
On Logarithmically Asymptotically
Optimal Testing of Hypotheses and
Identification

We introduce a new aspect of the influence of the information-theoretical methods
on the statistical theory. The procedures of the probability distributions identification
for K(≥ 1) random objects each having one from the known set of M(≥ 2)
distributions are studied. N -sequences of discrete independent RV’s represent
results of N observations for each of K objects. On the base of such samples
decisions must be made concerning probability distributions of the objects. For
N → ∞ the exponential decrease of the test’s error probabilities is considered.
The reliability matrices of logarithmically asymptotically optimal procedures are
investigated for some models and formulations of the identification problems.
The optimal subsets of reliabilities which values may be given beforehand and
conditions guaranteeing positiveness of all the reliabilities are investigated.

“In statistical literature such a problem is referred to as one of classification or discrimina-
tion, but identification seems to be more appropriate”

Radhakrishna Rao [27].

1 Problem Statement

Let Xk = (Xk,n, n ∈ [N ]), k ∈ [K], be K(≥ 1) sequences of N discrete i.i.d.
RV’s representing possible results of N observations, respectively, for each of K

randomly functioning objects.
For k ∈ [K], n ∈ [N ], Xk,n assumes values xk,n in the finite set X of cardinality

|X |. Let P(X ) be the space of all possible distributions on X . There are M(≥ 2)
probability distributions G1, . . . ,GM from P(X ) in inspection, some of which
are assigned to the vectors X1, . . . ,XK . This assignment is unknown and must
be determined on the base of N -samples (results of N independent observations)
xk = (xk,1, . . . , xk,N ), where xk,n is a result of the nth observation of the kth object.
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When M = K and all objects are different (any two objects cannot have the same
distribution), there are K! possible decisions. When objects are independent, there
are MK possible combinations.

Bechhofer, Kiefer, and Sobel presented investigations on sequential multiple-
decision procedures in [7]. This book is concerned principally with a particular class
of problems referred to as ranking problems.

Chapter “Models with Prior Knowledge at the Sender” of the book by Ahlswede
and Wegener [5] is devoted to statistical identification and ranking problems.

We study models considered in [7] and [5] and variations of these models inspired
by the pioneering papers by Ahlswede and Dueck [4] (see chapter “Identification
via Channels” in Part I) and by Ahlswede [1], applying the concept of optimality
developed in [9, 16, 22–24, 28] for the models with K = 1.

Consider the following family of error probabilities of a test

α
(N)
m1,m2,...,mK |l1,l2,...,lK , (m1, m2, . . . , mK) �= (l1, l2, . . . , lK), mk, lk ∈ [M] , k ∈ [K],

which are the probabilities of decisions l1, l2, . . . , lK when actual indices of the
distributions of the objects were, respectively, m1,m2, . . . , mK .

The probabilities to reject all K hypotheses when they are true are the following

α
(N)
m1,m2,...,mK |m1,m2,...,mK

=
∑

(l1,l2,...,lK ) �=(m1,m2,...,mK)

α
(N)
m1,m2,...,mK |l1,l2,...,lK .

We study exponential decrease of the error probabilities when N → ∞ and define
(using logarithms and exponents to the base e)

lim sup
N→∞

− 1

N
logα

(N)
m1,m2,...,mK |l1,l2,...,lK = Em1,m2,...,mK |l1,l2,...,lK ≥ 0. (1)

These are exponents of error probabilities which we call reliabilities (in association
with Shannon’s reliability function [15]). We shall examine the matrix E =
{Em1,m2,...,mK |l1,l2,...,lK } and call it the reliability matrix.

Our criterion of optimality is: given M,K and values of a part of reliabilities
to obtain the best (the largest) values for others. In addition it is necessary to
describe the conditions under which all these reliabilities are positive. The procedure
that realizes such testing is identification, which following Birgé [9], we call
“logarithmically asymptotically optimal” (LAO).

