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Words and Introduction of the Editors

Rudolf Ahlswede was one of the worldwide accepted experts on information theory.
Many main developments in this area are due to him. Especially, he made big
progress in multi-user theory. Furthermore, with identification theory and network
coding, he introduced new research directions. Ahlswede died in December 2010.

Several highlights of Ahlswede’s research are the Ahlswede-Daykin inequality
and the Ahlswede-Khachatrian complete intersection theorem, which even include
his name. He also described the capacity region of the multiple-access channel
(many senders, one receiver). Together with Tom Cover’s corresponding result
for the broadcast channel (one sender, several receivers), this is the theoretical
backbone for many algorithms in mobile communication, for instance, in the 5G
standard. In 1990 jointly with his student Gunter Dueck, he initiated a whole new
area of research—the theory of identification. Gunter Dueck in the supplement of
this volume describes how things got started in this direction. Their paper found
immediate interest. Shortly after its appearance, Ahlswede and Dueck received the
Best Paper Award of the IEEE Information Theory Society. This is very much
remarkable, especially, when taking into account that Ahlswede had received this
award only two years before for his joint work with Imre Csiszar—it is quite
extraordinary that the same author is honored with such an important award twice
in such a short time.

This whole volume is devoted to identification and related concepts. In classical
information theory, a sender transmits a message to a receiver over a noisy channel.
The question that has to be answered at the receiving end hence is “Which message
was sent?”. Claude Shannon derived the famous channel capacity C: approximately
2nC messages can be sent over the channel, such that the receiver can still reliably
answer this question, where the message length n tends to infinity. Ahlswede and
Dueck considered a new scenario, in which the receiver now has to answer the
question: “Is this the message the one I am interested in?” This might be illustrated
with the following example where a car owner (the sender) presses the button of his
key and his car (the receiver) opens the door automatically. To obtain this result, a
code is transmitted and the receiver is not really interested in the question which
car should be opened but only if the car itself should be opened or not. In order

v



vi Words and Introduction of the Editors

to reliably answer this question, two conditions have to be guaranteed: (1) The car
of interest should open (with very high probability) and (2) no other car should
open its door when receiving the transmitted signal. Ahlswede and Dueck found
that also for this problem a capacity theorem exists. Approximately, 22nC messages
can be identified over the same noisy channel. Surprisingly, the number C, i.e., the
identification capacity, is the same as Shannon’s capacity for transmission. However,
now, the expression is doubly exponential.

In the sequel, Ahlswede was working intensively on a general theory of infor-
mation transfer that should include transmission and identification of information
as special cases. To this aim, he was awarded a prestigious project in the center for
interdisciplinary research (ZiF) in Bielefeld. Actually, this work occupied him for
the rest of his life and was also the main reason for the delay of these lecture notes.
He wanted to publish them when the general theory of information transfer was
mature to some degree. For instance, his research led to the conjecture that the non-
secure identification capacity (CID) might be the same as the common randomness
capacity (CCR) for channels without extra resources (like feedback). His student
Christian Kleinewächter found a counterexample in which CCR > CID. Ahlswede
himself also showed that CID > CCR can hold (see 6). In his Shannon Lecture 2006
at the IEEE Symposium on Information Theory in Seattle, Ahlswede mentioned that
this conjecture had helped him in the derivation of further capacity results.

As this example shows, the analysis of information identification led to many
new concepts and problems. Source coding and data compression for identification
are different from the corresponding concepts in information transmission. New
probabilistic algorithms and the underlying randomness had to be studied. Further,
there is a strong relation to hypothesis testing, when hypotheses have to be
discriminated. All these directions are presented and studied in the corresponding
chapters of this volume.

Chapter “Testing of Hypotheses and Identification” are lecture notes that were
prepared by Marat Burnashev for a lecture he gave in Bielefeld in 2001. Ahlswede
later used his notes for his lecture. We thank Marat Burnashev for allowing us to
add his text in this book. Furthermore, we add Part VI to the book, which is a
survey by Holger Boche, Christian Deppe, and Wafa Labidi of results in the theory
of identification in the last 10 years.

Special thanks go to Wafa Labidi for the sixth volume. She has put a lot of work
into creating index directories, proofreading, and rewriting. We also thank Gerhard
Kramer for his support by financing Wafa Labidi. Finally, our thanks go to Bernhard
Balkenhol who combines the first approximately 2000 pages of lecture scripts in
different styles (AMS-TeX, LaTeX, etc.) to one big lecture script. He can be seen as
one of the pioneers of Ahlswede’s lecture notes.

Alexander Ahlswede, Ingo Althöfer, Christian Deppe, Ulrich Tamm



Preface

After an introduction to classical information theory, we present now primarily own
methods and models, which go considerably beyond it. They were also sketched
in our Shannon Lecture 2006. There are two main components: our combinatorial
approach to information theory in the late seventies, where probabilistic source and
channel models enter via the skeleton, a hypergraph based on typical sequences,
and our theory of identification, which is now generalized to a general theory of
information transfer (GTIT) incorporating also as ingredient a theory of common
randomness, the main issue in cryptology. We begin with methods, at first with
collections of basic covering, coloring, and packing lemmata with their proofs,
which are based on counting or the probabilistic method of random choice.

Of course, these two methods are also closely related: the counting method can
be viewed as the method of random choice for uniform probability distributions. It
must be emphasized that there are cases where the probabilistic method fails, but
the greedy algorithm (maximal coding) does not or both methods have to be used in
combination. A striking example, Gallager’s source coding problem, is discussed.
Particularly useful is a special case of the covering lemma, called the link. It was
used by Körner for zero-error problems, which are packing problems, in his solution
of Rényi’s problem. Very useful are also two methods, the elimination technique and
the robustification technique, with applications for arbitrarily varying channel and
unidirectional memories.

Coloring and covering lemmata find also applications in many lectures on
combinatorial models of information processing: communication complexity, inter-
active communication, write-efficient memories, ALOHA. They are central in the
theory of identification, especially in the quantum setting, in the theory of common
randomness, and in the analysis of a complexity measure by Ahlswede, Khachatrian,
Mauduit, and Sárkozy for number theoretical crypto-systems.

Bielefeld, Germany Rudolf Ahlswede1

1This is the original preface written by Rudolf Ahlswede for the second 1.000 pages of his lectures.
This volume consists of the last third of these pages.
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Preamble

As long as algebra and geometry proceed along separate paths, their advance was
slow and their applications limited. But when these sciences joined company, they
drew from each other fresh vitality and hence forward marched on at a rapid pace
towards perfection.

Joseph Louis Lagrange
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Identification via Channels

Contrasting to Shannon’s classical coding scheme for the transmission of a message
over a noisy channel in the theory of identification the decoder is not really
interested in what the received message is, but he only wants to decide whether
a message, which is of special interest to him, had been sent or not. If the sender
knows this certain message, this is a trivial problem. He just transmits one bit over
the channel, namely “Yes, my message is the same as your message” or “No, it is
not”. However, if he does not know this message or if there are several receivers,
each one interested in different messages, this is not possible. So there is need for a
different method. There are also algorithmic problems where it is not necessary to
calculate the solution, but only to check whether a certain given answer is correct.
Depending on the problem, this answer might be much easier to give than finding
the solution. “Easier” in this context means using less resources like channel usage,
computing time or storage space.

The main result of Ahlswede and Dueck in [5] was, that in contrast to trans-
mission problems, where the possible code sizes grow exponentially fast with
blocklength, the size of identification codes will grow doubly exponentially fast.
To become more specific, let M (n, λ) and N (n, λ) denote the maximal code
sizes for transmission respectively randomised identification codes for a given
discrete memoryless channel (abbreviated as DMC)W with blocklength n and error
probability λ. It was proved by Shannon that

lim
n→∞

logM (n, λ)

n
= C for all λ ∈ (0, 1) ,

where C is a constant which we denote as channel capacity. In the first chapter we
will show for identification codes that

lim
n→∞

log logN (n, λ)

n
= C for all λ ∈ (0, 1/2) .
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4 Identification via Channels

The previous statements are valid for maximal error bounds. For average error
bounds, the problem is much easier, one can use for example conventional checksum
schemes. For transmission codes on a DMC, there is no difference between maximal
and average error bounds, but for identification codes, the results are quite different,
and the maximal error case needs quite sophisticated methods to be analysed.

There are even further qualitative differences between transmission and identi-
fication: Although feedback has no effect on the channel transmission capacity for
the DMC, it was shown in [6], that it can increase the identification capacity. There
are even cases where a noisier channel is the better one.

1 Results and Preliminaries

To put the coding theorems for identification into proper perspective, we describe
first the analogous classical situation for transmission. This was discussed in detail
in the first volume [7].

1.1 Notation and Known Facts

We use essentially the notations of [4]. Script capitals X ,Y, . . . denote finite sets.
The cardinality of a set A is denoted by |A|. The letters P,Q always stand for
probability distributions on finite sets.X,Y, . . . denote random variable (RV’s). The
functions “log” and “exp” are understood to be to the base 2. Let x ∈ R then we
define the following functions [x]+ = max{x, 0}, �x	 = max{z ∈ Z : z ≤ x} (floor
function), and �x� = min{z ∈ Z : z ≥ x} (ceiling function).

1.1.1 Entropy and Information Quantities

Definition 1 For an arbitrary set S we will denote by P(S) the set of all probability
distributions (PD’s) on S.

Let X be a RV with values in X and distribution P ∈ P(X). Let Y be a RV with
values in Y such that the joint distribution of (X, Y ) on X × Y is given by

Pr(X = x, Y = y) = P(x) · V (y|x), V ∈W,

where W is the set of stochastic matrices, namely W denotes the set of all channels
V with input alphabet X and output alphabet Y .
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Definition 2 (Entropy) Let P be a probability distribution on a finite set X . The
entropy of P is defined as

H(P) � −
∑

x∈X
P(x) logP(x).

Also if X is a random variable with distribution P , we define the entropy of X by

H(X) � H(P).

Definition 3 (Conditional Entropy) Let X,Y be RVs on finite sets X ,Y with
distributions P and Q respectively. The conditional entropy of Y given X is
defined by

H(Y |X) � −
∑

x∈X
P(x)

∑

y∈Y
Q(y|x) logQ(y|x).

Definition 4 (Mutual Information) LetX and Y be random variables on finite sets
X and Y , respectively. Then we define the mutual information betweenX and Y by

I (X ∧ Y ) � H(Y)−H(Y |X).

Definition 5 (Discrete Memoryless Channel) A discrete memoryless channel
(DMC) is a triple (X ,Y,W), where X and Y are finite sets denoted as input-
respectively output alphabet, and W = {W(y|x) : x ∈ X , y ∈ Y} is a stochastic
matrix. The probability for a sequence yn = (y1, . . . , yn) ∈ Yn to be received if
xn = (x1, . . . , xn) ∈ X n was sent is defined by

Wn(yn|xn) =
n∏

t=1

W(yt |xt ).

If it is clear which alphabets are to be used, we will omit them if we are
talking about the channel. If P is a probability distribution on X and W =
{W(y|x) : x ∈ X , y ∈ Y} a stochastic matrix, we define

I (P,W) � I (X ∧ Y ),

whereX is a RV with distribution P and Y has conditional distributionW(·|x) given
X = x. Informally, one could also write

I (P,W) � I (P ∧ PW),
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where for P ∈ P , V ∈W we write PV for the PD on Y given by

PV (y) =
∑

x

P (x)V (y|x), y ∈ Y.

For P, P̃ ∈ P

D(P̃ ||P) =
∑

x

P̃ (x) log
P̃ (x)

P (x)

denotes the relative entropy and for V, Ṽ ∈W the quantity

D(Ṽ ||V |P) =
∑

x

P (x)D(Ṽ (·|x)||V (·|x))

stands for the conditional relative entropy.

1.1.2 Channels, Empirical Distributions, Generated Sequences

For a stochastic |X | × |Y|-matrix W we have already defined the transmission
probabilitiesWn of a DMC, and we have also introduced P(X n) as the set of PD’s
on X n. We abbreviate P(X ) as P .

For xn ∈ X n one can count the relative frequency of letters in xn and gets an
n-type P on X :

Definition 6 Define for x ∈ X and xn = (x1, . . . , xn) ∈ X n

<xn|x>= |{i ∈ {1, . . . , n}|xi = x}|
Then the PD P on X defined by

Pxn(x) = <x
n|x>
n

is an n-type and we will call xn to be P -typical, while P is called the type of xn.

Definition 7 For positive integers n we set

Pn = {P ∈ P |P(x) ∈ {0, 1/n, 2/n, . . . , 1} for all x ∈ X }.
For any P ∈ Pn, called empirical distribution (ED) or n-type, we define the set

Wn(P ) =
{
V ∈W

∣∣∣∣V (y|x) ∈
{

0,
1

nP(x)
,

2

nP(x)
, . . . , 1

}
, x ∈ X , y ∈ Y

}
.

Pxn is a member of Pn by definition. Pxn is called ED of xn.

Similarly, we define the ED Pxnyn for pairs (xn, yn) ∈ X n × Yn.
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Definition 8 For P ∈ P the set T nP of all P -typical sequences in X n is given by

T nP = {xn|Pxn = P }.

For V ∈ W , a sequence yn ∈ Yn is said to be V -generated by xn if, for all x ∈ X ,
y ∈ Y ,

Pxnyn(x, y) = Pxn(x) · V (y|x).

The set of those sequences is denoted by T nV (xn).

Notice that T nP �= ∅ if and only if P ∈ Pn and T nV (xn) �= ∅ if and only if V ∈
Wn(Pxn). T nPV is the set of PV -typical sequences in Yn.

1.1.3 Elementary Properties of Typical Sequences and Generated
Sequences

|Pn| ≤ (n+ 1)|X | (1)

|Wn(P )| ≤ (n+ 1)|X |·|Y | ∀ P ∈ Pn (2)

|T nP | ≤ exp{nH(P)}
|T nP | ≥ (n+ 1)−|X | · exp{nH(P)} ∀ P ∈ Pn (3)

|T nV (xn)| ≤ exp{nH(V |P)}
|T nV (xn)| ≥ (n+ 1)−|X |·|Y | · exp{nH(V |P)}

∀ P ∈ Pn, V ∈Wn(P ), x
n ∈ T nP (4)

Wn(yn|xn) = exp{−n(D(V ||W |P) +H(V |P))}
∀ P ∈ Pn, V ∈Wn(P ), x

n ∈ T nP , yn ∈ T nV (xn) (5)

Wn(T nV (xn)|xn) ≤ exp{−nD(V ||W |P)}
Wn(T nV (xn)|xn) ≥ (n+ 1)−|X |·|Y | · exp{−nD(V ||W |P)}

∀ P ∈ Pn, V ∈Wn(P ), x
n ∈ T nP . (6)



8 Identification via Channels

1.1.4 Formulation of the Classical Transmission Problem

Definition 9 An (n,M, λ) code for W is a set of pairs {(ui,Di ) : i = 1, . . . ,M}
with the properties

ui ∈ X n, Di ⊂ Yn, for all i ∈ {1, . . . ,M} (7)

Di ∩Dj = ∅, for all i, j ∈ {1, . . . ,M} with i �= j (8)

Wn(Di |ui) ≥ 1− λ, for all i ∈ {1, . . . ,M}. (9)

LetM(n, λ) be the maximal integerM for which an (n,M, λ) code exists.

Theorem 10 (Shannon [14])

lim
n→∞

1

n
logM(n, λ) = C for all λ ∈ (0, 1)

where C = maxP I (P,W).

Actually, Shannon proved in [14] only the direct part of the theorem. The so-called
strong converse was proved by Wolfowitz (see [15]).

1.2 Formulation of the Identification Problem

Definition 11 A (randomized) identification (ID) code (n,N, λ1, λ2) is a family

{(Q(·|i),Di )|i = 1, . . . , N}

of pairs with

Q(·|i) ∈ P(X n), Di ⊂ Yn, for all i = 1, . . . , N (10)

and with errors of the first (resp. second) kind satisfying

∑

xn∈X n

Q(xn|i)Wn(Dci |xn) ≤ λ1 (11)

and

∑

xn∈X n

Q(xn|j)Wn(Di |xn) ≤ λ2 (12)

for all i = 1, . . . , N , j = 1, . . . , N with j �= i.
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Of course, we also could have defined deterministic ID codes where the Q(·|i)
denote point masses on points ui ∈ X n. However, the study of deterministic ID
codes leads only to very poor results (see 4). Therefore, we consider only the much
more powerful randomized ID codes.

The essential difference between ID codes and classical transmission codes is
that no disjointness condition is imposed on the decoding sets Di . In an ID code, the
decoding sets have to be only pairwise significantly different in the sense defined in
(11) and (12).

We now explain how ID codes arise naturally as the appropriate code concept
in an identification problem. Assume there is a set E = {e1, . . . , eN } of events (or
objects), any one of which may occur. The event is known to the sender of the
channel, but unknown to the receiver. On the receiver’s side is a set of persons (or
devices) F = {F1, . . . , FN } observing the output of the channel. Person Fi wants to
knowwhether or not event ei occurred. The sender can transmit his knowledge of the
event over the channel. For this transmission procedure, randomization is allowed,
that is, an encoding rule for an event ei is formally described by a probability
distributionQ(·|i) out of P(X n). Clearly, Fi can choose a decision rule specifying
sequences yn for which s/he assumes that ei has occurred. This rule is represented by
the decoding set Di ⊂ Yn. Thus one is led to the notion of an ID code as described
above. Randomized decision rules on the receiver’s side are not considered because
they yield only minor improvements in the present coding problem.

The identification problem can also be stated in the following way. Instead of N
persons, we can assume that the receiver wants to know whether or not ej occurred.
The parameter j is not known to the sender; that is, the sender does not know what
the receiver wants to identify.

At the end of the lecture we give examples for which the present model is suitable
and discuss its relation to identification problems found in the literature [12, 16].

1.2.1 The Double Exponent Coding Theorem

Let N(n, λ) be the maximal number N such that an (n,N, λ1, λ2) ID code with
λ1, λ2 ≤ λ exists, and let C be Shannon’s transmission capacity of the DMCW .

Theorem 12 (Coding Theorem and Strong Converse)

(i) lim inf
n→∞

1

n
log logN(n, λ) ≥ C, for all λ ∈ (0, 1].

(ii) lim sup
n→∞

1

n
log logN(n, λ) ≤ C, for all λ ∈ (0, 1

2 ).

Note that (ii) is not true for λ > 1/2.
Originally, instead of (ii) it was proved only that

lim sup
n→∞

1

n
log logN(n, 2−nε) ≤ C, for all ε > 0.
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This statement was called “soft” converse, because the error probability on the left
side is exponentially small. In the usual terminology a “weak” converse would mean

inf
λ∈(0,1) lim sup

n→∞
1

n
log logN(n, λ) ≤ C.

We derive better estimates than those stated in Theorem 12. For their description
we use the notions of mutual information and relative entropy, and some notation
from [4] and [9]. In those sharper estimates, we are concerned with error exponents,
which can be achieved with a certain (second-order) rate.

The triple (R,E1, E2) is called achievable if, for all δ > 0 and n ≥
n(δ, |X |, |Y|), and ID code exists for N messages and error probabilities λ1(n),
λ2(n) such that

1

n
log logN ≥ R − δ, λi ≤ exp{−n(Ei − δ)}, i = 1, 2. (13)

For achievable triples we have the following result.

Theorem 13

(i) If P ∈ P(X ) satisfies I (P,W) > R + 2E2, then

(
R, min

I (P ,V )≤R+2E2
D(V ||W |P),E2

)

is achievable.
(ii) If E1 > 0 and R + 2E2 > C, then (R,E1, E2) is not achievable.

Some remarks are due:

1. Theorem 13(i) clearly implies Theorem 12(i).
2. Theorem 13(ii) implies formally, that

lim inf
n→∞

1

n
log logN(n, 2−nε) ≤ C.

From the proof of Theorem 13(ii), however, it will become clear, that the same
is true for the limit superior.

3. Since D(V ||W |P) is a continuous function in (V ,W) with the property
D(V ||W |P) = 0 if and only if V = W almost everywhere we see that the
condition I (P,W) > R + 2E2 in Theorem 13(i) implies that

min
I (P ,V )≤R+E2

D(V ||W |P) > 0.
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4. Theorem 13 completely characterizes the set of achievable pairs (R,E2) in the
limit E1 → 0. More precisely,

lim
E1→0

{(R,E2) : (R,E1, E2) is achievable} = {(R,E2) : R ≤ C − 2E2}.

In the remainder of this subsection we prepare the reader for the results of
Theorem 12 and its proof. The fact that the maximal code length grows doubly
exponentially can more easily be understood for the very special case of a noiseless
binary channel. We include a complete proof. We then comment on our proof for
the direct part of Theorem 12 for the general DMC, and, finally, on the proof of the
converse part.

We start with the construction of n-block ID codes for the binary channel W
given by the input alphabet X := {0, 1}, Y := {0, 1}, and W(1|1) = W(0, 0) = 1.
We use the standard maximal coding argument.

Let n be the block length, and let λ ∈ (0, 1/2) be given. Let 2l be the smallest
power of 2, such that

λ · log(2l − 1) > 1 and 2l > 6.

Suppose that n is large compared with 2l . Set

M := 2n−l .

We define an n-block ID code

{(Q(·|i),Di ) : i = 1, . . . , N}

such that log logN is close to n log 2. We restrict our attention to distributionsQ(·|i)
which are equidistributions on sets Ai ⊂ X n with cardinality M . Since M equals
2n−l , we therefore consider only equidistributions on relatively large subsets of
X n. Suppose now we have found subsets A1, . . . ,AN ⊂ X n, all of which have
cardinalityM and such that

|Ai ∩Aj | < λ ·M, for all i, j ∈ {1, . . . , N}, i �= j. (14)

Then we define

Q(·|i) := equidistribution on Ai

Di := Ai , for all i = 1, . . . , N.
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Consider {(Q(·|i),Di ) : i = 1, . . . , N}. We claim that this system is an
(n,N, 0, λ) ID code. This is true because

∑

xn

Q(xn|i)Wn(Di |xn) = 1

∑

xn

Q(xn|j)Wn(Di |xn) = M−1|Ai ∩Aj | < λ

for i, j ∈ {1, . . . , N}, i �= j . Here we used the special nature ofW and assumption
(14).

We have seen now that it suffices to show the existence of a large family
A1, . . . ,AN of sets of cardinalityM which satisfies (14).

Proposition 14 Let Z be a finite set and let λ ∈ (0, 1/2) be given. If ε is so small
that

λ log

(
1

ε
− 1

)
> 2

1

ε
> 6.

then a family A1, . . . ,AN of subsets of Z exists satisfying

|Ai | = �ε|Z|	, for all i ∈ {1, . . . , N},

|Ai ∩Aj | < λ�ε · |Z|	, for all i, j ∈ {1, . . . , N}, i �= j

and

N ≥ |Z|−1 · 2�ε|Z|	 − 1.

Proof Choose as a starting point an arbitrary A1 ⊂ Z , |A1| = �ε · |Z|	. We count
how many sets A ⊂ Z exist with cardinality �ε · |Z|	 and

|A1 ∩A| ≥ λ�ε|Z|	.

We defineM ′ := �ε|Z|	. The number of those sets A in question is then

M ′∑

i=�λ·M ′�

(|Z| −M ′

M ′ − i
)(
M ′

i

)
. (15)

For λ < 1/2 and 1/ε > 6 the first summand in the sum is the maximal one. This is
easy to establish. Therefore, the sum in (15) can be upper-bounded by

M ′ ·
( |Z| −M ′

M ′ − �λM�
)(

M ′

�λM ′�
)
≤ M ′ ·

( |Z|
M ′ − �λM ′�

)
· 2M

′ =: T . (16)
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Hence at most T sets A of cardinalityM ′ exist such that

|A1 ∩A| ≥ λ ·M ′.

There are
(|Z|
M ′
)

sets of cardinality M ′. If T <
(|Z|
M ′
)
, then an A2 ⊂ Z exists with

|A2| = M ′ and |A1 ∩ A2| < λ · M ′. Furthermore, if 2T <
(|Z|
M ′
)
, then A3 ⊂ Z

exists with |A3| = M ′, |A3 ∩A1| < λ ·M ′, and |A3 ∩A2| < λM ′. By repeatedly
using this argument, we get the following result.

There areN sets A1, . . . ,AN ⊂ Z of cardinalityM ′ such that |Ai∩Aj | < λ·M ′
for every i �= j , if

N · T <
(|Z|
M ′

)
.

Hence a family of sets A1, . . . ,AN exists with

N :=
⌊(|Z|
M ′

)
· T −1

⌋
− 1. (17)

Recall that T was defined in (16). It is now easy to lower-bound N . By (16) and
(17),

N ≥ 2−M ′ ·M ′−1 ·
�λM ′�∏

i=1

|Z| −M ′ + i
M ′ − �λM ′� + i − 1.

SinceM ′ = �ε|Z|	 and λ ≤ 1/2, for i ∈ {1, . . . , �λM ′�}
|Z| −M ′ + i
M ′ − �λM ′� + i ≥

1

ε
− 1.

Hence

N + 1 ≥ 2−M ′ ·M ′−1 ·
(

1

ε
− 1

)�λ·M ′�

≥ 2−M ′ ·
(

1

ε
− 1

)λ·M ′

·M ′−1

= 2M
′(λ log((1/ε)−1)−1) ·M ′−1

≥ 2M
′ · |Z|−1 = 2�ε·|Z|	 · |Z|−1,

where we have used the assumption in the proposition. The proof is complete. ��



14 Identification via Channels

We return to the binary noiseless channel. We apply the result of Proposition 14
to {0, 1}n instead of Z and with 2−l instead of ε. We conclude that there are at least

N := 2−n · 22n−l − 1

sets A1, . . . ,AN of {0, 1}n with cardinality 2n−l such that

|Ai ∩Aj | < λ · 2n−l for all i �= j.

In other words, we have found an (n,N, 0, λ) identification code. Clearly,
(1/n) log logN is arbitrarily close to log 2, the capacity of the binary noiseless
channel, if n grows to infinity.

Thus Theorem 12(i) is proved for the noiseless binary channel. The validity of
Theorem 12(ii) is easy to see for this channel. Obviously, the number of messages in
an identification code cannot exceed the number of possible decoding sets, because
all the decoding sets have to be different.

Since all the decoding sets of n-block length are subsets of {0, 1}n, there are at
most 22n decoding sets in an identification code. We shall see that the construction of
Proposition 14 can be used to construct good ID codes with the help of an underlying
classical transmission code with rate close to capacity.

The original converse part, however, is highly complicated. One has to show that
there is no advantage in considering equidistributions on subsets with a cardinality
larger than exp{nC}.

We originally wanted to show that, starting with a given code with equidistribu-
tions on large sets, we can find “smaller” equidistributions on sets with cardinality
smaller than exp{nC} such that the resulting decoding sets in the new code are nearly
the same as in the originally given code. Then one could conclude that any ID code
could have at most as many messages as subsets of X n with cardinality smaller than
exp{nC}, and the proof would be complete.

Unfortunately, we were not able to prove the converse part in this elegant version;
we were, however, able to prove it following this basic idea.

2 The Direct Parts of the Coding Theorems

Proof of the Direct Part: Theorem 12(i)
We simply apply Proposition 14 for a classical transmission code for W . Let λ ∈
(0, 1) be given, and let ε > 0 be so small that

λ log

(
1

ε
− 1

)
> 2,

1

ε
> 6.
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By Theorem 10 there exists for any large n an n-length block code,

C = {(ui, Ei ) : i = 1, . . . ,M}

with maximal error bounded by λ and

M ≥ 2n(C−ε).

Let Z := {ui, . . . , un}. By Proposition 14 a family of subsets A1, . . . ,AN of Z
exists satisfying

|Ai | = �ε|Z|	 = �ε ·M	 for all i ∈ {1, . . . , N} (18)

|Ai ∩Aj | < λ�ε · |Z|	 for all i, j ∈ {1, . . . , N}, i �= j, (19)

N ≥ |Z|−1 · 2�ε|Z|	. (20)

From the sets A1, . . . ,AN we construct an ID code in the following simple
manner. Define for i ∈ {1, . . . , N}

Q(·|i) := equidistribution on Ai

and

Di :=
⋃

uk∈Ai
Ek.

Define the ID code

{(Q(·|i),Di ) : i = 1, . . . , N}.

We look at the errors of first and second kind of this ID code (recall (11) and
(12)). Let i ∈ {1, . . . , N}, and let uk ∈ Ai . Then

Wn(Dci |uk) ≤ Wn(Eck |uk) ≤ λ

because of Ek ⊂ Di and because Ek is the decoding set for uk in the transmission
code C. Hence

∑

xn∈X n

Q(xn|i)Wn(Dci |xn) =
∑

uk∈Ak

1

|Ak| ·W
n(Dci |uk) ≤ λ.
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On the other hand, for each j ∈ {1, . . . , N}, j �= i,
∑

xn∈X n

Q(xn|j)Wn(Di |xn) =
∑

ul∈Aj

1

|Aj | ·W
n(Di |ul)

= 1

|Aj |

⎛

⎝
∑

ul∈Aj∩Ai
Wn(Di |ul)+

∑

ul �∈Aj∩Ai
Wn(Di |ul)

⎞

⎠

≤ 1

|Aj | ·
⎛

⎝|Aj ∩Ai | +
∑

ul �∈Aj∩Ai
Wn(Di |ul)

⎞

⎠ .

If ul ∈ Aci , then El ∩ Di = ∅. Hence for such ul the relation Di ⊂ Ecl holds. This
observation together with (18) and (19) yields

∑

xn∈X n

Q(xn|j)Wn(Di |xn) ≤ 2λ.

Equation (20) finally gives

N ≥ M−1 · 2�ε|Z|	 ≥ |X |−n · 2�ε2n(C−ε)	.

In summary, {(Q(·|i),Di ) : i = 1, . . . , N} is an (n,N, λ, 2λ) ID code with
(1/n) log logN close to C − ε. Since λ and ε could be chosen arbitrarily small,
Theorem 12 is proved.

Remark Observe that for the proof we needed only Proposition 14 (which is just
Gilbert’s bound for constant weight sequences) and a given code for the channelW .
Thus we can conclude that Theorem 12(i) holds in fact for all channels having a
capacity. It is not necessary to assume thatW is discrete or memoryless.

Proof of the Direct Part: Theorem 13(i)
Of course, one could easily derive exponential error bounds with the construction in
the preceding subsection. The difference would be instead of a code with maximal
error λ one would start with a code having exponentially small error probability.
Furthermore, one would choose 2−nξ instead of ε.

However, Theorem 13(i) gives a stronger result than the one obtainable by this
simple method. Theorem 13(i) gives, in the sense expressed in the fourth remark
following Theorem 13, a best possible error exponent. The principal idea is random
selection of ID codes rather than a maximal coding idea which led to Proposition 14.
The key step is the application of Proposition 15 which we will present soon. Its
proof is rather technical, so we give here only the short proof of Theorem 13(i)
assuming Proposition 15 below holds. The proof of Proposition 15 can be found in
the following subsection.
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Let P ∈ Pn. We consider here only ID codes of a special structure. Every
message i is encoded by the uniform distribution on a family Ui of members of
T nP satisfying |Ui | = M for all i = 1, . . . , N = �22nR�.

Let (R,E2) be given. We assign to Ui a decoding set Di = D(Ui ) defined by

D(Ui ) =
⋃

u∈Ui
Fu (21)

where

Fu =
⋃

V :I (P ,V )>R+2E2

T nV (u). (22)

First notice that

Wn(Fcu|u) ≤
∑

V :I (P ,V )≤R+2E2

Wn(T nV (u)|u)

≤
∑

V :I (P ,V )≤R+2E2

exp{−nD(V ||W |P)}

≤ (n+ 1)|X |·|Y | · exp

{
−n min

V :I (P ,V )≤R+2E2
D(V ||W |P)

}

by (6) and (2) and thus

1

M

∑

u∈Ui
Wn(Dci |u) ≤ (n+ 1)|X |·|Y | · exp

{
−n min

V :I (P ,V )≤R+2E2
D(V ||W |P)

}
.

This means that regardless of the choice of Ui the error exponent of the first kind

E1 := min
V :I (P ,V )≤R+2E2

D(V ||W |P)

is achievable. We now specify the sets Ui to achieve (R,E2). We choose

M = �exp{n(R + E2)}	 (23)

and define the Ui by random selection as follows.
Let Uij , i = 1, . . . , N , j = 1, . . . ,M be independent RV’s, all uniformly

distributed over T nP . Define the random families

U i = {Ui1, . . . , UiM }, i = 1, . . . , N.

Every realization of the Uij gives rise to an ID code as described before.
We want to show that a large fraction of these randomly selected ID codes has

an error exponent of the second kind at most E2 − δ (δ > 0 arbitrarily small, n
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sufficiently large for δ). In fact, we can get this result (and therefore Theorem 13(i))
by the following result for two messages.

Let U1 be any subset of T nP of cardinality M and let U2 be as described before.
We consider the probability P ∗ that for γ > 0:

1

M

∑

u∈U1

Wn(D(U2)|u) ≤ exp{−n(E2 − 3γ )} (24)

and

1

M

∑

u∈U2

Wn(D(U1)|u) ≤ exp{−n(E2 − 3γ )}. (25)

Then we have the following proposition.

Proposition 15 For any γ > 0 and n ≥ n(γ ),

P ∗ ≥ 1− (n+ 1) exp{−(nγ − 2) · exp{nR}}.

A proof is given below. We show here that Theorem 13(i) follows from Propo-
sition 15. Imagine that the random selection is performed iteratively and that the
realizations U1, . . . ,Ut have the desired error performances.

Then, by Proposition 15, with the choice γ = δ/3, (U1, . . . ,Ut ,U t+1) has the
desired error performances with probability exceeding 1 − t (1 − P ∗). Therefore,
there exists a sufficiently good realization Ut+1 of U t+1 if

1− t (1− P ∗) > 0.

Since by Proposition 15 even 1−N(1− P ∗) > 0 for large n, it is possible to find a
realization (U1, . . . ,UN) of (U1, . . . ,UN) with the desired error performances.

The proof of Proposition 15 follows the large deviations approach of [2] in the
improved form of [4]. Specifically, we shall need a very useful lemma on large
deviations which we state now.

Lemma 16 (Generalized Chebyshev Inequality, Bernstein’s Trick) Let
�1, . . . , �M be i.i.d. RV’s with values in {0, 1}. Suppose that the expectation
E�1 of �1 satisfies E�1 ≤ μ < λ ≤ 1; then

Pr

⎛

⎝
M∑

j=1

�j > M · λ
⎞

⎠ ≤ exp{−M ·D(λ||μ)},

where D(λ||μ) denotes the relative entropy between (λ, 1 − λ) and (μ, 1 − μ).
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Proof of Proposition 15
The following lemma is Lemma 1, p.433, in [4].

Lemma 17 Let U be uniformly distributed on T nP , P ∈ Pn. Let U be a subset of
T nP , |U | = �exp{nR}	. Define for any V, V ′ ∈W and u∗ ∈ X n:

gV,V ′(u
∗) =

∣∣∣∣∣
⋃

u∈U
T nV ′(u) ∩ T nV (u∗)

∣∣∣∣∣ . (26)

Then

(i) EgV,V ′(U) ≤ (n+ 1)|X | · exp{n(H(V |P)− [I (P, V ′)− R]+)};
(ii) for all η > 0, ξ ≥ 0, and n ≥ n(η, |X |, |Y|),

Pr
(
gV,V ′(U) ≥ exp

{
n
(
H(V |P)− [I (P, V ′)− R]+ + ξ + 2η

)}

for all V, V ′ ∈W
)
≤ exp{−n(η + ξ)}.

The significance of the functions gV,V ′ lies in the fact that they can be used in
deriving upper bounds on the error probabilities of the second kind. Indeed we have
the following.

Lemma 18 Suppose that, for every V, V ′ ∈W , u∗ ∈ T nP satisfies

gV,V ′(u
∗) ≤ exp

{
n
(
H(V |P)− [I (P, V ′)− R − E2

]+ + 2η + ξ
)}
; (27)

then

Wn(D(U) ∩ Fu∗ |u∗) ≤ (n+ 1)2|X |·|Y | exp{−n(E2 − 2η− ξ)}, (28)

∑

u∈U
Wn(Fu∗ |u) ≤ (n+ 1)2|X |·|Y | exp{−n(E2 − 2η− ξ)}. (29)

Proof Notice that

Wn(D(U) ∩ Fu∗ |u∗)

≤
∑

V :I (P ,V )≥R+2E2
V ′:I (P ,V ′)≥R+2E2

Wn

(
T nV (u∗) ∩

⋃

u∈U
T nV ′(u)|u∗

)

≤ (n+ 1)2|X |·|Y | max
V :I (P ,V )≥R+2E2
V ′:I (P ,V ′)≥R+2E2

gV,V ′(u
∗) · exp{−n(D(V ||W |P) +H(V |P))}
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by (2), (5), and (26). Furthermore, by (27) and D(V ||W |P) ≥ 0

gV,V ′(u
∗) exp{−n(D(V ||W |P)+H(V |P))}

≤ exp
{−n ([I (P, V ′)− R − E2]+ − 2η − ξ)}

≤ exp{−n(E2 − 2η− ξ)}, if I (P, V ′) ≥ R + 2E2.

Substitution of this bound in the previous bound gives (28). We show now (29).
Clearly

∑

u∈U
Wn(Fu∗ |u) ≤

∑

u∈U

∑

V

∑

V ′:I (P ,V ′)≥R+2E2

Wn(T nV ′(u
∗) ∩ T nV (u)|u).

Obviously, T n
V ′(u

∗) ∩ T nV (u) �= ∅ implies PV = PV ′. Now use (2), (26), (27), and
D(V ||W |P) ≥ 0 to obtain the upper bound

∑

V ′:I (P,V ′)≥R+2E2
V :PV=PV ′

exp
{−n (H(V |P )−H(V ′|P )+ [I (P , V )− R − E2]+ − 2η − ε)} .

It remains to be shown that

H(V |P)−H(V ′|P)+ [I (P, V )− R − E2]+ ≥ E2.

If I (P, V ) ≤ R + E2, then because of PV = PV ′ and I (P, V ′) ≥ R + 2E2

I (P, V ) ≤ I (P, V ′)− E2 ⇒ H(V |P)−H(V ′|P) ≥ E2

Since I (P, V ′) ≥ R + 2E2,

H(V |P)−H(V ′|P)+ [I (P, V )− R − E2]+ ≥ R + 2E2 − R − E2 = E2.

On the other hand, if I (P, V ) ≥ R + E2

H(V |P)−H(V ′|P)+ I (P, V )− R − E2 = H(PV )−H(V ′|P)− R − E2

= I (P, V ′)− R − E2

≥ R + 2E2 − R − E2 = E2.

��
Lemma 18 says something about the error contribution of a u∗ satisfying (27) if
taken as a member of a U2, say, and if U1 = U is already specified. Our last auxiliary
result concerns large deviations. We keep η > 0 fixed in (27) and prove
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Lemma 19 Let U21, U22, . . . , U2M be defined as above. For any ξ ≥ 0 we define

Sjξ (U2j ) =
{

0, if U2j equals a u∗ satisfying (27)
1, otherwise

for j = 1, . . . ,M . Then for every ξ ∈ [0, E2] and n ≥ n(η,E2):

Pr

⎛

⎝
M∑

j=1

Sjξ > exp{−nξ} ·M
⎞

⎠ ≤ exp{− exp{nR} · (nη − 2)}. (30)

Proof For fixed ξ the S1ξ , . . . , SMξ are i.i.d. RV’s with values in {0, 1}.
Lemma 17(ii) gives

ES1ξ ≤ exp{−n(η + ξ)}.

We apply Lemma 16 and get

Pr

⎛

⎝
M∑

j=1

Sjξ > M · exp{−nξ}
⎞

⎠ ≤ exp{−M ·D(2−nξ ||2−n(ξ+η))}. (31)

We have to estimate the relative entropy:

D(2−nξ ||2−n(ξ+η)) = 2−nξ log(2−nξ2n(ξ+η))+ (1− 2−nξ ) log
1− 2−nξ

1− 2−n(ξ+η)

≥ 2−nξ · ηn+ (1− 2−nξ ) log(1− 2−nξ )

≥ 2−nξ · ηn+ log(1− 2−nξ ),

because t log t ≤ 0 for t ∈ [0, 1].
For small t > 0 one can estimate

log(1− t) ≥ −2t .

Therefore,

D(2−nξ ||2−n(ξ+η)) ≥ 2−nξ · η · n− 2 · 2−nξ = (nη − 2) · 2−nξ , (32)

if n is large enough. SinceM = �exp{n(R + E2)}	 (see (23)) and ξ ∈ [0, E2], (31)
and (32) imply (30). ��
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From Lemmas 17–19 to Proposition 15. We apply Lemmas 17–19 with η = γ .
Choose in Lemma 19

ξk = E2 · k
n
, k = 0, . . . , n

to obtain

Pr

⎛

⎝
M∑

j=1

Sjξk > M · exp{−nξk} for some k ∈ {0, . . . , n}
⎞

⎠

≤ (n+ 1) exp{− exp{nR} · (nγ − 2)}.

(33)

It remains to be shown that (24) and (25) hold if

M∑

j=1

Sjξk ≤ M · exp{−nξk} for all k ∈ {0, . . . , n}. (34)

Suppose now that (34) holds. Choose j ∈ {0, . . . ,M}. Note that if Sjξ = 0 for a
ξ ≥ 0, then also Sjξ ′ = 0 for every ξ ′ ≥ ξ . Similarly, if Sjξ ′ = 1 for a ξ ≥ 0, then
also Sjξ ′ = 0 for every 0 ≤ ξ ′ ≤ ξ . By the definition of S there is a minimal ξ such
that Sjξ = 0.

Choose k ∈ {0, . . . , n}. The number of j ∈ {1, . . . ,M} such that the
corresponding minimal ξ is contained in the interval (k/n, (k + 1)/n) is upper-
bounded by

∑M
j=0 Sjξk (because of the monotonicity property discussed above).

For these j , of course, Sjξk+1 = 0 holds, and a fortiori, (29) holds with ξk+1. On the
other hand, the number of j ∈ {0, . . . ,M} such that the corresponding minimal ξ is
larger than E2 (= ξn) is upper-bounded by

∑M
j=1 Sjξn .

With these arguments we get the following estimate:

1

M

∑

u∈U1

Wn(D(U2)|u) ≤ 1

M

M∑

j=1

⎛

⎝
∑

u∈U1

Wn(FU2j |u)
⎞

⎠

≤ 1

M

n∑

k=0

⎛

⎝
M∑

j=1

Sjξk

⎞

⎠ · (n+ 1)2|X |·|Y | · exp{−n(E2 − 2γ − ξk+1)} + 1

M

M∑

j=1

Sjξn .
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Since ξk − ξk+1 = −1/n we can continue with (34)

1

M

∑

u∈U1

Wn(D(U2)|u)

≤
(
n∑

k=0

(n+ 1)2|X |·|Y | · exp{−n(E2 − 2γ − ξk+1 + ξk)}
)
+ exp{−nE2}

≤ exp{−n(E2 − 3γ )}

for n ≥ n(γ,E2). Using (28) instead of (29) in the foregoing derivation one
obtains by the very same arguments that for all n ≥ n(γ,E2)

1

M

∑

u∈U2

Wn(D(U1)|u) ≤ 1

M

M∑

j=1

Wn

⎛

⎝
⋃

u∈U1

Fu ∩ FU2j |U2j

⎞

⎠

≤ exp{−n(E2 − 3γ )}.

3 The Strong Converses

The strong converse to the coding theorem for identification via a DMC was
conjectured in [5] (In case of complete feedback the strong converse was established
already in [6]) and proved by Han and Verdu [10] and in a simpler way in [11].
We will present this proof in the next subsection. However, the authors used and
developed analytical methods and take the position that combinatorial techniques
for instance of [1, 3] find their limitations on this kind of problem (see also
Newsletter on Moscow workshop in 1994). We demonstrate in Sect. 3.2 that this
is not the case.

3.1 Analytic Proof of the Strong Converse

lim
n→∞

log logN (n, λ)

n
≤ C for all λ ∈ (0, 1/2)

This proof follows the one given in [10]. We will need a few properties of types:
Recall that a PD Q on a finite set 	 is called n-type, if

Q(ω) ∈
{

0

n
,

1

n
, . . . ,

n

n

}
for all ω ∈ 	
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Lemma 20 (Type Counting) The number of different n-types on 	 is upper
bounded by |	|n and (n+ 1)|	|. The exact number is

(|	|+n−1
|	|−1

)
.

Proof The upper bounds are obvious: For the first bound notice that there are n
“probability units” that can be distributed onto |	| different positions and for the
second there are n + 1 different masses for each ω ∈ 	. For the exact number
(which will not be needed in the following), consider the following encoding of an
n-typeQ = (q1/n, q2/n, . . . , q|	|/n) as 0-1 sequences of length |	| + n− 1: First
we take q1 zeroes, then a one, q2 zeroes, a one and so on until we take q|	| zeroes.
Obviously this procedure yields a bijective mapping between all n-types on 	 and
0-1 sequences of length n+ |	| − 1 which contain exactly |	| − 1 ones. ��
In this section n-types on X will be referred to as types, the set of all types is denoted
by Pn. Recall for x ∈ X and xn = (x1, . . . , xn) ∈ X n we set

<xn|x>= |{i ∈ {1, . . . , n} : xi = x}|

and the PD P on X defined by

P(x) = Pnx (x) := <x
n|x>
n

is an n-type and we will call xn to be P -typical, while P is called the type of xn.
The set of all P -typical n-sequences is denoted as T nP .

Definition 21 For a given PDQ and a type P we denote the restriction ofQ on T nP
by

QP (xn) = Q(xn|T nP ) =
{
Q(xn)
Q(T nP )

; xn ∈ T nP
0; xn �∈ T nP

Definition 22 (Homogeneous ID Code) An ID Code

{(Q (·|i) ,Di ) |i = 1, . . . , N}

which satisfies for all P ∈ Pn

Q1(T nP ) = · · · = QN(T nP ) (35)

is called homogeneous.

Lemma 23 For every (n,N, λ1, λ2) ID code, δ > 0, λ′1 > λ1, λ′2 > λ2, n large
enough there exists a homogeneous (n,N exp(−δn(n+ 1)|X |), λ′1, λ′2) ID code.
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Proof Let {(Qi,Di ) |i = 1, . . . , N} be the original code. We define an equivalence
relation on theQi in the following way:

Qi ↔ Qj ⇐⇒ ∀ P ∈ Pn, ∃ iP ∈ {0, . . . , �exp(nδ/2)	} :
iP exp(−nδ/2) ≤ Qi(T nP ),Qj (T nP ) < (iP + 1) exp(−nδ/2).

If exp(nδ/2) ∈ N, we will allow equality on the right side for iP = exp(−nδ/2)−1
and omit the last interval. Let E be the largest equivalence class and take an arbitrary
a ∈ {1, . . . , N} with Qa ∈ E . Define for all i ∈ {1, . . . , N}

Q̂i(x
n) = Qa(T nP )QPi (xn) for xn ∈ T nP .

Then for all i and for all P ∈ Pn we have Q̂i(T nP ) = Qa(T nP ), so the ID code

{(
Q̂i ,Di

)
|Qi ∈ E

}

is homogeneous. To lowerbound its size we notice that there are at most
�exp(nδ/2)�|Pn| (possibly empty) equivalence classes, so

|E | ≥ N�exp(nδ/2)�−|Pn|
≥ N exp(−nδ|Pn|)
≥ N exp

(
−nδ(n+ 1)|X |

)

Also we have for arbitrary D ⊂ Yn and for all i ∈ {1, . . . , N}

Q̂iW
n(D) =

∑

P∈Pn

∑

xn∈T nP
Q̂i(x

n)Wn(D|xn)

=
∑

P∈Pn

∑

xn∈T nP
Qa(T nP )QPi (xn)Wn(D|xn)

=
∑

P∈Pn

∑

xn∈T nP
Qi(T nP )QPi (xn)Wn(D|xn)±

∑

P∈Pn
exp(−nδ/2)

= QiWn(D)± (n+ 1)|X | exp(−nδ/2)

But (n + 1)|X | exp(−nδ/2) converges to zero for n → ∞, so for sufficiently large
n our code has the desired error probabilities. ��
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Homogeneous codes have a restriction concerning the weight of each type, but we
also need some control of codistributions induced by the types:

Definition 24 (M-Regular ID Code) LetM ∈ N. An ID code

{(Qi,Di )|i = 1, · · · , N}, Q (·|i) ∈ P
(
X n
)
, Di ⊂ Yn for alli = 1, · · · , N

is calledM-regular, if for all P ∈ Pn and i = 1, . . . , N , QPi isM-type.

We will now state a lemma about approximation of channel output statistics by
distributions, which are t-typical for certain t .

Lemma 25 There exists ε0, δ0 > 0 such that for allP ∈ Pn, ε ∈ [0, ε0], δ ∈ [0, δ0],
PDQ on T nP , n large enough there exists an �exp(nC + nγ )�-type distributionQ′,
such that for all Y ⊂ Yn

Q′Wn(Y ) ≤ (1+ ε)
1− exp(−nδ)QW

n(Y )+ exp(−nδ)

Q′Wn(Y ) ≥ (1− ε)(1− exp(−nδ))QWn(Y )− exp(−nδ)

where γ = ρ(δ) and ρ : [0, δ0] → R
+ is a continuous strictly increasing function

with ρ(0) = 0.

A proof for this lemma will be given later below, while more general results about
approximation of output statistics can be found in [11]. We apply this lemma to
convert homogeneous codes toM-regular codes, whereM ∼ exp(nC).

Lemma 26 For every homogeneous (n,N, λ1, λ2) ID code

{(Q (·|i) ,Di ) |i = 1, . . . , N}

with error probabilities λ1 and λ2, for all λ′1 > λ1, λ′2 > λ2, γ > 0, n large enough,
there exists a homogenous �exp(nC + nγ )�-regular (n,N, λ′1, λ′2) ID code.

Proof Modify the original code the following way: Define new codistributions

Q′
i (x

n) = Qi(T nP )Q
′P
i (x

n), if xn ∈ T nP

where Q
′P
i is an �exp(nC + nγ )�-type obtained from QPi using Lemma 25 with

δ = ρ−1(γ ) and

ε < min

{
λ′2
λ2
− 1,

1− λ′1
1− λ1

}
.
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The decoding sets remain unchanged. This is a homogeneous �exp(nC + nγ )�-
regular code with the same size as the code we started with. We will now upper
bound its error probabilities. Let a �= b. Then for large n

Q′
aW

n(Db) =
∑

P∈Pn
Qa(T nP )Q

′P
a W

n(Db)

≤ exp(−nδ)+
∑

P∈Pn
Qa(T nP )(1+ ε)(1− exp(−nδ))−1QPa W

n(Db)

= (1+ ε)(1− exp(−nδ))−1QaW
n(Db)+ exp(−nδ)

≤ (1+ ε)(1− exp(−nδ))−1λ2 + exp(−nδ)
≤ λ′2.

Also

Q′
aW

n(Da) =
∑

P∈Pn
Qa(T nP )Q

′P
a W

n(Da)

≥ (1− ε)(1− exp(−nδ))QaWn(Da)− exp(−nδ)
≥ 1− λ′1.

Thus for sufficiently large n, the new code has the desired error probabilities. ��
Now we show that homogenousM-regular codes cannot be too big:

Lemma 27 Given a homogeneousM-regular (n,N, λ1, λ2) ID code with λ1+λ2 <

1. Then

logN ≤ n(n+ 1)|X |M log |X |.

Proof If λ1 + λ2 < 1, then allQi have to be different. But there are at most |X |nM
different M-types on X n, |Pn| different types, we can upperbound the number of
differentM-regular codistributions by

N ≤ |X |nM|Pn|.

This holds because of (35), every type T nP has constant weight under all codistribu-
tions. Therefore, if

Qi �= Qj ⇒ ∃P : QPi �= QPj .

(IfQi(xn) �= Qj(xn) choose the type of x as P ). Also we have |Pn| ≤ (n+ 1)|X |.
Finally, we will put all the results together: Given arbitrary λ1, λ2 with λ1+λ2 <

1 and an arbitrary sequence of (n,N, λ1, λ2) ID codes. Choose δ > 0, γ > 0,
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λ′′1 > λ′1 > λ1 and λ′′2 > λ′2 > λ2, such that λ′′1 + λ′′2 < 1. Using the
preceding results, via a homogeneous (n,N ′, λ′1, λ′2) ID code we can construct
a homogeneous �exp(nC + nγ )�-regular (n,N ′, λ′′1, λ′′2) ID code, where N ′ =
N exp

(−nδ(n+ 1)|X |
)

(for sufficiently large n). From Lemma 27 we get that

logN ′ = logN − δn(n+ 1)|X | ≤ n(n+ 1)|X |M log |X |.

Therefore for large n

log logN

n
≤ logn(n+ 1)|X | + log(exp(nC + nγ ) log |X | + δ)

n

≤ γ + log log |X |
n

+ C + 2γ

≤ C + 4γ

which completes the proof as γ > 0 could be chosen arbitrarily. ��

3.1.1 Proof of Lemma 25

Proof This proof is the second part of [10]. It is separated form the rest of the
proof of the ID-coding theorem for two reasons: On the one hand, it is quite a
long series of arguments. On the other hand, this result may be useful also in other
contexts: Since n-type distributions can be modelled as empirical distributions of
code words of length n, it estimates the number of input bits to be given into a
channel to approximate certain output distributions.

First we will decompose our given DMC W into channels, which have a certain
structure and are therefore easier to analyse:

Definition 28 (Conditional Type) Let V = {V (y|x) : x ∈ X , y ∈ Y} be a sto-
chastic matrix. We say that yn ∈ Y has conditional type V given xn ∈ X n, if
for all x ∈ X , y ∈ Y

<(xn, yn)|(x, y)>=<xn|x> V (y|x).

If xn ∈ X n, we will denote the set of all sequences in Yn with conditional type V
given xn by T nV (xn) (this set was defined in Definition 8).

The conditional type of yn given xn can be viewed as an estimate of the channel
that produces yn for an input sequence xn, it yields the empirical distribution of
pairs of input/output letters. The conditional type is uniquely determined except for
the rows, whose corresponding letter does not occur in xn.
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Since the cardinality of T nV (xn) depends only on V and the type of xn (if
a permutation of indices changes xn to x ′n, then the same permutation changes
T nV (xn) to T nV (x ′n) ) we can define

LPV = |T nV (xn)|

where xn is a sequence of type P . Now we will define a channel, which maps input
sequences of the same type to output sequences of the corresponding conditional
type: Let P be a type and V be given. Then define

WP
V (y

n|xn) =
{

1
LPV
xn ∈ T nP and yn ∈ T nV (xn)

0 otherwise.
(36)

We will call such a channel an equitype channel. Also we define the set of
conditional types congruent with P by

�P = {V : (LPV > 0) and (∀x : P(x) = 0 �⇒ V (·|x) = W(·|x))}.

The value of Wn(yn|xn) is uniquely determined by the type of xn and the
conditional type of yn given xn, so we can define

cPV = Wn(T nV (xn)|xn)

where xn can be arbitrarily chosen from T nP . Then for all xn ∈ T nP and yn ∈ T nV (xn)

Wn(yn|xn) = cPV

LPV
= cPVWP

V (y
n|xn).

For every (xn, yn) there is a unique pair (P, V ), P ∈ Pn, V ∈ �P with xn ∈ T nP
and yn ∈ T nV (xn), because we defined �P in such a way, that we just copied the
original values of W where the conditional type is not uniquely determined. So we
have

Wn(yn|xn) =
∑

P∈Pn

∑

V∈�P
cPVW

P
V (y

n|xn).

Thus we can write our channel as a sum of equitype channels. Now we will consider
the set of input sequences that can with positive probability produce a certain output
on a given equitype channel: Let yn ∈ Yn andWP

V be an equitype channel. Then

HPV (y
n) = {xn ∈ T nP : WP

V (y
n|xn) > 0}



30 Identification via Channels

which we will denote as inverse image of yn. From Eq. (36) we get that

QWP
V (y

n) = Q
(
HPV (y

n)
)

LPV
. (37)

Lemma 29 We will define for P ∈ Pn, V ∈ �P and δ > 0 the set

GPV =
{
yn ∈ Yn : Q

(
HPV (y

n)
)
≥ exp(−nI (P, V )− nδ)

}
.

Then for all n it holds, that

QWP
V (G

P
V ) ≥ 1− exp(−nδ)(n+ 1)|X ||Y |.

Proof Define the set

FPV =
{
yn ∈ T nPV :

Q
(
HPV (y

n)
)

LPV

>
exp(−nδ)(n+ 1)|X ||Y |

|T nPV |

}
.

Here T nPV denotes the set of all output sequences of unconditional type PV .
Obviously,

QWP
V (F

P
V ) ≥ 1− exp(−nδ)(n+ 1)|X ||Y |.

Also FPV ⊂ GPV , because for xn ∈ T nP [9, Problem 3(b), Chapter 1 Section 2], yields

exp(−nI (P, V ))
(n+ 1)|X ||Y |

≤ |T nV (xn)|
|T nPV |

= |LPV |
|T nPV |

. ��

Now we will concentrate on those equitype channels, that are “close” to the
original channel in the sense of the conditional relative entropy.

Let V = {V (y|x) : x ∈ X , y ∈ Y} and W = {W(y|x) : x ∈ X , y ∈ Y} be
stochastic matrices and let P be a PD on X . Recall that the conditional relative
entroy between W and V with respect to P was defined as D(V ||W |P) �∑
x∈X P(x)D(V (·|x)||W(·|x)).
Now define

�Pδ = {V ∈ �P : D(V ||W |P) ≤ δ}

and a new channel matrixW∗
δ = {W(yn|xn) : xn ∈ X n, y ∈ Yn} by

W∗
δ (y

n|xn) =
∑

P∈Pn

∑

V∈�P
c̄PV W

P
V (y

n|xn),
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where

c̄PV =
{
cPV /

∑
U∈�Pδ c

P
U V ∈ �Pδ

0 otherwise.

We will now show that this modification does not change our channel too much:

Lemma 30 For all n, xn ∈ X n, Y ⊂ Yn and δ > 0 we have

Wn(Y |xn) ≥ (1− exp(−nδ)(n+ 1)|X ||Y |)W∗
δ (Y |xn), (38)

Wn(Y |xn) ≤ W∗
δ (Y |xn)+ exp(−nδ)(n+ 1)|X ||Y |. (39)

Proof Let xn ∈ X n, let P be the type of xn and define

αPδ =
∑

U∈�Pδ
cPU .

Then we can write

Wn(Y |xn) =
∑

V∈�P
cPVW

P
V (Y |xn),

W∗
δ (Y |xn) =

∑

V∈�P
c̄PV W

P
V (Y |xn),

which implies on the one hand

αPδ W
∗
δ (Y |xn) ≤ Wn(Y |xn)

and on the other

Wn(Y |xn) =
∑

V∈�Pδ
cPV W

P
V (Y |xn)+

∑

V∈�P \�Pδ
cPV W

P
V (Y |xn)

≤
∑

V∈�Pδ
c̄PV W

P
V (Y |xn)+

∑

V∈�P \�Pδ
cPV W

P
V (Y |xn)

≤ W∗
δ (Y |xn)+ 1− αPδ .
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To estimate αPδ note, that for all P ∈ Pn

1− αPδ =
∑

V∈�P \�Pδ
cPV

=
∑

V∈�P \�Pδ
Wn(T nV (xn)|xn)

≤
∑

V∈�P \�Pδ
exp(−nD(V ||W |P))

≤ (n+ 1)|X ||Y | exp(−nδ),

where we used Lemma 1.2.6 from [9] and the fact, that |�P | ≤ (n+ 1)|X ||Y |, since
its elements are n-types on X × Y . This together with the two previous inequalities
yields the desired result. ��
Using this lemma we will show the existence of an �exp(nC+nγ )�-type distribution
Q′, with

Q′Wn(Y ) ≤ (1+ ε)QW∗
δ (Y )+ exp(−nδ)

Q′Wn(Y ) ≥ (1− ε)QW∗
δ (Y )− exp(−nδ)

for sufficiently large n. Finally we will show that this is sufficient to complete the
proof.

To prove the existence, we have to upperbound I (P, V ):

Lemma 31 Let
√
D(V ||W |P) < min{ 1

8 log e, 1}. Then

|I (P, V )− I (P,W)| ≤ 2g(D(V ||W |P))+√D(V ||W |P) log |Y |,

where

g(x) =
⎧
⎨

⎩
−
√

2x
log e log

√
2x

log e x > 0

0 x = 0.

Proof LetQ and R be arbitrary PDs with D(Q||R) < 1
8 log e. Then [9, Chapter 1,

Lemma 2.7 and Problem 17 Section 3] yield

|H(Q)−H(R)| ≤ g(D(Q||R)).
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Now define the set L = {
x : D(V (·|x)||W(·|x)) ≤ √

D(V ||W |P)} and apply
Markov’s Lemma (cf. for example [13, Satz 3.15]) on Lc to obtain P(Lc) ≤√
D(V ||W |P). Thus

|H(V |P)−H(W |P)|

=
∣∣∣∣∣
∑

x∈X
P(x)(H(V (·|x))−H(W(·|x)))

∣∣∣∣∣

≤
∑

x∈X
P(x)|H(V (·|x))−H(W(·|x)|)

≤
∑

x∈L
P(x)g(D(V (·|x)||W(·|x)))+

∑

x∈Lc
P (x) log |Y|

≤
∑

x∈L
P(x)g(D(V (·|x)||W(·|x)))+√D(V ||W |P) log |Y|

≤ g(D(V ||W |P))+√D(V ||W |P) log |Y|

where we used for the second inequality the fact, that the entropy of a random
variable can be upperbounded by the logarithm of the size of its image, and for
the last we used the fact, that g is concave. Also we have

D(PV ||PW) ≤ D(V ||W |P) ≤ √D(V ||W |P) ≤ 1

8
log e

since we also assumed
√
D(V ||W |P) to be smaller than 1. Therefore

|H(PV )−H(PW)| ≤ g(D(V ||W |P))

and

|I (P, V )− I (P,W)|
= |H(PV )−H(V |P)−H(PW)−H(W |P)|
≤ |H(PV )−H(PW)| + |H(V |P)−H(W |P)|
≤ g(D(V ||W |P))+ g(D(V ||W |P)) +√D(V ||W |P) log |Y|

��
Now we will define our function ρ from the lemma: Set

ρ(δ) = 2δ + 2g(δ)
√
δ|Y|.
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It is obvious to see that there is a δ0 > 0 (which depends on |Y|) such, that ρ (and
also g) is continuous and strictly increasing on (0, δ0). If now V ∈ �Pδ (which
means by definition thatD(V ||W |P) ≤ δ), then by the previous lemma

I (P, V )+ δ ≤ I (P,W) + 2g(D(V ||W |P))+√D(V ||W |P) log |Y | + δ
≤ I (P,W) + 2g(δ)+√δ log |Y | + δ
= I (P,W) + ρ(δ).

This with C = sup
P∈P(X )

I (P,W) implies

sup
P∈Pn

sup
V∈�PV

I (P, V )+ δ ≤ C + ρ(δ). (40)

We will set for abbreviation γ = ρ(δ) and M = �exp(nC + nγ )�. If y ∈ GPV and
V ∈ �Pδ , then

Q(HPV (y
n)) ≥ exp(−n(I (P, V )+ δ))

≥ exp(−n(C + ρ(δ)))
≥ exp(−n(C + ρ(δ)+ δ))

= 1

M
exp(−nδ).

Now we will show the existence of our M-type distribution Q′ by considering
realisations of independent identically distributed random variables (U1, . . . , UM),
where all Ui have distribution Q. The empirical distribution of a realisation of this
RVs is of course an M-type, and with positive probability it will approximate our
original PD Q as needed:

Lemma 32 There exists
(
u′1, . . . , u′M

)
, u′i ∈ T nP such, that for all V ∈ �Pδ , yn ∈

GPV the following inequalities hold:

1

M

M∑

i=1

1{u′i∈HPV (yn)} ≤ (1+ ε)Q(H
P
V (y

n))

1

M

M∑

i=1

1{u′i∈HPV (yn)} ≥ (1− ε)Q(H
P
V (y

n))

1

M

M∑

i=1

WP
V ((G

P
V )
c|u′i ) ≤ exp

(
−nδ

3

)
.
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Proof Let 0 < δ′ < δ. Then

Pr

(
1

M

M∑

i=1

UiW
P
V ((G

P
V )
c) > exp

(
−nδ

′

2

))
< exp

(
−nδ

′

2

)
.

Therefore

Pr

(
1

M

M∑

i=1

UiW
P
V ((G

P
V )
c) > exp

(
−nδ

′

2

)
for some V ∈ �Pδ

)

< (n+ 1)|X ||Y | exp

(
−nδ

′

2

)

≤ exp

(
−nδ

3

)

for large n.
Using a similar argument as for Lemma 16 or using the following

Theorem 33 (Sanov’s Theorem) Let A be a set of probability distributions over
an alphabetX , and letQ be an arbitrary distribution over X (whereQ may or may
not be in A). Suppose we draw n i.i.d. samples from X, represented by the vector
xn. Further, let Pxn be the empirical distribution, of the samples falling within the
set A. Then,

Qn(xn) ≤ (n+ 1)|X |2−nD(P ∗||Q),

where P ∗ is the information projection ofQ onto A.
Furthermore, if A is a closed set,

lim
n→∞

1

n
logQn(xn) = −D(P ∗||Q).

One gets for �1, · · · ,�M a Bernoulli chain with values 0 and 1 and Pr(�i = 1) =
E�i ≥ μ > λ that

Pr

⎛

⎝
M∑

j=1

�j < M · λ
⎞

⎠ ≤ exp (−M ·D (λ||μ)) . (41)

Together with Lemma 16 and the property of the relative entropy, that there is an
ε0 > 0 with

D((1+ t)μ||μ) ≥ t
2μ log e

2
for all t ∈ [−ε0, ε0]
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we get

Pr

(
1

M

M∑

i=1

1{u′i∈HPV (yn)} > (1+ ε)Q(H
P
V (y

n))

)
(42)

≤ expe

(
−Mε

2μ

3

)
≤ expe

(
−ε

2 exp(nδ)

2

)

and also

Pr

(
1

M

M∑

i=1

1{u′i∈HPV (yn)} < (1− ε)Q(H
P
V (y

n))

)
(43)

≤ expe

(
−Mε

2μ

3

)
≤ expe

(
−ε

2 exp(nδ)

2

)

for all ε ∈ (0, ε0). To see this, we set �i = 1{u′i∈HPV (yn)} (which leads to μ =
Q(HPV (y

n)) ≥ nδ
M

) and apply Lemma 19 respectively inequality (41). Now using
the union bound one easily gets

Pr

(
1

M

M∑

i=1

1{u′i∈HPV (yn)} > (1+ ε)Q(H
P
V (y

n))

)
≤ expe

(
−ε

2 exp(nδ)

3

)

Pr

(
1

M

M∑

i=1

1{u′i∈HPV (yn)} < (1− ε)Q(H
P
V (y

n))

)
≤ expe

(
−ε

2 exp(nδ)

3

)

for large n. Therefore, the sum of the probabilities, that the realisation fails
at least one of the conditions, becomes smaller than 1 for n sufficiently large,
i.e. a realisation with the desired properties exists which concludes the proof of
Lemma 32. ��

To complete the proof of Lemma 25 we will finally show the properties of the
(u′1, . . . , u′M) (and therefore the empirical distributionQ). we show that we obtain
from Lemma 32 the required quality of approximation:

Let yn ∈ GPV . Then

Q′WP
V (y

n) = Q′(HPV (yn))
LPV

≤ (1+ ε)Q(H
P
V (y

n))

LPV

= (1+ ε)QWP
V (y

n)
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Thus for Y ⊂ Yn, V ∈ �Pδ we get

Q′WP
V (Y ) = Q′WP

V (Y ∩GPV )+Q′WP
V (Y ∩ (GPV )C)

≤ (1+ ε)Q(WP
V (Y ))+ exp

(−nδ
3

)

and analogously

Q′WP
V (Y ) ≥ (1− ε)QWP

V (Y )− exp

(−nδ
3

)
.

Since this inequalities hold for all equitype channels, they hold also for our channel
W , which is a convex combination of theWP

V , and Lemma 25 is proved. ��

3.2 Combinatorial Proof of the Strong Converse

Here we come back to the very first idea from [5], essentially to replace the
distributions Pi by uniform distributions on “small” subsets of X n, namely with
cardinality slightly above exp(nC(W)).

The core of the proof is a result on hypergraph coloring, which is explained in all
details in [8]. We will give here the definitions and the result.

Definition 34 A hypergraphH = (V, E) consists of a (finite) vertex set V and a set
of hyper-edges E , where each edge E ∈ E is a subset of E ⊂ V .

The vertices will usually be labelled by V = (v1, . . . , vI ) with I = |V |, and the
edges by E = (E1, . . . , EJ ) with 1 ≤ J ≤ 2|E |.

We call a hypergraph uniform if in H = (V, E) all edges E ∈ E have the
same cardinalityD. For a uniform distribution P on E we can define the associated
(output) distributionQ,

Q(v) =
∑

E∈E
D(E)1E(v) =

∑

E∈E

1

|E |1E(v). (44)

Our goal is to find an E∗ ⊂ E as small as possible such that the distributionQ∗,

Q∗(v) �
∑

E∈E∗
1

|E∗|1E(v) for all v ∈ V (45)

is a good approximation ofQ in the following sense. For some V∗ ⊂ V
∑

u∈V∗
Q(v) ≤ δ (46)
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and

(1− ε)Q(v) ≤ Q∗(v) ≤ (1+ ε)Q(v) for all v ∈ V \ V∗. (47)

Lemma 35 (Multiple Covering Lemma) For the uniform hypergraph H =
(V, E), and any ε, δ > 0 there is a E∗ ⊂ E and a V∗ ⊂ V such that for Q∗
defined in (44), (45) holds and

|E∗| ≤ δ|V |
ε2|E| log |V |.

Let {(Pi,Di ) : i = 1, . . . , N} be an (n,N, λ1, λ2) ID code, λ1+λ2 = 1−λ < 1.
Our goal is to construct an (n,N, λ1 + λ/3, λ2 + λ/3) ID code {(P̄i,Di) : i =
1, . . . , N}, where P̄i ∈ Pk is a k-type on X n. Recall that all the probabilities are
rational with common denominator k (see Definition 6). We fix i for the moment.

Let T be a distribution on X . Recall that T nT , is nonempty if T is an empirical
distribution (ED).

We already saw that there are less than (n+ 1)|X | many empirical distributions.
For the emprirical distribution T the restricted type (see Definition 21)

PTi (x
n) = Pi(x

n)

Pi(T nT )
for xn ∈ T nT ,

is a probability distribution on T nT .
Note:

Pi =
∑

T ∈Pn
Pi(T nT )P Ti .

Up to now we only considered typical sequences for probability distributions
arising from relative frequencies, which we call ED. For general probability
distributions the following definition is more appropriate.

Definition 36 xn ∈ X n is (n, P, α)-typical, if

|< xn|x > −n · P(x) |≤ α · n for all x ∈ X .

So for α = 0 we again have the typical sequences. As pointed out above this
notion can be applied to any probability distribution. Another advantage is that
we are free to choose the parameter α. For example α might be a constant. When
Chebyshev’s inequality and the weak law of large numbers are involved usually
α = c√

n
for a constant c is chosen. The set of (n, P, α)-typical sequences is denoted

as T nP,α (or T nX,α).
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Definition 37 Let X and Y be the input and output alphabet of a DMC specified
by the transmission matrixW = (W(y|x))

x∈X ,y∈Y . A sequence y� ∈ Y� is called

(x�, α)-conditionally typical, if for all x ∈ X , y ∈ Y
∣∣∣< x�, y�|x, y > − < x�|x > ·W(y|x)

∣∣∣ ≤ α · �.

The set of all (x�, α)-conditional typical sequences is denoted as

T �Y |X,α(x�) = T �W,α(x�).

Let us give a short interpretation of the previous definitions. Assume that a
sequence x� ∈ X � of absolute type (< x�|x >)x∈X is transmitted over the channel
W . Then the received sequence y� will “typically” contain < x�|x > ·w(y|x) y’s
in those positions where the original sequence x� had the letter x. So with high
probability a (x�, α)-generated sequence will be received, when x� is transmitted
over the channel.

For xn ∈ T nT and

α =
√

9|X ||Y|
λ

we consider the set of conditional typical sequences T nW,α(xn).
It is well known that these sets are contained in the set of TW -typical sequences

on Yn, T nTW,α.
Define now the measuresQxn by

Qxn(y
n) = Wn(yn|xn) · 1T nW,α(xn)(y

n).

By the properties of typical sequences and choice of α we have

‖Qxn −W(·|xn)‖1 ≤ λ
9
,

where ‖ · ‖1 denotes the statistical distance.
Now with ε = τ = λ/36 apply Lemma 35 to the hypergraph with vertex set

T nTW,α and edges T nW,α(xn), xn ∈ T nT , carrying measureW(·|xn), and the probability

distribution PTi on the edge set: we get an L-type P̄ Ti with

‖PTi Q− P̄ Ti Q‖1 ≤ λ
9
,

L ≤ exp(nI (T ,W) +O(√n)) ≤ exp(nC(W) +O(√n)),
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where the constants depend explicitly on α, δ, τ . By construction we get

‖PTi Wn − P̄ Ti Wn‖1 ≤ λ
3
.

In fact by the proof of the lemma we can choose L = exp(nC(W) + O(√n)),
independent of i and T .

Now choose a K-type R on the set of all empirical distributions such that

∑

T ∈Pn
|Pi(T nT )− R(T )| ≤

λ

3
,

which is possible for

K = �3(n+ 1)|X |/λ�.

Defining

P̄i =
∑

T ∈Pn
R(T )P̄ Ti

we can summarize

1

2
‖PiWn − P̄iWn‖1 ≤ λ

3
,

where P̄i is a KL-type. Since for all D ⊂ Yn

|PiWn(D)− P̄iWn(D)| ≤ 1

2
‖PiWn − P̄iWn‖1

the collection {(P̄i,Di ) : i = 1, . . . , N} is indeed an (n,N, λ1 + λ/3, λ2 + λ/3) ID
code.

The proof is concluded by two observations: because of λ1 + λ2 + 2λ/3 < 1 we
have P̄i �= P̄j for i �= j . Since the P̄i however are KL-types, we find

N ≤ |X n|KL = exp(n log |X | ·KL) ≤ exp(exp(n(C(W)+ δ))),

where the last inequality holds only if n is large enough.
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4 Discussion

In all coding problems previously studied in information theory, the maximal code
lengths grow only exponentially in block length. Therefore, our double exponent
coding theorem is the first of its kind. The identification problem solved seems to
be a natural one. In our judgement it enlarges the basis of information theory, which
in Shannon’s foundation was restricted to the transmission problem. The success
of Shannon’s theory relies on the fact that the semantic aspect of information was
excluded, but the identification problem also has its place in a presemantic theory.
Therefore it is satisfying to see that this meaningful question finds an answer in a
smooth mathematical theory. Moreover, the result is quite sophisticated from the
mathematical point of view.

A few historical remarks seem in order. In 1970 the author presented a manuscript
entitled “A New Information Theory: Information Transfer at Rates Above Shan-
non’s Capacity” to the late Jack Wolfowitz. Within 24 h Wolfowitz responded with
a letter entitled “New Information Theory for Those who Don’t Know the Old”. He
was absolutely right, because the calculation of the error probability for a random
encoding procedure used only two-codeword error probabilities and had completely
ignored the union bound. Nonetheless, somehow information was conveyed, and
in another letter 2 days later, Wolfowitz wrote “The result is perhaps completely
useless, but I like it!”

At the Information Theory Workshop at Gränna, Sweden, during a discussion on
Yao’s two-way communication complexity (see [16]), Ephremides drew attention
to a recent unpublished work of Ja’Ja’ (see [12]). Immediately, the bell rang.
The ancient result had a proper interpretation in the context of identification. The
observation of Ja’Ja’ is that, for the binary symmetric channel with crossover
probability ε �= 1/2, one can identifiy at a rate arbitrarily close to 1. This is
immediately clear, if one uses Gilbert’s bound for the Hamming distance d = δ · n,
δ → 0 and Hamming spheres of radius equal to (ε + η)n, ε < 1/n, η � ε as
decoding sets.

One can apply the same idea to the general DMC to get a (non-randomized)
identification capacity equal to log2 of the number of distinct row vectors inW . The
unsatisfactory aspect of this result is that the actual values of the positive entries in
W do not matter.

Our idea to use randomization in the encoding therefore is fruitful in two
respects: it leads to much better performance and also eliminates the shortcoming
mentioned. Since

∑
xn Q(x

n|i)W(Di |xn) ≥ 1−λ implies the existence of a ui with
W(Di |ui) ≥ 1 − λ, the effect of randomization is on the error of the second kind.
For the transmission problem on the DMC, it does not help at all!

It must also be emphasized that even for noiseless channels our result is
of interest. Suppose that one out of N possible events occurred. Shannon was
concerned with the question, “Which event occurred?” The question asked in
identification is “Did event i occur?” Here i could be any member of {1, 2, . . . , N}.
There are many situations in which the answer to this question is of interest.
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Example Let S1, . . . , SN be sailors on a ship, and let sailor Si be associated with
lady Li . In a stormy night one sailor, say Sj , drowns in the ocean. One could now
broadcast his name to the radio stations of the country from which all sailors are
known to come, hoping that the lady Lj listens to the news, so that she hears about
the tragic event. However, this takes �log2N� bits and the news is (primarily) of
interest to only one lady. If we now permit a certain error probability, which is not
much of a price in an imperfect (as the tragedy shows) world, then by our result
O(log logN) bits suffice! �
Example In many countries the winningm-digit state lottery number is made public
on radio and television. Again, by tolerating a certain error probability, this number
could be replaced by a properly produced random number of O(logm) digits and
still every winner and every loser would be informed correctly with probability close
to 1. Also one could modify the lottery so that the chance errors become part of the
lottery. �

These examples show that there is a need for explicit constructions of ID codes.
If such codes achieve positive second-order rates, then they are already much better
than the naive error-free identification codes.

There is a multitude of other problems which can now be studied. Almost every
known coding theorem concerning the transmission problem can be reconsidered in
the context of identification. Also, new phenomena arise. Chapters “Identification
in the Presence of Feedback: A Discovery of New Capacity Formulas” and “On
Identification via Multi-Way Channels with Feedback: Mystery Numbers” expand
the discussion.
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Identification in the Presence
of Feedback: A Discovery of New
Capacity Formulas

The main contribution of our earlier work, “Identification via Channels”, was that
N = exp{exp{nR}} objects can be identified in block length n with arbitrarily small
error probability via a discrete memoryless channel (DMC), if randomization can
be used for the encoding procedure and if R < C(W). Moreover, in this case
the second-order identification capacity equals Shannon’s transmission capacity
C(W), where W is the transmission matrix of the DMC. Here we study the
identification problem in the presence of a noiseless feedback channel and determine
the second-order capacity Cf (resp. CF ) for deterministic (resp. randomized)
encoding strategies. We encounter several important phenomena.

1. Although feedback does not increase the transmission capacity of a DMC, it does
increase the (second-order) identification capacity. We actually prove that

Cf (W) = max
x∈X

H(W(·|x))

and

CF (W) = max
P
H(P ·W), if C(W) > 0.

2. Notice that Cf = 0 if W is a matrix with 0 and 1 as entries only. Thus noise
increases Cf !

3. The structure of the new capacity formulas is apparently much simpler than
Shannon’s familiar formula. This has the effect that proofs of converses become
easier than in our previous work.
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1 The Results

In the beginning of chapter “Identification via Channels”, we discussed the notions
of classical transmission codes and (randomized) identification codes. We refer the
reader to chapter “Identification via Channels” for definitions, and start right away
with the analogous concepts for discrete memoryless channels with feedback.

Definition 38 A transmission feedback code
{{fj ,Dj } : j = 1, . . . ,M

}
is

described as follows. There is given a finite set of messages M = {1, . . . ,M}.
One of these messages is to be sent over the channel. Message j ∈ M is encoded
by a (vector-valued) function

fj =
[
f 1
j , f

2
j , . . . , f

n
j

]

where, for t ∈ {2, . . . , n}, f tj is defined on Y t−1 and takes values in X . f 1
j is

an element of X . It is understood that after the received elements Y1, . . . , Yt−1
have been made known to the sender by the feedback channel, the sender transmits
f tj (Y1, . . . , Yt−1). At t = 1 the sender transmits f 1

j .
The distribution of the RV’s Yt , t = 1, 2, . . . , n is determined by fj and W . We

denote the probability of receiving yn = (y1, . . . , yn) ∈ Yn, if j has been encoded,
by Wn(yn|fj ) = W(y1|f 1

j ) · W(y2|f 2
j (y1)) · · ·W(yn|f nj (y1 · · · yn)). Again the

Dj ⊂ Yn, j = 1, . . . ,M are disjoint decoding sets and we require that

Wn(Dj |fj ) ≥ 1− λ, for all j = 1, . . . ,M.

Now letMf (n, λ) be the maximal integerM for which an (n,M, λ) feedback code
exists.

Theorem 39 (Shannon–Kemperman–Kesten (SKK))

lim
n→∞

1

n
logMf (n, λ) = C for all λ ∈ (0, 1).

The proof and the apportionment of the credit for it can be found in [5] and [3].

Remark It is also known that randomization in the encoding or/and decoding does
not increase the capacity.

Now let us turn again to the identification problem. We consider two concepts,
deterministic and randomized identification-feedback (IDF) codes, and make the
following important observations:

1. Even in the deterministic case, feedback causes the maximal code length to grow
doubly exponentially in block length.

2. If, in addition, we allow randomization in the encoding, this results in a further
improvement to the extent that the aforementioned double exponent increases.
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3. In both cases the capacities are characterized in terms of entropy measures.
Mutual information, however, plays no role!

4. The formulas for the capacities show that “noise” typically increases capacity!

We now formulate the exact results. Let Fn be the set of all possible encoding
functions of the kind defined in Definition 38. A (deterministic) (n,N, λ) IDF code
forW is a system

{(fi,Di ) : i = 1, . . . , N} with fj ∈ Fn,Di ⊂ Yn, for all i ∈ {1, . . . , N}

and

Wn(Dci |fi) ≤ λ, Wn(Dj |fi) ≤ λ (1)

for all i, j ∈ {1, . . . , N} with i �= j . A randomized (n,N, λ) IDF code for W is a
system

{(QF (·|i),Di ) : i = 1, . . . , N}

withQF (·|i) ∈ P(Fn), Di ⊂ Yn, and

∑

g∈Fn
QF (g|i)Wn(Dci |g) ≤ λ, (2)

∑

g∈Fn
QF (g|i)Wn(Di |g) ≥ λ (3)

for all i, j ∈ {1, . . . , N} with i �= j .
Let Nf (n, λ) (resp. NF (n, λ)) be the maximal integerN for which a determinis-

tic (resp. randomized) (n,N, λ) IDF code exists. (We add f (resp.F ) to the notation
to indicate the model with which we are working.)

Theorem 40 (Coding Theorem and Strong Converse) If the transmission capac-
ity C ofW is positive, then we have for all λ ∈ (0, 1/2):
(i) lim inf

n→∞
1

n
log logNf (n, λ) ≥ max

x∈X
H(W(·|x))

(ii) lim sup
n→∞

1

n
log logNf (n, λ) ≤ max

x∈X
H(W(·|x)).

In particular, for deterministic feedback strategies the second-order identification
capacity Cf (W) equals maxH(W(·|x)) provided that C(W) > 0. Cf (W) = 0 if
and only if C(W) = 0 or W is a noiseless channel, i.e. W(y|x) ∈ {0, 1} for all
x, y. This result says that Cf (W) depends solely on the maximal per letter “output
entropy”H(W(·|x∗)) = maxx∈X H(W(·|x)).

