
On Error Exponents in Quantum
Hypothesis Testing

In the simple quantum hypothesis testing problem, upper bounds on the error
probabilities are shown based on a key operator inequality between a density
operator and its pinching. Concerning the error exponents, the upper bounds lead
to a non-commutative analogue of the Hoeffding bound, which is identical with
the classical counterpart if the hypotheses, composed of two density operators, are
mutually commutative. The upper bounds also provide a simple proof of the direct
part of the quantum Stein’s lemma.

1 Introduction

Quantum hypothesis testing is a fundamental problem in quantum information
theory, because it is one of the most simple problems where the difficulty derived
from non-commutativity of operators appears. It is also closely related to other
topics in quantum information theory, as in classical information theory. Actually,
its relation with quantum channel coding is discussed in [7, 15].

Let us outline briefly significant results in classical hypothesis testing for proba-
bility distributions pn(·) versus qn(·), where pn(·) and qn(·) are i.i.d. extensions of
some probability distributions p(·) and q(·) on a finite set X . In the classical case,
the asymptotic behaviors of the first kind error probability αn and the second kind
error probability βn for the optimal test were studied thoroughly as follows.

First, when αn satisfies the constant constraint αn ≤ ε (ε > 0), the error exponent
of βn for the optimal test, say β∗

n(ε), is written asymptotically as

lim sup
n→∞

1

n
log β∗

n = −D(p||q) (1)
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for any ε, where D(p||q) is the relative entropy. The equality (1) is called Stein’s
lemma (see e.g. [4, p.115]), and the quantum analogue of (1) was established
recently [8, 14].

Next, when αn satisfies the exponential constraint αn ≤ e−nr (r > 0), the error
exponent of βn for the optimal test is asymptotically determined by

lim sup
n→∞

1

n
log β†

n(r) = − min
p′:D(p′||p)≤r

D(p′||q) (2)

= − max
0<s≤1

�(s) − (1 − s)r

s
(3)

where the function �(s) is defined as

�(s) � − log
∑

x∈X
p(x)1−sq(x)s . (4)

Historically speaking, (2) and the test achieving it were shown in [9], followed
by another expression (3) (see [3]), which we call the Hoeffding bound here. In
quantum hypothesis testing, the error exponent of 1 − βn was studied in [14] to
obtain a similar result to (3), which led to the strong converse property in quantum
hypothesis testing. Concerning quantum fixed-length pure state source coding, the
error exponent of erroneously decoded probability was determined in [5], where the
optimality of the error exponent similar to (3) was discussed.

In this lecture (see [13]), a quantum analogue of the Hoeffding bound (3), (4) is
introduced to derive a bound on the error exponent in quantum hypothesis testing.
As a by-product of the process to derive the exponent, a simple proof of the quantum
Stein’s lemma is also given.

2 Definition and Main Results

Let H be a Hilbert space which represents a physical system in interest. We assume
dimH < ∞ for mathematical simplicity. Let us denote the set of linear operators on
H as L(H) and define the set of density operators on H by

S(H) � {ρ ∈ L(H) : ρ = ρ∗ ≥ 0, Tr[ρ] = 1}. (5)

We study the hypothesis testing problem for the null hypothesis

H0 : ρn � ρ⊗n ∈ S(H⊗n)
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versus the alternative hypothesis

H1 : σn � σ⊗n ∈ S(H⊗n)

where ρ⊗n and σ⊗n are the nth tensor powers of arbitrarily given density operators
ρ and σ in S(H).

The problem is to decide which hypothesis is true based on the data drawn
from a quantum measurement, which is described by a positive operator valued
measure (POVM) on H⊗n, i.e., a resolution of identity

∑
i Mn,i = In by non-

negative operators Mn = {Mn,i} on H⊗n. If a POVM consists of projections on
H⊗n, it is called a projection valued measure (PVM). In the hypothesis testing
problem, however, it is sufficient to treat a two-valued POVM {M0,M1}, where
the subscripts 0 and 1 indicate the acceptance of H0 and H1, respectively. Thus, an
operator An ∈ L(H⊗n) satisfying inequalities 0 ≤ An ≤ In is called a test in the
sequel, since An is identified with the POVM {An, In −An}. For a test An, the error
probabilities of the first kind and the second kind are, respectively, defined by

αn(An) � Tr[ρn(In − An)]

βn(An) � Tr[σnAn].

Let us define the optimal value for βn(An) under the constant constraint on
αn(An)

β∗
n(ε) � min {βn(An) : An : test , αn(An) ≤ ε} (6)

and let

D(ρ||σ) � Tr[ρ(log ρ − log σ)] (7)

which is called the quantum relative entropy. Then we have the following theorem,
which is one of the most essential theorems in quantum information theory.