Let N(x|x) be the number of repetitions of the element x ∈ X in the vector
x ∈ XN , and let

Q = {Q(x) = N(x|x)/N, x ∈ X }

is the distribution, called “the empirical distribution” (ED) of the sample x in
statistics, in information theory called “the type” [14, 15] and in algebraic literature
“the composition”.
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Denote the space of all empirical distributions for given N by P(N)(X ) and by
T (N)

Q the set of all vectors of the ED Q ∈ P(N)(X ).
Consider for k ∈ [K], m ∈ [M], relative entropies

D(Qk||Gm) =
∑

x∈X
Qk(x) log

Qk(x)

Gm(x)
,

and entropies

H(Qk) = −
∑

x∈X
Qk(x) logQk(x).

We shall use the following relations for the probability of the vector x when Gm

is the distribution of the object:

G(N)
m (x) =

N∏

n=1

Gm(xn) = exp{−N [D(Q||Gm) + H(Q)]}.

For mk ∈ [M], k ∈ [K], when the objects are independent and Gmk
is the

distribution of the kth object:

P (N)
m1,m2,...,mK

(x1, x2, . . . , xK) = exp{−N [
K∑

k=1

D(Qk||Gmk
) + H(Qk)]}. (2)

The equalities follow from the independence of N observations of K objects and
from the definitions of relative entropies and entropies. It should be noted that the
equality (2) is valid even when its left part is equal to 0, in that case for one of xk the
distribution Qk is not absolutely continuous relative to Gmk

and D(Qk||Gmk
) = ∞.

Our arguments will be based on the following fact: the “maximal likelihood”
test accepts as the solution values m1,m2, . . . , mk , which maximize the probability
P

(N)
m1,m2,...,mK

(x1, x2, . . . , xK), but from (2) we see that the same solution can be

obtained by minimization of the sum
K∑

k=1
[D(Qk||Gmk

) + H(Qk)], that is the

comparison with the help of relative entropies of the ED’s of observed vectors with
their hypothetical distributions may be helpful.

In this lecture we consider the following models.

1. K objects are different, they have different distributions among M ≥ K

possibilities. For simplicity we restrict ourselves to the case K = 2,M = 2.
It is the identification problem in formulations of the books [7] and [5].

2. K objects are independent, that is some of them may have the same distributions.
We consider an example for K,M = 2. It is surprising, but this model has not
been considered earlier in the literature.
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3. We investigate one object, K = 1, and M possible probability distributions.
The question is whether the mth distribution occurred or not. This is the
problem of identification of distributions in the spirit of chapter “Identification
via Channels”.

4. Ranking, or ordering problem [1]. We have one vector of observations X =
(X1, X2, . . . , XN) and M hypothetical distributions. The receiver wants to know
whether the index of the true distribution of the object is in {1, 2, . . . , r} or in
{r + 1, . . . ,M}.

5. r-identification of distribution [1]. Again K = 1. One wants to identify the
observed object as a member either of the subset S of [M], or of its complement,
with r being the number of elements in S .
Section 2 of this lecture presents necessary notions and results on hypothesis

testing. The models of identification for independent objects are considered in 3 and
for different objects in 4. Section 5 is devoted to the problem of identification of
an object distribution and 6 to the problems of r-identification and ranking. Some
results are illustrated by numerical examples and graphs. Many directions of further
research are indicated in the course of the text and in the 7.

2 Background

The study of interdependence of exponential rates of decrease, as the sample size
N goes to the infinity, of the error probabilities α

(N)
1|2 of the “first kind” and α

(N)
2|1 of

the “second kind” was started by the works of Hoeffding [23], Csiszár and Longo
[16], Tusnády [28], Longo and Sgarro [24], Birgé [9], and for multiple hypotheses
by Haroutunian [22]. Similar problems for Markov dependence of experiments were
investigated by Natarajan [26], Haroutunian [21], Gutman [18] and others. As it was
remarked by Blahut in his book [11], it is unfortunately confusing that the errors are
denoted type I and type II, while the hypotheses are subscripted 0 and 1. The word
“type” is also used in another sense to refer to the type of a measurement or the type
of a vector. For this reason we do not use the names “0” and “1” for hypotheses and
the name “type” for errors. Note that in [10, 11, 17] an application of the methods
of hypothesis testing to the proper problems of information theory is developed.