Also, Cf increases if H(W(·|x∗)), “the measure of noise caused by x∗”,
increases. Indeed, for noiseless channels, Cf is zero.
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This behavior is in surprising contrast to the familiar properties of the transmis-
sion capacity. The reader will gain a complete understanding in the course of the
proof of part (i) of Theorem 40; here we give some of the underlying ideas.

In chapter “Identification via Channels” we showed that a large amount of
randomization in the encoding is necessary to achieve a positive doubly exponential
rate. In case of feedback, the sender has another way of performing a random
experiment, namely, to send (possibly repeatedly) a letter x with H(W(·|x)) > 0.
Its outcome is known to the sender via the feedback link. The maximal amount of
randomness is achieved if one uses a letter x∗ ∈ X with

H(W(·|x∗)) = max
x
H(W(·|x)).1

The proof of Theorem 40 shows that all good deterministic encoding strategies use
such letters x∗ most of the time. The situation here is quite different from what
we are used to in classical coding problems. As a consequence there is almost no
connection between the capacities Cf and C.

However, if we allow randomized feedback strategies, then by Theorem 12 we
know that CF ≥ C. Actually, strict inequality holds here except for those cases
which are specified in the remark below.

Theorem 41 (Coding Theorem and Strong Converse) If the transmission capac-
ity C ofW is positive, then, for all λ ∈ (0, 1/2),
(i) lim inf

n→∞
1

n
log logNF (n, λ) ≥ max

P∈P(X )
H (PW)

(ii) lim sup
n→∞

1

n
log logNF (n, λ) ≤ max

P∈P(X )
H (PW)

Remark We call W essentially noiseless if there exist subsets X ∗ ⊂ X ,Y∗ ⊂ Y
and a bijection g : X ∗ → Y∗ such that

W(g(x)|x) = 1, for all x ∈ X ∗ (4)

W(·|x ′) ∈ conv{W(·|x) : x ∈ X ∗}, for all x ′ ∈ X , (5)

where conv denotes the convex hull. We claim that CF = C if and only if C = 0 or
W is essentially noiseless.

IfW is essentially noiseless and C > 0 then C = log |X ∗| and CF = log |Y∗| =
C. Conversely, if C = CF and C > 0, then for every P ′ satisfying

I (P ′,W) = H(P ′W)−H(W |P) = C,

1The results explain why, to identify the state of the world in a universal philosophical system, one
has to proceed as follows: first choose your position and then create a lot of noise.
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we have H(W |P ′) = 0. This and the optimality of P ′ imply that W is essentially
noiseless.

Remark We make some comments concerning the proofs. In chapter “Identification
via Channels” we built ID codes from large subsets of a given channel code (for
transmission). We showed that Theorem 12(i) can be proved in another simple
manner. The ID code is “combined” from two ordinary transmission channel
codes. The first one has the sole purpose of providing sender and receiver with
the (common) knowledge of the outcome of a random experiment. Its entropy
per time unit determines the second-order rate of the ID code. This important
observation also makes the role of feedback for identification transparent. Feedback
makes it possible to provide sender and receiver with the knowledge of the
outcome of other random experiments. In the deterministic case it is the experiment
obtained by sending the letter x∗ n times and in the case of randomized feedback
strategies it is the experiment (Yn,

∏n
1 PW), which can be performed by sending

the outcome of (X n, P n) over the channel. Notice that H(PW) = I (P,W) +
H(W |P). Theorem 41 says that the doubly exponential rates I (P,W) (achievable
with randomization and no feedback) and H(W |P) (achievable with feedback
and no randomization) sum up to H(PW) (achievable with both feedback and
randomization). We choose of course a P , which maximizesH(PW). The proofs of
the converses essentially say that common random experiments of higher per-letter
entropies do not exist under the respective circumstances.

For the second code used in the proofs of the direct part, it is only essential that its
rate is positive. Thus the condition C > 0 enters. It can be seen by inspection of the
proof that, as long as C > 0, an infinite identification capacity can be achieved, if
sender and receiver have knowledge of the outcome of the same random experiment
of an infinite entropy. It is well-known that such random experiments (also with
finite entropy) can be used to increase the transmission capacity of systems of
channels such as arbitrarily varying channels [1]. Their effect on the identification
capacity is dramatic!

2 Notation and Known Facts

For the basic notation we again refer the reader to chapter “Identification via
Channels”, Sect. 1.1. We state here only two additional simple lemmas. For channels
V, V ′ ∈W let

||V − V ′|| = max
x,y

|V (y|x)− V ′(y|x)|.

Lemma 42 For every ε > 0, there is a δ′ = δ′(ε) > 0 such that

Wn({yn ∈ Yn : yn ∈ T nV (xn) for a V with ||V −W || ≤ ε}|xn) ≤ 1− 2−nδ′

for n ≥ n0(ε).
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Lemma 43 For every ε > 0 there is a c(ε) > 0 such that for n ≥ n0(ε)

(i)

∣∣∣∣∣∣

⋃

V :||V−W ||≤ε
T nV (xn)

∣∣∣∣∣∣
≥ 2n(H(W |Pxn)−c(ε))

(ii)

∣∣∣∣∣∣

⋃

V :||V−W ||≤ε
T nV (xn)

∣∣∣∣∣∣
≤ 2n(H(W |Pxn)+c(ε))

(iii) |T nV (xn)| ≥ 2n(H(W |Pxn)−c(ε)), if ||V −W || ≤ ε and T nV (xn) �= 0,

and c(ε)→ 0 if ε → 0.

3 New Proof of the Direct Part in Theorem 12

The proof in chapter “Identification via Channels”, Sect. 2 [2] uses in the encoding
procedure probability distributions which are uniform distributions on the sets of
codewords in some classical channel codes (as defined in chapter “Identification via
Channels”). There is a lot of freedom in selecting systems of such codes (see the
remark at the end of the section). Here we choose a system consisting of codes,
which are extensions of a single channel code. This system is designed so that, with
some modifications, it can be used for the feedback case as well. It is again produced
by a random selection and allows a fairly simple analysis.

We begin with two fundamental codes C ′ and C. By Shannon’s coding theorem
(stated in [4]) we know that for every ε > 0, ε < C, there is a δ = δ(ε) > 0 and an
n0(ε) such that for n ≥ n0(ε) an (n,M ′, 2−nδ) code

C ′ = {(u′j ,D′
j ) : j = 1, . . . ,M ′} (6)

and an (�√n�,M ′′, 2−
√
n
δ

) code

C ′′ = {(u′′k ,D′′
k ) : k = 1, . . . ,M ′′} (7)

exist withM ′ = �2n(C−ε)� andM ′′ = �2ε√n�.
We use the abbreviationm = n+ �√n�. Now any family {Ti : i = 1, . . . , N} of

maps

Ti : {1, . . . ,M ′} → {1, . . . ,M ′′}

can be used to build an ID code {(Q(·|i),Di ) : i = 1, 2, . . . , N} from C ′ and C ′′.
HereQ(·|i) is the uniform distribution on the set of codewords

Ui = {u′j · u′′Ti (j) : j = 1, . . . ,M ′} ⊂ Xm
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and

Di =
M ′⋃

j=1

D′
j ×D′′

Ti (j)
.

We choose at random an ID code of such structure in the following way.
For i ∈ {1, 2, . . . , N} and j ∈ {1, . . . ,M ′} let Uij be independent RV’s such that

Uij takes the value u′j ·u′′k with probability 1/M ′′ for k ∈ {1, . . . ,M ′′}. We consider
the random sets

U i = {Ui1, . . . , UiM ′ } for all i = 1, . . . , N. (8)

The uniform distributions Q(·|i) on these sets become random distributions. The
random decoding sets are

D(U i ) =
M ′⋃

j=1

D(Uij ) (9)

where

D(Uij ) = D′
j ×D′′

k , if Uij = u′j · u′′k . (10)

We now analyze the maximal error performances of {(Q(·|i),D(U i )) : i =
1, . . . , N}. We consider first the errors of the first kind. It is clear from the definitions
(6)–(10) that for every realization Ui of U i

∑

xm∈Xm

Q(xm|i)Wm(D(Ui )c|xm) (11)

= 1

M ′
∑

u∈Ui
Wm(D(Ui )c|u) (12)

≤ 1

M ′
M ′∑

j=1

(
Wn(D′c

j |u′j )+W �√n�(D′′c
Ti(j)

|u′′Ti(j))
)

(13)

≤ 2−nδ + 2−
√
nδ. (14)

Thus only errors of the second kind remain to be considered. For this analysis
we again use a large deviational approach to bound the probability that there does
not exist a realization with a prescribed error of the second kind λ for two indices,
without loss of generality say i = 1, 2. That bound yields the final result for all
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indices i since the probability for the union of events does not exceed the sum of
the probabilities of these events. Actually, it suffices to compare the random set U2
with any realization U1 of U1. Fix U1 and define for j = 1, . . . ,M ′

ψj = ψj (U2) =
{

1, if U2j ∈ U1

0, otherwise.
(15)

Since the RV’s U2j are independent, ψ1, . . . , ψM ′ are also independent. Further-
more, by our definitions

Eψj = 1

M ′′ for all j = 1, . . . ,M ′. (16)

An elementary calculation shows that, forM ′′ = �2√nε�,

D(λ||1/M ′′) ≥ λ · √n · ε − 1. (17)

Therefore Lemma 16 implies the following.

Corollary 44 For λ ∈ (0, 1) and 1/M ′′ < λ

Pr

⎛

⎝
M ′∑

j=1

ψj > M
′ · λ
⎞

⎠ ≤ 2−M ′(λ√nε−1).

We need one other elementary fact. Suppose that U2 = U2 and u ∈ U1 − U2; then

Wm(D(U2)|u) ≤ 2−nδ + 2−
√
nδ. (18)

To see this, let u = u′j · u′′k . Notice that for u �∈ U2, D(U2) ∩ (D′
j × D′′

k ) = ∅ and
that therefore

Wm(D(U2)|u) ≤ Wm((D′
j ×D′′

k )
c|u).

Equation (18) follows, because the Definitions 6 and 7 imply that

Wm((D′
j ×D′′

k )
c|u) ≤ 2−nδ + 2−

√
nδ.
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An upper bound on the error of the second kind is now readily established:
∑

u∈U1

Wm(D(U2)|u) =
∑

u∈U1∩U2

Wm(D(U2)|u)+
∑

u∈U1−U2

Wm(D(U2)|u)

≤ |U1 ∩ U2| +
∑

u∈U1−U2

Wm(Dc(U1 − U2)|u)

≤ |U1 ∩ U2| + |U1 − U2| · (2−nδ + 2−
√
nδ)

≤ |U1 ∩ U2| +M ′ · (2−nδ + 2−
√
nδ)

≤ |U1 ∩ U2| +M ′ · 2 · 2−
√
nδ,

where we have used (18). Since |U1 ∩ U2| =∑M ′
j=1ψj (U2),

1

M ′
∑

u∈U1

Wm(D(U2)|u) ≤ 1

M ′
M ′∑

j=1

ψj (U2)+ 2 · 2−
√
nδ. (19)

Now fix λ ∈ (0, 1). By Corollary 44 for large n we have that with positive
probability

1

M ′
∑

u∈U1

Wm(D(U2)|u) ≤ λ+ 2 · 2−
√
nδ (20)

and similarly

1

M ′
∑

u∈U2

Wm(D(U1)|u) ≤ λ+ 2 · 2−
√
nδ. (21)

Hence there is a realization U2 = U2 for which (20) and (21) hold. We use
this argument repeatedly for i = 3, 4, . . . , N (as in chapter “Identification via
Channels”).

Pr{(n,N, λ + 2 · 2−
√
nδ) �} = Pr

⎧
⎪⎪⎨

⎪⎪⎩

⋃

l,k=1,...,N
l �=k

λ(l,k)n ≥ λ+ 2 · 2−
√
nδ

⎫
⎪⎪⎬

⎪⎪⎭
(22)

≤
∑

k,l:
l �=k

Pr{λ(l,k)n ≥ λ+ 2 · 2−
√
nδ} (23)

≤ (N2 − 1) · 2−M ′(λ√nε−1) (24)
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Therefore, an (n,N, λ + 2 · 2−
√
nδ) ID code exists, if

N(N − 1) Pr

⎛

⎝
M ′∑

j=1

ψj > M
′λ

⎞

⎠ < 1. (25)

From Corollary 44 andM ′ = �2n(C−ε)� (25) holds for every N with

N ≤ 21/2·(λ√nε−1)2n(C−ε).

This proves the result.

Remark Instead of extending the code C ′, one can prove the same result by making a
random selection of subcodes of C ′ whose lengths are small but proportional to |C ′|.

4 Proof of the Direct Part of Theorem 40

We know already from chapter “Identification via Channels” that randomization in
the encoding causes N(n, λ) to grow doubly exponentially in n. In the preceding
proof we gained additional insight. The amount of “correlated randomization”, that
is, the size of a random experiment, whose outcomes are known to the sender and to
the receiver (with very small error probability), is the decisive quantity determining
the growth of N(n, λ).

As our random experiment we used the uniform distribution on the set of
codewords of the code C ′. The outcome u′j ∈ {u′1, . . . , u′M ′ } is known to the sender.
Then the outcome is transmitted to the receiver with high probability. The parameter
M ′ = �2n(C−ε)� is the size of this random experiment.

The presence of feedback allows the design of another random experiment.
Feedback is used here solely for this purpose. Otherwise the coding scheme is
essentially the same as previously. We now describe this random experiment and
the coding scheme. Let x∗ ∈ X be a letter with

H(W(·|x∗)) = max
x∈X

H(W(·|x)). (26)

Choose again as total block length

m = n+ �√n� (27)

and define C ′′ as in (7). We now describe the substitute for C ′.
Regardless which object i ∈ {1, . . . , N} is presented to the sender, he first sends

x∗n = (x∗, . . . , x∗) ∈ X n. The receiver sequence yn ∈ Yn becomes known to the
sender by the feedback channel.
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The resulting correlated random experiment (Yn,Wn(·|x∗n)) needs a modifica-
tion, because Wn(·|x∗n) is far from being uniform on Yn. However, Wn(·|x∗n) is
essentially uniform on the set

D∗ =
⋃

V :||V−W ||≤ε
T nV (x∗n), (28)

which carries essentially all its probability. We lump the small-probability set Yn −
D∗ together in an erasure symbol e with the understanding that

Wn(e|x∗n) = Wn(Yn −D∗|x∗n). (29)

We choose as our random experiment (D∗∪{e},Wn(·|x∗n)). The price paid for more
uniformity is a small error probability, if e occurs. However, previously we still had
to deal in C ′ with small error probabilities. By Lemma 43, |D∗| ∼ 2nH(W(·|x∗)), and
this quantity now takes the role ofM ′.

Instead of the maps Ti : {1, . . . ,M ′} → {1, . . . ,M ′′}, we now use maps Fi :
D∗ → {1, . . . ,M ′′} in the block [n+ 1, . . . ,m]. This means that after yn ∈ D∗ has
been received, the sender sends μ′′Fi(yn), if i ∈ {1, 2, . . . , N} is given to him.

In case yn �∈ D∗ an error is declared and the sender can fill the �n1/2� positions in
any way, for instance by sending x∗�n1/2� times again. Clearly, for each F1, we have
defined an encoding function fi ∈ Fm as introduced in Sect. 1. For the decoding we
define the sets

D(Fi ) =
⋃

yn∈D∗
{yn} ×D′′

Fi(yn)
, for all i = 1, . . . , N. (30)

The astute reader can avoid the following formal analysis, which is necessary only
because our random experiment is not exactly uniform.

With respect to the error of the first kind notice that Wm(D(Fi)c|f + i) ≤
Wn((D∗)c|x∗n)+ 2−

√
nδ, and thus by Lemma 43,

Wm(D(Fi)c|fi) ≤ 2−nδ′ + 2−
√
nδ. (31)

To achieve a small maximal error probability of the second kind we find suitable
maps Fi again by random selection.

For i ∈ {1, 2, . . . , N} and yn ∈ D∗ let F i(yn) be independent RV’s such that
F i(y

n) takes every value k ∈ {1, . . . ,M ′′} with probability 1/M ′′. Let F1 be any
realization of F 1.

In analogy to theψj in Sect. 3, we define RV’sψyn = ψyn(F 2) for every yn ∈ D∗
by

ψyn =
{

1, if F1(y
n) = F 2(y

n)

0, otherwise.
(32)
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These RV’s are independent and have expected value 1/M ′′. Application of
Lemma 16 in conjuncation with Lemma 43 yields the following.

Corollary 45 For λ ∈ (0, 1), 1/M ′′ < λ, and for a channel V with ||V −W || ≤ ε,

Pr

⎛

⎜⎜⎜⎝
∑

yn∈
T nV (x∗n)

ψyn > |T nV (x∗n)| · λ

⎞

⎟⎟⎟⎠ ≤ exp{− exp{nH(W(·|x∗n))−c(ε))}·(λ√nε−1)},

if n ≥ n0(ε). Consequently, with probability at least

1− (n+ 1)|X |·|Y | · exp{− exp{nH(W(·|x∗n))− c(ε))} · (λ√nε − 1)}

F 2 satisfies, for all V with ||V −W || ≤ ε,
∑

yn∈T nV (x∗n)
ψyn ≤ |T nV (x∗n)| · λ. (33)

We now derive an upper bound onWm(D(F 2)|f1) for those values of F 2:

Wm
(
D(F 2)|f1

) ≤ Wm
(
(D∗ × Y�

√
n�)c|f1

)
+Wm

(
(D∗ × Y�

√
n�) ∪D(F 2)|f1

)

≤ Wn
(
(D∗)c|x∗n)

+
∑

yn∈D∗
F1(y

n) �=F 2(y
n)

Wn(yn|x∗n) · 2−
√
nδ +

∑

yn∈D∗
F1(y

n)=F 2(y
n)

Wn(yn|x∗n).

By Lemma 42 we haveWn(D∗|x∗n) ≥ 1− 2−nδ′ .
The second summand is obviously not larger than 2−

√
nδ . For an upper bound on

the third summand we use (33). We get

Wm
(
D(F 2)|f1

) ≤ 2−nδ′ + 2−
√
nδ +

∑

V :||V−W ||≤ε

Wn
(
T nV (x∗n)|x∗n

)
∣∣T nV (x∗n)

∣∣ ·
∑

yn∈T nV (x∗n)
ψyn

≤ 2−nδ′ + 2−
√
nδ + λ.

The same arguments yield the same bound for

Wm(D(F1)|f 2),
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if f 2 denotes the encoding function defined by the map F 2. We repeatedly use this
argument as in Sect. 3 and construct a code length N satisfying

N ≥ (n+ 1)−2|X |·|Y | · exp{exp{nH(W(·|x∗))− c(ε))} · (λ√nε − 1)}

and an error of the second kind less than 2−nδ′ + 2−
√
nδ + λ.

5 Proof of the Direct Part of Theorem 41

Since now randomization in the encoding and feedback are available, we can
combine the two kinds of random experiments for the proofs of the direct parts
in Theorems 12 and 40, respectively. Of course such a combination imposes
restrictions to the effect that now doubly exponential capacities maxP I (P,W) and
maxx H(W(·|x)) = maxP H(W |P) do not simply add. Instead, the capacity is now
given by

max
P
(I (P,W) +H(W |P)) = max

P
H(PW). (34)

To show this, choose a P ∗ such that forQ∗ = P ∗W , H(Q∗) = maxP H(PW) and
define as random experiment

⎛

⎝

⎛

⎝
⋃

Q:||Q−Q∗||≤ε
T nQ

⎞

⎠ ∪ {e},Q∗n
⎞

⎠ .

This can be realized as follows. The sender chooses a sequence xn according to
the random experiment (X n, P ∗n) and sends it over the channel. Q∗n(yn) is the
probability for receiving yn. This sequence is also known to the sender via feedback.
We can therefore substitute in the previous proof D∗ by

D∗∗ =
⋃

Q:||Q−Q∗||≤ε
T nQ (35)

and get Theorem 41(i).

6 Proof of the Converse Part of Theorem 40

We have already mentioned that in the case of feedback the proofs of the converses
become much simpler than the proofs in chapter “Identification via Channels”. We
need here only one auxiliary result.
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Lemma 46 (Image Size for a Deterministic Feedback Strategy)
For any n-length feedback strategy f and any ν ∈ (0, 1),

min
E⊂Yn:Wn(E |f )≥1−ν

|E | ≤ K = 2nH(W(·|x∗))+α
√
n (36)

where H(W(·|x∗)) = maxx∈X H(W(·|x)), α = log(β)/
√
ν, and β = max(3, |Y|).

Before we prove Lemma 46 we show that it implies Theorem 40(ii).
Let {(fi ,Di ) : 1 ≤ i ≤ N} be an (n,N, δ) IDF code with λ ∈ (0, 1/2). We can

choose ν such that 1 − ν − λ > 1/2. For fi let Ei be a set for which the minimum
is assumed in (36). Thus we have Wn(Di ∩ Ei |fi) > 1/2 and the sets Di ∩ Ei ,
i = 1, 2, . . . , N , are necessarily distinct because the errors of the second kind are
smaller than λ < 1/2. Therefore by Lemma 46,N ≤∑K

k=0

(|Y |n
k

) ≤ 2n log |Y |·K and
Theorem 40(ii) follows.

Proof of Lemma 46 The cardinality of the set

E∗ = {yn| − logWn(yn|f ) ≤ logK}

is clearly smaller than K , and it suffices to show that Wn(E∗|f ) ≥ 1 − ν. For
this we first give another description of Wn(E∗|f ). Strategy f induces the RV’s
Y s = (Y1, . . . , Ys), s = 1, . . . , n, with distributions

Pr(Y s = ys) = Ws(ys|f ), ys ∈ Ys .

Defining Zt = − logW(Yt |f (Y t−1)), we can write

Wn(E∗|f ) = Pr

(
n∑

t=1

Zt ≤ logK

)
. (37)

We now analyze this expression by considering the conditional expectation
E(Zt |Y t−1).

Since

Pr(Yt = yt |Y t−1 = yt−1) = W(yt |f (yt−1)),

we have for yt−1 ∈ Y t−1,

E(Zt |yt−1) = −
∑

yt∈Y
W(yt |f (yt−1)) logW(yt |f (yt−1)) ≤ H(W(·|x∗)),

and therefore

E(Zt |yt−1) ≤ H(W(·|x∗)). (38)
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Finally, we introduce the RV’s

Ut = Zt − E(Zt |Y t−1), (39)

which obviously satisfy

E(Ut |Y t−1) = 0, EUt = 0. (40)

Moreover, since Us is a function of Y1, . . . , Ys , this implies s < t , E(Ut |Us) = 0.
Therefore, the RV’s U1, . . . , Un are uncorrelated, i.e.,

EUsUt = 0, for all s �= t . (41)

Notice that (37)–(40) and the definition of K imply

Wn(E∗|f ) ≥ Pr

(
n∑

t=1

Ut ≤ α
√
n

)
. (42)

By Chebyshev’s inequality,

Pr

(
n∑

t=1

Ut ≤ α√n
)
≥ 1− ν

provided that

varUt ≤ β, for all t = 1, 2, . . . , n. (43)

Verification of (43) completes the proof.
Using (40) we can write

varUt = EU2
t = E(Ut − E(Ut |Y t−1))2

=
∑

yt

Pr(Y t−1 = yt−1) · E
(
(Ut − E(Ut |Y t−1))2|Y t−1 = yt−1

)

and by the well-known minimality property of the expected value this can be upper-
bounded by

∑

yt−1

Pr(Y t−1 = yt−1)E
(
(Ut − E(Zt |Y t−1))2|Y t−1 = yt−1

)

=
∑

yt−1

Pr(Y t−1 = yt−1)E(Z2
t |Y t−1 = yt−1).
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By the definition of Zt

E(Z2
t |Y t−1 = yt−1) =

∑

yt=Y
W(yt |f (yt−1)) · log2W(yt |f (yt−1)).

Since x log2 x is bounded in [0, 1], this quantity is bounded by a function of |Y|
uniformly in t and yt−1. A Lagrange multiplier argument gives the bound

β = max(log2 3, log2 |Y|).

Thus, varUt ≤ β. ��

7 Proof of the Converse Part of Theorem 41

The proof is based on the same ideas as the previous one. Here we need the following
auxiliary result.

Lemma 47 (Image Size for a Randomized Feedback Strategy) For any n-length
randomized feedback strategy F and any ν ∈ (0, 1),

min
E ′⊂Yn:Wn(E ′|F)≥1−ν

|E ′| ≤ K ′ = 2nH(Q
′)+α√n (44)

where H(Q′) = maxP H(PW), α = √
β/ν, and β = max(log2 3, log2 |Y|).

Replacing Lemma 46, Ei , and K in the derivation of Theorem 40(ii) by
Lemma 47 and the corresponding quantities E ′i , K ′ we get Theorem 41(ii).

Proof of Lemma 47 The randomized strategy F can be viewed as a probability dis-
tributionQF on the set Fn of n-length deterministic feedback strategies. Therefore,

Wn(E ′|F) =
∑

g∈Fn
QF (g)W

n(E ′|g). (45)

QF induces the RV Yn with distribution

Pr(Y n = yn) =
∑

g∈Fn
QF (g)W

n(yn|g).

We writeQ(yn) = Pr(Y n = yn). The cardinality of the set

E ′∗ = {yn| − logQ(yn) ≤ logK ′}
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is clearly smaller thanK ′, and it suffices to show now thatQ(E ′∗) ≥ 1−η. Defining
Z′t = − logQ(Yt |Y t−1), we can write

Q(E ′∗) = Pr

(
n∑

t=1

Z′t ≤ logK ′
)
. (46)

For its analysis, we consider now E(Z′t |Y t−1).
Notice that

E(Z′t |yt−1) = −
∑

yt∈Y
Q(yt |yt−1) logQ(yt |yt−1)

and thatQ(·|yt−1) is a distribution of the form PW , because

Q(yt |yt−1) =
∑

g∈Fn
QF (g)

∏t−1
i=1W(yi |g(yi−1))

∑
g QF (g)

∏t−1
i=1W(yi |g(yi−1))

·W(yt |g(yt−1)).

Therefore we have

E(Z′t |yt−1) ≤ H(Q′). (47)

This is the substitute for (43). Otherwise, we continue exactly as before. We define
functions

U ′t = Z′t − E(Z′t |Y t−1),

which again have the desired properties EU ′t = 0, EU ′t U ′s = 0 for s �= t , and
varU ′t ≤ β. Application of Chebyshev’s inequality again establishes the result. ��
Remark The method for proving the converse parts of Theorems 40 and 41
resembles the approach of Kemperman [3] for proving the strong converse of the
coding theorem for memoryless channels with feedback. This “analytical” approach
turns out to be better suited for coding problems involving feedback than the
“typical sequences” approach. Other such instances are the coding theory for non-
stationary and infinite alphabet channels. In fact, we have alternative proofs for the
converse parts of Theorems 40 and 41 via typical sequences, but they are much more
complicated.
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On Identification via Multi-Way
Channels with Feedback: Mystery
Numbers

“Identification for Multi-way channels” was mentioned by Ahlswede and Dueck [2]
(see chapter “Identification via Channels”) as a challenging direction of research. In
this lecture, based on [4], we present in case of complete feedback a rather unified
theory of identification. (For the classical transmission problem the dream of such
a theory did not get fulfilled for more than 20 years.) Its guiding principle is the
discovery of [3] (chapter “Identification in the Presence of Feedback: A Discovery
of New Capacity Formulas), that communicators (sender and receiver) must set up
a common random experiment with maximal entropy and use it as randomization
for a suitable (see chapter “Identification in the Presence of Feedback: A Discovery
of New Capacity Formulas”) identification technique. Here we show how this can
be done in a constructive way. The proof of optimality (weak converse) is based
on a new entropy bound, which can be viewed as a substitute for Fano’s Lemma
(Lemma 48) in the present context. The “single-letter” characterisation of (second
order) capacity regions rests now on a new “entropy characterisation problem”,
which often can be solved. Here this is done for the multiple-access channel with
deterministic and for the broadcast channel with randomized encoding strategies.

1 Introduction

In chapter “Identification via Channels” we have introduced a new model for
communication, which we call identification (ID), hereby contrasting Shannon’s
original transmission (TR) problem. Whereas in chapter “Identification in the
Presence of Feedback: A Discovery of New Capacity Formulas” one-way channels
with feedback were analysed, we present here, as promised in chapter “Identification
via Channels”, contributions to the theory of multi-way channels. The discussion
concentrates on cases where complete feedback links are present. We establish
as an always valid principle the idea of chapter “Identification in the Presence
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of Feedback: A Discovery of New Capacity Formulas”, that the average maximal
entropies of common random experiments among communicators determine the
optimal (second order) identification rates. The achievability proof follows the
method of chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas” to use keys selected by the common random experiment with
blocklength n and short, for instance length

√
n, encryptions for the messages to

be identified. The wide applicability of this method is due to the fact that this “
√
n

trick” can be applied independently for several users simply by timesharing without
an essential loss in rates.

However, the converse proofs of chapter “Identification in the Presence of Feed-
back: A Discovery of New Capacity Formulas” use special properties of one-way
channels and don’t seem to be adaptable to multi-way channels. We present here
a new method (Lemma 59 under Sect. 6), which yields weak converses for these
channels. Its essence is an elementary relation in terms of entropy between the
cardinalities of sets and their probabilities in arbitrary discrete probability spaces.

In our second main contribution we show how the encryption method mentioned
above can be made constructive (see Sects. 7 and 8). Roughly speaking it improves
a suboptimal encryption scheme of Mehlhorn and Schmidt [10] via our idea of an
iterative reduction used originally for the TR problem [1, 5]. Finally we emphasize
that the determination of the maximal entropies obtainable with common random
experiments can be difficult for some channels (see the examples in Sect. 5).

This shows that the theory is not trivial. It cannot be expected from a general and
not trivial theory that it gives detailed answers to all special questions. We remind
the reader that after the foundation of mechanics there was still no explicit answer
to the motion of three bodies. This hint may help to judge the state of our theory.
Some examples are discussed in detail. We give now the formal statements of our
concepts and results.

2 Review of Known Concepts and Results

Useful tool in many proofs of converses is the following inequality discovered by
Fano [8].

Lemma 48 (Fano’s Lemma) Let
{
(ui ,Di) : 1 ≤ i ≤ N} be a block code with

average error

λQ �
N∑

i=1

Q(i)W(Dci |ui).

Further, let U be a random variable with Pr(U = ui) = Q(i) and let V be a
random variable induced by the channel, i.e., Pr(V = y|U = ui) = W(y|ui) for
all i ∈ {1, . . . , N} and y ∈ Y and Pr(V = y) =∑N

i=1Q(i) ·W(y|ui). Then
H(U |V ) ≤ 1+ λQ logN.
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Fano’s Lemma states that the conditional entropy is smaller (by a factor λQ) than
logN , the logarithm of the code length. In [6] the Lemma was discussed in details.
The relative entropy is not a metric, it possesses several useful properties which
justify to introduceD(P ||Q) as the statement in the following lemma.

Lemma 49 (Data Processing Lemma) Let X = {1, . . . , a}, P and Q be two
probability distributions on X and let A1, . . . , At be a partition of X (hence X =⋃t
i=1 Ai and Ai ∩ Aj = ∅ for i �= j ). Then

D(P ||Q) =
∑

x∈X
P(x) · log

P(x)

Q(x)
≥

t∑

i=1

P(Ai) · log
P(Ai)

Q(Ai)
.

We first briefly review concepts concerning identification via one-way channels
with feedback. Extensions to multi-way channels then almost suggest themselves.
Unless stated otherwise we use the notation of chapters “Identification via Chan-
nels” and “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas”, in particular, script capitals X ,Y, . . . denote finite sets. |A|
stands for the cardinality of set A. The letters P,Q always denote PD’s on finite
(or countable) sets. X,Y, . . . are RV’s with PD’s PX,PY , . . . . P(A) is the set of all
PD’s on A. For a stochastic |X | × |Y|-matrixW we denote byWn the transmission
probabilities for n-length words of a DMC. Other notions such as entropies and
information quantities are either standard or those from chapters “Identification via
Channels” and “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas”.

Let us now turn to the identification problems of chapter “Identification in the
Presence of Feedback: A Discovery of New Capacity Formulas”. There are two
concepts, deterministic and randomized feedback strategies, with corresponding
code concepts. The vector-valued function

f n = [f1, . . . , fn] (1)

is a deterministic encoding strategy of blocklength n, if f1 ∈ X and ft : Y t−1 → X
for t > 1. It is understood that after the received elements Y1, . . . , Yt−1 have
been made known to the sender by the feedback channel, the sender transmits
ft (Y1, . . . , Yt−1). At t = 1 the sender transmits f1.

The distribution of the RV’s Yt (t = 1, 2, . . . ) is determined by f and W . We
denote the probability of receiving yn = (y1, . . . , yn) ∈ Yn by Wn(yn|f ) =
W(y1|f1) ·W

(
y2|f2(y1)

)
. . .W

(
yn|fn(y1, . . . , yn−1)

)
.

Let Fd
n be the set of all possible encoding functions as defined in (1).

Definition 50 A deterministic (n,N, λ) IDF code forW is a system

{(f ni ,Di )|i = 1, 2, . . . , N}
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with f ni ∈ Fd
n, Di ⊂ Yn and for i ∈ {1, 2, . . . , N}

Wn(Dci |f ni ) ≤ λ

and for all i, j ∈ {1, 2, . . . , N} with i �= j

Wn(Dj |f ni ) ≤ λ.

Definition 51 A randomized (n,N, λ) IDF code forW is a system

{(QF (·|i),Di )|i = 1, 2, . . . , N}

withQF (·|i) ∈ P(Fd
n),Di ⊂ Yn, and with

∑

g∈Fn
QF (g|i)Wn(Dci |g) ≤ λ

∑

g∈Fn
QF (g|j)Wn(Di |g) ≤ λ

for all i, j ∈ {1, 2, . . . , N} with i �= j .

Let Nd(n, λ) (resp. Nr(n, λ)) be the maximal N for which a deterministic (resp.
randomized) (n,N, λ) IDF code exists. We summarize the results of chapter “Iden-
tification in the Presence of Feedback: A Discovery of New Capacity Formulas” as
follows.

Theorem 52 (Coding Theorems and Strong Converses) If the transmission
capacity C ofW is positive, then, for all λ ∈ (0, 1

2 ), we have:

(i) lim
n→∞

1

n
log logNd(n, λ) = max

x∈X
H
(
W(·|x))

(ii) lim
n→∞

1

n
log logNr(n, λ) = max

P∈P(X )
H (PW).

In identification the receiver does not necessarily want to know the message i ∈
N = {1, 2, . . . , N} given to the sender, he only wants to know the answer to the
question “Is it ı̂?”. Here ı̂ could be any member of N . The quantities en1 = 1 −
mini∈N Wn(Di |f ni ) and en2 = maxi �=ı̂ Wn(Dı̂ |f ni ) are called first kind and second
kind error probabilities. (n,N, λ) IDF codes guarantee these quantities not to exceed
λ. The quantity 1

n
log logN is called (second order) rate of the code.

Clearly, analogous definitions can be given for multi-way channels. The receivers
want to identify with small error probabilities of both kinds. Senders may or may not
be allowed to randomize. Achievable rates are replaced by (second order) capacity
regions.
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Insofar we have spoken about multi-way channels without very specific defini-
tions. We describe now a sufficiently general class, introduce then mystery numbers
and use them to characterize capacity regions.

3 A General Model for Communication Systems

To describe a communication system in general, we introduce the following
parameters:

(i) 	, the set of terminals : at each terminal ω ∈ 	 information can be sent and/or
received;

(ii) �, the set of messengers : for each γ ∈ �, there will be a message set Nγ .
The situation at each terminal ω ∈ 	 is further described by

(iii) Aω ⊂ �, the set of messengers reporting to ω;
(iv) Bω ⊂ �, where γ ∈ Bω indicates that the messages of Nγ should be decoded

at Bω;
(v) �ω ⊂ �, the set of feedback signals linked back to ω, i.e., ω′ ∈ �ω indicates

that all symbols received at ω′ are also available at ω.

Finally, the communication between terminals is governed by a discrete memo-
ryless channel matrix , i.e., a stochastic matrix

W :
∏

ω∈	
Xω −→

∏

ω∈	
Yω,

with input alphabets {Xω}ω∈	 and output alphabets {Yω}ω∈	. Notice that we assume
an input and output alphabet at each terminal. However, allowing |Xω| = 1 or
|Yω| = 1, resp., we can effectively model also situations where ω only receives
or sends signals, respectively.

The reader can convince himself that the following axioms provide plausible
assumptions:

A1 : Aω ∩ Bω = ∅ and
⋃
ω∈	Aω =⋃ω∈	 Bω = �;

A2 : max {|Xω|, |Yω|} ≥ 2;
A3 : if |Xω| = 1, then Aω = ∅; if |Yω| = 1, then Bω = ∅;
A4 : if Aω = ∅ and |Xω| ≥ 2 then |Yω| ≥ 2; if Bω = ∅ and |Yω| ≥ 2 then
|Xω| ≥ 2;

and as a convention to simplify notation further on, we also assume

A5 : ω ∈ �ω.

These definitions and axioms define a general discrete memoryless communica-
tion system .
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We will restrict our attention to the class of systems with supervisory feedback,
i.e., where for all ω,ω′ ∈ 	 it holds that

A6 : if Aω ∩ Bω′ �= ∅, then �ω′ ⊂ �ω.

This assures each terminal encoding γ ’s messages (γ ∈ �) of at least all the
output signals that are known at the terminals decoding these messages.

The set of decoders� is defined by

� � {ω ∈ 	 |Bω �= ∅ } . (2)

We mainly consider the case of passive decoders, i.e., where

A7 : for all ω ∈ �, |Xω| = 1,

to avoid decoders to influence the communication.

To illustrate our model, we state the following explicit communication systems
(CS):

CS 1. one-way channel:	 = {1, 2}, |�| ≥ 1, A1 = �, A2 = ∅, B1 = ∅, B2 =
�, �1 = {1, 2}, �2 = {2}, X2 = Y1 = {0}, andW : X1×{0} → {0}×Y2.

CS 2. multiple-access channel (MAC) : 	 = {1, 2, 3}, � = {a, b}, A1 =
{a}, A2 = {b}, A3 = ∅, B1 = ∅ = B2, B3 = �, �1 = {1, 3}, �2 =
{2, 3}, �3 = {3}, X3 = Y1 = Y2 = {0}, and W : X1 × X2 × {0} →
{0} × {0} × Y3.

CS 3. the broadcast channel (BC) : 	 = {1, 2, 3}, � = {a, b}, A1 = �, A2 =
A3 = ∅, B1 = ∅, B2 = {a}, B3 = {b}, �1 = {1, 2, 3}, �2 = {2}, �3 =
{3}, X2 = X3 = Y1 = {0}, andW : X1 × {0} × {0} → {0} × Y2 × Y3.

CS 4. the interference channel (IC) : 	 = {1, 2, 3, 4}, � = {a, b}, A1 =
{a}, A2 = {b}, A3 = A4 = ∅, B1 = B2 = ∅, B3 = {a}, B4 =
{b}, �1 = {1, 3}, �2 = {2, 4}, �3 = {3}, �4 = {4}, X3 = X4 = {0} =
Y1 = Y2, andW : X1 × X2 × {0} × {0} → {0} × {0} × Y3 × Y4.

CS 5. the relay channel (RC) : 	 = {1, 2, 3}, |�| ≥ 1, A1 = �, A2 = A3 =
∅, B1 = B2 = ∅, B3 = �, �1 = {1, 3}, �2 = {2}, �3 = {3}, X3 =
{0} = Y1, andW : X1 × X2 × {0} → {0} × Y2 × Y3.

CS 6. the two-way channel (TWC) : 	 = {1, 2}, � = {a, b}, A1 = {a}, A2 =
{b}, B1 = {b}, B2 = {a}, �1 = �2 = {1, 2}, and W : X1 × X2 →
Y1 × Y2.

4 Classes of Feedback Strategies, Common Random
Experiments and Their Mystery Numbers

In dealing with different kinds of feedback strategies it is convenient to have the
following concept. Let Fn(n = 1, 2, . . . ) be a subset of the set of all randomized
feedback strategies F r

n of a DMCW with blocklength n and let it contain the set Fd
n
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of all deterministic strategies. We call (Fn)∞n=1 a smooth class of strategies if for all
n1, n2 ∈ N and n = n1 + n2

Fn ⊃ Fn1 ×Fn2 (3)

and the product means concatenation of strategies. Now for f n ∈ Fn the channel
induces an output sequence Yn(f n). For any smooth class we define numbers

μ(Fn) = max
f n∈Fn

H(Y n(f n)) . (4)

By (3) and the memoryless character of the channel

μ(Fn) ≥ μ(Fn1)+ μ(Fn2) , (5)

and therefore μ = μ
(
(Fn)∞n=1

) = limn→∞ 1
n
μ(Fn) exists. It is called mystery

number in order to attract attention. We call F r = (
F r
n

)∞
n=1 also the complete

class of strategies. We mentioned already the class of deterministic strategies

Fd = (Fd
n

)∞
n=1. Both classes are smooth. Between those classes there is a natural

smooth class F s = (F s
n

)∞
n=1 of what may be termed stochastic strategies. For every

member Fn = (F1, . . . , Fn
) ∈ F s

n F1 is a RV on X and Ft : Y t−1 → X for t ≥ 2
are stochastic functions, that is, for each yt−1, Ft (yt−1) is a RV with values in X .
Stochastic functions are like channels, stochastic strategies are “stochastic versions”
of deterministic strategies. One readily verifies that for a DMC

μ
(
Fs
)
= μ

(
F r
)
, (6)

however for multi-way channels there are differences (see the first example below).
For these channels each sender has his class of feedback strategies. If they are
all smooth, then a region V of achievable mystery tuples is well-defined. Also,
by concatenation all common random experiments are of the i.i.d. type and the
asymptotic equipartition property (AEP) holds and the “

√
n-trick” can be applied.

It yields the direct coding parts in Theorems 53 and 54 in Sect. 5.
Stochastic strategies for multi-way channels shall have the property that for t ≥ 2

and given outputs yt−1
1 , yt−1

2 , . . . at all receivers the RV’s F1t (y
t−1
1 , yt−1

2 , . . . ),

F2t (y
t−1
1 , yt−1

2 , . . . ), . . . in the strategies of all senders are independent. This
condition seems reasonable, if the senders share only the knowledge of all outputs
at each step.

Remark Of course the complete class F r
gives the largest rates. However, ratewise

inferior classes often have other advantages such as smaller coding efforts. They
therefore also should be studied.
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Finally we give the formal definitions for the general communication system of
Sect. 3. We assume that each terminal ω uses feedback strategies from a smooth set
Fn,ω for encoding. We will denote Gn for the smooth class of composite strategies,

Gn �
{
gn = (f nω

)
ω∈	

∣∣f nω ∈ Fn,ω
}

(7)

As before, we denote {Gn}∞n=1 by G. The channel outputs produced via the
composite encoding strategy gn can then be denoted as Ynω(g

n). For every decoder
ω ∈ � (cf. (2)), we introduce

Znω(g
n) = (Ynω′ (gn)

)
ω′∈�ω (8)

The set of mystery vectors for the system is then defined as

V�(G) � lim
n→∞

{
(vω)ω∈�

∣∣∣∣∣∃g
n ∈ Gn : ∀ω ∈ � : 0 ≤ vω ≤ H

(
Znω(g

n)
)

n

}
, (9)

where the convergence of sets is understood in the Hausdorff metric and follows
here by the memoryless character of our channel and the smoothness assumptions
for the classes of strategies.

5 Main Theorem and Consequences

Using the notation of a general (	,�) communication system in Sect. 3, we define
an
(
n, {Nγ }γ∈�, λ

)
IDF code for a general (	,�) communication system and a

smooth class of feedback strategies G as a system

{(
gnm,

{
D(ω)mω

}
ω∈�

)}
, (10)

with encoding strategies gnm ∈ Gn, message vectors

m = (iγ )γ∈�, mω = (iγ )γ∈Bω , iγ ∈ Nγ � {1, . . . , Nγ }, (11)

and decoding sets

D(ω)mω ⊆ Xω ×
∏

ω′∈�ω
Ynω, (12)

that satisfies the upper bound λ on both kinds of error probability (which can be
defined similarly to Definition 50 and 51). Achievable ID rates (Rγ )γ∈� are defined
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as usual, and the region C(G) of all these rates is then the (second order) ID-capacity
region.

Theorem 53 (Main Theorem) Consider an (	,�) communication system with
passive decoders (i.e. A7 holds) and supervisory feedback, and a smooth class of
feedback strategies, G.

(i) If all messengers γ ∈ � can transmit at positive rate, then (Rγ )γ∈� ∈ C(G) if
and only if there exists some (νω)ω∈� ∈ V�(G) such that

0 ≤ Rγ ≤ νω, for all ω ∈ � and γ ∈ Bω. (13)

(ii) If �o is the set of messengers which can have only transmission rate O, then
C(G) is obtained as a projection of the region described in (13) into the
intersection of the hyperplanesRγ = O (γ ∈ �o).

The proof of this theorem will be given in Sect. 9.

Remark Theorem 53 of course presents a non-single-letter characterization of C(G)
in the usual language of information theory. Still, we want to state its merits:

(i) first of all, the machinery for deriving such a characterization had to be
developed for the ID-situation (substitutes for Shannon’s random coding
argument and Fano’s lemma (Lemma 48));

(ii) secondly, the characterization involves only optimization over single strategies,
rather than over codebooks of strategies;

(iii) as entropy quantities, mystery numbers are easier to determine than quantities
involving mutual information; this is largely responsible for the fact that we
can derive a single-letter characterization from the limiting characterization
in Theorem 53 directly (see Corollaries 55–58 below); we remind the reader
that in the present literature on transmission there is no such direct derivation
of the single-letter capacity region for the MAC from its non-single-letter
characterization, and that for none of the situations studied in the corollaries
below, a complete transmission result is known.

Our methods of proof for Theorem 53 also apply for communication systems not
satisfying A7, if all strategies permitted are deterministic.

Theorem 54 For a general communication system with supervisory feedback, and

for the set of deterministic strategies Gd
, the characterization of C

(
Gd)

is also given
by the parts (i) and (ii) of Theorem 53.

We now state some applications of Theorem 53. We restrict the discussion to the
genuine part (i) since the situation in part (ii) is always obvious from there.
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Corollary 55 For the MAC as described by communication system CS2 in Sect. 3,

and the set of deterministic feedback strategies Gd
, it holds under the condition of

(i) of Theorem 53 that

CMAC
(
Gd) =

[
0, μd

MAC

]
×
[
0, μd

MAC

]
,

where

μd
MAC = max

x1,x2
H (W(·|x1, x2)) .

Notice that in the explicit entropy expressions we will discard the degenerate in-
and outputs of the channelW .

Proof of Corollary 55 Since � = {3}, V�
(
Gd)

is a one-dimensional region.
Now, for gn = (

f n1 , f
n
2

) ∈ Gd
n and Yn = Yn3 (g

n), since H(Yn) =∑n
t=1H

(
Yt |Y t−1

)
and

H
(
Yt |Y t−1 = yt−1) = H

(
W
(·|f1t

(
yt−1), f2t

(
yt−1))) ≤ max

x1,x2
H
(
W
(·|x1, x2

))
,

it obviously follows that V�
(
Gd) = [

0, μd
MAC

]
and from Theorem 53 (or Theo-

rem 54) hence also the corollary. ��
Corollary 56 For the MAC as described in CS2 and for the set of stochastic
strategies Gs

, it holds under the condition of (i) of Theorem 53 that

CMAC
(
Gs) = [0, μs

MAC

]× [0, μs
MAC

]
,

where

μs
MAC = max

P1∈P(X1)
max

P2∈P(X2)
H (Y ),

and

PY (y) =
∑

x1

∑

x2

P1(x1)P2(x2)W
(
y|x1, x2

)
.

Proof Let Gn = (Fn1 , F n2
) ∈ Gs

n, and denote Yn = Yn3 (Gn). Since, given Y t−1 =
yt−1, the RV’s F1t

(
yt−1

)
and F2t

(
yt−1

)
are independent, we have

H(Yn) ≤ n μs
MAC,

which proves the corollary by Theorem 53. ��
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Remark Using the converse methods in chapter “Identification in the Presence
of Feedback: A Discovery of New Capacity Formulas” and regarding the MAC as a
one-way channel, one can obtain a strong converse to the above characterizations.

Example In [9] it was shown that the rate point (R1, R2) = (0.76, 0.76) is
achievable for transmission via the binary erasure MAC defined by

W
(
y|x1, x2

) = 1 iff y = x1 + x2,

and

X1 = X2 = {0, 1}, Y3 = {0, 1, 2}.

If both senders each choose a key at random, transmit it at this rate 0.76
and decode each other’s key from the feedback signal, they can each apply the
“
√
n trick” to the pair of keys, and achieve the ID-rate pair (R1 + R2, R1 + R2) =

(1.52, 1.52). As one can easily calculate thatμs
MAC = 1.5 for this MAC, this clearly

shows that the randomized ID-capacity region CMAC
(
Gr)

exceeds CMAC
(
Gs)

. �
Corollary 57 For the BC (see CS3), it holds under condition (i) of Theorem 53 that

CBC
(
Gr) = CBC

(
Gs) = R∗

BC,

where

R∗
BC = {(ν1, ν2)|∃ P ∈ P(X1) : 0 ≤ ν1 ≤ H(PW2), 0 ≤ ν2 ≤ H(PW3)}

whereW2 andW3 are the marginal channels.

Proof Let Q ∈ Gr
n = P

(
Gd
n

)
and let Yn2 and Yn3 denote the corresponding channel

outputs at terminals 2 and 3, respectively. Now,

H
(
Yn2
) ≤

n∑

t=1

H
(
Y2t
)
, H

(
Yn3
) ≤

n∑

t=1

H
(
Y3t
)
,

where Pr
[
Y2t = y2, Y3t = y3

] = ∑x∈X1
Pt(x)W

(
y2, y3|x

)
for some Pt ∈ P(X1).

Therefore,

V� = R∗
BC.

Since this region is also achievable with the stochastic strategies of Gs
, this proves

the corollary. ��
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Example For G = Gd
, a natural candidate for the single-letterization of V�

(
Gd)

would be the region

R =
{
(R1, R2)|∃ x ∈ X1 : 0 ≤ R1 ≤ H

(
W2(·|x)

)
, 0 ≤ R2 ≤ H

(
W3(·|x)

)}
.

However, consider the BC with Y3 = X1 and W(y2, y3|x) = W2(y2|x) Q∗(y3),
whereQ∗ satisfies H(Q∗W2) = maxP∈P(X1) H (PW2). If now the sender uses the
deterministic strategy g, defined by

gt
(
yt−1

2 , yt−1
3

) = y3,t−1,

he generates in this way the maximal entropy n·H(Q∗W2) at terminal 2. This proves
the ID achievability of

(
H(Q∗W2), 0

)
, which clearly in general is not contained in

the region R. �
Remark In [11] the deterministic BC was treated. In that case feedback is implicitly
present and therefore its non-feedback capacity region equals the feedback capacity
region, in particular for randomized encoding. In [11] the direct part is proven by
applying the “

√
n trick” twice to H(Yn2 ) and H(Yn3 ) resp., and an application of the

converse from chapter “Identification via Channels” gives an upper bound which
coincides with this inner bound in the case of a deterministic channel.

Theorem 54 has the following consequence.

Corollary 58 For the TWC (see CS6) it holds under the condition of (i) of
Theorem 53 that

CTWC
(
Gd) =

[
0, νd

TWC

]
×
[
0, νd

TWC

]

where

νd
TWC = max

x1,x2
H
(
W(·, ·|x1, x2)

)
.

6 A Method for Proving Converses in Case of Feedback

For one-way channels the approach of chapter “Identification in the Presence
of Feedback: A Discovery of New Capacity Formulas” gives sharp upper bounds
(strong converse). However, it does not seem to generalize to multi-way channels
with complicated interactions of feedback strategies. Settling for a weaker bound
(weak converse but stronger than soft converse of chapter “Identification via
Channels”) we found a method (Lemma 60 below) which always works, that is, it
relates rates to the numberμ(Fn), that is the maximal entropy of a common random



6 A Method for Proving Converses in Case of Feedback 75

experiment of blocklength n which can be produced under the restrictions present.
For example for the DMC with restriction to deterministic strategies this number
equals nmaxx H

(
W(·|x)). The common random experiment with this entropy uses

one coding strategy and not a whole codebook! In case of randomized strategies the
number is nmaxP∈P(X ) H (PW).

For an (n,N, λ) IDF code the encoding strategy f ni ∈ Fn generates a RV Yni
with distribution

Pr
[
Yni = yn

] = Wn(yn|f ni ). (14)

Of course, for i = 1, 2, . . . , N

H(Yni ) ≤ μn � μ(Fn). (15)

The basis of our method is now a very general entropy-setsize relation.

Lemma 59 For P = (P1, P2, . . . ) ∈ P(N), the set of PD’s on the positive integers,
define

ε(d, P ) = max

⎧
⎨

⎩
∑

j∈J
Pj : J ⊂ N, |J | = �2H(P)d� + 1

⎫
⎬

⎭

and ε(d) = minP∈P(N) ε(d, P ). Then

ε(d) = 1− 1

d
for all d ≥ 1.

Remark For discrete memoryless sourcesXn = (X1, . . . , Xn) Shannon proved that

ε(d, P nX) = max

{
∑

xn∈J
P nX(x

n) : J ⊂ X n, |J | = �2dH(Xn)�
}

satisfies

lim
n→∞ ε(d, P

n
X) = 1, if d > 1.

Lemma 59 shows what can be done for arbitrary discrete sources.
Application of Lemma 59 to the distribution of Yni gives a set Ei ⊂ Yn with

Pr
[
Yni ∈ Ei

] ≥ 1− 1

d
, (16)

|Ei | ≤ �2dH(Yni )� + 1 ≤ 2dμn + 2. (17)
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Define now D∗
i = Di ∩Ei . By Definition 51 and (16) Pr

[
Yni ∈ D∗

i

] ≥ 1−λ− 1
d

.
Under the assumption λ < 1 − λ − 1

d
by Definition 51 these D∗

i are necessarily
distinct. With the abbreviationK = 2dμn + 2 we get therefore

N ≤
K∑

k=1

(|Yn|
k

)
≤ K2nK log |Y |

and log logN ≤ dμn + o(n).
We summarize this result.

Lemma 60 For any (n,N, λ) IDF code with coding strategiesF∗
n and correspond-

ing μ∗n = μ(F∗
n)

log logN ≤ dμ∗n + o(n),

provided that d > 1 and λ < 1
2

(
1− 1

d

)
.

Remark In the case of the DMC, for deterministic strategies we have μ∗n =
nmaxx∈X H

(
W(·|x)) and for randomized strategies μ∗n = nmaxP∈P(X ) H (PW).

For λ tending to 0 in Lemma 60 we can let d tend to 1 and thus obtain weak
converses.

7 A 3-Step ID Scheme for the Noiseless BSC

We begin right away with the definition of the scheme. Some heuristic understand-
ing is provided subsequently. The proof of asymptotic optimality is given in Sect. 10.
We are given a set of messages M = {1, . . . ,M}. For any constant α > 1 define

K = �(logM)α� (18)

and π1 < π2 < . . . πK as the K smallest prime numbers. For k ∈ K = {1, . . . ,K}
define a key ϕk :M→ {1, . . . , πk} by

ϕk(m)− 1 ≡ m mod πk. (19)

Let {ϕk : k ∈ K} be a cipher and M′ = {ϕk(m) : m ∈ M, k ∈ K} =
{1, 2, . . . , πK } the set of all possible encipherings serving as “message set” for a
further cipher {ϕ′� : � ∈ K′}, where K′ = {1, . . . ,K ′} with

K ′ = �(logπK)
α� (20)
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and ϕ′� :M′ → {1, . . . , π�} satisfies

ϕ′�(m′)− 1 ≡ m′ mod π�. (21)

Step 1. The sender chooses k ∈ K randomly according to the uniform distribution
on K and transmits it (and therefore also ϕk) over the channel. This
requires �logK� bits.

Step 2. Similarly the sender chooses an � ∈ K′ at random and transmits it (and
therefore also the key ϕ′�) over the channel. This requires �logK ′� bits.

Step 3. m ∈M being given to the sender he calculates ϕ′�
(
ϕk(m)

)
and sends it to

the receiver. Knowing both, k and �, the receiver calculates ϕ′�
(
ϕk(m̂)

)
and

compares it with the transmitted encryption ϕ′�
(
ϕk(m)

)
. In case of equality

he decidesm = m̂ and otherwise he decidesm �= m̂.

Theorem 61 (Optimality of the 3-Step Scheme) The scheme satisfies

lim
M→∞

log logM

n
= 1

α

and thus achieves any rate below the capacity 1.

8 Extension of the 3-Step ID Scheme to the DMC With
and Without Feedback

Outcomes in random experiments below must be labelled by consecutive integers
1, 2, 3 . . . to make the number theoretic setting of the previous scheme possible.
Otherwise the only changes on the scheme are the following: The uniform random
experiments for the choice of the two keys, known to sender and receiver, are formed
now under the given circumstances. We discuss three cases.

1. Deterministic feedback strategies: The sender sends b times a letter x∗ ∈
X with H

(
W(·|x∗)) = maxx∈X H

(
W(·|x)).

As in chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas” the generated sequences D∗ = ⋃

V :‖V−W‖≤ε T bV (x∗b) and

an erasure e for the sequences in Yb \ D∗ give an essentially uniform random
experiment

(
D∗ ∪ {e},Wb(·|x∗b)) used for the key selections in the first two

steps with appropriate b’s. A factor
(
1 − 2 exp{−E(ε)b′}) enters the changes

in error probabilities of the second kind. The erasure option and also a small
error probability in performing step 3 add a small error probability to both kinds
of errors. Since |D∗| = exp{b H (W(·|x∗)) + o(b)} the scheme achieves rates
below H

(
W(·|x∗)), provided thatW has positive transmission capacity C.

2. Complete randomized feedback strategies: Replace D∗ by
⋃
Q:‖Q−Q∗‖≤ε T bQ∗

with Q∗ = P ∗W and H(Q∗) = maxP∈P(X ) H (PW). Now rates below H(Q∗)
are achievable, if C > 0.
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3. Randomized encoding without feedback: As in chapter “Identification in the
Presence of Feedback: A Discovery of New Capacity Formulas” use now
standard transmission codes with uniform distribution on the set of codewords.
Here sender and receiver know the outcome of the random experiments in step
1 and 2 with a small error probability only, but this can be digested. Notice that
the resulting scheme is totally constructive if the transmission codes used are
constructed. Here the ID capacity is C.

9 Proof of Theorems 53 and 54

Proof of Theorem 53 Since we consider supervisory feedback, the direct part of
Theorem 53 follows from smoothness and memorylessness, as discussed in Sect. 4.
We therefore concentrate on the converse part of Theorem 53.

Let ε > 0 be arbitrary and fixed. Since V�
(
G
)

is compact, there exists a number

of vectors
(
ν
(�)
ω

)
ω∈�, � = 1, . . . , L = L(ε) such that

V�
(
G
) ⊆

L⋃

�=1

{
(vω)ω∈�

∣∣∣∀ω ∈ � : 0 ≤ vω < ν(�)ω + ε
}
. (22)

Let n ≥ n0(ε) be sufficiently large such that for all gn = (
f nω
)
ω∈	 there exists a

(vω)ω∈� ∈ V�
(
G
)

such that for all ω ∈ �

H
(
Znω(g

n)
)

n
< vω + ε. (23)

Finally let an
(
n, {Nγ }γ∈�, λ

)
IDF code be given as described in (10)–(12), to which

we also refer for notation. By the passive decoding Axiom A7 and (12)

D(ω)mω ⊂ Znω, (24)

where we have denoted

Znω =
∏

ω′∈�ω
Ynω′ . (25)

For all � = 1, . . . , L, define

M(�) =
{
m

∣∣∣∣∣∀ω ∈ � : H
(
Znω(g

n
m)
)

n
< ν(�)ω + 2ε

}
. (26)
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By the definition of
(
ν
(�)
ω

)
ω∈� in (22) and the choice of n in (23),

⋃L
�=1 M(�)

covers all messages m.
Therefore we can choose �∗ such that

∣∣M(�∗)
∣∣ ≥

∏
γ∈� Nγ
L

. (27)

We will now consider the marginal channels

Wω :
∏

ω′∈	
Xω′ −→ Znω,

for all ω ∈ �, as one-way channels, and derive a marginal IDF-code for each Wω
from the above IDF-code forW . To this end, denote for ω ∈ �

N ∗
ω =

{
mω

∣∣∣∃ m′ ∈M(�∗) : ∀γ ∈ Bω : iγ = i ′γ
}
. (28)

Then it follows from (27) that for all γ ∈ Bω

∣∣N ∗
ω

∣∣ ≥ Nγ
L
.

We can assume without loss of generality that L = L(ε) ≥ 4, and Nγ ≥ 4L for all

γ ∈ �. Since log
(
a
b

) ≥ log a
logb for b ≥ 4 and a ≥ 4b, it then holds for all γ ∈ Bω that

log log |N ∗
ω | ≥ log logNγ − log logL. (29)

Let us now fix some injective mapping σ : N ∗
ω → M(�∗) such that for all mω =

(iγ )γ∈Bω ∈ N ∗
ω it holds that

σ
(
mω
) = (i ′γ

)
γ∈� iff iγ = i ′γ , for all γ ∈ Bω. (30)

Let us now define the encoding strategies
{
hnmω

∣∣mω ∈ N ∗
ω

}
for the one-way channel

Wω : X × {0} −→ {0} × Znω, (31)

with X =∏ω′∈	Xω′ , by

hnmω = gnσ(mω). (32)

Then
{(
hnmω,D

(ω)
mω

)
: mω ∈ N ∗

ω

}
forms an

(
n, |N ∗

ω |, λ
)

IDF code forWω in (31).
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Now assume that λ < 1
2
ε

1+ε and apply Lemma 60 with d = 1 + ε > 1. Since
σ(mω) ∈M(�∗), it follows from (26) that

1

n
log log

∣∣N ∗
ω

∣∣ < (1+ ε)
(
ν(�

∗)
ω + 2ε

)
+ ε , (33)

if n ≥ n1(ε), say.
Combination of (29) and (33) gives for all ω ∈ � and all γ ∈ Bω

1

n
log logNγ < (1+ ε)(ν(�∗)ω + 2ε)+ ε + 1

n
log logL(ε).

Letting n→∞ and ε→ 0, this proves the converse part of Theorem 53. ��
Proof of Theorem 54 It can be seen from (12) that (24) does not hold in general for

all communication systems (cf. two-way channel), so that
∣∣∣D(ω)mω

∣∣∣ can no longer be

directly related to the output-entropyH
(
Znω
)
.

However, if the feedback strategies are deterministic, this functional relationship
also enables us to describe D(ω)mω in such a way that (24) does hold. Thus the previous
arguments apply and give the converse part of Theorem 54. The direct part goes by
the “

√
n-trick” as usual. ��

10 Proof of Theorem 61, Optimality of Our Coding Scheme

Two elementary facts from number theory are used (see e.g. [7]). The first follows
from the prime factorisation theorem and the second from a weak version of the
prime number theorem originally due to Chebyshev. Here are the statements.

Lemma 62

(i) The number of prime divisors of an integer m does not exceed logm.
(ii) The kth prime number πk satisfies πk = O(k log k).

It is clear from the definition in (19) that ϕk(m) = ϕk(m̂) exactly if |m− m̂| ≡ 0
mod ϕk . Lemma 62(i) then implies a result basic for our analysis.

Lemma 63 For any m, m̂ ∈M,m �= m̂

K−1
∣∣{k ∈ K : ϕk(m) = ϕk(m̂)

}∣∣ ≤ K−1 logM.
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Proof of Theorem 61 Error performance of scheme. Since the transmission is
noiseless, the error probability of the first kind is zero. The total error probability of
the second kind equals

Pr
[
ϕ′�
(
ϕk(m̂)

) = ϕ′�
(
ϕk(m)

)|m̂ �= m]

≤ Pr
[
ϕk(m̂) = ϕk(m)|m̂ �= m]

+ Pr
[
ϕ′�
(
ϕk(m̂)

) = ϕ′�
(
ϕk(m)

)|ϕk(m̂) �= ϕk(m)
]
.

By Lemma 63 we have with K = �(logM)α�

Pr
[
ϕk(m̂) = ϕk(m)|m̂ �= m] ≤ 1

(logM)α−1

and in exact analogy

Pr
[
ϕ′�
(
ϕk(m̂)

) = ϕ′�
(
ϕk(m)

)|ϕk(m̂) �= ϕk(m)
] ≤ 1

(logπK)α−1 .

Since with M also πK tends to infinity and since α > 1, the total error probability
tends to zero.

Blocklength n of the scheme. Clearly, n = �logK�+�logK ′�+�logπK ′ �. From
(ii) in Lemma 62 we have πK ′ = O(K ′ logK ′). Also, logK ′ = O(log logK).
Therefore

n = [1+ o(1)] logK = α[1+ o(1)] log logM

and thus the result is proved. ��
Remark

1. In the method of chapter “Identification in the Presence of Feedback: A
Discovery of New Capacity Formulas” there is not our second step. However,
there only the existence of appropriate keys is shown.

2. In [10] there is also not our second step. After transmission of ϕk then ϕk(m) is
transmitted directly (and not only identified, as in our scheme). Therefore 2n bits
are used and the rate is only 1/2.

3. By further iteration one can reduce blocklength slightly at the price of a larger
error probability and, vice versa.

4. In step 3, transmission could be replaced by a sub-optimal constructive ID-
scheme.
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Identification Without Randomization

In the theory of identification via noisy channels randomization in the encoding has
a dramatic effect on the optimal code size, namely, it grows double-exponentially in
the blocklength, whereas in the theory of transmission it has the familiar exponential
growth.

We consider now instead of the discrete memoryless channel (DMC) more robust
channels such as the familiar compound (CC) and arbitrarily varying channels
(AVC). They can be viewed as models for jamming situations. We make the
pessimistic assumption that the jammer knows the input sequence before he acts.
This forces communicators to use the maximal error concept (see [3]) and also
makes randomization in the encoding superfluous. Now, for a DMCW by a simple
observation, made in [5], in the absence of randomization the identification capacity,
say CNRI(W) (where NRI stands for Non-Randomized Identification),1 equals the
logarithm of the number of different row-vectors in W . We generalize this to
compound channels.

A formidable problem arises if the DMC W is replaced by the AVC W . In
fact, for 0-1-matrices only in W we are—exactly as for transmission—led to
the equivalent zero-error-capacity of Shannon (see [1]). But for general W the
identification capacity CNRI(W) is quite different from the transmission capacity
C(W). An observation is that the separation codes of [3] are also relevant here. We
present a lower bound on CNRI(W). It implies for instance for the AVC

Wδ =
{(

1 0
0 1

)
,

(
1 0
δ 1− δ

)}
, (1)

1Arguably, identification in the absence of randomization could be more straightforwardly be
called deterministic identification [10]. However, here we will report the results as they appeared
originally.
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δ ∈
(

0, 1
2

)
, that CNRI(W) = 1, which is obviously tight. It exceeds C(W), which

is known [3] to exceed 1− h(δ), where h is the binary entropy function.
We observe that a separation code with worst-case average list size L, which we

call an NRA (Non-Randomized Average-list-size) code can be partitioned into L2nε

transmission codes. This gives a non-single-letter characterization of the capacity of
AVC with maximal probability of error in terms of the capacity of codes with list
decoding.

We also prove that randomization in the decoding does not increase CID(W) and
CNRI(W).

Finally, we draw attention to related work on source coding [4, 6].

1 Introduction and Results

Let X ,Y be the finite input and output alphabets of the channels considered,
namely, the discrete memoryless (DMC) W , the arbitrarily varying channel (AVC)
W specified by a set of |X | × |Y|-stochastic matrices and also written in the form
W = {

W(·|·, s) : s ∈ S finite
}
, and the compound channel (CC) associated with

W .
We study here primarily identification codes without randomization (NRI codes)

for W .

Definition 64 An (n,M, λ1, λ2) NRI code for W is a system of pairs
{
(u,Du) :

u ∈ U
}

such that U ⊂ X n, Du ⊂ Yn (for u ∈ U), |U | = M , and for all u, u′ ∈
U(u �= u′), sn ∈ Sn

Wn(Du|u, sn) > 1− λ1 (2)

and

Wn(Du|u′, sn) < λ2. (3)

Here for sn = (s1, . . . , sn), yn = (y1, . . . , yn), and u = (u1, . . . , un)

Wn(yn|u, sn) =
n∏

t=1

W(yt |ut , st ).

(Recall that in the definition of ID codes in chapter “Identification via Channels”
instead of U ⊂ X n we used more generally U ⊂ P(X n), the set of all probability
distributions (PD) on X n).

We also point out that already in [3] it had been shown that for the DMCW with
distinct row vectors the capacity of NRI codes is log |X | even before the concept of
identification was introduced in [5].
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Definition 65 A related concept, used already in [3], are (n,M, λ) non-randomized
separation codes (SP-codes), which we abbreviate as NRS codes. They are defined
as a system of quadruples

{(
u, u′,D(u, u′),D(u′, u)

) : u, u′ ∈ U, u �= u′}, where
U ⊂ X n, |U | = M , D(u, u′) ⊂ Yn,

D(u, u′) ∩D(u′, u) = ∅ for all u �= u′ (4)

and

Wn
(
D(u, u′)|u, sn) ≥ 1− λ for all sn ∈ Sn. (5)

Notice that with the choice

D(u, u′) = Du \Du′ (6)

we can associate with every (n,M, λ1, λ2) ID or NRI code an (n,M, λ) SP or
NRS code respectively, where by (2) and (4) λ = λ1 + λ2. This fact has been
used in chapter “Identification via Channels” in the proof of the (soft)-converse (an
exponential weak converse in the sense of [4]), because for the DMC (in case of
randomization and no randomization as well) both code concepts lead to the same
capacities.

Next we present a third kind of codes, called NRA codes, which were discovered
in [3]. Their properties are stronger than those of NRS-codes, but weaker than those
of NRI-codes.

These codes can be viewed as list codes with an additional separation property
(like (4), (5)). They are essential for our analysis and described below.

Analogously we speak of A-codes (Average list size), if in the definition U ⊂
P(X n), namely if the encodings are probability distributions as in the regular ID
codes. For the CC only sequences sn = (s, . . . , s) (s ∈ S) are considered and the
code constraints are modified accordingly.

For a system
{
(u,Du) : u ∈ U

}
with U ⊂ X n satisfying (2) we define the worst

case average list size

LU = max
u∈U ,sn∈Sn

L(u, sn), (7)

where

L(u, sn) =
∑

yn∈Du
L(yn)Wn(yn|u, sn) (8)

and

L(yn) = |{u′ ∈ U : yn ∈ Du′ }|. (9)
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Definition 66 Now we say that
{
(u,Du) : u ∈ U

}
is an (n,M, λ1, λ, L) Non-

randomized Average-list-size code (NRA code) , if

LU ≤ L (10)

and for all u, u′ ∈ U , u �= u′, there is a partition of Du ∩ Du′ , say{
A(u, u′), A(u′, u)

}
, such that

Wn
(
A(u′, u)|u, sn) < λ for all sn. (11)

Obviously (11) holds for any partition of Du ∩ Du′ , λ = λ2, if (3) is true and for
D(u, u′) = (Du \Du′) ∪A(u, u′), λ = λ1 + λ2, (4) holds whenever (11) holds. On
the other hand, for A(u′, u) = Du ∩Du′ ∩D(u′, u), (5) implies (11).

Partitioning NRA-Codes into (Non-random) Transmission Codes
We start now with a first basic result.

Theorem 67 Consider an (n,M, λ1, λ2, L) NRA-code for the AVC W defined
above. For every ε > 0, 0 < λ1 < λ there exists a λ∗ such that for all λ2 ≤ λ∗ and
sufficiently large n the NRA-code can be partitioned into K transmission subcodes
forW with maximal probability of error λ2, if for � = 1

n
logL

1

n
logK > �+ ε.

Moreover, clearly this partition contains a subcode of size at least M
K
.

A Formula for C(W)
From Theorem 67 we get a non-single letter characterisation for C(W) involving
NRS-codes for the AVC. Those codes were known (also for the DMC) already
in [3] (Sects. 4 and 5, and Lemma 73, resp.). So they were known already much
earlier than ID-codes and NRI-codes (see chapter “Identification via Channels”).
An elegant description was used in [8]. Namely, for an integer m, we associate
with W a graph Gm(W) = {Xm, Em} such that (xm, x ′m) ∈ Em iff there are PD’s
π, π ′ ∈ P(Sm) such that

∑

sm

π ′(sm)Wm(·|xm, sm) ≡
∑

sm

π(sm)Wm(·|x ′msm) (12)

(or conv
{
Wm(·|xm, sm) : sm ∈ Sm

}∩conv
{
Wm(·|x ′m, sm) : sm ∈ Sm

} �= ∅where
conv denotes the convex hull).

Denote by Im the family of independent sets of the graph. Then U ∈ Im is an
NRS-code and we have the following auxiliary result.

Lemma 68 (Ahlswede 1980, [3]) For any ε > 0, λ > 0, and sufficiently large n,
one can choose

{
D(un, u′n) : un �= u′n, un, u′n ∈ Ũ

}
suitable to obtain an SP-
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code with probability of error λ, if the pairwise Hamming distances (with respect to
alphabet U) of codewords in Ũ ⊂ Un are not smaller than nε.

For a list code
(
U, (Du)u∈U

)
satisfying (2) we consider the worst case average

list size L
(
(Du)u∈U

) = LU (defined in (7)) and define

LU ,λ1 = min
{
LU
(
(Du)u∈U

) : (Du)u∈U satisfies (2) for λ1
}
. (13)

In other terms clearly,

LU ,λ1 = min
(Du′′ )u′′∈U with (2)

max
u∈U ,sn∈Sn

∑

u′∈U\{u}
Wm(Du ∩Du′ |u, sm)+ 1. (14)

Theorem 69

C(W) = sup
m

inf
λ1>0

max
U∈Im

1

m
log

|U |
|LU ,λ1|

. (15)

On Randomization in the Decoding
We mention here the effects of randomization in the decoding on the transmission
capacity C(W) and the identification capacities CNRI(W) and CID(W) for the AVC
W , that is, if the maximal probability of error criterion is used.

Theorem 70 For every AVC W under the maximal error probability criterion
randomization in the decoding does not lead to higher capacities than (i) C(W),
(ii) CNRI(W), and (iii) CID(W), resp.

Remark It follows immediately from the elimination technique and the positivity
characterisation of [2] that also for the average error probability criterion the
transmission capacity does not increase under randomized decoding.

A Lower Bound on CNRI(W)
Now we present a partial result for CNRI(W), the quantity of our main interest in
this lecture.

Theorem 71 For P ∈ P(X ) set

Q(P,W) = {(X,X′, Y )|PY |X, PY |X′ ∈W, PX = PX′ = P,
and X,X′, Y form a Markov chain in this order

}

and set

Î (P,W) = min
(X,X′,Y )∈Q(P ,W)

I (X′ ∧XY),
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(whereW is the row-convex hull of W) then

CNRI(W) ≥ max
P
Î (P,W). (16)

Remark Î (P,W) = H(P) for P,W such that (X,X′, Y ) ∈ Q(P,W) implies
H(X|X′) = 0.

Corollary 72 The quantities in the inequality

CNRI(W) ≥ C(W) (17)

can be different.

Example For

Wδ =
{(

1 0
0 1

)
,

(
1 0
δ 1− δ

)}
, δ ∈

(
0,

1

2

)
,

Theorem 71 (or also the lemma below) yields

CNRI(Wδ) = 1 (18)

and

1− h(δ) < C(Wδ) < 1 (by [3]).

�
For the following class, including the example above, (17) also follows from

Theorem 71.

Example Let

W =
{(

1 0
q(s) 1− q(s)

)
: s ∈ S

}
,

where 1 > q(s) > 0 for all s ∈ S (finite).
Then for P ∈ P(X ) of the form P = (p, 1− p), p ∈ (0, 1), Q(P,W) = ∅, and

by (15) we get CNRI(W) ≥ 1. This is obviously tight. �
Next we give a formula for the capacities of a special class of channels, including

the examples above.

Lemma 73 Let X = {1, 2, . . . , α}, Y = {0, 1, . . . , β}, |S| < ∞, and
max
x∈X

max
s∈S

W(0|x, s) < 1.
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Furthermore, consider for input alphabetX ∪{0} and output alphabetY the AVC

W∗ = {W∗(y|x, s) = W(y|x, s) for all x ∈ X , y ∈ Y, s ∈ S

andW∗(0|0, s) = 1 for all s ∈ S
}
.

Then

CNRI(W∗) = max
0≤p≤1

[
h(p)+ pCNRI(W)

]
.

A Combinatorial Problem Related to CNRI (Wδ)

Finding CNRI(Wδ) for the special case

Wδ =
{(

1 0
0 1

)
,

(
1− δ δ

δ 1− δ
)}
,

with δ ∈
(

0, 1
2

)
, is already a formidable task.

By Theorem 71 and numerical computations of B. Balkenhol,

CNRI(Wδ) ≥ C(Wδ) = 1− h(δ),

where the identity is a very special case of the capacity theorem of [3]. The heart of
the matter seems to be related to the following coding problem.

We denote by B(un, d) ⊂ {0, 1}n the Hamming ball with radius d . For numbers
1 < β < δ < 1

2 and λ ∈ (0, 1) find a subset A ⊂ {0, 1}n as large as possible such
that for all xn ∈ A

∣∣∣∣∣∣
B(xn, nδ) ∩

⎡

⎣
⋃

yn∈A\{xn}
B(yn, nβ)

⎤

⎦

∣∣∣∣∣∣
< λ|B(xn, nδ)|.

The Capacity of the Compound Channel (CC) for NRI Codes
Each member V (·|·, s) in the compound channel with |S| < ∞ introduces a
partition

{
X (1|s), . . . ,X (js |s)

}
of X such that x, x ′ are in the same subset exactly

if V (·|x, s) = V (·|x ′, s). Thus a RV X taking values in X induces a RV X̂(s) for
every s ∈ S such that X̂(s) = � exactly if X ∈ X (�|s).
Theorem 74 For a CC V = {V (·|·, s) : s ∈ S

}
with |S| <∞

CNRI(V) = max
X

min
s∈S

H
(
X̂(s)

)
.
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2 Proof of Theorem 67

We color the M codewords in U of an (n,M, λ1, λ2, L) NRA code
{
(u,Du) : u ∈

U
}

randomly and independently according to the uniform distribution withK colors
and show that the probability for the existence of a coloring satisfying the conditions
in the theorem is positive. To estimate the probability, we first fix sn ∈ Sn and u ∈ U
and partition U \ {u} into two parts U (i)(i = 1, 2) such that u′ ∈ U (1) iff

Wn
(
A(u′, u)|u, sn) ≤ 1

n2 . (19)

Then

|U (2)| < n2
∑

u′∈U (2)
Wn
(
A(u′, u)|u, sn)

≤ n2
∑

u′∈U (2)
Wn(Du ∩Du′ |u, sn)

≤ n2
∑

u′∈U\{u}
Wn(Du ∩Du′ |u, sn)

= n2(L(u, sn)− 1
)
< n2L, (20)

where for the equality we use the useful observation

∑

u′∈U\{u}
Wn(Du ∩Du′ |u, sn) = L(u, sn)− 1 (21)

for all u ∈ U and sn ∈ Sn.
For the fixed u, sn and i = 1, 2 let

Z
(i)

u′ =
{
Wn
(
A(u′, u)|u, sn) if u′ ∈ U (i) and u′ has the same color as u

0 otherwise.
(22)

If we can show that for all such u and sn, i = 1, 2,

Pr

⎧
⎨

⎩
∑

u′∈U (i)
Z
(i)

u′ >
λ− λ1

2

⎫
⎬

⎭ ≤ (|Sn||U |)−1 θ

2
(23)

for a θ ∈ (0, 1), then we can find a (coloring) partition {Uk : k = 1, 2, . . . ,K}
such that for all u ∈ Uk(k = 1, 2, . . . ,K), sn ∈ Sn,

∑
u′∈Uk\{u}

Wn
(
A(u′, u)|u, sn) <
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λ− λ1, and so

Wn

⎛

⎝Du \
⎛

⎝
⋃

u′∈Uk\{u}
A(u′, u)

⎞

⎠ |u, sn
⎞

⎠

≥ Wn(Du|i, sn)−
∑

u′∈Uk\{u}
Wn
(
A(u′, u)|u, sn)

> 1− λ− (λ− λ1).

Thus, if we let D′
u = Du \

{
⋃

u′∈Uk\{u}
A(u, u′)

}
, for all u ∈ Uk (k = 1, 2, . . . ,K)

then
{
(u,D′

u) : u ∈ Uk
}
(k = 1, 2, . . . ,K) is the family of codes required by the

theorem. We first show (23) for i = 1. By the definition of the Z(1)
u′ ’s

Pr

⎛

⎝
∑

u′∈U (1)
Z
(1)
u′ >

λ− λ1

2

⎞

⎠ ≤ expe

{
−n 3

2
λ− λ1

2

} ∏

u′∈U (1)
expe

{
n

3
2Z
(1)
u′
}

= expe

{
−n 3

2
λ− λ1

2

} ∏

u′∈U (1)

[(
1− 1

K

)
+ 1

K
expe

{
n

3
2Wn

(
A(u, u′)|u, sn)

}]

= expe

{
−n 3

2
λ− λ1

2

} ∏

u′∈U (1)

[
1+ 1

K

(
expe

{
n

3
2Wn

(
A(u′, u)|u, sn)}− 1

)]

≤ expe

{
−n 3

2
λ− λ1

2

} ∏

u′∈U (1)

[
1+ e

K
n

3
2Wn

(
A(u, u′)|u, sn)

]

≤ expe

{
−n 3

2
λ− λ1

2

} ∏

u∈U\{u}

[
1+ e

K
n

3
2Wn(Du ∩Du′ |u, sn)

]

≤ expe

⎧
⎨

⎩−n
3
2
λ− λ1

2
+ e

K
n

3
2
∑

u∈U\{u}
Wn(Du ∩Du′ |u, sn)

⎫
⎬

⎭

= expe

{
−n 3

2

[
λ− λ1

2
− e

K

(
L(u, sn)− 1

)]}
(by (21))

≤ expe

{
−n 3

2

[
λ− λ1

2
− e

K
L

]}
. (24)
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Thus for any λ−λ1, sufficiently large n, and fixed u and sn, (23) holds for i = 1,
if we choose a K satisfying

K ≥ 4eL

λ− λ1
. (25)

To show (23) for i = 2, it is sufficient to show that the probability of the event,
that the number of u′ ∈ U (2) with the same color in the (random) coloring as u is

larger than
⌊
λ−1

2
λ−λ1

2

⌋
= κ2, say, is not larger than the RHS of (23).

That is,

∑

j>κ2

(|U (2)|
j

)(
1

K

)j (
1− 1

K

)|U (2)|−j
≤ [|Sn||U |]−1 θ

2
. (26)

Indeed, if

|U (2)|
K

< k2, (27)

then by Stirling’s formula and with κ2 =
⌊
λ−1

2
λ−λ1

2

⌋

∑

j>κ2

(|U (2)|
j

)(
1

K

)j (
1− 1

K

)|U (2)|−j

≤ |U (2)| e√
2π

√
|U (2)|

κ2
∣∣U (2)| − κ2)

(
|U (2)|
Kκ2

)κ2
(
|U (2)|(K − 1)

K(|U (2)| − κ2

)|U (2)|−κ2

≤ |U (2)| e√
2π

(
|U (2)|
Kκ2

)κ2 (
1+ κ2

|U (2)| − κ2

)|U (2)|−κ2

≤ |U (2)| e√
2π

(
|U (2)|e
Kκ2

)κ2

≤ |U (2)|e
(
e|U (2)|2
K

)κ2

.