Proposition 277 (The Quantum Stein’s Lemma) For all 0 < ε < 1, it holds that

lim
n→∞

1

n
log β∗

n(ε) = −D(ρ||σ). (8)

The first proof of (8) was composed of two inequalities, the direct part and the
converse part. The direct part, concerned with existence of good tests, claims that

∀ 0 < ε ≤ 1, lim sup
n→∞

1

n
log β∗

n(ε) ≤ −D(ρ||σ) (9)

and it was given by Hiai and Petz [8]. In this lecture, the main focus is on the direct
part. Note that the direct part (9) is equivalent to the existence of a sequence of tests
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{An} such that

lim
n→∞ αn(An) = 0 and lim sup

n→∞
1

n
log βn(An) ≤ −D(ρ||σ) (10)

(see [14]). On the other hand, the converse part, concerned with nonexistence of too
good tests, asserts that

∀ 0 < ε < 1, lim inf
n→∞

1

n
log β∗

n(ε) ≥ −D(ρ||σ) (11)

which was given by Ogawa and Nagaoka [14]. A direct proof of the equality (8)
was also given by Hayashi [6] using the information spectrum approach in quantum
setting [10, 12], and a considerably simple proof of the converse part (11) was given
in [11].

In this lecture, the asymptotic behavior of the error exponent 1
n

log βn(An) under
the exponential constraint

αn(An) ≤ e−nr , r > 0

is studied, and a non-commutative analogue of the Hoeffding bound [9] similar
to (3) is given as follows.

Theorem 278 (Ogawa and Hayashi 2004, [13]) For all r > 0, there exists a
sequence of tests {An} which satisfies

lim sup
n→∞

1

n
log αn(An) ≤ −r, (12)

lim sup
n→∞

1

n
log βn(An) ≤ − max

0<s≤1

ψ(s) − (1 − s)r

s
(13)

where

ψ(s) � − log Tr
[
ρσ

s
2 ρ−sσ

s
2

]
. (14)

We will prove the theorem in 4. If ρ and σ commutate, ψ(s) is identical with
the classical counterpart �(s) defined in (4), and (13) coincides with the Hoeffding
bound (3), which is optimal in classical hypothesis testing.

This lecture is organized as follows. In 3, upper bounds on the error probabilities
are shown based on a key operator inequality [6]. Using the upper bounds, we
will prove Theorem 278 in 4. In 5, we will make some remarks toward further
investigations.

Section 7 is devoted to the definition of pinching (see, e.g., [2], p. 50), which is
known as a special notion of the conditional expectation in literature on the operator
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algebra and is used effectively in 3. In 8, the key operator inequality used in 3 is
summarized along with another proof of it for readers’ convenience.

3 Bounds on Error Probabilities

In the sequel, let Eσn(ρn) be the conditional expectation of ρn to the commutant of
the ∗-subalgebra generated by σn, which we call pinching (see 7) and denote it as ρn

for simplicity. Let v(σn) be the number of eigenvalues of σn mutually different from
others as defined in 7. Then a key operator inequality1 follows from Lemma 285
in 8, which originally appeared in [6]

ρn ≤ v(σn)ρn. (15)

Note that the type counting argument provides

v(σn) ≤ (n + 1)d (16)

where d � dimH. Following [6], let us apply the operator monotonicity of the
function x �→ −x−s , 0 ≤ s ≤ 1 (see, e.g, [2, Sec. V.1]) to (15) so that we have

ρn
−s ≤ v(σn)

sρ−s
n ≤ (n + 1)sdρ−s

n . (17)

Following the notation used in [10, 12], let us define the projection {X > 0} for
a Hermitian operator X = ∑

i xiEi as

{X > 0} �
∑

i:xi>0

Ei (18)

where Ei is the projection onto the eigenspace corresponding to an eigenvalue xi .
In the sequel, we will focus on a test defined by

Sn(a) � {ρn − enaσn > 0} (19)

where a is a real parameter, and derive the upper bounds on the error probabilities
for the test Sn(a) as follows.