It will be very interesting to combine investigation of described models with the
approach initiated by the paper of Ahlswede and Csiszár [3] and developed by many
authors, particularly, for the exponentially decreasing error probabilities by Han and
Kobayashi [20].

In [8] Berger formulated the problem of remote statistical inference. Zhang and
Berger [29] studied a model of an estimation system with compressed information.
Similar problems were examined by Ahlswede and Burnashev [2] and by Han and
AmariAmari, S. [19]. In the paper of Ahlswede, Yang and Zhang [6] identification in
channels via compressed data was considered. Fu and Shen [17] studied hypothesis
testing for an arbitrarily varying source.
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Our further considerations will be based on the results from [22] on multiple
hypotheses testing, so now we expose briefly corresponding formulations and
proofs. In our terms it is the case of one object (K = 1) andM possible distributions
(hypotheses) G1, . . . ,GM . A test ϕ(x) on the base of N -sample x = (x1, . . . , xN)

determines the distribution. Since experiments are independent the probability of
the sample x if the distribution is Gm will be

G(N)
m (x) =

N∏

n=1

Gm(xn), m ∈ [M] .

We study error probabilities α
(N)
m|l for m, l ∈ [M]. Here α

(N)
m|l is the probability

that the distribution Gl was accepted instead of true distribution Gm. For m = l the
probability to reject Gm when it is true, is denoted by α

(N)
m|m thus:

α
(N)
m|m =

∑

l:l �=m

α
(N)
m|l .

This probability is called [12] the test’s “error probability of the kindm”. The matrix
{α(N

m|l )} is sometimes called the “power of the test” [12].
In this lecture we suppose that the list of possible hypotheses is complete.

Remark that, as it was noted by Rao [27], the case, when the objects may have
also some distributions different from G1, . . . ,GM , is interesting too.

Let us analyze the reliability matrix

E =

⎛

⎜⎜⎜⎜⎜⎝

E1|1 . . . E1|l . . . E1|M
. . . . . . . . . . . . . . . . . . . . .

Em|1 . . . Em|l . . . Em|M
. . . . . . . . . . . . . . . . . . . . .

EM|1 . . . EM|l . . . EM|M

⎞

⎟⎟⎟⎟⎟⎠

with components

Em|l = lim sup
N→∞

− 1

N
logα

(N)
m|l , m, l ∈ [M] .

According to this definition and the definition of α
(N)
m|l we can derive that

Em|m = min
l:m�=l

Em|l . (3)
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Really,

Em|m = lim sup
N→∞

− 1

N
log

∑

l:m�=l

α
(N)
m|l

= lim sup
N→∞

− 1

N
log max

l:m�=l
α

(N)
m|l + lim sup

N→∞
− 1

N
log

⎡

⎣

⎛

⎝
∑

l:m�=l

α
(N)
m|l

⎞

⎠ / max
l:m�=l

α
(N)
m|l

⎤

⎦

= min
l:m�=l

Em|l .

The last equality is a consequence of the fact that for all m and N

1 ≤ (
∑

l:m�=l

α
(N)
m|l )/ max

l:m�=l
α

(N)
m|l ≤ M − 1.

In the case M = 2, the reliability matrix is

E =
(

E1|1 E1|2
E2|1 E2|2

)
(4)

and it follows from (3) that there are only two different values of elements, namely

E1|1 = E1|2 and E2|1 = E2|2, (5)

so in this case the problem is to find the maximal possible value of one of them,
given the value of the other.

In the case of M hypotheses for given positive and finite E1|1, E2|2, . . . ,
EM−1,M−1 let us consider the regions of distributions

Rl = {Q : D(Q||Gl) ≤ El|l}, l ∈ [M − 1] , (6)

RM = {Q : D(Q||Gl) > El|l , l ∈ [M − 1]} = P(X ) −
M−1⋃

l=1

Rl , (7)

R(N)
l = Rl

⋂
P(N), l ∈ [M]. (8)

Let

E∗
l|l = E∗

l|l (El|l) = El|l , l ∈ [M − 1] , (9)

E∗
m|l = E∗

m|l (El|l) = inf
Q∈Rl

D(Q||Gm), m ∈ [M] , m �= l, l ∈ [M − 1] ,

(10)
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E∗
m|M = E∗

m|M(E1|1, . . . , EM−1,M−1) = inf
Q∈RM

D(Q||Gm), m ∈ [M − 1] ,

(11)