Thus (26) holds, if we choose

K > e|U (2)| exp

{
n

κ2
log |S||X |2 + 1

κ2
log

2e

θ

}
= |U (2)| exp

{
nϕθ (κ2)

}
, (28)
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where ϕθ (z) is a function of zwhose values are arbitrarily small when z is arbitrarily
large. By (20) it is sufficient for (27), (28) to hold that

K > n2L exp
{
nϕθ (κ2)

}
(for sufficiently large n).

To satisfy the above inequality (25), we only need to choose

K >
4L

λ− λ1
n2 exp

{
nϕθ (κ2)

}

and sufficiently small λ∗ (and therefore λ2) depending on λ, λ1, and ε.
This completes the proof.

3 Proof of Theorem 69

The converse part is absolutely trivial because an (n,M)-code
{
(u,Du) : u ∈ U

}

with maximal probability of error λ1 satisfies

LU ,λ1 = 1 and U ∈ Im.

The issue of the theorem is to show that one cannot do better by increasing the
size of lists, namely, the direct part. This is an easy consequence of Theorem 67 and
Lemma 68 of [3] (see second subsection of Sect. 1).

For a fixed m, λ1 > 0 assume that U ∈ Im,
{
(u,Du) : u ∈ U

}
achieves the

maximum in (15). Then we treat U as an input alphabet and Ym as output alphabet.
Then one can find by the greedy algorithm a subset of codewords Ũ ⊂ U� such that
for all u�, u′� ∈ Ũ , dH (u�, u′�) ≥ �ε (where dH is the Hamming distance) for any
fixed ε and

log |U | − 1

�
log |Ũ | = o(1) (as ε→ 0, �→∞). (29)

Let D̃u� for u� ∈ Ũ to be the union of Hamming balls with radius �(λ1 + ε2) and
centers at the points in the Cartesian productDu1×· · ·×Du� , for u� = (u1, . . . , u�).
Then (2) holds for sufficiently large �, if λ1 is replaced by 2λ1. Moreover, for any λ
and sufficiently large �, by Lemma 68 of [3], (5) holds, for suitable D(u�, u′�) and
therefore (11) holds for suitable A(u�, u′�) for all u�, u′� ∈ Ũ , u� �= u′�.

To apply Theorem 67, we have to estimate LŨ . Let us write Du1 × · · · ×Du� =
Du� and denote the Hamming ball with center u� and radius r in U�, by B(u�, r).
Then for L(·) in (9), u� = (u1, . . . , u�) ∈ Ũ , sm� = (sm1 , . . . , s

m
� ) ∈ Sm�, v� =

(v1, . . . , v�) ∈ Du� , and

∑

v�∈B(u�,�(λ1+ε2))

L(v�)Wm�(v�|u�, sm�) ≤
∑

J⊂{0,...,�−1}:
|J |=�(λ1+ε2)

|U |�(λ1+ε2)
∏

j /∈J
L(vj )W

m(vj |uj , smj ).
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Thus one can find a β(λ1, ε) such that β(λ1, ε)→ 0 as λ1, ε→ 0, and

1

�
logLŨ ≤ 1

�
logLU + β(λ1, ε). (30)

Finally, we choose n = m� and apply Theorem 1 to
{
(u�, D̃u�) : u� ∈ Ũ

}
to

obtain a (transmission) subcode with probability of error ε + λ1 and rate arbitrarily
close to 1

n
log |U |

LŨ
, when � is arbitrarily large (depending onm) and λ1 and ε in (30)

are arbitrarily small. Since m is fixed when n = m�+ r , r < m, we asymptotically
loose nothing, if we add r dummy letters. This completes our proof.

4 Proof of Theorem 70

(i) This is an exercise in [7, Problem 11(c), Page 226] and a very easy consequence
of Theorem 67 as well.

The proofs of (ii) and (iii) are essentially the same and so we only prove (ii).
So we are given a system (U,Q) with U ⊂ X n and Q : Yn → 2U such that for

all u, u′ ∈ U , sn ∈ Sn

∑

A:u∈A

∑

yn∈Yn
Q(A|yn)Wn(yn|u, sn) > 1− λ1, (31)

∑

A:u′∈A

∑

yn∈Yn
Q(A|yn)Wn(yn|u, sn) < λ2. (32)

(Here we note that A’s in (31) and (32) are “decoding sets” for u and u′,
respectively.)

We extract an NRI code (u,Du)u∈U with error probability λ′1, λ′2 by letting Du ={
yn : ∑

A:u∈A
Q(A|yn) ≥ α}. Then by (31) for all sn

1− λ1 <
∑

yn∈Du

∑

A:u∈A
Q(A|yn)Wn(yn|u, sn)+

∑

yn∈Dcu

∑

A:u∈A
Q(A|yn)Wn(yn|u, sn)

<
∑

yn∈Du
1 ·Wn(yn|u, sn)+

∑

yn∈Dcu
αWn(yn|u, sn)

≤ Wn(Du|u, sn)+ α (33)

written otherwise as

Wn(Du|u, sn) > 1− λ1 − α. (34)
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On the other hand (32) implies that for all sn

λ2 >
∑

yn∈Du′

∑

A:u′∈A
Q(A|yn)Wn(yn|u, sn)

≥ α Wn(Du′ |u, sn) or Wn(Du′ |u, sn) < λ2

α
. (35)

Finally, for instance with the choice α = √
λ2 we conclude from (34) and (35)

that we can achieve

λ′1 = λ2 +
√
λ2 and λ′2 =

√
λ2.

Since for (λ1, λ2)→ (0, 0) also (λ′1, λ′2)→ (0, 0) we have established equality
of the (weak) capacities.

5 Proof of Theorem 71

Fix R < Î(P,W)− ε
2 and let

Qδ(P,W) �
{
(X,X′, Y ) : PY |X, PY |X′ ∈W, I (X ∧ Y |X′) ≤ δ}. (36)

Then

Q(P,W) =
⋂

δ>0

Qδ(P,W), (37)

and, by the continuity of the mutual information, there are α, δ > 0 such that for all
(X,X′, Y ) ∈ Qδ(P,W)

R < I (X′ ∧XY)− α. (38)

Next we apply the large deviation method in the standard way or directly use
Lemma 3 in [9] to obtain a set of codewords, U ′ ⊂ X n such that 1

n
log |U ′| ∼ R and

for all U ∈ U ′, PXX′ ∈ Pn(X × X ) (where Pn(Z) is the set of n-types over Z)

1

n
log |{u′ ∈ U ′ : (u, u′) ∈ T nXX′

}| < (R − I (X ∧X′))+ + θ, (39)

where θ is a positive number and can be chosen arbitrarily small and a+ =
max{0, a}, if n is arbitrarily large. Thus by deleting the “bad codewords” from the
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neighbourhoods of the codewords, we can obtain a subset U ⊂ U ′ (for sufficiently
large n) such that

1

n
log |U | ≥ 1

n
log |U ′| − ε

2
(40)

and there is no pair (u, u′) of codewords in U with (u, u′) ∈ T n
XX′ for RV’s X and

X′ with R ≤ I (X ∧X′). We choose U as our set of codewords and

Du = B(u) \E(u) (41)

as decoding set for u ∈ U , where

B(u) =
⋃

W∈W
T n
W,δ
(u) for δ in (38), (42)

and E(u) is the set of yn’s (in Yn) such that there exist a u′ �= u and a triple
(X,X′, Y ) ∈ Qδ with (u, u′, yn) ∈ T n

XX′Y .

Analysis
1. To show that for all sn ∈ Sn

Wn(Du|u′, sn) < λ2 if u �= u′ (43)

we partition Du into polynomially many subsets according to the conditional
ED’s of yn’s, PY |XX′(·|u, u′), for the u, u′ in (43). By (41) T n

Y |XX′(u, u
′)∩Du �= ∅

implies (X,X′, Y ) /∈ Qδ(P,W), or by (36) I (X ∧ Y ′|X′) > δ, if PY |X, PY |X′ ∈
W . Thus, because the number of conditional ED’s is a polynomial in n, (43)

follows from the fact that for (X,X′, Y ) /∈ Qδ(P ), PY |X, PY |X′ ∈W

1

n
logW

n(
T nY |XX′(u, u

′) � H(Y |XX′)−H(Y |X′) = −I (X ∧ Y |X′) < −δ
(44)

andWn
(
B(u′)|u′, sn) > 1− 2−nη for all sn and suitable η > 0.

2. We have to show that for all u and sn

Wn(Du|u, sn) > 1− λ1. (45)

Since for all sn ∈ Sn, by (42)Wn
(
B(u)|u, sn) > 1−2−uη for suitable η > 0, by

(41) it is sufficient for (45) to showWn
(
E(u)|u, sn) is exponentially small. Indeed,



6 Proof of Lemma 73 97

by the definition of E(u) and (39)

1

n
logWn

(
E(u)|u, sn)

� 1

n
max

(X,X′,Y )∈Qδ(P ,W)
log |{u′ : u′ ∈ T nX′|X(u)

}||T nY |XX′(u, u′)|2−nH(Y |X)

∼ R − I (X ∧X′)+ θ +H(Y |XX′)−H(Y |X)

= R − I (X′ ∧XY)+ θ < −(α − θ) < 0, (46)

if we chose θ < α.

6 Proof of Lemma 73

Denote byAn,λ1,λ2(W)
(
An,λ1,λ2(W∗)

)
, the maximalM such that an (n,M, λ1, λ2)

NRI code for W (for W∗) exists.

(i) CNRI(W∗) ≤ max
p

[
h(p)+ pCNRI(W)

]
.

Let
{
(u,Du) : u ∈ U

}
be an (n,M, λ1, λ2) NRI code for W∗. We partition

U into subsets {Uk}nk=0 according to the number of zeros in the codewords. Then
there must be a k such that

|Uk| ≥ 1

n
log |Uk|. (47)

Moreover, the relation u ∼ u′ in Uk defined by the rule “u ∼ u′ if xt =
0 exactly if x ′t = 0 for u = (x1, . . . , xn), u′ = (x ′t , . . . , x ′n) ∈ Uk” is an
equivalent relation, which further partitions Uk into at most

(
n
k

)
equivalence

classes {Vk,j }Jj=1, J ≤ (n
k

)
.

All codewords in a fixed Vk,j have k zero-components at the same coordi-
nates. By our assumption at all these coordinates the outputs are zeros whenever
the inputs fall into Vk,j . So we can obtain an (n − k, |Vk,j |, λ1, λ2) NRI code
by deleting the k components from codewords in Vk,j (and corresponding
components from decoding sets). Therefore

An,λ1,λ2(W∗) ≤ n
(
n

n− k
)
An−k,λ1,λ2(W).
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(ii) CNRI(W∗) ≥ max
p

[
h(p)+ pCNRI(W)

]

We have to find an (n,M, λ1, λ2) code for W∗ with

M ≥ 2−nη
(
n

n− k
)
An−k,λ1,λ2(W), (48)

for an arbitrarily small η.
We first find, by a greedy algorithm, a set B of binary sequences with

Hamming weight n − k, pairwise Hamming distance not less than 2nε and
size

|B| ≥ 2−nη
(
n

k

)
, (49)

where η is a positive constant depending on ε and η → 0 as ε → 0.
Let

{
(u,Du) : u ∈ U

}
be an NRI code of length n − k for W achieving

An−k,λ1,λ2(W). We define for bn ∈ B a subset U∗(bn) in X ∗n,

U∗(bn) = {xn : xt = 0 if t �= tj , (xt1, . . . , xtn−k ) ∈ U
}

(50)

if

btj = 1 for 1 ≤ t1 < t2 < · · · ≤ tn−k ≤ n, (51)

and let U∗ = ⋃
bn∈B

U∗(bn).

For u∗ = (x1, . . . , xn) ∈ U∗(bn), the decoding set is defined by

D∗
u∗ =

{
yn : yt = 0 if t �= tj and (yt1, . . . , ytn−k ) ∈ Du

}

for t1, . . . , tn−k in (51) and u = (xt1, . . . , xtn−1).
Then for all sn W∗n(D∗

u∗ |u∗, sn) > 1 − λ1, and for all u∗, u∗′ ∈ U∗(bn),
sn ∈ Sn, Wn(D∗

u∗ |u∗′, sn) < λ2, since
{
(u,Du) : u ∈ U

}
has error probability

(λ1, λ2). Moreover, for all sn ∈ Sn, u∗ ∈ U∗(bn), u∗′ ∈ U∗(b′n), bn, b′n ∈ B,
and bn �= b′n

Wn(D∗
u∗ |u∗′, sn) ≤ w

1
2 dH (b

n,b′n) ≤ wnε < λ2

for w � max
s∈S

max
x∈X

W(0|x, s), if n is sufficiently large.

Thus
{
(u∗,D∗

u∗) : u∗ ∈ U∗
}

is a desired code.
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7 Proof of Theorem 74

Without loss of generality assume that for s �= s′, V (·|·, s) �= V (·|·, s′).
It was shown in [3] that for any channel Ṽ : X → Y without two identical rows,

any u1 u2, ε > 0, sufficiently large n, and any U ⊂ X n such that for all u, u′ ∈ U ,
dH (u, u

′) ≥ nε, there exists a family of subsets of Yn, say Du, u ∈ U , such that
Ṽ n(Du|u) > 1 − u1 and Ṽ n(Du|u′) < u2 for all u′ �= u, where dH . Let us fix
a family

{{X (1|s), . . . ,X (js |s)} : s ∈ S
}

of partitions in the last subsection of
Sect. 1. For xn, x ′n ∈ X n, s ∈ S, we define

ds(x
n, x ′n) = |{t : xt ∈ X (j |s), x ′t ∈ X (j ′|s) with j �= j ′}|. (52)

Thus, by the above auxiliary result, we have that for any λ1, λ2, ε > 0,
sufficiently large n, and any U ⊂ X n such that for all s ∈ S, u, u′ ∈ U

ds(u, u
′) ≥ nε, (53)

there is a family of subsets in Yn, say Du(s), u ∈ U , s ∈ S, such that for all
u, u′ ∈ U , u �= u′, s ∈ S,

V n
(
Du(s)|u, s

)
> 1− λ1

2
and V n

(
Du(s)|u′, s

)
<
λ2

2
. (54)

To find a good NRI code for V , we first find a U satisfying (53). Let X be the
RV achieving the extremal value in the theorem. Then for any fixed u ∈ T nX , if (53)
is violated for s, u, and u′ ∈ T nX , then there exists a pair (X,X′) such that with
u′ ∈ T n

X′|X(u), PX′ = PX , and Eds(X,X
′) < ε. For such (X,X′),

1

n
log |T nX′|X(u)| = H(X′|X)+ o(1), (55)

and by the data processing inequality (Lemma 49) and by Fano’s inequality
(Lemma 48)

I (X ∧X′) ≥ I(X̂(s) ∧ X̂′(s)) ≥ H (X̂(s))− α(ε) (56)

as E ds(X,X′) < ε implies that Pr
(
X̂(s) �= X̂(s)) < ε, where α(ε) is a constant

depending on ε and α→ 0 as ε→ 0.
Denote by Q = {(X,X′) : PX′ = PX and ds(X,X′) < ε for some s ∈ S

}
.

Then the total number of u’s in T nX , such that for an s ∈ S (53) does not hold,

are not larger than exp{n
[

max
(X,X′)∈Q

H(X′|X)+ o(1)
]
}. Consequently, by the greedy
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algorithm one can find a U ⊂ T nX satisfying (53) such that

1

n
log |U | ≥ H(X)− max

(X,X′)∈Q
H(X′|X)+ o(1)

= min
(X,X′)∈Q

I (X ∧X′)+ o(1) (since H(X′) = H(X))

≥ min
s
H
(
X̂(s)

)− α(s) + o(1) (by (56)). (57)

Then the following procedure works.

1. For all a ∈ X define a� = (a, . . . , a). Choose a sufficiently small δ and a
sufficiently large � such that for all a ∈ X , V ∈ V , V �

(
T �V ,δ(a�)|ab

)
> 1− 1

2|X |λ
and for all V, V ′ ∈ V there is an a ∈ X such that T �V ,δ(a�) ∩ T �

V ′,δ(a
�) = ∅,

where λ � min(λ1, λ2). Then the encoder uses |X | blocks of length � to send
a� for all a ∈ X . The decoder tries to find a V ∈ V (and the corresponding
state s ∈ S) such that for all a ∈ X , the ath block output of length � falls into
T �V ,δ(a�). If he can find it, it must be unique by our construction, otherwise the
decoder just declares an error. When any V ∈ V governs the transmission, the
decoder successfully estimates V with probability at least 1− 1

2λ.
2. Knowing the state s governing the transmission, the decoder uses the decoding

sets
{
Du(s) : s ∈ S

}
in (54) to identify the message for which the two kind

of error probabilities are λ1
2 and λ2

2 , respectively. Thus the two kind of error
probabilities totally do not exceed λ1 and λ2, respectively.

This and (57) complete the proof of the direct part (by choosing �
n

arbitrarily
small).

To prove the converse we partition the set U of codewords of a given NRI-
code of length n according to the ED’s. Then we can find a RV X and a U ′ ⊂ U
such that

U ′ ⊂ T nX and |U ′| ≥ (n+ 1)−|X ||U |.

Let ϕs be the mapping X n → {1, 2, . . . , js} for a fixed s ∈ S such that
ϕs(x

n) = (i1, . . . , in), if xt ∈ X (it |s). Then for all s ∈ S there are no u, u′ ∈ U
with ϕs(u) = ϕs(u′) and u �= u′. Furthermore, the mapping ϕs sends T nX to T n

X̂(s)
.

Consequently for all s,

1

n
log |U ′| ≤ 1

n
log |T n

X̂(s)
| = H (X̂(s)) + o(1).

Thus the converse holds.
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Identification via Channels with Noisy
Feedback

We consider here identification via channels with noisy feedback. Whereas for
Shannon’s transmission problem the capacity of a discrete memoryless channel
does not change with feedback, we know from [2] and [3] (chapters “Identification
via Channels” and “Identification in the Presence of Feedback: A Discovery of
New Capacity Formulas”) that the identification capacity is affected by feedback.
We study its dependence on the feedback channel. We prove both a direct and
a converse coding theorem. Although a gap exists between the upper and lower
bounds provided by these two theorems, the results of chapters “Identification
via Channels” and “Identification in the Presence of Feedback: A Discovery of
New Capacity Formulas”, namely the result for channels without feedback and the
result for channels with complete feedback, are all special cases of these two new
theorems, because in these cases the bounds coincide.

1 Introduction

In this lecture (see [4]) we introduce and study identification via channels with noisy
feedback, which is a model that unifies also the case of channels without feedback
and the case of channels with complete (or noiseless) feedback. The identification
problems for these two cases were studied in the papers [2] and [3], which contain
the most basic results in this area.

A communication channel with noisy feedback is denoted here by a quadruple

{X ,W,Y,Z} (1)

where X is the input alphabet, Y is the output alphabet, Z is the output alphabet for
the feedback and W = {W(y, z|x) : x ∈ X , y ∈ Y, z ∈ Z

}
is a stochastic matrix

which gives the conditional probability of the output letters y and z when the input
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letter is x. The transmission probability for n-sequences xn = (x1, . . . , xn) ∈ X n,
yn = (y1, . . . , yn) ∈ Yn, zn = (z1, . . . , zn) ∈ Zn is given by

Wn(yn, zn|xn) =
n∏

t=1

W(yt , zt |xt) (2)

for n = 1, 2, 3, . . . . That is, the channel is assumed to be memoryless.
To define identification feedback codes (IDF) in the sense of chapter “Identifica-

tion in the Presence of Feedback: A Discovery of New Capacity Formulas” for this
channel we let Fn be the set of all possible vector valued functions

f = [f 1, . . . , f n] (3)

where for t ∈ {2, . . . , n} f t is defined on Z t−1 and takes values in X . f 1 is an
element of X . It is understood that, when f is used for the transmission over the
channel, after the feedback signals z1, z2, . . . , zt−1 have been made known to the
sender by the feedback channel, the sender transmits f t (z1, . . . , zt−1). When t = 1,
the sender transmits f 1. The joint distribution of the output RV’s Y1, . . . , Yn and the
feedback random variablesZ1, . . . , Zn is determined by the function f used and by
W as follows. For yn ∈ Yn, zn ∈ Zn

Pr(Y n = yn,Zn = zn|f ) = Wn(yn, zn|f ) =
n∏

t=1

W
(
yt , zt |f t (z1, . . . , zt−1)

)
.

(4)

We set

Wn(yn|f ) =
∑

zn∈Zn
Wn(yn, zn|f ) (5)

and describe now the feedback codes with randomized encoding strategies, that is,
elements of P(Fn), the set of probability distributions on Fn.

We remind the reader of Definition 50 Let NF (n, λ) be the maximum integer N
for which a randomized (n,N, λ) IDF code forW exists.

We also use

W̃(y|x) =
∑

z

W(y, z|x)

and call {X , W̃ ,Y} the main channel. Our goal is to determine the double
exponential growth of NF (n, λ). Insofar we have the following result.
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Theorem 75 If the transmission capacityC of the main channel W̃ is positive, then

we have for all λ ∈
(

0, 1
2

)
:

lim inf
n→∞

1

n
log logNF (n, λ) ≥ max I (XU ∧ Y ), (6)

where the maximum is taken over all joint distributions PXYZU with

PXYZU(x, y, z, u) = p(x)W(y, z|x)q(u|x, z)

satisfying

I (U ∧ Z|XY) < I (X ∧ Y ).

Furthermore

lim sup
n→∞

1

n
log logNF (n, λ) ≤ max I (XZ ∧ Y ), (7)

where the maximum is taken over all joint distributions PXYZ with

PXYZ(x, y, z) = p(x)W(y, z|x).

Remarks

1. This theorem implies the results of chapters “Identification via Channels”
and “Identification in the Presence of Feedback: A Discovery of New Capac-
ity Formulas”. To see this, observe that in the case without feedback Z = 0
and both bounds equal Shannon’s transmission capacity. This is the result of
chapter “Identification via Channels”. In the complete feedback case we have
Z = Y and both bounds equal the maximum entropy H(Y). This is the result
of chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas”. Therefore, Theorem 75 can be viewed as a unification of
the results of chapters “Identification via Channels” and “Identification in the
Presence of Feedback: A Discovery of New Capacity Formulas”.

2. A challenging task is to close the gap between the two bounds. We guess that the
lower bound is tight, however, a converse proof technique more powerful than
those of [2, 6] is needed!
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2 Proof of Theorem 75

In this section we prove Theorem 75. The converse part is proved in the first
subsection, the direct part is proved in the second subsection and deterministic IDF
codes are briefly discussed in the last subsection.

Converse Part of Theorem 75
For identification via channels without feedback a so-called soft converse was
proved in the original paper [2] (chapter “Identification via Channels”). The method
was refined and strengthened in [6] to give a proof of the strong converse theorem.
The reader should study again Sect. 3 before reading this section. The techniques
used in [2] and [6] are needed in this section. Although, the proofs in [6] were
already simplified compared with those in [2], it is still too long and too complicated
to reproduce all the details here. Therefore, in this section, we briefly review some
of the key steps and key definitions and present modifications necessary for our
purposes. The details can be found in Sect. 3.

We start with a review of some definitions. A probability distributionQ on A is

called an n-type if for any a ∈ A Q(a) ∈
{

1
n
, . . . , i

n
, . . . , 1

}
. Let Pn be the set of

all possible n-type’s. Recall that for anyQ ∈ Pn

T nQ =
{
an : ∀a ∈ A, |{i : ai = a}|

n
= Q(a)

}
. (8)

Let B be a subset of An and letQB denote the uniform distribution on B. Finally,
an ID code

{
(Qi,Di ) : 1 ≤ i ≤ M} is called homogeneous (see also Definition 22)

if for every P ∈ Pn

Q1(T nP ) = · · · = QM(T nP ).

Furthermore, recall that for a distributionQ on X n and every P ∈ Pn,

QP (xn) = Q(xn)

Q(T nP )
.

An ID code is called M-regular if for every P ∈ Pn and all i, QPi is of M-type
(see Definition 24).

For the proof we need the following propositions which are simple conclusions
of Sect. 3.

Proposition 76 For every (n,N, λ) ID code, δ > 0, λ′ > λ and all sufficiently
large n, there exists a homogeneous (n,N ′, λ′) ID code satisfying N ′ > N exp

{ −
δn(n+ 1)|X |

}
, where X is the input alphabet.

(Conclusion of Lemma 27)
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Proposition 77 A homogeneousM-regular (n,N, λ) ID code with λ < 1
2 satisfies

logN ≤ n(n+ 1)M log |X |.

(Conclusion of Lemma 27)
The main result of Sect. 3, that is the strong converse for the channels without

feedback, follows easily from the following result.

Proposition 78 For every homogeneous (n,N, λ) ID code, λ′ > λ, γ > 0, and for
all sufficiently large n, there exists a homogeneous exp{nC+nγ }-regular (n,N, λ′)
ID code, where C is the Shannon channel capacity.

(Conclusion of Lemma 26)
In the proof of this proposition the following lemma is needed.

Lemma 79 Let P ∈ Pn and letQ be a probability distribution on T nP . For every ε ∈[0, ε0], δ ∈ [0, δ0] and for all sufficiently large n, there exists an exp{nC+nγ }-type
distribution Q defined on T nP , where C is the Shannon channel capacity, such that
for every D ⊂ Yn, where Y is the output alphabet,

Q̃Wn(D) ≤ (1+ ε)(1− e−nδ)−1QWn(D)+ e−nδ, (9)

Q̃Wn(D) ≥ (1− ε)(1− e−nδ)QWn(D)− e−nδ, (10)

where W is the channel transition probability matrix and where γ = ρ(δ), and
ρ : [0, δ0] → R+ is a continuous strictly increasing function such that ρ(0) = 0.

(Conclusion of Lemma 25)
By checking the proof of this lemma in Sect. 3 we can find that actually the

following stronger result was proved:

Lemma 80 Let P ∈ Pn and let Q be a probability distribution on T nP . For every
ε ∈ [0, ε0], δ ∈ [0, δ0], let U = {U1, . . . , UM ′ } be a random code having
independent codewords and with codeword distributionQ. For everyR > I(P,W),
M ′ = enR+nγ , where γ is defined in Lemma 79, the probability of the event that the
following conditions are satisfied approaches 1 as n goes to infinity: For allD ⊂ Yn

Q̃Wn(D) ≤ (1+ ε)(1− 2−nδ)−1QWn(D)+ e−nδ, (11)

Q̃Wn(D) ≥ (1− ε)(1− e−nδ)QWn(D)− e−nδ, (12)

where Q̃ is the uniform distribution on U .

Since the original proof is extremely complicated, instead of copying it step by
step we just point out the modifications needed to reach the current conclusions. In
this new version, the lemma is strengthened in two points:

1. C is replaced by any R ≥ I (P,W)
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2. the existence of such a code is replaced by the conclusion that the random code
satisfies (11) and (12) with probability approaching 1.

The first conclusion can be justified by noticing that Eq. (40) of chapter “Iden-
tification via Channels” of the proof is really unnecessary for the lemma. We need
only

sup
V∈PnδP

I (P, V )+ δ ≤ I (P,W) + ρ(δ) ≤ R + ρ(δ).

This is so, because we are considering a fixed P anyway.
The second conclusion comes from the following refinement of Lemma 32.

Lemma 81 Let (ũ1, . . . , ũM) be the realization of the i.i.d. RV’s (U1, . . . , UM)

with common distribution Q. Let E be the event that the following conditions are
satisfied:

1

M

M∑

i=1

1
{
ũi ∈ HPV (yn)

} ≤ (1+ ε)Q(HPV (yn)
)
, for all yn ∈ GPV ,

1

M

M∑

i=1

1
{
ũi ∈ HPV (yn)

} ≥ (1− ε)Q(HPV (yn)
)
, for all yn ∈ GPV ,

and

1

M

M∑

i=1

WP
V

(
(GPV )

c|ũi
) ≤ e− nδ3 .

Then we have

Pr(E) ≤ e− nδ3 + 2e−
δ2
3 e
nδ

.

A careful check of the proof of Lemma 32 shows that the conclusion is what is
actually proved, although the statement of the lemma is slightly weaker.

In our proofs we use these definitions and results.
The converse part can be proved by following the argument in Sect. 3 with certain

modifications. We present in this subsection only the modifications without going
into all the details. Since the proofs of the two converses are very similar, pointing
out these modifications is good enough for the readers to complete the proof by
going through the proof in Sect. 3.

Let f be a feedback coding function. With the function f a set of pairs Sf ={
(xn, zn) : f (zn) = xn

}
is associated. The probability of a pair (xn, zn) ∈ Sf is

Wn(zn|xn) = ∑
yn W

n(yn, zn|xn). This gives a distribution on the set X n × Zn.
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We denote it by Pf (xn, zn). Let Q(·|i) ∈ P(Fn) be the distribution of the user i.
This induces a distribution on X n × Zn defined as follows:

Pi(x
n, zn) =

∑

f∈Fn
Q(f |i)Pf (xn, zn).

An n-type P on X × Z is called ε-typical if for any x ∈ X and any z ∈ Z
∣∣∣∣
P(x, z)∑
z′ P(x, z

′)
−W(z|x)

∣∣∣∣ ≤ ε.

Let Pεn be the set of all possible ε-typical n-types then we have from the weak
law of large numbers

lim
n→∞Pi

⎛

⎝
⋃

P∈Pεn
T nP

⎞

⎠ = 1.

The idea of the proof is the following: a feedback code
{
(Q(·|i),Di ) : 1 ≤ i ≤

N
}

induces an identification code without feedback for the channel from (x, z) to y

with transition probability W̃ (y|x, z) = W(y,z|x)∑
y′ W(y ′,z|x) of the form

{
(Pi,Di ) : 1 ≤ i ≤ N}.

Therefore, the proofs of Sect. 3 can be easily modified and applied to this induced
code. The following proposition is modified from Lemma 23.

Proposition 82 For every (n,N, λ)-feedback identification code and λ′ > λ, γ >
0, δ > 0 there exists a homogeneous exp{nT + nγ }-regular (n,N ′, λ′) ID code,
where N ′ > N exp

{− δn(n+1)|X ||Z|
}
, and T = maxp I (XZ∧Y ) where the joint

distribution PXYZ satisfies PXYZ(x, y, z) = p(x)W(y, z|x).
This proposition is proved by an argument as that used in the proof of Lemma 23.

The only difference is that Lemma 25 is now replaced by Lemma 80 of this lecture.
Therefore C is replaced by

max
P∈Pεn

I (P, W̃ ) = T + ν,

where ν is a continuous function of ε satisfying ν(0) = 0.
The converse is proved now by the same argument as in [6] with Lemma 23 of

Sect. 3 replaced by this new proposition.

Proof of the Direct Part of Theorem 75
The proof of the direct part of Theorem 75 is based on two ideas.
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The first one is the idea presented in Sect. 3 of chapter “Identification in
the Presence of Feedback: A Discovery of New Capacity Formulas”, where the
identification code is constructed by means of two fundamental codes. One code is
of block length n and the other one is of block length m, which is much smaller
than n. The task of the first code is to set up a common random experiment. The
result of the experiment, which is known with high probability to both, the encoder
and the decoder, serves as a “public key”. According to this key a codeword of the
second code is transmitted in the second step. Two different users use the same
codeword for the same public key with very small probability. Therefore the goal of
identification is achieved.

The second idea is the well-known superposition coding scheme introduced in
[5]. In this coding scheme, there are K steps. In each step, a codeword is sent
to transmit a new message as well as to resolve an uncertainty left over from the
previous step.

For given δ > 0 and ε > 0, let PXYZU be a probability distribution
PXYZU(x, y, z, u) = p(x)W(y, z|x)q(u|x, z) that achieves max I (U ∧Z|X) under
the constraint

I (U ∧ Z|XY) ≤ I (X ∧ Y )− δ.

We construct three codes of block length n using p and q of the form:

Code C1 Code C1 is an (n,Mn, 2−nα) channel code for the channel withW(y|x) =∑
z W(y, z|x). The codewords are assumed to be in T nP , where we assume

without loss of generality that P is an n-type. The cardinality of the code is
Mn = 2nI (X∧Y )−εn, where ε is the given positive number which is assumed to
be sufficiently small. Let {D(n)i : 1 ≤ i ≤ M} be the decoding regions of the
codewords of C1 with maximum decoding error at most 2−αn, where α > 0 is a
continuous function of ε satisfying α(0) = 0.

Code Family C2(c) Code family C2(c) ⊂ Un, where U is the alphabet of the RV U ,
is a family of source codes indexed by the codewords c ∈ C1. This family of codes
are required to satisfy the following conditions:

1. Given c ∈ C1 the codewords in C2(c) are jointly ε-typical with c with respect to
the joint distribution PXU , a marginal of PXYZU .

2. The cardinalities of the codes are Nn = 2nI (U∧Z|X)+εn for all c ∈ C1.
3. For each c ∈ C1, there exists a mapping

fc : Zn → C2(c)

satisfying

(i) If fc(zn) �= 0, then fc(zn), c and zn are jointly ε-typical.
(ii) Pr

(
fc(z

n) = 0|c) ≤ 2−nβ , where β is a continuous function of ε satisfying
β(0) = 0.
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Code Family C3(c) The code family C3(c) consists of an integer set {1, . . . , Ln},
whereLn = 2n(I (Z∧U |XY)+nγ ) and γ is a continuous function of ε satisfying γ (0) =
0, and two mappings defined as follows:

�c : C2(c)→ {1, . . . , Ln} and �c : Yn × {1, . . . , Ln} → C2(c),

satisfying

Pr
(
�c
(
Yn,�c(fc(Z

n))
) �= fc(Zn)|c

) ≤ 2−nσ ,

where σ is a continuous function of ε with σ(0) = 0.

Lemma 83 The codes C1, C2(c) and C3(c) exist.

Proof The existence of the code C1 is based on the channel coding theorem with
maximum error criterion [1].

The existence of the code family C2(c) is proved by the random coding
method. Since the method is classical, we give only a brief outline of the
proof. The code is selected randomly according to the distribution rn(un|c) =∑
yn,zn q

n(un|c, zn)Wn(yn, zn|c). The Nn codewords are selected independently.
The mapping fc is defined by using joint ε-typicality as follows:

1. If there exists a unique codeword c2(c, i) in C2(c) which is jointly ε-typical with
zn and c, then let fc(zn) = i,

2. otherwise, let fc(zn) = 0.

The properties of fc are proved by using the properties of the joint ε-typical
sequences. These proofs are standard and therefore omitted.

The existence of the code family C3(c) is proved by using the source coding
theorem with side information and by noticing the following fact. Since the joint
distribution of c, Yn,Un,Zn and fc(Zn) are given by the joint distribution ofXn,Yn,
Zn, Un, the code C2(c) and the mapping fc, then

H
(
fc(Z

n)|c, Y n) = I(Zn ∧ fc(Zn)|c, Y n
)

= H (Zn|c, Y n)−H(Zn|c, Y n, fc(Zn)
)

= H(Zn|c, Y n)−H (Zn|c, Y n,Un, fc(Zn)
)

(where Un is the codeword of C2(c) whose index is the value of fc(Zn))

≥ H(Zn|c, Y n)−H(Zn|c, Y n,Un)
=
∑

i

H (Zi |xi, Yi)−H(Zi|xi, Yi , Ui)

= nI (Z ∧ U |X,Y )+ βn,
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where β goes to zero as ε goes to zero. In the last step of the derivation we used
the typicality of the codewords. Applying the source coding theorem with side
information (if necessary, we may repeat the same code N times and use nN in
place of n) to this case gives the existence of the code family C3(c). ��

Using these three codes (code families), the coding scheme can be described. It
includes two steps. In the first step, the sender and the receiver set up with high
probability a common random experiment. In the second step, based on the result of
the common random experiment, the sender sends a codeword to the receiver.

We formulate the two steps as follows:

1. The coding is done in K blocks. Each block is of length n. The code C1
is partitioned into Ln = 2nI (U∧Z|XY)+γ n subcodes of equal size (roughly)
Bn = 2n(I (X∧Y )−I (U∧Z|X,Y )−γ−ε), which are denoted by Cm1 form = 1, . . . , Ln.
The codewords of the subcodes are indexed by the numbers in {1, . . . , Bn}.
Since I (X ∧ Y ) > I (U ∧ Z|X,Y ) + δ, this is possible for ε small enough.
We send a fixed codeword, say c1 in C1, in the first block. In the second block,
based on the feedback signal Zn1 in the first block, we send a c2 ∈ Cm1 where
m = �c1

(
fc1(Z

n
1 )
)

is determined by the channel and where c2 is selected from
the code Cm1 randomly with respect to the uniform distribution. In the following
steps i for i = 3 toK , if the feedback signal in the previous step is Zni−1, then the
sender sends ci ∈ Cmi1 where mi = �ci−1

(
fci−1(Z

n
i−1)

)
. ci is selected randomly

with respect to the uniform distribution in Cmi1 . The codewords c1, . . . , cK can be
correctly decoded with probabilities at least 1−K2−nα . Then the codewords of
the second code

{
fc1(Z

n
1 ), . . . , fcK−1(Z

n
K−1)

}
can be recovered with probability

at least 1 − (K − 1)2−nσ under the condition that the codewords from the code
C1 are correctly decoded. The overall misdecoding probability is at most

Pe = K(2−nα + 2−nγ ).

This means that with probability at least 1 − Pe the sender and the receiver
have a common knowledge of

{
fc1(Z

n
1 ), . . . , fcK−1(Z

n
K−1)

}
and the indices bi

of the codewords ci in their corresponding subcodes Cm1 of the code C1, which
are numbers from the set {1, . . . , Bn}, at the end of the first K blocks. They are
viewed as the result of the common random experiment.

2. Let

F =
{
F

∣∣∣F : {1, . . . , Nn}K−1 × {1, . . . , Bn}K → C1

}
. (13)

Each user is assigned a mapping in F . Let Fj be the mapping assigned to
the user j . Once

{
fc1(Z

n
1 ), . . . , fcK−1(Z

n
K−1)

}
and {b1, . . . , bK } from the firstK

steps are available to the sender (and with probability at least 1 − Pe correctly
to the receiver), the user j selects a codeword Fj

(
fc1(Z

n
1 ), . . . , fcK−1(Z

n
K−1),

b1, . . . , bK
) ∈ C1, and sends it through the channel. This codeword can be

decoded correctly with probability at least 2−nα .
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We now prove that, if the user number satisfies a certain condition, then there
exists mappings Fj for the users such that the two kinds of error probabilities of the
code described above satisfy the requirement of the identification code.

Obviously, the misrejection probability is at most 1 − (K + 1)(2−nα + 2−nγ ),
which goes to zero as n goes to infinity for a fixed K .

The misacceptance probability can be estimated as follows: we assume that the
mapping is selected according to the uniform distribution on F and the selection
for different users are independent. Let F0 be the mapping assigned to the user to
be identified, let Fi be the mapping assigned to the user i. For a particular v =(
fc1(Z

n
1 ), . . . , fcK−1(Z

n
K−1), b1, . . . , bK),

F0(v) = Fi(v)

with probability 2−nI (X∧Y )+nε = M−1
n . The misacceptance probability, when the

user is i, is greater than λ+pe (where pe is the probability that the receiver and the
sender can not reach a common result of the random experiment and which goes to
zero as n goes to infinity) with probability at most

NK−1
n BKn (1− 2−nI (X∧Y )+nε)NK−1

n BKn −G(2−nI (X∧Y )+nε)G
(
NK−1
n BKn

G

)
,

where

G = max
{|V | : Pr(v ∈ V) ≤ λ}.

Since any set V with cardinality at most

2−2KnεNK−1
n BKn = 2n(K−1)I (U∧Z|X)−nεBKn

has a vanishing probability as n goes to infinity, we have

G ≥ 2−2KnεNK−1
n BKn .

Therefore, when 2Kε < I(X ∧ Y )− ε this probability has an upper bound

exp{− exp{ n(K − 1)I (U ∧ Z|X)+ nK(I (X ∧ Y )− I (U ∧ Z|X,Y ))
− n(K + 1)ε − nKγ + o(nK)}}

≤ exp{− exp{n(K − 1)I (XY ∧ Y )− n(K + 1)ε − nKγ + o(nK)}}.

When user i is to be identified, the probability that there exists a user j �= i

having misacceptance probability at least λ+ pe is at most

1− (1− exp{− exp{n(K − 1)I (XU ∧ Y )− n(K + 1)ε − nKγ + o(nK)}})M .
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This goes to zero when

M ≤ exp{exp{n(K − 1)I (XY ∧ Y )− n(K + 1)ε − nKγ + o(nK)} − εn}.

If we delete users for whom there exists at least one different user having
misacceptance probability at least λ + pe, then the number of users deleted is in
average a vanishing portion of allM users. Therefore, there exists a set of mappings
forM ′ users out of theM users, where

M ′ = exp{exp{n(K − 1)I (XU ∧ Y )− n(K + 1)ε − nKγ + o(nK)} − 2εn},

such that the subcode of these users satisfies all requirements of the identification
code. The rate of the code is at least K−1

K+1 I (XY ∧ Y )− 2ε − γ . For largeK , this is
greater than I (XU ∧Y )−3ε−γ . Letting ε go to zero the direct part of Theorem 75
is proved.

Deterministic Identification Codes
Another result of chapter “Identification in the Presence of Feedback: A Discovery
of New Capacity Formulas” is for deterministic feedback identification codes.
Actually, the same concept can be defined for channels with noisy feedback. In
this subsection, we present only the definitions and results for this concept without
detailed proofs. These results are proved by the method used for the randomized
identification code with some modifications.

Recall that a deterministic (n,N, λ) IDF code forW is a system

{
(fi ,Di ) : i = 1, . . . , N

}
with fi ∈ Fi ,Di ⊂ Yn for i ∈ {1, . . . , N},

and

Wn(Di |fi) ≥ 1− λ, (14)

Wn(Dj |fi) ≤ λ, (15)

for all i, j ∈ {1, . . . , N} and i �= j .
Let Nf (n, λ) be the maximum integerN for which a deterministic (n,N, λ) IDF

code exists. Here are our results for this quantity.

Theorem 84 If the transmission capacity C of W is positive, then we have for all

λ ∈
(

0, 1
2

)
:

lim inf
n→∞

1

n
log logNf (n, λ) ≥ max I (Z ∧ U |X), (16)

where the maximum is over all joint distributions PXYZU with

PXYZU(x, y, z, u) = p(x)W(y, z|x)q(u|x, z)
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satisfying

I (U ∧ Z|XY) < I (X ∧ Y ).

Furthermore

lim sup
n→∞

1

n
log logNf (n, λ) ≤ min

{
max I (XZ ∧ Y ),maxH(Z|X)}, (17)

where the maximum is taken over all joint distributions PXYZ with

PXYZ(x, y, z) = p(x)W(y, z|x).

References

1. R. Ahlswede, A method of coding and an application to arbitrarily varying channels. J. Comb.
Inf. Syst. Sci. 5(1), 10–35 (1980)

2. R. Ahlswede, G. Dueck, Identification via channels. IEEE Trans. Inf. Theory 35(1), 15–29
(1989)

3. R. Ahlswede, G. Dueck, Identification in the presence of feedback—a discovery of new capacity
formulas. IEEE Trans. Inf. Theory 35(1), 30–36 (1989)

4. R. Ahlswede, Z. Zhang, New directions in the theory of identification via channels. IEEE Trans.
Inf. Theory 41(4), 1040–1050 (1995)

5. T.M. Cover, C.S.K. Leung, An achievable rate region for the multiple access channel with
feedback. IEEE Trans. Inf. Theory 27(3), 292–298 (1981)

6. T.S. Han, S. Verdú, New results in the theory of identification via channels. IEEE Trans. Inf.
Theory 38(1), 14–25 (1992)



Identification via Discrete Memoryless
Wiretap Channels

We consider here identification via wiretap channels. A “Dichotomy Theorem” is
proved which says here that the second order secrecy identification capacity is the
same as Shannon’s capacity for the main channel as long as the secrecy transmission
capacity of the wiretap channel is not zero, and zero otherwise.

Equivalently we can say that the identification capacity is not lowered by the
presence of a wiretapper as long as one bit can be transmitted (or identified)
correctly with arbitrarily small error probability. This is in strong contrast to the
case of transmission.

1 Introduction

We consider here identification via a wiretap channel. This channel was introduced
by A.D. Wyner [2]. It can be viewed as a probabilistic model for cryptography.

The channel has two outputs. One is for the legitimate receiver and the other,
which is a degraded version of the first output, is for the wiretapper. The goal of the
communication is to send messages to the legitimate receiver while the wiretapper
must be kept ignorant. A more general version of the wiretap channel was studied
in [1], where the assumption that the output for the wiretapper is a degraded version
of the output for the legitimate receiver is dropped. We address here right away this
general model (Fig. 1).

Definition 85 As defined in [1], a wiretap channel is a quintuple

{X ,W, V,Y,Z}, (1)

where X is the input alphabet, Y is the output alphabet for the legitimate receiver,
Z is the output for the wiretapper,W = {W(y|x) : x ∈ X , y ∈ Y

}
is the channel
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Fig. 1 The wiretap channel

transmission matrix, whose output is available to the legitimate receiver, and V ={
V (y|x) : x ∈ X , y ∈ Y

}
is the channel transmission matrix, whose output is

available to the wiretapper. The channel is assumed to be memoryless, that is, the
conditional probabilities of the output word yn and zn given the input word xn are
Wn(yn|xn) =∏nt=1W(yt |xt) and V n(zn|xn) =∏nt=1 V (zt |xt).

In the classical transmission problem, an (n,M, ε)-code for the wiretap channel
is defined as a system

{
(ci ,Di ) : 1 ≤ i ≤ M}, (2)

where for all i, ci ∈ X n are the codewords and Di ⊂ Yn are the disjoint decoding
sets. It is required that for any i

λi � Wn(Dci |ci) ≤ ε, (3)

and if Xn has uniform distribution over {ci : 1 ≤ i ≤ M}, then

1

n
I (Xn ∧ Zn) ≤ ε. (4)

The secrecy capacity of the wiretap channel is defined as the maximum rate of
any code which satisfies these conditions. Formally, let

M(n, ε) = max
{
M : ∃ an (n,M, ε) code}, (5)

then the secrecy capacity of the wiretap channel is defined as

Cs = max
{
R : ∀ ε > 0 ∃ n(ε) ∀ n ≥ n(ε) M(n, ε) ≥ 2nR

}
. (6)

The secrecy capacity of the general wiretap channel was determined in [1]. It is

Cs = max
U→X→YZ I (U ∧ Y )− I (U ∧ Z). (7)
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The problem of identification via this channel in the sense of chapter “Identifica-
tion via Channels” can be formulated as follows: For any finite set A let P(A) stand
for the set of all probability distributions on A.

Definition 86 A randomized (n,N, λ)-identification code for the wiretap channel
is a system

{
(Q(·|i),Di ) : 1 ≤ i ≤ N}, (8)

where, for all i, Q(·|i) ∈ P(X n) and Di ⊂ Yn, which satisfies the following three
conditions:

(i) for all i
∑

xn∈X n

Q(xn|i)Wn(Di |xn) ≥ 1− λ, (9)

(ii) for all pairs (i, j) with i �= j
∑

xn∈X n

Q(xn|j)Wn(Di |xn) ≤ λ, (10)

and
(iii) for any pair (i, j) with i �= j and any V ⊂ Zn

∑

xn∈X n

Q(xn|j)V n(V |xn)+
∑

xn∈X n

Q(xn|i)V n(Vc|xn) ≥ 1− λ. (11)

In contrast to the transmission problem, the decoding sets for the identification
problem are not necessarily disjoint.

Condition (iii) enforces that the wiretapper is kept with his error probability close
to 1

2 . This is the highest possible value, because the wiretapper could just accept an
i of his interest with probability 1

2 . Mathematically, condition (iii) means of course
that the output distributions for the wiretap channel are almost the same for any two
input distributionsQ(·|i) andQ(·|j).

The maximum N for which a randomized (n,N, λ)-identification code exists
is denoted by N(n, λ). Define the secrecy identification capacity of the wiretap
channel by letting

CSI = max
{
R : ∀ λ > 0 ∃ n(λ) ∀ n ≥ n(λ) N(n, λ) ≥ 22nR}.

The main result on this problem is the following:

Theorem 87 (Dichotomy Theorem) LetC be the Shannon capacity of the channel
W and let Cs be the secrecy transmission capacity of the wiretap channel, then

CSI = C, if Cs > 0, (12)
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and

CSI = 0, if Cs = 0. (13)

Remark Still it may be of interest to know whether the strong converse holds.

2 Proof of Theorem 87

In this section we prove Theorem 87. The direct part is proved in the first three
subsections and the converse part is proved in the last subsection.

Preparations for the Proof of the Direct Part
In the proof of the direct part of Theorem 87, we use a coding technique introduced
in Sect. 3 of chapter “Identification in the Presence of Feedback: A Discovery of
New Capacity Formulas”, where the identification code is constructed by means of
two fundamental codes. This coding technique has been already used for channels
with noisy feedback. By Shannon’s coding theorem, we know that for every ε > 0,
ε < C, where C is the Shannon capacity of the main channel W , there is a δ =
δ(ε) > 0 and an n0(ε) such that for n > n0(ε), there exists an (n,M, 2−nδ) code

C1 =
{
(c̃j , C̃j ) : j = 1, . . . ,M

}
(14)

where M = 2n(C−ε). This code serves as the first fundamental code which will be
used in the construction of the identification code.

For the wiretap channel, in place of the second fundamental code, we use a
code system which consists of a code of length m and a collection of subcodes
of this code. This code system should satisfy certain conditions described later. To
construct this code system, we use a RV U jointly distributed with RV’s X, Y and
Z. The joint distribution of these RV’s is of the form

PUXYZ(u, x, y, z) = q(u)r(x|u)W(y, z|x), (15)

which satisfies the condition

I (U ∧ Y ) > I (U ∧ Z). (16)

The following proposition gives the existence of a code system which
will be used in the construction of the identification code. Let W̃ (y|u) =∑
x r(x|u)W(y|x). W̃ is called the u, y-channel. Let Ṽ (z|u) = ∑x r(x|u)V (z|x).

Ṽ is called the u, z-channel.
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Proposition 88 For any ε > 0 there exists a δ(ε) > 0 and an m0 such that for any
m > m0 there exist an (m,M ′, 2−mδ) code

C2 =
{
(c′i ,D′

i ) : 1 ≤ i ≤ M ′} (17)

for the u, y-channel W̃ , whereM ′ = 2m(I (U∧Y )−ε), and L = 2mε subcodes

L = {C∗i : i = 1, . . . , L} (18)

of the code C2 with a common cardinalityM∗ = 2m(I (U∧Z)+ε) having the following
two properties:

(i) The number of common codewords of any two different subcodes is at most
εM∗.

(ii) LetQi be the uniform distribution on C∗i . Then for every pair i and j : i �= j ,

D(QiṼ
m‖Qj Ṽ m) ≤ ε.

This proposition will be proved in the third subsection.

Proof of the Direct Part of Theorem 87
Using these two fundamental codes, we can construct the identification code as
follows:

Let {1, . . . , L} be the index set of L, the set of subcodes of the second
fundamental code C2. We consider mappings of the form

φ : C1 → {1, . . . , L}. (19)

Let � be the set of all possible mappings φ. The Hamming distance of two
mappings φ and ψ is defined as the number of codewords of C1 at which φ and
ψ have different values. It can easily be seen that we can construct by the greedy
algorithm a set of mappings of cardinality at least

N = LM

∑M
k=εM

(
M
k

)
(L− 1)M−k

≥ 2MD(ε‖L−1)

M
≥ 22nC−2εn

,

where

D(ε‖L−1) = ε log
ε

L−1 + (1− ε) log
1− ε

1− L−1 ,

satisfying the property that the Hamming distance between any pair of different
mappings in the set is at leastM − εM . Let this set of mappings be

�∗ = {φi : 1 ≤ i ≤ N}, (20)
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which will be used in the construction of the identification codes. Let P be the
uniform distribution over the code C1, q∗i be the uniform distribution on the subcode
C∗i , and letQ∗

i = q∗i rm, which is a distribution on the alphabet Xm. Let mapping φi
be assigned to user i, then the distributionQ(·|i) in the identification code is defined
as follows: for xn ∈ X n and xm ∈ Xm

Q
(
(xn, xm)|i) = P(xn)Q∗

φi (xn)
(xm). (21)

The decoding set Di is defined as

Di =
M⋃

t=1

D̃t ×Dφi (c̃t ),

where

D(s) =
⋃

c′∈C∗s
D′
c′ ,

and where D̃t was defined in (14) and D′
i when c′ = c′i (which was defined in (17)).

We now estimate the first and the second kinds of error probabilities of this code.
We have for user i, the first kind of error probability is

∑

(xn,xm)∈X n+m
Q
(
(xn, xm)|i)Wn+m(Di |xn, xm) (22)

≥ 1− 1+
M∑

t=1

P(c̃t )W
n(D̃t |c̃t )− 1 (23)

+
M∑

t=1

P(c̃t )
∑

c′∈C�i(c̃t )
q∗φi(c̃t )(c

′)W̃m
(
D(φi (c̃t ))|c′) (24)

≥ 1− 2−nδ − 2−mδ. (25)

If i �= j , then the second kind error probability for the user j , when user i is to
be identified, is

∑

(xn,xm)∈X n+m
Q
(
(xn, xm)|j)Wn(Di |xn, xm)

≤ 1−
M∑

t=1

P(c̃t )W
n(D̃t |c̃t )+

M∑

t=1

P(c̃t )
∑

c′∈Cφj (c̃t )
q∗φj (c̃t )(c

′)W̃m(D(φi (c̃t ))|c′)
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≤ 2−nδ +
∑

t :φi(c̃t )=φj (c̃t )
P (c̃t )+

∑

t :φi(c̃t )�=φj (c̃t )
P (c̃t )

∑

c′∈Cφj (c̃t )
q∗φj (c̃t )(c

′)W̃m(D(φi (c̃t ))|c′)

≤ 2−nδ + ε +
∑

t :φi(c̃t )�=φj (c̃t )
P (c̃t )

∑

c′∈Cφj (c̃t )
q∗φj (c̃t )(c

′)
∑

c′′∈Cφi (c̃t )
W̃m(D′

c′′ |c′)

≤ 2−nδ + ε +
∑

t :φi(c̃t )�=φj (c̃t )
P (c̃t )

∑

c′∈Cφj (c̃t )∩Cφi (c̃t )
q∗φj (c̃t )(c

′)W̃m(D′
c′ |c′)

+
∑

t :φi(c̃t )�=φj (c̃t )
P (c̃t )

∑

c′∈Cφj (c̃t )
q∗φj (c̃t )(c

′)W̃m
(
(D′
c′)
c|c′)

≤ 2−nδ + 2ε + 2−mδ. (26)

For a fixed λ < 1
2 , let n be sufficiently large and thenm be sufficiently large and ε

sufficiently small, the requirement for these two error probabilities in the definition
of the identification code can be satisfied.

The next problem is to prove that the wiretapper can not identify, that is, we need
to prove (11).

We see that for any pair i �= j ,

D
(
Q(·|i)V n+m‖Q(·|j)V n+m)

=
∑

c̃∈C1

P(c̃)D(Qφi (c̃)V
m‖Qφj (c̃)V m

) ≤
∑

c̃∈C1

P(c̃)ε = ε. (27)

Therefore, for any region V ⊂ Zn+m, denoting by Vi the distribution
Q(·|i)V n+m and by Vj the distributionQ(·|j)V n+m, we obtain

Vi(V) log
Vi(V)
Vj (V)

+ Vi(Vc) log
Vi(Vc)
Vj (Vc)

≤ D(Vi‖Vj ) ≤ ε.

Since

D(α‖β) = α log
α

β
+ (1− α) log

1− α
1− β

= −α log

(
1+ β − α

α

)
− (1− α) log

(
1+ β − α

1− α
)

≥ −αβ − α
α

− (1− α)β − α
1− α

= 2(β − α).
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Similarly

D(β‖α) ≥ 2(α − β).

From

D(Vi‖Vj ) ≤ ε,

and

D(Vj‖Vi) ≤ ε,

we obtain

Vi(V) log
Vi(V)
Vj (V)

+ Vi(Vc) log
Vi(Vc)
Vj (Vc)

≤ ε,

and

Vj (V) log
Vj (V)
Vi(V)

+ Vj (Vc) log
Vj (Vc)
Vi(Vc)

≤ ε.

This implies

|Vi(V)− Vj (V)| ≤ ε
2
.

We can see that the last inequality implies the last requirement for the identifica-
tion code. The direct part of Theorem 2 is proved.

Proof of Proposition 88
To construct the second fundamental code with the required structure and prop-
erties, we use the random coding method. It is well known that there exists
an (m,M ′, 2−mδ) code C2. Without loss of generality, we can assume that the
distribution q of U is an m-type and C2 ⊂ T mq . To construct the random family
of subcodes of this code {C∗i : i = 1, . . . , L} satisfying the required properties, we
proceed as follows: The size of the code is M ′ = 2m(I (U∧Y )−ε) and the common
size of the subcodes is M∗ = 2m(I (U∧Z)+γ ), where the number γ is introduced in
Lemma 79. This is possible because I (U ∧ Y ) > I (U ∧Z). A subcode of this code
can be selected by using a binaryM ′-sequence s = (s1, . . . , sM ′ ), where si is either
0 or 1. A codeword c∗i is in the subcode Cs if and only if si = 1. After the code C2 is
selected, we select L = 2mε subcodes of C2. Let these subcodes be C∗i . These codes
are chosen randomly by letting for any s of weightM∗

Pr(C∗i = Cs) = 1
(
M ′
M∗
) ,
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and the selections for different i are done independently. We are going to prove that
for the random code chosen as above with probability approaching 1 as m goes to
infinity the code has the required properties.

From Lemma 80, the subcode selected satisfies the following condition with
probability approaching 1: for every D ⊂ Zm, let Q̃ be the uniform distribution
on the subcode, then

Q̃Ṽ m(D) ≤ (1+ ε)(1− e−mδ)−1QṼ m(D)+ e−mδ, (28)

Q̃Ṽ m(D) ≥ (1− ε)(1− e−mδ)QṼ m(D)− e−mδ. (29)

For sufficiently large m, we may assume that this probability is at most ε. We
prove that if two subcodes Ci and Cj both satisfy this condition, then

D(QiṼ ‖Qj Ṽ ) ≤ β(ε), (30)

where β(ε) goes to zero as ε does and where Qi denotes the uniform distribution
on the code C∗i .

This is proved as follows: Let

Dt =
{
zm :

∑

um

QiṼ
m(zm|um) > t

∑

um

Qj Ṽ
m(zm|um)

}
,

then

(1+ ε)(1− e−mδ)−1QṼ m(Dt )+ e−mδ > t(1− ε)(1− e−mδ)QṼ m(Dt )− te−mδ.

This implies

(1+ t)e−mδ > (t (1− ε)(1− e −mδ)− (1+ ε)(1− e−mδ)−1)QṼ m(Dt ),

that is

QṼ m(Dt ) <
(1+ t)e−mδ(

t (1− ε)(1− e−mδ)− (1+ ε)(1− e−mδ)−1
) .

We know that

∑
um Qi(u

m)Ṽ m(zm|um)
∑
um Qj (u

m)Ṽ m(zm|um)
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is at most eαm, where α = log max Ṽ (z|u)
min Ṽ (z|u) . Letting t = (1+ε)2(1−e−mδ)−1

(1−ε)(1−e−mδ) , we obtain

D(QiṼ ‖Qj Ṽ ) ≤ (1+ t)e
−mδ(1− e−mδ)
ε(1+ ε) mα + log t . (31)

We can easily see that the right hand side of (31) approaches zero as m goes to
infinity and then ε goes to zero.

By randomly selecting L subcodes, then deleting those subcodes for which the
conditions in the lemma are not satisfied, the number of remaining subcodes is in
average at least L(1 − ε). This is enough for our purpose.

We now prove that the intersection of two subcodes has more than εM∗ code-
words with doubly exponentially small probability. This is done by the following
calculation:

Pr(|Ci ∩ Cj | > εM∗) ≤ M∗
(
M∗
εM∗
)(
M ′−M∗
(1−ε)M∗

)

(
M ′
M∗
) ,

which is doubly exponentially small. This proves that with probability approaching
1, any pair of the subcodes satisfy the condition that their intersection has a size at
most εM∗. The proposition is proved.

Proof of the Converse Part
We begin with the following lemma.

Lemma 89 LetQ1 andQ2 be two distributions on Zm and for any V ⊂ Zm,

Q1(V)+Q2(Vc) > 1− ε, (32)

and let U be a binary RV with uniform distribution and V (zm|U = i) = Qi for
i = 1, 2 then

I (U ∧ Zm) ≤ inf
x>0

{
2

x
+ log

1

1− 1
2xε

}
. (33)

Proof Let

Vt =
{
zm : Q1(z

m) < tQ2(z
m)
}
,

then

Q1(V1)+Q2(Vc1) ≤ tQ2(Vt )+ 1−Q2(Vt ).
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Therefore,

tQ2(Vt )+ 1−Q2(Vt ) > 1− ε.

This implies

(1− t)Q2(Vt ) < ε,

that is, for 0 ≤ t < 1

Q2(Vt ) <
ε

1− t .

Similarly, for t > 1,

Q1(Vc1) <
tε

t − 1
.

Therefore, for any 0 ≤ t < 1,

I (U ∧ Zm) =
∑

zm

1

2
Q1(z

m) log
1
2Q1(z

m)

1
4 (Q1(zm)+Q2(zm))

+ 1

2
Q2(z

m) log
1
2Q2(z

m)

1
4 (Q1(zm)+Q2(zm))

.

For any t , 0 ≤ t < 1, we have for zm /∈ Vt ∪ Vc1
t

∣∣∣∣∣log
1
2Q1(z

m)

1
4 (Q1(zm)+ q2(zm))

∣∣∣∣∣ ≤ 1+ log
1

1+ t ,

and for any zm

1

2
Q1(z

m) log
1
2Q1(z

m)

1
4 (Q1(zm)+Q2(zm))

+ 1

2
Q2(z

m) log
1
2Q2(z

m)

1
4 (Q1(zm)+Q2(zm))

≤ 1

2

(
Q1(z

m)+Q2(z
m)
)
.
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Therefore

I (U ∧ Zm) ≤
∑

zm∈Vt∪Vc1
t

Q1(z
m) log

1
2Q1(z

m)

1
4 (Q1(zm)+Q2(zm))

+ 1

2
Q2(z

m) log
1
2Q2(z

m)

1
4 (Q1(zm)+Q2(zm))

+ 1+ log
1

1+ t

≤ 1

2

(
Q1(Vt )+Q2(Vt )+Q1(Vc1

t

)
)+ 1+ log

1

1+ t
≤ (1+ t) ε

1− t + 1+ log
1

1+ t .

Taking t = 1− xε, we obtain

I (U ∧ Zm) ≤ 2

x
+ log

1

1− 1
2xε

.

This proves the lemma. ��
Lemma 90 Let Q1 and Q2 be two distributions on Zm for which there exists a
V ⊂ Zm such that

Q1(V)+Q2(Vc) < ε, (34)

and let U be a binary RV with uniform distribution and V (zm|U = i) = Qi for
i = 1, 2, then

I (U ∧ Zm) ≥ h
(

1

2
(1− ε)

)
. (35)

Proof

I (U ∧ Zm) (36)

≥ −
[

1

2
Q1(V) log

Q1(V)+Q2(V)
2Q1(V)

+ 1

2
Q2(V) log

Q1(V)+Q2(V)
2Q2(V)

+ 1

2
Q1(Vc) log

Q1(Vc)+Q2(Vc)
2Q1(Vc)

+ 1

2
Q2(Vc) log

Q1(Vc)+Q2(Vc)
2Q2(Vc)

]

≥ h
(

1

2
(1− ε)

)
. (37)

��
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The existence of the identification code at a positive rate implies the existence of
distributionsQ(·|i) and decoding regions Di such that

1. for all i

∑

xn∈X n

Q(xn|i)Wn(Di |xn) ≥ 1− λ, (38)

2. for any pair i �= j
∑

xn∈X n

Q(xn|j)Wn(Di |xn) ≤ λ, (39)

and
3. for any pair i �= j and any V ⊂ Zn

∑

xn∈X n

Q(xn|j)V n(V |xn)+
∑

xn∈X n

Q(xn|i)V n(Vc|xn) ≥ 1− λ. (40)

From the first two properties, we obtain

∑

xn∈X n

Q(xn|i)Wn(Dci |xn)+
∑

xn∈X n

Q(xn|j)Wn(Di |xn) ≤ 2λ,

which implies by Lemma 89 that for the RV U defined there we have

I (U ∧ Yn) ≥ h
(

1

2
(1− 2λ)

)
.

By the third property and Lemma 81, the same RV U satisfies

I (U ∧ Zn) ≤ inf
x>0

{
2

x
+ log

1

1− 1
2xλ

}
.

Then λ is small enough, we obtain the following conclusion: there exists a RV U
satisfying

(i) U → Xm → YmZm

(ii) I (U ∧ Ym) > I (U ∧ Zm).
The converse part is proved by noticing the following fact.

Proposition 91 If there exists anm and a U satisfying the requirements (i) and (ii),
then

Cs > 0.
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Proof

0 < I (U ∧ Ym)− I (U ∧ Zm)

=
m∑

t=1

I (U∧Yt |Y1, . . . , Yt−1, Zt+1, . . . , Zm)−I (U∧Zt |Y1, . . . , Yt−1, Zt+1, . . . , Zm).

Therefore, there exists a t such that

I (U ∧ Y1|Y1, . . . , Yt−1, Zt+1, . . . , Zm)− I (U ∧Zt |Y1, . . . , Yt−1, Zt+1, . . . , Zm) > 0,

which implies

C2 > 0.

The converse is proved. ��
Remark 92 Inspection of the proof shows that the possibility of “safe” identification
for two options (or for one bit) implies “safe” identification at rate equal to
Shannon’s capacity.
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Part II
A General Theory of Information Transfer



Introduction

We report on ideas, problems and results, which occupied us during the past
decade and which seem to extend the frontiers of information theory in several
directions. The main contributions concern information transfer by channels. There
are also new questions and some answers in new models of source coding. While
many of our investigations are in an explorative state, there are also hard cores
of mathematical theories. In particular we present a unified theory of information
transfer, which naturally incorporates Shannon’s theory of information transmission
and the theory of identification in the presence of noise as extremal cases. It
provides several novel coding theorems. On the source coding side we introduce
data compression for identification. Finally we are led beyond information theory to
new concepts of solutions for probabilistic algorithms.

The original paper [3] gave to and received from a ZIF-project1 essential stimu-
lations which resulted in contributions added as supplements “Search and channels
with feedback” and “Noiseless coding for multiple purposes: a combinatorial
model” to [4].

Other contributions—also to areas initiated—are published in the book [4].
We have included in the references several articles and books [6–9, 12], which

deal with information not just in a more or less technical engineering sense. They
are meant to enlarge our horizon, stimulate our awareness of what is unknown about
“information”, and to bring us into the spirit for new adventures. Some questions
from [6] give indications of the kind of thoughts which took us into their chains.

In the Appendix of [6] one finds the following definition or explication of the
concept “communication”:

1Zentrum für interdisziplinäre Forschung (Center for Interdisciplinary Research), Bielefeld Uni-
versity.
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“The establishment of a social unit from individuals, by the shared usage of
language or signs. The sharing of common sets of rules, for various goal-seeking
activities. (There are many shades of opinions.)”

Again in [6] on page 41 we read:
“Perhaps the most important technical development which has assisted in the

birth of communication theory is that of telegraphy. With its introduction the speed
of transmission of “intelligence” arose. When its economic value was fully realized,
the problems of compressing signals exercised many minds, leading eventually to
the concept of “quantity of information” and to theories of times and speed of
signaling.”

and on page 43:
“Hartley went further and defined information as the successive selection of signs

or words from a given list, rejecting all “meaning” as a more subjective factor (it is
the signs we transmit, or physical signs; we do not transmit their “meaning”). He
showed that a message of N signs chosen from an “alphabet” or code book of S
signs has SN possibilities and that the “quantity of information” is most reasonably
defined as the logarithm, that is, H = N log S.”

This concept of information is closely related to the idea of selection, or
discrimination and therefore sometimes called selective-information. It is also at
the very basis of Shannon’s celebrated statistical theory of communication [10].

This theory has by now been developed into a sophisticated mathematical
discipline with many branches and facets. Sometimes more concrete engineering
problems led to or gave the incentive to new directions of research and in other cases
new discoveries were made by exploring inherent properties of the mathematical
structures. Some of our views on the state of this theory, to which we also shall refer
as the “Shannon Island”, are expressed in [1].

The price for every good theory is simplification and its permanent challenge is
reality.

“We live in a world vibrating with information” and in most cases we don’t know
how the information is processed or even what it is at the semantic and pragmatic
levels. How does our brain deal with information? It is still worthwhile to read von
Neumann’s ideas about this [9].

Cherry writes on page of [6]:
“It is remarkable that human communication works at all, for so much seems to

be against it; yet it does. The fact that it does depend principally upon the vast store
of habits which one of us possess, the imprints of all our past experiences. With
this, we can hear snatches of speech, the vague gestures and grimaces, and from this
shreds of evidence we are able to make a continual series of inferences, guesses,
with extra ordinary effectiveness.”

We shall discuss the issue of “prior knowledge” later and we shall show that
some aspects are accessible to a rigorous mathematical treatment.

There are various stimuli concerning the concepts of communication and infor-
mation from the sciences, for instance from quantum theory in physics, the theory
of learning in psychology [8], theories in linguistics [11], etc.

These hints give an idea of the size of the ocean around the Shannon Island.
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We don’t have the intention to drown in this ocean. However, since the ocean is
large there ought to be some other islands. In fact there are.

Among those, which are fairly close to the Shannon Island we can see

1. Mathematical Statistics
2. Communication Networks
3. Computer Storage and Distributive Computing
4. Memory Cells

Since those islands are close there is hope that they can be connected by dams.
A first attempt to explore connections between multi-user source coding and

hypothesis testing was made in [5]. For interesting ideas about relations between
multiple-access channels and communication networks see Gallager [7]. A multi-
tude of challenges to information theory comes from computer science. A proper
frame for storage in memory cells is our abstract coding theory [1]. Our work
on identification has led us to reconsider the basic assumptions of Shannon’s
theory. It deals with “messages”, which are elements of a prescribed set of objects,
known to the communicators. The receiver wants to know the true message. This
basic model occurring in all engineering work on communication channels and
networks addresses a very special communication situation. More generally they
are characterized by

(I) The questions of the receivers concerning the given “ensemble”, to be
answered by the sender(s)

(II) The prior knowledge of the receivers
(III) The senders prior knowledge.

Accordingly Part II consists of three lecture.
It seems that the whole body of present day information theory will undergo

serious revisions and some dramatic expansions. We open several directions of
future research and start the mathematical description of communication models
in great generality. For some specific problems we provide solutions or ideas for
their solutions.

We continue in chapter “Identification and Transmission with Multi-way Chan-
nels” with (promised) capacity theorems for identification via multi-way channels.
We also study identification in conjunction with transmission.

The proof of the “polynomial” weak converse is new even for the discrete
memoryless channel (DMC).

In chapter “Data Compression” we discuss a new direction of research on
sources, which goes back to a problem of [2]: noiseless coding for multiple
purposes. It stimulated to go for a new concept: identification for sources.

Chapter “Perspectives” concludes with striking results on the relation of identifi-
cation and common randomness and a general discussion.
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One Sender Answering Several Questions
of Receivers

1 A General Communication Model for One Sender

To simplify matters we assume first that the noise is modeled by a DMC with finite
input (resp. output) alphabet X (resp. Y) and transmission matrixW .

The goal in the classical Shannon communication theory is to transmit many
messages reliably over this channel. This is done by coding. An (n,M, λ)-code is a
system of pairs

{
(ui,Di ) : 1 ≤ i ≤ M} with ui ∈ X n,Di ⊂ Yn and

Di ∩Di′ = ∅ for all i �= i ′, (1)

Wn(Dci |ui) ≤ λ for all i = 1, . . . ,M. (2)

Given a set of messages M = {1, . . . ,M}, by assigning i to codeword ui we
can transmit a message from M in blocklength n over the channel with a maximal
error probability less than λ. Notice that the underlying assumption in this classical
transmission problem is that both, sender and receiver, know that the message is
from a specified set M. They also know the code. The receiver’s goal is to get to
know the message sent. Having received an element in decoding set Di he decides
for codeword ui and then for message i. By the assumptions his (maximal) error
probability is bounded by λ.

An (n,M, λ) transmission code with randomization assigns to message i a
probability distribution Pi on X n, for which

∑

xn∈X n

Wn(Dci |xn)Pi(xn) ≤ λ.
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Observe that for some vi ∈ X n

Wn(Dci |vi) ≤
∑

xn∈X n

Wn(Dci |xn)Pi(xn) ≤ λ

and that therefore the code {(Pi,Di ) : 1 ≤ i ≤ M} with randomization in the
encoding can be replaced by the (deterministic) code {(vi,Di ) : 1 ≤ i ≤ M}
satisfying also the bound λ on the error probability. Obviously the same reduction
holds for channels without time structure.

This implies that randomization is of no advantage for transmission over one-
way channels like the DMC. However, it has a dramatic effect on performance
for identification. To fix ideas, transmission concerns the question “How many
messages can we transmit over a noisy channel?” One tries to give an answer to
the question “What is the actual message from M = {1, . . . ,M}?”

On the other hand in identification it is asked “How many possible messages can
the receiver of a noisy channel identify?” One tries to give an answer to the question
“Is the actual message i?” Here i can be any member of the set of possible messages
N = {1, 2, . . . , N}.

Certain error probabilities are again permitted. From the theory of transmission
one cannot derive answers for these questions in the theory of identification, which
therefore goes beyond Shannon’s theory.

An (n,N, λ) identification code for the DMC with transmission probability
matrix W is a system of pairs

{
(Pi,Di ) : 1 ≤ i ≤ N

}
with Pi ∈ P(X n) and

Di ⊂ X n with error probability of misacceptance and also misrejection less than λ,
that is,

∑

xn

Pi(x
n)Wn(Di |xn) > 1− λ for all i

and

∑

xn

Pi(x
n)Wn(Dj |xn) < λ for all i �= j.

We know from [5] (see chapter “Identification via Channels”, Part I) that any
(second order) rate R < CpolSh = C is achievable for any λ > 0 and all large n,
that is, there are (n,N, λ) codes with R ≤ 1

n
log logN .

It is convenient to introduce the maximal code size

N(n, λ) = max
{
N : (n,N, λ) code exists

}
.
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Already in [5] it was shown that for any exponentially small sequence of error
probabilities λn = e−εn (ε > 0)

lim sup
n→∞

1

n
log logN(n, λn) ≤ C.

This converse was named soft converse in [5]. We use here the more instructive
name “exponential weak converse”.

The (classical) weak converse states that

inf
λ>0

lim sup
n→∞

1

n
log logN(n, λ) ≤ C.

As a statement between these two we introduce now a polynomial weak converse:
For some α > 0

lim sup
n→∞

1

n
log logN

(
n,

1

nα

)
≤ C.

Such a statement was derived for α = 1 (see Sect. 3).
Again already in [5] a version of the strong converse was conjectured:

lim sup
n→∞

1

n
log logN(n, λ) ≤ C for all 0 ≤ λ < 1/2.

In case of feedback this was proved in [6] and the conjecture of [5] was
established by Han/Verdú [11] and with a simpler proof in [12].

Remark The capacity concept used in [5, 6] (chapters “Identification via Channels”
and “Identification in the Presence of Feedback: A Discovery of New Capac-
ity Formulas”, Part I) is often called pessimistic capacity, that is, the maximal
rate achievable with arbitrary small constant error probability λ. Sometimes in the
literature also the optimistic capacity C̄ is used. Actually for many channels (like
for instance non-stationary memoryless channels) other performance criteria like
capacity functions say more about them. This is discussed in great detail in [3]. In
this lecture we discuss only pessimistic capacities C, Cpolpol, and Cexp where the
latter are defined as optimal rates achievable for all polynomial error probabilities
λn = n−α , α > 0, resp. exponential error probabilities λn = 2−εn with some small
ε > 0. It is important to notice that in order to establish a number as the (pessimistic)
capacity neither strong nor weak converses are necessary. Furthermore, C ≥
Cpolpol ≥ Cexp and for instance for the DMC it is easy to prove that Cexp ≥ C

and these capacities are equal. The same holds for regions of the multiple access
channel (MAC) and can also be shown for regions for identification following the
direct proofs of chapters “Identification via Channels” and “Identification in the
Presence of Feedback: A Discovery of New Capacity Formulas”, Part I, which are
based on transmission codes and for maximal errors can be improved also by the
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Ahlswede/Dueck local converse [4]. It is essential that one stays near to memoryless
channels; in general the concepts go apart.

One can conceive of many situations in which the receiver has (or many receivers
have) different goals. They lead to decoding rules with not necessarily disjoint
decoding sets.

A nice class of such situations can, abstractly, be described by a family �(M)

of partitions of M. Each π ∈ �(M) is associated with a receiver, who wants to
know only which member of the partition π = (A1, . . . , Ar) contains m, the true
message, which is known to the encoder.

We describe now some seemingly natural families of partitions.

Model 1: �S = {πpolSh}, πpolSh = {{m} : m ∈ M
}
. This describes

Shannon’s classical transmission problem stated above.
Model 2: �I = {πm : m ∈ M} with πm = {{m},M \ {m}}. Here decoder
πm wants to know whether m occurred or not. This is the identification problem
introduced in chapter “Identification via Channels”.

Model 3: �K = {πS : |S| = K,S ⊂ M} with πS = {S,M \ S}.
This is an interesting generalisation of the identification problem. We call it
K-identification.
This case also arises in several situations. For instance every person πS may have
a set S ofK closest friends and the sender knows that one personm ∈M is sick.
All persons πS want to know whether one of their friends is sick.

Model 4: �R = {
πr : πr =

{{1, . . . , r}, {r + 1, . . . ,M}}, 1 ≤ r ≤ M − 1
}
.

Here decoder πr wants to know whether the true message exceeds r or not. We
speak of the ranking problem.

Model 5: �B = {πA : A ⊂ M}. A receiver associated with πA = {A,M \A}
wants to know the answer to the binary question “Is m in A?” (Here, of course,
πA and πM\A can be viewed as the same questions).

Model 6: M = {0, 1}�, �C = {πt : 1 ≤ t ≤ �} with πt =
{{(x1, . . . , x�) ∈

M : xt = 1}, {(x1, . . . , x�) ∈ M : xt = 0}}. Decoder πt wants to know the t th
component of the vector valued message (x1, . . . , x�).

In all these models we can consider the first (or second) order capacities, defined
analogously to those in models 1, 2, where they are known from chapters “Identifica-
tion via Channels” and “Identification in the Presence of Feedback: A Discovery of
New Capacity Formulas”. It is shown in Sect. 3 that for models 4 and 5 the capacities
equal Shannon’s transmission capacity.

The most challenging problem is the generalK-identification problem of Model
3. For convenience, we define

(M
K

)
� {S ⊂M : |S| = K}

as the set of subsets of size K . Here an (n,N,K, λ)-code is a family of pairs{
(P (·|i),Dπ ) : 1 ≤ i ≤ N,π ∈ �K

}
, where the P(·|i)’s are PD’s on X n,
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Dπ ⊂ Yn, and where for all π = {S,M \ S} with S ∈ (M
K

)

∑

xn

P (xn|i)Wn(Dcπ |xn) ≤ λ for all i ∈ S,

∑

xn

P (xn|i)Wn(Dπ |xn) ≤ λ for all i /∈ S. (3)

We also write DS instead of Dπ . A coding theorem is established in Sect. 2.

Remarks

1. K-identification applies whenever persons want to know whether a winner is
among their favorite teams or lottery numbers or friends.

2. Most models fall into the following category of regular transfer models. By this
we mean that the set of partitions � of M is invariant under all permutations
σ :M→M:

π = (A1, . . . , Ar) ∈ � �⇒ σπ = (σ(A1), . . . , σ (Ar)
) ∈ �.

3. Many of the models introduced concern bivariate partitions. More generally they
are described by a hypergraph H = (M, E), where decoder E,E ∈ E , wants to
know whether the m occurred is in E or not.

Examples

1. In a certain lottery a player can choose � of the numbers 1, . . . , L, say,
{a1, . . . , a�}. A set {b1, . . . , b�} of � numbers is chosen at random.

Suppose that T players have chosen {a1
1, . . . , a

1
� }, . . . , {aT1 , . . . , aT� }, resp.

Every player wants to know whether he won, that shall mean, whether he has
at least �− 1 correct numbers: For the tth player

|{at1, . . . , at�} ∩ {b1, . . . , b�}| ≥ �− 1.

How many bits have to be transmitted in a randomized encoding, so that every
player knows with high probability, whether he won.

2. Lets view the elements of {1, . . . , a}n as sequences of events. Historians (or
observers of stockmarkets) have each their subsequence of events, say,

(t11 , . . . , t
1
s1
), . . . , (t�1 , . . . , t

�
s�
).

The � persons are to be informed with high probability correctly about the
correct sequence of events. (Idea of binning, see [1, 2, 17]).

3. In some countries 40% of the healthy men of an age-class are drafted by random
selection. Every candidate wants to know with high probability correctly whether
he is among them. This falls under Model 6.
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2 Analysis of a Specific Model: K-Identification

A Relation to Standard Identification
Recall the definition of an (n,N,K, λ) code given in Sect. 1. For reasons, which
become apparent soon, we assume K to grow exponentially in the blocklength n,
that is,

K = 2κ·n, (4)

where κ is called a first order rate.
As for the standard identification problem (K = 1, κ = 0) N can grow double

exponentially, that is,

N = 22Rn, R > 0, (5)

where R is called a second order rate.
The pair (R, κ) is achievable, if for any λ > 0, δ > 0 and all sufficiently large n(
n, 22(R−δ)n , 2(κ−δ)n, λ

)
-codes exist.

Proposition 93 For every DMC the set K of all achievable rate pairs contains

{
(R, κ) : 0 ≤ R, κ;R + 2κ ≤ CpolSh

}
,

where CpolSh is Shannon’s familiar capacity of the DMC.

Proof In chapter “Identification via Channels”, Part I, the achievable triples
(R, η1, η2) of second order rateR and error exponentsη1, η2 have been investigated.
Theorem 13 completely characterizes the set of achievable pairs (R, η2) in the limit
η1 → 0 as follows:

lim
η1→0

{
(R, η2) : (R1, η1, η2) is achievable

} = {(R, η2) : R ≤ CpolSh− 2η2
}
.

(6)

Now, any identification code
{
(Pi,Di ) : 1 ≤ i ≤ N}with parameters (R, η1, η2)

has an associated K-identification code
{
Pi ,DS : 1 ≤ i ≤ N, S ∈ (N

K

)}
, where

DS =
⋃

i∈S
Di , (7)

meeting the parameters (R, κ, η1, η2 − κ).
This means that

∑

xn

Pi(x
n)Wn(DS |xn) ≥ 1− 2−nη1 for all i ∈ S
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and

∑

xn

Pi(x
n)Wn(DS |xn) ≤ K2−nη2 = 2−n(η2−κ) for all i /∈ S.

