
the final instance of control software. The exploration criterion selects a ran-
dom valid perturbation operator and applies it on the incumbent solution. The
acceptance criterion is the Metropolis condition [23,28] that accepts or rejects
new solutions based on their performance. The Metropolis condition will always
accept an improving solution, and will accept a worsening solution with proba-
bility exp(—(e — €')/T) where T is the current temperature, e is quality of the
currently best solution and e’ is the quality of the perturbed solution. Because
the performance of each instance of control software is stochastic, e and e’ will
be computed as the mean of a sample of 10 runs of the respective instance of
control software. The temperature length determines the number of steps before
the temperature cools down again. We set the value to 1, so that the cooling
happens in every step. The cooling scheme that is then applied is the geometric
cooling [23]. In geometric cooling, the updated temperature is computed as T,
where T is the current temperature and « is the cooling coefficient, which we
set as a = 0.9782. Additionally, the temperature resets to the initial value every
5000 simulations.

The source code of our implementation of IcePop is available at: https://
github.com /keua/design-of-robot-swarms-by-optimization

2.3 Missions

All experiments were conducted with 20 robots on two missions AGGREGATION
WITH AMBIENT CUES (AAC) and FORACGING.


https://github.com/keua/design-of-robot-swarms-by-optimization
https://github.com/keua/design-of-robot-swarms-by-optimization

8 J. Kuckling et al.

Fig. 1. The two missions: AAC (left) and FORAGING (right).

AAC. The arena contains two circles, one black, one white. A light source
is placed on the side of the arena that contains the black circle (Fig.1, left).
The robots are tasked to aggregate on the black spot. The objective function
Faac = Z?:o N; where N, is the number of robots on the black circle at time
step N;.

Foraging. The arena contains two source areas in the form of black circles and
a nest, as a white area. A light source is placed behind the nest to help the
robots to navigate (Fig.1, right). As the robots have no gripping capabilities,
we consider an idealized version of foraging, where a robot is deemed to retrieve
an object when it enters a source and then the nest. The goal of the swarm is to
retrieve as many objects as possible. The objective function is Fp = N;, where
N; is the number of retrieved objects.

2.4 Protocol

As each design process is stochastic, we run 20 independent designs for each
design method, resulting in 20 instances of control software. The so obtained
instances are then each assessed 10 times in the design context (what we call
simulation) and another 10 times in a different simulation setting (what we call
pseudo-reality). Pseudo-reality is a concept to evaluate the transferability of
control software [25]. Instead of assessing the performance directly in reality, a
different simulation context is used. Research has shown that control software
that transfers well into reality also transfers well into pseudo-reality, while control
software that transfers badly into reality also transfers badly into pseudo-reality.

The results are presented in notched box-and-whisker boxplots, giving a
visual representation of the samples. In such a notched box-and-whisker box-
plot, the horizontal thick line denotes the median of the sample. The lower and
upper sides of the box are called upper and lower hinges and represent the 25th
and 75th percentile of the observations, respectively. The upper whisker extends
either up to the largest observation or up to 1.5 times the difference between
upper hinge and median—whichever is smaller. The lower whisker is defined
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Fig. 2. Performance of control software created by IcePop for different budgets.

analogously. Small circles represent outliers (if any), that are observations that
fall beyond the whiskers. Notches extend to +1.581QR/+/n, where IQR is the
interquartile range and n = 20 is the number of observations. Notches indicate
the 95% confidence interval on the position of the median. If the notches of two
boxes do not overlap, the observed difference between the respective medians is
significant [7].

3 Results

In this section we describe four experiments we conducted and the results we
obtained. The instances of control software produced, the details of their per-
formances, and videos of their execution on the robots are available as online
supplementary material [24]. We also discuss possible reasons for the results.

3.1 Influence of the Budget

We conduct one experiment to investigate the influence of the budget on the
performance of the generated control software. Designs with a smaller budget
need less time to finish but usually produce results that perform less well in
simulation. The higher the time the better usually the performance in simula-
tion, but an overdesigning effect might be observed, where the improvement in
simulation does not carry over to reality. We tested IcePop with five different
budgets (5000, 10000, 25000, 50000 and 100000 simulations respectively).

The results displayed in Fig. 2 show the influence of the budget on the perfor-
mance of the control software generated by IcePop. One trend that is apparent
from the data, is that, as expected, a larger design budgets leads to control
software that performs better in simulation. However the relative improvement
diminishes and the performance seems to reach a peak around a budget of 50000
simulations.
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Furthermore the performance in pseudo-reality improves initially with an
increased budget. Here, however, the performance levels after the budget of
25000 simulations is reached and does not improve any further. This could be
an indicator that the design reached the peak performance that is still trans-
ferable. Further designs might improve the performance in simulation but the
transferability will suffer in return.