E∗
M|M = E∗

M|M(E1|1, . . . , EM−1,M−1) = min
l∈[M−1]

E∗
M|l . (12)

If some distribution Gm is not absolutely continuous relative to Gl the reliability
E∗

m|l will be equal to the infinity, this means that corresponding α
(N)
m|l = 0 for some

large N .
The principal result of [22] is:

Theorem 272 If all the distributionsGm are different and all elements of the matrix
{D(Gl ||Gm)}, l, m ∈ [M], are positive, but finite, two statements hold:

(i) when the positive numbers E1|1, E2|2, . . . , EM−1,M−1 satisfy conditions

E1|1 < min
l∈[2,M]

D(Gl ||G1),

... (13)

Em|m < min[ min
l∈[m−1]

E∗
m|l (El|l), min

l∈[m+1,M]
D(Gl ||Gm)], m ∈ [2,M − 1] ,

then there exists a LAO sequence of tests, the reliability matrix of which E∗ =
{E∗

m|l} is defined in (9)–(12) and all elements of it are positive;
(ii) even if one of conditions (13) is violated, then the reliability matrix of any such

test has at least one element equal to zero (that is the corresponding error
probability does not tend to zero exponentially).

The essence of the proof of Theorem 272 consists in construction of the following
optimal tests sequence. Let the decision l will be taken when x gets into the set

B(N)
l =

⋃

Q∈R(N)
l

T (N)
Q , l ∈ [M] , N = 1, 2, . . . . (14)

The non-coincidence of the distributions Gm and the conditions (13) guarantee that
the sets from (14) are not empty, they meet conditions

B(N)
l

⋂
B(N)

m = ∅, l �= m,

and

M⋃

l=1

B(N)
l = XN,

and so they define a sequence of tests, which proves to be LAO.
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For the simplest particular case M = 2 elements of the reliability matrix (4)
satisfy equalities (5) and for given E1|1 from (5) and (7) we obtain the value of
E∗
2|1 = E∗

2|2:

E∗
2|1(E1|1) = inf

Q:D(Q||G1)≤E1|1
D(Q||G2). (15)

Here, according to (13), we can take E1|1 from (0,D(G2‖G1)) and E∗
2|1(E1|1) will

range between D(G1||G2) and 0.

3 Identification Problem for Model with Independent
Objects

We begin with study of the second model. To illustrate possibly arising develop-
ments and essential features we consider a particular case K = 2,M = 2. It is clear
that the case with M = 1 is trivial. The reliability matrix is (see (1))

E =

⎛

⎜⎜⎝

E1,1|1,1 E1,1|1,2 E1,1|2,1 E1,1|2,2
E1,2|1,1 E1,2|1,2 E1,2|2,1 E1,2|2,2
E2,1|1,1 E2,1|1,2 E2,1|2,1 E2,1|2,2
E2,2|1,1 E2,2|1,2 E2,2|2,1 E2,2|2,2

⎞

⎟⎟⎠ .

Let us denote by α
(1)
m1|l1 , α

(2)
m2|l2 and E

(1)
m1|l1 , E

(2)
m2|l2 the error probabilities and the

reliabilities as in (4) for, respectively, the first and the second objects.

Lemma 273 If 0 < E
(i)
1|1 < D(G2||G1), i = 1, 2, then the following equalities

hold true:

Em1,m2|l1,l2 = E
(1)
m1|l1 + E

(2)
m2|l2, if m1 �= l1, m2 �= l2, (16)

Em1,m2|l1,l2 = E
(i)
mi |li , if m3−i = l3−i , mi �= li , i = 1, 2, (17)

Proof From the independence of the objects it follows that

α
(N)
m1,m2|l1,l2 = α

(N,1)
m1|l1 α

(N,2)
m2|l2 , if m1 �= l1, m2 �= l2, (18)

α
(N)
m1,m2|l1,l2 = α

(N,i)
mi |li (1 − α

(N,3−i)
m3−i |l3−i

), if m3−i = l3−i , mi �= li , i = 1, 2, (19)