These inequalities and (6) imply that for sufficiently small η1 there exists for all
pairs of rates (R, κ) with R ≤ CpolSh− 2κ − δ an η2 > κ satisfying (6) such that
for n large enough all error probabilities above fall below any λ > 0. ��
Remark Especially, for κ = 0, Proposition 93 gives the standard coding theorem
for identification.

There is a very important connection to r-cover-free families.
A family of sets F is called r-cover-free if A0 �⊂ A1 ∪ A2 ∪ · · · ∪ Ar holds for

all distinct A0, A1, . . . , Ar ∈ F . Let M(n, r) denote the maximum cardinality of
such an F over an n-element underlying set. This notion was introduced in terms of
superimposed codes in [14], where for suitable constants c1, c2 the inequalities

c1

r2 ≤
logM(n, r)

n
≤ c2

r

were proved. This result was rediscovered several times. In [9], with a rather
complicated proof, the upper bound was improved to

logM(n, r)

n
≤ 2

log r +O(1)
r2 .

After the purely combinatorial proof of [10] by a simpler argument (implicitly
contained in [9]) the slightly weaker bound

logM(n, r)

n
≤ 4

log r +O(1)
r2

was obtained in [16]. Let a = |X |. With the replacements r → aκn, n → an we
obtain

logM(an, aκn)

an
≤ c · log aκn

a2κn

and thus

Rn �
log logM(an, aκn)

n
≤ (1− 2κ) log a + o(1). (8)

In particular, for a = 2, R ≤ 1− 2κ .
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This raises the question of optimality of the bound in Proposition 1. For its
answer one needs a suitable bound for r-cover-free uniform families F of subsets,
each of cardinality � exponential in n. However, the existing bounds are too rough!

Technically very simple is the case of K-identification for noiseless channels,
if we require the error of first kind to be 0, because thus DS equals the union of
the support sets Di for the random strategies Pi(i ∈ S) and to just obtain error
probability of second kind to be less than 1, necessarily Dj �⊂ DS for j /∈ S. Now
the bound on aκn-cover-free families is applicable.

Proposition 94 In the noiseless case and for zero error probability of first kind the
bound in Proposition 93 is tight.

Notice that in our definition of achievability of a pair (R, κ) we required
the existence of (n,N,K, λ)-codes for all small λ > 0 and n large. It is very
convenient to introduce the concept of λ(n)-achievable pairs (R, κ) by the property
that for all large n (n,N,K, λ(n))-codes exist. Moreover (R, κ) shall be called
polynomially achievable, if for λ(n) = n−α , with arbitrary α > 0 and n large,
(n,N,K, λ(n))-codes exist. Similarly (R, κ) is exponentially achievable, if for an
ε > 0 it is λ(n)-achievable for λ(n) = e−εn.

Correspondingly we speak about Kλ(n), the region Kpolpol of polynomially
achievable rate pairs and the region Kexp of exponentially achievable rate pairs.

This terminology is consistent with the terminology for converses, which we
introduced in Sect. 1. Further qualifications for several kinds of probabilities are
given when needed. Actually for many coding problems several regions coincide.
However, as long as we don’t know this it is convenient to have this flexible
language.

An Equivalence of Two Coding Problems
Let us start with an (n,N,K, λ)-code

{
Pi,DS : 1 ≤ i ≤ N, S ∈ (N

K

)}
.

We say that S is λ∗-decodable for this code, if there is a partition ES = {Es : s ∈
S} of DS such that

∑

xn

Wn(Es |xn)Ps(xn) ≥ 1− λ∗ for all s ∈ S. (9)

If for an (n,N,K, λ)-code every S ∈ (N
K

)
is λ∗-decodable, then we speak of an

(n,N,K, λ, λ∗)-code. K∗ denotes the set of pairs of rates for such codes, which are
achievable for every λ > 0, λ∗ > 0.

Theorem 95 (Equivalence Theorem 1) For every DMC

Kpolpol ⊂ K∗ ⊂ K.
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Proof Obviously, K∗ ⊂ K. The rate pairs in Kpolpol are achievable for every

λ(n) = n−α . We show now that an (n,N,K, λ)-code with N = 22Rn,K =
2�κn�, λ(n) can be transformed in an

(
n,N,K, λ(n), λ∗(n)

)
-code with

λ∗(n) ≤ �κn�λ(n). (10)

Fix any S ∈ (N
K

)
and label its elements by the mapping

ϕ : S → {0, 1}�κn�. (11)

Then define for j = 1, 2, . . . , �κn�

Sj =
{
s ∈ S : ϕ(s)j = 1

}
(12)

and

Sj = Sj ∪ S for all S ⊂ N \ S, |S| = 1

2
K. (13)

The Sj ’s are elements of
(N
K

)
and the Sj ’s (and also the Sj ’s) form a separating

system on S : for every s, s′ ∈ S, s �= s′, we have for some j

s ∈ Sj and s′ /∈ Sj . (14)

Introduce now the function εj : S → {0, 1} by

εj (s) =
{

1 if s ∈ Sj
0 if s ∈ Scj

and use the conventionA1 = A and A0 = Ac.
Then the sets

Es �
�κn�⋂

j=1

(DSj )εj (s), s ∈ S, (15)

are disjoint, because for s �= s′ there is an Sj with s ∈ Sj and s′ /∈ Sj and so
εj (s) �= εj (s′).

Finally, we have by the properties of the original code

∑

xn

Wn(Es |xn)Ps(xn) ≥ 1− �nκ�λ(n), s ∈ S. (16)

The choice λ(n) = 1
n2 is good enough. Every S is λ∗-decodable.
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Furthermore, it becomes an exercise to show that the same argument also yields
for a DMC a relation weaker than Proposition 93, namely

K ⊃ {(R, κ) : R + 2κ ≤ Cpoler
}
,

where Cpoler is the erasure capacity (c.f. [8]).
Indeed, for an erasure code

{
(ui,Di ) : 1 ≤ i ≤ M} with erasure probability ε

we have

Wn(Dj |ui) = 0 for all i �= j

Wn(Di |ui) ≥ 1− ε; i = 1, . . . ,M.

In the previous argument we can replace {0, 1}n by U = {u1, . . . , uM}.
Subcodes of cardinalities 2ρn and intersecting in at most 2−κn2ρn words give rise to
identification codes (by averaging) of error probability of second kind λ2 ≤ 2−κn.

The erasure probability is only relevant for the error probability of first kind.
From here on we apply Gilbert’s bound with 2n replaced by 2ρn; ρ ≥ κ , ρ ≤

Cpoler. ��
Remark

• λ − K-identification, λ∗-decodable codes give rise to associated identification
codes with error probabilities smaller than λ+ λ∗ by assigning to every i ∈ N a
K-element subset Si containing i and the decoding set Di = Ei ∈ ESi . Therefore
R < CpolSh, and by Shannon’s coding theorem also κ ≤ CpolSh.

• There is another instructive relation. Let us view
(N
K

)
as set M of objects, one

of which, say S, is given to the sender for encoding. The receiver wants to know
whether it equals S′ (any element of M) or not. This is a standard identification
problem with |M| = (N

K

)
.

Since 1
n

log log |M| cannot exceed CpolSh, we see that for K = 2κn and N =
22Rn

(
N
K

) ∼ 22(κ+R)n � 22CpolSh·n , or κ + R ≤ CpolSh. Thus κ cannot exceed
CpolSh. Actually, this is true even ifN grows exponentially only, say likeN = 2εn,
ε > κ , because then

22CpolShn �
(
N

K

)
=
(

2εn

2κn

)
≥ 2(εn−κn)2κn ≥ 22κn gives κ ≤ CpolSh.

An Outer Bound on the Capacity RegionK
The simple idea here is to work with a “net” S ⊂ (N

K

)
“almost” of cardinality NK .
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View a set S as 0-1-sequence of length N = 22Rn with exactly K = 2κn 1’s. By
Gilbert’s bound we can find S = {S1, S2, . . . , SÑ } with the properties

|Si$Sj | ≥ (1− α)2K, 0 < α < 1,

Ñ ≥
(
N

K

)[
2K(N −K)(1−α)K]−1

.

Therefore

Ñ � NαK = 22Rn·α2κn = 2α2(R+κ)n

and

1

n
log log Ñ ≥ R + κ − 1

n
| logα|.

We summarize this.

Lemma 96 For every α ∈ (0, 1) there is a family S = {S1, . . . , SÑ } ⊂
(N
K

)
with

(i) |Si$Sj | ≥ (1− α)2K and |Si ∩ Sj | ≤ αK .
(ii) R + κ − 1

n
| logα| ≤ 1

n
log log |S| ≤ 1

n
log log

(
N
K

) ≤ R + κ .
We can therefore by (ii) upperbound

(
N
K

)
by upperbounding |S|. For this we relate

S to a standard identification problem. For S ∈ S define PS ∈ P(X n) by

PS(x
n) = 1

K

∑

i∈S
P (xn|i), xn ∈ X n, (17)

if P(·|i) is the randomized encoding for i. Now by Lemma 96(i) and the code
definition in (1) and (2) we have for S, S′ ∈ S, S �= S′,

∑

xn

PS(x
n)Wn(DS |xn) ≥ 1− λ

and

∑

xn

PS(x
n)Wn(DS ′ |xn) ≤ λ+ α.

This is an (n, |S|, λ′) identification code with

λ′ = λ+ α ≥ λ.

By the weak converse in Sect. 2 of chapter “Identification and Transmission
with Multi-way Channels” and Lemma 96 (ii) we get the desired bound for K.
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The same proof works for the K-separating codes of Sect. 2 of chapter “Models
with Prior Knowledge of the Receiver”, if we define DE = ⋃

i∈E
DE,i .

So for this capacity region K++ we have the same bound.

Proposition 97 K ⊂ {(R, κ) : R + κ ≤ CpolSh
}
.

Remark There is a very simple proof for the noiseless BSC. Since the decoding sets
DS are distinct, it follows that

∣∣∣∣

(N
K

)∣∣∣∣ ≤ 22n and thus
1

n
log logNK = 1

n
log logN + 1

n
logK = R + κ ≤ 1.

Remark The two Propositions 93 and 94 imply for κ = 0 the standard identification
capacity theorem.

Remark Using also Theorem 95 we see that for R = 0 we get the converse to
Shannon’s Coding Theorem and only the achievable rate 1

2CpolSh!

On K-identification in Case of Noiseless Feedback
As in chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas”, Part I, we assume the presence of a letter by letter noiseless
feedback link. Again deterministic encoding functions for i are denoted by f ni and
randomized encoding functions for i are denoted by Fni . The corresponding regions

of achievable rate pairs are denoted by Kf and KF . Analogously, if all S ∈ (N
K

)

are λ-decodable we denote the regions by K∗
f and K∗

F . We formulate now results,
which are analog to those in the two previous subsections. Notice that the argument
leading to (16) applies also in cases of deterministic and randomized feedback
strategies. The results in [7] (see chapter “On Identification via Multi-Way Channels
with Feedback: Mystery Numbers”), including constructive coding strategies, go
considerably beyond [6] (see chapter “Identification in the Presence of Feedback:
A Discovery of New Capacity Formulas”) and also, if necessary, chapter “On
Identification via Multi-Way Channels with Feedback: Mystery Numbers” can be
consulted for detailed definitions of all concepts used in this section, when they are
not immediately clear.

Theorem 98 (Equivalence Theorem 2) For every DMC

(i) Kf polpol ⊂ K∗
f ⊂ Kf

(ii) KF polpol ⊂ K∗
F ⊂ KF .

Proposition 99 For every DMC W

KF ⊂
{
(R, κ) : R + κ ≤ max

P∈P(X )
H (Q)

}
,

whereQ = PW .

We use our entropy property for all discrete distributions.
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Lemma 100 (Included in [7], chapter “On Identification via Multi-Way Chan-
nels with Feedback: Mystery Numbers”) For P = (P1, P2, . . . ) ∈ P(N) define

ε(d, P ) = max

⎧
⎨

⎩
∑

j∈J
Pj : J ⊂ N, |J | = 2�H(P)d�+1

⎫
⎬

⎭ ,

and set

ε(d) = min
P∈P(N)

ε(d, P ).

Then

ε(d) = 1− 1

d
for all d ≥ 1.

Proof (Proof of Proposition 99) In any (n,N,K, λ)-code with feedback

{
(Fi,DS) : 1 ≤ i ≤ N; S ∈

(N
K

)}

let Yni be the output process generated by Fi via the channel. Furthermore define the
process YnS by the distribution

Pr(Y nS = yn) =
1

K

∑

i∈S
Pr(Y ni = yn).

By assumption

Pr(Y ni ∈ DS) ≥ 1− λ, if i ∈ S, (18)

Pr(Y ni ∈ DS ′) ≤ λ, if i /∈ S′. (19)

By Lemma 100 there are sets ES ⊂ Yn
(
S ∈ (N

K

))
with

Pr(Y nS ∈ ES) ≥ 1− 1

d
, (20)

|ES | ≤ 2�d H(YnS )�+1. (21)

We show later that the net S ⊂ (N
K

)
with the properties (i), (ii) in Lemma 96

satisfies

DS ∩ ES �= DS ′ ∩ ES ′ for all S, S′ ∈ S; S �= S′, (22)

provided that λ is sufficiently small.
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We know from chapter “Identification in the Presence of Feedback: A Discovery
of New Capacity Formulas”, Part I, that

H(YnS ) ≤ n max
P :Q=PW H(Q) = H (say). (23)

Therefore by (21) and (22)

|S| ≤ 22dnH (24)

and since d can be made arbitrarily close to 1 we conclude that

|S| % NK � 22g(λ)nH (25)

with lim
λ→0

g(λ) = 1 (weak converse).

Therefore

1

n
log logNK = 1

n
(logK + log logN) = κ + R ≤ H g(λ).

It remains to be seen that (22) holds.
Suppose that for S, S′ ∈ S, ES ∩DS = ES ′ ∩DS ′ . Then by (18) and (20)

Pr(Y nS ′ ∈ ES ′ ∩DS ′) = Pr(Y nS ′ ∈ ES ∩DS) ≥ 1− 1

d
− λ. (26)

On the other hand, by (19)
Pr(Y ni ∈ ES ∩ DS) ≤ Pr(Y ni ∈ DS) ≤ λ for i ∈ S′ \ S and by definition of S

|S′ \ S| ≥ (1− α)K .
Therefore Pr(Y n

S ′ ∈ ES ∩DS) = 1
K

∑
i∈S ′

Pr(Y ni ∈ ES ∩DS) ≤ λ+ α.

This contradicts (26), if

λ+ α < 1− 1

d
− λ. (27)

This is equivalent with λ < 1
2

(
1− 1

d

)
− α

2 .

So in order to show that for any ε > 0, κ + R ≤ H + ε, choose first d so that

d > 1 and dH ≤ H + ε, then choose λ smaller than 1
4

(
1− 1

d

)
, and finally choose

α smaller than 1
2

(
1− 1

d

)
. ��
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Remark

1. Notice that we have used that 1
K

∑
i∈S
fi defines a randomized feedback strategy

FS . So this approach does not work for the case of deterministic feedback
strategies!

2. We have upperbounded
(
N
K

)
via upperbounding |S|, for which we used our

old idea of “distinct carriers”. Instead we could also follow the approach
under the second subsection of Sect. 2, in which we relate the modified
K-identification problem with a standard identification problem. In case of
feedback we get the upper bound for randomized strategies by the strong
converse of chapter “Identification in the Presence of Feedback: A Discovery of
New Capacity Formulas”.

3. For small K , say for constant K while n grows, K-identification reduces of
course to K identifications and thus to identification.

K-identification means that any person E is interested in the question whether

the edgeE in the hypergraph
(
N ,
(N
K

))
occurred. Naturally, we can replace

(N
K

)
by

any set E of edges, if this describes the interests.
In order to motivate this model H = (V, E) let us suppose that V is the set of

roads in a region and E is the set of drivers. Driver E is primarily interested in the
roads of his tour. In case there has been an accident on one road v ∈ V and this road
is blocked, then all E’s want to know whether v ∈ E or not (and in the affirmative
case secondarily also which road it is).

There are more efficient ways of transferring the information of interest than to
broadcast the complete information, which specifies the road with the accident.

The converses in case of feedback show that

|E | < 22Hn . (28)

Now, if we choose E = 2N , the power set, R1 = rate (N) ≤ H .
By Sect. 3 decoding all subsets, gives optimal rate CpolSh. So the bound in (28)

is not achievable.

Problem Does the Theorem 95 hold for general hypergraphs? �
A Combinatorial Consequence
It is remarkable that a result for K-identification (Proposition 93) has an important
consequence for r-cover-free families in relation to packings. We use a result of
Kuzjurin [15].

A family A of k-subsets of [m] = {1, 2, . . . ,m} is called (m, k, �)-packing iff
each �-subset of [m] is contained in at most one member A ∈ A. Therefore two
members of A intersect in at most �− 1 elements. (In other words A can be viewed
as a code with constant weight k, word length m and distance dH = 2(k − �)+ 2.)

The density d(A) of a packing A is the average number of k-subsets of A
containing an �-subset, that is, d(A) = |A|(k�)

(m�)
. Let k = k(m) and let � = �(m) ≥ 2.
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A sequence of packings (Am)m≥k is called asymptotically good if

lim
m→∞ d(Am) = 1.

Roughly speaking the result of [15] says that k = √
m is the threshold function

for the existence of asymptotically good packings. Here is the precise result.

Theorem 101 Let α be the minimum constant such that for every ε > 0 and
sufficiently large n every interval [n, n+nα+ε] contains a prime number. It is known
that α ≤ 23

43 . The following bounds hold:

(i) Let c < 1 and k(m) < c
√
m, where lim

n→∞ k(m) = ∞. Further, let for some

ε > o �(m) = o(√k(m)) and �(m) = o
((

m
k(m)

)1−α−ε)
.

Then asymptotically good (m, k, �)-packings exist.
(ii) Let c > 1, k(m) > c

√
m and let �(m) = o

(
k(m)

)
. Then nontrivial

asymptotically good (m, k, �)-packings do not exist.

Corollary 102

(i) Let m(n) = eμn, k(n) = eγ n, and �(n) = eβn. For μ2 > γ , γ /2 > β and
(μ− γ ) 20

43 > β we have asymptotically good (m, k, �)-packings.

(ii) Let m(n) = eμn, k(m) = e(μ2 +ε)n, and let �(m) = eβn with β < μ
2 + ε, then

asymptotically good (m, k, �)-packings do not exist.

We derive from the assumptions on μ, γ, β

μ > 2γ, γ > 2β, μ > γ + 43

20
β. (29)

We apply this and (ii) to the set of codewords U ⊂ X n of a channel code with
error probability λ, |U | ∼ eIn = m, and 1

n
logK(n) = κ . Then I = μ, κ = γ − β

and we get for the maximal packing cardinality

N∗(n, I, κ) �
(
eIn

eβn

)
(
eγn

eβn

) =
(
eIn

eβn

)

(
e(β+κ)n
eβn

) , (30)

1

n
log logN∗ � β, (31)

and for γ ∼ I
2 the lower bound β = γ − κ ∼ I

2 − κ . Moreover, βmax ≤
min

(
I
4 ,

20I
86

)
= 10

43I , κmin = I
2 − βmax = 23

86I , and R = 10
43I .

However, our bound R = I − 2κ = 20
43I in Proposition 93 is much better!
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It can be seen from its derivation in the first subsection of this section that
this bound can be interpreted as a lower bound on the size N(n, I, κ) of optimal
r-cover-free families, where r has rate κ . It is known and readily verified that always

N(n, I, κ) ≥ N∗(n, I, κ).

We know now that the quantities can be very different!

3 Models with Capacity Equal to the Ordinary Capacity

Some of the cases considered here were first treated by Já Já [13] for non-
randomized encoding on the BSC. If randomization is permitted, the analysis is
somewhat more complicated. In this section we describe the various codes and
capacities by words.

The Ordering Problem
Suppose that one of the events {1, 2, . . . , N} occurred and is known to the sender.
By proper coding he shall enable the receiver to answer the question “Is the true
number less than or equal to j?” Here j is any element of {1, . . . , N}. We can also
use the ordering function

f0(i, j) =
{

1 for i ≤ j
0 otherwise.

A (randomized) ordering code (n,N, λ1, λ2) is a family

{
(P (·|i),Di ) : i = 1, 2, . . . , N

}

of pairs with

P(·|i) ∈ P(X n),Di ⊂ Yn for all i = 1, 2, . . . , N (32)

and with errors of the first (resp. second) kind satisfying for every j

∑

xn∈X n

P (xn|i)Wn(Dj |xn) ≥ 1− λ1 for all i = 1, . . . , j (33)

and

∑

xn∈X n

P (xn|i)Wn(Dj |xn) ≤ λ2 for all i > j. (34)
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Of course, we can define this way deterministic ordering codes by letting P(·|i)
denote point masses on points ui ∈ X n.

Theorem 103 Even for randomized encoding the polynomial ordering problem
capacity does not exceed the transmission capacity. The same holds in case of
noiseless feedback.

Proof Suppose first that N ≤ (2|X |)n and that λ1, λ2 ≤ 1
n2 .

The ordering problem code gives rise to a transmission code as follows:
Choose first j1 = �M2 �. In case of a “yes” iterate the search for the “true message”

in {1, . . . , �M2 	} and otherwise in {�M2 �, . . . ,M} by choosing next j2 in the middle
of these sets, resp. After logN iterations we are done. The total error probability is
bounded by

1

n2 logN ≤ 2|X |
n
.

Next, if N >
(
2|X |)n, choose any subset of {1, 2, . . . , N} of a cardinality

exp
{
(C + δ)n} for some δ > 0.

Apply to the subcode corresponding to this set the previous argument. This leads
to a transmission code of a rate exceeding capacity and this contradiction proves
that actually N >

(
2|X |)n does not occur.

Finally, the same argument applies to the case of feedback. ��
Remark We have shown that, generally speaking, whenever logN bits specify an
event with the code concept used, its rate does not exceed C. Thus we have also the
next result.

All Binary Questions
By proper coding the sender shall enable the receiver to answer all the questions “Is
the true number in A?” Here A is any subset of {1, . . . , N}.
Theorem 104 Even for randomized encoding the binary questions capacity does
not exceed the transmission capacity. The same holds in case of noiseless feedback.

Identification of a Component
In model 6, the number of components is linear in the blocklength. For exponen-
tially small error probability words can therefore be reproduced with small error
probability. (For small, but constant error probabilities, rate-distortion theory is to
be used).

Theorem 105 Even for randomized encoding the component identification capac-
ity does not exceed the transmission capacity. The same holds in case of feedback.
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Models with Prior Knowledge
of the Receiver

The a priori structure is a hypergraphH = (V, E). The encoder of channelW knows
the message vertex v ∈ V and the decoder DE (E ∈ E) knows beforehand whether
the message to be transmitted is in E or not. In case it is, he wants to know which
element of E it is.

We consider first abstract hypergraphs.

1 Zero-error Decodable Hypergraphs

If the decoder wants to know v ∈ E, then any two vertices x, y ∈ E must be
separable for instance by different colors assigned to them.

Definition 106 The separability graph G(H) = (V, E∗) is defined by

{x, y} ∈ E∗ ⇔ ∃F ∈ E : {x, y} ⊂ F. (1)

Let �(G) be the chromatic number of G, then H is 0-error decodable iff �(G) ≤
2C0n, whereC0 is the zero-error capacity of the channelW used for the transmission
of this color. Now H is λ-identifiable iff �(G) � 22C(W)n .

Remark Also if 2-separable only within edges by the results of [3, 4] the answer is
the same.
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2 K-Separating Codes

Instead of considering the zero-error decodability for hypergraphs one can consider
λ-decodability, that is, an error probability not exceeding λ is permitted.

We call
{
(Pi,DE,i) : E ∈ E, i ∈ E} an (n,N, λ) code for H = (V, E) and W ,

if Pi ∈ P(X n) for i ∈ V = {1, 2, . . . , N}, DE,i ⊂ Yn, and for all E ∈ E

DE,i ∩DE,i′ = ∅ for all i, i ′ ∈ E, i �= i ′ (2)

∑

xn

Pi(x
n)Wn(DE,i |xn) ≥ 1− λ for all i ∈ E. (3)

The issue is to minimize n for given H (and thus N) and λ for the channelW .
For abstract hypergraphs H not very much can be said. The subject becomes

interesting under reasonable assumptions on H.

Example E = {V} describes Shannon’s theory of transmission. �

Example E = (V
K

)
, the family of all K-element subsets of V , defines the complete

K-uniform hypergraph. The codes defined above are denoted here by (n,N,K, λ)
and called K-separating codes. �

Clearly, their capacity region K++ contains K∗ and by Theorem 95 also Kpolpol.
Moreover, the same proof as for Proposition 97 in 2 of chapter “One Sender

Answering Several Questions of Receivers” works for K-separating codes, if we
define DE = ⋃

i∈E
DE,i .

Corollary 107

(i) K++ ⊃ K∗ ⊃ Kpolpol.
(ii) K++ ⊂ {(R, κ) : R + κ ≤ CpolSh}.
Problem Determine K++! �
Second Order 2-Separation Capacity Without and with Feedback
Let us start with the first meaningful case K = 2.

For E = {i, j } we can write

DE,i = Dij and DE,j = Dji .

We also say that any two messages are λ-decodable.
Notice that an (n,N, λ) ID code

{
(Pi,Di ) : 1 ≤ i ≤ N} satisfies

∑

xn

Pi(x
n)Wn(Di |xn) ≥ 1− λ

∑

xn

Pj (x
n)Wn(Di |xn) ≤ λ (i �= j).
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Therefore setting Dij = Di \ Dj and Dji = Dj \ Di we see that i and j are
2λ-separable. It immediately follows that the second order capacity for K = 2, say
C2, is not smaller than the ID-capacity CpolSh. Whereas in ID-codes the decoding
sets carry one index, 2-separating codes carry two indices. The decoding sets for two
messages are adapted for these two and no other message. Therefore 2-separation
is a weaker notion than identification (except, perhaps, for a small shift in error
probability caused by the disjointness of the two decoding sets).

Theorem 108

(i) The 2-separation capacity of second order C2 equals the second order identifi-
cation capacity CpolSh.

(ii) The corresponding capacities for channel (deterministic and randomized)
feedback strategies are also equal.

Proof The issues are the converses.

(i) Here we can be brief, because inspection of the strong converse proof for
identification of Han/Verdú [4] shows that it is actually designed for 2-
separation. The key fact, called resolvability in [5], is this:

For P ∈ P(X n) with Q = PWn and ε > 0 there is a P ∗ ∈ P(X n), which
is an equidistribution over at most ∼ exp{nCpolSh}, not necessarily distinct,
members of X n and such that forQ∗ = P ∗Wn

‖Q−Q∗‖ ≤ ε for all n ≥ n(ε). (4)

(Here ‖ ‖ denotes total-variation).
In this way to every encoding distribution Pi(1 ≤ i ≤ N) we can find a

distribution P ∗i such that the corresponding output distribution is close to that
of Pi . By the code properties theQi ’s and also theQ∗

i ’s are distinct. Therefore
the P ∗i ’s must be distinct and their number in second order rate does not exceed
CpolSh.

(ii) Let us consider the deterministic case. For the randomized case we just have to
replaceH = max

x
H(W(·|x)) by H = max

P
H(PW).

We know from Lemma 100 in Sect. 2 of chapter “One Sender Answering
Several Questions of Receivers”, that for encoding function fi there exists an
Ei ⊂ Yn such that for Qi = Wn(·|fi), Qi(Ei ) ≥ 1 − 1

d
, and |Ei | ≤ 2�dHn�+1.

Omit from Ei the elements with smallest probability until we get a set E∗i ⊂ Ei
withQi(E∗i ) ≥ 1− 1

d
and which is minimal with this property.

Set T = max
i
|E∗i |. The number of different such sets is

∣∣∣∣

(
yn

T

)∣∣∣∣ ≤ 2(n log |Y |)2�dHn�+1
. (5)

This is the desired upper bound. However, not all E∗i ’s are necessarily
different. Therefore, we have to upperbound the multiplicity with which a set,
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say F , occurs among the E∗i ’s. W.l.o.g. we label them E∗1 , . . . , E∗M . By our
definitions

1− 1

d
+ Qi(E

∗
i )

|F | ≥ Qi(E∗i ) ≥ 1− 1

d
. (6)

For i, j ∈ {1, . . . ,M} we have for λ small

Qi(F ∩Dij ) ≥ 1− λ− 1

d
> λ,

Qj (F ∩Dji ) ≥ 1− λ− 1

d
> λ,

and Qi(Dji),Qj (Dij ) ≤ λ.

If we now set D′
�k = F ∩ D�k and renormalize the measure Qi on F from

total measure ∼ 1 − 1
d

(see (6)) to 1, then we have a 2-separating code of size
M with output space F .

To this situation we apply the idea of resolvability in the following setting:
We want to know how many distributions can be 2-separated on a finite set
T with T elements which we can view as subset of {0, 1}n, T ≤ 2m. This is
covered by Han/Verdú’s result, whenW is the noiseless BSC. We get the bound
M ≤ 22m or

M ≤ 22dHn . (7)

Together with (5) we get

N ≤ 2(n log |Y |)2dHn · 22dHn ≤ 2(1+n log |Y |)2dHn,

and thus the weak converse by choosing d close to 1, λ then small enough and
n ≥ n(d, λ).

��
Strong Converses by the Method of chapter “Identification in the Presence
of Feedback: A Discovery of New Capacity Formulas” for 2-Separation in Case
of Feedback
We begin with Theorem 108 (ii). By Lemma 43 for any ε ∈ (0, 1) we can find sets
E∗i (i = 1, . . . , N) of minimal size with

1 ≥ Wn(E∗i |fi) ≥ 1− ε, (8)

|E∗i | ≤ 2

(
H+ c(ε)√

n

)
n
. (9)
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How many can be equal to F , say?
Now just repeat the previous proof in the previous subsection. Now (the sharper)

(8) takes the role of (6). Instead of (7) we get now the stronger

M ≤ 22

(
H+ c(ε)√

n

)
n

(10)

and finally

N ≤ 2(n log |Y |)2
(
H+ c(ε)√

n

)
n

· 22

(
H+ c(ε)√

n

)
n

and thus

1

n
log logN ≤ H + c(ε)√

n
(strong converse). (11)

Replacing fi by Fi and H by H the same proof applies otherwise literally and
gives a strong converse for randomized encoding.

Remark The results obviously generalize to any constantK .

Problem Are the optimal rates for 2-separable codes and ID-codes equal if they
satisfy λ2 ≤ e−η2n ? �

3 Analysis of a Model with Specific Constraints:
2-Separation and Rényi’s Entropy H2

Let us assume that a set of persons N = {1, 2, . . . , N} are at a party. The persons
move randomly between α rooms and the set of persons in room i at some time is
Ai of cardinality

|Ai | = Pi N; i = 1, . . . , α. (12)

We say that the partition � = (A1, . . . , Aα) is of type P = (P1, P2, . . . , Pα) ∈
P(N ).

Let now�1,�2, . . . ,�m be a sequence of independent random partitions taking
as values a partition of type P with equal probabilities. Equivalently we can
say that a person z ∈ N belongs to the randomly chosen Ai with probability
Pi independently of what happens to the other persons. (At discrete time points
1, 2, . . . the partition of the persons in several rooms is reported.)

Imagine now that somebody, the interrogator, has difficulties to distinguish any
two persons in his interest at the party, but is reported the sequence of partitions
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described. So he knows at every time instance the set of persons in all rooms, but he
cannot identify the persons in a set.

Let now λN,m denote the probability that m such partitions separate any two
persons in N . Rényi [6] has shown thatm2(N, ε), the smallestmwith λN,m ≥ 1−ε,
satisfies

m2(N, ε) ∼ 2 log2N + o(ε)
H2(P )

, (13)

whereH2 is Rényi’s entropy of order 2.
Now let us go a step further. The interrogator is at the receiver side of a noisy

channel. For partition�i = (Ai1, . . . , Aiα) let

Fi(z) = j, if z ∈ Aij . (14)

For every z ∈ N
(
F1(z), . . . , Fm(z)

)
is known to the encoder. How fast can the

interrogator decide his question with high probability correctly?
Answer: Match (F1, . . . , Fm) with a 2-separation code.
It would be stupid to use a transmission code. There are several variations of this

model.
In many situations of information transfer reduction to transmission would be of

poor performance.

4 Binning via Channels

In Sect. 1 we considered vertex colorings with different colors in each edge. They
have been called strict colorings in [1, 2]. Other colorings discussed there are

(α) colorings, where in every edge no color occurs more than � times (leading to
list-knowledge)

(β) colorings, where in every edge a high percentage of colors occurs only one
time

(γ ) colorings, which are good, in the senses of (α) and/or (β) in average under
given probability distributions on vertices and/or edges.

The present investigations have born still another coloring (or binning) concept.
Indeed, let us look at K-separation. We know from Proposition 93 that we can

choose N with second order rate R and K with rate κ , R + 2κ ≤ CpolSh, and
achieveK-identification.

Further, by the Equivalence Theorem the hypergraph
(
N ,
(N
K

))
is in addition

K-separable. What does this mean? Well, the “color” on vertex i is the randomized
encoding Pi and within every edge S ∈ (N

K

)
containing i this i is decoded correctly

with probability at least 1− λ!
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Notice that for the price of a small error probability λ now—in contrast to the
situation in (β) (or also (γ ))—every vertex can be decoded correctly.

Furthermore, the theory in [1, 2] works, if the number of vertices, the number of
edges, and the edge sizes are roughly of the same growth, namely exponential in n.

Here the edge sizes are at most exponential in n, but the number of vertices and
edges can grow double exponentially in n!

5 K-Identifiability, K-Separability and Related Notions

We discuss here connections between code concepts.
To fix ideas let us first compare 1-identification (the classical identification) and

2-separation. In both cases we have a fixed encoding structure (set of codewords,
set of probability distributions or set of randomized or non-randomized-feedback
functions). In any case they specify via the channel a set of output distributions

Q = {Qi : i ∈ N }. (15)

The various code concepts associate with such a set a decoding structure.
In case of identification the decoding structure is

D = {Di : i ∈ N }. (16)

It is of precision λ, if

Qi(Di ) ≥ 1− λ (i ∈ N ) (17)

Qi(Dj ) ≤ λ (i �= j). (18)

The precision relates to the whole encoding structure Q, however, in a pairwise
fashion (as specified in (18)).

The concept 2-separation allows more freedom in the decoding structure. We say
Q is 2-separable with precision λ, if for any S = {i, j } ∈ (N2

)
there are two sets

DSi and DSj with

DSi ∩DSj = ∅, and Qi(DSi),Qj (DSj ) ≥ 1− λ. (19)

These sets relate only to i and j .

Lemma 109 1-identifiable with precision λ implies 2-separable with precision 2λ.

Proof Define DSi = Di \ Dj and DSj = Dj \ Di , then Q�(DS�) ≥ 1 − 2λ for
� = i, j . ��

There is also a general connection.
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Lemma 110 K-identifiable with precision λ(n) implies K-separable with preci-
sion λ′(n) = �nκ�λ(n), where

κ = polrate(K) = 1

n
logK.

Proof See proof of Theorem 95 in Sect. 2 of chapter “One Sender Answering
Several Questions of Receivers”. ��
Problem For L ≥ K , how does K-identifiability relate to L-separability? �

Finally we mention related concepts.

1. We say that a K-identification decoding is based on a 1-identification decoding
{Di : i ∈ N } of precision λ, if

DS =
⋃

i∈S
Di , S ∈

(N
K

)
(20)

and

Qi(Di ) ≥ 1− λ for all i ∈ N , (21)

Qi(DS) ≤ λ for all i /∈ S. (22)

For the disjoint sets

DSi = Di \
⋃

j∈S\{i}
Dj for all i ∈ S

we have

Qi(DSi) ≥ 1− 2λ for all i ∈ S, (23)

a generalization of Lemma 109.
2. As a weaker notion than K-separability we define for positive integers α, β with
α+ β = K that Q is (α, β)-separable with precision λ, if for every S ∈ (N

K

)
and

every partition {S0, S1} of S, where |S0| = α and |S1| = β, there are disjoint sets
DS0 and DS1 with

Qj(DS0) ≥ 1− λ for all j ∈ S0

and

Qj(DS1) ≥ 1− λ for all j ∈ S1.
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3. Analogously we say that Q is (α, β)-identifiable with precision λ, if there is a

decoding structure
{
DS ′ : S′ ∈

(N
α

) ∪ (N
β

)}
such that for S = S0∪S1, |S0| = α,

|S1| = β

Qi(DSε ) ≥ 1− λ for all i ∈ Sε
and

Qi(DSε ) ≤ λ for all i ∈ S1−ε

for ε = 0, 1.

K-identification concerns partitions {S,N \ S}, S ∈ (N
K

)
. One can consider

partitions π�, � ∈ L, into more than 2 sets. Person � wants to know the set in its
partition, which contains the “message”. There may be several channels. (“From
which country is a sportsman?”, “what is his age?” etc.)

This model includes compound channels, where the receiver knows the individ-
ual channel, broadcast channels (also with degraded message sets) etc.
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Models with Prior Knowledge
at the Sender

1 Identification via Group Testing and a Stronger Form of
the Rate-Distortion Theorem

Suppose that from the set N = {1, 2, . . . , N} of persons any subset S ⊂ N of
persons may be the set of sick persons. Moreover it is known that with probability
q a person is sick and that the RV S has the distribution

Pr(S = S) = q |S|(1− q)N−|S|. (1)

For each subset of the test subjects, (B ⊆ N ), the binary, error-free test, which
determines whether at least one person inB is sick or not, is admissible. In the group
testing model introduced in [5] the goal is to determine the expected number of tests
L(N, q) for an optimal sequential strategy to diagnose all sick persons (see also [3],
pp. 112–117).

Theorem 111 (Ungar 1960, [5]) Nh(q) ≤ L(N, q) ≤ N .

In our model the decoder (person) s wants to know whether he is sick. Any other
information is of much less relevance to him. In particular he does not care who the
other sick persons are. In terms of partitions

πs =
{{S ⊂ N : s ∈ S}, {S ⊂ N : s /∈ S}} (2)

he wants to know which member of πs occurred.
We can reformulate this problem by identifying S ⊂ N with a word xS =

(x1, . . . , xN) ∈ {0, 1}N , xs = 1 iff s ∈ S. Thus the distribution defined in (1)

© Springer Nature Switzerland AG 2021
R. Ahlswede, Identification and Other Probabilistic Models,
Foundations in Signal Processing, Communications and Networking 16,
https://doi.org/10.1007/978-3-030-65072-8_10

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65072-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-65072-8_10


168 Models with Prior Knowledge at the Sender

describes a discrete memoryless source (DMS)
({0, 1}N,QN,XN )withQN(xN) =∏N

t=1Q(xt ), where

Q(xt ) =
{
q for xt = 1

1− q for xt = 0,
(3)

and for XN = (X1, . . . , XN )

Pr(XN = xN) = QN(xN). (4)

For any encoding function fN : {0, 1}N → N and decoding function gt (1 ≤ t ≤
N) : N→ {0, 1} we can set

X̂t = gt
(
fN(X

N)
)

(5)

and consider the error probability

λt = E d(Xt , X̂t ),

where d is the Hamming distance.
Now the rate-distortion theorem tells us how small a rate R(q, λ) we can achieve

with rate(fN) = 1
N

log (Number of values of fN) under the constraint

N∑

t=1

E d(Xt , X̂t ) ≤ λ N. (6)

However, we are interested in the stronger condition

E d(Xt , X̂t ) ≤ λ for all 1 ≤ t ≤ N (7)

and the corresponding minimal rate R∗(q, λ). We know that

lim
λ→0

R(q, λ) = h(q)

and therefore as λ→ 0 by the source coding theorem also lim
λ→0

R∗(q, λ) = h(q).
When λ is kept at a prescribed level we have the following result.

Theorem 112 The identification after group testing in a group of N persons,
everyone being independently sick with probability q , can be performed at error
probability λ with R(q, λ)N bits. Here R(q, λ) is the rate-distortion function for
the Bernoulli source with generic distribution (q, 1 − q) evaluated at distortion
level λ.
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Remark Since space does not permit we leave the proof as an exercise using
balanced hypergraph covering, which we started in [1]. The lemma in Section VI
of [2] can be used for q-typical N sequences as vertex set V and p-typical N
sequences as edge set E for covering or approximation. The exceptional set V0 in
that lemma can be kept empty (see Lemma 9 of [4]). Now in addition to hypergraph
(V, E) use also hypergraph (V1, E), where V1 = [N]. There is a selection of edges
E1, . . . , EL ∈ E which simultaneously covers V and V1 in balanced ways. The
second means (7), of course after polynomially many pairs (q ′, p′) with q ′ close to
q have been used.

Instead of two properties (sick and not sick) there can be any finite number of
properties k defining k classes and every person wants to know its class. This leads
to a rate-distortion theorem for a DMS stronger than Shannon’s.

In case the encoding of S is transmitted via a noisy channel an argument for the
separation of source and channel coding is needed. To elaborate conditions under
which the “separation principle” is valid is a major subject in information theory.
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Identification and Transmission
with Multi-way Channels

1 Simultaneous Transfer: Transmission and Identification

The issue of simultaneity comes up frequently in life and in science. In information
theory we encounter situations where the same code is used for several channels,
where several users are served by the same channel, where one code serves several
users etc.

A. Let us discuss now a specific example. Suppose that one DMC is used simultane-
ously for transmission and identification. Since both, the transmission capacity
and the (second order) identification capacity, equal CpolSh, here is the best
we can do: We use an (n,M) transmission code

{
(ui,Di ) : 1 ≤ i ≤ M} with

average error λ = 1
M

M∑
i=1
Wn(Dci |ui). The randomness in the messages produces

via this code a common random experiment for sender and receiver. Adding a
few, say,

√
n letters, we can get the desired identification code (n + √

n,N, λ)

as in chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas” (see [7] and also [5]) by the following approach.

From common randomness (also called shared randomness in physics) to
identification: The

√
n-trick

Let [M] = {1, 2, . . . ,M}, [M ′] = {1, 2, . . . ,M ′} and let T = {Ti : i =
1, . . . , N} be a family of maps Ti : [M] → [M ′] and consider for i = 1, 2, . . . , N
the sets

Ki = {(m, Ti(m)) : m ∈ [M]}
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and on [M] × [M ′] the PD’s

Qi((m,m
′)) = 1

M
for all (m,m′) ∈ Ki.

Lemma 113 (Transformator Lemma) Given M,M ′ = exp{√logM} and ε > 0
there exists a family T = T (ε,M) such that |T | = N ≥ exp{M − c(ε)√logM},
Qi(Ki) = 1 for i = 1, . . . , N , andQi(Kj ) ≤ ε ∀i �= j .

Hence, (CpolSh,CpolSh) is achievable.
Next suppose that there is a noiseless feedback channel and we use the same

code as before. This generates an input process Xn = (X1, . . . , Xn) and an output
process Yn = (Y1, . . . , Yn), which is known also to the sender by the feedback. So
we get a common random experiment of rate 1

n
H(Y n). Again by the identification

trick of chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas” now

Rtransm. ∼ 1

n
I (Xn ∧ Yn)

Rident. ∼ 1

n
H(Yn), second order.

It is now easy to show the direct part in the following theorem.

Theorem 114 R = conv
{(
I (X∧Y ),H(Y )) : PX ∈ P(X )

}
is the set of achievable

pairs of rates for the simultaneous transmission and identification over the DMC
with noiseless feedback.

Proof The direct part follows from the lemma and remarks above. It is thus missing
only to show the converse part. We prove a weak converse.

Let the RV U take values in the set of codewords U = {u1, . . . , uM } for
transmission with equal probabilities. Further let Fi(u) be the randomized encoding
for i and u ∈ U , making use of the feedback. Then for the transmission and disjoint
decoding sets Dj

1

M

M∑

j=1

Wn
(
Dcj |Fi(uj )

) ≤ λ for all i (1)

and for identification with decoding sets D∗
i

1

M

M∑

j=1

Wn
(
D∗
i |Fi(uj )

) ≥ 1− λ for all i = 1, . . . , N (2)
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and

1

M

M∑

j=1

Wn
(
D∗
k |Fi(uj )

) ≤ λ for all i �= k. (3)

For every i = 1, 2, . . . , N we get input variables Xni = (Xi1, . . . , Xin) and
output variables Yni = (Yi1, . . . , Yin).

By Shannon’s weak converse proof for the DMC with feedback

logM ≤ I (X
n
i , Y

n
i )

1− λ for all i (4)

and by the weak converse proof for identification on the DMC with feedback
(chapter “On Identification via Multi-Way Channels with Feedback: Mystery
Numbers”)

log logN ≤ max
i
H (Y ni ). (5)

Therefore for some i
(

1

n
logM,

1

n
log logN

)
≤
(

1

n
I (Xni0 , Y

n
i0
),

1

n
H(Yni0)

)
· 1

1− λ

≤
(

1

n

n∑

t=1

I (Xi0 t , Yi0t ),
1

n

n∑

t=1

H(Yi0t )

)
1

1− λ

≤ (I (X, Y ),H(Y )) 1

1− λ,

if we use the concavity of I and ofH . This completes the weak converse proof. ��
Remark We draw attention to the fact that it is a lucky coincidence that these two
proofs are available and can be combined. The known strong converses for the
separate problems cannot be combined!

Finally we propose as the following problem.

Problem This proof assumes a deterministic transmission code. Can randomized
transmission codes give better overall performance? �
B. More generally there is a theory of multiple purpose information transfer.

Different goal seeking activities are optimized in combinations. The familiar
compound and broadcast (also with degraded message sets) channels are
included.

Not just transmission and identification, but any collection of the models in
Sect. 1 of chapter “One Sender Answering Several Questions of Receivers” can
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occur in various combinations. For example consider a MAC with three senders.
For a given sportsman sender 1 says from which country he comes, sender 2
informs about the age groups, and sender 3 is concerned about the fields of
activities.

C. Memory decreases the identification capacity of a discrete channel with alpha-
bets X and Y in case of noiseless feedback.

(α) For non-random strategies this immediately follows from the inequality

max
xn
H
(
Wn(·|xn)) ≤

n∑

t=1

max
xt
H
(
W(·|xt )

)

(β) For a randomized strategy F

H
(
Wn(·|F)) = H(Y1, . . . , Yn) = H(Yn|Y1, . . . , Yn−1)+H(Y1, . . . , Yn−1)

and

H(Yn|Y1, . . . , Yn−1) =
∑

yn−1

Pr(Y n−1 = yn−1) ·H(Yn|y1, . . . , yn−1)

= H
⎛

⎝
∑

x

Wn(·|x)
∑

yn−1

Pr
(
Fn(y1 . . . yn−1) = x

)
⎞

⎠

≤ max
PX
H(PXWn).

2 A Proof of the Weak Converse to the Identification Coding
Theorem for the DMC

We present here a new approach to polynomial converses for identification, which
are explained in Sect. 1 of chapter “One Sender Answering Several Questions of
Receivers”. We consider the proof being simpler than its predecessors. (Except
for those in case of feedback [7] (chapter “Identification in the Presence of Feed-
back: A Discovery of New Capacity Formulas”), [9] (chapter “On Identification via
Multi-Way Channels with Feedback: Mystery Numbers”).)

Moreover, the approach is applicable to multi-way channels.
Furthermore, in contrast to the proofs in [11, 12] the approach works also for

channels without a strong converse for transmission.
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We begin our analysis with any channelW : X → Y , that is, a time free situation
and its (N, λ) codes

{
(Pi,Di ) : 1 ≤ i ≤ N} with Pi ∈ P(X ),Di ⊂ Y ,

∑

x

Pi(x)W(Di |x) > 1− λ for all i

∑

x

Pi(x)W(Dj |x) < λ for all i �= j.

For any distribution PX ∈ P(X ) we write PXY for PX ×W .
For any set G ⊂ X × Y we introduce

ρ(G) = min
(x,y)∈G

PXY (x, y)

PX(x)PY (y)
(6)

and

σ(G) = max
(x,y)∈G

PXY (x, y)

PX(x)PY (y)
. (7)

The ratio ρ(G)σ(G)−1 measures how “informationally balanced” the set G is
under PXY . Clearly 0 ≤ ρ(G)σ(G)−1 ≤ 1 and the closer to 1 the ratio is the more
balancedG is.

We state now our key results.

Lemma 115 (Codes in Informationally Balanced Sets) For any G ⊂ X × Y ,
PXY = PXW , and any δ′ < PXY (G) there exists a transmission code

{
(ui, Ei ) :

1 ≤ i ≤M} with
(i) Ei ⊂ Gui =

{
y : (ui, y) ∈ G

}

(ii) W(Ei |ui) > δ′ for i = 1, 2, . . . ,M
(iii) M ≥ (PXY (G)− δ′

)
ρ(G)

(iv) M <
σ(G)
δ′ (This holds for any code with (i) and (ii))

(v) PY

(
M⋃
i=1

Ei
)
≥ PXY (G)− δ′.

(vi) ForQ(y) � 1
M

M∑
i=1
W(y|ui) Q(y) ≥ δ′ρ(G)σ(G)−1PY (y), if y ∈ E =

M⋃
i=1

Ei .

Proof Let u1 ∈ X satisfy W(Gu1 |u1) > δ
′. Its existence follows from PXY (G) >

δ′. Set E1 = Gu1 , then define (u2, E2), . . . , (uj−1, Ej−1) and add uj ∈ X with

Ej = Guj \
j−1⋃
i=1

Ei andW(Ej |uj ) > δ′.
The procedure terminates at M , when no pair can be added subject to the

constraints (i) and (ii). Consequently for all x ∈ X

W

(
Gx \

M⋃

i=1

Ei
∣∣x
)
≤ δ′. (8)
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Since obviously for all (x, y) ∈ G

W(y|x) ≥ ρ(G)PY (y) (9)

and since 1 ≥ W(Ei |ui), we have

PY (Ei ) ≤ ρ(G)−1. (10)

It follows from (8) that

PXY

(
G \ X ×

M⋃

i=1

Ei

)
≤ δ′

and therefore also with (10)

PXY (G) ≤ δ′ +
M∑

i=1

PY (Ei ) ≤ δ′ +Mρ(G)−1.

This is (iii).
From the definition of σ for (x, y) ∈ G PY (y)σ (G) ≥ W(y|x) and thus

PY (Ei )σ (G) ≥ W(Ei |ui) for all i = 1, 2, . . . ,M.

This gives (iv):

σ(G) ≥
M∑

i=1

W(Ei |ui) > Mδ′.

Further, (8) leads toW(Gx |x)−W
(
M⋃
i=1

Ei
∣∣x
)
< δ′, which implies

∑

x

PX(x)W(Gx |x)−
∑

x

PX(x)W

(
M⋃

i=1

Ei
∣∣x
)
= PXY (G)− PY

(
M⋃

i=1

Ei

)
< δ′

and hence (v).
Finally, by definition of ρ for y ∈ Ei ⊂ Gui

W(y|ui) ≥ ρ(G)PY (y)
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and by (iv)

1

M
W(y|ui) ≥ δ′σ(G)−1ρ(G)PY (y).

Therefore

Q(y) ≥ δ′σ(G)−1ρ(G)PY (y)

for all y ∈
M⋃
i=1

Ei . ��

The freedom in the choice of G or even several G’s makes the power of this
approach. We explain this in Sects. 3, 4, and 5.

Obviously, we get good bounds, if ρ(G) and σ(G) are close to each other. We
achieve this with our next idea to partition

GXY =
{
(x, y) ∈ X × Y : PXY (x, y) > 0

}

into informationally balanced sets and a set with big value of ρ, which we exclude.
Introduce

G(I + β) = GXY (I (X ∧ Y )+ β)

=
{
(x, y) ∈ GXY : log

PXY (x, y)

PX(x)PY (y)
< I (X ∧ Y )+ β

}

and for suitable θ > 0 and positive integer L, to be specified below, the partition

G(I + β) =
L−1⋃

�=0

G�XY (I + β),

where

G�XY (I + β) = GXY (I + β − �θ)−GXY
(
I + β − (�+ 1)θ

)
.

Its atoms are balanced, because

σ
(
G�XY (I + β)

)

ρ
(
G�XY (I + β)

) ≤ eθ .

For the further analysis we need a simple fact about relative entropies.
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Lemma 116 For any PD’s p, q on Z and any Z ′ ⊂ Z

∑

z∈Z ′
p(z) log

p(z)

q(z)
≥ −e−1 log2 e = −c, say.

Proof

∑

z∈Z ′
p(z) log

p(z)

q(z)
= p(Z ′)

∑

z∈Z ′

p(z)

p(Z ′)
log
p(z)/p(Z ′)
q(z)/q(Z ′)

+ p(Z ′) log
p(Z ′)
q(Z ′)

≥ p(Z ′) log
p(Z ′)
q(Z ′)

(by nonnegativity of relative entropy)

≥ p(Z ′) logp(Z ′)
(

since log
1

q(Z ′)
≥ 1

)

≥ min
0≤t≤1

t log t = −e−1 log2 e.

��
We apply this fact to the PD’s PXY and PX × PY and Z ′ = G(I + β). Thus

I =
∑

(x,y)∈Z ′
PXY (x, y) log

PXY (x, y)

PX(x)PY (y)
+

∑

(x,y)/∈Z ′
log

PXY (x, y)

PX(x)PY (y)

≥ −c+ (1− PXY (G(I + β))
)
(I + β)

or

PXY
(
G(I + β)) ≥ β − c

β + I .

We can choose � such that

PXY
(
G�XY (I + β)

) ≥ β − c
(β + I)L . (11)

The set G�XY (I + β) serves as our representation for PXY .

Lemma 117 For any distribution PXY and set D ⊂ Y with

PY (D) =
∑

x∈X
PX(x)W(D|x) ≥ 1− λ
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consider for any β > 0 and positive integer L the representativeG�XY (I +β). Then
we have for G = G�XY (I + β) ∩ X ×D
(i) PXY (G) ≥ β−c

(β+I )L − λ = δ, say.
For any δ′ < δ there is a code
{
(ui , Ei ) : 1 ≤ j ≤ M} with Ej ⊂ Guj ⊂ D for all j = 1, . . . ,M

and the properties
(ii) M ≤ 1

δ′ e
I+β−�·θ

(iii) PY

(
M⋃
i=1

Ei
)
≥ δ − δ′

(iv) 1
M

M∑
j=1
W(y|uj ) ≥ δ′e−θPY (y) for y ∈ E =

M⋃
i=1

Ei

(v) 1
M

M∑
j=1
W(E|uj ) ≥ δ′e−θ (δ − δ′) = δ∗, say.

Proof (i) is a consequence of (11) and the assumption on D. Inequality (ii) follows
from (iv) in Lemma 115 and inequality (iii) follows from (v) in Lemma 115 (and (i)
above). Finally, this and (vi) in Lemma 115 give (iv) and (v). ��
Theorem 118 Let the discrete (not necessarily memoryless) channelWn : X n →
Yn have an (n,N, λn) identification code {(Pi,Di ) : 1 ≤ i ≤ N}, then for pairs of
RV’s (Xni , Y

n
i ) with distribution Pi ×Wn

log logN ≤ max
i
I (Xni ∧ Yni )+ o(n) if λn ≤ n−7.

Proof Consider any pair (Pi,Di ) and apply Lemma 117 for D = Di , PX = Pi .
However, we write now PXn instead of PX. Also, for Pi × Wn we write PXnYn
(instead of PXY ) and thus we write the representation for PXnYn asG = G�XnYn(I +
β) ∩ (X n ×D).

Our goal is to choose parameters so thatM in (ii) of Lemma 117 becomes small
and δ∗ in (v) of Lemma 117 becomes large. The first property guarantees that

(|X n|
M

)

is so small that the number of representing encoding sets {uj : 1 ≤ j ≤ M} meets
the desired double exponential bound.

The second property insures an appropriate bound on the multiplicity of repre-
senting encoding sets.

Accordingly the proof goes in two steps.

Step 1: We choose for ε > 0 β = εn and for convenience we choose δ′ = δ/2.
Clearly, for n large by Lemma 117, (i) since c is constant

PXnYn(G) ≥ β

(β + I)2L − λn = δ∗n. (12)
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We choose θ = β+I
2L .

Using (12) and Lemma 117 (i), (v) we get now

δ∗n ≥
1

4

(
β

(β + I)2L − λn
)2

e−(I+β)/2L.

Since I = I (Xn ∧ Yn) ≤ n log |X |, we get

δ∗n ≥
1

4

(
ε

(log |X | + ε)2L − λn
)2

e−(log |X |+ε)(2L)−1n.

Notice that for any function f (n)→∞(n→∞) the choice L = Ln =
n f (n) yields lim

n→∞ e
−(log |X |+ε)L−1

n n = 1 and the choices f (n) = n1/2,

Ln = n3/2, λn = n−7 yield δ∗n ≥ n−4 for n large.
These are not optimal calculations, but only polynomial growth and the

fact δ∗n ' λn are relevant here!
By our choices and Lemma 117(ii)–(v), δ ≥ λn and

M ≤ 2n3 eI (X
n
i ∧Yni )+εn. (13)

This is the first desired property. The others are

PY

(
M⋃

i=1

Ei

)
≥ δ

2
≥ 1

4
n−3/2. (14)

For U = {u1, . . . , un}

QU (y) = 1

M

M∑

j=1

Wn(y|ui) ≥ 1

2
n−3PY (y) (15)

and so

QU

(
M⋃

i=1

Ei

)
≥ 1

8
n−9/2, (16)

which is much bigger than λn = n−7.
Step 2: If now U serves K ′ ≥ K other times as representative for (PYj ,DY j ) with

decoding sets {Eji : 1 ≤ i ≤ M}, j = 1, . . . ,K ′, then K ′ can be suitably
bounded.
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Indeed, set Ej =
M⋃
i=1

Eji and define disjoint sets

E ′j = Ej −
⋃

j ′ �=j
Ej ′ ; j = 1, 2, . . . ,K. (17)

Since Ej ⊂ DY j and the identification code has error probabilities less than λn,
we get from (14)

PYj (E ′j ) ≥
1

4
n−3/2 −Kλn (18)

and thus by (15)

QU

⎛

⎝
K⋃

j=1

E ′j
⎞

⎠ =
K∑

j=1

QU (E ′j ) ≥ K
(

1

4
n−3/2 −Kλn

)
· 1

2
n−3.

Now forK = 16 n9/2 and λn < 1
128n

−6 we have 1
4 n

−3/2 −Kλn > 1
8 n

−3/2 and
thus

QU

⎛

⎝
K⋃

j=1

E ′j
⎞

⎠ > 1, a contradiction.

So U serves at most 16 n9/2 times as representative and the result follows with
(13). ��
Remark When determining pessimistic capacities or capacity regions the observa-
tions in the first remark in chapter “One Sender Answering Several Questions of
Receivers” are relevant.

3 Two Promised Results: Characterisation of the Capacity
Regions for the MAC and the BC for Identification

We know from [1, 2] that the transmission capacity region R of a (classical:
memoryless, stationary) MACW : X ×Y → Z can be characterised as the convex
hull of the set of pairs (RX , RY ) of non-negative numbers which satisfy for some
input distribution PXY = PX × PY

RX ≤ I (X ∧ Z|Y )

RY ≤ I (Y ∧ Z|X)

RX + RY ≤ I (XY ∧ Z). (19)
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Also, in [1] there is a non-single letter characterisation.

R =
{

1

n

(
I (Xn ∧ Zn), I (Y n ∧ Zn)) : n ∈ N, PXnYn = PXn × PYn

}
. (20)

Quite surprisingly we can use this characterisation for the proof of the polyno-
mial weak converse for identification via the MAC.

Theorem 119 The second order identification capacity region for the MAC equals
the first order transmission capacity regionR.

The broadcast channel is a stochastic map

Wn : X → Y × Z

with componentsWn
1 : X → Z andWn

2 : X → Z and set of messages or the object
space is

N = NY ×NZ , |NY | = NY , |NZ | = NZ

An identification code (n,N1, N2, λ) for the BC is a family

{
(Pij ,Di ,Fj ) : 1 ≤ i ≤ N1; 1 ≤ j ≤ N2

}
,

where the Di’s are sets in Yn, the Fj ’s are sets in Zn and Pij ∈ P(X n), and

∑

xn

Wn
1 (Di |xn)Pij (xn) ≥ 1− λ for all i and j (21)

∑

xn

Wn
1 (Di′ |xn)Pij (xn) ≤ λ for all i �= i ′ and all j (22)

∑

xn

Wn
2 (Fj |xn)Pij (xn) ≥ 1− λ for all j and i (23)

∑

xn

Wn
2 (Fj ′ |xn)Pij (xn) ≤ λ for all j �= j ′ and all i. (24)

Let B be the set of all achievable pairs (RY , RZ ) of second order rates. For its
analysis we need the cones

R
2+
Y = {(R1, R2) ∈ R

2 : R1 ≥ R2 ≥ 0}

and

R
2+
Z = {(R1, R2) ∈ R

2 : R2 ≥ R1 ≥ 0}.
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We can write B as a union B = B+Y ∪ B+Z , where

B+Y = B ∩ R
2+
Y and B+Z = B ∩ R

2+
Z .

Our key observation is that for identification we can relate the capacity regions
for identification of independent messages to the capacity regions for identification
for degraded message sets, AY and AZ , where AY (resp. AZ ) concerns the pairs of
the rates of separate messages for Y (resp. Z) and of common messages for Y and
Z . Since common messages can be interpreted as separated messages obviously

AY ,AZ ⊂ B.

We can also write

A+
Y = AY ∩R

2+
Y and A+

Z = AZ ∩ R
2+
Z

and notice that

A+
Y ⊂ B+Y , A+

Z ⊂ B+Z .

We come now to a key tool.

Lemma 120 (Reduction)

(i) B+Y ⊂ A+
Y and B+Z ⊂ A+

Z .

(ii) B+Y = A+
Y and B+Z = A+

Z .
(iii) B = A.

Proof By previous observations it remains to show (i) and by symmetry only its
first part.

Let
{
(Pij ,Di , Ej ) : 1 ≤ i ≤ NY , 1 ≤ j ≤ NZ

}
be an identification code for the

BC with error probabilities ≤ λ. Since RZ ≤ RY we can define for

� = 1, . . . , NZ and m = 1, . . . ,
NY
NZ

(where w.l.o.g. divisibility of NY by NZ can be assumed)

Q�,m = P�,(m−1)NY+�.

The Z-decoder identifies � and the Y-decoder identifies (m − 1)NY + � or
equivalently � and m, that is, the common part and a separate part.

If RY > RZ , then with error probabilities≤ λ

22
Ryn · 2−2Rzn ∼ 22

Ryn

.
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IfRY = RZ , then we can make the same construction with ratesRY andRZ−ε.
��

We need the direct part of the ABC (asymmetric broadcast channel) coding
theorem for transmission [10, 13, 14]. Here, there are separate messages for decoder
Y (resp. Z) and common messages for both decoders.

Let us denote Markov chains with the symbol (, i.e. X ( Y ( Z for RV’s X, Y
and Z. The achievable rates are (with maximal errors)

TY = {(RY , R0) : R0 ≤ I (U ∧ Z),
R0 + RY ≤ min

[
I (X ∧ Y ), I (X ∧ Y |U)+ I (U ∧ Z)],

U (X ( YZ, ‖U‖ ≤ |X | + 2
}

and

TZ = {(R0, RZ ) : R0 ≤ I (U ∧ Y ),
R0 + RZ ≤ min

[
I (X ∧ Z), I (X ∧ Z|U)+ I (U ∧ Y )],

U (X ( YZ, ‖U‖ ≤ |X | + 2
}
,

respectively.
This is our surprising result.

Theorem 121 For the (general) BC the set of achievable pairs of second order
rates is given by

B = T ′
Y ∪ T ′

Z ,

where

T ′
Y = {(R′Y , R′Z ) : ∃(RY , R0) ∈ TY with R′Y = RY + R0, R

′
Z = R0}

and

T ′
Z = {(R′Y , R′Z ) : ∃(R0, RZ ) ∈ TZ with R′Y = R0, R

′
Z = R0 + RZ }.

4 The Proof for the MAC

Direct Proof
The proof of achievability is straightforward by the second method of chapter “Iden-
tification in the Presence of Feedback: A Discovery of New Capacity Formulas”,
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Part I, that is, the transformator lemma. Indeed, use an average error transmission
code in blocklength n

{
(ui, vj ,Dij ) : 1 ≤ i ≤ MX , 1 ≤ j ≤ MY

}

with

1

MX

1

MY

∑

i,j

Wn(Dcij |ui, vj ) ≤ λ. (25)

Then of course also

1

MX

∑

i

⎛

⎝ 1

MY

∑

j

Wn

((⋃

j ′
Dij ′

)c
|ui, vj

)⎞

⎠ ≤ λ (26)

and we have a random experiment U with Pr(U = ui) = 1
MX , whose outcome is

known to sender SX and with probability at least 1− λ also to the receiver.
Analogously, there is a random experiment V for the sender SY and the receiver.

We have used blocklength n.

As in chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas” by the transformator lemma with relatively few, say

√
n, letters

(actually even o(logn)) identification of second order rate ∼ 1
n

logMX can be
performed from SX to the receiver. Finally, with other

√
n letters the identification

of second order rate ∼ 1
n

logMY can be done from SY to the receiver.

Remark In our proof of the direct part the identification is done separately for both
encoders. The encoding strategy pair (Pi,Qj ) and the decodings Di ,Fj identify i
and j separately. We can also choose Eij = Di ∩Fj and notice that

∑

xn,yn

Wn(Eij |xn, yn)Pi(xn)Qj (yn) > 1− 2λ

∑

xn,yn

Wn(Eci′j ′(x
n, yn)Pi(x

n)Qj (y
n) ≤ 2λ for all (i ′, j ′) �= (i, j).

On the other hand, starting with the Eij ’s we can define Di =⋃
j

Eij , Fj =⋃
i

Eij .

Remark The decomposition principle (see [4]) does not hold for identification on
the MAC. If both encoders have independent messages, but can cooperate, then

RXY = max
PX×PY

I (XY ∧ Z)
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and 22nRXY is much bigger than

22nRX · 22nRY ∼ 22n max(RX ,RY )
.

Remark Steinberg [15] did not use the transformator lemma, but followed the first
approach in [6] (see chapter “Identification via Channels”, Part I), which is based on
a transmission code with small maximal errors. With deterministic maximal error
transmission code the (average error) capacity region of a MAC cannot be achieved.
However, it can be achieved if stochastic encoders are used (as shown in [3]) and
for those coding the approach of [6] again applies.

Problem Develop a theory for identification of correlated data (see “correlated
codes” in [8]). �
Problem Develop approximation of output statistics for the MAC to obtain a strong
converse. Use random coding instead of maximal coding with rates

I (X ∧ Z) ≤ RX ≤ I (X ∧ Z|Y )

I (Y ∧ Z) < RY ≤ I (Y ∧ Z|X)

I (XY ∧ Z) ≤ RX + RY
and code structure {u1, . . . , uMX } and {vi1, . . . , viMY } for i = 1, . . . ,MX . �
Converse Proof
We follow closely the proof for a one-way channel. Here it is essential that our
approach treats general channels with memory. Secondly we use the characterisa-
tion (20) of the rate-regionR for the MAC.

In addition we partition our encoding pairs (Pi ×Qj)i=1,...,NX
j=1,...,NZ

according to the

values of their corresponding pairs of mutual informations
(
I (Xni ∧ Znij ), I (Y nj ∧

Znij )
)

where PXni = Pi , PYnj = Qj , PZnij = (Pi ×Qj)Wn, as follows.

Endow R
2 and, particularly,

S = {(R1, R2) : 0 ≤ R1 ≤ log |X |, 0 ≤ R2 ≤ log |Y|}

with a rectangular lattice with side lengths η. So we get g(η) = g1(η) · g2(η)

rectangles, if g1(η) = log |X |
η

, g2(η) = log |Y |
η

.
Label them as Sa,b(1 ≤ a ≤ g1(η), 1 ≤ b ≤ g2(η) and associate with Pi ×Qj

the rectangle Sa(i,j),b(i,j), where

(
1

n
I (Xni ∧ Znij ),

1

n
I (Y nj ∧ Znij )

)
∈ Sa(i,j),b(i,j). (27)
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There is a rectangle S∗ with which at least NX ·NY
g(η)

encodings Pi × Qj are
associated. Denote them by (Pi ×Qj)(i,j)∈N (η).

Their corresponding pairs of (normalized) mutual informations differ componen-
twise by at most η.

Furthermore, there is a row index i∗ and a column index j∗ so that

∣∣{(i∗, j) : (i∗, j) ∈ N (η)
}∣∣ ≥ |N (η)|

NX
≥ NY
g(η)

, (28)

∣∣{(i, j∗) : (i, j∗) ∈ N (η)
}∣∣ ≥ |N (η)|

NY
≥ NX
g(η)

. (29)

Now our previous converse proof comes in. To every triple (Pi,Qj ,Dij ) we

assign two codes (Uji , E
j
i ), (V ij ,F ij ), where Uji ⊂ X n, Eji = {Eji1, . . . , EjiMj

iX
},

(pairwise disjoint), V ij ⊂ Yn, F ij = {F ij1, . . . , F
i

jMijY
} (pairwise disjoint), and all

decoding sets are subsets from Dij . Here

M
j

iX ≤ exp
{
I (Xni ∧ Znij )+ o(n)

}

Mi
jY ≤ exp

{
I (Y nj ∧ Znij )+ o(n)

}

and (27) holds.
Moreover, for all indices

1

M
j

iX

∑

u∈U ji

∑

yn

Wn(E
j
iu ∩Dij |u, yn)Qj (yn) ≥ n−4 (30)

and analogous relations hold for V ij .
Now observe that for all (i, j) ∈ N (η)

(1) 1
n

logMj

iX ≤ R∗X + η and 1
n

logMi
jY ≤ R∗Y + η.

(2) By (28), (29) there are at most
( |X |n

2(R
∗
X+η)n

)
different codes Uji∗ in row i∗ and at

most
( |Y |n

2
(R∗Y+η)n

)
codes V ij∗ in column j∗.

Furthermore the multiplicity Ki∗ of codes in row i∗ (resp. Kj∗ for column j∗)
does not exceed n6 (as previously).

Finally, therefore

1

n
log logNX ≤ R∗X + 2η,

1

n
log logNY ≤ R∗Y + 2η.
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Problem In [15] Steinberg strengthens our polynomial converse to a weaker
converse. The main difference of his proof is a sharpening of the bound in
Theorem 118, which is based on a generalization of [12, Lemma 5]. We suggest
as a further improvement to establish a strong converse by our hypergraph lemma,
which is presented in [5, Section VI]. Otherwise in his proof the same ideas are
used, namely facts (19) and (20) and a suitable subcode selection. The whole proof
with all auxiliary results exceeds the present one in length roughly by a factor 3. �

5 The Proof for the BC

The Direct Part We use the reduction lemma and the ABC coding theorem
mentioned in Sect. 3. Even though that theorem holds for maximal errors we
use average errors so that the transmission codes establish two common random
experiments of the sender with both receivers, resp., with rates in T ′

Y ∪ T ′
Z .

The Converse Part Suppose w.l.o.g. that RZ < RY + ε, ε arbitrarily small,
and that the Y-decoder has a separate part coded into row numbers and that the
common part for both decoders is coded into column numbers with the encodings
(Puv)u=1,...,NYv=1,...,NZ .

Note that we can start with a smaller common rate, so that MY ∼ MZ ·MY (If
the common rate is bigger in the ABC model, we can convert this by the Reduction
Lemma 120).

We associate RV’s and information quantities as follows:
Let U,V be auxiliary RV’s with Pr((U, V ) = (u, v)) = 1

NYNZ for u =
1, . . . , NY and v = 1, . . . , NZ . Furthermore let Xn take values in X n with
conditional PD PXn|U=u,V=v(xn) = Puv(x

n), let Yn take values in Yn with
conditional PD PYn|U=u,V=v(yn) = ∑

xn Puv(x
n)Wn

1 (y
n|xn), and let Zn take

values in Zn with conditional PD PZn|U=u,V=v(zn) =∑xn Puv(x
n)Wn

2 (z
n|xn).

Thus we get information quantities

I (U ∧ Zn|V = v), I (Xn ∧ Yn|U,V = v), I (Xn ∧ Yn|V = v),

and the Markov condition (U, V )(Xn ( (Y n, Zn).
As in the proof of Theorem 119 we make η-approximations, first for all 1

n
I (Xn∧

Yn|V = v) with biggest class of value Iη3 .
This gives as in the one-way channel coding theorem for identification

1

n
log logNY ≤ Iη3 . (31)

In the remaining matrix keep Iη2 for I (Xn ∧ Yn|U,V = v) and then all I (U ∧
Zn|V = v) approximately Iη1 .
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We upper bound the number of columns by upper bounding the number of codes
(via Lemma 117) representing triples (PU |V=v, PZn|U,V=v,Dv). Thus for λn = n−6

(as usual)

1

n
log logNZ ≤ Iη1 + 2η. (32)

Within column v∗ a significant number of terms has

1

n
I (Xn ∧ Yn|U = u, V = v∗) ≤ Iη2 + β∗.

This gives the desired row number estimate

1

n
log logNY

≤ min(Iη1 + Iη2 , Iη3)+ 2η + β∗

= min
{
I (U ∧ Zn|V = v∗)+ I (Xn ∧ Yn|U,V = v∗), I (Xn ∧ Yn|V = v∗)}

+ 2η + β∗

and thus (RY , RZ ) ∈ T ′
Y by the converse in the ABC coding theorem, which shows

that the information quantities single-letterize.

Remark Theorem 121 has an important consequence. Whereas for one-way chan-
nels the common randomness capacity equals the transmission capacity and the
transmission capacity region is still unknown for general broadcast channels
we know now its common randomness capacity region, where common random
experiments for X -encoder and Y-decoder and, simultaneously, for X -encoder and
Z-decoder are generated. Indeed it equals the second order identification capacity
region!

That the latter includes the former is clear from our proof of the direct part. The
reverse implication follows indirectly by the same argument.

Interesting here is that the outer bound for the common randomness capacity
region is proved via identification.

The situation changes, if constraints like independency or security are imposed
on the two common random experiments.

A transmission code with rates (RY , RZ ) can be used for independent common
random experiments and thus the transmission capacity region for the general
broadcast channel is contained in the identification capacity region.

Finally we mention that the identification capacity region T ′Y ∪ T ′Z is convex,
because it equals the common randomness capacity region for which time sharing
applies and thus convexity is given.



190 Identification and Transmission with Multi-way Channels

References

1. R. Ahlswede, Multi–way communication channels, in Proceedings of the 2nd International
Symposium on Information Theory, Tsahkadsor Armenian SSR, 1971 (Akadémiai Kiadó,
Budapest, 1973), pp. 23–52

2. R. Ahlswede, The capacity region of a channel with two senders and two receivers. Ann.
Probab. 2(5), 805–814 (1974)

3. R. Ahlswede, Elimination of correlation in random codes for arbitrarily varying channels. Z.
Wahrsch. und verw. Geb. 44, 159–175 (1978)

4. R. Ahlswede, Coloring hypergraphs: a new approach to multi–user source coding. Part I J.
Comb. Inf. Syst Sci 1, 76–115 (1979). Part II 5(3), 220–268 (1980)

5. R. Ahlswede, Towards a general theory of information transfer, in Shannon Lecture at ISIT in
Seattle 13th July 2006. IEEE Information Theory Society Newsletter (2007)

6. R. Ahlswede, G. Dueck, Identification via channels. IEEE Trans. Inf. Theory 35, 15–29 (1989)
7. R. Ahlswede, G. Dueck, Identification in the presence of feedback—a discovery of new

capacity formulas. IEEE Trans. Inf. Theory 35, 30–39 (1989)
8. R. Ahlswede, T.S. Han, On source coding with side information via a multiple–access channel

and related problems. IEEE Trans. Inf. Theory 29(3), 396–412 (1983)
9. R. Ahlswede, B. Verboven, On identification via multi–way channels with feedback. IEEE

Trans. Inf. Theory 37(5), 1519–1526 (1991)
10. T.M. Cover, An achievable rate region for the broadcast channel. IEEE Trans. Inf. Theory 21,

399–401 (1975)
11. T.S. Han, S. Verdú, New results in the theory and application of identification via channels.

IEEE Trans. Inf. Theory 38, 14–25 (1992)
12. T.S. Han, S. Verdú, Approximation theory of output statistics, IEEE Trans. Inf. Theory 39(3),

752–772 (1993)
13. J. Körner, K. Marton, General broadcast channels with degraded message sets. IEEE Trans.

Inf. Theory IT 23(1), 60–64 (1977)
14. E.C. van der Meulen, Random coding theorems for the general discrete memoryless broadcast

channel. IEEE Trans. Inf. Theory IT 21, 180–190 (1975)
15. Y. Steinberg, New converses in the theory of identification via channels. IEEE Trans. Inf.

Theory 44(3), 984–998 (1998)



Data Compression

1 Noiseless Coding for Identification

For this section we recall some basic definitions, which are introduced in [4].

Definition 122 A code (of variable length) is a function c : X → Y∗,
X = {1, . . . , a}. So {c(1), c(2), . . . , c(a)} is the set of codewords, where for

x = 1, . . . , a c(x) = (c1(x), c2(x), . . . , cL(x)(x)
)

andL(x) is denoted as the length
of the codeword c(x).

Definition 123 A code c is a prefix code, if for any two codewords c(x)
and c(y), x �= y, with L(x) ≤ L(y) holds

(
c1(x), c2(x), . . . , cL(x)(x)

) �=(
c1(y), c2(y), . . . , cL(x)(y)

)
. So in at least one of the first L(x) components c(x)

and c(y) differ.

A discrete source is a pair (U, P ), where the output space U is a finite set of
cardinality N and P is a probability distribution on U . We call the discrete source
binary, if N = 2. It is called symmetric, if all probabilities are the same. Further,
a discrete memoryless source is a pair (Un, P n), where Un is the cartesian product
of a finite set U . Pn is a probability distribution on Un, where the probability of an
element un ∈ Un is product of the probabilities of its individual components.

We abbreviate a discrete memoryless binary symmetric source by BSS.
Let (U, P ) be a discrete source, where U = {1, 2, . . . , N}, P = (P1, . . . , PN ),

and let C = {c1, . . . , cN } be a binary prefix code (PC) for this source with ‖cu‖ as
length of cu.

Introduce the RV U with Pr(U = u) = pu for u = 1, 2, . . . , N and the RV C
with C = cu = (cu1, cu2, . . . , cu‖cu‖) if U = u.

We use the PC for noiseless identification, that is user u wants to know whether
the source output equals u, that is, whether C equals cu or not. He iteratively checks
whether C = (C1, C2, . . . ) coincides with cu in the first, second, etc. letter and
stops when the first different letter occurs or when C = cu.
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What is the expected number LC(P, u) of checkings?
In order to calculate this quantity we introduce for the binary tree TC , whose

leaves are the codewords c1, . . . , cN , the sets of leaves Cik(1 ≤ i ≤ N; 1 ≤ k),
where Cik = {c ∈ C : c coincides with ci exactly until the k’th letter of ci}. If C
takes a value in Cuk, 0 ≤ k ≤ ‖cu‖ − 1, the answers are k times “Yes” and 1 time
“No”. For C = cu the answers are ‖cu‖ times “Yes”. Thus

LC(P, u) =
‖cu‖−1∑

k=0

P(C ∈ Cuk)(k + 1)+ ‖cu‖Pu.

For code C LC(P ) = max
1≤u≤N LC(P, u) is the expected number of checkings in the

worst case and L(P) = min
C
LC(P ) is this number for a best code.

Analogously, if C̃ is a randomized coding, we introduce

LC̃(P, u), LC̃(P ) and L̃(P ).

What are the properties of L(P) and L̃(P )? We call for a kind of “identification
entropies” serving as bounds like Boltzmann’s entropy does in Shannon’s source
coding. Notice that every user comes with the same fixed code much faster to his
goal to know “it’s me—it’s not me” than the one person in Shannon’s model, who
wants to use the outcome of the source always.

Moreover, as in [5] one can replace the lengths ||cu|| by ϕ(||cu||) where ϕ :
R+ → R+ is continuous and strictly monotone increasing.

Thus one gets functionals

L(P, ϕ) and L̃(P, ϕ).

We shall analyze these quantities on another occasion and confine ourself here to
deriving some simple facts.

Let us start with PN =
(

1
N
, . . . , 1

N

)
and set f (N) = L(PN). Clearly

f (2k) ≤ 1+ 1

2
f (2k−1), f (2) = 1

and therefore

f (2k) ≤ 2− 2−(k−1). (1)

On the other hand it can be verified that

f (9) = 1+ 10

9
> 2 and more generally, f (2k + 1) > 2.
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1. What is sup
N

(
f (N)

)
?

2. Is L̃(P ) ≤ 2?
3. Suppose that encoder and decoder have access to a random experiment with

unlimited capacity of common randomness (see [2]). Denote the best possible
average codeword lengths by L∗(P ).

For P = (P1, . . . , PN), N ≤ 2k write P ′ = (P1, . . . , PN , 0, . . . , 0) with
2k components. Use a binary regular tree of depth k with leaves 1, 2, . . . , 2k

represented in binary expansions.
The common random experiment with 2k outcomes can be used to use 2k cyclic

permutations of 1, 2, . . . , 2k for 2k deterministic codes. For each i we get equally
often 0 and 1 in its representation and an expected word length ≤ 2 − 1

2k−1 . The

error probability is 0. Therefore L∗(P ) ≤ 2− 2−(k−1) ≤ 2 for all P .

2 Noiseless Coding for Multiple Purposes

In the classical theory of data compression the main concern is to achieve a short
average length coding. Here we address a problem of noiseless coding, where
different persons are interested in different aspects of the data and their accessibility.
We begin with a specified question.

Persons are Interested in Different Components of a Bernoulli Source
Consider a discrete memoryless binary symmetric source (BSS) producing the
output Xn = (X1, . . . , Xn). Suppose that there are n persons and that person t
is interested in the outcome of Xt(1 ≤ t ≤ n). A multiple purpose encoding (or
program) shall be a sequence f = (fi)

∞
i=1 of functions fi : {0, 1}n → {0, 1}.

Person t requests sequentially the values f1(X
n), f2(X

n), . . . and stops as soon as
he/she has identified the value of Xt . Let �(f, t) denote the number of requests of
person t for program f . We are interested in the quantity

L(n) = min
f

max
1≤t≤nE�(f, t). (2)

The choice fi(Xn) = Xi(1 ≤ i ≤ n) gives �(f, t) = t and thus max
1≤t≤n �(f, t) =

n.

Since 1
n

n∑
t=1
�(f, t) = n+1

2 , one should do better. In [1] we stated the problem to

determine L(n). Don Coppersmith [6] gave a rather precise bound.

Theorem 124 n+1
2 ≤ L(n) ≤ n+2

2 .
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Proof The lower bound is obvious, because

L(n) ≥ min
f

1

n

n∑

t=1

E�(f, t)

and

E|{t : 1 ≤ t ≤ n, �(f, t) ≤ i}| ≤ i.

For the upper bound set f1(X
n) = X1 and for 2 ≤ i ≤ n set

fi(X
n) =

{
Xi if X1 = 0

Xn+2−i if X1 = 1.

For t > 1 the stopping time is either t or n+2−t , each with probability 1
2 , so that

the mean is E�(f, t) = n+2
2 , while obviously �(f, 1) = 1. Thus L(n) ≤ n+2

2 . ��
Remark A weaker upper bound, but more uniform distribution of the stopping times
is obtained as follows: Let the first �log2 n� bits be

(
f1(X

n), f2(X
n), . . . , f�log n�(Xn)

) = (X1,X2, . . . , X�log n�)

and let these logn bits index a cyclic shift of the remaining n − logn bits so that
the distribution of stopping times is approximately uniform between logn and n for
t > �logn�. This leads to the weaker upper bound

L(n) ≤ (n+ log2 n+ c)/2.