3.2 Influence of the Sample Size

We chose the Metropolis condition as the acceptance criterion in the component-
based simulated annealing for IcePop. In its original definition it was defined to
compare two single performance measures. As the evaluation of the performance
of an instance of control software is stochastic, we sample several simulation
runs. The mean of this sample is then supplied to the Metropolis condition.

In a second experiment, we investigate the influence of the sample size on
the performance of the generated control software. Smaller sample sizes use less
of the budget to evaluate one solution, allowing more solution candidates to be
investigated. On the other hand, outliers will have a greater impact on the mean
of the samples and thus the perceived performance. Larger sample sizes lead
to the inverse effect. Fewer total solution candidates would be investigated but
the performance of each individual solution candidate is more robust to outliers.
We study the influence of the sample size on the performance of the generated
control software by evaluating the performance in simulation and in pseudo-
reality for three sample sizes: 5, 10, and 15. Additionally we test every variant
on the three budgets that showed peak performance in the previous experiment
(25000, 50000, and 100000 simulations).

Figure 3 shows the results for the three different variants of the sample size
over the three investigated budgets. For a budget of 25000 simulations, all vari-
ants perform similar and no differences can be seen, both in simulation and
pseudo-reality. In the case of a budget of 50000, the variant with a sample size
of 10 samples performs slightly better than the other two variants, in the mis-
sion FORAGING when assessed in simulation. In pseudo-reality, this difference
however is not present anymore. It could therefore very well be that this is sim-
ply a statistical artifact of the stochastic design process. For 100000 simulation
runs, the three variants achieve a comparable performance again and only minor
differences can be observed. All in all, the three different sample sizes that we
compared show no noticeable differences.

3.3 Influence of the Restarting Mechanism

We conduct a third experiment, to investigate the influence of the restarting
mechanism. Restarting resets the temperature to a higher value, allowing the
design process to make bigger movements in the search space again. We inves-
tigate four different restarting mechanisms: fixed length (restarts after a fixed
number of simulations, in this case every 5000 simulations), no restart (the tem-
perature cools over the whole design process and is never restarted), reheat (the
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temperature is reset every 5000 simulations, the new temperature is set to the
one that generated the biggest improvement so far), restart once (after the half
of the budget is exhausted the temperature resets). We test all restarting mech-
anisms on budgets of 25000, 50000 and 10000 simulations.

Figure 4 shows the results for the different restarting mechanisms. The results
for a budget of 25000 simulation runs show no difference between the four vari-
ants. In case of a budget of 50000 simulation runs all variants perform similarly
in the mission AAC. In the mission FORAGING, the restarting mechanism that
restarts every 5000 simulation runs performs worse than the other three vari-
ants. For a budget of 100000 simulation runs, all four variants perform similarly
again. In the mission FORAGING, however, the fixed length restarting mechanism
(default) shows a larger distribution than the other three variants.

In conclusion, the four different variants fail to produce noticeable differences
in the performance of the generated control software.

3.4 Comparison with Chocolate

In the last experiment, we compare the performance of IcePop with Chocolate
across three different budgets (25000, 50000 and 100000 simulations).

Figure 5 shows the comparison results of IcePop with Chocolate for bud-
gets of 25000, 50000, and 100000 simulations respectively. Throughout all three
budgets, it is apparent that IcePop performs better in simulation than Choc-
olate in both missions. In the mission AAC, the difference in performance is
statistically significant.

Unfortunately the drop of performance when assessed in pseudo-reality is
slightly larger for IcePop than for Chocolate. This could indicate that IcePop
might be less transferable to real robots than Chocolate. Despite the larger
performance drop, IcePop still performs better in pseudo-reality, and in AAC
this difference in performance is also statistically significant.

Additionally, we have taken the best performing instance of control software
of IcePop and Chocolate (with a design budget of 100k simulations) for each
mission and directly applied it to a swarm of twenty real e-pucks. Videos of the
performance of the control software on real robots can be found online [24].

4 Conclusions

In this work we have investigated a default configuration for simulated annealing
in the context of automatic modular design. The results indicate that simulated
annealing can be a viable candidate for the automatic modular design of robot
swarms. Additionally, we have investigated the influence of some obvious varia-
tions to the simulated annealing on the performance of the automatic modular
design. The component-based simulated annealing approach allowed us to easily
implement these variants.