According to (1), from (18) we obtain (16), from (19) and the conditions of
positiveness of E

(i)
1|1 and E

(i)
2|2, i = 1, 2, (17) follows. ��
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Theorem 274 If the distributions G1 and G2 are different, the strictly positive
elements E1,1|1,2, E1,1|2,1 of the reliability matrix E are given and bounded above:

E1,1|1,2 < D(G2||G1), and E1,1|2,1 < D(G2||G1), (20)

then the other elements of the matrix E are defined as follows:

E2,1|2,2 = E1,1|1,2, E1,2|2,2 = E1,1|2,1,

E2,2|1,1 = E1,2|1,1 + E2,1|1,1, E2,1|1,2 = E2,1|1,1 + E1,2|2,2,

E1,2|2,1 = E1,2|1,1 + E1,2|2,2, E1,1|2,2 = E1,1|1,2 + E1,1|2,1,

E1,2|1,1 = E2,2|2,1 = inf
Q:D(Q||G1)≤E1,1|1,2

D(Q||G2),

E2,1|1,1 = E2,2|1,2 = inf
Q:D(Q||G1)≤E1,1|2,1

D(Q||G2), (21)

Em1,m2|m1,m2 = min
(l1,l2) �=(m1,m2)

Em1,m2|l1,l2 , m1,m2 = 1, 2.

If one of the inequalities (20) is violated, then at least one element of the matrix E
is equal to 0.

Proof The last equalities in (21) follow (as (3)) from the definition of

α
(N)
m1,m2|m1,m2

=
∑

(l1,l2) �=(m1,m2)

α
(N)
m1,m2|l1,l2 , m1,m2 = 1, 2.

Let us consider the reliability matrices of each of the objects X1 and X2

E(1) =
(

E
(1)
1|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|2

)
and E(2) =

(
E

(2)
1|1 E

(2)
1|2

E
(2)
2|1 E

(2)
2|2

)
.

From (5) we know that E(i)
1|1 = E

(i)
1|2 and E

(i)
2|1 = E

(i)
2|2, i = 1, 2. From (20) it follows

that 0 < E
(1)
1|1 < D(G2||G1), 0 < E

(2)
1|1 < D(G2||G1). Really, if 0 < E1,1|1,2 <

D(G2||G1), but E
(2)
1|1 ≥ D(G2||G1), then from (19) and (1) we arrive to

lim sup
N→∞

− 1

N
log(1 − α

(N,2)
1|2 ) < 0,

therefore index N0 exists, such that for sub-sequence of N > N0 we will have
1− α

(N,2)
1|2 > 1. But this is impossible because α

(N,2)
1|2 is the probability and must be

positive.
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Using Lemma 273 we can deduce that the reliability matrix E can be obtained
from matrices E(1) and E(2) as follows:

E =

⎛

⎜⎜⎜⎜⎝

min(E(1)
1|2, E

(2)
1|2) E

(2)
1|2 E

(1)
1|2 E

(1)
1|2 + E

(2)
1|2

E
(2)
2|1 min(E(1)

1|2, E
(2)
2|1) E

(1)
1|2 + E

(2)
2|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|1 + E

(2)
1|2 min(E(1)

2|1, E
(2)
1|2) E

(2)
1|2

E
(1)
2|1 + E

(2)
2|1 E

(1)
2|1 E

(2)
2|1 min(E(1)

2|1, E
(2)
2|1)

⎞

⎟⎟⎟⎟⎠
,

in other words, providing, that conditions (20) are fulfilled, we find that

E1,1|1,2 = E
(2)
1|2 = E

(2)
1|1, E1,1|2,1 = E

(1)
1|2 = E

(1)
1|1,

E2,1|2,2 = E1,1|1,2 = E
(2)
1|2, E1,2|2,2 = E1,1|2,1 = E

(1)
1|2,

E1,2|1,1 = E2,2|2,1 = E
(2)
2|1, E2,1|1,1 = E2,2|1,2 = E

(1)
2|1,

E2,2|1,1 = E
(1)
2|1 + E

(2)
2|1, E2,1|1,2 = E

(1)
2|1 + E

(2)
1|2, (22)