Remark Notice that both procedures are probabilistic algorithms. They exploit the
randomness of the source.

Noiseless Source Coding Problems of Infinite Order: Ordering and Identifica-
tion
We consider here a source coding version of the ordering problem and also of the
identification problem.

To simplify technicalities we assume that N = 2n. We also assume that any
element of {0, 1}n is a source output with equal probabilities.

For any un ∈ {0, 1}n: Is the source output xn = (x1, x2, . . . , xn) before un, that
is, xn ≤ un (lexicographically), or not? There is a canonical encoding function f =
(f1, . . . , fn) with ft (X1, . . . , Xn) = Xt . The person interested in un stops, when
his/her question is answered. He/she stops at the smallest t with ft (ut ) �= ft (Xt).

The distributions of the stopping times don’t depend on un. Let Tn denote the
expected stopping time.
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Lemma 125 Tn = 1+ 1
2Tn−1 = 2n−1

2n−1 , n ≥ 1.

This is a simple exercise. Notice that

lim
n→∞ Tn = 2. (3)

So the compression rate exceeds any finite order.
Now let the question be “Does Xn equal un or not?” (Identification)
We use again a multi-purpose encoding function. Actually we can use the same

function as before. There is also the same recursion for Tn. Notice that in case of
identification for Xn = un we have maximal running time, namely n.

Problems

1. It is interesting to study the previous problems for other distributions on {0, 1}n.
In general the previous encoding function is not optimal (for instance if Pr(X1 =
0) = 1).

An instructive source is given by the distribution which assigns probability
1
n

to the sequences starting with k 1’s and continuing with 0’s only. For un =
(1, 1, . . . , 1) the running time of the previous encoding function is always n.
However, by choosing f1(X

n) = X� n2 � etc. the worst case expected running
time is still less than 2.

2. For any distribution P on {0, 1}n, is the worst case expected running time less
than 2? In case the answer is negative, determine the best constant (independent
of n) upper bound! An obvious algorithm: number probabilities in decreasing
order;P1 ≥ P2 ≥ · · · ≥ PN and divide as equally as possible P1+P2+· · ·+PN1 ,
PN1+1 + · · · + PN . f1(X

n) says whether i ∈ {1, . . . , N1} or not, etc.
We conjecture that the bound 2 is achievable, if randomisation in the encoding

is permitted. Two simple examples illustrate the advantage of randomisation.
Denote by EP,i(f ) the expected running time for source distribution P , object i,
and encoding function f .

For P =
(

1
4 ,

1
4 ,

1
4 ,

1
4

)
and f based on division into two equal parts gives

TP,i(f ) = 1+ 1

2
(i = 1, 2, 3, 4).

ForQ =
(

1
3 ,

1
3 ,

1
3

)
and f based on the division

{{
1
3

}
,
{

1
3 ,

1
3

}}
gives

TQ,1(f ) = 1, TQ,i(f ) = 1+ 2

3
(i = 2, 3).

Therefore maxi TP,i(f ) < maxi TQ,i(f ), however,
∑
i TP,i(f ) >∑

i TQ,i(f ) and randomisation takes advantage of this fact, by smoothing out
the differences between the individual running times.
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Let F choose with probabilities 1
3 the partitions

{{1}, {2, 3}}, {{1, 3}, {2}}, {{3}, {1, 2}}

in the first step, the second step is canonical. Then

TQ,i(F ) = 1

3

(
1+

(
1+ 2

3

)
+
(

1+ 2

3

))
= 1+ 4

9
< 1+ 1

2
(!).

3. It is also reasonable to study alphabetical source codes for identification. For
example for different intervals of a pipeline different repairman are responsible.
They want to know whether a defect occurred in their interval or not.

4. Suppose that N = 2k numbers are stored in 0–1 bits in a machine. Upon request
a further bit is revealed by the machine. What is the average number of requests
so that person i knows whether i occurred or not?

5. One can study multiple purpose coding problems with noise (see [3], which gives
a common generalization of Shannon’s noiseless coding theorem and coding
theorems for noisy channels). What are the generalizations (there is one in [3])
of Kraft’s inequality?

6. These source coding problems open a whole area of research. Are there coding
problems of an order between first order (as in the component problem) and
infinite order (as in the ordering problem)?

7. It is remarkable in this context also that the ordering problem via channels is not
easier than transmission, if maximal errors are used. However, if for the second
kind error probability the average is taken, then the ordering problem becomes
of infinite order (similar as the identification problem does). Indeed just map the
numbers 1, . . . , N onto codewords of a transmission code

{
(ui ,Di ) : 1 ≤ i ≤}

as follows:
For anyK < N write j ∈ {1, . . . , N} as j = rK + s, 0 ≤ s < K , and map j

on ur . Now just let N go to infinity and chooseK = ⌈N
M

⌉
.

8. It is also interesting that for maximal second kind error probabilities the
identification problem via channels has second order behaviour whereas—as
mentioned before—the ordering problem has first order behaviour.

We therefore ask the following question:
Is there a reasonable coding problem with average error of second kind

as performance criterion which is neither of first order nor of infinite order
behaviour? In the positive case, what is the hierarchy of all orders?

9. If κ < 1
2CpolSh, then first order capacity R1 equals infinity. However, if κ >

1
2CpolSh, is then R1 > CpolSh possible?
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Perspectives

Our models go considerably beyond Shannon’s transmission model and the model
of identification. They will greatly enlarge the body of information theory. We
substantiate here this belief by a brief discussion of how already the identification
model alone had a significant impact.

Right now the most visible influences are new approximation problems (like
approximation of output statistics [14] or entropy approximations based on Schur-
convexity [10] etc.), a new emphasis on random number generation [1] and, above
all, an understanding of the concept of common randomness [9], in identification
[10, 11, 13], cryptography [7], and classical transmission problems of arbitrarily
varying channels [3, 5, 12], and the paper [6], with a novel capacity formula, which
could not be derived before.

It is also fascinating to discover how transmission problems and identification
problems in multi-user theory show often some kind of duality. Often identification
problems are mathematically more complex and in other cases we encounter the
opposite: there is a rather complete capacity theory for identification via multi-way
channels in case of complete feedback [10, Lecture 3], whereas for transmission
with feedback we don’t even understand the multiple access channel.

We conclude with three more recently encountered directions of research.

1 Comparison of Identification Rate and Common
Randomness Capacity: Identification Rate can Exceed
Common Randomness Capacity and Vice Versa

One of the observations of [9] (chapter “Identification in the Presence of Feedback:
A Discovery of New Capacity Formulas”) was that random experiments, to whom
the communicators have access, essentially influence the value of the identification
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capacity CpolID. We introduce now common randomness capacity, which was
called mystery number in [10] (chapter “On Identification via Multi-Way Channels
with Feedback: Mystery Numbers”), and has subsequently been called by us in
lectures and papers by its present name.

The common randomness capacity CpolCR is the maximal number ν such, that
for a constant c > 0 and for all ε > 0, δ > 0 and for all n sufficiently large there
exists a permissible pair (K,L) of RV’s for length n on a set K with |K| < ecn with

Pr{K �= L} < ε and
H(K)

n
> ν − δ.

Actually, if sender and receiver have a common randomness capacity CpolCR
then by the so called

√
n-trick of chapter “Identification in the Presence of Feed-

back: A Discovery of New Capacity Formulas”, that is, the transformator lemma
(discussed in [4]), always

CpolID ≥ CpolCR if CpolID > 0. (1)

For many channels (see [7, 9]), in particular for channels with feedback [9, 10],
equality has been proved.

It seemed therefore plausible, that this is always the case, and that the theory
of identification is basically understood, when common randomness capacities are
known.

We report here a result, which shows that this expected unification is not valid in
general—there remain two theories.

Example In [15] one can find also an example with 0 < CpolID < CpolCR)

Example We will now prove the existence of a sequence of channels (not a sequence
of discrete memoryless channels) with CpolID = 1, CpolCR = 0.

We use a Gilbert type construction of error correcting codes with constant weight
words. This was done for certain parameters in [8] (see chapter “Identification
via Channels”, Part I). The same arguments give for parameters needed here the
following auxiliary result.

Proposition 126 LetZ be a finite set and let λ ∈ (0, 1/2) be given. For (23/λ)−1 <

ε < (22/λ + 1)−1 a family A1, . . . , AN of subsets of Z exists with the properties

|Ai | = ε|Z|, |Ai ∩ Aj | < λε|Z| (i �= j)

and

N ≥ |Z|−12�ε|Z|	 − 1.

Notice that λ log
(

1
ε
− 1
)
> 2 and that for � with 2−� = ε necessarily � > 2

λ
.



2 Robustness, Common Randomness and Identification 201

Choose now Z = {0, 1}n, ε = 2−� and Ai’s as in the Proposition. Thus |Ai | =
2n−�, N(n, λ) = 2−n22n−� − 1 and |Ai ∩ Aj | < λ2n−�.

Consider now a discrete channel (Wn)∞n=1, where the input alphabets Xt =
{1, 2, . . . , N(t, λ)} are increasing, X n =

n∏
t=1

Xt are the input words of length n,

Yn = {0, 1}n are the output words andWn : X n � Yn is defined by

Wn(·|i1i2 . . . in) = Wn(·|in)

andWn(·|i) is the uniform distribution on Ai for 1 ≤ i ≤ N(n, λ).
By Proposition 126 and 3/λ > � > 2/λ

N(n, λ) ≥ 2−n22n−3/λ

and

CpolID ≥ lim inf
n→∞

1

n
log logN(n, λ) ≥ 1.

However, for transmission every decoding set is contained in some Ai and for
error probability λ must have cardinality (1− λ)|Ai | = (1− λ)2n−�.

Therefore M(n, λ) ≤ 2n

(1−λ)2n−� ≤ 2�+1, if λ < 1/2, and 1
n

logM(n, λ) ≤
�+1
n

≤ 3/λ+1
n

→ 0(n → ∞). The transmission capacity is 0. Consequently also
CpolCR = 0. �
Remark The case of bounded input alphabets remains to be analyzed. What are
“natural” candidates for equality of CpolID and CpolCR?

Remark For infinite alphabets one should work out conditions for finiteness of the
identification capacity.

2 Robustness, Common Randomness and Identification

It is understood now [6, 7] how the theory of AV-channels is intimately related to
the concept of robust common randomness. A key tool is the balanced hypergraph
coloring [2]. We sketch now another direction concerning robustness and identifica-
tion.

For more robust channel models, for instance in jamming situations, where
the jammer knows the word to be sent (c.f. AV-channels with maximal error
criterion), the communicators are forced to use the maximal error concept. In case
of identification this makes the randomization in the encoding (see [8, Lecture 1])
superfluous. Now, for a DMC W it was mentioned in chapter “Identification via
Channels” that in the absence of randomization the identification capacity, say
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C∗I (W), equals the logarithm of the number of different row-vectors in W . This
is easy to show, however, a formidable problem arises if the DMC W is replaced
by the AVC W . In fact, for 0-1-matrices only in W we are—exactly as for
transmission—led to the equivalent Shannon-zero-capacity problem. But for general
W the identification problem is quite different from the transmission problem.

In so far there is a lower bound on C∗I (W), which implies for

W =
{(

1 0
0 1

)
,

(
1 0
δ 1− δ

)}
, δ ∈ (0, 1)

that C∗I (W) = 1, which is obviously tight. It exceeds the known capacity for
transmission. The capacity for

W =
{(

1 0
0 1

)
,

(
1− δ δ

δ 1− δ
)}

is unknown.

3 Beyond Information Theory: Identification as a New
Concept of Solution for Probabilistic Algorithms

Finally we mention as the perhaps most promising direction the study of probabilis-
tic algorithms with identification as concept of solution. (For example: for any i, is
there a root of a polynomial in interval i or not?)

The algorithm should be fast and have small error probabilities. Every algorith-
mic problem can be thus considered. This goes far beyond information theory. Of
course, like in general information transfer also here a more general set of questions
can be considered. As usual in complexity theory one may try to classify problems.

What rich treasures do we have in the much wider areas of information transfer?!
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Part III
Identification, Mystery Numbers,

or Common Randomness



The Role of Common Randomness
in Information Theory and
Cryptography: Secrecy Constraints

1 Introduction

The first multi-user model of communication subject to secrecy constraints was
Wyner’s [13] “wiretap channel”. This model involves two channels with common
input, the output of the first channel being available to the “legitimate receiver”
and the output of the second channel to the “wiretapper”. The question is at which
rate can messages be sent to the legitimate receiver while keeping the wiretapper
ignorant. Wyner [13] considered and solved this problem for the case when the
wiretapper’s channel was a degraded version of the legitimate receiver’s channel.
Csiszár and Körner [5] gave a solution for the general case of any two (discrete
memoryless) channels. They showed, in particular, that the “secrecy capacity” was
always positive unless the wiretapper’s channel was less noisy than the legitimate
receiver’s one (cf. also the book Csiszár and Körner [6], pp. 407–411).

Recently, Maurer [9] demonstrated that the availability of a public feedback
channel could make secret transmission possible even in such cases when the
secrecy capacity without feedback was zero. In fact, Maurer proposed a scheme
that enabled the legitimate receiver to share a random key with the sender, using
transmissions over the public feedback channel in such a way that no information
about the key was given away to the wiretapper. In this scheme, both the legitimate
receiver’s and the wiretapper’s channel were assumed to be binary symmetric, with
independent but otherwise arbitrary noise. Since the key generated by the receiver
and shared with the sender could be used to encrypt messages, secret transmission
became possible even if the wiretapper’s channel was the better one. Maurer also
hinted at a source-type model. His presentation gave an important motivation for
this work.

One goal of this chapter (see [2]) is to propose a systematic study of the related
problems of secret sharing and secret transmission on the basis of an information
theoretic model. By secret sharing we mean generating common randomness at two
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(or more) terminals, without giving information about it to a third part. This may
be realized by generating a random message at either terminal and transmitting it
over a secure channel to the other one but also in more complex ways that may
include communication over a public channel and using side information that may
be available. Of course, once secret sharing has taken place, it can always be used
to achieve secret transmission via encryption.

While this general problem area has been intensively researched, it has hardly
been looked at from the information theoretic point of view. The popular computa-
tional complexity approach (Diffie and Hellman [8], Rivest, Shamir and Adleman
[12]) certainly appears very fruitful. Still, we argue that a general information
theoretic approach to this field is also needed. Even though it may not lead to the
emergence of new cryptosystems, it is likely to lead to new insights, complementing
the more practical complexity approach in much the same way as Shannon’s theory,
in general, complements communication theory and coding theory.

It is to be mentioned that the problem of generating common randomness is an
important one even without the secrecy requirement. E.g., for arbitrarily varying
channels, the possibility of reliable transmission often depends on whether sender
and receiver have common randomness available (of arbitrarily small positive rate).
Indeed, in the presence of such common randomness reliable transmission is possi-
ble at random coding capacity (Ahlswede [1]) that may be positive even if otherwise
the capacity is zero (for more on the capacity of arbitrarily varying channels cf.
Csiszár and Narayan [7]). Common randomness shared by sender and receiver plays
a key role also in the theory of identification capacity as opposed to transmission
capacity, developed by Ahlswede and Dueck [3, 4] (see chapters “Identification via
Channels” and “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas” in Part I). In this first part of the chapter, however, attention
will be restricted to generating common randomness subject to a secrecy constraint,
i.e., secret sharing.

Some problems that immediately present themselves will be fully or partially
solved. The results demonstrate that secret sharing can be effectively dealt with by
techniques originally developed for multiterminal communication problems without
secrecy constraints, cf. Csiszár and Körner [6, Chapter 3]. The large variety of
related further problems will be left for future research.

Two kinds of models will be considered, one having the flavor of source coding
and the other of channel coding. These two models are closely related. To facilitate
understanding, first the simplest versions of these models will be treated (Sect. 2).
The main results of the chapter are stated in Sect. 3 and proved in Sect. 4.

Throughout this chapter, the terminology of the book Csiszár and Körner [6] will
be used.

After the original paper [2] that this chapter is based on had been submitted,
the authors learned of more recent results of Maurer on generating a shared key,
that partially overlap with results in the paper. Maurer’s results will be published
in full in [11], and some of them appear already in [10]. In particular, Maurer [10]
gave lower bounds on what we call key-capacity for the channel-type model with
wiretapper, in the binary case. He also showed that the key rate he had obtained in
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[7] was best possible for that model. This proof relied on a general upper bound
stated but not proved in [10], which was the same as ours in Theorem 133. Maurer
[11] addresses general source-type and channel-type models with wiretapper (in
our terminology) and gives ‘lower and upper bounds on key-capacity, including
a proof of the upper bound stated in [10]. He also obtains the results of the
corollaries of our Theorems 131 and 133. Maurer’s results do not include a single-
letter characterization of key-capacity with a one-way use of the public channel (our
Theorem 131 and 133) and neither our Theorem 135. On the other hand, his papers
[10, 11] contain some other results which we do not have in this chapter.

2 Generating a Shared Secret Key When the Third Party
Has No Side Information

The main results of this chapter will be stated in Sect. 3. Here we introduce ampler
versions of the problems treated there, in order to facilitate their understanding.

In both models below, we consider secret sharing between two terminals, to be
called Terminal X and Terminal Y . Both models involve an unspecified integer n
(the block-length), and we will be interested in the case when n is large.

Model S: (source-type model) We are given a DMMS (discrete memoryless mul-
tiple source) with two component sources and generic variables (X, Y ). Terminal
X “can see” the source outputs Xn = (X1, . . . , Xn) and Terminal Y “can see” the
source outputs Yn = (Y1, . . . , Yn). Further, a noiseless public channel of unlimited
capacity is available for communication between the two terminals.

Model C: (Channel-type model) We are given a DMC (discrete memoryless
channel) {W : X → Y}. Terminal X can govern the input of this DMC while
Terminal Y observes the output. In addition to transmissions of length n over this
DMC, which is considered a secure channel, also a noiseless public channel of
unlimited capacity may be used for communication between the two terminals.

Remark In Model C, we chose to denote the input and output alphabets by the same
symbols as the corresponding terminals, believing that this will be intuitive rather
then ambiguous. Similarly, in Model S, the alphabets of the two component sources
will also be denoted by X and Y .

Next we describe what we mean by permissible secret sharing strategies. Since
we want to allow for all strategies that are abstractly conceivable (even very complex
ones that may be quite impractical), this description is somewhat cumbersome. The
main result of this section will be that recurse to those complex secret sharing
strategies is not necessary because optimum secret sharing can be achieved in a
very simple way.

Communication over the public channel will be visualized as an exchange of
messages or codewords�i , generated by terminal X and �i , generated by terminal
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Y , at consecutive instances i = 1, . . . , k. Here �i and �i may depend on all
information available at the corresponding terminal at instant i. For convenience,
these �i and �i will be referred to as forward transmissions and backward
transmissions, respectively. Of course, our model includes the possibility of one-
way communication, because �i or �i (or both) may be set equal to the empty
word.

It will be convenient to assume that as the zero’s step of any secret sharing
strategy, the two terminals generate independent RV’s MX and MY , respectively,
and all further steps are deterministic. This does not restrict generality, because any
randomized operations at either terminal (at any step) may be equivalently regarded
as deterministic operations that depend also on an initially chosen random variable
MX orMY , respectively.

Now the formal definition of a permissible secret sharing strategy for Model S is
as follows.

Step 0 The terminals generate RV’s MX and MY such that MX ,MY and
(Xn, Y n) are mutually independent.
Step 1 The two terminals exchange messages �1,�1, over the public channel,
where �1 = �1(MX ,Xn), �1 = �1(MY , Y n).
Step i The two terminals exchange messages �i,�i over the public channel,
where �i = �i(MX ,Xn,�i−1), �i = �i(MY , Y n,�i−1), (with the usual
shorthand that upper index denotes a sequence up to that index).
Final Step (after k “exchange steps” have taken place): Both terminals compute
what they deem to be the key established by the secret sharing process, as a
function of the information available to them

K = K(MX ,X
n,�k), L = L(MY , Y

n,�k), (1)

where K and L take values in the same finite set K.

Of course, K and L must satisfy certain conditions in order that we can speak
of a successful secret sharing. Before stating these (viz. equations (4) and (5) in
Definition 127 below), first we define the permissible strategies for Model C. Here
the situation is more complex because two channels are available for communication
(the secure DMC, however, in one direction only) and these may be used in an
interactive way.

In the following formal definition of a permissible secret sharing strategy for
Model C we assume that the n symbols transmitted over the DMC are sent at instants
�, 2�, . . . , n� (where � is an unspecified integer), and at the other instants the public
channel is used. This does not restrict generality, because any or all of the �i and
�i below may be set equal to the empty word.

Step 0 The terminals generate independent RV’sMX andMY .
Step i, 0 < i < � The two terminals exchange messages �i,�i over the public
channel, where �i = �i(MX ,�i−1), �i = �i(MY ,�i−1).
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Step � Terminal X determines the first input X1 to the DMC, X1 =
X1(MX ,��−1), and terminal Y observes the corresponding output Y1. ��
and �� are set void.
Step i, (j− 1)� < i < j�, j ≤ n The terminals exchange messages �i,�i ,
where

�i = �i(MX ,�
i−1), �i = �i(MY , Y

j−1,�i−1). (2)

Step i = j�, j ≤ n Terminal X determines the j th input Xj to the DMC, Xj =
Xj (MX ,�j�−1) and terminal Y observes the corresponding output Yj . �j� and
�j� are set void.
Step i,n� < i ≤ k The terminals exchange messages�i,�i as in (2), with Y j−1

replaced by Yn in the definition of �i .
Final Step Same as in Model S (now in Eq. (1) actually K = K(MX ,�k),
because Xn is uniquely determined byMX and �k).

Notice that a strategy as above always determines Xj as a function of MX ,MY
and Y j−1. The formal meaning of saying that Yj is the DMC output corresponding
to input Xj is

Pr
{
Yj = y|MX = m,MY = m′, Y j−1 = yj−1

}
= W

(
y|Xj(m,m′, yj−1)

)

(3)

where Xj(m,m′, yj−1) denotes the input Xj determined by MX = m, MY = m′,
Y j−1 = yj−1. It is easy to see that the functional relationships in the description
of the strategy and Eq. (3) uniquely determine the joint distribution of all RV’s
involved (once the distributions of MX and MY are specified) as it is necessary
for mathematical consistency.

Definition 127 For Model S or C, a number H will be called an ε-achievable key
rate if for every δ > 0 and sufficiently large n there exists a strategy (permissible
for the given model) such that K and L of (1) satisfy

Pr{K �= L} < ε (4)

1

n
I (�k,�k ∧K) < ε (5)

1

n
H(K) > H − δ (6)

1

n
log |K| < 1

n
H(K)+ ε. (7)

H is an achievable key rate if it is ε-achievable for every ε > 0, and the largest
achievable key rate is the key-capacity. Further, we define a-weakly ε-achievable
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key rates as above by replacing condition (7) by

1

n
log |K| < a. (8)

Then the weakly achievable key rates are those that, for some fixed a, are a-
weakly ε-achievable for every ε > 0, and the largest weakly achievable key rate is
the weak key-capacity.

Here condition (4) means that the two terminals have indeed generated a common
key (with a small probability of error), and (5) means that this is indeed a secret key:
the exchange over the public channel gave away effectively no information about
it. Condition (7) means that the distribution of the key is “nearly uniform” in an
entropy sense; this certainly appears desirable if the key is to be used for encryption,
the most likely purpose of secret sharing. Below we will prove (Lemma 128) that
condition (7) indeed ensures the suitability of the key for encryption. Nevertheless,
it is a question of some mathematical interest whether the key rate 1

n
H(K) could

be increased by dropping the “uniformity condition” (7). Condition (8) has been
imposed in order to exclude a trivial positive answer to that question. Indeed, if the
“key spaces” Kn could grow faster than exponential with n, 1

n
H(K) could be made

arbitrarily large simply by uniformly distributing an arbitrarily small probability on
a set of superexponential size.

To be rigorous, the obvious implication of Definition 127 that weak key-capacity
is at least as large as key-capacity, requires a proof. Indeed, it is necessary to show
that (7) (together with (4), (5) and the definition of permissible secret sharing
strategies) implies that 1

n
H(K) is bounded. A proof of this fact is contained in

Proposition 129 below.
In the simple models treated in this section it will be easily shown that weak

key capacity actually equals key capacity. We expect that the same holds also for
the more complex models and all variants of the concept of key capacity treated
in Sect. 3; indeed, this will be established in all cases when we can determine the
key capacity. Still, no attempt will be made to prove a general theorem about this
equality, because this technical problem does not appear to be of primary interest.

Now we show that if H is an achievable key rate in the sense of Definition 127
then, using the established key for encryption, secure transmission at rate H is
possible over the public channel. For this, we set (without restricting generality)
Kn = {1, . . . , N} and consider the encryption of a random message M ∈
{1, . . . , N} (generated at terminal X , say) simply as M + K (modN). If M + K
is sent over the public channel, terminal Y can decodeM with small probability of
error (by (4)), and the next lemma shows that a cryptonalist having access to the
public transmissions only, gets effectively no information aboutM .

Lemma 128 For a RV M with values in {1, . . . , N} independent of (�k,�k,K),
(5) and (7) imply that

1

n
I (�k,�k,M +K ∧M) < 2ε.
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Proof

I (�k,�k,M +K ∧M) = I (M +K ∧M|�k,�k) (9)

= H(M +K|�k,�k)−H(M +K|M,�k,�k)

≤ logN −H(K|M,�k,�k)

≤ H(K)+ nε −H(K|M,�k,�k) (10)

= I (K ∧M,�k,�k)+ nε

≤ 2nε. (11)

Here (9) holds because M is independent of (�k,�k), (10) follows from (7)
where now K = {1, . . . , N}, and (11) follows from (5) because M is independent
of (�k,�k,K). ��
Remark The same simple proof shows that if I (�k,�k∧K) were exactly 0 and the
distribution ofK exactly uniform then we would have I (�k,�k,M+K∧M) = 0,
i.e., perfect secrecy.

In the simple models of this section this is indeed attainable, but in the more
complex models of Sect. 3 one probably has to be satisfied with the almost complete
secrecy of Lemma 128. The main result in this section is the following.

Proposition 129

(i) For Model S, key capacity and weak key-capacity both equal the mutual
information I (X ∧ Y ) and this is attainable by using a single forward (or
backward) transmission only.

(ii) For Model C, key capacity and weak key-capacity both equal the ordinary
capacityC(W) of the DMC {W }, and this is attainable without using the public
channel at all.

Proof First we prove the direct assertion of (i), i.e. that I (X ∧ Y ) is an achievable
key rate by using a single forward transmission. The idea is to transmit a code of
Xn of rate ≈ H(X|Y ) that, in the knowledge of Yn, makes the reproduction of Xn

possible (with small probability of error). A closer look at the proof of the Slepian-
Wolf theorem ([6], pp. 238–239, Theorem 1.2) reveals that this can be done in such
a way that the desired secret sharing results. ��

For a formal proof, consider the DMC {W : X → Y} where W = PY |X, fix
ε > 0, δ > 0, η > 0, and pick consecutively disjoint codeword sets Ci of (n, ε)
codes for this DMC, each consisting of codewords of the same type, and each of
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size

M = ⌈exp {n (I (X ∧ Y )− δ)}⌉. (12)

If this process can not be continued after having picked CN , say, then necessarily

PnX

(
N⋃

i=1

Ci

)
> 1− η (13)

(providing n is sufficiently large). Indeed, any subset A of X n with PnX(A) ≥ η

contains a codeword set C with the desired properties ([6], p. 107; there the constant
type property was not required, but it can obviously be attained by looking at the
largest subcode with codewords of constant type).

Now let terminal X transmit

�(Xn) =
{
i if Xn ∈ Ci , 1 ≤ i ≤ N
0 if Xn /∈ ⋃Ni=1 Ci .

Enumerate (in any way) the elements of each Ci , and set K = j if Xn equals
the j th element of some Ci . Terminal Y , knowing yn and �(Xn) = i, can use the
decoder of the channel code with codeword set Ci ; set L = j if this decoding results
in the j th element of Ci . Then, since W = PY |X , and an (n, ε) code was used for
the DMC {W }, we have

Pr
{
L �= K|Xn ∈ Ci

}
< ε, i = 1, . . . , N.

This and (13) imply that

Pr{K �= L} < ε + η, (14)

no matter how K and L are defined when Xn /∈ ⋃Ni=1 Ci . Further, since each set
Ci consists of sequences of the same type, the conditional distribution of K on
the condition Xn ∈ Ci is uniform on {1, . . . ,M}, for every i = 1, . . . , N . For
convenience, for Xn /∈ ⋃Ni=1 Ci we set K equal to a RV uniformly distributed on
{1, . . . ,M} and independent of Xn.

By this simple scheme, a key has been obtained, shared by both terminals
(Eq. (14)), that is both uniformly distributed and independent in the exact sense of
� transmitted over the public channel, and such that 1

n
H(K) is arbitrarily close to

I (X ∧ Y ) (Eq. (12)).
Having proved the direct assertion of (i) and the direct assertion of (ii) being

obvious from the DMC coding theorem, it remains to prove the converses, i.e., that
a (weakly) achievable key rate can not exceed I (X ∧ Y ) in Model S or C(W) in
Model C.
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To this we send forward a simple lemma.

Lemma 130 Let U and V be arbitrary RV’s, and let �1, . . . ,�k , �1, . . . , �k be
such that for every i ≤ k, �i is a function of U and �i−1, and�i is a function of V
and�i−1. Then

I (U ∧ V |�k,�k) ≤ I (U ∧ V ).

Proof

I (U ∧ V |�k,�k) = I (U ∧ V |�k−1,�k,�
k−1,�k)

≤ I (U,�k ∧ V |�k−1,�k−1,�k)

≤ I (U,�k ∧ V,�k|�k−1,�k−1)

= I (U ∧ V |�k−1,�k−1);

here the last step follows from the assumption that �k is a function of (U,�k−1)

and �k is a function of (V ,�k−1). Repeating this argument k times, the Lemma
follows. ��

Returning to the proof of the converse assertions of (i) and (ii) of Proposition 129,
consider any strategy (permissible for either Model S or Model C) with the
properties (4), (5). Then

H(K)≤I (K ∧ L)+ ε log |Kn| + 1 (15)

≤ I (K ∧ L,�k,�k)+ ε log |Kn| + 1

≤I (K ∧ L|�k,�k)+ ε log |Kn| + 1+ εn. (16)

Here (15) follows from (4) by Fano’s Lemma (Lemma 48) and (16) from (5).
Now, for Model S, we have

I (K ∧ L|�k,�k)≤I (MX ,X
n ∧My, Y n|�k,�k) (17)

≤I (MX ,X
n ∧My, Y n) (18)

= I (Xn ∧ Yn) = nI (X ∧ Y ). (19)

Here (17) follows by (1), (18) from Lemma 130, and (19) from the independence
ofMX ,MY , (Xn, Y n).

Substituting (19) into (16), under condition (7) we obtain that

(1− ε)H(K) < nI (X ∧ Y )+ nε2 + nε + 1
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and under condition (8) that

H(K) < nI (X ∧ Y )+ εa + nε + 1.

This completes the proof of the converse for Model S.
For Model C, we have

I (K ∧ L|�k,�k) ≤ I (MX ∧MY , Y
n|�k,�k) (20)

≤ I (MX ∧MY , Y
n) (21)

≤
n∑

j=1

I (MX ∧ Yj |MY , Y
j−1). (22)

Here (20) follows because for Model C in Eq. (1) we have K = K(MX ,�k),
(21) follows by Lemma 130, and (22) is the chain rule, taking into account that
I (MX ∧MY) = 0.

But on account of (3) we have

I (MX ∧ Yj |MY , Y
j−1) = H(Yj |MY , Y

j−1)−H(Yj |MX ,MY , Y
j−1)

= H(Yj |MY , Y
j−1)−H(Yj |Xj) ≤ I (Xj ∧ Yj ).

Hence the right side of (22) is upper bounded by nC(W). Returning to (16), the
proof for Model C can be completed as that for Model S.

3 Secret Sharing When the Third Party Has Side
Information

In this section, we consider generalizations of the simple models treated in Sect. 2 to
the case when the third party should be kept ignorant of the result of secret sharing,
to be called the wiretapper, has access to more information than what is transmitted
over the public channel.

Model SW: (source-type model with wiretapper) We are given a DMMS with three
component sources and generic variables (X, Y,Z). Terminal X “sees” the source
outputsXn, Terminal Y “sees” the source outputs Yn, and the wiretapper “sees” the
source outputs Zn.

Model CW: (channel-type model with wiretapper) We are given a DMC {W :
X → Y × Z}. Terminal X governs the input, Terminal Y “sees” the Y -outputs
whereas the wiretapper “sees” the Z-outputs.
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In both cases also a noiseless public channel of unlimited capacity is available
for communication between Terminal X and Y; communication over this channel
is completely known to the wiretapper.

The permissible strategies for Models SW and CW are the same as for Model S
and C in Sect. 2, with two formal modifications: For Model SW in Step 0 we have to
postulate thatMX ,MY , (Xn, Y n, Zn) are mutually independent, and in Model CW
it has to be taken into account that every DMC input Xj generates a pair of outputs
Yj , Zj ; the formal way of doing this is to replace Eq. (3) by

Pr
{
Yj = y,Zj = z|MX = m,MY = m′, Y j−1 = yj−1, Zj−1 = yj−1, Zj−1 = zj−1

}

= W
(
y, z|Xj(m,m′, yj−1)

)
. (23)

Definition 127 applies also to Model SW and CW, with the single change that
condition (5) has to be replaced by

1

n
I (�k,�k,Zn ∧K) < ε. (24)

In order to deal more systematically with the question whether simple strategies
suffice also in Models SW and CW to achieve the key-capacity, we will consider
some variants of the concept of key-capacity obtained by restricting the class of
permissible secret sharing strategies.

One possible restriction would be that not more than k exchanges are permitted
over the public channel; the analogue of key-capacity under this restriction might
be called k-key-capacity. In this chapter only the case k = 1 will be considered,
moreover, the restriction will be made that only a forward or only a backward
transmission is permitted (formally, all�i and�i in the description of a permissible
strategy in Sect. 2 equal the empty word, except for one �i or �i ; recall that
“forward” means the direction X → Y and “backward” the direction Y → X ).
Thus, for both models, SW and CW, we define the forward key-capacity and
backward key-capacity, as well as their weak versions, analogously to the general
definition of key-capacity (weak key-capacity) but by permitting the use of the
public channel for a single forward transmission or a single backward transmission
only. For Model SW these two notions are completely symmetric but for Model CW
they differ essentially.

By Proposition 129, for Models S and C both the forward and backward key-
capacities equal the key-capacity. We will see that for Models SW and CW this is
no longer true, in general. It remains, however, open whether for either model key-
capacity can ever be larger than what by the previous paragraph would be termed
the 1-key-capacity.
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Before stating our main results, let us briefly review previous literature related to
our subject. The model “wiretap channel” introduced by Wyner [13] and generalized
by Csiszár and Körner [5] (cf. also [6], p. 407) can be described as follows:

Given W : X → Y × Z , the sender is required to encode a RV M , uniformly
distributed over a possibly large set, into a channel inputXn so thatM be decodable
(with small probability of error) from the received sequence Yn whereas the
other output sequence Zn should give negligibly small information about M . The
supremum of the rates 1

n
H(M) subject to these conditions is called the secrecy

capacity. Since this coding problem depends on W only through its marginal
channels W1 : X → Y and W2 : X → Z , it is often stated – as in [5] – in
terms of these two channels. Wyner considered and solved the case where W2 is a
degraded version ofW1, that is W2(Z|X) =∑Y W1(Y |X)V (Z|Y ) and Csiszár and
Körner gave a single-letter characterization of secrecy capacity in the general case.
Clearly, any code in the definition of secrecy capacity represents a secret sharing
strategy for our Model CW, that does not use the public channel at all, but has the
properties required in Definition 127. Hence both the forward and backward key-
capacity for Model CW must be at least as large as the wiretap secrecy capacity. Not
unexpectedly, we will see that the forward key-capacity for Model CW is actually
equal to the corresponding wiretap secrecy capacity.

The general problem of secret sharing does not seem to have been considered
before in an information theoretic context, but an important step in this direction
was made by Maurer [9]. He considered a wiretap channel whose marginal channels
W1 andW2 are both binary symmetric, and have “independent noise” which, in our
terminology, means

W(y, z|x) = W1(y|x)W2(z|x). (25)

For this case, Maurer proposed a scheme in which the sender transmits a 1
2 − 1

2
i.i.d. sequence and the receiver can send back information, using a public channel,
in such a way that the original sender can decode this information but the wiretapper
remains in complete ignorance. This makes a key exchange at a positive rate
possible even in those cases when the wiretap secrecy capacity is equal to zero.
Clearly, in our terminology, the key rate achieved in this way is a lower bound to
backward key-capacity and hence also to key-capacity. Our results will imply that
the key rate achieved by Maurer’s scheme is actually equal to the key-capacity, and
thus optimal for his model in our (more demanding) sense.

Now we state our main results. Though not stated explicitly, all assertions are
true also for the weak version of the corresponding key-capacities. The theorems
stated in this section will be proved in Sect. 4.

Theorem 131 For Model SW, the forward key-capacity equals the maximum of

I (T ∧ Y |U)− I (T ∧ Z|U), (26)
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for all pairs of RV’s T ,U (taking values in a sufficiently large finite set) that satisfy
the Markov condition

U ( T (X ( YZ. (27)

Further, the key-capacity is upper bounded by I (X ∧ Y |Z), and this bound is
tight if X,Y,Z form a Markov chain in any order.

Corollary 132 If in the Model SW X( Y (Z, then forward key-capacity and key-
capacity both equal I (X ∧ Y )− I (X ∧ Z).
Theorem 133 For Model CW, the forward key-capacity is equal to the secrecy
capacity of the corresponding wiretap channel, namely to the maximum of the
expression (26) for all quadruples of RV’s T ,U, Y,Z to which there exists an X
satisfying the Markov condition (27) and PYZ|X = W . Further, the key-capacity is
upper bounded by maxPYZ|X=W I (X ∧ Y |Z), and this bound is tight if W has the
property that PYZ|X = W implies thatX,Y,Z from a Markov chain in some order.

Corollary 134

(i) IfW has the form

W(y, z|x) = W1(y|x)V (z|y) (28)

then forward key-capacity and key-capacity both equal maxPYZ|X=W [I (X∧Y )−
I (X ∧ Z)], and can be attained without any use of the public channel.

(ii) If W is of form (25) then backward key-capacity and key-capacity both equal
maxPYZ|X=W [I (X ∧ Y )− I (Y ∧Z)], and this is in general larger than forward
key-capacity.

Remark The cardinalities of the ranges of the auxiliary random variables T and U
could be bounded in a standard way, using the Support Lemma ([6], P. 310).

Remark The upper bounds in Theorems 131 and 133 on the key-capacity may
sometimes be poor, e.g., they may be larger than the key-capacity in the absence of
the wiretapper, determined in Sect. 2. For Model SW, the bound may be improved
by the simple observation that for any RV V satisfying the Markov condition
XY ( Z ( V , the key-capacity for the DMMS with generic variables (X, Y, V ) is
at least as large as for that with (X, Y,Z). Hence the result of Theorem 131 implies
that the minimum of I (X ∧ Y |V ) subject to XY (Z( V is also an upper bound to
key-capacity in Model SW. The bound for Model CW given in Theorem 133 could
be improved in a similar way. Still, we have no reason to believe that even these
improved bounds are tight.

Although the upper bounds on key-capacity for Models SW and CW given in
Theorems 131 and 133 are not tight, in general, there is a natural modification
of these models for which the above bounds actually give the exact answer. This
modification consists in the assumption that terminal X (or terminal Y) has access
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to the wiretapper’s side information, i.e., the source resp. channel output sequence
Zn is available to terminal X (or terminal Y).

In this modification of Model SW or CW, for which we prefer not to introduce
a new notation, the permissible strategies will differ from those of Model SW or
CW only in the obvious way: the operations at that terminal where Zn is available,
may depend also on Zn (or, in the channel-type model, on that part Zj of Zn that is
already available).

It appears safe to save space by omitting formal definitions for the next statement.

Theorem 135 If Model SW or CW is modified by letting either terminal X of
terminal Y know the Z-outputs, the key-capacity for the source-type model will
always equal I (X ∧ Y |Z) and for the channel-type model maxPYZ|X=W I (X ∧
Y |Z). Further, this also equals the backward or forward key-capacity, respectively,
according as terminal X or terminal Y is informed.

At first sight, the result of Theorem 135 appears counter-intuitive, because it
means that in some cases we can do better with a “known wiretapper” than if there
were no wiretapper at all. The answer is, of course, that access to the wiretapper’s
information does contribute to generating common randomness (what secret sharing
is all about) and this benefit can more than balance out the negative effect that the
wiretapper must be kept ignorant of this common randomness.

It may be instructive to consider the following example.

Example Let the DMMS with generic variables (X, Y,Z) be as follows: let X and
Y be independent 1

2 − 1
2 binary RV’s, and Z = X+Y mod 2. Then I (X∧Y ) = 0,

I (X ∧ Y |Z) = 1. Clearly, if the terminals X and Y have access to Xn and Yn only,
no secret sharing between them is possible. However, if terminal X , say, knows
also Zn then he can compute Yn. Then with K = Yn, secret sharing with key
rate equal to 1 has taken place; the wiretapper remains completely ignorant because
I (Zn ∧ Yn) = 0. �

4 Proofs

Proof of Theorem 131 The direct part of the first assertion, i.e., the achievability
of key rate (26) with a single forward transmission, can be proved by essentially
the same idea as for the direct part of Proposition 129, part (i). However, whereas
there X n was partitioned (up to a small probability set) into codeword sets of DMC
codes, in the present more complex case we need a partitioning into codeword sets
of wiretap channel codes. The proof relies upon a basic construction in multi-user
information theory and its details are rather technical.

The proof of the converse is very similar to the wiretap channel converse proof
of Csiszár and Körner [5]. Since it is instructive and quite simple, we give the
proof here. The key is an algebraic identity for information measures, namely the
following lemma. ��
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Lemma 136 For arbitrary RV’s U,V and sequences of RV’s Yn,Zn, we have

I (U ∧ Yn|V )− I (U ∧ Zn|V )

=
n∑

i=1

[
I (U ∧ Yi |Y i−1Zi+1 . . . ZnV )− I (U ∧ Zi |Y i−1Zi+1 . . . ZnV )

]

Proof The ith term of the sum equals

H(U |Y i−1Zi+1 . . . ZnV )−H(U |Y iZi+1 . . . ZnV )

−H(U |Y i−1Zi+1 . . . ZnV )+H(U |Y i−1ZiZi+1 . . . ZnV )

= H(U |Y i−1Zi . . . ZnV )−H(U |Y iZi+1ZnV ).

Summing these, after cancellations the result is

H(U |ZnV )−H(U |YnV ).

On the other hand,

I (U ∧ Yn|V )− I (U ∧ Zn|V )

= H(U |V )−H(U |YnV )−H(U |V )+H(U |ZnV )

= H(U |ZnV )−H(U |YnV ). ��
Continuing the proof of Theorem 131, consider any secret sharing strategy for

Model SW that enters the definition of weak forward key-capacity, i.e., that involves
a single forward transmission, say � = �(MX ,Xn), and satisfies conditions (4),
(24), (8). Since now (�k,�k) = �, (23) becomes

K = K(MX ,X
n), L = L(MY , Y

n,�) (29)

and the conditions (4), (24), (8) are

Pr{K �= L} < ε (30)

1

n
I (�,Zn ∧K) < ε (31)

1

n
log |K| < a (32)
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(30) and (32) give by Fano’s inequality (Lemma 48) that

H(K) ≤ I (K ∧ L)+ naε + 1 (33)

Now

I (K ∧ L)≤I (K ∧MY , Y
n,�) (34)

= (K ∧ Yn,�) (35)

≤ I (K ∧ Yn,�)− I (K ∧ Zn,�)+ nε (36)

= I (K ∧ Yn|�)− I (K ∧ Zn|�)+ nε

=
n∑

i=1

[
I (K ∧ Yi |Y i−1Zi+1 . . . Zn�) (37)

− I (K ∧ Zi |Y i−1Zi+1 . . . Zn�)
]+ nε (38)

here (34) holds by (29), (35) because of the independence of MY from (K, Y n,�)
implied by the mutual independence of MX ,MY , (Xn, Y n), (36) is from (31) and
(37) is by Lemma 136.

The last sum can be written, in the usual way, as

I (K ∧ YJ |U)− I (K ∧ ZJ |U)

where J is a RV independent of all the previous ones and uniformly distributed on
{1, . . . , n}, and U = YJ−1ZJ+1 . . . Zn�J , and the difference of the conditional
information quantities is the same as

I (T ∧ YJ |U)− I (T ∧ ZJ |U).

Thus (34) becomes

I (K ∧ L) ≤ I (T ∧ YJ |U)− I (T ∧ ZJ |U)+ ε (39)

It is clear from the definitions of J,U and T – using also that � = �(MX ,Xn)
– that the Markov propertyU(T (XJ (XJZJ holds and that the joint distribution
ofXJYJZJ is the same as that ofXYZ. Hence, substitution of (39) into (33) proves
that the weak forward key-capacity can not be larger than the supremum of all
expressions of form (26), with the Markov condition (27).

It can be shown by a standard argument (omitted here) that the set of expressions
of this form does not change if the ranges of T and U are restricted to sets of
(sufficiently large) fixed cardinality. This implies that this set is closed, and the
previous supremum is indeed a maximum.
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The upper bound on (weak) key-capacity stated in Theorem 131 follows by the
simple argument in the proof of Proposition 129. Namely, similarly as (16) followed
from (4), (5), we obtain from (4) and (24) that

H(K) ≤ I (K ∧ L|�k,�k,Zn)+ ε log |Kn| + 1. (40)

Further, to the exact analogy of the derivation of (19) we obtain that

I (K ∧ L|�k,�k,Zn) ≤ I (Xn ∧ Yn|Zn) = I (X ∧ Y |Z) (41)

(a minor difference is that Lemma 130 has to be used in a “conditional” version; but
clearly that Lemma remains valid if a conditioning RV is added on both sides).

Combining (40) and (41) shows that I (X ∧ Y |Z) is an upper bound to (weak)
key-capacity.
I (X ∧ Y |Z) is equal to 0 and hence gives a tight bound if X ( Z ( Y . Suppose

next thatX(Y (Z. Then the forward key-capacity can evaluated as follows. From
(27) we now get U ( T (X ( Y ( Z and therefore

I (T ∧ Y |U)− I (T ∧ Z|U) = I (T ∧ YZ|U)− I (T ∧ Z|U)

= I (T ∧ Y |ZU) ≤ I (T U ∧ Y |Z)

= I (T ∧ Y |Z) ≤ I (X ∧ Y |Z) = I (X ∧ Y )− I (X ∧ Z).

Since I (X ∧ Y ) − I (X ∧ Z) is also an expression of form (26), this shows that
in this case the forward key-capacity equals I (X ∧ Y )− I (X ∧ Z) = I (X ∧ Y |Z).
As key-capacity could only be larger than forward key-capacity, this shows that the
upper bound I (X ∧ Y |Z) is tight in this case. Finally, the third possible Markovity
X (X ( Z is not a new case, by symmetry.

The Corollary has already been proved.

Proof of Theorem 133 It is obvious that the forward key-capacity is at least as large
as the wiretap channel secrecy capacity. To show that it can not be larger, we use
again the method of Csiszár and Körner [5], as in the proof of Theorem 131.

Consider any secret sharing strategy for Model CW that enters the definition of
weak forward key-capacity. Then, since there are now backward transmissions, Xn

has to be a function ofMX alone, and so have also� (the forward transmission over
the public channel) and K:

Xn = Xn(MX ), � = �(MX ), K = K(MX ). (42)

Unlike in the proof of Theorem 131, Yn and Zn are now the channel outputs
corresponding to input Xn, but (33) and (38) still hold as there (for step (ii) of the
derivation of (38) we have to make sure thatMY is independent of (K, Y n,�), but
this is intuitively obvious from (42), and formally follows from (23) where now
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Xj(m,m
′, yj−1) = Xj(m) by (42)). Also the rewriting of (38) as (39) works as

there, and even though now the joint distribution of the resulting RV’s XJYJZJ ,
the Markov condition U ( T (XJ ( YJZJ still holds, and it follows that the weak
forward key-capacity can not be larger than the supremum of all expressions of form
(26) subject to the conditions stated in Theorem 133.

Now we turn to the proof of the upper bound on (weak) key-capacity for Model
CW. This is more difficult than the proof of the similar bound for Model SW in
Theorem 131, or for Model C in Proposition 129.

Consider any permissible strategy, as described in Sect. 2 for Model C; in
particular K = K(MX ,�k), L = L(MY , Y n,�k). Since (40) holds also in the
present case and by the last functional relationships

I (K ∧ L|�k,�k,Zn) ≤ I (MX ∧MY , Y
n|�k,�k,Zn) (43)

we have to bound the right-hand side of (44). We proceed as follows:

I (MX ∧MY , Y n|�k,�k, Zn) = I (MX ∧MYYnZn,�k�k)− I (MX ∧ Zn�k�k)
(44)

where by the chain rule

I (MX ∧MYY
nZn�k�k) = I (MX ∧MY�

�−1��−1)+
n∑

j=1

(Fj +Gj), (45)

Fj = I (MX ∧ YjZj |MYY
j−1Zj−1�j�−1�j�−1) (46)

Gj = I (MX ∧�j�+1 . . .�(j+1)�−1�j�+1 . . . �(j+1)�−1|MYY
jZj�j�−1�j�−1),

(47)

with an obvious modification of the definition of Gj for j = n (the last index is k
rather than (n+ 1)�− 1).

Similarly,

I (MX ∧ Zn�k�k) = I (MX ∧��−1��−1)+
n∑

j=1

(F ′j +G′j ), (48)

with

F ′j = I (MX ∧ Zj |Zj−1��j−1��j−1) (49)

G′j = I (MX ∧�j�+1 . . .�(j+1)�−1�j�+1 . . . �(j+1)�−1|Zj��j−1��j−1), (50)

where, again,G′n is defined with the obvious modification as above.
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Now

Fj = H(YjZj |MYY j−1Zj−1��j−1��j−1)−H(YjZj |MXMYY j−1Zj−1��j−1��j−1)

≤ H(YjZj |Zj−1��j−1��j−1)−H(YjZj |MXZj−1��j−1��j−1)

= I (MX ∧ YjZj |Zj−1��j−1��j−1), (51)

where, in the second step, we have used that

H(YjZj |MXMYY
j−1Zj−1��j−1��j−1) = H(YjZj |MXZ

j−1��j−1��j−1).

This identity follows from the fact that on account of (23), the conditional
distribution of YjZj on either condition is the same as on the condition Xj =
Xj(MX ,��j−1) alone.

From (49) and (51)

Fj − F ′j ≤ I
(
MX ∧ Yj |ZjZj−1��j−1��j−1

)

= H
(
Yj |ZjZj−1��j−1��j−1

)
−H

(
Yj |MXZjZ

j−1��j−1��j−1
)

≤ H(Yj |Zj)−H(Yj |XjZj ) = I (Xj ∧ Yj |Zj).

Here, in the second step, we have used (23) as above.
Next we compare the termsGj andG′j . Equation (47) can be equivalently written

as

Gj = I
(
MX ∧MYY

j�j�+1 . . .�(j+1)�−1�j�+1 . . . �(j+1)�−1|Zj�j�−1�j�−1
)

− I (MX ∧MYY
j |Zj�(j+1)�−1�(j+1)�−1),

and hence

Gj −G′j = I
(
MX ∧MYY

j |Zj�j�−1�j�−1
)

− I (MX ∧MYY
j |Zj�(j+1)�−1�(j+1)�−1).

On account of Lemma 130 (conditional version), this shows that Gj −G′j ≤ 0.
It follows again by Lemma 130 that

I
(
MX ∧MY�

�−1��−1
)
− I

(
MX ∧��−1��−1

)

= I
(
MX ∧MY |��−1��−1

)
≤ I (MX ∧MY ) = 0
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(thus this difference actually equals 0). Thus, finally, from (44), (45), (48), (51) we
obtain that

I
(
MX ∧MYY

n|�k�kZn
)
≤

n∑

i=1

I (Xi ∧ Yi |Zi).

Returning to (43) and (40), this completes the proof of our upper bound on (weak)
key-capacity for Model CW.

To show that our bound on the weak key-capacity is tight if X,Y,Z form a
Markov chain in some order whenever PYZ|X = W , notice first that the bound
gives 0 and hence it is automatically tight, if this order is X(Z ( Y Next consider
the Markov chain is X ( Y ( Z. Then I (X ∧ Y |Z) = I (X ∧ Y )− I (X ∧ Z), and
by the wiretap channel coding theorem this is an achievable key rate without any
use of the public channel; in particular our bound is tight in this case, too. Finally,
to show that I (X ∧ Y |Z) is an achievable key rate, when Y (X ( Z, consider any
strategy where Terminal X sends an i.i.d. random sequence with distribution PX .
Then Xn, Y n,Zn represent the outcomes of a DMMS with component variables
X,Y,Z and by Theorem 131 it follows that I (X ∧ Y |Z) is an achievable key rate
(even by using a single backward transmission only).

This completes the proof of Theorem 133, and in the course of the proof the
Corollary was established, too. ��
Proof of Theorem 135 The formal meaning of the assumption that the Z-
outputs are known at Terminal X is that in the description of a permissible
secret sharing strategy, the condition �i = �i(MX ,Xn,�i−1) is replaced by
�i(MX ,Xn,Zn) in the source-type model or �i = �i(MX ,�i−1) is replaced by
�i = �i(MX ,�i−1, Zi−1) in the channel-type model (or a similar modification
of �i , respectively, if the Z-outputs are known at Terminal Y), and that also (1) is
modified accordingly. The same proof by which we proved that I (X ∧ Y |Z) resp.
maxPYZ|X=W I (X ∧ Y |Z) is an upper bound to the (weak) key-capacity for Models
SW and CW, applies also in the present more general case, and shows that they are
still upper bounds when the Z-outputs are known at Terminal X (or Terminal Y).

If the Z-outputs are known at Terminal Y , we can replace the Y -outputs Yi by
the pairs YiZi without any loss of generality. But these “new Y -outputs” satisfy the
Markov condition X ( YZ ( Z. Hence, by Theorems 131 and 133, in this case we
obtain that the bound I (X∧YZ|Z) = I (X∧Y |Z) (for the source-type model) resp.
the corresponding maximum (for the channel-type model) is tight.

On the other hand, if the Z-outputs are known at Terminal X , in the source type
model we have the same situation as before. For the channel-type model, we can
let Terminal X send an i.i.d. random sequence. Then we are in the situation of the
source-type model, and it follows that I (XZ∧Y |Z) = I (X∧Y |Z) is an achievable
key-rate whenever PXZ|X = W . ��
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5 Conclusions

We have considered various models of generating common randomness at two
distant terminals X and Y , with the additional requirement that a third party, the
wiretapper Z , be kept ignorant of the generated common randomness. Then the
latter could be used as an encryption key to make communication between X and Y
secure from Z . For some models of generating this common randomness or key, we
were able to determine the largest achievable key rate, called the key-capacity. For
other models we gave bounds on the key-capacity.

The problems can be studied for all multi-way channels and multi-terminal
sources. One can conceive even situations with several wiretappers.

The mathematical tools used in this chapter were those of multi-user information
theory, in particular the single-letterization technique developed by Csiszár and
Körner [9] for the wiretap channel and its generalization called broadcast channel
with confidential messages. Still, it should be emphasized that there is a conceptual
difference between the wiretap channel problem of transmitting messages from X
to Y without giving information about them to Z , and the problem of generating
common randomness shared by X and Y , secret from Z . Notice that this common
randomness need not be generated at X and communicated to Y , it may as well be
generated at Y and communicated to X , or cooperatively generated by X and Y .

Following the suggestion of a reviewer, we now summarize our main results and
mention some of the open problems.

Our models were of two main types. In Model SW (source-type model with
wiretapper), a discrete memoryless multiple source with generic variables X,Y,Z
was given, and X ,Y,Z “could see” the length−n outputsXn, Y n,Zn, respectively.
In Model CW (channel-type model with wiretapper), a discrete memoryless channel
with one input and two outputs was given, X governed the input, and the outputs
were seen by Y and Z , respectively. Both models involved the availability of a
noiseless public channel of unlimited capacity for communication between X and
Y . As to the permitted use of the public channel, we focused mainly on the extreme
cases:

(i) A single transmission from X to Y or from Y to X ; the corresponding key-
capacities were called the forward key-capacity and the backward key-capacity,
respectively.

(ii) As many exchanges between X and Y as desired; the term “key-capacity”,
without qualification, has been used to refer to this case of unlimited conversa-
tion.

For Model SW, we gave a single-letter characterization of forward key-capacity,
by symmetry, this provided a characterization of backward key-capacity, too. The
key-capacity with unlimited conversation could not be determined in general, but it
was always upper bounded by I (X ∧ Y |Z). If X,Y,Z formed a Markov chain in
some order, that bound was tight, and key-capacity with unlimited conversation was
equal to the forward or backward key-capacity. In general, two-way communication
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over the public channel could increase the key-capacity above both forward and
backward key-capacity, even if only one exchange of messages was permitted. In
our example demonstrating this, the key-capacity for one exchange of messages
was the same as for unlimited conversation. We do not expect this to be always so,
but our results do not rule out that contingency.

For Model CW, it may be possible for X and Y to share common randomness
secret from Z without using the public channel: this is the wiretap channel situation
when our key-capacity reduces to the wiretap channel secrecy capacity. Using the
public channel from X to Y does not help: we have shown that the forward key-
capacity for Model CW equals the wiretap channel secrecy capacity, determined in
[9]. A single-letter characterization of backward key-capacity, as well as of key-
capacity with unlimited conversation, remains elusive for Model CW. Still, the
maximum of I (X ∧ Y |Z) – where (Y,Z) is the pair of outputs for input X –
was shown to be an upper bound to key-capacity with unlimited conversation. This
bound is tight in two important special cases, viz. for channels of form (28) or (25),
and in those cases key-capacity with unlimited conversation equals the forward or
backward key-capacity, respectively. In the cases we could determine key-capacity
with unlimited conversation for Model CW, it could be achieved with X producing
i.i.d. channel inputs. It remains open whether this is true in general.

Finally, if the information available to Z was made available to X and/or Y ,
the key-capacity with unlimited conversation for this modified model (of either
type) was shown to always equal the upper bound obtained before, and also to
equal the forward or backward key-capacity for the modified model. This appears
to be the first coding theorem that provides a direct operational characterization of
conditional mutual information.
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Common Randomness in Information
Theory and Cryptography CR Capacity

The CR capacity of a two-terminal model is defined as the maximum rate of
common randomness that the terminals can generate using resources specified by
the given model. We determine CR capacity for several models, including those
whose statistics depend on unknown parameters. The CR capacity is shown to
be achievable robustly, by common randomness of nearly uniform distribution no
matter what the unknown parameters are. Our CR capacity results are relevant for
the problem of identification capacity, and also yield a new result on the regular
(transmission) capacity of arbitrarily varying channels with feedback.

1 Introduction

Suppose two terminals, called Terminal X and Terminal Y , have resources such
as access to side information and communication links that allow them to observe
and (perhaps cooperatively) generate certain RV’s. The permissible rules for this
are specified by the particular model, but it is always assumed that the terminals
have unrestricted computational power, thus the RV’s that can be generated and
observed at a terminal at a given time include, as a minimum, all functions of the
RV’s previously observed there. Common randomness (CR) of X and Y means,
intuitively, a RV generated by them and observable to both, perhaps with a small
probability of error. A RV generated by a terminal is not necessarily observable
there, e.g., when Terminal X inputs a RV X into a noisy channel to Terminal Y , he
thereby generates an output Y observable only at Y . If Terminal X suitably encodes
the RV X he wants to transmit, enabling Y to decode, then this X will represent
CR. If noiseless feedback from Y to X is available then the output Y will always
represent CR.
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In chapter “The Role of Common Randomness in Information Theory and Cryp-
tography: Secrecy Constraints” [6] we were interested in CR under an additional
secrecy constraint, with the motivation that the generated CR will be used as an
encryption key. In this chapter [7] we do not require secrecy, and just study the
maximum amount of CR afforded by a given model, the amount measured by
entropy. The most convenient form of CR is uniform common randomness (UCR),
i.e., CR represented by a uniformly (or nearly uniformly) distributed RV. For the
type of models we will consider, the maximum attainable amount of CR and UCR
will be asymptotically the same.

As a very simple example, suppose that there is a DMC from Terminal X
to Terminal Y , Terminal X can randomize (= can generate RV’s with arbitrary
distributions), and can input into the DMC any random sequence Xn he has
generated (of given “large” length n). Terminal Y can observe the output Yn but
the terminals have no other resources. It is intuitively clear that in this case X has to
chose Xn to be uniformly distributed on the ≈ exp(nC) codewords of an optimum
code; then Y can decode, and the achieved ≈ nC amount of CR is best possible. If
noiseless feedback is available, it is better for X to send independent repetitions of
a RV X that produces maximum output entropy H(Y). As now X can observe Yn,
in this way CR of amount nH(Y ) results, clearly the largest possible. Notice that
here, too, the optimum could (almost) be attained by a nearly uniform RV, obtained
by applying a compression code to Yn. As a combinatorial example, let G be a
bipartite graph with vertex sets X and Y (we continue the practice of chapter “The
Role of Common Randomness in Information Theory and Cryptography: Secrecy
Constraints” that the symbols of the terminals also denote sets assigned to them).
An example of the bipartite graph G is depicted in Fig. 1. Nature selects an edge
(x, y) ∈ G at random. For example, the dashed edge is denoted by (x3, y2).
Terminal X observes x, Terminal Y observes y. The terminals can communicate
over a noiseless channel, but at most b binary digits may be transmitted, in any
number of rounds. No other resources are available (above the minimum described
in the first paragraph), in particular, neither terminal can randomize. Then, clearly,
log |G| is an upper bound to CR, which can be attained iff the communication
complexity C∞(H, PV , PE ) does not exceed b (with the notation of [5]); here H
denotes the hypergraph with vertex set V = X and edge set E consisting of the
sets

{
x : (x, y) ∈ G

}
, y ∈ Y . It may be an interesting study in communication

complexity to determine the maximum amount of CR when b < C∞(H, PE , PV ),
i.e., the maximum entropy of a function on G that may be computed at both terminals
with communication of at most b bits.

One obvious motivation of our interest in CR is that if the two terminals
have access to the outcome of the same random experiment, this knowledge
may be used to implement correlated random protocols, perhaps leading to much
faster algorithms than deterministic ones or those using independent randomization
only. In information theory, in particular for arbitrarily varying channels (AVC’s),
correlated random codes may much outperform deterministic (or randomized)
codes; indeed, they may be necessary to attain positive capacity [12]. E.g. for
the additive Gaussian AVC with power constraints, (average error) capacity for
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Fig. 1 Bipartite graph G

x1

x2

x3

x4

x5

y1

y2

y3

X
Y

deterministic codes equals random code capacity only if the sender’s power exceeds
the jammer’s, otherwise the deterministic code capacity is 0 [16].

An even more striking application of CR appears in the theory of identification
capacity [8] (see chapter “Identification via Channels” in Part I). It was shown
in [9] (see chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas”) that for any kind of channel, if sender and receiver can build
up nR bits of UCR, this can be used to construct ID codes for ≈ 22nR messages,
with small probability of misidentification and misrejection, provided that the
channel capacity is positive. The asymptotic optimality of this construction was also
established in [9], for DMC’s with no feedback and with complete feedback. Similar
results for multi-user channels were obtained in [10] (see chapter “On Identification
via Multi-Way Channels with Feedback: Mystery Numbers”).

One feature of this chapter is that we also study “robust common randomness”.
This concept refers to models whose statistical properties are not completely
specified but depend on certain parameters (“state”) out of control of the two
terminals and at least partially unknown to them. Then the distribution of the RV
representing CR will depend on the actual state, and the minimum of its entropy (for
all possible states) may be called the amount of robust CR. Most desirable is to have
robust UCR, i.e., such RV representing CR whose distribution is nearly uniform, no
matter what the actual state is. Again, for the type of models we will consider, the
maximum attainable amount of robust CR and robust UCR will be asymptotically
the same.
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We will study robust UCR for AVC’s and the results allow us to determine
identification capacity for various AVC models. Quite remarkably, we also obtain a
new result on regular (transmission) capacity, namely that the average error capacity
of an AVC with complete feedback always equals the random code capacity of this
AVC.

The problem of robust uniform randomness is of interest even if it is not
required that distant terminals have access to it. Then the problem is that, if several
probability distributions (PD’s) are given on a set V , how large can be the number
of values of a function f on V whose distribution is nearly uniform under each of
the given PD’s. Here we state a simple combinatorial lemma, similar in spirit to the
hypergraph coloring lemmas of [3]. It says that if the given PD’s on V are uniform
distributions on the edges E ∈ E of a hypergraph (V, E) then the maximum number
of values of an f with the required property is not much smaller than the smallest
edge size |E|. We believe that this lemma will help the reader to develop intuition,
as it helped us to arrive at the results on robust VCR in Sect. 3.

Log’s and exp’s are to the base 2. Natural logarithms are denoted by �n.

Lemma 137 (Balanced coloring) Let H = (V, E) be a hypergraph with |E | = N
edges, each of size |E| ≥ d . Then for any 0 < ε < 1

2 and k < dε2/�n(2N)
there exists an ε-balanced vertex coloring with k colors, i.e., a function f : V →
{1, . . . , k}, such that

∣∣∣∣
|f−1(i) ∩ E|

|E| − 1

k

∣∣∣∣ <
ε

k
for all 1 ≤ i ≤ k and E ∈ E . (1)

Proof Let
{
Z(v), v ∈ V

}
be a family of i.i.d. RV’s such that Pr

{
Z(v) = i} = 1

k
,

i = 1, . . . , k, and let Zi(v) = 1 if Z(v) = i, and 0 otherwise. Then for the random
coloring f (v) = Z(v) we have |f−1(i)∩E| =∑v∈E Zi(v), and the standard large
deviation bound for the binomial distribution gives, for every fixed 1 ≤ i ≤ k and
E ∈ E , that

Pr

{
|f−1(i) ∩E| < 1− ε

k
|E|
}
≤ exp

{
−|E|D

(
1− ε
k

‖1

k

)}

Pr

{
|f−1(i) ∩E| > 1+ ε

k
|E|
}
≤ exp

{
−|E|D

(
1+ ε
k

‖1

k

)}
,

whereD(p‖q) = p log p
q
+ (1− p) log 1−p

1−q .

Calculus shows that D
(

1+ε
k
‖ 1
k

)
− ε2

k�n2 is a convex function of ε in the interval

− 1
2 ≤ ε ≤ 1

2 , with minimum equal to 0 attained at ε = 0. It follows that the
probability that (1) does not hold for the random coloring f (v) = Z(v) is upper
bounded byN ·2 exp(−dε2/k�n2). Under the hypothesis of Lemma 137, this bound
is less than 1, and the assertion follows. ��
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2 Preliminaries

A key concept studied in this chapter for various models is what we call CR
capacity. In this section, we first formally describe one model to be considered,
and define achievable CR rates and CR capacity for that model. Then we indicate
the changes needed for other models, including those where the underlying statistics
depend on unknown parameters. (For all models considered, alternative definitions
of capacities – or capacity functions – lead to the same values.) As one of our
reasons for studying CR capacity is its relationship to ID capacity, at the end of
this section we sketch how the latter concept can be defined for the type of models
we are interested in, as a straightforward extension of the definition of ID capacity
of a DMC without or with feedback, see chapters “One Sender Answering Several
Questions of Receivers” and “Models with Prior Knowledge of the Receiver” in
Part II. A general definition of transmission capacity is also included.

In Sect. 3 we will establish some general results, including the achievability of
CR capacity with UCR, i.e., with nearly uniformly distributed RV’s. For models
where the statistics depend on unknown parameters, this UCR result holds in
a robust sense. Then the result of Ahlswede and Dueck [9] referred to in the
Introduction affords the conclusion that for the type of models considered in
this chapter, CR capacity is always a lower bound to ID capacity, whenever the
transmission capacity is positive.

Our results on the CR capacity of particular models will be stated and proved in
Sects. 4 and 5.

As in chapter “The Role of Common Randomness in Information Theory
and Cryptography: Secrecy Constraints”, we use the terminology of the book [14],
and refer to it for notation not defined here.

One of the stimuli for this investigation came from [4], where first basic
observations are made and first results are established for the binary symmetric case
of the model we now describe.

2.1 Model (i): Two-Source with One-Way Communication

Given a discrete memoryless multiple source (DMMS) with two components,
with alphabets X ,Y and generic variables X,Y , the n-length source outputs are
observable at Terminals X and Y , respectively. Moreover, X can send information
to Y over a noiseless channel of capacity R, namely, he can noiselessly transmit any
function f (Xn) of Xn to Y , subject to the rate constraint

1

n
log ‖f ‖ ≤ R. (2)

Other resources are not available to the terminals. We will say that a pair of RV’s
(K,L) is permissible if K and L are functions of the data available at X resp. Y ,
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i.e.,

K = K(Xn), L = L(Yn, f (Xn)). (3)

A permissible pair (K,L) represents ε-common randomness if

Pr{K �= L} < ε. (4)

As K and L represent the same CR, intuition requires that the entropy rates
1
n
H(K) and 1

n
H(L) be arbitrary close if ε is small, independently of n. In order to

ensure this, via Fano’s inequality (Lemma 48), we impose the technical condition
that K and L take values in the same set K whose cardinality satisfies

|K| ≤ exp(cn) (5)

for some c not depending on n.
For Model(i), we adopt the following definition that, with suitable interpretation,

will be appropriate also for other models.

Definition 138 A number H is an achievable CR rate if for some constant c and
every ε > 0, δ > 0, for all sufficiently large n there exists a permissible pair of RV’s
(K,L) satisfying (4), (5), such that

1

n
H(K) > H − δ. (6)

The largest achievable CR rate is the CR capacity.

Remark In chapter “The Role of Common Randomness in Information Theory
and Cryptography: Secrecy Constraints” we considered the related concept of key
capacity, where also a secrecy requirement was imposed on the CR. There, nearly
uniform distribution was also required in the sense that the entropy rate 1

n
H(K) be

close to 1
n

log |K|. As stated before, CR of nearly uniform distribution or UCR is
desirable also in the present context. It turns out, however, that the CR capacity in
the sense of Definition 138 can always be attained with nearly uniformly distributed
RV’s, even in the stronger sense of variation distance, i.e., with K satisfying

∑

k∈K

∣∣∣∣Pr{K = k} − 1

|K|
∣∣∣∣ < ε.

Actually, it will be seen in Theorem 143 that a still stronger kind of near unifor-
mity can be attained, with the variation distance above going to 0 exponentially as
n→∞. Of course, then also H(K) will be exponentially close to log |K|.

For orientation notice that the CR capacity for Model (i) never exceeds H(X).
If H(X|Y ) < R then an f satisfying (2) can be chosen to let Y recover Xn from



2 Preliminaries 237

f (Xn) and Yn with small probability of error (Slepian and Wolf, [20]). Thus in this
case the CR capacity equalsH(X).

The question of how large CR rate can be attained in the extreme case R = 0 of
Model (i), when no communication is permitted between X and Y , was asked by the
second author in 1970. It was answered by Gács and Körner [17] who showed that it
was equal to the largest entropy of a common function of X and Y , hence always 0
ifX and Y had indecomposable joint distribution. This paper was one of the starting
points of multiuser information theory, at least for the Hungarian research group. It
will turn out that the (by now) standard “multi-user” techniques permit to determine
the CR capacity both for Model (i) and its extensions considered in Sect. 4.

In the model described above, randomization was not permitted. As in chap-
ter “The Role of Common Randomness in Information Theory and Cryptography:
Secrecy Constraints”, we will always regard randomization (at either terminal) as
generating a RV at the very start, and let further actions depend on this RV, but
already in a deterministic way. Thus, Model (i) with randomization at X means
that a RV M = MX (of arbitrary distribution, but independent of Xn, Y n) may
be generated at X ; then the information sent to Y may be f (Xn,M) (still subject
to (2)), and Definition 138 applies with the understanding of permissible pairs as
K = K(Xn,M), L = L

(
Yn, f (Xn,M)

)
. Randomization at Y might also be

permitted, then Y could generate a RV MY (independent of Xn, Y n,MX ), and let
L be a function of MY , too. Notice that whereas randomization at X may increase
the CR capacity of Model (i), randomization at Y cannot.

A variant of Model (i) is when the given channel from X to Y is not noiseless but
a DMC, say with the same word-length n as the observed source output. The input
is selected by Terminal X as a function of Xn (or of Xn andM if randomization is
permitted) and Terminal Y observes the output, say Zn. Then the change required
in the definition of permissible pairs (K,L) is that now L = L(Yn,Zn).

A somewhat different model is

2.2 Model (ii): DMC with Active Feedback

Given a DMC {W : X → Y}, Terminal X selects the inputs, Terminal Y observes
the outputs, and Y can send back information to X over a noiseless channel of
capacity R. We assume that X is permitted to randomize but Y is not. Formally, the
terminals’ permissible actions are as follows. Initially, X generates a randomization
RV MX = M , then he inputs X1 = f1(M) into the DMC. The output Y1 is
observed by Y who then noiselessly sends X a message g1(Y1). Then X sends
X2 = f2

(
M,g1(Y1)

)
over the DMC, Y observes the output Y2 and sends back

g2(Y1, Y2). Next X sends X3 = f3
(
M,g1(Y1), g2(Y1, Y2)

)
and Y sends back

g3(Y1, Y2, Y3), etc. through n rounds.
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The individual feedback messages may be arbitrary, but g = (g1, . . . , gn) is
supposed to satisfy the global rate constraint

1

n
log ‖g‖ ≤ R. (7)

E.g., g1, . . . , gn may be binary words of variable length with prefix property,
then (7) will mean that their total length is ≤ nR.

In this model, the permissible pairs (K,L) (which will represent ε-common
randomness if they satisfy (4)) are of the form

K = K(M, g1, . . . , gn), L = L(Yn). (8)

With this understanding, Definition 138 of the achievable CR rates and CR
capacity applies to the present model. Notice that some of the messages gi may
be empty, indeed it is permissible that Terminal Y sends only one message to X
after having received the whole Yn (of course, then the inputXn must be a function
of M alone). We will show that the CR capacity for Model (ii) is always attainable
that way.

In another version of Model (ii) also Terminal Y is permitted to randomize,
which formally means that he, too, generates a randomization RV MY at the start
(independent of MX ), and then g1, . . . , gn as well as L may depend also on MY .
Still another version would be when neither terminal is allowed to randomize, but
that will not be considered here.

Just as Model (i) could be modified replacing the noiseless channel from Y to X
by a DMC, the same is possible also for Model (ii). Actually, several such variants of
Model (ii) could be considered, one of them is when the i’th input of the backward
channel is a function gi(Y1, . . . , Yi) of the first i outputs of the forward channel, and
Terminal X observes the corresponding output Zi before selecting the input Xi+1
to the forward channel. Then the permissible pairs (K,L) are defined by letting
K = K(M,Zn), while L = L(Yn) as before.

Remark Our terminology “active feedback” refers to the freedom of Terminal Y
to select the inputs of the backward channel. It differs from the terminology of
the book [14] where “active feedback” means that Y is allowed to randomize. By
“passive feedback” we mean that the inputs of the backward channel are equal to
the outputs of the forward channel. In particular, noiseless passive feedback (also
called complete feedback) means that the outputs of the DMC {W : X → Y} are
observable not only to Terminal Y but also to Terminal X . The variant of Model (ii)
with complete feedback has been hinted at in the Introduction as a simple example
for which the problem of CR-capacity is trivial. The variant with noisy passive
feedback deserves interest, but will not be considered in this chapter.

The paper [21] came to our attention. It gives a detailed treatment of that version
of our Model ii, where the backward channel is a DMC, including the case when
both terminals have available a limited amount of private randomness.

A more complex version of the two-source model is the next one.
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2.3 Model (iii): Two-Source with Two-Way Noiseless
Communication

Given a DMMS as in Model (i), suppose that after Terminal Y received the message
sent by X over a noiseless channel of capacity R1, he in turn can send X a message
over a noiseless channel of capacity R2. This can be any function g of Yn and the
received f (Xn) (or f (Xn,MX ) ), subject to the rate constraint

1

n
log ‖g‖ ≤ R2. (9)

If Y is permitted to randomize, g may also depend on Y’s randomization RV
MY , chosen at the start, independently of (MX ,Xn, Y n).

Now (K,L) is a permissible pair of RV’s if K = K(Xn, g) or K =
K(Xn,MX , g) and L = L(Yn, f ) or L = L(Yn,MY , f ), according as ran-
domization is permitted or not. With this understanding of the permissible pairs,
Definition 138 applies as before.

It is obvious how to extend the model to permit several rounds of communication
between X and Y , each transmission subject to a rate constraint. Alternatively, the
transmissions may not be constrained individually only their total rate is. The CR
capacity can always be defined as in Definition 138, letting the permissible (K,L)
pairs be functions of the data that become available at the corresponding terminals
after having executed a protocol allowable by the particular model.

2.4 Models with Robust CR

The simplest model of this kind is that when both terminals can observe the output of
an arbitrary varying source (AVS) but have no other resources whatsoever. An AVS
with alphabet X and state set S (both finite) is determined by a family

{
P(·|s), s ∈

S
}

of PD’s on X . The distribution of the n-length source output Xn depends on the
state sequence s ∈ Sn, and equals

P(·|s) = P(·|s1)× · · · × P(·|sn) if s = (s1, . . . , sn). (10)

In this model, any function K = K(Xn) represents CR, thus the largest CR, for
any fixed block-length n, is represented by K = Xn. In the definition of achievable
CR rates, the condition (6) is now required to hold independently of the underlying
statistics, i.e., for all s ∈ Sn. Thus the CR capacity for this model equals Hmin =
mins∈S H

(
P(·|s)). It is non-trivial but will be shown in Theorem 141 that this CR

capacity can be attained with robust UCR, i.e., that K = K(Xn) satisfying (7) for
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all possible s ∈ Sn can be given, such that

1

n
log |K| > Hmin − δ.

We will consider various AVC models in this chapter. An AVC with input
alphabet X , output alphabet Y and state set S, each finite, is determined by a family
W = {

W(·|·, s), s ∈ S
}

of channels W(·|·, s) : X → Y . Terminal X selects the
inputs, Terminal Y observes the outputs, and the state sequence s ∈ Sn governing
the n-length transmission may be arbitrary. Several different models are possible
according to the availability of information to Terminal X about the states and the
previous outputs when selecting the input Xi , and whether or not randomization is
allowed.

We now formally describe two models, both with randomization permitted at
X , thus Terminal X first generates a randomization RV MX = M . In the “no
feedback” model, Terminal X selects the input sequence Xn as a function of M .
In the “complete feedback” model, the inputs X1, . . . , Xn are selected successively
as Xi = fi(M, Y1, . . . , Yi−1), where Y1, . . . , Yi−1 are the previous outputs (“seen”
by Terminal X through a noiseless feedback channel from Y to X ). In both models,
the joint distribution of M and the output sequence Yn, when the state sequence is
s = (s1, . . . , sn), is given by

Pr{M = m,Yn = y} = Pr{M = m}
n∏

i=1

W(yi |xi, si ). (11)

Here xi denotes the i’th input symbol when M = m (in the no feedback model)
or when M = m, Y1 = y1, . . . , Yi−1 = yi−1 (in the complete feedback model).
For both models, the CR capacity is defined as in Definition 138, requiring (4) and
(6) to hold robustly, i.e., for every s ∈ Sn. The permissible pairs K,L are of form
K = K(M), L = L(Yn) in the no feedback case, and formally, K should be
replaced by K = K(M,Yn) in the complete feedback case; for the latter model,
however,K = L = L(Yn) may be taken, without restricting generality.

Both the “no feedback” and “complete feedback” AVC models can be modified
by letting Terminal X know the state sequence s. Then the inputs X1, . . . , Xn and
the RV K may depend also on s. Also the AVC analogue of Model (ii), i.e., AVC
with active feedback could be considered.

We will not attempt to give a general formal definition of the class of models
we are interested in, but all our models involve the block-length n of observable
source RV’s or permissible channel transmissions (or both). For such models,
Definition 138 always makes sense if we specify, for every n, the class of permissible
pairs of RV’s that may be generated by the terminals as functions of the data
available to them. We now sketch how ID codes and ID capacity can be defined for
arbitrary models of this kind, as a straightforward extension of the corresponding
definitions for channels without or with feedback, see chapters “Identification via
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Channels” and “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas”.

Suppose one of N contingencies k ∈ {1, . . . , N} takes place, Terminal X knows
this k, and the goal is to let Terminal Y reliably decide, for any 1 ≤ j ≤ N he
may choose, whether or not k = j . To this end, the terminals perform a protocol
permissible by the given model, for some block-length n, with the understanding
that the actions of Terminal X , but not those of Terminal Y , may explicitly depend
on k. E.g., for Model (ii), the functions fi

(
M,g1(Y1), . . . , gi−1(Y1, . . . , Yi−1)

)

specifying the channel inputs Xi , will depend on k, whereas for the feedback mes-
sages gi(Y1, . . . , Yi) no such dependence is allowed, except for implicit dependence
through the Yi’s. Let U denote all information available at Terminal Y after having
performed the protocol, e.g., for Model (ii), U = Yn. Then, if Y wants to decide
whether or not k = j , he decides “yes” if U ∈ Dj and “no” if U /∈ Dj , where Dj ,
1 ≤ j ≤ N are certain subsets of U , the range of U .

Definition 139 A protocol as above together with a family {Dj , 1 ≤ j ≤ N} of
subsets of U is called an (N, n, ε) ID code for the given model if for each distinct
k, j in {1, . . . , N}

Pj (D
c
j ) ≤ ε; Pk(Dj ) ≤ ε. (12)

Here Pk denotes the distribution of U when contingency k has taken place. The
ID capacity of the given model is the supremum of the numbers R such that for
every ε > 0 and sufficiently large n there exists an (N, n, ε) ID code with N ≥
exp exp(nR).

For models whose statistics depend on unknown parameters (“state”), Defini-
tion 139 applies with the obvious modification. Namely, as then the distributions
Pk also depend on the state, we require (12) to hold robustly, i.e., for all possible
states. In particular, for an AVC without feedback (with X permitted to randomize)
an (N, n, ε) ID code is defined by a family {Qj , 1 ≤ j ≤ N} of PD’s on X n,
Qj representing the distribution of the input sequence when contingency j takes
place, together with a family {Dj , 1 ≤ j ≤ N} of subsets of Yn, such that for each
distinct k, j in {1, · · · , N} and all s ∈ Sn

∑

x∈X n

Qj (x)W
n(Dcj |x, s) ≤ ε,

∑

x∈X n

Qk(x)Wn(Dj |x, s) ≤ ε. (13)

It is important to emphasize that the sets Dj in Definition 139 need not be
disjoint. If they were, Terminal Y could infer k (as that j for which U ∈ Dj ) with
probability of error less than ε, thus the ID code would become a transmission code.
Whereas for ID codes N can grow doubly exponentially with the block-length n,
for transmission codes only exponential growth is possible.

As a straightforward generalization of the concept of channel capacity, we can
define the transmission capacity of a general model as the supremum of numbers
R such that for every ε > 0 and sufficiently large n there exists an (N, n, ε)
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transmission code. Notice that for transmission codes, i.e., when the sets Dj ,
1 ≤ j ≤ N , are disjoint, it suffices to impose the first inequality in (12). More
exactly, the transmission capacity defined in this way is that for the “maximum
error” criterion, whereas transmission capacity for the “average error” criterion is
obtained if the transmission codes are required to satisfy only

1

N

N∑

j=1

Pj (D
c
j ) ≤ ε, (14)

a weaker condition than (12). Just as for standard channel capacity, these two
concepts of transmission capacity coincide for models with uniquely determined
statistics, but transmission capacity for average error can be larger than that for
maximum error when the statistics depend on unknown states.