Theorem 279 (Ogawa and Hayashi 2004, [13])

αn

(
Sn(a)

) ≤ (n + 1)de−nϕ(a), (20)

βn

(
Sn(a)

) ≤ (n + 1)de−n[ϕ(a)+a] (21)

1Although the way to derive the operator inequality and the definition of v(σn) are different from
those of [6], it results in the same one as [6] in the case that both of ρn and σn are tensored states.
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where ϕ(a) is defined by ψ(s) given in (14) as

ϕ(a)
def= max

0≤s≤1

{
ψ(s) − as

}
. (22)

Proof The definition of Sn(a) and commutativity of operators ρn and σn lead to

(
ρn

1−s − ena(1−s)σ 1−s
n

)
Sn(a) ≥ 0 (23)

(
ρn − enasσ s

n

) (
In − Sn(a)

) ≤ 0 (24)

for all 0 ≤ s ≤ 1. Note that Sn(a) also commutes with σn. Therefore, the
inequality (24), with the property of pinching (63) in 7, provides

αn(Sn(a)) = Tr[ρn(In − Sn(a))]

= Tr[ρn(In − Sn(a))]

= Tr[ρn
1−sρn

s(In − Sn(a))]

≤ enas Tr[ρn
1−sσ s

n(In − Sn(a))]

≤ enas Tr[ρn
1−sσ s

n ]. (25)

In the same way, (23) yields

βn(Sn(a)) = Tr[σnSn(a)]

= Tr[σ s
nσ 1

n Sn(a)]

≤ e−na(1−s) Tr[σ s
nρn

1−sSn(a)]

≤ e−naenas Tr[ρn
1−sσ s

n . (26)

It follows from (63) and (17) that

Tr[ρn
1−sσ s

n ] = Tr
[
ρnσ

s
2
n ρn

−sσ
s
2
n

]

= Tr
[
ρnσ

s
2
n ρn

−sσ
s
2
n

]

≤ (n + 1)sd Tr
[
ρnσ

s
2
n ρ−s

n σ
s
2
n

]
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= (n + 1)sd
(

Tr
[
ρσ

s
2 ρ−sσ

s
2

])n

= (n + 1)sde−nψ(s) (27)

for all 0 ≤ s ≤ 1. Combining (25)–(27), we have

αn

(
Sn(a)

) ≤ (n + 1)sde−n
[
ψ(s)−as

]

≤ (n + 1)de−n
[
ψ(s)−as

]
, (28)

βn

(
Sn(a)

) ≤ (n + 1)sde−n
[
ψ(s)−as+a

]

≤ (n + 1)de−n
[
ψ(s)−as+a

]
, (29)

which lead to (20) and (21) by taking the maximum in the exponents. �


4 Proof of Theorem 278 and the Quantum Stein’s Lemma

In this section, we will prove Theorem 278 by using Theorem 279. To this end, the
behavior of ϕ(a) in the error exponents (20) and (21) is investigated in the following
lemmas. We will also show that Theorem 279 provides a simple proof of the direct
part of the quantum Stein’s lemma (10).

Lemma 280 ϕ(a) is convex and monotonically nonincreasing.

Proof The assertion immediately follows from the definition of ϕ(a). Actually, we
have for all 0 ≤ t ≤ 1

ϕ(ta + (1 − t)b) = max
0≤s≤1

{ψ(s) − (ta + (1 − t)b)s}

≤ t max
0≤s≤1

{ψ(s) − as} + (1 − t) max
0≤s≤1

{ψ(s) − bs}

= tϕ(a) + (1 − t)ϕ(b). (30)

Next, let a ≤ b and sb � arg max0≤s≤1{ψ(s) − bs}. Then we have

ϕ(b) = ψ(sb) − bsb

≤ ψ(sb) − asb



574 On Error Exponents in Quantum Hypothesis Testing

≤ max
0≤s≤1

{ψ(s) − as}

= ϕ(a). (31)

�

Lemma 281 ϕ(a) ranges from 0 to infinity.

Proof Since we can calculate the derivative of ψ(s) explicitly, ψ(s) is continuous
and differentiable. Therefore, it follows from the mean value theorem that for s > 0
there exists 0 ≤ t ≤ s such that

ψ(t) = ψ(s) − ψ(0)

s − 0
. (32)

Let a ≤ max0≤t≤1 ψ
′
(t), then we have

a ≥ ψ(s) − ψ(0)

s − 0
. (33)

and hence,

ψ(0) ≥ ψ(s) − as (34)

which yields

0 = ψ(0) = max
0≤s≤1

{ψ(s) − as} = ϕ(a). (35)

On the other hand, it is obvious that

lim
a→−∞ ϕ(a) = ∞. (36)

Since ϕ(a) is continuous, which follows from convexity by Lemma 280, the
assertion follows from (35) and (36). �


Combined with the above lemma, Theorem 279 leads to Theorem 278 as follows.