Simulated annealing is a well studied optimization algorithm with many pro-
posed extensions, improvements and variants. A next step could be finding a
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suitable configuration of components that satisfies best the demands of the auto-
matic modular design. Also, it would be interesting to apply IcePop to a broader
range of missions.
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A robot swarm is a large group of robots whose collective behavior results
from local interactions of the robots between themselves and with their
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Abstract. The swarm robotics literature has shown that complex tasks
can be solved by large groups of simple robots interacting with each other
and their environment. Most of these tasks require the robots to explore
their environment, making exploration a building block of the behaviors
of robot swarms. However, exploration schemes have rarely been thor-
oughly evaluated, especially in the context of automatic design. This is
the case with AutoMoDe, an automatic modular design approach that
designs control software by assembling predefined mission-agnostic mod-
ules that embed fixed and arbitrarily selected exploration schemes. In
this paper, we study the influence of different exploration schemes on the
automatic design of robot swarms. To do so, we introduce AutoMoDe-
Coconut, a new variant of AutoMoDe with multiple configurable explo-
ration schemes embedded within its modules. We test Coconut both in
bounded and unbounded workspaces and we compare the results with
those of AutoMoDe-Chocolate in order to understand the impact of the
new exploration schemes. The results show that Coconut is prone to
select exploration schemes that fulfill the requirements of the mission in
hand. However, Coconut does not perform better than Chocolate, even in
situations where the only exploration schemes available to Chocolate are
at an apparent disadvantage. We conjecture that the overall exploration
capabilities of the swarm are not the mere reflection of individual-level
exploration schemes but result from a more complex interaction between
the atomic behaviors of the individuals.
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environment [9]. A robot swarm operates without relying on any external struc-
ture or any form of centralized control [1,32]. These characteristics make swarms
of robots scalable, robust and flexible.

Unfortunately, the design of control software for robot swarms is a complex
activity. Indeed, there is no reliable way to anticipate the global behavior of a
swarm of robots based on the behavior of a single individual [12]. It is there-
fore common to resort to automatic design, for which multiple methods have
been developed [10,26,37]. In particular, AutoMoDe [14] is an automatic mod-
ular design approach that produces control software by assembling preexisting
software modules into an appropriate modular architecture’e.g., a finite-state
machine or a behavior tree. The possible states come from a finite set of atomic
behaviors, such as the attraction to light sources or the repulsion from other
robots. A few methods belonging to the AutoMoDe family have been proposed
so far. Most of them are variants of Vanilla, the first method proposed that
meet the specifications of AutoMoDe [14]. In these variants, most of the atomic
behaviors embed the same exploration scheme: ballistic motion.

We foresee that other exploration schemes, such as random walks
[11,27,31,38], could improve the exploration capabilities of robot swarms auto-
matically generated via AutoMoDe.

To study the influence of different exploration schemes in automatic mod-
ular design of robot swarms, we introduce AutoMoDe-Coconut, a new variant
of AutoMoDe able to select different exploration schemes. Following the tenets
of the automatic offline design of robot swarms [4], we assess the capabilities of
Coconut to design control software for missions that require the robot swarm
to explore in different manners. To this aim, we conduct experiments on two
classes of missions using realistic simulations and real robots experiments. We
compare the performance of Coconut against the one of the state-of-the-art
modular design method AutoMoDe-Chocolate [13]. We expect Coconut to out-
perform Chocolate in at least one class of mission thanks to its extended explo-
ration capabilities. To the best of our knowledge, this is the first time different
exploration schemes are compared in the context of automatic design.

The paper is structured as follows. In Sect. 2, we discuss related work in
automatic design and exploration. In Sect. 3, we present Coconut, the automatic
modular design method we investigate in the paper. In Sect. 4 we describe the
experimental setup. In Sect. 5, we illustrate the results of the experiments. In
Sect. 6, we conclude the paper and we sketch future research.

2 Related Work

In single-robot systems, the control software is typically designed by hand by a
human developer as the behavior of the robot is easy to derive from its specifica-
tions. In swarm robotics however, the link between the behavior of the individual
robots that one should program and the global behavior of the swarm that one
wishes to obtain is often particularly complex. Indeed, it is difficult to antic-
ipate the behavior of a swarm solely based on the individual behavior of the



20 G. Spaey et al.

robots [6]. The control software of the individual robots is therefore a trial and
error process, which is time consuming, prone to bias and errors, and difficult to
replicate [5]. Automatic design appears to be a promising way to overcome the
difficulties of generating control software for robot swarms [12].