Remark For models with randomization allowed at Terminal X , transmission
capacity (for average error) is always a lower bound to CR capacity. Indeed, a trivial
way of generating CR is that Terminal X generates a RV uniformly distributed on
{1, . . . , N} and then transmits it to Terminal Y with probability of error less than ε.
From the point of view of CR capacity, the interesting models are those for which
this trivial scheme is not optimal.

3 Some General Results

Lemma 140 Let P be any family of N PD’s P = {p(v), v ∈ V } on a finite set V ,
let 0 < ε ≤ 1

9 and let d > 0 be such that for every P ∈ P the set

E(P, d) = {v : p(v) ≤ 1

d

}
(15)

has P -probability

P
(
E(P, d)

) ≥ 1− ε. (16)

Then for k ≤ ε2

3 log(2N)d , there exists f : V → {1, . . . , k} such that for every
1 ≤ i ≤ k and P ∈ P the conditional P -probability of f (v) = i on the condition
v ∈ E(P, d) differs from 1

k
by less than ε

k
, i.e.,

∣∣∣∣∣
P
(
f−1(i) ∩ E(P, d))

P
(
E(P, d)

) − 1

k

∣∣∣∣∣ <
ε

k
, 1 ≤ i ≤ k, P ∈ P . (17)
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In particular, the variation distance of the distribution of f from the uniform
distribution on {1, . . . , k} is less than 3ε, i.e.,

k∑

i=1

∣∣∣∣P
(
f−1(i)

)− 1

k

∣∣∣∣ < 3ε, (18)

for each of the PD’s P ∈ P .

Proof The proof is similar to that of Lemma 137, but requires a little more
calculation.

Choosing f at random as in the proof of Lemma 137, with Zi(v) as there, we
have

P
(
f−1(i) ∩ E(P, d)) =

∑

v∈E(P,d)
p(v)Zi(v). (19)

Chernoff bounding gives that for any A ⊂ V

Pr

{
∑

v∈A
p(v)Zi(v) >

1+ ε
k
P (A)

}

= Pr

{
exp

[
β
∑

v∈A
p(v)Zi(v)

]
> exp

(
β

1+ ε
k
P (A)

)}

≤ E
(

exp

[
β
∑

v∈A
p(v)Zi(v)

])
exp

(
−β 1+ ε

k
P (A)

)

= exp

(
−β 1+ ε

k
P (A)

)∏

v∈A

[
1+ 1

k

(
exp(βp(v)) − 1

)]
(20)

where β > 0 is arbitrary, and similarly

Pr

{
∑

v∈A
p(v)Zi(v) <

1− ε
k
P (A)

}

≤ exp

(
β

1− ε
k
P (A)

)∏

v∈A

[
1+ 1

k

(
exp(−βp(v))− 1

)]
. (21)
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Apply (20) to A = E(P, d) with β = εd . Then for v ∈ A = E(P, d) we have
βp(v) ≤ ε, by (15), and therefore

exp
(
βp(v)

) − 1 =
∞∑

j=1

(
βp(v)�n2

)j

j !

< βp(v)

⎡

⎣1+ 1

2

∞∑

j=1

(ε�n2)j

⎤

⎦ �n2

= βp(v)(1 + ε∗)�n2,

where ε∗ = ε�n2
2(1−ε�n2) .

Using the inequality 1+ t�n2 ≤ exp(t), it follows that the last product in (20) is
upper bounded by

exp

⎡

⎣
∑

v∈E(P,d)

1

k
βp(v)(1 + ε∗)

⎤

⎦ = exp

[
β

k
(1+ ε∗)P (E(P, d))

]
.

Thus (20) gives, using the assumption (16) and recalling that β = εd ,

Pr

⎧
⎨

⎩
∑

v∈E(P,d)
p(v)Zi(v) >

1+ ε
k
P
(
E(P, d)

)
⎫
⎬

⎭

< exp

[
−β
k
(ε − ε∗)P (E(P, d))

]
< exp

(
−εd(ε − ε

∗)(1− ε)
k

)

< exp

(
− ε

2

3k
d

)
; (22)

here, in the last step, we used that (ε − ε∗)(1 − ε) = ε
(

1− �n2
2(1−�εn2)

)
(1 − ε) >

ε
3 , if ε < 3 − 2 log e, and that condition does hold by the assumption ε ≤ 1

9 . It
follows from (21) in a similar but even simpler way (as exp

(−βp(v) − 1
)
) can be

bounded by βp(v)
(
−1+ 1

2ε�n2
)
�n2 that the left hand side of (21) is also bounded

by exp
(
− ε2

3k d
)

.

Recalling (19), we have thereby shown that the probability that (17) does not

hold for a randomly chosen f is < 2N exp
(
− ε2

3k d
)

. Hence this probability is less

than 1 if k ≤ ε2

3 log(2N)d . This completes the proof of Lemma 140, because (18) is an
immediate consequence of (17). ��
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Consider now the problem of robust uniform randomness obtainable by encoding
the n-length output Xn of an AVS, where the distribution of Xn depending on
the state sequence s ∈ Sn is given by (10). We are interested in mappings
f : X n → M of possibly large rate 1

n
log |M| for which f (Xn) represents robust

ε-uniform randomness, i.e., the variation distance of the distribution of f (Xn) from
the uniform distribution on M is less than ε, no matter what is the state sequence
s ∈ Sn.

Theorem 141 Let us be given an AVS by a set of PD’s
{
P(·|s), s ∈ S

}
on X , such

that Hmin = mins∈S H
(
P(·|s)) > 0. Then for every 0 < ε < 1

3 and every n there
exists a mapping f : X n →M of rate

1

n
log |M| > Hmin − δ(ε, n) (23)

such that f (Xn) represents robust ε-uniform randomness, where

δ(ε, n) =
√

2�n3/ε

n
log |X | + 2 log 1/ε

n
+ log log(2|S|)

n
+ 0

(
logn

n

)
(24)

if |X | ≥ 3, and |X | should be replaced by 3 if |X | = 2; the 0
(

logn
n

)
term in (24)

does not depend on ε and the AVS, not even on X and S.

Remark One feature of Theorem 141 that will be used in Theorem 143 below is
that it brings out explicitly the dependence of δ(ε, n) on X and S. For a fixed AVS,
Theorem 141 shows that robust ε-uniform randomness for (arbitrarily small but)

constant ε can be attained by mappings of rate approachingHmin with speed 0(n− 1
2 ),

and the rate will approach Hmin even if ε = εn → 0, providing it goes to 0 slower
than exponentially. Moreover, robust ε-uniform randomness with rate 1

n
log |M| >

Hmin− δ with an arbitrarily small but constant δ > 0 is attainable even with ε going
to 0 exponentially.

Proof of Theorem 141 Apply Lemma 140 to the family of PD’s P(·|s), s ∈ Sn, on
V = X n, with ε replaced by ε/3 (in order to get ε-uniform rather than 3ε-uniform
randomness, cf. (18)). Then N = |S|n, and we will choose the number d in (15) as

d = exp
[
n(Hmin − ξ)

]
, (25)

with ξ > 0 such that (16) (with ε replaced by ε/3) is fulfilled for each P = P(·|s).
As shown in the Appendix,

ξ =
√

2�n3/ε

n
log |X | (26)
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is an adequate choice, with the understanding (as also in the rest of the proof) that
|X | should be replaced by 3 if |X | = 2. Then Lemma 140 gives that for

|M| ≤ (ε/3)2

3 log(2|S|n) exp

[
n

(
Hmin −

√
2�n3/ε

n
log |X |

)]
(27)

there exists f : X n → M such that f (Xn) represents ε-uniform randomness, for
each s ∈ Sn. Comparison of (23) and (27) shows that both can be satisfied with
δ(ε, n) as in (23).

We have to show that the P -probability of the complementary set of (15) with
P = P(·|s) defined by (10) is ≤ ε if d is as in (25), with ξ given by (26). This
probability can be written as

Pr
{
P(Xn|s) > exp

[−n(Hmin − ξ)
]}

(28)

where Pr denotes probability under P(·|s). Now, for every t > 0

Pr
{
P(Xn|s) > exp

[−n(Hmin − ξ)
]}

= Pr
{
P t (Xn|s) > exp

[−nt (Hmin − ξ)
]}

< exp
[
nt (Hmin − ξ)

]
E
(
P t (Xn|s))

= exp
[
nt (Hmin − ξ)

] n∏

i=1

∑

x∈X
P 1+t (x|si), (29)

where E denotes expectation under P(·|s). To bound the last product in (29), notice
that for any PD P = {p(x)} on X

∑

x∈X
p1+t (x) =

∑

x∈X
p(x)

∞∑

j=0

(
t�n p(x)

)j

j !

≤ 1+ t
∑

x∈X
p(x)�n p(x)+ t

2

2

∑

x∈X
p(x)

[
�n p(x)

]2

= 1− tH (P )�n 2+ t
2

2

∑

x∈X
p(x)

[
�n p(x)

]2
. (30)
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Calculus shows that the last sum in (30) is maximum when P is the uniform
distribution on X , providing |X | ≥ 3. Hence

∑

x∈X
p1+t (x) ≤ 1− tH(P )�n 2+ t

2

2
(�n|X |)2 ≤ exp

[−tH(P )+ t
2

2
(log |X |)2�n 2

]
,

(31)

with the understanding (as also in the rest of the proof) that |X | should be replaced
by 3 if |X | = 2.

As H
(
P(·|si )

) ≥ Hmin by definition, (29) and (31) give that the probability

(28) is upper bounded by exp
[−ntξ + n t22 (log |X |)2�n 2

]
, for each t > 0. Setting

t = ξ/(log |X |)2�n 2, we get

Pr
{
P(Xn|s) > exp

[−n(Hmin − ξ)
]}
< exp

[
−n ξ2

2(log |X |)2�n 2

]
. (32)

For ξ given by (26), the right hand side of (32) is equal to ε
3 , establishing our

claim. ��
Having available Theorem 141, we now prove that for the type of models treated

in this chapter, CR capacity can be attained with uniform CR. Although we did not
give a formal definition of this class of models, we recall from Sect. 2 that all our
models involve the specification of permissible pairs of RV’s (K,L), for each block-
length n. The following definition postulates a property common to all models we
are interested in.

Definition 142 A model permits independent concatenations if for any pairs of
RV’s (K ′

1, L
′
1) and (K ′

2, L
′
2) permissible for block-lengths n1 and n2, there exists

a pair (K,L) permissible for block-length n1 + n2 such that K = (K1,K2),
L = (L1, L2), where (K1, L1) and (K2, L2) are independent and have the same
distribution as (K ′

1, L
′
1) and (K ′

2, L
′
2). When the underlying statistics are not

uniquely determined but depend on some parameters (“state”), the last condition
means that under any permissible statistics for block-length n1 + n2, (K1, L1) and
(K2, L2) are independent, with distributions equal to those of (K ′

1, L
′
1) and (K ′

2, L
′
2)

under one of permissible statistics for block-length n1 resp. n2.

For models with statistics depending on “states”, let S(n) denote the set of
possible states for block-length n. We will assume that this set does not grow
faster than doubly exponentially, more exactly, that 1

n
log log |S(n)| is bounded by

a constant. This holds for all models we are aware of, e.g. for the standard AVS and
AVC models |S(n)| = |S|n grows only exponentially. Even for the variant of the
AVC where the state sequence s may depend on the input sequence x, in which case
S(n) is the set of all mappings of X n into Sn, the growth rate of |S(n)| is “only”
doubly exponential.
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Theorem 143 Let us be given a model permitting independent concatenations.
If the statistics are not uniquely determined, we assume that 1

n
log log |S(n)| is

bounded. Then for any fixed ε > 0, every H less than CR capacity, and sufficiently
large n, there exists a permissible pair of RV’s (K,L), both distributed on a set M
satisfying 1

n
log |M| ≥ H , such that

Pr{K �= L} < ε,
∑

k∈M

∣∣∣∣Pr{K = k} − 1

|M|
∣∣∣∣ < ε, (33)

for every possible choice of the underlying statistics.

Remark It will be clear from the proof that the near uniformity ofK can be attained
also in a stronger sense, namely in the second inequality in (33), instead of a fixed
ε > 0 one could take a sequence εn going to 0 exponentially as n → ∞ (with a
sufficiently small exponent). A similar improvement of the first inequality in (33) is
possible providing in the definition of CR capacity, the fixed ε > 0 in (4) can be
replaced by εn going to 0 exponentially; this holds for all the models treated in this
chapter.

Proof of Theorem 143 As H is less than CR capacity, there exists H ′ > H which
is still an achievable CR rate. Applying Definition 138 to H ′ in the role of H , with
δ′ = H ′−H

2 , and ε′ > 0 specified later, it follows that for sufficiently large m there
exists a pair (K ′, L′) permissible for block-lengthm such that their common range
K satisfies

|K| ≤ exp(cm), (34)

and

Pr{K ′ �= L′} < ε′, (35)

1

m
H(K ′) > H ′ − δ′ = H + δ′, (36)

for every choice of the underlying statistics. Clearly, the case of uniquely determined
statistics

(|S(m)| = 1
)

need not be considered separately.
As the model permits independent concatenations, for every r there exists a

pair (Kr, Lr) permissible for block-length n = rm, with Kr = K1 . . .Kr ,
Lr = L1 . . . Lr , such that for every possible statistics for block-length n the pairs
(Ki, Li), i = 1, . . . , r are independent, with distributions equal to that of (K ′, L′)
for some possible statistics for block-length m (possibly different for each i). In
particular, Kr may be regarded as the r-length output of an AVS with alphabet K
and state set S(m). For this AVS,Hmin > m(H + δ′) by (36). Thus by Theorem 141
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there exists a mapping f : Kr →M with

1

r
log |M| > m(H + δ′)− δ(ε, r) (37)

such that the distribution of f (Kr) is robustly ε-close to the uniform distribution on
M, where

δ(ε, r) =
√

2�n1/ε

r
log |K| + 2 log 1/ε

r
+ log log |2S(m)|

r
+ 0

(
log r

r

)
. (38)

Using (34) and the assumption on the growth rate of S(m), it follows from (37)
and (38) that 1

rm
log |M| > H if r is sufficiently large, depending on ε but not onm.

With such an r we set K = f (Kr), L = f (Lr) for block-length n = rm. Then
K and L are distributed on M satisfying 1

n
log |M| > H , and the second inequality

in (33) holds for every possible choice of the underlying statistics. Finally, the first
inequality in (33) follows from (35), if we choose ε′ = ε/r . This completes the
proof, because it clearly suffices to restrict attention to block-lengths n which are
multiples of a constant r . ��
Theorem 144 For all models as in Theorem 143, the CR capacity is a lower bound
to ID capacity, provided the transmission capacity (for the maximum error criterion)
is positive.

Proof Immediate from Theorem 143 and the result from chapter Identification in
the Presence of Feedback: A Discovery of New Capacity Formulas”. ��

4 Common Randomness in Models (i), (ii), and (iii)

Theorem 145 For Model (i) described in Sect. 2, the CR capacity equals

C1(R) = max
U

[
I (U ∧X)|I (U ∧X)− I (U ∧ Y ) ≤ R] (39)

if no randomization is permitted, and

C̃1(R) =
{
C1(R) if R ≤ H(X|Y )
R + I (X ∧ Y ) if R ≥ H(X|Y ) (40)

if Terminal X is allowed to randomize. Here the maximum is for all RV’s U that
satisfy the Markov conditionU(X(Y , and the range constraint |U | ≤ |X |, and R
is the capacity of the noiseless channel in the model. Moreover, the CR capacity of
the variant of Model (i) where the noiseless channel is replaced by a DMC, is still
given by (39) resp. (40), with R replaced by the capacity of that DMC.
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Remark If X is permitted to randomize, a trivial way to create CR is that X
generates nR random bits and transmits them to Y , disregarding the DMMS.
Theorem 145 shows that this is suboptimal, and for R ≥ H(X|Y ) the CR capacity
exceeds R (attained by the trivial scheme) by exactly I (X ∧ Y ). This means
that although mutual information does not represent a “common information” (as
shown in [17]), it does represent a kind of hidden common randomness that can
be recovered if sufficient transmission capacity is available. It is interesting to
compare this interpretation of mutual information with that obtained in chapter “The
Role of Common Randomness in Information Theory and Cryptography: Secrecy
Constraints” in a context involving secrecy.

Proof of Theorem 145 A short proof is available using standard results of multi-
user information theory, cf. the proof of Theorem 146 below. Here we prefer
an independent proof, which later will be extended to the case of two-way
communication.

We state, also for later reference, an identity also used in chapter “The Role
of Common Randomness in Information Theory and Cryptography: Secrecy Con-
straints” (Lemma 136; cf. also [14], p. 409): For arbitrary RV’s S, T and sequences
of RV’s Xn, Y n

I (S ∧Xn|T )− I (S ∧ Yn|T )

=
n∑

i=1

[
I (S ∧Xi |X1 . . . Xi−1Yi+1 . . . YnT )− I (S ∧ Yi |X1 . . . Xi−1Yi+1 . . . YnT )

]

= n[I (S ∧XJ |V )− I (S ∧ YJ |V )
]

(41)

where J is a RV independent of all the previous ones, uniformly distributed on
{1, . . . , n}, and

V = X1 . . . XJ−1YJ+1 . . . YnT J. (42)

1.Converse part.Consider first the “no randomization” case. Suppose (K,L) satisfy
(2), (3), (4), and (5). Write

H(K|Yn) = I(K ∧ f (Xn)|Yn)+H (K|Yn, f (Xn)). (43)

Here the first term is≤ nR, by (2), and the second term is ≤ H(K|L) ≤ εcn+ 1
by (3) and Fano’s inequality (Lemma 48), using (4), (5). Thus we have

H(K)− I (K ∧ Yn) = H(K|Yn) ≤ nR + εcn+ 1. (44)
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Apply (41) to the present Xn, Y n with S = K and T trivial/absent. Then V in
(42) is independent of (XJ , YJ ), hence the last line in (41) can also be written as

I (U ∧XJ )− I (U ∧ YJ ), with U = KV.

Thus

H(K)−I (K∧Yn) = I (K∧Xn)−I (K∧Yn) = n[I (U∧XJ )−I (U∧YJ )
]

(45)

whereU = KX1 . . . XJ−1YJ+1 . . . Yn satisfies the Markov conditionU (XJ (YJ .
Notice also that

H(K) = I (K ∧Xn) =
n∑

i=1

I (K ∧Xi |X1 . . . Xi−1)

= nI (K ∧XJ |X1, . . . , XJ−1) ≤ nI (U ∧XJ ). (46)

As XJ , YJ may be identified with the generic variables X,Y of our DMMS,
(44), (45) and (46) show that 1

n
H(K) is upper bounded by the maximum of I (U ∧

X) subject to I (U ∧ X) − I (U ∧ Y ) ≤ R + εc + 1
n

, for RV’s U satisfying the
Markov condition U ( X ( Y . It is routine to show that there exists U attaining
the maximum that satisfies the range constraint |U | ≤ |X | (direct application of the
Support Lemma of [14], p. 310 gives only |U | ≤ |X | + 1, but for a U yielding an
extremal value, this bound can be improved by 1, cf. [19]).

This completes the proof for the “no randomization” case. Notice that in (39)
necessarily I (U ∧ Y ) ≤ I (X ∧ Y ) hence

C1(R) ≤ R + I (X ∧ Y ), equality holds if R = H(X|Y ). (47)

When X may randomize, we will conveniently regard his randomization RV
MX as an i.i.d. sequenceMn (of course, independent of Xn, Y n). This reduces the
present case to the previous one, replacing X by XM , where M is independent of
X,Y . Thus we need to maximize I (U ∧XM) subject to

I (U ∧XM)− I (U ∧ Y ) ≤ R, U (XM ( Y. (48)

It follows similarly to (47) that (48) implies I (U ∧ XM) ≤ R + I (X ∧ Y ),
thus for the case R ≥ H(X|Y ) we are done. For R < H(X|Y ), notice that since
I (U ∧XM) = I (U ∧X)+ I (U ∧M|X), and the Markov condition in (48) implies
U (X ( Y , it follows from (47) that

I (U ∧XM) ≤ C1
(
R − I (U ∧M|X))+ I (U ∧M|X). (49)
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It is easy to check that the function defined by (39) is concave, hence, by (47),
its slope is ≥ 1 if R ≤ H(X|Y ). Thus the right hand side of (49) is ≤ C1(R). This
completes the proof for the randomized case.

Finally, if the channel from X to Y is not noiseless but a DMC, the only
modification needed in the above proof is to replace f (Xn) in Eq. (43) by the output
of that DMC. Denote the input of this DMC by T n and the output by Zn. Whether
or not Terminal X randomizes, the Markov condition Yn (XnK ( T n ( Zn must
hold. Thus the first term in (43) with f (Xn) replaced by Zn can be bounded as

I (K ∧ Zn|Yn) ≤ I (XnK ∧ Zn|Yn) ≤ I (T n ∧ Zn|Yn) ≤ nC,

establishing our claim.
2. Direct part. It suffices to consider the case R ≤ H(X|Y ), with no randomization.
By continuity, it suffices to show that C1(R

′) is an achievable CR rate for every
R′ < R. We are going to show this by exhibiting for arbitrary U satisfying

U (X ( Y, I (U ∧X)− I (U ∧ Y ) < R (50)

and for any ε > 0, δ > 0 and sufficiently large n, a permissible pairK,L as defined
by (2), (3), such that K,L satisfy (4), (5), and (6) with H = I (U ∧X).

Assuming without any loss of generality that the distribution of U is a possible
ED for block-length n, select at random exp

{
n(I (U ∧X) + δ)} sequences u ∈ Un

of ED PU , denoted as u ij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, with

N1 = exp
{
n(I (U ∧X)− I (U ∧Y )+3δ)

}
, N2 = exp

{
n(I (U ∧Y )−2δ)

}
. (51)

Then for every X-typical x ∈ X n the probability that neither u ij is jointly UX-
typical with x is doubly exponentially small. Hence with probability close to 1,
every typical x is jointly typical with some u ij .

LetK(x) be equal to an u ij jointly typical with x (either one if there are several),
and let f (x) = i ifK(x) = u ij ; both functions are set constant when x is not typical.
Further let L

(
y, f (x)

) = u ij if f (x) = i and u ij , y are jointly UY -typical. If there
is no such u ij or there are several, L is set equal to a constant. Then, by (50), (51),
the rate constraint (2) on f is satisfied if δ is sufficiently small, and K = K(Xn),
L = L(Yn, f (Xn)) obviously satisfy (5). Also (6) is satisfied since

Pr{K = u ij } ≤ PnX
({x : (u ij , x) jointly typical})

= exp
(−nI (U ∧X)+ o(n)) (52)

implies that H(K) ≥ nI (U ∧X)+ o(n).
It remains to check (4), i.e., Pr{K �= L} ≤ ε. Notice that for any jointly UX-

typical pair (u, x), the set of y’s jointly typical with (u, x) has conditional probability
arbitrarily close to 1 on the condition Un = u, Xn = x, and hence by Markovity,
also on the conditionXn = x. It follows that the setA of those pairs (x, y) for which
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(
K(x), x, y

)
are jointlyUXY -typical hasPnXY arbitrarily close to 1. Let us denote by

B the set of those pairs (x, y) ∈ A for which in addition to u ij = K(x), some other
u ij (with the same first index i) is also jointly typical with y. To complete the proof,
it suffices to show that PnXY (B) with be arbitrarily small, with large probability with
respect to the random choice of {u ij }.

Now, for fixed (x, y), the probability that B determined by the random {uij }
contains (x, y), is upper bounded by

N1∑

i=1

N2∑

j=1

N2∑

ell=1
� �=j

Pr
{
(uij , x) jointly typical, (u ij , y) jointly typical

}

= N1N
2
2 exp

[−nI (U ∧X)+ o(n)] exp
[−nI (U ∧ Y )+ o(n)]

= exp
[−nδ + o(n)]; (53)

here we used (51) and that the u ij are independent, chosen with uniform distribution
from the sequences of ED PU . Hence the expectation of PnXY (A), as a RV depending
on {u ij }, is also upper bounded by exp

[−nδ+ o(n)]. This completes the proof. ��
Consider now the following generalization of Model (i) to generating CR at r+1

(rather than 2) terminals. Given a DMMS with r + 1 components, with generic
variables X,Y1, . . . , Yr , Terminal X can observe Xn and send messages fi(Xn) to
Terminals Yi , subject to rate constraints

1

n
log ‖fi‖ ≤ Ri, i = 1, . . . , r. (54)

Terminal Yi can observe Yni , and the message fi(Xn) sent him by Terminal
X . Achievable CR rates and CR capacity are defined by the natural extension
of Definition 2.1, namely the role of permissible pairs (K,L) is now played by
permissible (r + 1)-tuples (K,L1, . . . , Lr ) defined in analogy to (3), and the role
of condition (4) is played by r similar conditions Pr{K �= Li} < ε, i = 1, . . . , r .

Theorem 146 For the above model, with no randomization permitted, the CR
capacity equals the maximum of I (U ∧X) subject to the constraints

I (U ∧X)− I (U ∧ Yi) ≤ Ri, i = 1, . . . , k, U (X ( Y1, . . . , Yk, (55)

where U may be supposed to satisfy the range constraint |U | ≤ |X | + r − 1. If
Terminal X is permitted to randomize, the CR capacity is still the same if Ri <
H(X|Yi) for some i, and it equals min1≤i≤k

[
Ri + I (X ∧ Yi)

]
if Ri ≥ H(X|Yi),

i = 1, . . . , k

Proof If H is an achievable CR rate and δ > 0, take (for large n) K = K(Xn) that
can be ε-reproduced at each terminal by Li = Li

(
Yni , fi (X

n)
)
, i = 1, . . . , r , and
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such that
∣∣∣∣
1

n
H(K)−H

∣∣∣∣ < δ. (56)

Although the definition of achievable CR rates postulates 1
n
H(K) > H − δ only,

it clearly does not restrict generality to require 1
n
H(K) < H + δ, as well. In order

that K could be ε-reproduced at Yi it is necessary that

1

n
H(K|Yni ) < Ri + δ (57)

(formally, H(K|Yni ) can be written as a sum of two terms as in (43), and bounded
as there).

On the other hand, if to a numberH for all δ > 0 sufficiently large n there exists
a function K = K(Xn) that satisfies (56), (57), then H is an achievable entropy
rate. Indeed, from Ynri and a suitable code fi(Kr) of rate 1

nr
log ‖fi‖ ≤ Ri + δ

of the r-fold repetition of K , Terminal Yi can reproduce Kr with arbitrarily small
probability of error, by Slepian-Wolf . Although the permissible rate is only Ri , this
can be remedied by taking block-length N = n′r with n′ slightly larger than n,
satisfying n′Ri ≥ n(Ri + δ), i = 1, . . . , r , and disregarding the last N − nr source
outputs. Thus for block-lengthN , the terminals can produce ε-common randomness
of rate 1

N
rH(K) = 1

n′H(K), arbitrarily close to H .
Thus we have obtained a “product space characterization” of achievable CR rates,

namely that H is achievable iff for every δ > 0 and sufficiently large n there exists
a function K = K(Xn) satisfying (56), (57). This can be easily single-letterized,
using results available in the literature. To this, notice that in the above product
space characterization, (56), (57) may be replaced by

∣∣∣∣
1

n
H(Xn|K)− (H(X)−H )

∣∣∣∣ < δ,
1

n
H(Yni |K) ≤ Ri −H +H(Yi)+ 2δ. (58)

Now, by [14], p. 352, an (r + 1)-tuple R̃0, R̃1, . . . , R̃r has the property that for
every δ > 0 and sufficiently large n there exists a function f (Xn) satisfying

∣∣∣∣
1

n
H
(
xn|f (Xn))− R̃0

∣∣∣∣ < δ,
1

n
H
(
Yni |f (Xn)

) ≤ R̃i + δ

iff there exists a RV U with U (X ( Y1, . . . , Yr such that

H(X|U) = R̃0, H(Yi |U) ≤ R̃i .

Substituting here R̃0 = H(X)−H , R̃i = Ri −H +H(Yi), we get

I (U ∧X) = H, I (U ∧X)− I (U ∧ Yi) ≤ Ri,
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and this completes the proof for the no randomization case (up to the routine range
constraint).

If randomization is permitted, we replace X by XM and proceed as in the proof
of Theorem 145. ��
Theorem 147 For Model (ii) described in Sect. 2, the CR capacity equals

C2(R) = max
X

[
I (X ∧ Y )+min

(
R,H(Y |X))] (59)

if randomization at Y is not permitted, and

C̃2(R) = C(W)+ R (60)

if Terminal Y is allowed to randomize. In (59), the maximum is taken for random
inputsX to the DMC {W } given in the model, Y denoting the corresponding output.
R is the capacity of the backward noiseless channel in the model, and C(W) is the
capacity of {W }. Moreover, the CR capacity of the variant of Model (ii) where the
backward channel is replaced by a DMC, is still given by (59) resp. (60), with R
replaced by the capacity of that DMC.

Remark Comparing (59) and (60) shows that if R is not larger than H(Y |X)
for a capacity achieving X then C̃2(R) = C2(R). Thus, similarly to Model (i),
randomization helps only when R is “large”. For many DMC’s, the maximum of
H(Y) is attained for a capacity achieving X. In those cases C2(R) = H(Y) for all
R “small” in the above sense.

Remark One possible strategy of Terminal X in Model (ii) is to use an i.i.d.
sequence Xn as channel input, which leads to the situation of Model (i), with
the roles of X and Y reversed. Comparing Theorems 145 and 147 shows that
this reduction to Model (i) suffices to achieve CR capacity for Model (ii) when
the max in (59) is attained for some X with H(Y |X) ≤ R, but not otherwise.
(Namely, in that case, iq.’s (59) and (39), the lattes with X and Y reversed, give
C2(R) = C1(R) = H(Y).)
Proof

1. Direct part. If Terminal Y can randomize (recall that Terminal X always can in
this model), a CR rate as in (60) can be attained in a trivial way: For large block-
length n, Terminal X generates and transmits to Y a RV uniformly distributed
on a set of size exp

[
(C(W) − δ)]; Y can decode it with small probability of

error. Terminal Y , in turn, generates a RV uniformly distributed on a set of size
exp(nR), and transmits it to X .

If Y can not randomize, a CR rate as in (59) can be attained as follows.
For large n, take (X, Y ) almost attaining the maximum in (59) such that PX
is a possible ED for block-length n. Terminal X generates a RV M uniformly
distributed on a set of size exp

[
n
(
I (X ∧ Y ) − δ)] and transmits it to Y using

a code of fixed composition PX. Y sends nothing back until he has received all
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n outputs. Then Y decodes M . Terminal Y can decode with small probability
of error, and he gets access to additional randomness from the channel output.
Namely, he can numerate the words in each of his decoding sets from 1 to
exp
[
nH(Y |X) + o(n)], then the RV Z equal to the number assigned to the

observed output sequence will be almost independent of M and have entropy[
nH(Y |X) + o(n)]. If R > H(Y |X), this Z can be transmitted back to X , and

if R < H(Y |X) then a suitable function of Z of entropy nR + o(n) can be
transmitted back.

2. Converse part. Let (K,L) be a permissible pair for block-length n, thus K =
K(M, g1, . . . , gn), L = L(Yn), with g = (g1, . . . , gn) satisfying (7). Supposing
that (K,L) satisfies the condition in Definition 138 we decompose H(L|M) in
analogy to (43), replacing f (Xn) there by g = (g1, . . . , gn). Bounding as there
we obtain

H(L|M) = I (L ∧ g|M)+H(L|M,g) ≤ nR + εnc + 1. (61)

Further, (8) and the memoryless character of the DMC {W } imply

I (L ∧M) ≤ I (M ∧ Yn) =
n∑

i=1

I (M ∧ Yi |Y i−1)

≤
n∑

i=1

I (Xi ∧ Yi |Y i−1) ≤
n∑

i=1

I (Xi ∧ Yi) ≤ nI (XJ ∧ YJ ) (62)

where J is an auxiliary RV uniformly distributed on {1, . . . , n}, independent of
(M, Y n). On the other hand,

H(L) ≤ H(Yn) ≤
n∑

i=1

H(Yi) ≤ H(YJ ).

Combining this with (61)–(62) we get that

1

n
H(L) ≤ min

[
I (XJ ∧ YJ )+ R + εc + 1

n
,H(YJ )

]

≤ I (XJ ∧ YJ )+min
[
R,H(YJ |XJ )

]+ εc + 1

n
.

As YJ is the channel output for input XJ , this completes the converse proof also
for the no randomization case. When the backward channel is not noiseless but a
DMC, then denoting its input and output by T n and Zn, the only difference will
be that g in (61) has to be replaced by Zn.
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Then the first term will be bounded as

I (L ∧ Zn|M) ≤ I (T n ∧ Zn|M) ≤ nC,

where C is the capacity of the backward channel.
��

Theorem 148 For Model (iii) described in Sect. 2, the CR capacity without ran-
domization is equal to

C3(R1, R2) = max
U,V

[
I (U ∧X)+ I (V ∧ Y |U) | I (U ∧X)− I (U ∧ Y ) ≤ R1,

I (V ∧ Y |U)− I (V ∧X|U) ≤ R2
]

(63)

where the maximization is for RV’s U and V satisfying the Markov conditions

U (X ( Y, X ( YU ( V. (64)

Moreover, the range sizes of U and V can be bounded by |X | + 2 and |Y|, resp.
Remark It is reassuring to check that (63) reduces to the expected simple results
when either R1 ≥ H(X|Y ) or R2 ≥ H(Y |X). In the first case U = X is a
permissible choice, then the Markov condition for V becomes void, and it follows
that

C3(R1, R2) = H(X)+min
(
R2,H(Y |X)

)
if R1 ≥ H(X|Y ). (65)

In the second case V = Y is a permissible choice, which leads to

I (U ∧X)+ I (V ∧Y |U) = I (U ∧X)+H(Y |U) = I (U ∧X)− I (U ∧Y )+H(Y).

Hence

C3(R1, R2) = H(Y)+min
(
R1,H(X|Y )

)
if R2 ≥ H(Y |X). (66)

Proof of Theorem 148

1. Converse part. Let (K,L) be a permissible pair for Model (iii) without ran-
domization, i.e., K = K(Xn, g), L = L(Yn, f ), f = f (Xn), g = g(Y n, f ),
where f and g satisfy the rate constraints (2), (9). Suppose that (K,L) satisfy
the conditions (4), (5) of Definition 138.

Our key tool is the identity (41), which will be applied twice. First we get

nR1 ≥ H(f ) = I (f ∧Xn) ≥ I (f ∧Xn)− I (f ∧ Yn) = n
(
I (U ∧X)− I (U ∧ Y)),

(67)
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with

X = XJ , Y = YJ , U = fX1 . . . XJ−1YJ+1 . . . YnJ (68)

(where we proceed as in the derivation of Eq. (45), the role ofK there now played
by f ).

Notice now that just asH(K|Yn) was bounded in Eq. (43), we have the bound

H(L|Xn) ≤ nR2 + εcn+ 1. (69)

Applying the identity (41) again, we get

−H(L|Xn) = −H(L|Xn, f )

= I (L ∧Xn|f )−H(L|f )

= I (L ∧Xn|f )− I (L ∧ Yn|f )

= n(I (L ∧X|U)− I (L ∧ Y |U)) (70)

where X,Y,U are (luckily) the same as in (68).
By (69) (with sufficiently small ε) and (70) we have for any fixed δ > 0

R2 ≥ I (L ∧ Y |U)− I (L ∧X|U)− δ. (71)

Finally we can write

I (L ∧Xn) =
n∑

i=1

I (L ∧Xi |X1 . . . Xi−1)

=
n∑

i=1

I (LX1 . . . Xi−1 ∧Xi) ≤ nI (LU ∧X). (72)

Combining (70) and (72) gives

H(L) = I (L ∧Xn)+H(L|Xn)

≤ n[I (LU ∧X)+ I (L ∧ Y |U)− I (L ∧X|U)]

= n[I (U ∧X)+ I (L ∧ Y |U)]. (73)

Replacing L with V , we have thus proved that achievable CR-rates are
bounded above by an expression as in (63) (the Markov conditions (64) are easily
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verified), perhaps with R2 replaced by R2 + δ; the latter is inconsequential, by
continuity.

2. Direct part. As in the proof of Theorem 145, it suffices to prove that I (X∧U)+
I (V ∧ Y |U) is an achievable CR rate whenever U and V satisfy (in addition to
(64)) the inequalities in (63) with strict inequality. The form of Eq. (63) suggests
that in the first round CR of rate I (U ∧ X) ought to be generated, and in the
second round additional CR of rate I (V ∧ Y |U).

We use the same construction as in the proof of Theorem 145. First we
generate {uij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} and associate with them functions
K1(x) and f (x) and L1(y, i) as there (we write K1 and L1 rather than K and L,
for now these functions will represent only the first part of the CR).

Then, by the proof of Theorem 145, for every pair (x, y) not in the exceptional
set Ac ∪ B of arbitrarily small probability PnXY , K1(x) = L1

(
y, f (x)

)
.

Next, to each uij as above, we generate at random exp
[
n
(
I (V ∧ Y |U) + δ)]

sequences v ∈ V n of joint ED with uij equal to PUV , denoted as v(ij)k� , 1 ≤ k ≤ M1,
1 ≤ � ≤ M2, where

M1 = exp
[
n
(
I (V ∧ Y |U)− I (V ∧X|U)+ 3δ

)]
,M2 = exp

[
n
(
I (V ∧X|U)− 2δ

)]
.

(74)

Then for every y ∈ Yn jointly UY -typical with uij , the probability that neither

v(ij)k� is jointly UYV -typical with (uij , y) is doubly exponentially small. Hence with

probability close to 1, to every jointly typical pair (uij , y) there is a v(ij)k� such that

(uij , y, v
ij

k�) is jointly typical; we denote by L(y,uij ) such a v(ij)k� (either one if there
are several). Then for each y and 1 ≤ i ≤ N1 we take for uij = L1(y, i) the unique
uij with the given first index i which is jointly typical with y, or a constant if no or

several such uij exist, and define L2(y, i) as the v(ij)k� selected to this uij and y:

L2(y, i) = L
(
y, L1(y, i)

) = v(ij)k� . (75)

Moreover, we define g(y, i) to equal the first index k of v(ij)k� in (75). Finally, for

x ∈ X n and 1 ≤ k ≤ M1 we define K2(x, k) as the unique v(ij)k� jointly typical with
(uij , x), where uij = K1(x), or set K2(X , k) = const if no or several such v exist.

Then, by (74), g satisfies the rate constraint (9) if δ is sufficiently small. It is also
clear that

K = (K1(X
n),K2

(
Xn, g(Y n, f (Xn))

))

L = (L1
(
Yn, f (Xn)

)
, L2

(
Yn, f (Xn)

))



260 Common Randomness in Information Theory and Cryptography CR Capacity

represent a permissible pair for Model (iii), satisfying (5), and one shows as in the
proof of Theorem 145 that

1

n
H(L) ≥ I (U ∧X)+ I (V ∧ Y |U)− δ.

It remains only to show that the condition (4), i.e., Pr{K = L} > 1 − ε is
also satisfied, at least with large probability with respect to the random selections.
Pr{K1 = L1} > 1− ε has already been demonstrated in the proof of Theorem 141.
The remaining part Pr{K2 = L2} > 1 − ε can be proved similarly, though with a
little more work.

Here we show that to any RV’s U,V satisfying the Markov conditions (64) there
exist Ũ , Ṽ satisfying the same conditions, with range sizes |Ũ | ≤ |X |+2, |Ṽ| ≤ |Y|
such that

I (Ũ ∧X)− I (Ũ ∧ Y ) = I (U ∧X)− I (U ∧ Y ) (76)

I (Ṽ ∧ Y |Ũ)− I (Ṽ ∧X|Ũ ) ≤ I (V ∧ Y |U)− I (V ∧X|U) (77)

I (Ũ ∧X)+ I (Ṽ ∧ Y |Ũ) ≥ I (U ∧X)+ I (V ∧ Y |U). (78)

(i) Given U,V satisfying (64), introduce an equivalence relation on U by letting
u1 ∼ u2 iff PX|U=u1 = PX|U=u2 . Our first claim is that U,V can be replaced
by U ′, V ′ without changing the relevant mutual information, such that no
distinct elements of the range of U ′ are equivalent in the above sense.

Let f (u) denote the equivalence class of u. Then clearly

PXY |U=u = PXY |f (U)=f (u) (79)

hence

I (U ∧X) = I(f (U) ∧X), I (U ∧ Y ) = I(f (U) ∧ Y ).

This, in turn, implies that

I (V ∧X|U) = I (UV ∧X)− I (U ∧X)

= I(UVf (U) ∧X)− I(f (U) ∧X)

= I(UV ∧X|f (U)),

and similarly

I (V ∧ Y |U) = I(UV ∧ Y |f (U)).
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ThusU ′ = f (U), V ′ = UV satisfy our claim, since U ′ (X(Y is obvious
from U (X ( Y and (79), and X ( YU ′ ( V ′ follows as

PX|Y=y,f (U)=f (u),U=u,V=v = PX|Y=y,U=u,V=v
= PX|Y=y,U=u = PX|Y=y,f (U)=f (u),

where the second equality holds by X ( YU ( V and the third by (79).
(ii) By (i), it suffices to consider U,V (satisfying (64)) such that the PD’s Pu =

PX|U=u, u ∈ U are all distinct. This will enable us to use the Support Lemma
(see [19] or [14], p. 310) to reduce the range size of U . To this end, define
the stochastic matrix valued function F(P) for P ∈ {Pu, u ∈ U} by letting
Pr{V = v|Y = y,U = u} be the (y, v) entropy of F(Pu). Then extend F(P)
continuously but otherwise arbitrarily to the set P(X ) of all PD’s on X . Now
apply the Support Lemma to the following continuous functions on P(X ):

f1(P ) = H(X)−H(Y)−H(P)+H(PW), where W = PY |X

f2(P ) = H(X)−H(P)+ I
(
PW,F(P )

)

f3(P ) = I
(
PW,F(P )

) − I(P,WF(P))

fi(P ) = P(xj−3), 4 ≤ j ≤ |X | + 2, where X = {x1, . . . , x|X |}.

It follows that there exist PD’s Pi ∈ P(X ), i = 1, . . . , |X | + 2, and a PD
{α1, . . . , α|X |+2} on {1, . . . , |X | + 2} such that

∑

u∈U
Pr{U = u}fj (Pu) =

|X |+2∑

i=1

aifj (Pi), j = 1, . . . , |X | + 2. (80)

The last |X | − 1 identities in (80) mean that a RV Ũ with range Ũ =
{1, . . . , |X | + 2} and distribution {α1, . . . , α|X |+2} exists such that P

X|Ũ=i =
Pi , i = 1, . . . , |X |+2. Letting this Ũ satisfy Ũ(X(Y , the first identity in (80)
gives (76). Further letting Ṽ be such thatX(Y Ũ( Ṽ , PṼ |Y,Ũ=i = F(Pi), the
second and third identities in (80) mean that (77) and (78) hold with equality.

(iii) Finally, it remains to show that Ṽ in (ii) can be replaced by some Ṽ ′ with range
size ≤ |Y| andX(Y Ũ ( Ṽ ′ such that Ṽ ′ still satisfies (77), (78). Now, by the
range constraint result of Theorem 145, applied to RV’s with joint distribution
P
YX|Ũ=u in the role of X,Y , for each fixed ũ ∈ Ũ there exists Vũ distributed

on a set of size ≤ |Y| and conditionally independent of X on the conditions
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Y = y, Ũ = ũ, for every y ∈ Y , such that

I (Vũ ∧ Y |Ũ = ũ) ≥ I (Ṽ ∧ Y |Ũ = ũ)

I (Vũ ∧ Y |Ũ = ũ)− I (Vũ ∧X|Ũ = ũ) ≤ I (Ṽ ∧ Y |Ũ = ũ)− I (Ṽ ∧X|Ũ = ũ).

But then we can define a RV Ṽ ′ withX(YU( Ṽ ′ such that P
Ṽ |Y=y,Ũ=ũ =

P
Vũ|Y=y,Ũ=ũ for every y ∈ Y , ũ ∈ Ũ . This Ṽ ′ of range size ≤ |Y| will

satisfy the last inequalities for every ũ ∈ Ũ , and hence also (77), (78), as
required. ��

5 Common Randomness, Identification, and Transmission
for Arbitrarily Varying Channels

Recall the definition of an AVC in Sect. 2 by a class W = {W(·|·, s), s ∈ S}
of channels W(·|·, s) : X → Y . There also CR capacities, ID capacities, and
transmission capacities have been defined for various models involving an AVC.
We present now our results.

5.1 Model (A): AVC Without Feedback and Any Other Side
Information

First we recall some well-known results for transmission capacities, cf. [14].
A random code (C1, · · · , CM,Q) is defined by deterministic codes C1, · · · , CM

of the same block-length n and a PD Q on {1, · · · ,M}, with the understanding
that Ci will be used with probability Q(i). The error criterion is that the maximum
or the average (for k) of

∑M
i=1Q(i)ek(i, s) be small for every s ∈ Sn, where

ek(i, s) denotes the probability of not decoding correctly the message k when the
code Ci is used and the state sequence is s. Both criteria lead to the same random
code capacity CCR. Notice that random codes can be used for transmission only if
sender and receiver have access to CR, the outcome of a random experiment with
distributionQ.

It was shown in [12] that

CCR = max
P

min
W∈W

I (P,W) = min
W∈W

C(W). (81)

Here I (P,W) denotes the mutual information of input and output RV ’s with
joint distribution P(x)W(y|x), C(W) = maxP I (P,W) is the Shannon capacity of
the channelW , and W denotes the convex hull of W .
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By an elimination technique – based on an idea called now “derandomization” in
computer science – it was shown in [1] that CCR can be attained by random codes
(C1, · · · , CM,Q) with M not larger than the square of the block-length n and with
uniformQ. As a consequence, the capacity for deterministic codes and the average
probability of error criterion, denoted by C, satisfies

C = CCR if C > 0. (82)

Random codes should be distinguished from codes with randomized encoding,
which do not need CR, the decoding being deterministic. It was also shown in [1]
that with randomized encoding, both the maximum and average error criteria lead
to the same capacity, and

capacity under randomized encoding = C. (83)

We note for later reference that (82) and (83) remain valid also for AVC’s
with noiseless feedback, if C is replaced by Cf , the average error capacity for
deterministic codes with feedback.

A necessary and sufficient condition for C > 0, given in [1], is that for some n
there exist PD’sQ1,Q2 on X n and disjoint subsets D1,D2 of Yn such that

min
s∈Sn

∑

x∈X n

Qi(x)Wn(Di |x, s) > 1

2
, i = 1, 2. (84)

A single-letter necessary and sufficient condition for C > 0 was given in [15]:
C > 0 iff W is not symmetrizable, where symmetrizability of W means the
existence of a channel U : X → S such that

∑

s∈S
U(s|x ′)W(y|x, s) =

∑

s∈S
U(s|x)W(y|x ′, s) (85)

for every x, x ′ in X and y in Y .
With these results and Theorems 143 and 144 the following theorem is readily

obtained.

Theorem 149 For an AVC without feedback, both ID capacity and CR capacity
with sender permitted to randomize are equal to average error transmission
capacity for deterministic codes:

CID = CCR = C. (86)

Their common value equals CCR given by (81) if W is not symmetrizable, and 0
otherwise.
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Proof

(i) CCR = C: the non-trivial part CCR ≤ C follows from Theorem 143 and (83).
Indeed, a permissible pair (K,L) that satisfies (33) for every choice of s ∈ Sn
gives rise to a code with randomized encoder of rate 1

n
log |M| and average

probability of error< 2ε.
(ii) CID ≥ CCR = C: In the non-trivial case C > 0, this is a consequence of

Theorem 144 and of the fact that C equals the maximum error capacity for
randomized encoding.

(iii) CID ≤ C: Notice that CID > 0 implies C > 0, because Q1 and Q2 as in (13)
with D′1 = D1 \D2, D′2 = D2 \ D1 satisfy (84) if ε < 1/4 in (13). Thus, on
account of (82), it suffices to show that CID ≤ CCR. It follows from (13) that
an (N, n, ε) ID code for the AVC is, for each W ∈ W , also an (N, n, ε) code
for the DMC {W }. Since the ID capacity of a DMC equals its transmission
capacity, this and (81) imply the claimed inequality. ��

5.2 Model (B): AVC with Noiseless (Passive) Feedback

Let CCRF and CCRf denote the CR capacity and CIDF and CIDf the identification
capacity of the AVC with noiseless (passive) feedback, according as Terminal X
is permitted to randomize or not. As now X knows everything that Y does, CCRF
equals the limit as n → ∞ of the maximum, for all protocols as described in the
passage containing Eq. (11), of

1

n
min
s∈Sn

H(Y n). (87)

CCRf is obtained similarly, with the maximum taken for the deterministic
protocols (formally, withM = const in (11)).

Theorem 150 For an AVC with noiseless feedback,

CCRF = max
P

min
W∈W

H(PW), (88)

CCRf = max
P

min
W∈W

H(W |P) if CCRf > 0, (89)

CCRf > 0 iff ∃ x ∈ X : min
W∈W

H(W(·|x)) > 0. (90)

Here H(PW) and H(W |P) denote the entropy H(Y) and conditional entropy
H(Y |X) for RV’s X,Y with joint distribution P(x)W(y|x).
Remark These single-letter characterizations have been obtained independently
also by Ning Cai (1995, Personal communication).
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Proof of Theorem 150

(i) For a protocol that disregards the feedback information and selects i.i.d. inputs
X1, · · · ,Xn with distribution P , the quantity (87) becomes minW∈W H(PW).
This proves that the right hand side of (88) is an achievable CR rate. For the
converse, we prove by induction that for any given protocol,

min
s∈Sk

H (Y k) ≤ kmax
P

min
W∈W

H(PW), (91)

for k = 1, · · · , n. Indeed, (91) clearly holds for k = 1. Now, if mins∈Sk H (Y k)
is attained for s̃ = s̃1 · · · s̃k , let P̃ denote the distribution of Xk+1 when (the
given protocol is used and) si = s̃i , i = 1, · · · , k. Then

min
s∈Sk+1

H(Y k+1) ≤ min
s∈Sk+1

(H(Y k)+H(Yk+1))

≤ min
s∈Sk

H (Y k)+ min
W∈W

H(P̃W). (92)

Hence (91) holds for (k + 1) if it does for k.
(ii) For a deterministic protocol, when Xi is a function of Y i−1, we have

H(Yn) =
n∑

i=1

H(Yi |Y i−1) =
n∑

i=1

H(Yi |Y i−1Xi) =
n∑

i=1

H(Yi |Xi). (93)

Using (93), an induction as above shows that the right hand side of (89) is
an upper bound to (87) for any deterministic protocol.

Now, let P ∗ be the PD achieving the maximum in (89). Supposing CCRf >

0, it follows from Theorem 143 that to any ε > 0 there exists k = k(ε),
a protocol of block-length k, and a mapping f of Yk into X , such that the
distribution of f (Y k) differs by less than ε from P ∗, in variation distance, no
matter what is the state sequence s ∈ Sk . We extend this protocol to block-
length n, by letting Xi = f (Y k) for i = k + 1, · · · , n. Then, by (93), the limit
of (87) as n → ∞ will be arbitrarily close to the right hand side of (89), if
ε > 0 is sufficiently small.

(iii) Obviously, the condition in (90) is sufficient for CCRf > 0. To prove its
necessity, suppose indirectly that to each x ∈ X there is an s = s(x) such
that W(·|x, s) is the point mass at some y = y(x). Given any deterministic
protocol, consider x ∈ X n, s ∈ Sn, y ∈ Yn defined recursively such
that si = s(xi), y = y(xi), and xi+1 is the input symbol that the given
protocol specifies when the past output sequence is y1 · · · yi . For this particular
state sequence s, the given protocol leads to a unique output sequence y,
proving that quantity (87) is equal to 0 for every deterministic protocol, hence
CCRf = 0. ��
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Our result on the CR capacity leads to a noticeable conclusion for the classical
transmission problem.

Theorem 151 The average error capacity Cf of an AVC with noiseless feedback,
for deterministic coding, is always equal to CCR given by (81). Further,

CIDF = CCRF, CIDf = CCRf if CCR > 0 (94)

CIDF = CIDf = 0 if CCR = 0. (95)

Proof

(i) The random code (C1, · · · , CM,Q) in the paragraph containing Eq. (82) can be
used for transmission if X and Y have access to 2 logn bits of robust UCR,
i.e., to RV’s K,L satisfying (33) for every s ∈ Sn with |M| = n2. Since
CCR > 0 implies CCRF > 0, cf. (81), (88), such UCR may be generated using
a protocol of block-length n′ = c logn, by Theorem 143. This proves that
CCR is an achievable transmission rate, at least if randomization is permitted
(randomization may be needed in the CR-generating protocol of negligible
block-length n′ = c logn, whose outcome will identify the Ci actually used).
The proof is completed by reference to the feedback versions of (82) and (86).

(ii) If Cf = CCR > 0, the inequalities CIDF ≥ CCRF, CIDf ≥ CCRf are proved
analogously to the proof of Theorem 149, part (ii). The reversed inequalities
follow by the method of chapter [9] (2), where the ID capacity of a DMC
with feedback has been determined. If CCR = 0 then C(W) = 0 for some
W ∈ W . Then the feedback ID capacity of the DMC {W } is 0 by [9], and (95)
follows. ��

5.3 Model (C): Strongly Arbitrarily Varying Channel (SAVC)

It is assumed here that the jammer can make his choice of s ∈ Sn depend on the
sent x ∈ X n. Formally, the parameter determining the statistics is now an arbitrary
mapping from X n to Sn.

Since the number of such mappings is doubly exponential in n, the hypothesis of
Theorem 143 is still satisfied. The criterion (12) for an (N, n, ε) ID code becomes

∑

x∈X n

Qj (x)max
s
Wn(Dcj |x, s) ≤ ε,

∑

x∈X n

Qk(x)max
s
Wn(Dj |x, s) ≤ ε. (96)

The first inequalities here (with disjoint sets Dj ) represent the maximum
probability of error criterion for transmission codes with randomized encoding.

Any (N, n, ε) transmission code with randomized encoding gives rise to a
deterministic (N, n, ε) code, with codewords xj = arg minx(maxsWn(Dcj |x, s)).
Hence the maximum error capacity of a SAVC for deterministic and randomized
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encoding is the same. It is also (well known and) easy to see that this capacity
coincides with the average error capacity for deterministic codes, and it equals the
maximum error capacity for deterministic codes of the AVC defined by the same

W . We shall denote this capacity by C. As shown in [18], C > 0 iff there exists x
and x ′ in X with T (x) ∩ T (x ′) = ∅ where T (x) denotes the convex hull of the set
of PD’sW(·|x, s), s ∈ S.

The row-convex hull W of W is the set of all channels W : X → Y such that
W(·|x) ∈ T (x), x ∈ X . Write

D = min
W∈W

C(W). (97)

Theorem 152 For a SAVC, the CR capacity Cs
CR and ID capacity Cs

ID (with X
permitted to randomize) satisfy

C ≤ Cs
CR ≤ Cs

ID ≤ D (98)

Cs
ID > 0 iff C > 0. (99)

Remark Under not too restrictive hypotheses, C = D, cf. [2] for W satisfying
T (x) ∩ T (x ′) = ∅ whenever x �= x ′, and [13] under a weaker hypothesis; there

are, however, examples of 0 < C < D. For W with C = D, Theorem 152 gives

a conclusive result, but we do not know whether Cs
ID = Cs

CR and/or Cs
CR = C

hold for every SAVC. Cs
CR always equals the average error capacity for randomized

encoding, but it appears unknown whether the latter can ever be larger than C.

Proof of Theorem 152 The first inequality of (98) is obvious, and if C > 0, the
second inequality follows from Theorem 144. It remains to prove that Cs

ID ≤ D and

that C = 0 implies Cs
CR = Cs

ID = 0.
Consider an auxiliary model where at each instant i the state si may depend on xi

but not on the other x ′j s. Formally, this is an AVC model, with state set S∗ consisting
of all mappings s∗ : X → S, defined by the set of channels

W∗ = {W∗(·|·, s∗), s∗ ∈ S∗}, W∗(·|x, s∗) = W(·|x, s∗(x)). (100)

Clearly, the CR and ID capacities of this AVC are upper bounds to Cs
CR and

Cs
ID. Thus, on account of Theorem 149, it suffices to show that (i) the random code

capacity of the AVC defined by (100) equals D and (ii) W∗ is symmetrizable if

C = 0.
(i) is obvious from (81) and (97) since W∗ =W .
To prove (ii), use either the Strong Separation Lemma of [1] or, alternatively,

recall that C = 0 iff T (x) ∩ T (x ′) is never empty, i.e., for suitable PD’s U(·|x, x ′)
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on S,

∑

s∈S
U(s|x, x ′)W(y|x, s) =

∑

s∈S
U(s|x ′, x)W(y|x ′, s) (101)

for every x, x ′ and y. (101) means that W∗ satisfies (85), withU∗ : X → S∗ defined
by

U∗(s∗|x) =
∏

x̃∈X
U(s∗(x̃)|x̃, x). (102)

��
Remark Work relevant for problems concerning feedback with noise can be found
in [11] (see chapter “Identification via Channels with Noisy Feedback”, Part I).
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Watermarking Identification Codes
with Related Topics on Common
Randomness

Watermarking identification codes were introduced by Steinberg and Merhav. In
their model they assumed that

1. the attacker uses a single channel to attack the watermark and both, the
information hider and the decoder, know the attack channel;

2. the decoder either completely knows the covertext or knows nothing about it.

Then instead of the first assumption they suggested to study more robust models
and instead of the second assumption they suggested to consider the case where the
information hider is allowed to send a secret key to the decoder according to the
covertext.

In response to the first suggestion in this lecture (see [6]) we assume that the
attacker chooses an unknown (for both information hider and decoder) channel
from a set of channels or a compound channel, to attack the watermark. In response
to the second suggestion we present two models. In the first model according to
the output sequence of covertext the information hider generates side information
componentwise as the secret key. In the second model the only constraint to the key
space is an upper bound for its rate.

We present lower bounds for the identification capacities in the above models,
which include the Steinberg and Merhav results on lower bounds. To obtain our
lower bounds we introduce the corresponding models of common randomness. For
the models with a single channel, we obtain the capacities of common randomness.
For the models with a compound channel, we have lower and upper bounds and the
differences of lower and upper bounds are due to the exchange and different orders
of the max-min operations.
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1 Introduction

Watermarking technique is a way to embed secret information into a given message,
say image, that cannot be removed nor deciphered without access to a secret key. It
can be used to protect copy right. Watermarking is now a major activity in audio,
image, and video processing and standardization efforts for JPEG-2000, MPEG-4
and Digital Video Disks are underway.

One way to analyze watermarking problems is to regard them as communication
systems e.g., [14, 17, 22–25, 27]. In these systems the messages, which are called
covertext, are generated by an information source. An information hider, whom we
often call encoder because of his role in the system, has full access to the information
source of covertexts and the set of secret messages. These secret messages are
independent of the covertext, they are uniformly generated from the set, and will
be called watermark. The role of the information hider, or encoder, is to embed the
watermark in the covertext. When the embedding changes the covertext, it disturbs
the message. To guarantee the quality of the watermarked message, we certainly
would like not too much distortion. That is, for a given distortion measure, the
distortion between the original covertext and the watermarked message in average
may not exceed a given constant. An attacker wants to remove the watermark
from the watermarked message without distorting the message too much i.e., the
distortion between the covertext and the message corrupted by the attacker is not
too large with respect to a certain distortion measure. Finally a decoder tries to
recover the watermark from the corrupted message correctly with high probability.
As the attacker is allowed to use a random strategy, we assume that the attacker uses
a noisy channel to attack the watermark. Depending on the models the attacker may
choose various channels and the encoder and decoder share different resources (e.g.,
secret key, side information, etc.).

Among huge contributions on watermarking we here briefly review two of them.
In [23] Moulin and O’sullivan obtained the capacity for the watermarking codes
under the assumptions that the covertexts are generated from a memoryless source,
the distortions are sum-type and the attack channels are compound channels whose
states are known to the decoder but unknown to the encoder. The strategies of
encoder-decoder and attacker are discussed as well.

Identification codes for noisy channels were introduced by Ahlswede and Dueck
for the situation in which the receiver needs to identify whether the coming message
equals a specified one. If not, then they don’t care what it is [9]. It turned out that this
weaker requirement dramatically increased the sizes of messages sets which could
be handled: double exponential grown in the block lengths of codes. Identification
is much faster than transmission!

Steinberg and Merhav notice that in most cases people check watermarks in
order to identify them (e.g. copyright) rather than recognize them and so they
introduced identification codes to watermarking models [27]. In their models the
attack channels are single memoryless channels. That means the attacker’s random
strategy is known by information hider (encoder) and decoder. They notice that the
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assumption is not robust and so suggested to study more robust models. As to the
resources shared by encoders and decoders they consider two cases, the decoder
either completely knows the covertext or he knows nothing about it. (In all cases
the attacker must not know the covertext because otherwise there would be no safe
watermarking.)

By considering common randomness between encoder and decoder, they
obtained lower bounds to the capacities of watermarking identification in both
cases and the upper bounds easily followed from a theorem in [26]. The lower and
upper bounds are tight in the former case but not in the latter case. As Steinberg
and Merhav only studied two extremal cases, they suggested to consider the more
general case, that the decoder may obtain partial information, about the covertext,
say key, from the encoder via a secure noiseless channel. The exponent of error
probability was discussed as well.

In the present lecture we deal with these two problems. But before turning to
our result, we draw readers’ attention to common randomness, which – as noticed
in [10] (chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas”, Part I) – plays a central role in identification problems. It does
so also in [27] and here Ahlswede and Dueck discovered in [10] that common
randomness shared by encoder and decoder can be used to construct identification
codes and therefore the rate of common randomness (in the sense of first order of
logarithm) is not larger than the rate of identification codes (in the sense of the
second order of logarithm). In general the capacities of common randomness shared
by the encoder and the decoder may be smaller than the capacities of identification.
Examples for discrete channels and Gaussian channels were presented in [12] and
[15] respectively. Notice that the sizes of the input alphabets of the former channel
is growing super exponentially as the length of codes and the sizes of the input
alphabets of the latter is infinity. In fact it is seen from [26] that for any channel,
whose input alphabet is exponentially increasing in the case that strong converse
holds, the rates of common randomness and identification codes are the same.

The topic of common randomness has been become more and more popular e.g.,
[4, 7, 8, 19, 21, 28, 29], etc. Common randomness may be applied to cryptography,
(e.g., [7, 16, 19, 21]), identification (e.g., [3, 8–10, 13, 16]), and arbitrarily varying
channels (e.g., [1, 2, 5, 8]). For the first two applications the rates are important
and the distributions of common randomnesses are required nearly uniformly. For
cryptography certain secure conditions additionally needed. For the last application
one has to face in the difficulty made by the jammer and find a smart way to generate
the common randomness.

Now let us return to the two suggestions by Steinberg and Merhav. For the first
suggestion we assume in our models, attackers are allowed to choose a channel
arbitrarily from a set of memoryless channels to attack watermarks and neither
encoders nor decoders know the attack channels. This is known as compound
channel in Information Theory.

The assumption makes our models slightly more robust than that in [23] since in
[23] the decoders are supposed to know the attack channels.
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For the second suggestion we set up two models. In out first model we assume
the encoder generates a RV at time t according to component at time t of the output
sequence of covertext source and certain probability and sends it to decoder via a
secure channel. In this case the “key” actually is a side information of covertext
shared by encoder and decoder. We obtain the first and the second models in [27]
if we choose the side information equal to covertext almost surely and independent
of covertext respectively. So our first model contains both models in [27]. In our
second model the encoder is allowed to generate a key according to the covertext
(but independently on watermark) in arbitrary way and sends the key to decoder
through a secure channel with rate RK. Obviously in our second model the key can
be generated in a more general way than in our first model. For all combinations of
above assumptions, we obtain lower bounds to the identification capacities, which
contains both lower bounds in [27] as special cases.

To obtain our lower bounds to identification capacities, for each combination,
we introduce a corresponding model of common randomness and obtain lower and
upper bound to its capacity. For the single channel, the two bounds agree. For
compound channel, the gap between two bounds is up to the order of max-min.
In addition, we show a lower bound to common randomness in [27] in fact is tight,
which supports a conjecture in [27].

We must point out that our assumption of compound attack channels is still
far from the most robust and practical assumption although according to our
knowledge, it is most robust and practical existing assumption in this area. Actually
the attacker has much more choices.

– He does not necessarily use a memoryless channel and stead he can chooses a
channel with finite memory.

– The attacker may change the states time by time i.e., he may use an arbitrarily
varying channel.

– The attacker knows output of the channel; even at time t , he know the output at
time t ′ > t , since all outputs in fact are chosen by himself/herself. So the attacker
may use this information to choose attack channel. This clearly makes the attack
much more efficient.

So there is still a long way for us to achieve the most practical results and it
provides a wide space for future research.

The rest part of the lecture is organized as follows. In the next section we
present the notation used in the lecture. Our models and results are stated in Sects. 3
and 4 respectively. The direct parts of coding theorems of common randomness are
proven in Sect. 5 and their converse parts are proven in Sect. 6. In Sect. 7 we briefly
review the observation in [10] (chapter “Identification in the Presence of Feedback:
A Discovery of New Capacity Formulas”) on the relation of identification and
common randomness and therefore the lower bounds to the identification capacities
from capacities of common randomness. Finally the converse theorem for a model
in [27] is proven in Sect. 8.
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2 The Notation

Our notation in this lecture is fairly standard. log and ln stand for the logarithms
with bases 2 and e respectively and az is often written as expa[z]. The RV’s will be
denoted by capital letters L,U, V,X, Y,Z etc. and their domains are often denoted
by the correspondent script letters L,U,V,X ,Y,Z etc. But in some special cases
it may be exceptional. When we denote a set by a script letter (for example, X ), its
element is often denoted by the corresponding lower letter (for example x). X n is
the nth Cartesian power of the set X and xn = (x1, x2, . . . xn) is the sequence of
length n. Pr{E} is the probability of that the event E occurs and E[·] is the operator
of expectation. PX, PXY , PZ|X etc. will stand for the distribution of RV X, the
joint distribution of the RV’s (X, Y ), the conditional distribution of RV Z under the
condition that X is given respectively. When we write a probability distribution
as Pn, we mean that it is a product distribution of P and similarly a discrete
memoryless channel of length n with stochastic matrixW is written asWn.

Throughout this lecture T nU , T nUV ,T nU |V L(vnln) etc. will denote the sets of
typical, joint typical, and conditional typical sequences and the corresponding
sets of δ- typical, joint typical, and conditional typical sequences are written
as T nU (δ), T nUV (δ),T nU |VL(vnln, δ) etc. We always understand these sets are not
empty when we use the notation. When we introduce a set of typical sequences
(for example, say T nZ ), it is understood that the correspondent RV(s) (i.e., Z in
the example) with the (joint) empirical distribution (ED) as distribution (PZ) is
introduced at the same time. For a subset A of sequences of length nwe write AU =
A∩T nU and analogously AUV ,AU |VL(vnln),AU (δ),AUV (δ),AU |VL(vnln, δ) etc.
|T nU | and the common values of |T nU |L(ln)|, ln ∈ T nL some times are written as tU ,
tU |L etc. respectively (the length n of the sequences are understood by the context).
Analogously tU (δ), tY |X(δ) etc., also are used.

3 The Models

3.1 Watermarking Identification Codes

In this subsection, we state our models for the simpler case that the attacker chooses
a single channel to attack the watermark and both the encoder (information hider)
and the decoder know the attack channel. In the next subsection, we introduce the
corresponding models of common randomness. In the last subsection of the section,
we assume the attack chooses a channel unknown by both encoder and decoder from
a set of channels and replace the single channel by a compound channel.

Let V be a finite set, and V be a RV taking values in V . Then the covertext
is assumed to be generated by an memoryless information source {V n}∞n=1 with
generic V . The watermark is uniformly chosen from a finite set {1, 2, . . . ,M}
independently on the covertext. The encoder is fully accessed to the covertext and
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source of watermark and encodes the outputs of covertext vn and of watermark
m jointly to a sequence xn

( = xn(vn,m)
)

with the same length of sequence of
covertext. The attacker uses a single discrete memoryless channel W to attack the
watermarked sequence xn i.e., to change xn to yn with probability Wn(yn|xn) =
n∏
t=1
W(yt |xt ). Usually for practical reason people assume that vn, xn, and yn are

chosen from the same finite alphabet, but for convenience of notation we assume
they are from finite alphabets V , X , and Y respectively. The encoding mapping in
general disturbs the covertext. To measure the distortion, we introduce a sum type
distortion measure, watermarking distortion measure (WD-measure) ρ, such that for
all vn = (v1, . . . , vn) ∈ Vn, xn = (x1, . . . , xn) ∈ X n,

ρ(vn, xn) =
n∑

t=1

ρ(vt , xt ), (1)

where for all v ∈ V , x ∈ X 0 ≤ ρ(v, x) ≤ �, for a positive constant�.
By definition, there should be certain distortion constraint to the output of attack

channel. But now we are given a memoryless attack channel and we may omit
the constraint simply by assuming that the attack channel satisfies the constraint
automatically. This clearly does not loss generality. Next we have to set up the key-
resources shared by encoder and decoder, according to which we distinguish our
watermarking identification codes into watermarking identification codes with side
information (WIDSI codes) and watermarking identification codes with secure key
(WIDK codes) as follows.

Watermarking identification codes with side information (WIDSI codes): In the
first case, we assume that the encoder can generate “a component of a key”,
Lt = lt at the time t according to the current output of covertext Vt = vt and a
given conditional distribution PL|V (·|v). That is, the sender generates a sequence
Ln = (L1, L2, . . . , Ln) = ln = (l1, l2, . . . , ln) with probability PnL|V (ln|vn) if the
source outputs a sequence vn of covertext and then sends it to the decoder. The
latter try to recover the watermark from the invalidated message by the attacker
with the help of the side information Ln = ln. In this case the key-resource is
actually governed by the conditional distribution PL|V or equivalently the joint
probability distribution PVL. So it can be understood as a pure side information at
both sides of encoder and decoder instead of a “ secure key”. That is, if {V n}∞n=1 is
a memoryless covertext with generic V , and {Ln}∞n=1 is a side information observed
by both encoder and decoder, then {(V n, Ln)} is a correlated memoryless source
with generic (V ,L). Thus the decoder can learn some thing about the covertext from
the side information whereas the attacker knows nothing about it. A WIDSI code
becomes a “watermarking identification code with side information at transmitter
and receiver” in [27] when V and L have the same alphabet and equal to each
other almost surely and it becomes a “watermarking identification code with side
information at the transmitter only” in [27] if V and L are independent.So the two
codes defined in [27] are really the extreme cases of WIDCI codes.



3 The Models 277

Watermarking identification codes with secure key (WIDK codes): In this case
we assume the encoder may generate a key Kn = Kn(vn) according to the whole
output sequence V n = vn of the random covertext V n in an arbitrary way and
send it to the decoder through a secure (noiseless) channel so that the attacker
has absolutely no knowledge about the covertext (except its distribution) nor the
key. Since for given output vn of the covertext the encoder may generate the Kn
randomly, a WIDSI code is a special WIDK code. We shall see that in general
the latter is more powerful. Notice that a deterministic key function of output of
covertext is a special random key. Finally of course the size of the key must be
constraint. We require it exponentially increasing with the length of the code and
its rate upper bounded by the key rate RK. When the key rate is larger than the
covertext entropy H(V ) the encoder certainly may inform the receiver about the
output of covertext. However “the rest part” of the key may serve as a common
randomness between the communicators which increases the identification capacity
(see chapters “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas” and “The Role of Common Randomness in Information Theory
and Cryptography: Secrecy Constraints”, and [27]).

Definition 153 An (n,R, λ1, λ2,D1)WIDSI code is a system {Qm,Dm(ln) : ln ∈
Ln, m ∈M} for M = {1, 2, . . . ,M} satisfying the following conditions.

– Qm,m = 1, 2, . . . ,M are stochastic matricesQm : Vn × Ln −→ X n such that
for m = 1, 2, . . . ,M ,

∑

vn∈Vn,ln∈Ln
P nV L(v

n, ln)
∑

xn∈X n

Qm(x
n|vn, ln)ρ(vn, xn) ≤ D1, (2)

where PVL is the joint distribution of the generic (V ,L).
– For all ln ∈ Ln,m ∈M, Dm(ln) ⊂ Yn and for all m ∈M,

∑

vn∈Vn,ln∈Ln
P nVL(v

n, ln)
∑

xn∈X n

Qm(x
n|vn, ln)Wn(Dm(ln)|xn) > 1−λ1, (3)

and for all m,m′ ∈M,m �= m′,
∑

vn∈Vn,ln∈Ln
P nV L(v

n, ln)
∑

xn∈X n

Qm(x
n|vn, ln)Wn(Dm′(ln)|xn) < λ2. (4)

λ1 and λ2 is called the errors of the first and the second kinds of the code
– The rate of the code is

R = log logM. (5)

Next we define WIDK code.
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Definition 154 Let {V n}∞n=1 be a memoryless covertext with generic V and
alphabet V , the attack channel W be memoryless, and WD-measure ρ be as (1).
Then an (n,R,RK, λ1, λ2,D1) WIDK code is a system {Q∗

m,D∗
m(kn),WKn : m ∈

M, kn ∈ Kn} for M = {1, 2, . . . ,M} satisfying the following conditions.

– Kn is a finite set, which will be called the key book, with

1

n
log |Kn| ≤ RK. (6)

RK will be called key rate.
– WKn is a stochastic matrix,WKn : Vn −→ Kn. The output RV will be denoted

by Kn when the random covertext V n is input to the channel WKn i.e., the pair
of RV’s (V n,Kn) have joint distribution PV nKn(vn, kn) = PnV (vn)WKn(kn|vn),
vn ∈ V, kn ∈ Kn. In particular Kn may be a deterministic function of output of
covertext and in this case we write K(·) as a function defined on Vn. Note that
the choice ofKn does NOT depend on the messagem ∈M since the key should
independent of the protected message.

– Q∗
m,m = 1, 2, . . . ,M are stochastic matrices from Vn×Kn to X n, (the alphabet

of the input of the attack channel), such that

∑

vn∈Vn
P nV (v

n)
∑

kn∈Kn
WKn(kn|vn)

∑

xn∈X n

Q∗
m(x

n|vn, kn)ρ(vn, xn) ≤ D1. (7)

– For all kn ∈ Kn,m ∈ M, Dm(kn) ⊂ Yn and for all m ∈ M, the error of first
kind satisfies

∑

vn∈Vn
P nV (v

n)
∑

kn∈Kn
WKn(kn|vn)

∑

xn∈X n

Q∗
m(x

n|vn, kn)Wn(Dm(kn)|xn) > 1− λ1

(8)

and for all m,m′ ∈M m �= m′,
∑

vn∈Vn
P nV (v

n)
∑

kn∈Kn
WKn(kn|vn)

∑

xn∈X n

Q∗
m(x

n|vn, kn)Wn(Dm′(kn)|xn) < λ2.

(9)
– Finally the rate of the code is defined in (5).

The capacities of the codes of the two types are defined in the standard way
and denoted by CWIDSI((V ,L),W,D1) and CWIDK(V ,W,RK,D1) respectively,
where (V ,L) and V are the generic of memoryless correlated source and source
respectively,W is an attack memoryless channel, RK is the key rate, and D1 is the
distortion criterion.
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3.2 The Common Randomness

We speak of the common randomness between two (or among more than two)
persons who share certain common resources, which may be correlated sources
and/or (noisy or noiseless) channels.The common randomness capacity is defined
as the maximum number of random bits per channel use that the two persons can
generate. According to the resources, different models are established.

To build watermarking identification codes we need the following two kinds of
common randomness. In the following two models of common randomness, the
correlated source {(V n, Ln)}∞n=1 corresponds to the source of covertext and side
information and the memoryless channelW corresponds to the attack channel in the
models of watermarking identification. The Kn in the Model II corresponds to the
key in the model of WIDK.

Model I: Two-source with a constraint noisy channel
Let {(V n, Ln)}∞n=1 be a correlated memoryless source with two components,

alphabets V and L, and generic (V ,L). Assume that there are two persons, say
sender (or encoder) and receiver (or decoder). The sender may observe the whole
output of the source (V n, Ln) whereas only the output of the component Ln is
observable for the receiver. To establish common randomness the sender may send
message through memoryless channels W with input and output alphabets X and
Y under certain constraint condition (specified below). The receiver is not allowed
to send any message to the sender. The sender first chooses a channel code with set
of codewords U ⊂ X n with the same length n as output sequence of the source
and generates a RV M , his/her “private randomness” taking values uniformly in
a finite set M (which is exponentially increasing as the length n of the source
sequences increases) and independent of the output of the source (V n, Ln). Assume
a (sum type) distortion measure ρ in (1) and a criterion of distortion D1 are given.
According to the output of the source (V n, Ln) = (vn, ln) and the output of his/her
private randomnessM = m, the sender chooses a codeword xm(vn, ln) ∈ U(⊂ X n)
such that the average of the distortion between the codeword and the component
V n = vn of the correlated source may not exceedD1. Namely,

1

n

∑

m∈M
PM(m)

∑

vn∈Vn

∑

ln∈Ln
PVL(v

n, ln)ρ(xm(v
n, ln), vn) ≤ D1. (10)

If xm(vn, ln) is the channel input, he receiver receives an output sequence yn ∈
Yn with probability Wn(yn|xm(vn, ln)). We also allow to choose xm(v, ln) as a
random input sequence instead of deterministic one (it is more convenient in the
proof). Finally for a finite set A, which typically increases exponentially when the
length n of the source increases, i.e., for a constant κ

1

n
log |A| ≤ κ, (11)
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the sender creates a RV F with range A, according to the outputs of (V n, Ln) and
M , through a function

F : Vn × Ln ×M −→ A (12)

and the receiver creates a RV G according to the output of the channelWn and the
output of the component Ln of the source, through a function

G : Ln × Yn −→ A. (13)

After the terminology in chapter “The Role of Common Randomness in Informa-
tion Theory and Cryptography: Secrecy Constraints” we called the pair of random
variables (F,G) generated in the above way permissible and say that a permissible
pair (F,G) represents λ-common randomness if

Pr{F �= G} < λ. (14)

Typically λ should be an arbitrarily small but positive real number when
length n of source sequences is arbitrarily large. It is not hard to see that under
the conditions (11) and (14) by Fano inequality (Lemma 48), the entropy rates
1
n
H(F) and 1

n
H(G) are arbitrarily close if λ in (14) is arbitrarily small. This was

observed in [8](chapter “The Role of Common Randomness in Information Theory
and Cryptography: Secrecy Constraints”). Thus we can choose any one from the
pair of entropy rates, say 1

n
H(F) as the rate of common randomness.

A pair of real numbers (r,D1) is called achievable for common randomness if
for arbitrary positive real numbers ε, λ, μ and sufficiently large n (depending on ε,
λ and μ) there exists a λ-common randomness satisfying (10)–(14), such that

1

n
H(F) > r − ε (15)

and

∑

a∈A
| Pr{F = a} − 1

|A| |< μ. (16)

The last condition says that the common randomness is required to be nearly
uniform and we call it nearly uniform condition. We set it for reducing the errors of
second kind of identification codes. The set of achievable pairs is called common
randomness capacity region. For fixed D1 the common randomness capacity (CR-
capacity) is CCRI((V ,L),W,D1) = max{r : (r,D1) is achievable}.

Notice that there is no limit to the amount of sender’s private randomness in the
present model and the next model, Model II. However, because of the limit of the
capacity of the channel, the “ extra” private randomness is useless.
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We here remark that this model is different from the model (i) in chapter “The
Role of Common Randomness in Information Theory and Cryptography: Secrecy
Constraints” in three points.First, the channel in the model (i) of chapter “The
Role of Common Randomness in Information Theory and Cryptography: Secrecy
Constraints” is noiseless with rate ≤ R, whereas the current model is in general
noisy. More importantly, because of the distortion requirement, the source not only
plays a role of “ side information” but also a role of “constrainer”. That is, to fight
for reducing the distortion, the sender has to choose codewords properly. This makes
the transformation more difficult. To see that, let us consider an extremal case where
the component Ln of the source is a constant. In this case, the source makes no
difference at all in the model (i) of chapter “The Role of Common Randomness
in Information Theory and Cryptography: Secrecy Constraints” and therefore the
common randomness capacity is trivially equal to the capacity of the channel.
But in the case of the present model, the source makes difference i.e., because
of it the sender may not choose the codewords freely and therefore the common
randomness is reduced. The evaluation of the CR-capacity region for this model is
also absolutely non-trivial. Finally, in this model the sender and receiver observe
the output (V n, Ln) = (vn, ln) and Ln = ln respectively. The common randomness
before the transmission is equal toH(Ln) = I (V n, Ln;Ln); the mutual information
between the two observations. Therefore, it is not surprising that our characteriza-
tion in Theorem 156 is quite different from that in Theorem 145 of chapter “The
Role of Common Randomness in Information Theory and Cryptography: Secrecy
Constraints” and can not simply be obtained by substituting the rate of the noiseless
channel by the capacity of the noisy channel.

Model II: Two-source with a constraint noisy channel and a noiseless
channel

It is clear that our goal to study the common randomness of the model I is for
the construction of WIDSI codes. Next, to study WIDK codes, we introduced the
Model II of common randomness. Actually our model is a little more general than
that we really need. That is, we add “the side information”. But for this we need
to do almost no more work. Thus, to define the Model II we only add a noiseless
channel between the sender and receiver based on th Model I.

Namely we assume that the correlated source {(V n, Ln)}∞n=1, the noisy channel
W , the distortion constraint (10), and the sender’s private randomness M are still
available. Additionally the sender may send a message kn from a set of message
Kn with rate 1

n
log |K| ≤ RK to the receiver via noiseless channel. Again RK is

called key rate. Of course kn is necessarily to be a function of the outputs of the
source and sender’s private randomness i.e., kn = kn(vn,m) for vn ∈ Vn, m ∈M.
More generally, the sender may use random strategies i.e., treats kn as output of a
channelWK with input (vn,m). To define the common randomness for this model,
we change (13) to

G : Kn × Ln × Yn −→ A. (17)
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and keep the conditions (10), (11), (12), (14), (15), and (16) unchanged. Now,
accordingly, the definition of functionG has been changed.

Analogously, one can define CR-capacity CCRII((V ,L),W,RK,D1) for memo-
ryless correlated source with generic (V ,L), memoryless channel W , key rate RK
and the distortion criterionD1 of this model.

3.3 The Models for Compound Channels

In this subsection, we assume that the attacker employs a (stationary) memoryless
channel from a family of channels satisfying attack distortion criterion to attack the
watermark. Neither the sender nor the receiver knows which channel the attacker
uses. These channels are known as compound channels in Information Theory.
This assumption is slightly more robust and practical than that in [23] where the
decoder has to know the attack channel in order to decode. In fact, to the best of our
knowledge, it is a most robust assumption in this direction.

Definition 155 A compound channel is just a family of memoryless channels W =
{W(·|·, s) : s ∈ S} with common input and output alphabet X and Y respectively. S
is an index set which is called state set and its members are called states. An output
sequence yn ∈ Yn is output with the probability

Wn(yn|xn, s) =
n∏

t=1

W(yt |xt, s)

when the channel is governed by the state s and xn ∈ X n is input.