E1,2|2,1 = E
(1)
1|2 + E

(2)
2|1, E1,1|2,2 = E

(1)
1|2 + E

(2)
1|2,

and

Em1,m2|m1,m2 = min{E(1)
m1|m1

, E
(2)
m2|m2

}, m1,m2 = 1, 2,

From Theorem 272 we know that if E
(i)
1|1 ∈ (0,D(G2||G1)), i = 1, 2, then the tests

of both objects are LAO and the elements E
(i)
2|1, i = 1, 2, can be calculated (see (15))

by

E
(i)
2|1 = inf

Q:D(Q||G1)≤E
(i)
1|1

D(Q||G2), i = 1, 2, (23)

and if E
(i)
1|1 ≥ D(G2||G1), then E

(i)
2|1 = 0.

According to (22) and (23), we obtain, that when (20) takes place, the elements
of the matrix E are determined by relations (21). When one of the inequalities (20)
is violated, then from (23) and the first and the third lines of (22) we see, that some
elements in the matrix E must be equal to 0 (namely, either E1,2|1,1, or E2,1|1,1 and
others).

Now let us show that the compound test for two objects is LAO, that is it is
optimal. Suppose that for given E1,1|1,2 and E1,1|2,1 there exists a test with matrix
E

′
, such that it has at least one element exceeding the respective element of the

matrix E. Comparing elements of matrices E and E
′
different from E1,1|1,2 and

E1,1|2,1, from (22) we obtain that either E1,2|1,1 < E
′
1,2|1,1, or E2,1|1,1 < E

′
2,1|1,1,
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i.e. either E
(2)
2|1 < E

(2)′
2|1 , or E

(1)
2|1 < E

(1)′
2|1 . It is contradiction to the fact, that LAO

tests have been used for the objects X1 and X2.
When it is demanded to take the same values for the reliabilities of the first and

the second objects E
(1)
1|2 = E

(2)
1|2 = a1 and, consequently, E

(1)
2|1 = E

(2)
2|1 = a2, then the

matrix E will take the following form

E =

⎛

⎜⎜⎝

a1 a1 a1 2a1
a2 min(a1, a2) a1 + a2 a1

a2 a1 + a2 min(a1, a2) a1

2a2 a2 a2 a2

⎞

⎟⎟⎠ . ��

4 Identification Problem for Models with Different Objects

The K objects are not independent, they have different distributions, and so the
number M of the distributions is not less than K . This is the model studied in [7].
For brevity we consider the case K = 2,M = 2. The matrix of reliabilities will be
the following:

E =
(

E1,2|1,2 E1,2|2,1
E2,1|1,2 E2,1|2,1

)
. (24)

Since the objects are strictly dependent this matrix coincides with the reliability
matrix of the first object (see (4))

E(1) =
(

E
(1)
1|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|2

)
,

because the distribution of the second object is uniquely defined by the distribution
of the first one.

We can conclude that among 4 elements of the reliability matrix of two dependent
objects only 2 elements are distinct, the second of which is defined by given E

(1)
1|1 =

E1,2|1,2.
From symmetry it follows that the reliability matrix of the second object also

may determine the matrix (24).

5 Identification of the Probability Distribution of an Object

Let we have one object, K = 1, and there are known M ≥ 2 possible distributions.
The question is whether rth distribution occurred, or not. There are two error
probabilities for each r ∈ [M] the probability α

(N)
m=r|l �=r to accept l different from r ,
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when r is in reality, and the probability α
(N)
m�=r|l=r that r is accepted, when it is not

correct.
The probability α

(N)
m=r|l �=r is already known, it coincides with the probability α

(N)
r|r

which is equal to
∑

l:l �=r

α
(N)
r|l . The corresponding reliability Em=r|l �=r is equal to Er|r

which satisfies the equality (3).
We have to determine the dependence of Em�=r|l=r upon given Em=r|l �=r = Er|r ,

which can be assigned values satisfying conditions (13), this time we will have the
conditions:

0 < Er|r < min
l:l �=r

D(Gl‖Gr), r ∈ [M].