Neuro-evolutionary robotics is the classical automatic design approach
adopted in swarm robotics [8,26]. In this approach, robots are controlled by
a neural network whose parameters (and possibly the structure) are optimized
using an evolutionary algorithm in an off-line process based on computer simula-
tions [29,35,36]. The inputs of the neural networks are the readings of the sensors
and outputs are the commands to be fed to the actuators. Unfortunately, the
neuro-evolutionary approach is known to produce control software that crosses
the reality gap poorly [19,33]. Indeed, a noticeable drop in performance can be
often observed when neural networks optimized in simulation are tested on real
robots. This is the result of a sort of overfitting of the control software to the
simulator, which prevents it to then generalize to the real world [22].

An alternative approach to automatic design is the automatic modular design
method proposed by Francesca et al. AutoMoDe [14]. The original idea behind
AutoMoDe is to inject a bias in the automatic design process by increasing
the granularity of the control software architecture. This reduces the risk of
overfitting the simulator and eventually increases the chance that the control
software produced crosses the reality gap successfully, generalizing properly to
reality. Multiple variants of AutoMoDe have been developed so far [13,18,21].

However, the exploration scheme used by AutoMoDe, ballistic motion, was
selected arbitrarily from Vanilla and has been kept in all the following studies
without a further discussion. Recent works have shown the relevance of the explo-
ration scheme in robot swarms. Common random walks (Brownian motion [11],
correlated random walk [31], Lévy walk [38] and Lévy taxis [27]) have been evalu-
ated by Dimidov et al. [7] with a swarm of Kilobots. An optimal parametrization
for these random walks was found with this configuration. Kegeleirs et al. [20]
evaluated the same random walks, along with ballistic motion, for mapping with
ten e-pucks and found that the parametrization does not generalize to other
robotic platforms. Similarly, Ramachandran et al. [30] performed distributed
mapping with three robots using a custom variant of Lévy walk. To the best of
our knowledge, no study has been published that evaluates the performance of
the aforementioned exploration schemes in the context of the automatic design
of collective behaviors for robot swarms.

3 AutoMoDe-Coconut

Coconut builds on Chocolate [13]. As Chocolate, it belongs to the AutoMoDe
class of methods originally defined by Francesca et al. [14]. These methods auto-
matically generate control software by assembling predefined, mission-agnostic
software modules. Like Chocolate, Coconut produces control software for the
e-puck platform [25]. The control software produced by Coconut, like the one
produced by Chocolate, has the form of a probabilistic finite-state machine.
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The modules are either low-level behaviors to be used as states of the state
machine or conditions to be associated with its edges. Conditions determine
whether a transition should happen or not. Modules may have tunable parame-
ters that modify their functioning. The topology of the probabilistic finite-state
machine, the behaviors and the conditions to be included, and the value of
their parameters are determined by an optimization algorithm that maximizes
a mission-specific performance measure. The optimization algorithm adopted in
Coconut, as well as in Chocolate, is Iterated F-race (irace) [23]. The only differ-
ence between Coconut and Chocolate is that, in Coconut, the modules have a
parameter controlling the type of exploration scheme to use, whereas in Choco-
late the scheme is fixed for each module. Indeed, Coconut embeds three different
exploration schemes within its modules: ballistic motion with random rotations,
ballistic motion with vector field and, random walk. As Coconut is identical to
Chocolate in all other aspects, the discussion on performance differences can
focus on the sole influence of these exploration schemes.

3.1 Robot Platform

Coconut produces control software for the e-puck platform, extended with three
hardware modules: the Overo Gumstix, the ground sensor, and the range and
bearing. The e-puck is a circular two-wheeled robot, whose diameter is approx-
imately 70 mm. It has 8 IR transceivers, positioned all around its body, that work
both as light and proximity sensors. The Overo Gumstix module is a single-board
computer that allows the e-puck to run Linux. The ground sensor module allows
the e-puck to perceive the color of the floor. The range-and-bearing module [16] is
an infrared communication device for local sensing and messaging. It operates by
broadcasting a ping signal that can be received by robots within a range of about
0.7 m from the sender. A robot that receives a ping is able to estimate the relative
position of the sender in polar coordinates. The capabilities of the e-puck platform
are formally defined by the reference model RM 1.1 [17], see Table 1.

3.2 Set of Modules

Coconut’s modules are built upon those of Chocolate. They comprise 6 behaviors
and 6 transitions:

Behaviors:

— rambling’: the robot explores randomly its environment;

— stop: the robot stands still;

— phototaxis: the robot goes towards the light source, if perceived;

— anti-phototaxis: the robot goes away from the light, if perceived;

— attraction: the robot goes towards its neighboring peers, if perceived;
— repulsion: the robot goes away from its neighboring peers, if perceived.