Proof of Theorem 278 For all r > 0, there exists ar ∈ R such that r = ϕ(ar) from
Lemma 281. Let u(r) � ϕ(ar) + ar , then it follows from Theorem 279 that

lim sup
n→∞

1

n
log αn(Sn(ar)) ≤ −r (37)

lim sup
n→∞

1

n
log βnSn(ar)) ≤ −u(r). (38)
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Therefore, it suffices to show that

u(r) = max
0≤s≤1

ψ − (1 − s)r

s
(39)

For all 0 ≤ s ≤ 1, we have from the definition of ϕ(a)

r = ϕ(ar) ≥ ψ(s) − ars (40)

and there exists a number s0, 0 < s0 ≤ 1, achieving the equality since r = ϕ(ar) >

0. On the other hand, the definitions of u(r) and ar lead to

u(r) = ϕ(ar) + ar = r + ar . (41)

Eliminating ar from (40) and (41), we have

u(r) ≥ ψ(s) − (1 − s)r

s
) (42)

and s0 achieves the equality in (42) as well. Thus, we have shown (39), and
Theorem 278 has been proved. �


Next, observing that ψ(0) = 0 and ψ
′
(0) = D(ρ||σ), we have

ϕ(a) > 0 for all a < D(ρ||σ) (43)

which leads to the following theorem combined with Theorem 279.

Theorem 282 (Ogawa and Hayashi 2004, [13]) For all a < D(ρ||σ), we have

lim
n→∞ αn(Sn(a)) = 0 (44)

lim sup
n→∞

1

n
log βn(Sn(a)) ≤ −a. (45)

Since a < D(ρ||σ) can be arbitrarily near D(ρ||σ), we have shown the direct
part of the quantum Stein’s lemma (10).

5 Toward Further Investigations

The error exponents derived here do not seem to be natural, since ψ(s) lacks
symmetry between ρ and σ that the original hypothesis testing problem has. We
need further investigation to determine the error exponents in quantum hypothesis
testing. In this section, we make a few remarks on some candidates for the
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alternative to ψ(s) in the expectation that the error exponents would be written in
the form of Theorem 278.

Among many candidates, let us consider the following functions:

ψ1(s) � max
{
ψ(s), ψ̃(s)

}
(46)

ψ2(s) � − log Tr
[
ρ1−sσ s

]
(47)

ψ3(s) � − log Tr
[
e(1−s) log ρ+s log σ

]
(48)

where

ψ̃(s) � − log Tr
[
σρ

1−s
2 σ−(1−s)ρ1−s2

]
(49)

and define the corresponding functions

ui(r) � max
0<2≤1

ψi(s) − (1 − s)r

s
i = 1, 2, 3. (50)

The reason to consider these functions is as follows. First ψ1(s) is a symmetrized
version of ψ(s), and Theorem 278 still holds with ψ(s) replaced by ψ1(s), since
similar upper bounds to Theorem 279 using ψ̃(s) are valid by exchanging ρ and σ

and replacing s with 1−s. On the other hand, ψ2(s) for −1 ≤ s ≤ 0 appeared in [14]
to show the strong converse property in quantum hypothesis testing. Concerning
ψ3(s), u3(r) is a quantum analogue of (2). Actually, we can show that

u3(r) = min
ρ′:D(ρ′||ρ)≤r

D(ρ′||ρ) (51)

by the same way as [14, Sec. VI]. At present it is not clear whether u2(r) and
u3(r) are achievable exponents in quantum hypothesis testing. It should be noted,
however, that ψi(s), i = 1, 2, 3, are reduced to the classical one (4) if ρ and σ

commute, and they have desirable properties

ψi(0) = ψi(1) = 0

ψ ′
i (0) = D(ρ||σ),

ψ ′
i (1) = D(ρ||σ) i = 1, 2, 3 (52)

which are consistent with the quantum Stein’s lemma. The above properties of ψ2(s)

and ψ3(s) are verified by the direct calculations while those of ψ1(s) follow from
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the following fact:

ψ1(s) = ψ(s) ≥ ψ̃(s), if s is sufficiently near 0 (53)

ψ1(s) = ψ̃(s) ≥ ψ(s), if s is sufficiently near 1 (54)

which is a consequence of ψ(0) = ψ2(0), ψ̃(1) = ψ2(1), and the following lemma.