We need the probabilities of different hypotheses. Let us suppose that the
hypotheses G1, . . . ,GM have, say, probabilities Pr(r), r ∈ [M]. The only
supposition we shall use is that Pr(r) > 0, r ∈ [M]. We will see, that the result
formulated in the following theorem does not depend on values of Pr(r), r ∈ [M],
if they all are strictly positive.

Now we can make the following reasoning for each r ∈ [M]:

α
(N)
m�=r|l=r = Pr(N)(m �= r, l = r)

Pr(m �= r)
= 1∑

m:m�=r

Pr(m)

∑

m:m�=r

Pr(N)(m, r).

From here we see that for r ∈ [M]

Em�=r|l=r = lim sup
N→∞

(
− 1

N
logα

(N)
m�=r|l=r

)

= lim sup
N→∞

1

N

⎛

⎝log
∑

m:m�=r

Pr(m) − log
∑

m:m�=r

α
(N)
m|r Pr(m)

⎞

⎠

= min
m:m�=r

E∗
m|r . (25)

Using (25) by analogy with the formula (15) we conclude (withRr defined as in (6)
for each r including r = M by the values of Er|r from (0, min

l:l �=r
D(Gl ||Gr))) that

Em�=r|l=r (Er|r ) = min
m:m�=r

inf
Q∈Rr

D(Q‖Gm)

= min
m:m�=r

inf
Q:D(Q‖Gr)≤Er|r

D(Q‖Gm), r ∈ [M]. (26)
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We can summarize this result in

Theorem 275 For the model with different distributions, for the given sample x we
define its ED Q, and when Q ∈ R(N)

r we accept the hypothesis r . Under condition
that the probabilities of all M hypotheses are positive the reliability of such test
Em�=r|l=r for given Em=r|l �=r = Er|r is defined by (26).

For presentation of examples let us consider the set X = {0, 1} with only 2
elements. Let 5 probability distributions are given on X :

G1 = {0.1, 0.9}
G2 = {0.65, 0.35}
G3 = {0.45, 0.55}
G4 = {0.85, 0.15}
G5 = {0.23, 0.77}

On Fig. 1, the results of calculations of Em�=r|l=r as function of Em=r|l �=r are
presented.

Fig. 1 Em�=r|l=r as function of Em=r|l �=r for r = 1, 2, 3, 4, 5
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Fig. 2 Em�=t |l=t as function of
[
Et |t

]
for t = 1, 2, 3, 4

The elements of the matrix of relative entropies of all pairs of distributions are
used for calculation of conditions (13) for this example.

{D(Gm‖Gl)}l∈[5]
m∈[5] =

⎛

⎜⎜⎜⎜⎜⎝

0 0.956 0.422 2.018 0.082
1.278 0 0.117 0.176 0.576
0.586 0.120 0 0.618 0.169
2.237 0.146 0.499 0 1.249
0.103 0.531 0.151 1.383 0

⎞

⎟⎟⎟⎟⎟⎠
.

In Figs. 2 and 3 the results of calculations of the same dependence are presented
for 4 distributions taken from previous 5.
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Fig. 3 Em�=t |l=t as function of
[
Et |t

]
for t = 1, 2, 3, 4

6 r-Identification and Ranking Problems

The model was introduced in [1] and named K-identification. Since in this lecture
the letter K is already used we speak of r-identification. Given N -sample x of
measurements of the object the problem is to answer to the question: is the
distribution of the object in the part S of M possible distributions or in its
complement, here r is the number of elements of the set S .

Again we can make decision on the base of the EDQ of the sample x and suppose
that before experiments all hypotheses have some positive probabilities

Pr(1), . . . ,Pr(M).

Using (6)–(8) with some E1,1, . . . , EM−1,M−1 meeting the conditions (13) when
Q ∈ ⋃

l∈S
R(N)

l decision “l is in S” follows.
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The model of ranking is the particular case of the model of r-identification
with S = {1, 2, . . . , r}. But conversely the r-identification problem without loss of
generality may be considered as the ranking problem, to this end we can renumber
the hypotheses placing the hypotheses of S in the r first places. Because these two
models are mathematically equivalent we shall speak below only of the ranking
model.