! Originally, this module was called exploration [14]. In this paper, we changed its
denomination to avoid confusion with the notion of exploration scheme.
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Table 1. Reference model RM1 of the e-puck robot [17]. RM1 abstracts sensors and
actuators by defining the input and the output variables that are made available to
the control software at each control step. Sensors are defined as input variables: the
control software can only read them. Actuators are defined as output variables: the
control software can only write them. Input and output variables are updated with a
period of 100 ms.

Sensor/Actuator Variables

Proximity prox; € [0,1], with ¢ € {1,2,...,8}

Light light; € [0,1], with i € {1,2, ..., 8}

Ground ground; € {white, gray, black}, with
i€ {1,2,3}

Range-and-bearing | n € [0, 20] ry, € [0,0.70], with

m € {1,2,...,20} by, € [0,27] rad, with
m € {1,2,...,20}

Wheels vy, vp € [—0.12,0.12] m/s

Conditions:

— black-floor: change state if floor is black;

— white-floor: change if it is white;

— gray-floor: change if it is gray;

— neighbor-count: change if sufficiently many neighboring peers are perceived;
inverted-neighbor-count: change if they are sufficiently few;

— fixed-probability: change state with a fixed probability.

The behaviors are identical to those of Chocolate except for the exploration
scheme adopted. In Chocolate, fixed default exploration schemes are used in
the rambling module (ballistic motion with random rotations) as well as in the
phototaxis, anti-phototaxis, attraction and repulsion modules when no light /no
neighboring peers are perceived (ballistic motion with vector field). In Coconut,
these five modules do not use a default exploration scheme but have instead a
new e parameter that has 3 possible values: BMVF, BMRR, and RW.

If e = BMVPF, the exploration scheme is a ballistic motion with vector field.
The robot follows the two-dimensional vector w = w;, — w,, where w; represents
the ballistic vector and w, the perceived obstacle vector. The ballistic vector is
trivially defined as w, = (1, £0) and represent a straight motion. The obstacle
vector w, is calculated with Eq. 1.

8

wo = Y (i, £b;) (1)

=1

Where r; represents the reading of 7, one of the eight proximity sensors of the
robot and b; the angle between this sensor and the front of the robot. The vector
w, therefore represents the average position of the sensed obstacle(s) as the sum
of the eight vectors corresponding to proximity readings.
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Table 2. Different value ranges of the key parameters of the random walks, along with
the corresponding distributions [7,27].

Move length o Turning angle P
Brownian motion Asymptotically Gaussian-like |3 Uniform
Correlated random walk | Asymptotically Gaussian-like |3 Wrapped Cauchy | € [0, 1]
Lévy walk Power law €]1, 3] | Uniform
Lévy taxis Power law €]1, 3] | Wrapped Cauchy | € [0, 1]

If e = BMRR, the exploration scheme is a ballistic motion with random
rotations. The robot moves in a straight line. When it encounters an obstacle, it
turns on itself for a random number of control cycles uniformly chosen between
[0, 7], where T is a parameter of the module. The parameter 7 is an integer in
the range [0, 100].

If e = RW, the exploration scheme is a random walk. The robot follows the
two-dimensional vector w = wr; —w,, where wr; represents the Lévy taxis vector
and w, is calculated with Eq. 1, as in the ballistic motion with vector field. The
Lévy taxis vector is calculated as wr; = (1, £T,) where Ty, is the turning angle
defined by Eq. 2.

P
T, = 2arct
a arcan(1+p

tan (m(r — 0.5))) + bias (2)

The turning angle changes after a number of control cycles governed by the
movement length M; defined by Eq. 3.

My = L7 (3)

These equations depend on the parameters p and p, 2 parameters of the module.
The parameter p is real-valued and chosen in the range |1, 3]. The parameter p
is real-valued as well and chosen in the range [0, 1]. Table 2 presents the values
of p and p for the major state-of-the-art random walks that can be modeled
by Egs. 2 and 3. These additional parameters have also an effect on the search
space size: it is larger for Coconut than for Chocolate.

3.3 Automatic Design Process

Coconut produces control software in the form of probabilistic finite-state
machines. The topology of the probabilistic finite-state machine, the modules
to be included and their parameters are defined by an optimization process. The
space of the probabilistic finite-state machines that Coconut can possibly gen-
erate is constrained to those comprising at most 4 states having each at most 4
outgoing edges.