Underlie assumption for the attacker to use a compound channel to attack a
watermarking transmission or identification code is that the attacker knows the
input distribution Pn generated by the code. He then may employ such a compound
channel that for all s ∈ S

1

n

∑

xn∈X n

Pn(x
n)
∑

yn∈Yn
Wn(yn|xn, s)ρ′(xn, yn) ≤ D2,

where ρ′ is a sum type distortion measure, attack distortion measure (AD-measure),
may or may not be identify to WD-measure ρ and D2 is the attack distortion crite-
rion. In particular when the codewords are generated by an i.i.d. input distributions
so that the input distribution generated by the code is an i.i.d. distribution

Pn(xn) =
n∏

i=1

P(xt )
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a compound channel such that for all s ∈ S
∑

x∈X
P(x)

∑

y∈Yn
W(y|x, s)ρ′(x, y) ≤ D2

may be used. We always assume that all compound channels under the consideration
satisfy the condition of distortion and do not worry about it at all.

To adjust the models in the last two subsections to the compound channels the
following modifications are necessary.

For WIDSI code for compound channels: replace (3) and (4) by for all ln ∈
Ln,m ∈M, Dm(ln) ⊂ Yn such that for all m ∈M, and s ∈ S,

∑

vn∈Vn,ln∈Ln
P nVL(v

n, ln)
∑

xn∈X n

Qm(x
n|vn, ln)Wn(Dm(ln)|xn, s) > 1−λ1, (18)

and for all m,m′ ∈M m �= m′, and s ∈ S
∑

vn∈Vn,�n∈Ln
P nVL(v

n, �n)
∑

xn∈X n

Qm(x
n|vn, �n)Wn(Dm′(ln)|xn, s) < λ2 (19)

respectively.
For WIDK for compound channels: replace (8) and (9) by for all kn ∈ Ln,m ∈

M, Dm(kn) ⊂ Yn such that for all m ∈M, and s ∈ S,

∑

vn∈Vn
P nV (v

n)
∑

kn∈Kn
WKn(kn|vn)

∑

xn∈X n

Q∗
m(x

n|vn, kn)Wn(Dm(kn)|xn, s) > 1− λ1,

(20)

and for all m,m′ ∈M m �= m′, and s ∈ S,

∑

vn∈Vn
P nV (v

n)
∑

kn∈Kn
WKn(kn|vn)

∑

xn∈X n

Q∗
m(x

n|vn, kn)Wn(Dm′(kn)|xn, s) < λ2.

(21)

Here the fact that Qm, Q∗
m, Dm(ln) and Dm(kn) are independent of the states

governing the channels reflects the requirement that neither encoder nor decoder
knows the states and that (18)–(21) hold for all s ∈ S is because the worst case to
the encoder and decoder is considered.

For the common randomness in the models I and II: for compound channels,
replace (14) by whenever any state s governs the channel,

Pr{F �= G|s} < λ. (22)
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Again the functions F , G, codewords are independent of the states because the
states are unknown for both encoder and the decoder.

For compound channel W the corresponding capacities of watermarking iden-
tification codes are denoted CWIDSI((V ,L),W,D1) and CWIDK(V ,W, RK,D1),
and that of common randomness codes are denoted CCRI((V ,L),W,D1) and
CCRII((V ,L)W, RK,D1).

4 The Results

4.1 The Results on Common Randomness

For a given correlated memoryless source {(V n, Ln)}∞n=1, whose generic has
joint distribution PVL, a memoryless channel W and distortion criterion D1, let
Q((V ,L),W,D1) be the set of RV (V ,L,U,X, Y ) with domain V×L×U×X×Y
and the following properties, where U is a finite set with cardinality |U | ≤ |V ||L||X |
and X and Y are input and output alphabets of the channelW respectively.

For all v ∈ V, l ∈ L, u ∈ U, x ∈ X , and y ∈ Y

Pr{(V ,L,U,X, Y ) = (v, l, u, x, y)}

= PVLUXY (v, l, u, x, y)

= PVL(v, l)PUX|V L(u, x|v, l)W(y|x). (23)

For the given distortion measure ρ

Eρ(V,X) ≤ D1. (24)

I (U ;V,L) ≤ I (U ;L, Y ). (25)

Then we have the coding theorem of common randomness in the model I for
single channelW .

Theorem 156

CCRI((V ,L),W,D1) = max
(V ,L,U,X,Y )∈Q((V ,L),W,D1)

[I (U ;L, Y )+H(L|U)].
(26)

For a given correlated source with generic (V ,L) a channel W and positive
real numbers RK and D1, we denote by Q∗((V ,L),W,RK,D1) the set of RV’s
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(V ,L,U,X, Y ) with domain as above and such that (23), (24) and

I (U ;V,L) ≤ I (U ;L, Y )+ RK (27)

hold. Then

Theorem 157

CCRII((V,L),W,RK,D1) = max
(V,L,U,X,Y )∈Q∗((V,L),W,RK,D1)

[I (U;L,Y) +H(L|U)] + RK.

(28)

To state the coding theorem for compound channels we need new notation. For
RV’s (V ,L,U,X) with alphabet V × L × U × X as above and the channel with
input and output alphabets X and Y respectively, denote by Y (W) the RV such that
the joint distribution PLVUXY(W) = PLVUXW (consequently, LVU ↔ X ↔ Y

form a Markov chain). For a compound channel W with set of states S and a state
s ∈ S we also write Y (W(·|·, s)) = Y (s). With the notation we write

I (U ;L, Y (W)) = inf
s∈S
I (U ;L, Y (s))

and

I (U ; Y (W)|L) = inf
s∈S
I (U ; Y (s)|L).

Sometimes just for the convenience, we also write Y (s) as Ỹ (s) when we
substitute PLVUX by PL̃Ṽ ŨX̃ and similarly Ỹ (W). Then

I (U ;L, Y (W)) = I (U ;L)+ I (U ; Y (W)|L). (29)

Now for a compound channel we define Q1((V ,L),W,D1) as the set of RV’s
(V ,L,U,X) such that its marginal distribution for the first two components is equal
to the distribution PVL and (24) and

I (U ;V,L) ≤ I (U ;L, Y (W)) (30)

hold. Analogously to set Q∗((V ,L),W,RK,D1), we define Q∗
1((V ,L),W, RK,

D1) the set of RV’s (V ,L,U,X) such that its marginal distribution for the first two
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components is equal to the distribution PVL and (24) and

I (U ;V,L) ≤ I (U ;L, Y (W))+ RK. (31)

hold. Then

Theorem 158

CCRI((V ,L),W,D1) ≥ sup
(V ,L,U,X)∈

Q1((V ,L),W,D1)

[I (U ;L, Y (W))+H(L|U)] (32)

CCRI((V ,L),W,D1) ≤ inf
W∈W

max
(V ,L,U,X,Y )∈
Q((V ,L),W,D1)

[I (U ;L, Y )+H(L|U)]. (33)

Theorem 159

CCRII((V, L),W, RK,D1) ≥ sup
(V ,L,U,X)∈

Q∗
1((V ,L),W,RK,D1)

[I (U ;L, Y (W))+H(L|U)] + RK

(34)

CCRII((V, L),W, RK,D1) ≤ inf
W∈W max

(V ,L,U,X,Y )∈
Q∗((V ,L),W,RK,D1)

[I (U ;L, Y ) +H(L|U)] + RK.

(35)

Notice the gaps of lower and upper bounds in both Theorems 158 and 159 are
due to the orders of inf-sup.

4.2 The Results on Watermarking Identification Codes

We shall use the same notation as in the above part. Moreover for above sets V,X
and Y and a finite set U with cardinality bounded by |V ||X |, a memoryless source
with generic V , a memoryless channelW , and compound channel W , we define the
following sets. Let Q∗∗(V ,W,RK,D1) be the set of random variables (V ,U,X, Y )
with domain V × U × X × Y such that for all v ∈ V, u ∈ U, x ∈ X , and y ∈ Y

PVUXY (v, u, x, y) = PV (v)PUX|V (u, x|v)W(y|x), (36)

I (U ;V ) ≤ I (U ; Y )+ RK, (37)
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and (24) hold. Let Q∗∗
1 (V ,W, RK,D1) be set of RV’s (V ,U,X) with domain V ×

U × X such that for all v ∈ V, u ∈ U and x ∈ X ,

PVUX(v, u, x) = PV (v)PUX|V (u.x|v), (38)

I (U ;V ) ≤ I (U ; Y (W))+ RK, (39)

and (24) hold, where I (U ; Y (W)) = infW∈W I (U ; Y (W)). In particular, when
the second component Ln of the correlated source {(V n, Ln)}∞n=1 is a constant,
Q∗((V ,L),W,RK,D1) and Q∗

1((V ,L),W, RK,D1) become Q∗∗(V ,W,RK,D1)

and Q∗∗
1 (V ,W, RK,D1) respectively.

Theorem 160

CWIDSI((V ,L),W,D1) ≥ max
(V ,L,U,X,Y )∈Q((V ,L),W,D1)

[I (U ;L, Y ) +H(L|U)].
(40)

Theorem 161

CWIDK(V ,W,RK,D1) ≥ max
(V ,U,X,Y )∈Q∗∗(V ,W,RK,D1)

I (U ; Y )+ RK. (41)

Theorem 162

CWIDSI((V ,L),W,D1) ≥ sup
(V ,L,U,X)∈Q1((V ,L),W,D1)

[I (U ;L, Y (W))+H(L|U)].
(42)

Theorem 163

CWIDK(V ,W,RK) ≥ sup
(V ,U,X)∈Q∗∗

1 (V ,W,RK,D1)

I (U ; Y (W))+ RK. (43)

Note that in Theorems 161 and 163 one may add side informationLn, the second
component of the correlated source and then one can obtain the corresponding lower
bound almost without changing the proof.

4.3 A Result on Watermarking Transmission Code with a
Common Experiment Introduced by Steinberg-Merhav

To construct watermarking identification code Y . Steinberg and Merhav in [27]
introduced a code, which they call watermarking transmission code with common
experiment, distortion measure ρ, and covertext PV . They obtained there an inner
bound to the its capacity region, which is sufficient for achieving their goal. We shall
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show that their bound is tight and therefore actually the capacity region. Their
definition and result on it and our proof will be presented it the last section.

5 The Direct Theorems for Common Randomness

In this section we prove the direct parts of Theorems 156–159. Since a DMC can be
regarded as a special compound channel with a single member (i.e., |S| = 1), we
only have to show the direct parts of Theorems 158 and 159. To this end we need
the following three lemmas for n-ED PṼ L̃Ũ over the product set V×L×U of finite
sets V,L and U .

Lemma 164 [Uniformly covering] For �n ∈ T n
L̃
, let Ui(�n)i = 1, 2, . . . , �2nα	 be

a sequence of independent RV’s with uniform distribution over T n
Ũ |L̃(�

n) and for any

vn ∈ T n
Ṽ |L̃(�

n) let ÛŨ |Ṽ L̃(vn�n) be the random set {Ui(�n) : i = 1, 2, . . . , �2nα	} ∩
T n
Ũ |Ṽ L̃(v

n�n). Then for all ε ∈ (0, 1]

Pr

{∣∣∣∣∣|ÛŨ |Ṽ L̃(v
n�n)| − �2nα	

|T n
Ũ |Ṽ L̃(v

n�n)|
|T n
Ũ |L̃(�

n)|

∣∣∣∣∣ ≥ �2nα	
|T n
Ũ |Ṽ L̃(v

n�n)|
|T n
Ũ |L̃(�

n)| ε

}
< 4 · 2−

ε2
4 2nη

(44)

for sufficiently large n if

�2nα	 > 2nη
|T n
Ũ |L̃(�

n)|
|T n
Ũ |Ṽ L̃(v

n�n)|

Proof Let

Zi(v
n, �n) =

⎧
⎨

⎩
1 if Ui(�n) ∈ T n

Ũ |Ṽ L̃(v
n�n),

0 else,
(45)

and q = |T n
Ũ |Ṽ L̃(v

n�n)|
|T n
Ũ |L̃(�

n)| . Then

|ÛŨ |Ṽ L̃(vn�n)| =
�2nα	∑

i=1

Zi(v
n�n)
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and for i = 1, 2, . . . , �2nα	

Pr{Zi(vn�n) = z} =
{
q if z = 1

1− q if z = 0
(46)

by the definitions of Ui(�n) and Zi(vn, �n).
Then by Chernoff’s bound, we have that

Pr

⎧
⎨

⎩

�2nα	∑

i=1

Zi(v
n�n) ≥ �2nα	q(1+ ε)

⎫
⎬

⎭

≤ e− ε2 �2nα	q(1+ε) E e
ε
2

�2nα	∑
i=1

Zi(v
n,�n)

= e− ε2 �2nα	q(1+ε)
�2nα	∏

i=1

E e
ε
2Zi(v

n,�n)

= e− ε2 �2nα	q(1+ε)[1+ (e ε2 − 1)q]�2nα	

≤ e− ε2 �2nα	q(1+ε)
[

1+
(
ε

2
+
(ε

2

)2
)
q

]�2nα	

≤ expe
{
−ε

2
�2nα	q(1+ ε)+ ε

2
�2nα	q

(
1+ ε

2

)}

= e− ε
2
4 �2nα	q < 2e−

ε2
4 2nη (47)

if �2nα	 > 2nηq−1.
Here the first inequality follows from Chernoff’s bound; the second equality

holds by (46); the second inequality holds because e
ε
2 < 1 + ε

2 +
(
ε
2

)2
by the

assumption that ε < 1, e
ε
2 < e

1
2 < 2; and the third inequality follows from the well

known inequality 1+ x < ex . Similarly one can obtain

Pr

⎧
⎨

⎩

�2nα	∑

i=1

Zi(v
n�n) ≤ �2nα	q(1− ε)

⎫
⎬

⎭ < 2e−
ε2
4 2nη (48)

if �2nα	 > 2nηq−1.
Finally we obtain the lemma by combining (47) and (48). ��
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Lemma 165 (Packing) Let PL̃Ũ be an n-ED, let Ui(�n), i = 1, 2, . . . , �2nα	 be a
sequence of independent RV’s uniformly distributed on T n

Ũ |L̃(�
n) for an �n ∈ T n

L̃
,

and letY be a finite set. Then for all n-ED’s PL̃ŨỸ andPL̃ŨY with commonmarginal
distributions PL̃Ũ and PY = PỸ , all i, γ > 0 and sufficiently large n,

Pr

⎧
⎨

⎩
1

�2nα	
�2nα	∑

i=1

∣∣∣∣∣∣
T n
Ỹ |L̃Ũ

(
�nUi(�

n)
) ∩
⎡

⎣
⋃

j �=i
T n
Y |L̃Ũ

(
�nUj (�

n)
)
⎤

⎦

∣∣∣∣∣∣
≥ tỸ |L̃Ũ2−

n
2 γ

⎫
⎬

⎭

< 2−
n
2 γ (49)

if �2nα	 ≤ t
Ũ |L̃
t
Ũ |L̃Y

2−nγ .
Here tỸ |L̃Ũ , tŨ |L̃, and tŨ |L̃Y are the common values of |T n

Ỹ |L̃Ũ (�
nun)| for

(�n, un) ∈ T n
L̃Ũ

, |T n
Ũ |L̃(�

n)| for �n ∈ T n
L̃
, and |T n

Ũ |L̃Y (�
nyn)| for (�n, yn) ∈ T n

L̃Y
,

respectively.

Proof For i = 1, 2, . . . , �2nα	, yn ∈ T n
Y
= T n

Ỹ
, let

Ẑi(y
n) =

{
1 if yn ∈⋃j �=i TY |L̃Ũ

(
�nUj (�

n)
)

0 else
(50)

and for all un ∈ T n
Ũ |L̃(�

n)

Si(u
n) =

∣∣∣∣∣∣
T n
Ỹ |L̃Ũ (�

nun) ∩
⎡

⎣
⋃

j �=i
T n
Y |L̃Ũ

(
�nUj (�

n)
)
⎤

⎦

∣∣∣∣∣∣
. (51)

Then

Si(u
n) =

∑

yn∈T
Ỹ |L̃Ũ (�nun)

Ẑj (y
n) (52)

and

E Ẑi(y
n) = Pr

⎧
⎨

⎩y
n ∈

⋃

j �=i
T n
Y |L̃Ũ

(
�nUj (�

n)
)
⎫
⎬

⎭ (53)

≤
∑

j �=i
Pr
{
yn ∈ T n

Y |L̃Ũ
(
�nUj (�

n)
)}

(54)
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=
∑

j �=i
Pr
{
Uj(�

n) ∈ T n
Ũ |L̃Y (�

nyn)
}

(55)

= (2�nα	 − 1)
tŨ |L̃Y
t
Ũ |L̃

< 2−nγ (56)

if �2nα	 ≤ t
Ũ |L̃
t
Ũ |L̃Y

2−nγ .

Hence by (52) and (56) we have that E Si(un) ≤ tỸ |L̃Ũ2−nγ and i.e.,

E
[
Si(Ui(�

n))|Ui(�n)
]
< tỸ |L̃Ũ2−nγ (a.s.),

so

E Si
(
Ui(�

n)
) = E{E[Si(Ui(�n))|Ui(�n)

]}
< tỸ |L̃Ũ2−nγ . (57)

Thus by Markov’s inequality we have that

Pr

⎧
⎨

⎩
1

�2nα	
�2nα	∑

i=1

Si
(
Ui(�

n)
) ≥ tỸ |L̃Ũ2−

n
2 γ

⎫
⎬

⎭ < 2−
n
2 γ ,

i.e., (49). ��
Lemma 166 (Multi-packing) Under the conditions of the previous lemma, let
Ui,k(�

n), i = 1, 2, . . . , �2nβ1	, k = 1, 2, . . . , �2nβ2	, be a sequence of independent
RV’s uniformly distributed on T n

Ũ |L̃(�
n) for a given �n ∈ T n

L̃
. Then for all n-ED’s

PL̃ŨỸ and PL̃ŨY in the previous lemma

Pr

{
1

�2nβ2	
�2nβ2	∑

k=1

1

�2nβ1	
�2nβ1	∑

i=1

∣∣∣∣∣∣
T n
Ỹ |L̃Ũ

(
�nUi,k(�

n)
) ∩
⎡

⎣
⋃

j �=i
T n
Y |L̃Ũ

(
�nUj,k(�

n)
)
⎤

⎦

∣∣∣∣∣∣

≥ tỸ |L̃Ũ2−nη
}
< 2−

n
2 γ (58)

if �2nα	 ≤ t
Ũ |L̃
t
Ũ |L̃Y

2−nγ .

Proof For un ∈ T n
Ũ |L̃(�

n), let

Si,k(u
n) =

∣∣∣∣∣∣
T n
Ỹ |L̃Ũ (�

nun) ∩
⎡

⎣
⋃

j �=i
T n
Y |L̃Ũ

(
�nUj,k(�

n)
)
⎤

⎦

∣∣∣∣∣∣
.
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Then we have shown in the proof to the previous lemma (c.f. (57))

E Si,k
(
Ui(�

n)
)
< tỸ |L̃Ũ2−nγ .

Thus (58) follows from Markov’s inequality. ��
Now let us turn to the direct part of Theorem 158.

Lemma 167 (The direct part of Theorem 158) For a compound channelW ,

CCRI
(
(V ,L),W,D1

) ≥ sup
(V ,L,U,X)∈Q1

(
(V ,L),W,D1

)
[
I (U ;L, Y (W))+H(L|U)].

(59)

Proof We have to show for a given correlated memoryless source with generic
(V ,L), a compound channel W , (V ,L,U,X) ∈ Q1

(
(V ,L),W,D1

)
and suf-

ficiently large n, the existence of the functions, F , G and xm(vn, �n) satisfying
(10)–(13), (22), (15) and (16) with the rate arbitrarily close to I

(
U ;L, Y (W)) +

H(L|U). Obviously the set of achievable rates of the common randomness is
bounded and closed (i.e., compact). So without loss of generality, by uniform
continuity of information quantities, we can assume that Eρ(V,X) < D1, and
I (U ;V,L) < I(U ;L, Y (W)). Because I (U ;V,L) = I (U ;L) + I (U ;V |L) and
I
(
U ;L, Y (W)) = I (U ;L) + I(U ; Y (W)|L), there exists a sufficiently small but

positive constant ξ , such that

I
(
U ; Y (W)|L)− I (U ;V |L) > ξ. (60)

Without loss of generality, we also assume PU is an n-ED to simplify the
notation. Then for arbitrary ε1 > 0, by uniform continuity of information quantities,
we can find δ1, δ2 > 0 with the following properties.

(i) For all �n ∈ T nL (δ1) with ED P�n = PL̃, there exists a δ′ > 0, such that
(vn, �n) ∈ T nVL(δ′2) yields that T n

Ṽ |L̃(�
n) ⊂ T n

V̂ |L̃(�
n, δ2), where PṼ L̃ is the

joint ED of (vn, �n) and P
V̂ L̃

= PL̃PV |L.
We call a pair (vn, �n) of sequences with �n ∈ T nL (δ1), (vn, �n) ∈ T nVL(δ2),

(δ1, δ2)-typical and denote the set of (δ1, δ2)-typical sequences by T n(δ1, δ2).
Then we may require δ2 → 0 as δ1 → 0. Moreover (e.g., see [30]), there

exist positive ζ1 = ζ1(δ1), ζ2 = ζ2(δ1, δ2), and ζ = ζ(δ1, δ2) such that

PnL
(
T nL (δ1)

)
> 1− 2−nζ1 (61)

PnV |L
{
vn : (vn, �n) ∈ T n(δ1, δ2)|�n

)
> 1− 2−nζ2 (62)



5 The Direct Theorems for Common Randomness 293

for all �n ∈ T nL (δ1) and

PnVL
(
T n(δ1, δ2)

)
> 1− 2nζ . (63)

(ii) For all �n ∈ T nL (δ1) with ED P�n = PL̃ (say), one can find a joint ED
of sequences in Ln × Un, say PL̃Ũ , with marginal distributions PL̃ and PU ,
sufficiently close to PLU , (which will be specified below). We say that PL̃Ũ is
generated by the ED PL̃ of �n.

(iii) For all (vn, �n) ∈ T n(δ1, δ2) with joint ED Pvn�n = PṼ L̃ (say), one can find
a joint ED PṼ L̃Ũ of sequences in Vn × Ln × Un with marginal distributions
PṼ L̃ and PL̃Ũ and sufficiently close to PVLU (which will be specified below),
where PL̃Ũ is the ED generated by PL̃. We say PṼ L̃Ũ is generated by the joint
ED PṼ L̃ of (vn, �n).

(iv) For all (δ1, δ2)-typical sequences (vn, �n) with joint ED PṼ L̃ (say) and the
joint ED PṼ L̃Ũ generated by PṼ L̃, we let (Ṽ , L̃, Ũ , X̃) be RV’s with joint
distribution PṼ L̃ŨX̃ such that for all v ∈ V , � ∈ L, u ∈ U and x ∈ X

PṼ L̃ŨX̃(v, �, u, x) = PṼ L̃Ũ (v, �, u)PX|V LU (x|v, �, u), (64)

and let
(
Ṽ , L̃, Ũ , X̃, Ỹ (W)

)
be RV’s with joint distribution PṼ L̃ŨX̃Ỹ (W) such

that for all v ∈ V , � ∈ L, u ∈ U , x ∈ X , and y ∈ Y

PṼ L̃ŨX̃Ỹ (W)(v, �, u, x, y) = PṼ L̃ŨX̃(v, �, u, x)W(x|y), (65)

for anyW ∈W and PṼ L̃ŨX̃ in (64). Then the following inequalities hold

Eρ(Ṽ , X̃) < D1, (66)

|H(L̃)−H(L)| < ε1, (67)

|I (Ũ ; Ṽ |L̃)− I (U ;V |L)| < ε1, (68)

and

|I (Ũ ; Ỹ (W)|L̃)− I (U ; Y (W)|L)| < ε1, (69)

where I (Ũ ; Ỹ (W)|L̃) = infW∈W I (Ũ ; Ỹ (W)|L̃).
For arbitrarily small fixed ε2 with 0 < ε2 <

1
2ξ , for ξ in (60), we choose ε1 (and

consequently, δ1, δ2) so small that ε1 <
1
2ε2 and an α such that

I (U ; Y (W)|L)− ξ
2
< α < I(U ; Y (W)|L)− ε2 (70)
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and M = 2nα (say) is an integer. Notice that by (70) we may choose α arbitrarily
close to I (U ; Y (W)|L) − ε2 and therefore arbitrarily close to I (U ; Y (W)|L) by
choosing ε2 arbitrarily small. Then by (60), (68) and (70) we have that

α > I (U ;V |L)+ ξ
2
> I(Ũ ; Ṽ |L̃)+ ξ

2
− ε1 > I(Ũ ; Ṽ |L̃)+ ξ

4
, (71)

where the last inequality holds by our choice ε1 <
1
2ε2 <

1
4ξ , and by (69) and (70)

we have

α < I (Ũ ; Ỹ (W)|L̃)+ ε1 − ε2 < I(Ũ ; Ỹ (W)|L̃)− ε2

2
. (72)

Denote by tŨ |L̃ and tŨ |Ṽ L̃ the common values of |T n
Ũ |L̃(�

n)|, �n ∈ T n
L̃

and

|T n
Ũ |Ṽ L̃(v

n, �n)|, (vn, �n) ∈ T n
Ṽ L̃

, respectively. Then it is well known that 1
n

log
t
Ũ |L̃
t
Ũ |Ṽ L̃

arbitrarily close to I (Ũ ; Ṽ |L̃).
This means under our assumption that 1

2ε2 <
1
4ξ , (71) implies that for all ED’s

P
Ṽ L̃Ũ

generated by the joint ED’s P
Ṽ L̃

of (δ1, δ2)-typical sequences

2
n
3 ε2
tŨ |L̃
tŨ |Ṽ L̃

< 2nα =M. (73)

Next we let QW(�nun, τ ) be the set of conditional ED P
Y |L̃Ũ , for a pair

(�n, un) of sequences such that there exists a W ∈ W with T n
Y |L̃Ũ (�

nun) ⊂
T n
Ỹ (W)|L̃Ũ (�

nun, τ ), where PL̃Ũ is the ED of (�n, un) and PL̃Ũ Ỹ (W) is the marginal

distribution of the distribution in (65). Then

⋃

P
Y |L̃Ũ∈QW (�nun,τ )

T n
Y |L̃Ũ (�

nun, τ ) =
⋃

W∈W
T n
Ỹ (W)|L̃Ũ (�

nun, τ ), (74)

and

|QW(�
nun, τ )| < (n+ 1)|L||U ||Y |. (75)

Again for the common values tŨ |L̃ of |T n
Ũ |L̃(�

n)|, �n ∈ T n
L̃

, tŨ |L̃Y of

|T n
Ũ |L̃Y (�

nyn)|, (�n, yn) ∈ T n
L̃Y

, lim
n→∞

1
n

log
t
Ũ |L̃
t
Ũ |L̃Y

= I (Ũ ; Y |L̃).
Thus, (72) yields that for all PṼ L̃Ũ generated by the joint ED of (δ1, δ2)-typical

sequences, (�n, un) ∈ T n
L̃Ũ

, and PY |L̃Ũ ∈ QW (�nun, τ ),

M = 2nα < 2−
n
4 ε2
t
Ũ |L̃
tŨ |L̃Y

, (76)
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if we choose τ so small (depending on ε2) that for all PY |L̃Ũ ∈ QW(�nun, τ )

I (Ũ ; Y |L̃) > I (Ũ ; Y (W)|L̃)− 1

8
ε2

(recalling that by its definition I (Ũ ; Ỹ (W)|L̃) = inf
W∈W

I (Ũ ; Ỹ (W)|L̃)).
Now we are ready to present our coding scheme at rate α, which may arbitrarily

be close to I (U ; Y (W)|L).
Coding scheme.

1. Choosing Codebooks:
For all �n ∈ T nL (δ1) with ED PL̃, PL̃Ũ generated by PL̃ (cf. condition (ii)

above), we apply Lemma 164 with η = ε2
3 and Lemma 165 with γ = ε2

4 to
random choice. Then since the numbers of sequences vn, �n and the number of
n-joint ED’s are increasing exponentially and polynomially respectively, for all
�n ∈ T nL (δ1) with ED PL̃Ũ generated by PL̃, by (73), (76) we can find a subset
U(�n) ⊂ T n

Ũ |L̃(�
n) with the following property if n is sufficiently large.

If (vn, �n) ∈ T n(δ1, δ2) and has joint ED PṼ L̃ and PṼ L̃Ũ is generated by PṼ L̃
(cf. condition (iii) above), then

∣∣∣∣∣|UŨ |Ṽ L̃(v
n�n)| −M tŨ |Ṽ L̃

tŨ |L̃

∣∣∣∣∣ < M
tŨ |Ṽ L̃
tŨ |L̃

ε (77)

for any ε > 0 (with ε→ 0 as n→∞), where

UŨ |Ṽ L̃(v
n�n) � U(�n) ∩ T n

Ũ |Ṽ L̃(v
n�n). (78)

For any PṼ L̃Ũ generated by a joint ED of (δ1, δ2)-typical sequence,
(vn, �n), and joint ED PL̃Ũ Ỹ with marginal distribution PL̃Ũ and any
PY |L̃Ũ ∈ QW

(
�nun

m′(�
n), τ

)
(notice that QW (�nun, τ ) depends on (�nun)

only through their joint ED P�nun !)

M−1
M∑

m=1

∣∣∣∣∣∣
T n
Ỹ |L̃Ũ

(
�nũnm(�

n)
) ∩
⎡

⎣
⋃

m′ �=m
T n
Y |L̃Ũ

(
�nũnm′(�

n)
)
⎤

⎦

∣∣∣∣∣∣
< 2−

n
8 ε2 tỸ |L̃Ũ

(79)
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if we label the members of U(�n) as ũn1(�
n), ũn2(�

n), . . . , ũnM(�
n). Consequently

by (75) and the fact that (�n, un), (�′n, u′n) have the same ED QW (�nun) =
QW (�′nu′n),

M−1
M∑

m=1

∣∣∣∣∣∣∣∣∣∣

T n
Ỹ |L̃Ũ

(
�n, ũnm(�

n)
) ∩

⎡
⎢⎢⎢⎢⎣

⋃

m′ �=m

⋃

P
Y |L̃Ũ∈

QW (�nunm′ (�
n))

T n
Y |L̃Ũ

(
�nunm′(�

n)
)

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣

< 2−
n
9 ε2 tỸ |L̃Ũ . (80)

We call the subset U(�n) the codebook for �n and its members ũnm(�
n) m =

1, 2, . . . ,M codewords.
2. Choosing Input Sequence to Send through the Channel:

The sender chooses an input sequence xn ∈ X n according to the output
(vn, �n) of the correlated source observed by him and his private randomness
as follows.

— In the case that outcome of the source is a (δ1, δ2)-typical sequence (vn, �n)
with joint ED PṼ L̃, the sender chooses a codeword in UŨ |Ṽ L̃(vn, �n) in (78)
randomly uniformly (by using his private randomness), say

ũm(�
n) ∈ UŨ |Ṽ L̃(v

n, �n) ⊂ U(�n). (81)

Then the sender chooses an input sequence xn ∈ X n with probability

PX|VLU
(
xn|vn, �n, ũnm(�n)

)
(82)

by using the chosen ũnm(�
n) and his private randomness and sends it through

the channel.
— In the other case i.e., a non-(δ1, δ2)-typical sequence is output, the sender

chooses an arbitrarily fixed sequence, say xne , and sends it through the channel.
— The codewords randomly chosen here and the random input of the channel

generated here will be denoted by U ′n and X′n in the part of analysis below.

3. Choosing the Common domain A of Functions F and G:
Let

J = �2n(H(L)−2ε1)	 (83)

and let e be an abstract symbol (which stands for that “an error occurs”). Then
we define

A = {{1, 2, . . . ,M} × {1, 2, . . . , J }} ∪ {e}. (84)
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4. Defining the Functions F and G:
To define functions F and G, we first partition each T n

L̃
⊂ T nL (δ1) into J

subsets with nearly equal size i.e., each subset has cardinality

⌊ |T n
L̃
|

J

⌋
or

⌈ |T n
L̃
|

J

⌉
.

Then we take the union of the j th subsets in the partitions over all T n
L̃
⊂ T nL (δ1)

and obtain a subset Lj of T nL (δ1). That is for j = 1, 2, . . . , J

|Lj ∩ T n
L̃
| =

⌊ |T n
L̃
|

J

⌋
or

⌈ |T n
L̃
|

J

⌉
. (85)

4(i) Defining Function F :
The sender observes the output of the source and decides on the value of

function F .

— In the case that the source outputs a (δ1, δ2)-typical sequence (vn, �n),
F takes value (m, j) if �n ∈ Lj , according to sender’s private random-
ness ũm(�n) in (81) is chosen in the step 2 of the coding scheme.

— In the other case F = e.
4(ii) Defining FunctionG:

The receiver observes the output �n of the component Ln (side
information) of the correlated source and output of the channel yn to
decide on the value of function G. We use the abbreviation Ym(�n) =⋃
P
Y |L̃Ũ∈QW (�nũnm(�n),τ )

T n
Y |L̃Ũ

(
�nũnm(�n), τ

)
.

— In the case that �n ∈ T nL (δ1) and that there exists an m ∈ {1, 2, . . . ,M}
such that yn ∈ Ym(�n) \

{
⋃
m′ �=m

Ym(�n)
}

G takes value (m, j) if �n ∈
Lj . Notice that this m must be unique if it exists.

— In the other caseG = e.
Analysis.

1. Distortion Criterion:
First we recall our assumption that the watermarking distortion measure ρ is

bounded i.e.

0 ≤ ρ ≤ �. (86)

Then by (63)

1

n
Pr
(
(V n, Ln) /∈ T nVL(δ2)

)
E
[
ρ(V ′n,X′n)|(V n, Ln /∈ T nVL(δ2)

]
< 2−nξ�.

(87)



298 Watermarking Identification Codes with Related Topics on Common Randomness

On the other hand, under the condition that (V n, Ln) ∈ T n
Ṽ L̃

⊂ T nV L(δ2), by

definition (V n, Ln,U ′n) ∈ T n
Ṽ L̃Ũ

with probability one for the joint ED PṼ L̃Ũ
generated by PṼ L̃.

So, by (65), (66) and the definition of (U ′n,X′n) we have that

1

n
E
[
ρ(V ′n,X′n)|(V n, Ln) ∈ T n

L̃Ṽ

]

=
∑

(v,�,u)∈V×L×U
PṼ L̃Ũ (v, �, u)

∑

x

PX|V LU(x|v, �, u)ρ(v, x)

= Eρ(Ṽ , X̃) < D1. (88)

Thus it follows from (87) and (88) that

1

n
Eρ(V n,X′n)

= Pr
(
(V n, Ln) /∈ T nVL(δ2)

)
E
[
ρ(V n,X′n)|(V n, Ln) /∈ T nV L(δ2)

]

+
∑

T n
Ṽ L̃
⊂T nV L(δ2)

Pr
(
(V n, Ln) ∈ T n

Ṽ L̃

)
E
[
ρ(V n,X′n)|(V n, Ln) ∈ T n

Ṽ L̃

]

< D1, (89)

for sufficiently large n.
2. The Condition of Nearly Uniformity

By the definition of function F in the step 4(i) of the coding scheme,
Pr{F = e} ≤ Pr

{
(V n, Ln) /∈ T nVL(δ2)

} = 1 − PnVL(T nV L(δ2)
}
, and hence by

(63),

| Pr{F = e} − |A|−1| ≤ max{2−nζ , |A|−1} −→ 0 (n→∞). (90)

Next fix an �n ∈ T nL (δ1) with ED PL̃ (say), let PL̃Ũ be the joint ED generated
by PL̃, and let Q(L̃Ũ) be the set of joint ED’s PṼ L̃Ũ with marginal distribution
PL̃Ũ and generated by the joint ED of some (δ1, δ2)-typical sequence. Then
Pr{U ′n = un|Ln = �n} > 0, only if un ∈ U(�n) = {ũnm(�n) : m = 1, 2, . . . ,M

}
.

Moreover, for a (δ1, δ2)-typical sequence (vn, �n) with joint ED PṼ L̃,
ũnm(�

n) ∈ U(�n), by the coding scheme

Pr
{
V n = vn,U ′n = unm(�n)|L = �n

}

=
{
PnV |L(V n = vn|�n)|UŨ |Ṽ L̃(vn�n)|−1 if unm(�

n) ∈ UŨ |Ṽ L̃(vn�n)
0 else.

(91)
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Recalling (78), then we have that for all �n ∈ T n
L̃
⊂ T nL (δ1), ũnm(�n) ∈ U(�n)

Pr
{
U ′n = ũnm(�n)|L = �n

}

=
∑

P
Ṽ L̃Ũ

∈Q(L̃Ũ )

∑

vn∈T n
Ṽ |L̃Ũ (�

nũnm(�
n))

P nV |L(v
n|�n)|UŨ |Ṽ L̃(vn�n)|−1. (92)

By (77) we have that

[
M(1 + ε)]−1

|T n
Ũ |L̃(�

n)|
|T n
Ũ |Ṽ L̃(v

n�n)| < |U
Ũ |Ṽ L̃(v

n�n)|−1 <
[
M(1 − ε)]−1

|T n
Ũ |L̃(�

n)|
|T n
Ũ |Ṽ L̃(v

n�n)| .

(93)

On the other hand,

∑

P
Ṽ L̃Ũ

∈Q(L̃Ũ )

∑

vn∈T n
Ṽ |L̃Ũ (�

nũnm(�
n))

P nV |L(v
n|�n)

|T n
Ũ |L̃(�

n)|
|T n
Ũ |Ṽ L̃(v

n�n)|

=
∑

P
Ṽ L̃Ũ

∈Q(L̃Ũ )

∑

vn∈T n
Ṽ |L̃Ũ (�

nũnm(�
n))

P nV n|L(T nṼ |L̃(�
n)|�n)

|T n
Ũ |L̃(�

n)|
|T n
Ṽ |L̃(�

n)||T n
Ũ |Ṽ L̃(v

n, �n)|

=
∑

P
Ṽ L̃Ũ

∈Q(L̃Ũ )
P nV |L

(
T n
Ṽ |L̃(�

n)|�n)

= Pr
{
(V n, �n) ∈ T n(δ1, δ2)|�n

}
, (94)

where the first equality holds because the value of PnV |L(vn|�n) for given �n

depends on vn through the conditional ED; the second equality holds by the

fact that
t
Ũ |L̃

t
Ṽ |L̃tŨ |Ṽ L̃

= t
Ũ |L̃
t
Ṽ Ũ |L̃

= 1
t
Ṽ |L̃Ũ

; and the last equality holds because PṼ L̃Ũ is

generated by PṼ L̃ uniquely (see its definition in condition (iii)).
Thus by combining (62), (92)–(94), we obtain for an η > 0 with η → 0 as

n→∞, ε→ 0

(1− η)M−1 < Pr
{
U ′n = ũnm(�n)|L = �n

}
< (1+ η)M−1, (95)

for �n ∈ T nL(δ1), ũ
n
m(�

n) ∈ U(�n).
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So for m ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , J },

Pr
{
F = (m, j)} = Pr

{
U ′n = ũnm(Ln), Ln ∈ Lj

}

=
∑

�n∈Lj
P nL(�

n) Pr
{
U ′n = ũnm(�n)|L = �n

}

< (1+ η)M−1PnL(Lj ). (96)

Since |T n
L̃
| > 2

n
(
H(L̃)+ ε12

)

for sufficiently large n, by (67) and (83), we have

that
|T n
L̃
|

J
> 2

n
2 ε1 and hence by (85)

|Lj ∩ T n
L̃
| ≤

⌈ |T n
L̃
|

J

⌉
<
|T n
L̃
|

J
+ 1 <

|T n
L̃
|

J

(
1+ 2−

n
2 ε1
)
.

Because the value of PnL(�
n) depends on �n through its ED, this means that

PnL(Lj ∩ T n
L̃
) < J−1PnL(T nL̃ )

(
1+ 2−

n
2 ε
)

and consequently

PnL(Lk) < PnL
(
T nL (δ1)

)
J−1

(
1+ 2−

n
2 ε1
)

(97)

which with (96) is followed by

Pr
{
F = (m, j)} < M−1J−1(1+ η)

(
1+ 2−

n
2 ε1
)
PnL
(
T nL (δ1)

)
. (98)

Similarly we have that

Pr
{
F = (m, j)} > M−1J−1(1− η)

(
1− 2−

n
2 ε1
)
PnL
(
T nL (δ1)

)
. (99)

Now (61), (98) and (99) together imply that for an η′ > 0 with η′ → 0 as
n→∞, η→ 0,

∑

(m,j)

| Pr
{
F = (m, j)}− |A|−1| < η′, (100)

which with (90) completes the proof of condition of nearly uniformity.
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3. The Rate:
In (70) one can choose

α > I
(
U ; Y (W)|L)− ε′ for all ε′ with ε2 < ε

′ < 1

2
ξ.

Then by (63), (83), (84), (100), we know that for an η′′ > 0 with η′′ → 0 as
n→∞, η′ → 0

1

n
H(F) >

1

n
log |A| − η′′ > I(U ; Y (W)|L)− ε′ +H(L)− 2ε1 − η′

= I(U ; Y (W)|L)+ I (U ;L)+H(L|U)− ε′ − 2ε1 − η′

= I(U ;L, Y (W))+H(L|U)− ε′ − 2ε1 − η′, (101)

for sufficiently large n.
4. Estimation of Probability of Error:

In and only in the following three cases an error occurs.
Case 1. The source outputs a non-(δ1, δ2)-typical sequence whose probability

is less than 2−nζ by (63).
Now we assume that a (δ1, δ2)-typical sequence (vn, �n) with joint ED PṼ L̃

is output. So the sender first chooses a ũnm(�
n) ∈ UŨ |Ṽ L̃(vn, �n), then an

xn ∈ X n according to his private randomness and sends xn through the channel.
Consequently a yn ∈ Yn is output by the channel. Then in the following two
cases an error occurs.

Case 2. A codeword ũm(�n) ∈ UŨ |Ṽ L̃(vn�n) ⊂ Un(�n) is chosen and an
output sequence

yn /∈ Ym(�n) =
⋃

P
Y |L̃Ũ∈QW (�n,ũm(�n))

T n
Y |L̃Ũ

(
�nũm(�

n), τ
)

is output of the channel. Suppose now W ∈ W governs the channel. Then by
(64), and (65) the probability that yn ∈ Yn is output of the channel under the
condition that (V n, Ln) = (vn, �n) ∈ T n(δ1, δ2) is output of the correlated
source and U ′n = ũnm(�n) ∈ UŨ |Ṽ L̃(vn, �n) is chosen is

Pr
{
Y ′n = yn|(V n, Ln) = (vn, �n), U ′n = ũnm(�n)

}

=
∑

xn∈X n

P nX|V LU(x
n|vn, �n, ũnm(�n))Wn(yn|xn)

= Pn
Ỹ (W)|Ṽ L̃Ũ

(
yn|vn, �n, ũm(�n)

)
. (102)
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On the other hand

T n
Ỹ (W)|Ṽ L̃Ũ

(
vn�nunm(�

n), τ
) ⊂ T n

Ỹ (W)|L̃Ũ
(
�nunm(�

n), τ
) ⊂ Ym.

So the probability that such an error occurs vanishes exponentially as n grows.

Case 3. A codeword ũnm(�
n) is chosen and a yn ∈ Ym∩

[⋃
m′ �=m Ym′

]
is output

of the channel.
Now by (91), (93), (95), and simple calculation, we obtain that

[
(1− η)(1− ε)]−1

PnV |L(vn|�n)
tŨ |L̃
tŨ |Ṽ L̃

< Pr
{
V n = vn|Ln = �n,U ′n = ũnm(�n)

}

<
[
(1+ η)(1+ ε)]−1

PnV |L(vn|�n)
tŨ |L̃
tŨ |Ṽ L̃

(103)

for (δ1, δ2)-typical sequences (vn, �n) with joint ED PṼ L̃ and ũm(�n) ∈
UŨ |Ṽ L̃(vn, �n), where PṼ L̃Ũ is the ED generated by PṼ L̃.

Moreover, since tŨ |Ṽ L̃ =
t
Ṽ Ũ |L̃
t
Ṽ |L̃

, tŨ Ṽ |L̃ = tŨ |L̃tṼ |L̃Ũ , and since for given �n,

the value of PnV |L(vn|�n) depends on vn through the conditional ED,

PnV |L(v
n|�n) tŨ |L̃

tŨ |Ṽ L̃
= PnV |L(vn|�n)

tṼ |L̃
tṼ |L̃Ũ

= PnV |L
(
T n
Ṽ |L̃(�

n)|�n) 1

tṼ |L̃Ũ
.

(104)

Further it is well known that for all
(vn, �n, un) ∈ T n

Ṽ L̃Ũ
, lim
n→∞

1
n

(
logPn

Ṽ |L̃Ũ (v
n|�n, un)− log 1

t
Ṽ |L̃Ũ

)
= 0.

So by (103) and (104), we have that

Pr
{
V = vn|Ln = �n,U ′n = ũnm(�n)

}

< 2nθP nV |L
(
T n
Ṽ |L̃(�

n)|�n)Pn
Ṽ |L̃Ũ

(
vn|�n, ũnm(�n)

)

≤ 2nθP n
Ṽ |L̃Ũ

(
vn|�n, ũnm(�n)

)
(105)

for (δ1, δ2)-typical sequences (vn, �n) with ED PṼ L̃, ũnm ∈ UŨ |Ṽ L̃(�n) ⊂ U(�n)
and sufficiently large n, and a θ → 0 as n→∞.

We choose θ < 1
20ε2.
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Since Pr
{
(V n, Ln) = (vn, �n), U ′n = un

}
> 0 only if (vn, �n) is (δ1, δ2)

typical and un ∈ U
Ũ |Ṽ L̃(v

n, �n), by (102) and (105) we have that

Pr
{
Y ′n = yn|Ln = �n,U ′n = ũnm(�n)

}

=
∑

vn∈Vn
Pr
{
V n = vn|Ln = �n,U ′n = ũm(�n)

}

Pr
{
Y ′n = yn|(V n, Ln) = (vn, �n), U ′n = ũnm(�n)

}

≤
∑

vn∈Vn
2nθP n

Ṽ |L̃Ũ (v
n|�n, unm(�n)

}
Pn
Ỹ (W)|Ṽ L̃Ũ (y

n|vn, �n, un)

≤ 2nθP n
Ỹ (W)|L̃Ũ

(
yn|�n, unm(�n)

)
(106)

for �n ∈ T nL (δ1), ũm(�n) ∈ U(�n) and yn ∈ Yn if W ∈ W governs the channel.
Now we obtain an upper bound in terms of a product probability distribution
Pn
Ỹ (W)|L̃Ũ

(
yn|�n, unm(�n)

)
whose value depends on yn through the conditional

ED. Consequently by (80) and (106) we have that for all �n ∈ T nL (δ1), ũm(�n) ∈
U(�n) with joint ED PL̃Ũ , PỸ |L̃Ũ ∈ QW

(
�n, ũm(�

n), τ
)

M−1
M∑

m=1

Pr

⎧
⎨

⎩Y
′n ∈ T n

Ỹ |L̃Ũ
(
�n, unm(�

n)
) ∩
⎡

⎣
⋃

m′ �=m
Ym′(�n)

⎤

⎦ |�n, ũnm(�n)
⎫
⎬

⎭

≤ 2nθM−1
M∑

m=1

Pn
Ỹ (W)|L̃Ũ

⎧
⎨

⎩T
n

Ỹ |L̃Ũ
(
�nunm(�

n)
) ∩
⎡

⎣
⋃

m′ �=m
Ym′(�n)

⎤

⎦ |�n, unm(�n)
⎫
⎬

⎭

≤ 2nθ · 2−
n
9 ε2Pn

Ỹ (W)|L̃Ũ
{
T n
Ỹ |L̃Ũ

(
�n, unm(�

n)
)|�n, ũnm(�n)

}

≤ 2
−n
(

1
9 ε2−θ

)

< 2−
n
20 ε2, (107)

where the last inequality holds by our choice θ < ε2
20 . Recalling

Ym(�n) =
⋃

P
Ỹ |L̃Ũ∈QW (�nũm(�n),τ )

T n
Ỹ |L̃Ũ

(
�nunm(�

n)
)
,
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by the union bound and (107) we obtain that

M−1
M∑

m=1

Pr

⎧
⎨

⎩Y
′n ∈ Ym(�n) ∩

⎡

⎣
⋃

m′ �=m
Ym(�n)

⎤

⎦ |Ln = �n,U ′n = ũm(�n)
⎫
⎬

⎭

< (n+ 1)|L||Ũ ||Y |2−
n
20 ε2

< 2−
n
21 ε2 (108)

for �n ∈ T nL (δ1), ũnm(�n) ∈ U(�n) and sufficiently large n. Finally by (95) and
(108) we obtain an upper bound to the probability that on error of this ED occurs,
under the condition Ln = �n ∈ T nL (δ1).

M∑

m=1

Pr
{
U ′n = ũm(�n)|Ln = �n

}

Pr

⎧
⎨

⎩Y
′n ∈ Ym(�n) ∩

⎡

⎣
⋃

m′ �=m
Ym′ (�n)

⎤

⎦ |Ln = �n,U ′n = ũm(�n)
⎫
⎬

⎭

< (1+ η)
M∑

m=1

M−1

Pr

⎧
⎨

⎩Y
′n ∈ Ym(�n) ∩

⎡

⎣
⋃

m′ �=m
Ym′ (�n)

⎤

⎦ |Ln = �n,U ′n = ũm(�n)
⎫
⎬

⎭

< (1+ η)2− n
21 ε2, (109)

which completes the proof because by definition
M∑
m=1

Pr
{
U ′n = ũm(�

n)|Ln =
�n
} = 1 for all �n ∈ T nL (δ1). ��

Remark Our model of identification becomes that in [27] if L takes a constant value
with probability one. So our proof of the lemma above provides a new proof of [27,
Theorem 4] (as special case) without using the Gelfand-Pinsker Theorem in [20].

Corollary 168 (Direct part of Theorem 156) For all single channelsW

CCRI
(
(V ,L),W,D1

) ≥ max
(V ,L,U,X,Y )∈Q((V ,L),W,D1)

[
I (U ;L, Y )+H(L|U)].
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Lemma 169 (Direct part of Theorem 159) For all compound channelsW

CCRII
(
(V ,L),W, RK, D1

) ≥ sup
(V,L,U,X)∈Q∗

1((V,L),W,RK ,D1)

[
I
(
U;L, Y )+H(L|U)]+RK.

(110)

Proof By the same reason as in the proof of the previous lemma, it is sufficient for
us to show the achievability of I

(
U ;L, Y (W)) + H(L|U)+ RK for (V ,L,U,X)

with Eρ(V,X) < D1 and for some ξ > 0

I
(
U ; Y (W)|L)+ RK − I (U ;V |L) > ξ. (111)

In the case I
(
U ; Y (W)|L) > I(U ;V |L), by the previous lemma

I
(
U ;LY(W)) + H(L|U) is achievable even if the noiseless channel is absent.

So sender and receiver may generate n
(
I (U ;LY(W))+H(L|U)) bits of common

randomness and at the same time the sender sendsRK bits of his private randomness
via the noiseless channel to the receiver to make additionally nRK bits of common
randomness. That is, the rate I

(
U ;L, Y (W))+H(L|U)+ RK is achievable.

So, next we may assume that I
(
U ; Y (W)|L) ≤ I (U ;V ; |L). Moreover we can

assume I
(
U ; Y (W)|L) > 0, because otherwise I

(
U ;L, Y (W))+H(L|U)+RK =

I (U ;L) + H(L|U) + RK = H(L) + RK is achievable as follows. We partition
T nL (δ1) into Lj , j = 1, 2, . . . , J as in the step 4) of the coding scheme in the proof
of the previous lemma to get n

(
H(L) − 2ε1

)
bits of common randomness and get

other nRK bits of common randomness by using the noiseless channel. Thus it is
sufficient for us to assume that

0 < I
(
U ; Y (W)|L) ≤ I (U ;V |L) < I(U ; Y (W)|L)+ RK − ξ, (112)

for a ξ with 0 < ξ < RK.
We shall use (δ1, δ2)-typical sequences, the joint ED’s PL̃Ũ and PṼ L̃Ũ gen-

erated by the ED’s PL̃ and PŨL̃ respectively, and the RV’s (Ṽ , L̃, Ũ , X̃) and(
Ṽ , L̃, Ũ , X̃, Ỹ (W)

)
in (64) and (65) satisfying (66)–(69), which are defined in the

conditions (i)–(iv) in the proof of the previous lemma.
Instead of the choice α in (70) we now choose β1, β2 > 0 and β3 ≥ 0 for

arbitrarily small but fixed ε2 with 0 < ε2 <
1
2ξ such that

I
(
U ; Y (W)|L)− 3

2
ε2 < β1 < I

(
U ; Y (W)|L)− ε2, (113)

I (U ;V |L)− I(U ; Y (W)|L)+ ξ ≤ β2 ≤ RK (114)

and

0 ≤ β3 = RK − β2. (115)

Notice that the existence and positivity of β2 are guaranteed by (112).
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By adding both sides of the first inequalities in (113) and (114), we obtain that

β1 + β2 > I(U ;V |L)+
(
ξ − 3

2
ε2

)
, (116)

and by the first inequality in (113) and the equality in (115) we have that

β1 + β2 + β3 > I
(
U ; Y (W)|L)+ RK − 3

2
ε2. (117)

Let ξ − 3
2ε2 = 2η and rewrite (116) as

β1 + β2 > I(U ;V |L)+ 2η. (118)

Then η > ξ
8 > 0 by our choice ε2 <

1
2ξ .

Next as in the proof to the previous lemma we fix an (arbitrary small) pos-
itive ε2, η, choose ε1 (and consequently δ1, δ2) sufficiently small so that ε1 <

min
(

1
2ε2,

1
2η
)

. Then by (69) and the second inequality in (115) we have that

β1 < I
(
Ũ ; Ỹ (W)|L̃)− ε2

2
, (119)

and by (70) and (118) we have that

β1 + β2 > I(Ũ ; Ṽ |L̃)+ 3

2
η. (120)

Without loss of generality we assume that 2nβ1 , 2nβ2 and 2nβ3 are integers and
denote byM1 = 2nβ1 , I = 2nβ2 andK ′ = 2nβ3 .

Then similarly as in the proof of the previous lemma, we have that for sufficiently
large n, sufficiently small τ , all joint ED’s PṼ L̃Ũ generated by ED’s of (δ1, δ2)-
typical sequences and QW(�nun, τ ) in the proof of the previous lemma,

2nη
tŨ |L̃
tŨ |Ṽ L̃

< M1I (121)

and

M1 < 2−
n
3 ε2
tŨ |L̃
tŨ |L̃Y

, (122)

for all PY |L̃Ũ ∈ QW (�nun, τ ).
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Coding scheme.

1. Choosing the Codebook:
We choose a codebook for all �n ∈ T nL (δ1) in a similar way as in the step

1 of the coding scheme in the proof of the previous lemma. But we now use
Lemma 164 for α = β1+β2 and Lemma 166 for γ = ε2

3 instead of Lemmas 164
and 165. Thus by random choice we obtain subsets of T nU U i (�n) = {ũnm,i (�n) :
m = 1, 2, . . . ,M1

}
for i = 1, 2, . . . , I for all �n ∈ T nL (δ1) such that for

U∗(�n) =
I⋃

i=1

U i (�n), (123)

and U∗
Ũ |Ṽ L̃(v

n�n) = U∗(�n) ∩ T n
Ũ |Ṽ L̃(v

n, �n), where PṼ L̃Ũ is the ED generated

by the joint ED PṼ L̃ of (δ1, δ2)-sequences (vn, �n) as before, and with an abuse
of notation in the union in (123): counting it twice and labeling it as different
elements ũnm,i (�

n) and ũn
m′,i′(�

n) if a codeword appears twice in it, the following
holds.

∣∣∣∣∣U
∗
Ũ |Ṽ L̃(v

n�n)−M1I
tŨ |Ṽ L̃
tŨ |Ṽ L̃

∣∣∣∣∣ < M1I
tŨ |Ṽ L̃
tŨ |Ṽ L̃

ε, (124)

and for QW(�nvn, τ ) in the proof of the previous lemmas and any conditional
ED PỸ |L̃Ũ ,

I−1
I∑

i=1

M−1
1

M1∑

m=1

∣∣∣∣∣∣∣∣∣

T n
Ỹ |L̃Ũ

(
�nunm,i(�

n)
) ∩

⎡

⎢⎢⎢⎣
⋃

m′ �=m

⋃

P
Y |L̃Ũ∈

QW (�nvn)

T n
Y |L̃Ũ

(
�nunm′,i (�

n)
)

⎤

⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣

< 2−
n
7 ε2 tỸ |L̃Ṽ (125)

here (124) and (125) are analogous to (77) and (80) respectively, and are shown
in an analogous way.

2. Choosing Inputs of the Channels:
In the current model, we have an additional noiseless channel with rate RK

except for the noisy channel which exists in the Model I. The sender chooses the
inputs of the two channels as follows.

2(i) Choosing the input sequence of the noisy channel:

— In the case that the source outputs a (δ1, δ2)-typical sequence (vn, �n)
with joint ED PṼ L̃, by (124) for the ED PṼ L̃Ũ generated by PṼ L̃,
U∗
Ũ |Ṽ L̃(v

n�n) �= ∅. Then similarly to the Step 2 of the coding scheme in the

proof of the previous lemma, the sender randomly and uniformly chooses
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a member of U∗
Ũ |Ṽ L̃(v

n�n), say ũnm,i(�
n), and according to the probability

PX|VLU
(
xn|vn, �n, ũnm,i(�n)

)
chooses an input sequence xn of the channel

W and sends xn through the channel.
— In the case that the output of the source is non-(δ1, δ2)-typical, the sender

sends an arbitrary fixed sequence xne through the channel.

2(ii) Choosing the Input of the Noiseless Channel:

— In the case that a (δ1, δ1)-typical sequence (vn, �n) with joint ED PṼ L̃ is
output of the correlated channel, the sender first spends log I = nβ2 bits to
send the index i ∈ {1, 2, . . . , I } to the receiver via the noiseless channel if
a codeword ũnm,i(�

n) ∈ U i (�n) ⊂ U∗(�n) is chosen in the substep 2(i) in
the current coding scheme, then he randomly and uniformly chooses a k′ ∈
{1, 2, . . . ,K ′} independent of the output of the source and sends it through
the noiseless channel by using the rest of nRK − nβ2 = nβ3 = logK ′ bits.

— In the case that a non-(δ1, δ2)-typical sequence is output, the sender sends
a constant message through the noiseless channel.

3. Choosing the common range A of functions F andG:
Let J be as in (83) and

A = [{1, 2, . . . ,M1} × {1, 2, . . . , I } × {1, 2, . . . ,K ′} × {1, 2, . . . , J }] ∪ {e}.
(126)

4. Defining the functionsG and G:
Partition T nL (δ1) intoLj , j = 1, 2, . . . , J as in the step 4 of the coding scheme

in the proof of the previous lemma and let Kn = {1, 2, . . . , I }×{1, 2, . . . ,K ′}.
4(i) Defining function F :

The sender decides on the value of function F according to the output of
the correlated source and his private randomness as follows.

— In the case that a (δ1, δ2)-typical sequence (vn, �n) is output, F takes value
(m, i, k′, j) if �n ∈ Lj , ũnm,i(�

n) ∈ Uj (�n) ∩ U∗
Ũ |Ṽ L̃(v

n�n) is chosen in

step 2) of the current coding scheme, and k′ is chosen for sending it via the
noiseless channel in the last nβ3 bits (that means (i, k′) is sent through the
noiseless channel).

— In the other case F = e.
4(ii) Defining functionG:

The receiver decides on the value of the functionG according to the output
(i, k′) ∈ Kn of the noiseless channel, the output �n of the component Ln of
the correlated source, and the output yn ∈ Yn of the noisy compound channel
W as follows.
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Let

Ym.i (�n) =
⋃

P
Y |L̃Ũ∈QW (�nũnm,i (�n),τ )

T n
Y |L̃Ũ

(
�nunm, i(�

n)
)

for m = 1, 2, . . . ,M1, i = 1, 2, . . . , I , and the ED PL̃Ũ generated by the ED
PL̃ of �n ∈ Lj ⊂ T nL (δ1).

— In the case that (i, k′) is output of the noiseless channel, �n ∈ T nL (δ1)
is output of the source, and there exists an m ∈ {1, 2, . . . ,M1} such
that the output of the noisy compound channel W , yn ∈ Ym,i (�n) \{
⋃
m′ �=m

Ym′,i(�n)
}

, G takes value (m, i, k′, j) if �n ∈ Lj .

— In the other case G = e.
Analysis.

1. – 3. Distortion criterion, the nearly uniformity condition, and the rate.
One can verify the distortion criterion, the nearly uniformity condition and the

rate

1

n
logH(F) > β1 + β2 + β3 + o(1) = I

(
U ; Y (W)|L)+ RK + o(1)

(c.f. (117)), and obtain analogous inequalities

(1− η)(M1I)
−1 < Pr

{
U ′n = unm,i (�n)|L = �n

}
< (1+ η)(M1I)

−1 (127)

to the inequalities in (95) for �n ∈ T nL (δ1), unm,i(�n) ∈ U∗(�n) and RVU ′n chosen
by the sender in step 2 of the coding scheme in the same way as in parts 1 – 3
of the Analysis in the proof of the previous lemma except that the roles of U(�n)

and (77) there are played by U∗(�n) =
I⋃
i=1

U i (�n) and (124). Notice that in those

parts of the proof of the previous lemma (80) is not used, neither is (125) here
correspondingly.

4. Estimation of probability of error:
By the same reason as in the proof of the previous lemma, the probabilities

of errors of the first two types, the error caused by that a non-(δ1, δ2)-typical
sequence is output and the error caused by that ũm,i(�n) is chosen and yn /∈
Ym,i(�n) is output of the noisy compound channel exponentially vanish as n
grows.
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Next by replacing U(�n) and (80) by U i (�n) and (125), in the same way as in
the proof of the previous lemma we now obtain

align(M1I)
−1

I∑

i=1

M1∑

m=1

Pr

⎧
⎨

⎩Y
′n ∈ Ym,i(�n) ∩

⎡

⎣
⋃

m′ �=m
Ym′,i(�n)

⎤

⎦ |�n, unm,i (�n)
⎫
⎬

⎭

align < 2−
n
21 ε2 (128)

instead of (108).
Finally analogously to in the way to obtain (109) in the proof of the previous

lemma from (95) and (108), we finish the proof by combining (127) and (128).
��

Corollary 170 (Direct part of Theorem 157) For all single channelsW

CCRII
(
(V ,L),W,RK,D1

) ≥ max
(V ,L,U,X,Y )∈

Q∗((V ,L),W,RK,D1)

(
I (U ;L, Y )+H(L|U))+ RK.

6 The Converse Theorems for Common Randomness

To obtain single letter characterizations for the converse parts of coding theorems
for common randomness, we need a useful identity which appears in [18] (on page
314).

Lemma 171 (Csiszár and Körner) Let (An,Bn) be an arbitrary pair of random
sequences and let C be an arbitrary RV. Then

H(An|C)−H(Bn|C) =
n∑

t=1

[H(At |At+1, At+2, . . . , An, B
t−1, C)

−H(Bt |At+1, At+2, . . . , An, B
t−1, C)]. (129)

Proof

H(An|C)− (Bn|C)

=
n−1∑

t=0

H(At+1, At+2, . . . , An, B
t |C)−

n∑

t=1

H(At+1, At+2, . . . , An, B
t |C)

=
n∑

t=1

H(At,At+1, . . . , An, B
t−1|C)−

n∑

t=1

H(At+1, At+2, . . . , An, B
t |C)
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=
n∑

t=1

[H(At,At+1, . . . , An, B
t−1|C)−H(At+1, . . . , An, B

t−1|C)]

−
n∑

t=1

[H(At+1, At+2, . . . , An, B
t |C)−H(At+1, . . . , An, B

t−1|C)]

=
n∑

t=1

[H(At |At+1, At+2, . . . , An, B
t−1, C)

−H(Bt |At+1, At+2, . . . , An, B
t−1, C)], (130)

where (At+1, At+2, . . . , An, B
t ) to be understood as An and Bn when t = 0 and

t = n respectively. ��
Lemma 172 (Converse part of Theorem 156) For single channelW ,

CCRI((V ,L),W,D1) ≤ max(V,L,U,X,Y )∈Q((V ,L),W,D1)[I (U ;LY)+H(L|U)].
(131)

Proof Assume that for a source output of length n there are functions F and K
such that for the channelWn and the distortion measure (10)–(16) hold. Denote by
Xn and Yn the random input and output of the channel generated by the correlated
source (V n, Ln), sender’s private randomnessM , and the channel.

Then (10) can be rewritten in terms of (V n,Xn) as

1

n
Eρ(V n,Xn) ≤ D1 (132)

Further by Fano inequality (Lemma 48), (11)–(14), we have that

H(F) ≤ H(F)−H(F |G)+ nλ log κ + h(λ)

= I (F ;G)+ nλ log κ + h(λ)

≤ I (F ;Ln, Y n)+ nλ log κ + h(λ)

= I (F ; Yn|Ln)+ I (F ;Ln)+ nλ log κ + h(λ)

≤ I (F ; Yn|Ln)+H(Ln)+ nλ log κ + h(λ)

= I (F ; Yn|Ln)+
n∑

t=1

H(Lt)+ nλ log κ + h(λ)

=
n∑

t=1

I (F ; Yt |Ln, Y t−1)+
n∑

t=1

H(Lt)+ nλ log κ + h(λ), (133)
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where h(z) = −z log z − (1 − z) log(1 − z) for z ∈ [0, 1] is the binary entropy.
Here the first inequality follows from the Fano inequality (Lemma 48), (11), (12)
and (14); the second inequality holds by (13); and the third equality holds because
the source is memoryless. Since I (F ;V n,Ln) ≤ H(F), the first four lines in (133)
is followed by

0 ≤ I (F ;Ln, Y n)− I (F ;V n,Ln)+ nλ log κ + h(λ)

≤ [I (F ; Yn|Ln)+ I (F ;Ln)] − [I (F ;V n|Ln)+ I (F ;Ln)] + nλ log κ + h(λ)

= I (F ; Yn|Ln)− I (F ;V n|Ln)+ nλ log κ + h(λ)

= [H(Yn|Ln)−H(Yn|Ln, F )]
− [H(V n|Ln)−H(V n|Ln, F )] + nλ log κ + h(λ)

= [H(Yn|Ln)−H(V n|Ln)]
+ [H(V n|Ln, F )−H(Yn|Ln, F )] + nλ log κ + h(λ). (134)

To obtain a single letter characterization we substitute An,Bn and C in (129) by
V n, Y n and (Ln, F ) respectively and so

H(V n|LnF)−H(Yn|LnF)

=
n∑
t=1
[H(Vt |Vt+1, Vt+2, . . . , Vn, L

n, Y t−1, F )

−H(Yt |Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F )].

(135)

Moreover because the source is memoryless, we have

H(V n|Ln) =
n∑

t=1

H(Vt |Lt ). (136)

We now substitute (134), (135); (136) and H(Yn|Ln) = ∑n
t=1H(Yt |Ln, Y t−1)

into (133) and continue it,

0 ≤
n∑

t=1

[H(Yt |Ln, Y t−1)−H(Vt |Lt)] +
n∑

t=1

[H(Vt |Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F )

−H(Yt |Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F )] + nλ log κ + h(λ)

=
n∑

t=1

[H(Yt |Ln, Y t−1)−H(Yt |Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F )]
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−
n∑

t=1

[H(Vt |Lt)−H(Vt |Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F )] + nλ log κ + h(λ)

=
n∑

t=1

I (Yt ;Vt+1, Vt+2, . . . , Vn, F |Ln, Y t−1)

−
n∑

t=1

I (Vt ;Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt )

+ nλ log κ + h(λ)

≤
n∑

t=1

[I (Yt ;Vt+1, Vt+2, . . . , VnL1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt)]

−
n∑

t=1

I (Vt ;Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt )]

+ nλ log κ + h(λ). (137)

Let J be the RV taking values in {1, 2, . . . , n} uniformly, and

UJ = (VJ+1, VJ+2, . . . , Vn, L1, L2 . . . , LJ−1, LJ+1, . . . , Ln, Y
J−1, F ).

(138)

Then J and (VJ , LJ ) are independent i. e., I (J ;VJ ,LJ ) = 0. Thus (137) is
rewritten and continued in the following a few lines.

0 ≤ nI (UJ ; YJ |LJ , J )− nI (UJ ;VJ |LJ , J )+ nλ log κ + h(λ)

= n[I (UJ ;LJ , YJ |J )− I (UJ ;LJ |J )] − [I (UJ ;VJ ,LJ |J )− I (UJ ;LJ |J )
+ nλ log κ + h(λ)

= nI (UJ ;LJ , YJ |J )− nI (UJ ;VJ ,LJ |J )+ nλ log κ + h(λ)

≤ nI (UJ , J ;LJ , YJ )− n[I (UJ , J ;VJ ,LJ )− I (J ;VJ ,LJ )] + nλ log κ + h(λ)

= nI (UJ , J ;LJ , YJ )− nI (UJ , J ;VJ ,LJ )+ nλ log κ + h(λ). (139)

Next we denote by

(V ′′, L′′, U ′′,X′′, Y ′′) = (VJ , LJ ,UJ J,XJ , YJ ) (140)
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for the uniformly distributed J and UJ in (138). Then, obviously (V ′′, L′′) has
the same probability distribution with the generic (V ,L) of the correlated source,
the conditional probability distribution PY ′′|X′′ = W , and (V ′′L′′U ′′,X′′, Y ′′)
forms a Markov Chain. Namely, the joint distribution of (V ′′, L′′, U ′′,X′′, Y ′′) is
PV ′′L′′U ′′X′′Y ′′ = PVLPU ′′X′′|V ′′L′′W . With the defined random variables, (132) is
rewritten as

Eρ(V ′′,X′′) = E[Eρ(V ′′,X′′)|J ] = E[Eρ(VJ ,XJ )|J ] = 1

n
Eρ(V n,Xn) ≤ D1.

(141)

Moreover, by substituting (140) in (139) and then dividing both sides of resulting
inequality by n, we obtain that

0 ≤ I (U ′′;L′′, Y ′′)− I (U ′′;V ′′, L′′)+ o(1), (142)

(as λ→ 0).
Because the set {PV,L,U,X,Y : (V ,L,U,X, Y ) ∈ Q((V ,L),W,D1)} is a closed

set, by (141) and (142) is sufficient for us to complete the proof to show that

1

n
H(F) ≤ I (U ′′;L′′, Y ′′)+H(L′′|U ′′)+ o(1)

for λ → 0. This is done by dividing both sides of (133) by n and continuing it by
the following few lines.

1

n
H(F) ≤ 1

n

n∑

t=1

I (F ; Yt |Ln, Y t−1)+ 1

n

n∑

t=1

H(Lt)+ λ log κ + 1

n
h(λ),

≤ 1

n

n∑

t=1

I (Vt+1, Vt+2, . . . , Vn, F ; Yt |Ln, Y t−1)+ 1

n

n∑

t=1

H(Lt)

+ λ log κ + 1

n
h(λ),

≤ 1

n

n∑

t=1

I (Vt+1, . . . , Vn, L1, . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F ; Yt |Lt)

+ 1

n

n∑

t=1

H(Lt)+ λ log κ + 1

n
h(λ)

= I (UJ ; YJ |LJ , J )+H(LJ |J )+ λ log κ + 1

n
h(λ)
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≤ I (UJ , J ; YJ |LJ )+H(LJ |J )+ λ log κ + 1

n
h(λ)

= I (UJ , J ; YJ |LJ )+H(LJ )+ λ log κ + 1

n
h(λ)

= I (UJ , J ; YJ |LJ )+ I (UJ ;LJ )+H(LJ |UJ )+ λ log κ + 1

n
h(λ)

≤ I (UJ , J ; YJ |LJ )+ I (UJ , J ;LJ )+H(LJ |UJ )+ λ log κ + 1

n
h(λ)

= I (UJ , J ;LJ , YJ )+H(LJ |UJ )+ λ log κ + 1

n
h(λ)

= I (U ′′;L′′, Y ′′)+H(L′′|U ′′)+ λ log κ + 1

n
h(λ), (143)

where the second equality holds because UJ is independent of J . Finally the upper
bound to the size of U follows from the Support Lemma in [11] (as well on page
310 in the book [18]). ��
Lemma 173 (Converse part of Theorem 157) For a single channelW ,

CCRI((V ,L),W,RK,D1) ≤ max
(V ,L,U,X,Y )∈

Q∗((V ,L),W,RK,D1)

[I (U ;L, Y ) +H(L|U)] + RK.

(144)

Proof Let {(V n, Ln)}∞n=1 be a correlated source with generic (V ,L), W be a noisy
channel, andRK andD1 be the key rate and the distortion criterion in the Model II of
common randomness respectively. Let F and G be functions satisfying (10)–(12),
(17), and (14)–(16) in the Model II of common randomness (for output sequence
of source of length n). Denote by Xn and Kn inputs of noisy channel Wn and the
noiseless channel chosen by the sender according to the output of the correlated
source and his/her private randomness. Then (132) holds and similarly to (133) by
Fano inequality (Lemma 48), we have that

H(F) ≤ I (F ;G)+ nλ log κ + h(λ)

≤ I (F ; Yn,Ln,Kn)+ nλ log κ + h(λ)

= I (F ; Yn,Ln)+ I (F ;Kn|Yn,Ln)+ nλ log κ + h(λ)

= I (F ; Yn|Ln)+ I (F ;Ln)+ I (F ;Kn|Yn,Ln)+ nλ log κ + h(λ)

≤ I (F ; Yn|Ln)+H(Ln)+H(Kn|Yn,Ln)+ nλ log κ + h(λ)
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≤ I (F ; Yn|Ln)+H(Ln)+H(Kn)+ nλ log κ + h(λ)

≤ I (F ; Yn|Ln)+H(Ln)+ nRK + nλ log κ + h(λ)

=
n∑

t=1

I (F ; Yt |Ln, Y t−1)+
n∑

t=1

H(Lt)+ nRK + nλ log κ + h(λ),
(145)

where the second inequality holds by (17). Analogously to (134) we have

0 ≤ I (F ; Yn,Ln,Kn)− I (F ;V n,Ln)+ nλ log κ + h(λ)

= I (F ; Yn,Ln)− I (F ;V n,Ln)+ I (F ;Kn|Yn,Ln)+ nλ log κ + h(λ)

≤ I (F ; Yn,Ln)− I (F ;V n,Ln)+H(Kn|Yn,Ln)+ nλ log κ + h(λ)

≤ I (F ; Yn,Ln)− I (F ;V n,Ln)+ nRK + nλ log κ + h(λ). (146)

Note that we only used the basic properties of Shannon information measures,
Lemma 171, and the assumption that the correlated source is memoryless in the
estimation of I (F ; Yn,Ln)− I (F ;V n,Ln) in the part of (134)–(137) and all these
are available here. So we have the same estimation here i.e.,

I (F ; Yn,Ln)− I (F ;V nLn)

≤
n∑

t=1

I (Yt ;Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt )

−
n∑

t=1

I (Vt ;Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt )

+ nλ log κ + h(λ). (147)

Let UJ and J be defined as in (138). Then (147) is rewritten as

I (F ; Yn,Ln)− I (F ;V nLn) ≤ nI (UJ , J ;LJ , YJ )− nI (UJ , J ;VJ ,LJ )
+ nλ log κ + h(λ). (148)

Let (V ′′, L′′, U ′′,X′′, Y ′′) is defined as in the previous lemma. Then (141) and
PV ′′L′′U ′′X′′Y ′′ = PVLPU ′′X′′|V ′′L′′W are certainly fulfilled. But now (146)–(148)
lead us to

0 ≤ I (U ′′;L′′, Y ′′)− I (U ′′;V ′′, L′′)+ RK + o(1). (149)
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In the same way as (143) we can show

n∑

t=1

I (F ; Yt |Ln, Y t−1)+
n∑

t=1

H(Lt)+ nRK + nλ log κ + h(λ)

≤ nI (U ′′;L′′, Y ′′)+ nH(U ′′|L′′)+ nλ log κ + h(λ) (150)

which with (145) yields

1

n
H(F) ≤ I (U ′′;L′′Y ′′)+H(U ′′|L′′)+ RK + λ log κ + 1

n
h(λ).

Again |U | is bounded by the Support Lemma. Thus our proof is finished. ��
Finally it immediately follows from Lemmas 172 and 173 that

Corollary 174 For compound channelW ,

(i) (The converse part of Theorem 158:)

CCRI((V ,L),W,D1) ≤ inf
W∈W

max
(V ,L,U,X,Y )∈
Q((V ,L),W,D1)

[I (U ;L, Y )+H(L|U)] (151)

and
(ii) (The converse part of Theorem 159:)

CCRII((V ,L),W, RK,D1)

≤ inf
W∈W

max
(V ,L,U,X,Y )∈

Q∗((V ,L),W,RK,D1)

[I (U ;L, Y )+H(L|U)] + RK. (152)

7 Construction of Watermarking Identification Codes from
Common Randomness

Ahlswede and Dueck found in [10] (chapter “Identification in the Presence of Feed-
back: A Discovery of New Capacity Formulas”) that an identification code with the
same rate can be always obtained from the common randomness between a sender
and receiver under the condition

The sender can send a massage with arbitrarily small

but positive rate (in the exponential sense) (153)
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Thus under the condition (153) the capacity of identification is not smaller than that
of common randomness. Note that the sets Q((V ,L),W,D1), Q∗∗(V ,W,Rk,D1),
Q1((V ,L),W,D1), and Q∗∗

1 (V ,W, Rk,D1) are not empty implies the condition
(153) in the Theorems 160, 161, 162, and 163 respectively. Consequently The-
orems 160, 161, 162, and 163 follows from Theorems 156, 157, 158, and 159
respectively.

8 A Converse Theorem of a Watermarking Coding Theorem
Due to Steinberg-Merhav

In order to construct identification codes in [27], Y. Steinberg and N. Merhav
introduced the following code to build common randomness between sender and
receiver and obtained an inner bound of the capacity region. This inner bound is
sufficient for their goal. We shall show that it is as well tight. This would support
their conjecture that the lower bound in their Theorem 4 ([27]) is tight although it
does not imply it.

Let {V n}∞n=1 be a memoryless source with alphabet V and generic V and W
be a noisy channel with input and output alphabets X and Y respectively. A pair
of functions (f, g) is called an (n,M, J, δ, λ,D) watermarking transmission code
with a common experiment, distortion measure ρ, distortion level D and covertext
PV if the followings are true.

— f is a function from Vn × {1, 2, . . . ,M} to {1, 2, . . . , J } × X n.
— g is a function from Yn to {1, 2, . . . , J } × {1, 2, . . . ,M}.

1

M

M∑

m=1

∑

vn∈Vn
P nV (v

n)Wn({y : g(yn) = (fJ (vn,m),m)}|fX(vn,m)) ≥ 1− λ,

(154)

where fX and fJ are projections of f to X n and {1, 2, . . . , J } respectively.

1

M

M∑

m=1

∑

vn∈Vn
P nV (v

n)ρ(vn, fX(v
n,m)) ≤ D. (155)

For m = 1, 2, . . . ,M , there exists a subset B(m) ⊂ {1, 2, . . . , J } of cardinality
|B(m)| ≥ J2−nδ such that

J−12−nδ ≤ PnV {fJ (V n,m) = j } ≤ J−12nδ (156)
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for all j and

∑

j∈B(m)
P nV {fJ (V n,m) = j } ≥ 1− λ. (157)

g serves as a decoding function here. (156) and (157) play the same role as
nearly uniform condition in construction of identification codes from common
randomness. In fact one can find the nearly uniform condition (16) is stronger but
for the purpose to construct identification codes the conditions (156) and (157) are
strong enough.

A pair (R1, R2) is called achievable with distortionD if for all positive reals δ, λ,
and ε there is an (n,M, J, δ, λ,D) code defined as above such that

1

n
logM > R1 − ε (158)

and

1

n
log J > R2 − ε. (159)

The set of achievable pair of rates is called capacity region and denoted by
R. Denote by R(∗) the subset of pair of real numbers such that there exist RV’s
(V ,U,X, Y ) taking values in V × U × X × Y such that |U | ≤ |Y| + |X |, for all
v ∈ V, u ∈ U, x ∈ X and y ∈ Y ,

PVUXY (v, u, x, y) = PV (v)PUX|V (u, x|v)W(y|x),

Eρ(V,X) ≤ D,

0 ≤ R1 ≤ I (U ; Y )− I (U ;V ), (160)

and

0 ≤ R2 ≤ I (U ;V ). (161)

Theorem 175 (Steinberg and Merhav 2001 [27])

R∗ ⊂ R. (162)

We now show the opposite contained relation holds i.e.,

Theorem 176

R ⊂ R∗. (163)
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Proof Let (f, g) be a pair of functions satisfying (154)–(159) for sufficiently large
n (, which is specified later,) and Zn be a RV with uniform distribution over
{1, 2, . . . ,M}. Further let f (V n,Zn) = (Bn,X

n), where Bn and Xn have ranges
{1, 2, . . . , J } and X n respectively and Yn be the random output of the channelWn

when Xn is input.
Then (156) and (157) are rewritten as

J−12−nδ ≤ PBn|Zn(j |m) ≤ J−12nδ (164)

for all j ∈ B(m) and

PBn|Zn(Bn ∈ B(m)|m) ≥ 1− λ (165)

respectively. So,

H(Bn|Zn) =
M∑

m=1

PZn(m)H(Bn|Zn = m)

≥ −
M∑

m=1

PZn(m)
∑

j∈B(m)
PBn|Zn(j |m) logPBn|Zn(j |m)

≥ −
M∑

m=1

PZn(m)
∑

j∈B(m)
PBn|Zn(j |m) logJ−12nδ

= (log J − nδ)
M∑

m=1

PZn(m)PBn|Zn(Bn ∈ B(m)|m)

≥ (log J − nδ)(1− λ) (166)

where the second inequality holds by (164) and the last inequality follows from
(165). Or equivalently

1

n
log J ≤

1
n
H(Bn|Zn)

1− λ + δ. (167)

Since H(Bn) ≤ log J , (167) implies that for a function θ such that θ(δ, λ)→ 0
as δ, λ→ 0,

1

n
log J − θ(δ, λ) < 1

n
H(Bn|Zn) ≤ 1

n
H(Bn) ≤ 1

n
log J. (168)
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which says that Bn and Zn are “nearly independent”. Moreover because Zn is
independent of V n, by Fano’s inequality (Lemma 48),

R1 − ε < 1

n
logM = 1

n
H(Zn)

= 1

n
H(Zn|V n)

≤ 1

n
H(Bn,Zn|V n)

≤ 1

n
[H(Bn,Zn|V n)−H(Bn,Zn|Yn)] + λ log JM + 1

n
h(λ)

= 1

n
[I (Bn,Zn; Yn)− I (Bn,Zn;V n)] + λ1

n
log JM + 1

n
h(λ) (169)

where the second inequality follows from Fano’s inequality (Lemma 48). Since Bn
is a function of V n and Zn, we have also

H(Bn,Zn|V n) ≤ H(V n,Zn|V n) = H(Zn), (170)

which and (168) are followed by

R2 − ε < 1

n
log J <

1

n
H(Bn|Zn)+ θ(δ, λ)

= 1

n
[H(Bn,Zn)−H(Zn)] + θ(δ, λ)

≤ 1

n
[H(Bn,Zn)−H(Bn,Zn|V n)] + θ(δ, λ)

= 1

n
I (Bn,Zn;V n)+ θ(δ, λ). (171)

So far we have had a non-single-letter characterization of the capacity region
(169) and (171). In the remaining part of the proof we shall reduce it to a single
letter one.
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First we substitute An,Bn, and C in (129) by V n, Y n, and (Bn,Zn) respectively
and obtain that

H(V n|Bn,Zn)−H(Yn|Bn,Zn)

=
n∑

t=1

[H(Vt |Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn)

−H(Yt |Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn)]. (172)

Next we note that H(V n) =∑n
t=1H(Vt) because the source is memoryless and

H(Yn) =∑t=1H(Yt |Y t−1). Therefore, we have

I (Bn,Zn; Yn)− I (Bn,Zn;V n)

= H(Yn)−H(V n)+ [H(V n|Bn,Zn)−H(Yn|Bn,Zn)]

=
n∑

t=1

H(Yt |Y t−1)−
n∑

t=1

H(Vt)+
n∑

t=1

[H(Vt |Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn)

−H(Yt |Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn)]

=
n∑

t=1

[H(Yt |Y t−1)−H(Yt |Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn)]

−
n∑

t=1

[H(Vt)−H(Vt |Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn)]

=
n∑

t=1

I (Vt+1, Vt+2, . . . , Vn, Bn,Zn; Yt |Y t−1)

−
n∑

t=1

I (Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn;Vt)

≤
n∑

t=1

I (Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn; Yt )

−
n∑

t=1

I (Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn;Vt). (173)
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Moreover,

I (Bn,Zn;V n) =
n∑

t=1

I (Bn,Zn;Vt |Vt+1, Vt+2, . . . , Vn)

≤
n∑

t=1

I (Vt+1, Vt+2, . . . , Vn, Bn,Zn;Vt)

≤
n∑

t=1

I (Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn,Zn;Vt). (174)

So we may let I be a RV taking values in {1, 2, . . . , n} uniformly and U ′ =
(VI+1, VI+2, . . . , Vn, Y

I−1, Bn,Zn) and conclude by (171), (172), (173), (174)

R1 − ε ≤ I (U ′; YI |I)− I (U ′;VI |I)+ λ log JM + 1

n
h(λ)

≤ I (U ′, I ; YJ )− I (U ′, I ;VI )+ I (I ;VI )+ λ log JM + 1

n
h(λ),

(175)

and

R2 − ε ≤ I (U ′;VI |I) ≤ I (U ′, I ;VI )+ θ(δ, λ). (176)

Let U = (U ′, I ), V ′ = VI ,X = XI and Y = YI . Then PV ′ = PV , (V ′U,X, Y )
forms a Markov chain and (176) can be re-written as

R2 ≤ I (U ;V ′)+ θ(δ, λ),

and

EP(v′, x ′) < D.

