
Perspectives

Our models go considerably beyond Shannon’s transmission model and the model
of identification. They will greatly enlarge the body of information theory. We
substantiate here this belief by a brief discussion of how already the identification
model alone had a significant impact.

Right now the most visible influences are new approximation problems (like
approximation of output statistics [14] or entropy approximations based on Schur-
convexity [10] etc.), a new emphasis on random number generation [1] and, above
all, an understanding of the concept of common randomness [9], in identification
[10, 11, 13], cryptography [7], and classical transmission problems of arbitrarily
varying channels [3, 5, 12], and the paper [6], with a novel capacity formula, which
could not be derived before.

It is also fascinating to discover how transmission problems and identification
problems in multi-user theory show often some kind of duality. Often identification
problems are mathematically more complex and in other cases we encounter the
opposite: there is a rather complete capacity theory for identification via multi-way
channels in case of complete feedback [10, Lecture 3], whereas for transmission
with feedback we don’t even understand the multiple access channel.

We conclude with three more recently encountered directions of research.

1 Comparison of Identification Rate and Common
Randomness Capacity: Identification Rate can Exceed
Common Randomness Capacity and Vice Versa

One of the observations of [9] (chapter “Identification in the Presence of Feedback:
A Discovery of New Capacity Formulas”) was that random experiments, to whom
the communicators have access, essentially influence the value of the identification
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capacity CpolID. We introduce now common randomness capacity, which was
called mystery number in [10] (chapter “On Identification via Multi-Way Channels
with Feedback: Mystery Numbers”), and has subsequently been called by us in
lectures and papers by its present name.

The common randomness capacity CpolCR is the maximal number ν such, that
for a constant c > 0 and for all ε > 0, δ > 0 and for all n sufficiently large there
exists a permissible pair (K,L) of RV’s for length n on a set K with |K| < ecn with

Pr{K �= L} < ε and
H(K)

n
> ν − δ.

Actually, if sender and receiver have a common randomness capacity CpolCR

then by the so called
√

n-trick of chapter “Identification in the Presence of Feed-
back: A Discovery of New Capacity Formulas”, that is, the transformator lemma
(discussed in [4]), always

CpolID ≥ CpolCR if CpolID > 0. (1)

For many channels (see [7, 9]), in particular for channels with feedback [9, 10],
equality has been proved.

It seemed therefore plausible, that this is always the case, and that the theory
of identification is basically understood, when common randomness capacities are
known.

We report here a result, which shows that this expected unification is not valid in
general—there remain two theories.

Example In [15] one can find also an example with 0 < CpolID < CpolCR)

Example We will now prove the existence of a sequence of channels (not a sequence
of discrete memoryless channels) with CpolID = 1, CpolCR = 0.

We use a Gilbert type construction of error correcting codes with constant weight
words. This was done for certain parameters in [8] (see chapter “Identification
via Channels”, Part I). The same arguments give for parameters needed here the
following auxiliary result.

Proposition 126 Let Z be a finite set and let λ ∈ (0, 1/2) be given. For (23/λ)−1 <

ε < (22/λ + 1)−1 a family A1, . . . , AN of subsets of Z exists with the properties

|Ai | = ε|Z|, |Ai ∩ Aj | < λε|Z| (i �= j)

and

N ≥ |Z|−12�ε|Z|� − 1.

Notice that λ log
(

1
ε

− 1
)

> 2 and that for � with 2−� = ε necessarily � > 2
λ

.
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Choose now Z = {0, 1}n, ε = 2−� and Ai’s as in the Proposition. Thus |Ai | =
2n−�, N(n, λ) = 2−n22n−� − 1 and |Ai ∩ Aj | < λ2n−�.

Consider now a discrete channel (Wn)∞n=1, where the input alphabets Xt =
{1, 2, . . . , N(t, λ)} are increasing, X n =

n∏
t=1

Xt are the input words of length n,

Yn = {0, 1}n are the output words and Wn : X n � Yn is defined by

Wn(·|i1i2 . . . in) = Wn(·|in)

and Wn(·|i) is the uniform distribution on Ai for 1 ≤ i ≤ N(n, λ).
By Proposition 126 and 3/λ > � > 2/λ

N(n, λ) ≥ 2−n22n−3/λ

and

CpolID ≥ lim inf
n→∞

1

n
log log N(n, λ) ≥ 1.

However, for transmission every decoding set is contained in some Ai and for
error probability λ must have cardinality (1 − λ)|Ai | = (1 − λ)2n−�.

Therefore M(n, λ) ≤ 2n

(1−λ)2n−� ≤ 2�+1, if λ < 1/2, and 1
n

log M(n, λ) ≤
�+1
n

≤ 3/λ+1
n

→ 0(n → ∞). The transmission capacity is 0. Consequently also
CpolCR = 0. �
Remark The case of bounded input alphabets remains to be analyzed. What are
“natural” candidates for equality of CpolID and CpolCR?

Remark For infinite alphabets one should work out conditions for finiteness of the
identification capacity.

2 Robustness, Common Randomness and Identification

It is understood now [6, 7] how the theory of AV-channels is intimately related to
the concept of robust common randomness. A key tool is the balanced hypergraph
coloring [2]. We sketch now another direction concerning robustness and identifica-
tion.