As an optimization algorithm, Coconut uses the implementation of Iterated
F-race provided by the R package irace [23] with its default parameters. Iterated
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F-race is based on F-race [2], a racing procedure where a set of candidate solu-
tions are randomly sampled and then sequentially evaluated, over a set of test
cases, to eventually select the most suitable one. Along the sequential evalua-
tion of candidate solutions, a Friedman test is repeatedly performed to identify
candidate solutions that perform significantly worse than at least another one.
These solutions are discarded so that the evaluation can focus on the best ones.
The algorithm terminates when only one candidate solution remains or when a
predefined budget of evaluations is depleted. Iterated F-race consists of multiple
iterations of F-race. After the first iteration, each subsequent one operates on
a set of candidate solutions that are sampled around those that the previous
iteration selected as the best ones. The algorithm terminates when a predefined
budget of evaluations is depleted.

Within the optimization process, simulations are performed using the
ARGoS3 simulator [28], version beta 48, together with the argos3-epuck
library [15]. ARGoS3 is a modular multi-physics robot simulator specifically con-
ceived to simulate robot swarms. Coconut uses the 2D dynamic physics engine of
ARGOS3 to simulate the robots and the environment. The argos3-epuck library
provides low-level implementations of the sensors and actuators of the e-puck
robot with fine control on noise levels for all actuators and sensors. ARGoS3
and the argos3-epuck library inject a realistic level of sensor and actuator noise
in all simulations as suggested by Miglino et al. [24] as a good practice for reduc-
ing the impact of the reality gap.

4 Experimental Setup

In order to assess the performance impact of the new exploration schemes inte-
grated in its modules, we compare Coconut to Chocolate on a set of missions,
both in bounded and unbounded workspaces. Similarly to previous studies in
automatic modular design, we also compare Chocolate and Coconut to Evostick,
an automatic design method that implements a typical evolutionary robotics
setup. Evostick was introduced in Francesca et al. [14] to define a yardstick
against which AutoMoDe variants can be compared. We expect Coconut to pro-
duce results similar to those of Chocolate in bounded workspace but to outper-
form Chocolate in unbounded workspace. The choice of the missions is motivated
by the need to challenge both the general problem-solving capabilities of the two
methods and their exploration capabilities. Therefore, the missions consist in
missions already used to test other AutoMoDe variants as well as a new mission
specifically targeting the exploration capabilities offered by the new exploration
schemes. The chosen missions are aggregation, foraging, and grid exploration.

4.1 Missions

Each mission takes place in a dodecagonal workspace of 4.91 m? surrounded by
walls that are tall enough to prevent the robots from seeing anything beyond
them. The floor is gray with the exception of black or white areas specific to
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each mission. All missions are performed by a swarm of 20 e-puck robots for
a duration of 120s. In the following descriptions, the coordinates are in meters
with the origin of the axes at the center of the workspace. The z axis points
right and the y axis points up. The three missions are detailed below.

Aggregation: The robots must aggregate as fast as possible on a black spot
at the center of the workspace. The floor is completely gray except for a black
circular area of diameter 0.60 m at the center of the workspace. At the beginning
of the experiment, the 20 robots are randomly placed in the whole workspace.
Figure 1a shows the workspace of the mission. The performance of the swarm is
measured by the sum of the time spent, in seconds, by each robot in the black
area during the whole duration of the mission. Formally:

N
Faggregation = Z T; (4)
i=1

Where N = 20 is the number of robots and 7; is the aggregated time spent in
the black area by robot ¢ during the whole duration of the mission.

Foraging: The robots must retrieve as many objects as possible from two
sources and drop them in a specific area, the nest. The sources and nest are rep-
resented respectively by two black spots and a white area. The two black spots
are black circular areas of diameter 0.30 m located at the coordinates (0,0.75)
and (0, —0.75). The white area covers the whole region of the workspace with
x > 0.60. Moreover, a light source is placed behind the nest at coordinates
(1.25,0) at 0.75m from the ground. Figure 1b shows the workspace of the mis-
sion. Since the e-puck robot doesn’t have grasping capabilities, the transporta-
tion of objects is abstracted. Therefore, it is supposed that a robot grabs an
object (if it isn’t already holding one) when it enters a source and drops the
object (if it has one) when it enters the nest. At the beginning of the experi-
ment, the 20 robots are randomly placed in the workspace. The performance of
the swarm is measured by the sum of the number of objects retrieved by each
robot, during the whole duration of the mission. Formally:

N
Fforaging = Z Oz (5)
=1

Where N = 20 is the number of robots and O; is the number of objects retrieved
by the robot .