Lemma 283 For all 0 ≤ s ≤ 1, we have

ψ(s) ≤ ψ2(s) (55)

ψ̃(s) ≤ ψ2(s) (56)

Proof Let us apply the monotonicity property of the quantum quasi-entropy [17, 18]
to Tr[ρ1−sσ s], 0 ≤ s ≤ 1,2 so that we have

e−nψ2(s) =
(

Tr[ρ1−sσ s]
)n

= Tr[ρ1−s
n σ s

n ]

≤ Tr[ρn
1−sσ s

n ]

≤ (n + 1)sde−nψ(s) (57)

where we used (27) in the last inequality. Thus, we obtain

ψ(s) ≤ ψ2(s) + sd

n
log(n + 1) (58)

for any natural number n, and we have (55) by letting n go to infinity. Exchanging
ρ and σ and replacing s with 1 − s in (55), we obtain (56). �


It follows immediately from Lemma 283 that ψ1(s) ≤ ψ2(s), and it was pointed
out in [14] that we have ψ2(s) ≤ ψ3(s) as a consequence of the Golden-Thompson
inequality (see, e.g., [16, p. 128])

Tr
[
eA+B

]
≤ Tr

[
eAeB

]
(59)

2Comprehensible explanations of the monotonicity property are found in [1, Sec. 7.2] and [14].
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for Hermitian operators A and B with the equality if and only if A and B commute.
These facts are stated as the following proposition

Proposition 284 It holds that

ψ1(s) ≤ ψ2(s) ≤ ψ3(s) ∀ 0 ≤ s ≤ 1 (60)

u1(r) ≤ u2(r) ≤ u3(r) ∀ r > 0 (61)

Especially, if ρ and σ do not commute, we have ψ2(s) < ψ2(s) and u2(r) < u3(r).

As mentioned above, u1(r) is an achievable exponent in quantum hypothesis
testing, while it is not known whether u2(r) and u3(r) are achievable or not. It is
interesting to study the achievability of these functions, especially that of u2(r), and
the problem is left open.

6 Concluding Remarks

In the quantum hypothesis problem, we have presented upper bounds on the error
probabilities of the first and the second kind, based on a key operator inequality
satisfied by a density operator and pinching of it. The upper bounds are regarded
as a noncommutative analogue of the Hoeffding bound [9], which is the optimal
bound in classical hypothesis testing, and the upper bounds provide a simple
proof of the direct part of the quantum Stein’s lemma. Compared with [6], the
proof is considerably simple and leads to the exponential convergence of the error
probability of the first kind.

7 Definition of Pinching

In this section, we summarize the definition of pinching (see, e.g., [2, p. 50]) for
readers’ convenience. Pinching is known as a special notion of the conditional
expectation in the field of operator algebra.

Given a Hermitian operator A ∈ L(H), let A = ∑v(A)
i=1 aiEi be its spectral

decomposition, where v(A) is the number of eigenvalues of A mutually different
from others, and each Ei is the projection corresponding to an eigenvalue ai . The
following map defined by using the PVM E = {Ei}v(A)

i=1 is called pinching:

EA : B ∈ L(H) → EA(B) =�
v(A)∑

i=1

EiBEi ∈ L(H). (62)
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The operator EA(B) is also called pinching when no confusion is likely to arise,
and it is sometimes denoted as EE(B). It should be noted here that pinching is the
conditional expectation (with respect to the tracial state) to the commutant of the
∗-subalgebra generated by A or PVM E, since EA(B) is the one and only operator
which satisfies

Tr[BC] = Tr[EA(B)C] (63)

for any operator C ∈ L(H) commuting with A.

8 Key Operator Inequality

The following lemma has played an important role in this lecture. Although the
lemma for a two-valued PVM has been widely used, it appeared in [6] for the general
case. Here, we will show another proof of it for readers’ convenience.

Lemma 285 (Hayashi 2002, [6]) Given a PVM M = {Mi}v(M)
i=1 onH, we have for

all ρ ∈ S(H)

ρ ≤ v(M)EM(ρ) (64)

where EM(ρ) is the pinching defined in 7.

Proof First, note that the following map, defined with respect to a non-negative
operator A ∈ L(H), is operator convex

fA : X ∈ L(H) → X∗AX ∈ L(H) (65)

which is shown by a direct calculation

tfA(X)+(1−t)fA(Y )−fA(tX+(1−t)Y ) = t (1−t)(X−Y )∗A(X−Y ) ≥ 0 (66)

for 0 ≤ t ≤ 1. Using the convexity, the lemma is verified as follows:

1

v(M)2 ρ =
⎛

⎝ 1

v(M)

v(M)∑

i=1

Mi

⎞

⎠ ρ

⎛

⎝ 1

v(M)

v(M)∑

i=1

Mi

⎞

⎠

≤ 1

v(M)

v(M)∑

i=1

MiρMi

= 1

v(M)
EM(ρ). (67)

�
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