For more robust channel models, for instance in jamming situations, where
the jammer knows the word to be sent (c.f. AV-channels with maximal error
criterion), the communicators are forced to use the maximal error concept. In case
of identification this makes the randomization in the encoding (see [8, Lecture 1])
superfluous. Now, for a DMC W it was mentioned in chapter “Identification via
Channels” that in the absence of randomization the identification capacity, say
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C∗
I (W), equals the logarithm of the number of different row-vectors in W . This

is easy to show, however, a formidable problem arises if the DMC W is replaced
by the AVC W . In fact, for 0-1-matrices only in W we are—exactly as for
transmission—led to the equivalent Shannon-zero-capacity problem. But for general
W the identification problem is quite different from the transmission problem.

In so far there is a lower bound on C∗
I (W), which implies for

W =
{(

1 0
0 1

)
,

(
1 0
δ 1 − δ

)}
, δ ∈ (0, 1)

that C∗
I (W) = 1, which is obviously tight. It exceeds the known capacity for

transmission. The capacity for

W =
{(

1 0
0 1

)
,

(
1 − δ δ

δ 1 − δ

)}

is unknown.

3 Beyond Information Theory: Identification as a New
Concept of Solution for Probabilistic Algorithms

Finally we mention as the perhaps most promising direction the study of probabilis-
tic algorithms with identification as concept of solution. (For example: for any i, is
there a root of a polynomial in interval i or not?)

The algorithm should be fast and have small error probabilities. Every algorith-
mic problem can be thus considered. This goes far beyond information theory. Of
course, like in general information transfer also here a more general set of questions
can be considered. As usual in complexity theory one may try to classify problems.

What rich treasures do we have in the much wider areas of information transfer?!

References

1. R. Ahlswede, The capacity region of a channel with two senders and two receivers. Ann.
Probab. 2(5), 805–814 (1974)

2. R. Ahlswede, Coloring hypergraphs: a new approach to multi–user source coding. Part I, J.
Comb. Inf. Syst. Sci. 1, 76–115 (1979). Part II 5(3), 220–268 (1980)

3. R. Ahlswede, General theory of information transfer, in Preprint 97–118, SFB 343 Diskrete
Strukturen in der Mathematik (Universität Bielefeld, Bielefeld, 1997)

4. R. Ahlswede, Towards a general theory of information transfer, in Shannon Lecture at ISIT in
Seattle 13th July 2006. IEEE Information Theory Society Newsletter (2007)

5. R. Ahlswede, N. Cai, Arbitrarily varying multiple–access channels, in Part I: Ericson’s
Symmetrizability is Adequate, Gubner’s Conjecture is True, Preprint 96–068, SFB Diskrete



References 203

Strukturen in der Mathematik (Universität Bielefeld, Bielefeld). Part II: Correlated Sender’s
Side Information, Correlated Messages and Ambiguous Transmission. Preprint 97–006, SFB
343 Diskrete Strukturen in der Mathematik, Universität Bielefeld. IEEE Trans. Inf. Theory,
vol. 45(2), 749–756 (1999)

6. R. Ahlswede, N. Cai, The AVC with noiseless feedback and maximal error probability: a
capacity formula with a trichotomy. Preprint 96–064, SFB 343 Diskrete Strukturen in der
Mathematik, Universität Bielefeld, Numbers, Information and Complexity, Special volume in
honour of R. Ahlswede on occasion of his 60th birthday, editors I. Althöfer, N. Cai, G. Dueck,
L.H. Khachatrian, M. Pinsker, A. Sárközy, I. Wegener, Z. Zhang (Kluwer Acad. Publication,
Boston, Dordrecht, London), pp. 151–176 (1996)

7. R. Ahlswede, I. Csiszár, Common randomness in information theory and cryptography, Part I:
Secret sharing. IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993). R. Ahlswede, I. Csiszár,
Common randomness in information theory and cryptography, Part II: CR capacity. IEEE
Trans. Inf. Theory 44(1), 225–240 (1998)

8. R. Ahlswede, G. Dueck, Identification via channels. IEEE Trans. Inf. Theory 35, 15–29 (1989)
9. R. Ahlswede, G. Dueck, Identification in the presence of feedback—a discovery of new

capacity formulas. IEEE Trans. Inf. Theory 35, 30–39 (1989)
10. R. Ahlswede, B. Verboven, On identification via multi–way channels with feedback. IEEE

Trans. Inf. Theory 37(5), 1519–1526 (1991)
11. R. Ahlswede, Z. Zhang, New directions in the theory of identification via channels, in SFB 343

Diskrete Strukturen in der Mathematik, Bielefeld, Preprint 94–010 (1994). IEEE Trans. Inf.
Theory 41(4), 1040–1050 (1995)

12. R. Ahlswede, B. Balkenhol, C. Kleinewächter, Identification for Sources, in General Theory
of Information Transfer and Combinatorics (eds.) by R. Ahlswede, et al. Lecture Notes in
Computer Science, vol. 4123 (2006)

13. T.S. Han, Information-spectrum Methods in Information Theory, vol. 50 (Springer, Berlin,
2013)

14. T.S. Han, S. Verdú, Approximation theory of output statistics. IEEE Trans. Inf. Theory 39(3),
752–772 (1993)

15. C. Kleinewächter, On identification, in General Theory of Information Transfer and Combina-
torics. Lecture Notes in Computer Science, vol. 4123 (Springer, New York, 2006), pp. 62–83


	Perspectives
	1 Comparison of Identification Rate and Common Randomness Capacity: Identification Rate can Exceed Common Randomness Capacity and Vice Versa
	2 Robustness, Common Randomness and Identification
	3 Beyond Information Theory: Identification as a New Concept of Solution for Probabilistic Algorithms
	References