Grid Exploration: The robots must explore and cover as much space as pos-
sible. The floor is completely gray. At the beginning of the experiment, the 20
robots are randomly placed in the workspace. Figure lc shows the workspace
of the mission. In order to measure the performance of the swarm, the arena is
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divided in a grid of 10 tiles by 10 tiles. For each tile, we retain the time ¢ elapsed
since the last time it was visited by a robot. Each time the tile is visited by a
robot, this time is reset to 0. The performance of the swarm is measured by the
sum over all control cycles of the opposite of the average time ¢ over all the tiles.

(a) Aggregation (b) Foraging (c¢) Grid exploration

Fig. 1. Workspaces of the 3 bounded missions, including an example of initial positions
for the robots

(a) Aggregation (b) Foraging (c¢) Grid exploration

Fig. 2. Workspaces of the 3 unbounded missions, including an example of initial posi-
tions for the robots

Formally:

Nee 1 Niiles

Fgm’dewploration = Z (N Z _tij) (6)
i—1 tiles J=

Where N, is the number of control cycles for the whole experiment, Nyes is
the number of tiles and ¢;; is the time, at the control cycle 7, since the tile j was
crossed by a robot.

For each of these missions, we evaluated an alternative version in an
unbounded workspace. The only difference between a mission and its unbounded
counterpart is that 3 walls have been removed from the workspace of the
unbounded workspace mission. The 3 walls are the same for all the missions,
namely the leftmost wall and its 2 neighbors. Figure 2 displays the workspaces
of those alternative unbounded missions. These 2 sets of missions constitute the
bounded and the unbounded classes of missions studied in this paper.
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4.2 Protocol

Coconut, Chocolate and Evostick are executed 10 times on each of the 3 missions
of each class with a budget of 100.000 evaluations. This design process produces
10 instances of control software per mission and per method. Each of these
instances is then evaluated once on its respective mission?. The results of these
evaluations are then presented mission by mission.

Then, each instance is uploaded on real e-pucks and evaluated once in a real
environment with the same geometry and features as in the simulation. The
results of these evaluations are also presented for each mission.

The evaluation of the performance on each mission is represented by notched
box plots. For each mission, the score obtained in simulation and in reality
for Coconut, Chocolate and Evostick is reported. Statements about the relative
performance of the three methods on a specific mission are supported by the
confidence intervals of those box plots. The evaluation of the aggregated perfor-
mance over all of the missions is represented by a Friedman test. Once again,
statements about the relative performance of the two methods are supported by
the confidence intervals of this test. Any statement like “A performs significantly
better/worse than B” means that the confidence intervals of the box plots of the
scores obtained or the Friedman test for A and B do not overlap.

In order to interpret the observed performance of the automatic modular
design methods, one needs to have some insight into the modules used by the
two variants of AutoMoDe. We use two ways to measure the use of the different
modules during a mission. The first one consists in counting, for each module, the
proportion of instances of control software using this module in their finite-state
machine. While this measurement gives some information about the finite-state
machines and the behavior of the control software, it also shows modules that
might not actually be used at runtime. Indeed, some states of the finite-state
machines can be bypassed completely by high-probability transitions, making
them useless. The second measurement is the average (across all of the robots of
the swarm and all instances of control software of the mission) of the proportion
of time each robot uses the behavior of each module. While this measure gives
a better idea of the actual use of the different modules at runtime, it fails to
differentiate important modules used for a short time and useless modules used
as transitions. For that reason, the two measurements are compared.

5 Results

We present the qualitative analysis of the results. Demonstrative videos, code,
and additional results are available in [34]. The performance of Chocolate,
Coconut and Evostick on the two classes of missions are shown in Fig. 3. For all
missions, Evostick performs the same or better than both AutoMoDe methods in
simulation but completely fails in reality. This is coherent with previous results
obtained in the literature [13,18]. For Chocolate and Coconut, the results in

2 This protocol has been used in [13,14,18,21,22] and is further discussed in [3].
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simulation are close to those in reality for all the missions and for both methods
although a small reality gap can be seen. An analysis of the exploration schemes
used by Coconut for the different missions is shown in Fig. 4. We observe that
Coconut selects the ballistic motion for the bounded missions to promote explo-
ration. Indeed, ballistic motion allows the robots to cover larger distances. For
the unbounded missions, Coconut switches to random walk to promote exploita-
tion. The random walk tends to keep robots in the same area and hence reduces
the risks to lose robots. In this sense, the exploration scheme has an influence in
the unbounded class of missions.
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Fig. 3. Performance of Chocolate, Coconut and Evostick on aggregation, foraging and
grid exploration, in bounded (top) and unbounded (bottom) workspaces. The higher
the better.