It is enough to consider the cases r ≤ �M/2�, because in the cases of larger r

we can replace S with its complement. Remark that the case r = 1 was considered
in 5.

We study two error probabilities of a test: the probability α
(N)
m≤r|l>r to make

incorrect decision when m is not greater than r and the probability α
(N)
m>r|l≤r to

make error when m is greater than r . The corresponding reliabilities are

E1(r) = Em≤r|l>r and E2(r) = Em>r|l≤r , 1 ≤ r ≤ �M/2�. (27)

With supposition (6) we have

α
(N)
m≤r|l>r = Pr(N)(m ≤ r, l > r)

Pr(m ≤ r)

= 1∑
m≤r

Pr(m)

∑

m≤r

∑

l>r

Pr(N)(m, l)

= 1∑
m≤r

Pr(m)

∑

m≤r

∑

l>r

α
(N)
m|l Pr(m). (28)

The definition (27) of E1(r) and the equality (28) give

E1(r) = lim sup
N→∞

− 1

N
logα

(N)
m≤r|l>r

= lim sup
N→∞

− 1

N

[
log

∑

m≤r

∑

l>r

Pr(m)α
(N)
m|l − log

∑

m≤r

Pr(m)

]

= min
m≤r,l>r

Em|l . (29)
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Fig. 4 Calculation of
E2(r) [E1(r)] ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1|1 E1|M

EM |1 EM |M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Er|r

E2(r)[E1(r)] =

= min
m>r,l≤r

Em|l

E1(r)= min
m≤r,l>r

Em|l

m = 1

2

..

.

r
r + 1

..

..

..

..

..

..

M

l = 1, 2, . . . , r, r + 1, . . . . . . . , M

Analogously, at the same time

E2(r) = lim sup
N→∞

− 1

N
logα

(N)
m>r|l≤r

= lim sup
N→∞

− 1

N

⎡

⎣log
∑

m>r

∑

l≤r

α
(N)
m|l − log

∑

m>r

Pr(m)

⎤

⎦

= min
m>r,l≤r

Em|l . (30)

For any test the value of E1(r) must satisfy the condition (compare (3) and (29))

E1(r) ≥ min
m:m≤r

Em|m. (31)

Thus for any test meeting all inequalities from (13) for m ≤ r and inequality (31)
the reliability E2(r) may be calculated with the equality (30). For given value
of E1(r) the best E2(r) will be obtained if we use liberty in selection of the
biggest values for reliabilities Em|m, r < m ≤ M − 1, satisfying for those m-
s conditions (13). These reasonings may be illuminated by Fig. 4 and resumed as
follows:

Theorem 276 When the probabilities of the hypotheses are positive, for given
E1(r) for m ≤ r not exceeding the expressions on the right in (13), E2(r) may
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Fig. 5 Em�=t |l=t as function of
[
Et |t

]
for t = 1, 2, 3

be calculated in the following way:

E2(r) [E1(r)] = max
{Em|l , m,l∈[M]}: min

m≤r, l>r
E∗

m|l=E1(r)

[
min

m>r, l≤r
E∗

m|l
]

(32)

with E∗
m|l defined in (9)–(12).

Remark One can see from (32) that for r = 1 we arrive to (26) for r = 1.

In Figs. 5 and 6 for 2 subsets by 3 distributions taken from 5 defined for Fig. 1 the
results of calculation of the dependence (26) and in Figs. 7 and 8 the corresponding
results of the formula (33) are presented.
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Fig. 6 Em�=t |l=t as function of
[
Et |t

]
for t = 1, 2, 3
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Fig. 7 E2(r), E1(r)
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Fig. 8 E2(r), E1(r)

7 Conclusion and Extensions of Problems

The lecture is a contribution to influence of the information theory methods on
statistical theory. We have shown by simple examples what questions arise in
different models of statistical identification.

Problems and results of the lecture may be extended in several directions some
of which have been already noted above.

It is necessary to examine models in which measurements are described by more
general classes of RV’s and processes [18, 19, 21, 26].

One of the directions is connected with the use of compressed data of measure-
ments [2, 6, 8, 19, 29].

One may see perspectives in application of identification approach and methods
to the authentication theory [25] and steganography [13].
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