Performance-wise, Coconut performs similarly to Chocolate in most mis-
sions. Differences between Chocolate and Coconut can only be observed for the
bounded versions of foraging and grid exploration. However, these differences
do not result from the exploration capabilities of Coconut but rather from the
difference between the search space size of both methods. Indeed, Coconut has
a larger search space and hence explores more solutions. Eventually, Coconut
can find a solution that Chocolate cannot produce. In particular, this is the case
for the bounded foraging mission. On the contrary, Chocolate will explore fewer
solutions and converge to an optimal solution faster than Coconut. Eventually,
this can translate into a slightly better performance, like for the bounded grid
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Fig. 4. Runtime use of the ballistic motion with vector field, ballistic motion with
random rotations and random walk exploration schemes in control software designed
by Coconut for aggregation, foraging and grid exploration, in bounded and unbounded
workspaces.

Chocolate Chocolate

Coconut 100 Coconut 100
Exploration - 0 0 ﬂ Exploration . Pl 1 18
80 80
° Stop B Ol Stop -0
n - Phototaxis - 13 6 2 5 60 o 2% - Phototaxis - 25 o0 7 18 60 ¢
m ™
1 - Anti-Phototaxis - 4 1 2 1 40 = 20 -  Anti-Phototaxis - 12 o 9 3 40 X
o - Attraction -0 0 o o o - Attraction -0 o 0 o
20 20
o - Repulsion -0 0 0 0 0o - Repulsion -0 0 0 0
. N . . 0 ' N . . 0
e ?\e\é A0 % N ((-\e\‘\’ o %
‘0( SR ‘0( PSSR
\\e’c \(\$ (\60 Qe“ A ‘\(30
0" G o @
o &« X X
@ @
(a) Bounded foraging (b) Unbounded foraging

Fig. 5. Runtime use of the modules in control software designed by Chocolate and
Coconut for foraging in bounded (left) and unbounded (right) workspaces.

exploration. All in all, there is no improvement from the addition of new explo-
ration schemes, even for the unbounded class of missions for which relying only
on ballistic motion is an apparent disadvantage.

Therefore, we analyze the finite-state machines produced by Chocolate and
Coconut on bounded and unbounded missions. We focus here on foraging but
the following observations can also be made on the other missions. We can see
in Fig. 5 that, in the unbounded mission, both Chocolate and Coconut decrease
their use of the exploration module to rely more on the light (phototaxis and
anti-phototaxis). The light is indeed at the opposite of the open part of the
workspace and helps the robots to stay within the workspace. Considering that
the performance of Chocolate and Coconut are similar, random walk does not
help Coconut to achieve a better behavior. Therefore, we conjecture that Choco-
late is able to adapt to different classes of missions by combining the modules
at its disposal, without relying on different exploration schemes. In this sense,
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the exploration capabilities of Chocolate emerge from the interaction between
its different modules rather than being the direct result of specific embedded
exploration schemes.

6 Conclusions

We introduced Coconut, an automatic modular design method able to select
different exploration schemes for each of its modules. We evaluated Coconut
on three missions in bounded and unbounded workspaces. We observed that
Coconut is prone to select exploration schemes that fit the requirements of the
mission at hand. In bounded workspace, the control software produced uses
mainly ballistic motion as it allows robots to cover bigger distances than ran-
dom walks and promotes hence exploration. On the contrary, in unbounded
workspaces, the control software produced uses mainly instances of random walk
as it promotes exploitation behaviors that help maintaining the robots within
the workspace. In this sense, the influence of the exploration scheme is only
relevant for the class of missions in which the workspace is unbounded.

We also compared Coconut to Chocolate, the state-of-the-art automatic mod-
ular design method. Performance-wise, we could not observe a conclusive differ-
ence between the control software produced by Chocolate and Coconut, even in
unbounded workspaces. Other exploration schemes do not improve the perfor-
mance of the swarm as we expected but the results are still interesting as they
allow us to make the following observations.

Even though Chocolate could only rely on ballistic motion as exploration
scheme, it yielded a similar performance to Coconut in unbounded workspaces.
Chocolate was hence able to design a control software preventing the robots
to leave the workspace by combining its different modules. This means that
exploration capabilities come from the interaction between atomic behaviors and
not only from the exploration schemes embedded in the modules. In this sense,
we saw that AutoMoDe adjusts to produce appropriate exploration strategies
for the task at hand.

For the class of missions conceived so far, ballistic motion has proven to
be a sufficiently appropriate exploration scheme. Still, whether random walk
exploration could be a suitable solution in other contexts needs to be further
explored.
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