Further that I (I ;VI ) = 0 (as the source is stationary) and (175) are followed by

R1 ≤ I (U ; Y )− I (U ;V ′)+ λ log JM + 1

n
h(λ)+ ε.

Finally |U | is bounded by the support Lemma in the standard way. ��
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Transmission, Identification
and Common Randomness Capacities
for Wire-Tap Channels with Secure
Feedback from the Decoder

We analyze wire-tap channels with secure feedback from the legitimate receiver.
We present a lower bound on the transmission capacity (Theorem 178), which we
conjecture to be tight and which is proved to be tight (Corollary 180) for Wyner’s
original (degraded) wire-tap channel and also for the reversely degraded wire-tap
channel for which the legitimate receiver gets a degraded version from the enemy
(Corollary 181).

Somewhat surprisingly we completely determine the capacities of secure com-
mon randomness (Theorem 183) and secure identification (Theorem 184 and
Corollary 185). Unlike for the DMC, these quantities are different here, because
identification is linked to non-secure common randomness.

1 Introduction

The main results are mentioned in the abstract.
After giving standard concepts in Sect. 2, known results and techniques for the

wire-tap channel in Sect. 3, we state and prove Theorem 178 in Sect. 4. Our code
construction relies upon a lemma for balanced coloring from [1], which has already
been proved useful for secrecy problems in [2] and [3] (see chapters “Perspectives”
and “The Role of Common Randomness in Information Theory and Cryptography:
Secrecy Constraints”).

The transmission capacities for the two kinds of degraded wire-tap channels are
derived in Sect. 5. Particularly interesting is an example of a reversely degraded
channel, where the channel W ′

1 : X → Z for the wiretapper is noiseless (for
instance with binary alphabets) and the channelW ′

2 : Z → Y for the legal receiver
is a noisy binary symmetric channel with crossover probability p ∈ (0, 1/2). Here
the wiretapper is in a better position than the legal user and therefore the capacity
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is zero, if there is no feedback. However, by our corollary the capacity is positive,
because the feedback serves as a secure key shared by sender and receiver.

In Sect. 6 a discussion based on the construction for transmission in Sect. 4,
known results and constructions for identification [8, 9, 15], common randomness
[7, 9] and all other references builds up the intuition for our solutions of the capacity
problems for common randomness and identification in Sects. 7 and 8.

2 Notation and Definitions

Throughout the lecture U , X , Y and Z are finite sets and their elements are written
as corresponding lower letters e.g. u, x, y, and z. The letters U , X, Y , Z etc. will be
used for RV’s with values in the corresponding sets, U, . . . . T nX , T nY |X(xn), T nXYZ ,
etc. are sets of n-typical, conditional typical and joint typical sequences, and sets
of δ-typical, conditional typical and joint typical sequences are written as T nX,δ ,
T nY |X,δ(xn), T nXYZ,δ, etc.

Then a (discrete memoryless) wire-tap channel is specified by a stochastic matrix
W : X → Y×Z , whereX serves as input alphabet,Y as output alphabet of the legal
receiver and Z as output alphabet of a wiretapper. The channel works as follows: the
legal receiver receives an output sequence yn and the wiretapper receives an output
sequence zn with probability

Wn(ynzn|xn) =
n∏

t=1

W(ytzt |xt).

In the case of transmission the sender’s goal is to send to the receiver a message U
uniformly distributed on a large set of messages with vanishing probability of error
such that the wiretapper almost knows nothing about the message. Randomization
at the sender side is allowed. The wiretapper, who knows the coding scheme but not
the message, tries to learn about the message as much as possible.

For given λ,μ > 0, a (λ, μ)-code of length n with a set of messages M is
a system {(Qm : Dm) : m ∈ M}, where the Qm’s for m ∈ M are probability
distributions on X n, and the Dm’s are pairwise disjoint subsets of Yn, such that

|M|−1
∑

m∈M

∑

xn∈X n

Qm(x
n)
∑

zn∈Zn
Wn(Dm, zn|xn) > 1− λ, (1)

and

1

n
I (U ;Zn) < μ, (2)

if Zn is the random output sequence generated by the message U through the
channel. The transmission capacity of the wire-tap channel is the maximal non-
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negative number Cwt such that for M, λ,μ, ε > 0 and all sufficiently large length
n, there exists a (λ, μ)-code with rate 1

n
log |M| > Cwt−ε. The security criterion (2)

is strengthened in [11] to

I (U ;Z) < μ. (3)

In the current lecture we assume the output yt at time t is completely and
immediately feedback to the sender via a secure noiseless channel such that the
wiretapper has no knowledge about the feedback (except his own output zn). Then
for λ,μ > 0, a (λ, μ)-code of length n for the wire-tap channel with secure
feedback is a system {(Q,Dm) : m ∈M} where Dm, m ∈M, are pairwise disjoint
subsets of Yn as before andQ is a stochastic matrixQ :M× Yn−1 → X n with

Q(xn|m, yn−1) =
n∏

t=1

Q(xt |m, yt−1)

for xn ∈ X , yn−1 ∈ Yn−1, and m ∈M, such that

|M|−1
∑

m∈M

∑

xn∈X

∑

zn∈Zn

∑

yn∈Dm
Q(xn|m, yn−1)Wn(yn, zn|xn) > 1− λ (4)

and (2) holds. The transmission capacity is defined analogously and denoted by
Cwtf. In Theorem 178 in Sect. 4 we shall prove our (direct) coding theorem with the
stronger security criterion (3).

3 Previous and Auxiliary Results

Our code construction is based on a coding lemma and a code for wire-tap
channel without feedback. A balanced coloring lemma originally was introduced
by Ahlswede [1] and we need its following variation.

Lemma 177 For all δ, η > 0, sufficiently large n, all n-ED PXY and all xn ∈ T nX ,
there exists a γ -coloring c : T nY |X(xn)→ {0, 1, 2, . . . , γ − 1} of T nY |X(xn) such that
for all joint n-ED PXYZ with marginal distribution PXY and γ−1|T nY |XZ(xn, zn)| >
2nη, xn, zn ∈ T nXZ,

|c−1(k)| ≤ γ−1|T nY |XZ(xn, zn)|(1+ δ), (5)

for k = 0, 1, . . . , γ − 1, where c−1 is the inverse image of c.
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Proof Let us randomly and independently color yn ∈ T nY |X(xn) with γ colors and
uniform distribution over T nY |X(xn). Let for k = 0, 1, . . . , γ − 1

Sk(y
n) =

{
1 if yn is colored by k

0 else.
(6)

Then for a joint ED PXZY and zn ∈ T nZ|X(xn), by Chernoff bound,

Pr

⎧
⎪⎨

⎪⎩

∑

yn∈T n
Y |XZ(xn,zn)

Sk(y
n) > γ−1|T nY |XZ(xn, yn)|(1+ δ)

⎫
⎪⎬

⎪⎭

≤ e− δ2 γ−1|T nY |XZ(xn,zn)|(1+δ)
∏

yn∈T nY |XZ(xn,zn)
E e

δ
2Sk(y

n)

= c− δ2 γ−1|T nY |XZ(xn,zn)|(1+δ)
[
(1− γ−1)+ γ−1e

δ
2

]|T nY |XZ(xn,zn)|

= e− δ2 γ−1|T nY |XZ(xn,zn)|(1+δ)
[
1+ (e δ2 − 1)γ−1

]|T nY |XZ(xn,zn)|

≤ e− δ2 γ−1|T nY |XZ(xn,zn)|(1+δ)
[

1+ γ−1(
δ

2
+ δ

2

8
e)

]|T nY |XZ(xn,zn)|

≤ expe

{
− δ

2
γ−1|T nY |XZ(xn, zn)|(1+ δ)+ γ−1

(
δ

2
+ δ

2

8
e

)
|T nY |XZ(xn, zn)|

}

= expe

{
− δ

2
γ−1|T nY |XZ(xn, zn)|

(
1− e

4

)
δ

}

≤ e− eδ
2

24 γ
−1|T nY |XZ(xn,zn))|

≤ e− eδ
2

24 2nη, (7)

if γ−1|T nY |XZ(xn, zn)| > 2nη and δ
2 ≤ 1.

Here, to obtain the 2nd and 3rd inequalities, we use for x ∈ [0, 1] the inequalities
ex ≤ 1+ x + e

2x
2 and 1+ x ≤ ex respectively.

Equation (5) follows from (7) because the numbers of sequences zn and n-EDs
increase exponentially and polynomially respectively as the length increases. ��

To prove the (direct part of) coding theorem for wire-tap channel (without
feedback) [11] Csiszár and Körner used a special code and we shall use its following
improvement [10].
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For a given wire-tap channel such that for an input RV X and its output RV’s Y
and Z for the legal user and wiretapper respectively

I (X; Y )− I (X;Z) > 0 (8)

all λ′, μ′ > 0 0 < ε′ < I(X; Y ) − I (X;Z) and sufficiently large n, there exists a
set of codewords

{um,� : m = 0, 1, 2, . . . ,M − 1, � = 0, 1, 2, . . . , L− 1}

in T nX having the following properties.

I (X; Y )− I (X;Z)− ε′ < 1

n
logM ≤ I (X; Y )− I (X;Z)− ε

′

2
(9)

I (X;Z)+ ε
′

8
≤ 1

n
logL < I(X;Z)+ ε

′

4
. (10)

For a set of properly chosen decoding sets {Dm,�},

{(um,�,Dm,�) : m = 0, 1, 2, . . . ,M − 1, � = 0, 1, 2, . . . , L− 1}

is a λ-code for the legal user.
Let V, Z̃ be RV’s taking values in M×Zn, where M = {0, 1, . . . ,M−1}, with

probability for (m, zn) ∈M× Zn

Pr{V, Z̃) = (m, zn)) =
L−1∑

�=0

L−1PnZ|X(zn|um,�).

Then

I (V ; Z̃) < μ′. (11)

4 The Coding Theorem for Transmission and Its Proof

Let Q be the set of quadruples of RV’s (U,X, Y,Z) taking values in U×X ×Y×Z
for a finite set U with probability

Pr((U,X, Y,Z) = (u, x, y, z)) = PUX(ux)W(yz|x) (12)

for (u, x, y, z) ∈ U × X × Y ×Z .
Then
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Theorem 178 The capacity of a wire-tap channel with feedback satisfies

Cwtf ≥ max
(U,X,Y,Z)∈Q

min[|I (U ; Y )− I (U ;Z)|+ +H(Y |U,Z), I (U ; Y )]. (13)

Proof For a (U,X, Y,Z) ∈ Q, to show the achievability, one may introduce an
auxiliary channel PX|U and construct a code for the channel

W ′(y, z|u) =
∑

x

PX|U(x|u)W(y, z|x).

Then it is sufficient to show that |I (X; Y )− I (X;Z)|+ +H(Y |XZ) is achievable.
Let us fix λ,μ, ε > 0 and construct a (λ, μ)-code with rate

|I (X; Y )− I (X,Z)|+ +H(Y |XZ)− ε. (14)

To this end, let λ′, μ′, ε′ be positive small real numbers specified later.
Let U = {um,� : m = 0, 1, 2, . . . ,M−1, � = 0, 1, 2, . . . , L−1} be the codebook

if in the previous section for a sufficiently large n (8) holds i.e., I (X; Y )−I (X;Z) >
0.

In the case that (8) does not hold we choose M = 1 and take a codebook of
an arbitrary λ′-code for the legal user, with rate I (X; Y ) − ε′ < R � 1

n
logL ≤

I (X; Y )− ε′
2 as our codebook:

U = {u0,� : � = 0, 1, 2, . . . , L− 1}.

Our code consists of N blocks of length n and sends a message

(U ′1, U ′2U ′′2 , U ′3U ′′3 , . . . , U ′NU ′′N

uniformly distributed on M′ × (M′ ×M′′)N−1, where

M′ = {0, 1, 2, . . . ,M − 1}, M′′ = {0, 1, . . . , L′′ − 1}, (15)

and L′′ = min{L, 2n(H(Y |XZ)− 3
4 )}.

In particularM = 1, M′ is a dummy message set. Then the rate of the messages
is

R∗ = 1

n
logM + 1

n
logL′′ − 1

nN
logL′′ ≥ 1

n
logM + 1

n
logL′′ − 1

N
log |Y|.
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That is by (9), and (10)

R∗ ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I (X; Y )− I (X;Z)− ε′ +min
[
I (X;Z) + ε′

8 ,H(Y |XZ)− ε
4

]

− 1
N

log |Y| if I (X; Y )− I (X;Z) > 0

min
[
I (X; Y )− ε′

2 ,H(Y |XZ)− ε
4

]
− 1
N

log |Y| else.

(16)

By choosing ε′ < ε
2 and N > 2ε−1 log |Y| in (4.5) we have

R∗ > min[|I (X; Y )− I (X;Z)|+ +H(Y |XZ), I (X; Y )] − ε (17)

our desired rate.
In each block, we use a codebook

U = {um,� : m = 0, 1, . . . ,M − 1, � = 0, 1, 2, . . . , L− 1}

defined as above. Suppose the sender wants to send (m′1, m′2m′′2, . . . , m′Nm′′N) to
the receiver. Then our code consists of the following components.

1. In the first block the sender randomly chooses a um′1,� from the codebook with
uniform distribution on {um′1, j : j = 0, 1, . . . , L − 1} and sends the codeword
to the receiver. Then by choosing a proper decoder the receiver can decode um′1,�
and thereforem′1 correctly with probability 1− λ′.

2. From the first to the N − 1st blocks, for all um,� ∈ U , color all T n
Ȳ |X̄(um,�) ⊂

T nY |X,δ1(um,�) with L′′ colors such that for a suitably small δ2 > o all n-joint ED
PX̄ȲZ with PX̄ = PX and

∑

yz

|PȲ Z̄X̄(y, z|x)− PYZ|X(yz|x)| < δ2. (18)

T n
Ȳ |X̄Z̄(um,�, z

n) is properly colored in the sense of Lemma 177.

3. For j = 1, 2, . . . , N − 1 after the sender receives output yn of the j th block, he
gives up if yn /∈ T nY |X,δ1(u(j)), where u(j) is the input sequence in X n sent by
the sender in the j th block. Then the probability for giving up at the j th block is
exponentially small in n. In the case yn ∈ T nY |X,δ1(u(j)), y

n receives a coloring
cu(j)(y

n) ∈ {0, 1, . . . , L′′ − 1} in the coloring for T n
Ȳ |X̄(u(j)), where PX̄Ȳ is the

joint ED of (u(j), Y n).

3.1. In the case L ≤ 2[H(Y |XZ)− 3
4 ] i.e., L′′ = L, the sender sends Um′j+1m

′′
j+1

⊕
cm(j)(y

n) � u(j + 1) in the codebook U in the j + 1st block, where ⊕ is
the addition modulo L′′.
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3.2. In the case L > 2n[H(Y |XZ)− 3
4 ], without loss of generality, we assumeL′′|L.

Then the sender partitions {0, 1, . . . , L− 1} into L′′ segments of equal size.
He randomly chooses an �′′j+1 in the m′′j+1 ⊕ cu(j)(yn) segment with equal
probability and sends um′j+1,�

′′
j+1

in the codebook in the (j + 1)-th block.

4. For j = 1, 2, . . . , N in the j th block the receiver decode separately by using
a proper decoder and obtains a ū(j) in the j th block. Thus ū(j) = u(j) with
probability λ′ for a given j . Let λ′ < M−1λ, then ū(j) = u(j) with probability
larger than 1 − λ for all j . The receiver declares m′1 = m̄′1 if ū(1) = um̄′1,� for
some �. The receiver declaresm′jm′′j = m̄′j m̄′′j for m̄′′j = �j(cū(j−1)(y

n) if in the
(j−1)-th block he receives yn and ū(j) = um̄′j �j in the case L′′ = L and ū(j) =
um̄′j ,�′j for an �′j in the �j th segment in the case L′′ < L, for j = 2, 3, . . . , N .
Obviously

(m̄′1, m̄′2m̄′′2, . . . , m̄′Nm̄′′N) = (m′1mm′2m′′2, . . . ,m′Nm′′N)

if ū(j) = u(j) for all j .

We have seen that the probability of error is smaller than λ and it is sufficient for
us to verify the security criterion.

Denote by X̃j , Ỹj and Z̃j , the random input and outputs in the j th block
generated by the code and the random message, (U ′1, U ′2U ′′2 , . . . , U ′NU ′′N)
respectively, for j = 1, 2, . . . , N . Notice here X̃j , Ỹj , and Z̃j are random
sequences of length n. Let Kj be the coloring of the random output sequences
of the legal receiver in the j th block. Write U ′N = (U ′1, U ′2, . . . , U ′N),
U ′′N = (U ′′1 , U ′′2 , . . . , U ′′N) (where U ′1 is a dummy constant), X̃N = (X̃1, . . . , X̃N ),
Ỹ N = (Ỹ1, . . . , ỸN ) and Z̃N = (Z̃1, . . . , Z̃N ). Then we are concerned about an
upper bound to I (U ′NU ′′N ; Z̃N). At first we bound I (U ′N ; Z̃N) with (11). Denote
Z̃j̄ = (Z̃1, Z̃2, . . . , Z̃j−1, Z̃j+1, . . . , Z̃N ).

Then by symmetry, independent of Z̃j̄ and U ′j−1, given U ′j = m, the input of
the channel in the j th block is uniformly distributed on the sub-codebook {um,� :
� = 0, 1, . . . , L−1}. For j = 1 it immediately follows from the step 1 of the coding
scheme. For j > 1, it is sufficient for us to show that P

U ′′j ⊕Kj−1|U ′j−1Z̃j̄
is uniform.

Indeed, for all �, u′j−1, and zj̄

Pr{U ′′j ⊕Kj−1 = �|U ′j−1 = u′j−1, Z̃j̄ = zj̄ }

=
L′′−1∑

m′′=0

L′′−1 Pr{Kj−1 = �(m′′|Uj−1 = u′j−1 ,̃Zj̄ = Zj̄ } = L′′−1.
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This means that for all j and (V , Z̃) in (11) we have

H(U ′j |U ′j−1Z̃N ) = H(U ′j |Z̃j , U ′j−1Zj̄ ) = H(U |Z̃)

and therefore by (11)

I (U ′j ;U ′j−1Z̃N) < μ′

since U ′j and V have the same distribution.
Consequently

I (U ′N ;ZN) =
N∑

j=1

I (Uj ;ZN |Uj−1) ≤
N∑

j=1

I (Uj ;U ′j−1ZN) ≤ Nμ′. (19)

Next we bound I (U ′′j ; Z̃N |U ′NU ′′j−1). At first we observe that by our coding

scheme U ′′j is independent of U ′NU ′′j−1Z̃i for all i < j and therefore

I (U ′′j ; Z̃i|U ′NU ′′j−1Z̃i−1) = 0,

or

I (U ′′j ; Z̃N |U ′NU ′′j−1)

=
j−1∑

i=1

[I (U ′′j ; Z̃i|U ′NU ′′j−1Z̃i−1)+ I (U ′′j ; Z̃j |U ′NU ′′j−1Z̃j−1) (20)

+ I (U ′′j ; Z̃Nj+1|U ′NU ′′j−1Z̃j )]

= I (U ′′j ; Z̃j |U ′NU ′′j−1Z̃j−1)+ I (U ′′j ; Z̃Nj+1|U ′NU ′′j−1Z̃j ), (21)

where Z̃Nj+1 = (Z̃j+1, . . . , Z̃N ).

Moreover by our coding scheme under the condition given U ′NU ′′j−1Z̃j−1

U ′′j ⇔ U ′′j ⊕Kj−1 ⇔ Z̃j

form a Markov chain i.e., by the data processing inequality (Lemma 49).

I (U ′′j ; Z̃j |U ′′NU ′′j−1Zj−1) ≤ I (U ′′j ;U ′′j ⊕Kj−1|U ′NU ′′j−1Zj−1)

= I (U ′′j ;Kj−1|U ′NU ′′j−1Zj−1)

≤ I (U ′NU ′′jZj−1;Kj−1). (22)
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However, because

U ′NU ′′j Z̃j−1 ⇔ X̃j−1Z̃j−1 ⇔ Kj−1

forms a Markov chain, (22) implies

I (U ′′j ; Z̃j |U ′NU ′′jZj−1) ≤ I (X̃j−1Z̃j−1;Kj−1). (23)

For j − 1

Wj−1 =
{

0 if Ỹj−1 ∈ T nY |X,δ1(X̃j−1)

1 else,

then recalling that the output of legal user is colored by Lemma 177 in the j − 1st
block, by AEP we have

Pr{Kj−1 = k|X̃j−1 = xn, Z̃j−1 = jnWj−1 = 0} ≤ L′′−1(1+ δ).

Thus

H(Kj−1|X̃j−1Z̃j−1) ≥ (1− 2−nθ )H(Kj−1|X̃j−1Z̃j−1Wj−1 = 0)

≥ (1− 2−nθ )[logL′′ − log(1+ δ)],

for a θ > 0 as Pr(Wj = 0) > 1− 2−nθ .
Thus for a μ′′ > 0 with μ′′ → 0 as δ→ 0,

I (X̃j−1Z̃j−1;Kj−1) = H(Kj−1)− logL′′ + μ′′ ≤ μ′′, (24)

for sufficiently large n.
Similarly by the coding scheme under the condition given U ′N

U ′′jZj ⇔ Kj ⇔ ZNj+1

forms a Markov chain and therefore

I (U ′′j ;ZNj+1|U ′′NU ′′j−1) ≤ I (U ′′jZj ; Z̃Nj+1|U ′N)

≤ I (U ′′jZj ;Kj |U ′N) ≤ I (U ′NU ′′j Z̃j ;Kj). (25)

However, by the coding scheme

U ′NU ′′j Z̃j ⇔ X̃j Z̃j ⇔ Kj
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forms a Markov chain and so we can continue to bound (25) as

I (U ′′j ;ZNj+1|U ′NU ′′j−1Zj ) ≤ I (X̃j Z̃j ;Kj). (26)

By replacing j − 1 by j in (24) and applying it to (26) we have

I (U ′′j ;ZNj+1|U ′NU ′′j−1Zj) ≤ μ′′. (27)

Finally, we combine (19), (21), (22), (23), and (27), to obtain

I (U ′NU ′′N ; Z̃N)
= I (U ′N ; Z̃N)+ I (U ′′N ; Z̃N |U ′N)

≤ Nμ′ +
N∑

j=2

I (U ′′j ; Z̃N |U ′NU ′′j−1)

= Nμ′ +
N∑

j=2

[I (U ′′j ; Z̃j |U ′NU ′′j−1Z̃j−1)+ I (U ′′j ; Z̃Nj+1|U ′NU ′′j−1Z̃j )]

≤ Nμ′ +
N∑

j=2

[I (X̃j−1Z̃j−1;Kj−1)+ I (U ′′j ; Z̃Nj+1|U ′NU ′′j−1Z̃j )]

≤ Nμ′ + 2(N − 1)μ′′ < μ,

for sufficiently small μ′ and μ′′.
This completes our proof. ��

5 Capacity of Two Special Families of Wire-Tap Channels

In this section we apply Theorem 178 to show the following upper bound of
capacity, which is believed not to be tight in general, but is tight for wire-tap
channels with certain Markovities.

Let Q′ be the set of triples of RV’s (X, Y,Z) with joint distribution

PXYZ(x, y, z) = PX(x)W(y, z|x)

for x ∈ X , y ∈ Y , and z ∈ Z .
Then
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Lemma 179 For all wire-tap channels

Cwtf ≤ max
(X,Y,Z)∈Q′ min[H(Y |Z), I (X; Y )]. (28)

Proof For a given (λ, μ)-code for the wire-tap channel, let Xn, Yn, Zn be the input
and outputs generated by uniformly distributed messages U through the code. Then
in the same way to show the converse coding theorem of a (two terminal) noisy
channel with feedback, one obtains that

Cwtf ≤ 1

n

n∑

t=1

I (Xt ; Yt )+ ε′ (29)

where ε′ → 0 as λ→ 0.
On the other hand, by the security condition and Fano’s inequality (Lemma 48)

we have

Cwtf = 1

n
H(U) ≤ 1

n
H(U |Zn)+ μ

≤ 1

n
H(U |Zn)− 1

n
H(H |Yn)+ λ log |X | + 1

n
h(λ) + μ

≤ 1

n
H(U |Zn)− 1

n
H(U |YnZn)+ λ log |X | + 1

n
h(λ)+ μ

= 1

n
I (U ; Yn|Zn)+ ε′′ ≤ 1

n
H(Yn|Zn)+ ε′′

= 1

n

n∑

t=1

H(Yt |ZnY t−1)+ ε′′ ≤ 1

n

n∑

t=1

H(Yt |Zt)+ ε′′, (30)

where h(λ) = −λ logλ− (1− λ) log(1− λ) and ε′′ = λ log |X | + 1
n
h(λ)+μ→ 0

as λ,μ→ 0.
Let (UXYZ) be a quadruple of RV’s with distribution

PUXYZ(t, z, y, z) = 1

n

n∑

t=1

PXtYtZt (x, y, z)

for t ∈ {1, 2, . . . , n}, x ∈ X , y ∈ Y , z ∈ Z .
Then (XYZ) ∈ Q′ and by (29) and (30) for ε = max(ε′, ε′′)

Cwtf ≤ min[H(Y |ZU), I (X; Y |U)] + ε ≤ min[H(Y |Z), I (X; Y )] + ε,
where ε→ 0 as λ,μ→ 0.

That is, (28). ��
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Corollary 180 For a wire-tap channelW such that there exist W1 : X → Y , and
W2 : Y → Z with

W(y, z|x) = W1(y|x)W2(z|y), (31)

for all x ∈ X , y ∈ Y , and z ∈ Z

Cwtf = max
(X,Y,Z)∈Q′,min[H(Y |Z), I (X; Y )].

Proof By Markov condition (31), we have that for all (X, Y,Z) ∈ Q′

I (X; Y )− I (X,Z) ≥ 0 (32)

and

I (X;Z|Y ) = 0. (33)

Thus

|I (X; Y )− I (X;Z)|+ +H(Y |XZ) = H(X|Z)−H(X|Y )+H(Y |XZ)

= H(XY |Z)−H(X|Y )

= H(Y |Z)+H(X|YZ)−H(X|Y )

= H(Y |Z)+ I (X;Z|Y )

= H(Y |Z).

Then corollary follows from Theorem 178 and Lemma 179. ��
Corollary 181 For a wire-tap channel such that there exist W ′

1 : X → Z and
W ′

2 : Z → Y with

W(y, z|x) = W ′
1(z|x)W ′

2(y|z) (34)

for x ∈ X , y ∈ Y , and z ∈ Z

Cwtf = max
(X,Y,Z)∈Q′,min[H(Y |Z), I (X; Y )].

Proof The Markov condition (34) implies that

I (X; Y )− I (X;Z) ≤ 0 (35)
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and

H(Y |XZ) = H(Y |Z), (36)

which yield

|I (X; Y )− I (X;Z)|+ +H(Y |XZ) = H(Y |XZ) = H(Y |Z). (37)

Thus the corollary follows from Theorem 178 and Lemma 179. ��
Example An interesting example is a special channel for which W ′

1 is a noiseless
channel and W ′

2 is a noisy channel in Corollary 181 e.g., W1 is a noiseless binary

channel,W ′′
2 is a binary symmetric channel with crossover probability p ∈

(
0, 1

2

)
.

For this channel the wiretapper is in a better position than the legal user. So the
capacity is zero without feedback. The feedback makes the capacity positive by our
Corollary 181 as it serves as a secure key shared by sender and receiver. �

6 Discussion: Transmission, Building Common Randomness
and Identification

As goals of communications are considered transmission i.e., sending a given
message from a set of messages, building common randomness i.e., to provide
a random resource shared by users, and identification i.e., identifying whether an
event of interest to a particular user occurs ([2–5, 13]).

Roughly saying in a given communication system, the capacity of transmission is
upper bounded by the capacity of common randomness, since common randomness
shared by a sender and receiver can be built by transmission whereas the capacity of
identification is lower bounded by capacity of common randomness, if the former
is positive, which is shown by a scheme in [5] (chapter “Identification in the
Presence of Feedback: A Discovery of New Capacity Formulas” in Part I) to build
identification codes by common randomness. That is,

capacity of transmission ≤ capacity of common randomness (38)

≤ capacity of identification. (39)

However, in different communication systems equalities in (39) may or may not
hold. In this section we illustrate the variety in two-terminal channels and wire-
tap channels. More examples in more complicated communication systems can be
found e.g., in [2, 3, 12, 15].

First of all, obviously the first inequality in (39) is always an equality for a
two terminal channel without feedback, because all information obtained by the
receiver is from the transmission via the channel. Moreover, it has been shown in
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[4] (chapter “Identification via Channels” in Part I) that the second inequality is an
equality and therefore the three quantities in (39) are actually the same if the channel
is discrete memoryless. A channel with rapidly increasing alphabet (as the length of
codes grows) for which the capacity of identification is strictly larger than capacity
of common randomness was described in [6]. It was shown in [8] that under a certain
condition the capacity of common randomness (which is equal to the capacity of
transmission) for Gaussian channels is finite whereas the capacity of identification is
infinite in the same communication system. We notice that Gaussian channels have
continuous, or infinite alphabets. It is natural to expect that for a discrete channel
whose input alphabet “reasonably” increases the last two quantities, or consequently
the three quantities in (39) are equal. This was shown in [14] for all channels whose
input alphabets exponentially increase as the lengths of codes linearly increase.

The situation of two terminal channels is different when feedback is present.
In this case the capacity of identification, which is equal to the capacity of
common randomness, is strictly larger than the capacity of transmission for simplest
channels, namely discrete memoryless channels (chapter “Identification in the
Presence of Feedback: A Discovery of New Capacity Formulas”. The reason is
clear. On one hand, it is well known, feedback does not increase the capacity of
transmission for discrete memoryless channels. On the other hand, the feedback
provides a random resource, shared by sender and receiver, the random output,
whose rate, roughly speaking, is input entropy. Obviously it increases common
randomness between sender and receiver and therefore capacity of identification.

Next we turn to wire-tap channels without feedback. More precisely, we mean
secure common randomness shared by sender and receiver, about which the wire-
tapper has (almost) no knowledge. By the same reason as for two terminal channels
without feedback, the capacity of (secure) common randomness is not larger than
the capacity of transmission over the wire-tap channel. In fact it is shown in [2] and
[3] (chapters “Perspectives” and “The Role of Common Randomness in Information
Theory and Cryptography: Secrecy Constraints”), that it may not be larger than
the capacity of transmission even in the case where a public forward channel with
unbounded capacity is available to the sender and receiver. This intuitively is not
surprising. Ahlswede and Zhang observed in [7] (see chapter “Identification via
Channels with Noisy Feedback” in Part I) that to keep the message to be identified
in secret a secure common randomness with positive rate is sufficient and the major
part of common randomness between the legitimate communicator applied in the
identification code in [5] (chapter “Identification in the Presence of Feedback: A
Discovery of New Capacity Formulas”) can be publicly sent.

Based on this observation they show that the capacity of identification is strictly
larger than the capacity of secure common randomness. A more detailed analysis
in [9] shows that the amount of secure common randomness needed only depends
on the probability of second error and security criterion and is independent of the
rate of messages. For fixed criterion of error and security, a constant amount – or
zero-rate – of secure common randomness is sufficient, if provided with sufficiently
large public common randomness.



342 Transmission, Identification and Common Randomness Capacities for Wire-Tap. . .

Ahlswede gave an example of a non stationary memoryless channel with
double exponentially growing input alphabet with identification capacity 1 and
common randomness capacity 0. The structure of this channel has some similarities
to the structure of ID-codes used in most of the achievability proofs for ID-
coding theorems, thus it can be viewed as a channel with “built–in” ID-encoder.
Kleinewächter gave a counter example for the other direction. For given real
numbers CID and CCR with 0 < CID < CCR, he explicitly construct a discrete
channel with memory and noiseless passive feedback with identification capacity
CID and common randomness capacity CCR. This channel is constructed in such
away that it can be used in two ways. In one respect, the channel is good for the
generation of common randomness, in the other it is suitable for identification. It is
quite reasonable to consider channels with memory. One may think for example of
a system where data are transmitted by different voltage levels at high frequency.
Because of the electrical capacity of the system it can be difficult to switch from
a low voltage level to a high one and vice versa. There are also certain types
of magnetic recording devices have problems with long sequences of the same
letter. These examples for instance lead to the notion of run length limited codes.
A third example are systems requiring the use of binary codewords which have
approximately the same number of zeroes and ones. This limitation arises if the
system can only transmit an unbiased alternating current, therefore these codes are
called DC-free.

Let us return to our main topic wire-tap channels with secure feedback and
investigate (39) in this communication system. We immediately find that the
observation about wire-tap channels without feedback is still valid when feedback
is present, because there is nothing in the observation which links to the existence
of feedback. This means that the capacity of identification must be the capacity of
“public” common randomness between sender and receiver i.e., the maximum rate
of common randomness shared by the sender and the receiver, neglecting whether or
how much the wiretapper knows about it once a positive amount of secure common
randomness is provided. But now the public common randomness is the maximum
output entropy for the channelW1 : X → Y defined by

W1(y|x) =
∑

z∈Z
W(y, z|x) for all x ∈ X , y ∈ Y, (40)

or in other words max
(X,Y,Z)∈Q′H(Y), for Q′ as defined in Sect. 5. So we conclude that

in this case the capacity of identification is either zero or max
(X,Y,Z)∈Q′,H(Y ). The only

problem left is to find suitable conditions for the positivity of the capacity. We shall
discuss this later.

To see the relation of the first pair of quantities in (39), we take a look at our
main result

Theorem 182 The information theoretical meaning of mutual information in (13)
is obvious. The capacity of transmission with security criterion can not exceed that
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without it. So we expect this term could be removed in the formula of capacity of
common randomness. To investigate the remaining term in (13), let us recall our
coding scheme in Sect. 4.

From the first block to the second last block, the transmission in each block has
two tasks, sending a secret messagem′j (in the j th block) with a rate ∼ |I (U ; Y )−
I (U ;Z)|; and generating a secure common randomness with a rate ∼ H(Y |UZ),
which will be used as a private key to send message m′′j+1 in the next block. This
gives us a secure common randomness with rate ∼ H(Y |UZ). The reason for the
fact that U occurs in the “condition” is that the key for the (j +1)-th block has to be
independent of the message sent in the j th block. For secure common randomness
itself this is not necessary. So we expect that the capacity of common randomness
is max
(X,Y,Z)∈Q′H(Y |Z), which actually is shown in the next section.

But before this we have a remaining problem, namely the positivity of the
capacity of identification, which should be discussed. First we notice that to have
positive capacity of identification, the capacity of the channelW1 in (40), where we
do not count wiretapper’s role, has to be positive. By counting wiretapper’s role, we
look for an input RV X, the conditional entropy H(Y |Z) for output RV Y and Z
has to be positive, because otherwise the wiretapper would know everything known
by the legal receiver. We shall show that the two necessary conditions together are
sufficient for the positivity.

7 The Secure Common Randomness Capacity
in the Presence of Secure Feedback

Let Jn = {0, 1, . . . , Jn− 1} be a finite set (whose size depends on n), λ,μ > 0. An
(n, Jn, λ, μ)-common randomness for the wire-tap channel with secure feedback
is a pair of random variables (Kn,Ln) defined on the same domain Jn with the
following properties.

There exists a RV U taking value in a finite set U and three functions θn : U ×
Yn−1 → X n, ϕ : U × Yn → Jn, and � : Yn → Jn such that for all u ∈ U and
yn−1 ∈ Yn−1

θn(u, yn−1) = (θ1(u), θ2(u, y1), . . . , θn(u, y
n−1)), (41)

Kn = ϕ(U, Y n), (42)

Ln = �(Yn), (43)

where Yn and Zn are output RV’s for the legal receiver and the wiretapper,
respectively, generated by random variable U , encoding function θn, and the
channelW .
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I.e.

Pr((Y n, Zn) = (yn, zn)) =
∑

u∈U
Pr(U = u)W(y1, z1|θ1(u))

n∏

t=2

W(yt , zt |θt (u, yt−1)).

(44)

Pr(Kn �= Ln) < λ, (45)

1

n
H(Kn|Zn) > 1

n
log Jn − μ. (46)

1
n

log Jn is called rate of the code and the capacity of the (secure) common
randomness, denoted by CwtfCR, is defined as the maximum achievable rate in the
standard way.

Theorem 183

CwtfCR = max
(X,Y,Z)∈Q′H(Y |Z), (47)

in particular, the RHS of (7.7) is achievable if (7.6) is replaced by a stronger
condition

H(Kn|Zn) > log Jn − μ. (48)

Proof The proofs to both, direct and converse parts, are straightforward. They
immediately follow from the proofs for Theorem 178 and Lemma 179, respectively.

Let (X′, Y, Z) ∈ Q′ achieve the maximum at RHS (47). Apply Lemma 177 to
color sets of typical remaining sequences T n

Y ′ ⊂ T nY,δ ,1 then it follows from the proof
of Theorem 178 (the part to show (23)) that for any fixed μ > 0 and sufficiently
large n

H(K̃|Zn) > log Jn − μ,
where K̃ is the random Jn-coloring obtained from Lemma 177.

Choose Kn = Ln = K̃ , then the proof of the direct part is done. To show the
converse part we apply Fano’s inequality (Lemma 48) to (45). Then

1

n
log Jn ≤ 1

n
H(Kn|Zn)+ μ

≤ 1

n
H(Kn|Zn)− 1

n
H(Kn|Yn)+ μ+ 1

n
λ log Jn + 1

n
h(λ)

1More precisely, let X0 = {x0}, xn = (x0, x0, . . . , x0), and (X,X′, Y, Z) be RV’s with joint
distribution Pr((X,X′, Y, Z) = (xn, x′n, yn, zn)) = PX′YZ(x′n, yn, zn) for all x′n, yn, zn and
coloring for the “conditional” typical sequences T nY |X(xn) = T nY .
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≤ 1

n
H(Kn|Zn)− 1

n
H(Kn|Yn,Zn)+ μ+ 1

n
λ log Jn + 1

n
h(λ)

≤ 1

n
I (Kn; Yn|Zn)+ μ+ 1

n
λ log Jn + 1

n
h(λ)

≤ 1

n
H(Yn|Zn)+ μ+ 1

n
λ log Jn + 1

n
h(λ).

Now the converse follows as in the proof for Lemma 179. ��

8 The Secure Identification Capacity in the Presence
of Secure Feedback

In this section let us take a look at the coding theorem for identification codes.
First we have to formally define the codes and capacity. An (n, |M|, λ1, λ2, μ)-
identification code for a wire-tap channel with secure feedback is a system {Q,Dm :
m ∈M} such thatQ :M× Yn−1 → X n is a stochastic matrix with

Q(xn|m, yn−1) = Q1(x1|m)
n∏

t=2

Qt(xt |m, yt−1)

form ∈M, yn−1 ∈ Yn−1, for all m ∈M

∑

xn∈X n

∑

yn∈Dm
Qn(x1|m)

n∏

t=2

Qt(xt |m, yt−1)W1(yt |xt ) > 1− λ1,

form,m′ ∈M with m �= m′

∑

xn∈X n

∑

yn∈D′
m

Q1(x1|m)
n∏

t=2

Qt(xt |m, yt−1)W1(yt |xt ) < λ2,

and for all m,m′ ∈M, m �= m′ and V ⊂ Zn

∑

xn∈X n

∑

yn∈Yn
Q1(x1|m′)

n∏

t=2

Qt(xt |m′, yt−1)W(yn,V |xn)

+
∑

xn∈X n

∑

yn∈Yn
Q1(x1|m)

n∏

t=2

Qt(xt |m, yt−1)W(yn,Vc|xn) > 1− μ.

Then capacity of identification is defined in the standard way and denoted byCwtfID.
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CwtfID is upper bounded by the RHS of (49), follows from the converse of the
coding theorem of identification with feedback for channel W1 (chapter “Identifi-
cation in the Presence of Feedback: A Discovery of New Capacity Formulas”). In
the case that II holds, one can construct a code achievingH(Y) asymptotically from
the code in chapter “Identification via Channels with Noisy Feedback” by replacing
the ordinary code for W1 by a uniform partition of output sequences for the legal
receiver and a code for the wire-tap channel without feedback by a code for the same
channel but with feedback.

Furthermore the two conditions in III

Theorem 184 The following statements are equivalent.

(i)

CwtfID = max
(X,Y,Z)∈Q′H(Y) (49)

(ii) Cwtf > 0
(iii) There exists an (X, Y,Z) ∈ Q′ such that

H(Y |Z) > 0

and the channelW1 has positive capacity.

Proof The converse of the coding theorem i.e., CwtfID is upper bounded by the right
hand side of (49) follows from the converse of coding theorem of identification with
feedback for channelW1 ([4], chapter “Identification via Channels”). In the case that
(ii) holds, one can construct a code achieving H(Y) asymptotically from the code
in theorem 2 (see chapter “Identification via Channels”) by replacing the ordinary
code forW1 by a uniform partition of output sequences for the legal receiver and a
code for the wiretap channel without feedback by a code for the same channel but
with feedback.

Furthermore the two conditions in (iii) obviously are necessary for positivity of
CwtfID. The only thing left to be proved is that (iii) implies (ii). Let (Xi, Yi , Zi) ∈ Q′
for i = 0, 1 such that H(Y0|Z0) > 0 and I (X1, Y1) > 0. By Theorem 178, it is
sufficient for us to find (U,X, Y,Z) ∈ Q such that I (U ; Y ) > 0 and H(Y |UZ) >
0. Obviously we are done, if I (X0; Y0) > 0 or H(Y1|U1, Z1) > 0. Otherwise we
have to construct a quadruple of RV’s (U,X, Y,Z) ∈ Q from (X0, Y0, Z0) and
(X1, Y1, Z1) such that H(Y |UZ) > 0 and I (U ; Y ) > 0. To this end, let U =
X ∪ {u0}, (where u0 is a special letter not in X ), and for all u ∈ U , x ∈ X , y ∈ Y
and z ∈ Z , let (U,X, Y,Z) be a quadruple of RV’s such that

PUXYZ(u, x, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2PX0Y0Z0(x, y, z) if u = u0
1
2PX1Y1Z1(x, y, z) if u ∈ X and u = x
0 otherwise.
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Then (U,X, Y,Z) ∈ Q, PYZ|U(y|u0) = PY0Z0(yz) for all y ∈ Y and z ∈ Z .
P0(u0) = 1

2 and therefore

H(Y |UZ) =
∑

u∈U
PU(u)H(Y |U = uZ) ≥ 1

2
H(Y |U = u0Z) = 1

2
H(Y0|Z0) > 0.

On the other hand for

S =
{

0 if U = u0

1 otherwise,

for all u ∈ X , y ∈ Y

PUY |S(u, y|S = 1) = PX1Y1(u, y)

and Ps(1) = 1
2 and consequently

I (U ; Y ) = I (US; Y ) ≥ I (U ; Y |S) ≥ Ps(1)I (U ; Y |S = 1) = 1

2
I (X1; Y1) > 0.

That is, (U,X, Y,Z) is as desired. ��
We conclude with the

Corollary 185

CwtfID =
⎧
⎨

⎩
max

(X,Y,Z)∈Q′H(Y |Z)
0

and CwtfID = 0 iff for all (X, Y,Z) ∈ Q′ H(Y |Z) = 0 or the capacity ofW1 is zero.

Proof That for all (X, Y,Z) ∈ Q′, H(Y |Z) = 0 implies that the wiretapper knows
what the receiver receives with probability one no matter how the sender chooses the
input and that the capacity ofW1 is zero means the sender may not change the output
distributions at the terminal for the legal receiver. So in both cases CwtfID = 0. Thus
the corollary follows from Theorem 184. ��
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Secrecy Systems for Identification
Via Channels with Additive-Like
Instantaneous Block Encipherer

In this lecture we propose a model of secrecy systems for identification via channels
with ALIB encipherers and find the smallest asymptotic key rate of the ALIB
encipherers needed for the requirement of security.

1 Introduction

Attention: This is the only lecture in the book which works with the optimistic
capacity, which is the optimal rate achievable with arbitrary small error probability
again and again as the blocklength goes to infinity.

The criticism of this concept made in [B34] has been supplemented by a new
aspect: in cryptology enemies strongest time in wire-tapping must be taken into
consideration!

The model of identification via channels was introduced by Ahlswede and
Dueck. [2] (see chapter “Identification via Channels”, Part I) based on the following
cases. The receivers of channels only are interested in whether a specified message
was sent but not in which message was sent and the senders do not know in which
message the receivers are interested. Sometimes the sender requires that the message
sent can be identified only by legitimate receivers of the channel but not by any one
else (e.g., wiretapper). For example, a company producesN kinds of products which
are labeled by j = 1, 2, · · · , N . The company wants to sell a kind of products only
to the members of the company’s association. For other customers it even does not
want them to know what it is going to sell. In this case the company can use a secrecy
system for identification via channels with additive-like instantaneous block (ALIB)
encipherers, i.e., the sender encrypts the message (identification code) with a private
key sending it via the channel and sends the same key only to the members of the
company’s association through a secure channel. The secrecy system with ALIB
encipherers was investigated by Ahlswede and Dueck [1], but their model needs to
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be adapted to satisfy the requirement of identification via channels. In this lecture
we consider the model of secrecy systems for identification via channels with ALIB
encipherers and investigate the smallest asymptotic key rate of the ALIB encipherers
needed for the requirement of security.

In Sect. 2, we review the necessary background of identification via channels.
Our model is described in Sect. 3. Our result for symmetric channels is proved
in Sect. 4.

2 Background

Let X , K, Y and Z be finite sets. For simplicity, we assume that X = K = Y =
Z = GF(q) with q ≥ 2. Let W = {Wn}∞n=1 be a memoryless channel with
transmission matrix (w(z|x); x ∈ X , z ∈ Z).

Definition 186 A randomized (n,Nn,μn, λn) identification (ID) code for the
channel Wn is a system {(Qi,Di); 1 ≤ i ≤ Nn}, where Qi is a probability
distribution (PD) of the random codewordXn(i) generated by a randomized encoder
ϕn(i), i.e.Qi(xn) = Pr{Xn(i) = xn}, xn ∈ X n, Di ⊂ Zn is a decoding set.

Denote by Zn(i) the output ofWn when the input is Xn(i) andQiWn the PD of
Zn(i). Set μ(i)n = QiWn(Dci ) = Pr{Zn(i) ∈ Zn −Di} and λ(j,i)n = QjWn(Di) =
Pr{Zn(j) ∈ Di}(j �= i). μn = max

1≤i≤Nn
μ
(i)
n and λn = max

1≤j,i≤Nn,j �=i
λ
(j,i)
n are called

the error probability of the first and second kind for the ID code, respectively,
1
n

log logNn = rn is called the rate of the ID code.

Definition 187 A rate R is a (μ, λ)-achievable rate if there exists a sequence of
(n,Nn,μn, λn) ID codes for the channelWn (1 ≤ n <∞) satisfying the following
conditions.

(i) lim sup
n→∞

μn ≤ μ,

(ii) lim sup
n→∞

λn ≤ λ,

(iii) lim inf
n→∞ rn ≥ R.

The (μ, λ)-Id capacity for the channelW is defined by

D(μ, λ|W) = sup(R|R is (μ, λ) -achievable).

Theorem 188 (Ahlswede and Dueck 1989 [2]) Let W = {Wn}∞n=1 be an
arbitrary channel. If there exists a number ε satisfying 0 ≤ ε ≤ μ and 0 ≤ ε ≤ λ,
then it holds that D(μ, λ|W) ≥ C(ε|W), where C(ε|W) denotes the ε-channel
capacity of the channelW which is defined as follows.
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Definition 189 Rate R is ε-achievable if there exists a sequence of (n,Mn, εn)
codes for the channelWn(1 ≤ n ≤ ∞) satisfying the following conditions.

(i) lim sup
n→∞

εn ≤ ε,
(ii) lim inf

n→∞
1
n

logMn ≥ R.

The ε-channel capacity for the channelW is defined by

C(ε|W) = sup(R|R is ε-achievable).

Theorem 188 is proved by using the following lemma.

Lemma 190 (Ahlswede and Dueck 1989 [2]) Let M be an arbitrary finite set of
size M =| M |. Choose constants τ and κ satisfying 0 < τ ≤ 1

3 and 0 < κ <

1 and κ log( 1
τ
− 1) ≥ log 2 + 1, where the natural logarithms are used. Define

N = �eτM/Me	. Then, there exist N subsets A1, A2, · · · , AN of M satisfying
| Ai |= �τM	 (1 ≤ i ≤ N) and | Ai ∩Aj |< κ�τM	(i �= j).
Using Lemma 190 the ID-code for proving Theorem 188 can be constructed as
follows.

Let γ > 0 be an arbitrarily small constant and set R = C(ε|W) − γ . By
Definition 189 R is ε-achievable as a rate of the transmission code. Therefore, there
exists a sequence of (n,Mn, εn) codes for the channelWn(1 ≤ n < ∞) satisfying
the following conditions:

(i) lim sup
n→∞

εn ≤ ε,
(ii) lim inf

n→
1
n

logMn ≥ R,

where εn denotes the maximum decoding error probability of the code. Denote the
(n,Mn, εn) code by Cn = {c1, c2, · · · , cMn}
(ci ∈ X n) and let Ei be the decoding region corresponding to ci(1 ≤ i ≤Mn).

Now we apply Lemma 190 by setting M = {1, 2, · · · ,Mn},M = Mn, τ = τn =
1

(n+3) , κ = κn = 2
log(n+2) and N = Nn = �eτnMn/Mne	. Since all conditions of

Lemma 190 are satisfied, there exist Nn subsets A1, A2, · · · , ANn of M satisfying
|Aj | = �τnMn	(1 ≤ j ≤ Nn) and | Aj ∩ Ak |< κn�τnMn	(j �= k). Define the
subsets Sj (1 ≤ j ≤ Nn) of Cn by Sj = ⋃

i∈Aj
{ci} and let Qj denote the uniform

distribution over Sj . DefineDj = ⋃
i∈Aj

Ei as the decoding set corresponding toQj .

It is shown that the constructed ID code {(Qj ,Dj ); 1 ≤ j ≤ Nn} can be used to
prove Theorem 188.

Theorem 188 gives the direct theorem on the ID coding problem. We need the
converse theorem also. Since the converse theorem is essentially related to the
channel resolvability problem, we can introduce the channel resolvability instead.

LetW = {Wn}∞n=1 be an arbitrary channel with input and output alphabetsX and
Y respectively. Let Y = {Yn}∞n=1 be the output from the channelW corresponding
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to a given input X = {Xn}∞n=1. We transform the uniform random number UMn
of size Mn into another input X̃ = {X̃n}∞n=1. That is, X̃n = fn(UMn), fn :
{1, 2, · · · ,Mn} → X n.

Denote by Ỹ = {Ỹ n}∞n=1 the output from the channel W with an input X̃. The
problem of how we can choose the sizeMn of the uniform random numberUMn and
the transform fn such that the variational distance between Y = {Yn}∞n=1 and Ỹ =
{Ỹ n}∞n=1 satisfies lim

n→∞ d(Y
n, Ỹ n) = 0 is sometimes called the channel resolvability

problem. In this problem, the criterion of approximation can be slightly generalized
to lim sup

n→∞
d(Y n, Ỹ n) ≤ δ, where δ is an arbitrary constant satisfying 0 ≤ δ < 2.

Definition 191 Rate R is δ-achievable for an input X = {Xn}∞n=1 if there exists a
sequence of transforms X̃n = fn(UMn)(1 ≤ n <∞) satisfying

lim sup
n→∞

d(Y n, Ỹ n) ≤ δ and lim sup
n→∞

1

n
logMn ≤ R,

where Yn and Ỹ n denote the channel outputs corresponding to Xn and X̃n,
respectively. The channel δ-resolvability for an input X is defined by

SX(δ|W) = inf(R|R is δ-achievable for an input X).

Theorem 192 (Han 2003 [4]) Let W be an arbitrary channel with time structure
and X an arbitrary input variable. Then, it holds that SX(δ|W) ≤ I (X; Y ) for
all δ ≥ 0, where Y denotes the channel output variable corresponding to X and
I(X; Y ) represents the sup-mutual information rate defined by

I (X; Y ) = p − lim sup
n→∞

1

n
log
Wn(Yn|Xn)
PYn(Y n)

(1)

= inf

(
α

∣∣∣∣ lim
n→∞ Pr

XnYn

{
1

n
log
Wn(Yn|Xn)
PYn(Y n)

> α

}
= 0

)
. (2)

3 Model

In this section we propose a model of the secrecy systems for identification via
channels with ALIB encipherers. We keep the notations and assumptions given
in Sect. 2 for reviewing the background of identification via channels.

Let {(Qi,Di) : 1 ≤ i ≤ Nn} be the (n,Nn,μn, λn) ID code constructed as in
the proof of Theorem 188 for the channelW . Recall that an (n,R) ALIB encipherer
is a subset C ⊂ Kn with | C |< enR. Let f : X × K → Y be a function, where
f (x, ·) is bijective for each x ∈ X and f (·, k) is bijective for each k ∈ K. f n :
X n × Kn → Yn denotes the n-fold product of f . Given a pair (f, C) we define
a secrecy system which works as follows. If the sender wants to send a message
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i(1 ≤ i ≤ Nn), he sends the random codeword Xn(i) generated by the randomized
encoder ϕn(i). Before he transmits Xn(i) he uses a random key generator Kn to
generate kn according to the uniform distribution on C. Then the sender encrypts
Xn(i) into the random cryptogram Yn(i) = f n(Xn(i),Kn) and sends it to the
receiver over the channelWn. Suppose thatXn(i) andKn are mutually independent.
The used key kn is sent to the receiver over a secure channel. Denote by Z̃n(i) the
output of the channel Wn when the input is the cryptogram Yn(i). In general, the
receiver cannot use the same key kn to recover the received codeword Zn(i) from
the received cryptogram Z̃n(i) since the channelWn is noisy. In order to solve this
problem, we assume that f (x, k) = x + k, where + operates in GF(q). Then we
have Yn(i) = Xn(i) + Kn. Further, we need to assume that the channel Wn is
memoryless with symmetric transmission matrix, more specifically, the output and
input of the channel Wn have the following relation: Z̃n(i) = Yn(i) + En, where
En = (E1, E2, · · · , En) is a sequence of independent RV’s with the same PD on
GF(q). Combining the two assumptions, we obtain Z̃n(i) = Xn(i)+Kn + En =
Zn(i)+Kn orZn(i) = Z̃n(i)−Kn. Hence the receiver can getZn(i) from Z̃n(i) by
using the same key kn and decides that the message i(1 ≤ i ≤ Nn) is sent if Zn(i) ∈
Di . Since the PD of Zn(i) is QiWn and QiWn(Dci ) ≤ μn, QjWn(Di) ≤ λn(j �=
i), the receiver can identify the message i with error probabilities of the first kind and
second kind not greater than μn and λn, respectively. Another customer intercepts
the channel output Z̃n(i) and attempts to identify a message j (1 ≤ j ≤ Nn) being
sent. Since the customer does not know the actual key kn being used, he has to use
Z̃n(i) and his knowledge of the system for deciding that the message j is sent. We
need a security condition under which the customer can not decide for any fixed
message j (1 ≤ j ≤ Nn) being sent with small error probability. Such a condition
was given by Ahlswede and Zhang [3] (see chapter “Identification via Channels
with Noisy Feedback”, Part I) for investigating the problem of identification via
a wiretap channel. This condition is also suitable for our model. The condition is
stated as follows.

Security Condition. For any pair of messages (i, j)(1 ≤ i �= j ≤ Nn) and
D ⊂ Zn, it holds that Q̃iWn(Dc) + Q̃jWn(D) > 1 − δn and lim

n→∞ δn = 0, where

Q̃i and Q̃iWn denote the PD of Yn(i) and Z̃n(i) respectively.
From the identity Q̃iWn(Dc) + Q̃iWn(D) = 1 for any i(1 ≤ i ≤ Nn) and any

D ⊂ Z and the Security Condition, we obtain Q̃jWn(D) > 1− Q̃iWn(Dc)− δn =
Q̃iW

n(D) − δn for any pair (i, j)(1 ≤ i �= j ≤ Nn). Therefore, the Security
Condition means that Q̃iWn and Q̃jWn are almost the same for any pair (i, j) with
i �= j . Hence the customer can not decide on any fixed message j (1 ≤ j ≤ Nn)
being sent with small error probability.

We are interested in the following problem. What is the largest rate R of the
ALIB encipherer C so that the distributions Q̃iWn(i = 1, 2, · · · , Nn) satisfy the
Security Condition.
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4 Main Result

For the model of a secrecy system described in Sect. 3 we obtain the following main
result.

Theorem 193

1. Assume for the alphabets X = K = Y = Z = GF(q)(q ≥ 2) and that
W = {Wn}∞n=1 is a memoryless symmetric channel with the transmission matrix
(w(z|x) > 0; x ∈ X , z ∈ Z).

2. Assume that the function f (x, k) = x + k, where + operates in the finite field
GF(q).

3. Suppose that the random keyKn has uniform distribution on the ALIB encipherer
C ⊂ Kn and is mutually independent with each random codeword Xn(i)(1 ≤
i ≤ Nn).

Then, the secrecy system for identification via the channelW with ALIB encipherers
possesses the following properties.

(i) The secrecy system can transmit Nn messages i = 1, 2, · · · , Nn with

lim inf
n→∞

1

n
log logNn ≥ log q +

∑

z∈Z
w(z|x) logw(z|x)− γ,

where γ > 0 is an arbitrarily small number and x ∈ X is fixed, the legitimate
receiver can identify the message i(1 ≤ i ≤ Nn) with arbitrarily small error
probability.

(ii) The smallest asymptotic key rate R of the ALIB encipherer C is R =
− ∑
z∈Z

w(z|x) logw(z|x) (x ∈ X is fixed) for the distributions Q̃iWn(i =
1, 2, · · · , Nn) satisfying the Security Condition. Hence, the other customer can
not judge any fixed message j (1 ≤ j ≤ Nn) being sent from Q̃iWn with small
error probability.

Proof

(i) By assumption 1, the transmission capacity of the channel W is C(W) =
C(0|W) = log q + ∑

z∈Z
w(z|x) logw(z|x). Using Theorem 188 with ε = 0,

we obtain that the (μ, λ)-ID capacity of the channel W, D(μ, λ|W) ≥ C(W)
for μ ≥ 0, λ ≥ 0. Hence, there exists a sequence of (n,Nn,μn, λn) ID codes
for the channel Wn(1 ≤ n < ∞) satisfying the conditions: 1: lim

n→∞μn = 0;

2: lim
n→∞ λn = 0; 3: lim inf

n→∞ rn ≥ C(W) − γ . Using the Id codes in the secrecy

system, the property (1) holds.
(ii) By assumption 2, the random cryptogram Yn(i) = Xn(i) + Kn, where the

random key Kn has uniform distribution on an ALIB encipherer C ⊂ Kn.
Ahlswede and Dueck [1] have pointed out that Yn(i) and Kn can be regarded
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as the output and input of the channel denoted by V = {V n}∞n=1. In the case
of identification, the channel V is a general channel rather than a memoryless
channel. By assumption 3, the transmission probability of the channel V n can
be defined as V nyn|kn =

∑
xn
Qi(x

n)δ(yn, xn + kn), where

δ(yn, xn + kn) =
⎧
⎨

⎩
1, if yn = xn + kn,
0, otherwise.

In order to prove property (ii), we want to apply Theorem 192 for the general
channel V . First, we consider the input Un of the channel V n which has uniform
distribution on the ALIB encipherer C = Kn. It is evident that the PD of the
output Yn(i) corresponding to the input Un is the uniform distribution on Yn, i.e.,
Q̃i(y

n) = Pr{Yn(i) = yn} = q−n for any yn ∈ Y and any i(1 ≤ i ≤ Nn).
By the assumption 1, it is also evident that the PD of the output Z̃n(i) of the
channel Wn corresponding to the input Yn(i) is the uniform distribution on Zn,
i.e., Q̃iWn(zn) = q−n for any zn ∈ Zn and any i(1 ≤ i ≤ Nn). Hence
Q̃iW

n(1 = 1, 2, · · · , Nn) satisfy the Security Condition. But the key rate of
C = Kn equals log q , it can be reduced. Then, applying Theorem 192 for the
input U = {Un}∞n=1 and δ = 0, we obtain SU(0|V ) ≤ I(U, Y (i)), where
Y (i) = {Yn(i)}∞n=1. We use formula (2) to compute I(U, Y (i)). We have seen
that Pr{Yn(i) = yn} = PYn(i)(y

n) = q−n for any yn ∈ Yn and V nyn|kn =
∑
xn
Qi(x

n)δ(yn, xn + kn) = ∑
xn∈Si

| Si |−1 δ(yn, xn + kn) for kn ∈ Kn, where

| Si |= τnMn, τn = 1
(n+3) , lim inf

n→∞
1
n

logMn ≥ C(W)−γ . Then, the joint distribution

of Un and Yn(i)

Pr{Un = kn, Y n(i) = yn} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q−n | Si |−1, for yn ∈ Si + kn = {xn + kn}
for xn ∈ Si

0, else.

Hence,

1

n
log
V n(Y n(i)|Un)
PYn(i)(Y n(i))

= 1

n
log

|Si |−1

q−n
= log q − 1

n
log |Si |

= log q − 1

n
logMn + 1

n
log(n+ 3)

with probability one. Therefore, by formula (1):

I(U ; Y (i)) ≤ log q − C(W)+ γ = −
∑

z∈Z
w(z|x) logw(z|x)+ γ.
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Since γ is an arbitrarily small number, so I (U, Y (i)) = H({w(z|x); z ∈ Z}), where
H(·) is the entropy function. Then, we obtain SU (0|V ) ≤ H({w(z|x); z ∈ Z}).
By the Definition 191, there exists a sequence of transforms Kn = fn(UMn)(1 ≤
n < ∞) satisfying lim

n→∞ d(Y
n(i), Ỹ n(i)) = 0 and lim inf

n→∞
1
n

logMn ≤ H({w(z|x);
z ∈ Z})+γ , where Yn(i) and Ỹ n(i) denote the outputs of channel V corresponding
to the inputs Un and Kn respectively.
In other words, there exists a sequence of (n,R) ALIB encipherers C with
R ≤ H({w(z|x); z ∈ Z})+ γ , such that if the random key Kn generates the key
kn according to the uniform distribution on C, then the random cryptogram
Ỹ n(i) = Xn(i)+Kn satisfies lim

n→∞ d(Y
n(i), Ỹ n(i)) = 0.

In the following, in order to avoid confusion, the PDs of Yn(i) and Ỹ n(i) are
denoted byQYn(i) and Q̃i , respectively, denote Z̃n(i) the output of the channelWn

corresponding to the input Ỹ n(i). Now, we prove that the PD of Z̃n(i), Q̃iWn(i =
1, 2, · · · , Nn) satisfies the Security Condition. In fact, QYn(i)Wn is the uniform
distribution on Zn and QYn(i)Wn(D) +QYn(i)Wn(Dc) = 1 for any D ⊂ Zn. On
the other hand,

d(QYn(i)W
n, Q̃iW

n) =
∑

zn∈Zn
|QYn(i)Wn(zn)− Q̃iWn(zn)|

≤
∑

zn∈Zn

∑

yn∈Yn
|QYn(i)(yn)− Q̃i(yn)|Wn

zn|yn

= d(QYn(i), Q̃i ).

Consequently, lim
n→∞ d(QYn(i)W

n, Q̃iW
n) = 0. Evidently, for any i(1 ≤ i ≤ Nn),

| QYn(i)Wn(Dc)− Q̃iWn(Dc) |≤ d(QYn(i)Wn, Q̃iW
n),

then,

Q̃iW
n(Dc) ≥ QYn(i)Wn(Dc)− d(QYn(i)Wn, Q̃iW

n).

Similarly, for any j (j �= i),

QjW
n(D) ≥ QYn(j)Wn(D)− d(QYn(j)Wn, Q̃jW

n).

Combine these two inequalities and set

δn = 2[d(QYn(i)Wn, Q̃iW
n)+ d(QYn(j)Wn, Q̃jW

n)].

We obtain Q̃iWn(Dc) + Q̃jWn(D) > 1 − δn and lim
n→∞ δn = 0. Our proof is

complete. ��



References 357

References

1. R. Ahlswede, G. Dueck, Bad codes are good ciphers. Prob. Cont. Inf. Theory 11, 337–351
(1982)

2. R. Ahlswede, G. Dueck, Identification via channels. IEEE Trans. Inf. Theory 35, 15–29 (1989)
3. R. Ahlswede, Z. Zhang, New directions in the theory of identification via channels. Preprint

94–010, SFB 343 “Diskrete Strukturen in der Mathematik”, Universität Bielefeld. IEEE Trans.
Inform. Theory 41(4), 1040–1050 (1995)

4. T.S. Han, Information-Spectrum Methods in Information Theory (Springer, Berlin, 2003)



Part IV
Identification for Sources, Identification

Entropy, and Hypothesis Testing



Identification for Sources

1 Introduction

1.1 Pioneering Model

The classical transmission problem deals with the question how many possible
messages can we transmit over a noisy channel? Transmission means there is an
answer to the question “What is the actual message?” In the identification problem
we deal with the question how many possible messages the receiver of a noisy
channel can identify? Identification means there is an answer to the question “Is
the actual message u?” Here u can be any member of the set of possible messages.

Allowing randomized encoding the optimal code size grows double exponen-
tially in the blocklength and somewhat surprisingly the second order capacity equals
Shannon’s first order transmission capacity (see [3], chapter “Identification via
Channels” in Part I).

Thus Shannon’s Channel Coding Theorem for Transmission is paralleled by
a Channel Coding Theorem for Identification. It seems natural to look for such
a parallel for sources, in particular for noiseless coding. This was suggested by
Ahlswede in [1].

Let (U, P ) be a source, where U = {1, 2, . . . , N}, P = (P1, . . . , PN ), and let
C = {c1, . . . , cN } be a binary prefix code (PC) for this source with ‖cu‖ as length
of cu. Introduce the RV U with Pr (U = u) = pu for u = 1, 2, . . . , N and the RV
C with C = cu = (cu1, cu2, . . . , cu‖cu‖) if U = u.

We use the PC for noiseless identification, that is user u wants to know whether
the source output equals u, that is, whether C equals cu or not. He iteratively checks
whether C = (C1, C2, . . . ) coincides with cu in the first, second, etc. letter and
stops when the first different letter occurs or when C = cu.
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What is the expected number LC(P, u) of checkings?
In order to calculate this quantity we introduce for the binary tree TC , whose

leaves are the codewords c1, . . . , cN , the sets of leaves Cik(1 ≤ i ≤ N; 1 ≤ k),
where Cik = {c ∈ C : c coincides with ci exactly until the k’th letter of ci}. If C
takes a value in Cuk, 0 ≤ k ≤ ‖cu‖ − 1, the answers are k times “Yes” and 1 time
“No”. For C = cu the answers are ‖cu‖ times “Yes”. Thus1

LC(P, u) =
‖cu‖−1∑

k=0

P(C ∈ Cuk)(k + 1)+ ‖cu‖Pu.

For code C LC(P ) = max
1≤u≤N LC(P, u) is the expected number of checkings in

the worst case and L(P) = min
C
LC(P ) is this number for a best code.

Analogously, if C̃ is a randomized coding, LC̃(P, u), LC̃(P ) and L̃(P ) were also
introduced in [1].

What are the properties of L(P) and L̃(P )? In analogy to the role of entropy
H(P) in Shannon’s Noiseless Source Coding Theorem they can be viewed as
approximations to a kind of “identification entropy” functionalHI .

Their investigation is left to future research. We quickly report now two simpler
pioneering questions and partial answers from [1]. They shed some light on the idea
that in contrast to classical entropy H , which takes values between 0 and ∞, the
right functionalHI shall have 2 as maximal value.

Let us start with PN =
(

1
N
, . . . , 1

N

)
and set f (N) = L(PN).

1. What is sup
N

f (N) or lim
N→∞ f (N)?

Starting with an identification code for N = 2k−1 a new one for 2k users is
constructed by adding for half of all users a 1 as prefix to the codewords and a 0
for the other half. Obviously we are getting an identification code with twice as
many codewords in this way. Now user u has to read the first bit. With probability
1
2 he then stops and with probability 1

2 he needs only an expected number of
f (2k−1) many further checkings. Now an optimal identification code is at least
as good as the constructed one and we get the recursion

f (2k) ≤ 1+ 1

2
f (2k−1), f (2) = 1

and therefore

f (2k) ≤ 2− 2−(k−1).

On the other hand it can be verified that f (9) = 1 + 10
9 > 2 and more generally

f (2k + 1) > 2.

1Probability distributions and codes depend on N , but are mostly written without an index N .
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2. Is L̃(P ) ≤ 2?
This is the case under the stronger assumption that encoder and decoder have
access to a random experiment with unlimited capacity of common randomness
(see [2], chapter “The Role of Common Randomness in Information Theory
and Cryptography: Secrecy Constraints” in Part III).
For P = (P1, . . . , PN ), N ≤ 2n write P (n) = (P1, . . . , PN , 0, . . . , 0) with
2n components. Use a binary regular tree of depth n with leaves 1, 2, . . . , 2n

represented in binary expansions.
The common random experiment with 2n outcomes can be used to use 2n cyclic
permutations of 1, 2, . . . , 2n for 2n deterministic codes. For each uwe get equally
often 0 and 1 in its representation and an expected word length ≤ 2− 1

2n−1 ≤ 2.
The error probability is 0.

Remark Note that the same tree TC can be used by all users in order to answer their
question (“Is it me or not?”).

1.1.1 Further Models and Definitions

The model of identification for sources described can be extended (as for channels
in the spirit of [1]) to generalized identification (GI) as follows.

There is now a set of users V (not necessarily equal to U), where user v ∈ V has
a set Uv ⊂ U of source outputs of his interest, that is, he wants to know whether the
source output u is in Uv or not.

Furthermore we speak of generalized identification with decoding (GID), if user
v not only finds out whether the output is in Uv , but also identifies it if it is in Uv .

Obviously the two models coincide if |Uv| = 1 for v ∈ V . Also, they specialize
to the original model in 1.1, if V = U and Uv = {v} for v ∈ U .

For our analysis we use the following definition. We denote by D(x) the set of
all proper prefixes of x ∈ {0, 1}∗, i.e.

D(x) � {y ∈ {0, 1}∗ : y is prefix of x and ‖y‖ < ‖x‖}. (1)

e stands for the empty word in {0, 1}∗. For a set A ⊂ {0, 1}∗ we extend this
notion to

D(A) �
⋃

x∈A
D(x). (2)

{0, 1}∗ can be viewed as a binary, regular infinite tree with root e. A code C
corresponds to the subtree TC with root e and leaves c1, . . . , cN .

In the sequel we use a specific example of a code for illustrations of concepts and
ideas.

Example Let C be the set of all words of length 3. Notice that D(010) = {e, 0, 01}
andD({001, 010}) = {e, 0, 00, 01}. �
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The set Cv = {cu : u ∈ Uv} is a code for user v. For GID its codewords have to
be uniquely decodable by user v in order to identify the source output. For this he
uses the set of stop sequences

Sv =
{
y1 . . . yk : y1 . . . yk−1 ∈ D(Cv) and y1 . . . yk /∈ D(Cv)

}
. (3)

By definition of D, Cv is contained in Sv . We can also write

Sv =
{
xy : x ∈ {0, 1}∗, y ∈ {0, 1} with x ∈ D(Cv) and xy /∈ D(Cv)

}
. (4)

(For k = 1, y1 . . . yk−1 describes the empty word e or the root of the code tree
which is element of each set D(Cv).)

Example For the code of the previous example for Cv = {010} we have Sv =
{1, 00, 011, 010} and for Cv = {001, 010}we have Sv = {1, 000, 001, 010, 011}. �

With the families of sets of stop sequences Sv we derive first in Sect. 2 general
lower bounds on the number of checkings for both models. In Sect. 3 we consider a
uniform source and show that lim

N→∞ f (N) = 2. Then, in Sect. 4, we derive bounds

on the maximal individual (average) identification length, which is introduced in
item C of Sect. 2.

Finally, in Sect. 5, we introduce an average identification length for the case V =
U , Uv = {v} for v ∈ V and derive asymptotic results.

2 A Probabilistic Tool for Generalized Identification

General supposition: We consider here prefix codes C, which satisfy the Kraft
inequality with equality, that is,

∑

u∈U
2−‖cu‖ = 1. (5)

We call them saturated, because they cannot be enlarged.
A. GID
For all x ∈ {0, 1}∗ let

qC(P, x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x /∈ D(C) ∪ C
Pu, if x = cu
qC(P, x0)+ qC(P, x1), if x ∈ D(C).

The general supposition implies that for any set of stopping sequences Sv we
have Sv ⊂ D(C) ∪ C and the probability for user v to stop in x ∈ Sv equals
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qc(P, x). After stopping in x user v has read ‖x‖ many bits. Therefore the average
identification length of user v is

LC(P, v) =
∑

x∈Sv
qC(P, x)‖x‖. (6)

By definition of qC we get

LC(P, v) =
∑

x∈D(Cv)
qC(P, x). (7)

By construction Sv forms a prefix code. Each codeword has to be uniquely
decoded by user v. Furthermore the probabilities qC(P, x), x ∈ Sv , define a
probability distribution on Sv by

PC,v(x) � qC(P, x) for all x ∈ Sv. (8)

By the Noiseless Coding Theorem LC(P, v) can be lower bounded by the
entropyH(PC,v). More directly, using the grouping axiom we get

H(PC,v) =
∑

x∈D(Cv)
qC(P, x)h

(
qC(P, x1)

qC(P, x)

)
, (9)

where h is the binary entropy function, and thus

LC(P, v) −H(PC,v) =
∑

x∈D(Cv)
qC(P, x)

(
1− h

(
qC(P, x1)

qC(P, x)

))
. (10)

Suppose Pu > 0 for all 1 ≤ u ≤ N , then

qC(P, x) > 0 and with

(
qC(P, x1)

qC(P, x)

)
≤ 1 for all x ∈ D(C)

it follows under the general supposition (2.1) for every user v ∈ V the average
identification length satisfies

Theorem 194

LC(P, v) ≥ H(PC,v) with “=” iff
qC(P, x1)

qC(P, x)
= 1

2
for all x ∈ D(Cv). (11)

Since P is fixed we write now LC(v) for LC(P, v).
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B. GI
Suppose we have a node x and a user v with the properties

(i) all codewords having x as prefix are all elements of Cv or
(ii) they are all not in Cv .

In this case user v can stop in x and decide whether v occurred or not. By
construction of the stop sequences Sv in (3) only case (i) can occur. Therefore we
have to start the following algorithm to generate modified sets Sv .

1. If Cv contains two codewords different only in the last position, say
x1 . . . xk0 and x1 . . . xk1 then

(i) remove these two codewords from Cv and insert x1 . . . xk. This new code-
word has the probability qC(P, x1 . . . xk).

(ii) repeat step 1. Else continue with 2.

2. With the modified sets Cv construct the sets Sv as defined in (3).

The definition of LC(P, v), PC,v and H(PC,v) are as in (6), (8) and (9). Also the
formulas (10) and (11) hold.

Example Let Cv = {000, 001, 010}. After step 1 of the algorithm we get Cv =
{00, 010}. With step 2 we define D(Cv) = {∅, 0, 01} and Sv = {1, 00, 010, 011}. �

C. Maximal Individual (Expected) Identification Length L(P)
For a given probability distribution P and a given code C user v has uniquely to

decode the codewords in Cv .
Using (11) we can lower bound L(P) as follows:

(i) Take the set of pairs M = {(Cv, v) : L(P) = LC(P, v)}.
(ii) Define

Hmax(P ) = max
(Cv,v)∈M

H(PC,v).

Then

L(P) ≥ Hmax(P ).

Remark Note that

1.

∑

x∈D(C)
qC(P, x) =

N∑

u=1

Pu‖cu‖.
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2. Using the grouping axiom it holds

∑

x∈D(C)
qC(P, x)h

(
qC(P, x1)

qC(P, x)

)
= H(P)

for all codes C.
3. If for each code C there exists a set Cv (in case B after modification) such that

D(Cv) = D(C), then L(P) =
N∑
u=1
Pu‖cu‖ where the code C is the Huffman-code

for the probability distribution P .

Example Suppose that |V | = (N
K

)
, K ≥ N

2 , and {Uv : v ∈ V} = ([N]
K

)
.

1. In case A there exists for each code C a set Cv such that D(Cv) = D(C).
2. In case B with K = N

2 there exists for each code C a set Cv such that D(Cv) =
D(C).

3. In case B if K = N and thus V = {v1},Uv1 = [N], then after modifying Cv1 the
set D(Cv1) contains only the root of the tree which means the user v1 has to read
nothing from the received codeword (because he knows already the answer). �

Remark The example above is motivated byK-identification for channels!

3 The Uniform Distribution

Now we return to the original model of the first subsection of Sect. 1 with V = U
and Cv = {cv} for each v ∈ V . Let P = ( 1

N
, . . . , 1

N
). We construct a prefix code

C in the following way. In each node (starting at the root) we split the number of
remaining codewords in proportion as close as possible to ( 1

2 ,
1
2 ).

1. Suppose N = 2k. By construction our code C contains all binary sequences of
length k. It follows that

qC(P, x) = 1

N

N

2‖x‖
= 2−‖x‖ (12)

and by (7)

LC(P ) =
∑

x∈D(Cv)
qC(P, x) =

k−1∑

i=0

2−i = 2− 2−k+1 = 2− 2

N
. (13)

2. Suppose 2k−1 < N < 2k. By construction the remaining code contains only the
codeword lengths k − 1 and k.
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By (7) we add the weights (qC(P, x)) of all nodes of a path from the root to a
codeword (leave). Therefore in the worst case, N is odd and we have to add the
larger weight.
At the root we split (N−1

2 , N−1
2 + 1). Now we split again the larger one and in

the worst case this number is again odd. It follows in general that

qC(P, x) ≤ 1

N

(
N − 1

2‖x‖
+ 1

)
. (14)

Therefore

LC(P ) ≤
k−1∑

i=0

1

N

(
N − 1

2i
+ 1

)
=
k−1∑

i=0

2−i − 1

N

k−1∑

i=0

2−i + 1

N

k−1∑

i=0

1

= 2− 1

N
− 2

N
+ 2

N2 +
k

N
= 2+ k − 3

N
+ 2

N2 . (15)

With k = �log2(N)� it follows

Theorem 195 For P =
(

1
N
, . . . , 1

N

)

lim
N→∞LC(P ) = 2 (16)

4 Bounds on L(P) for General P = (P1, . . . ,PN)

4.1 An Upper Bound

We will now give an inductive construction for identification codes to derive an
upper bound on L(P). Let P = (P1, . . . , PN) be the probability distribution.
W.l.o.g. we can assume that Pi ≥ Pj for all i < j . For N = 2 of course we
assign 0 and 1 as codewords. Now let N > 2. We have to consider two cases:

1. P1 ≥ 1/2. In this case we assign 0 as codeword to message 1. We set
P ′′i = Pi∑N

j=2 Pj
for i = 2, . . . , N . By induction we can construct a code for

the probability distribution P ′′ = (P ′′2 , . . . , P ′′N) and messages 2 to N get the
corresponding codewords for P ′′ but prefixed with a 1.

2. P1 < 1/2. Choose � such that δ� = | 1
2 −

∑�
i=1 Pi | is minimal. Set P ′i = Pi∑�

j=1 Pj

for i = 1, . . . , � and P ′′i = Pi∑N
j=�+1 Pj

for i = � + 1, . . . , N . Analogous to the

first case we construct codes for the distributions P ′ = (P ′1, . . . , P ′�) (called the
left side) and P ′′ = (P ′′�+1, . . . , P

′′
N) (called the right side). We get the code for
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P by prefixing the codewords from the left side with 0 and the codewords from
the right side with 1.

Trivially this procedure yields a prefix code.

Theorem 196 Let N ∈ N and let P = (P1, . . . , PN ). The previous construction
yields a prefix code with L(P) < 3.

Proof The case N = 2 is trivial. Now let N ≥ 3.

Case 1. P1 ≥ 1/2 : In this case we have L(P) = 1 + max
{
P1, L(P

′′)
∑N
i=2 Pi

}
,

where L(P ′′) denotes the corresponding maximal identification length for prob-
ability distribution P ′′. If the maximum is assumed for P1 we have L(P) ≤ 2,
otherwise we get by induction L(P) < 1+ 3 · 1/2 < 3.

Case 2. P1 < 1/2 for i = 1, . . . , N : In this case we have

L(P) = 1+max

{
L(P ′) ·

�∑

i=1

Pi, L(P ′′) ·
N∑

i=�+1

Pi

}
.

Choose �′ such that
∑�′
i=1 Pi ≤ 1/2 <

∑�′+1
i=1 Pi . Obviously either � = �′ or

� = �′ + 1.
Subcase. � = �′. Suppose the maximum is assumed on the left side. Then without

changing the maximal identification length we can construct a new probability
distribution P ′′′ = (P ′′′1 , . . . , P

′′′
�+1) by P ′′′1 = ∑N

i=�+1 Pi and P ′′′i = Pi−1 for
2 ≤ i ≤ � + 1. Since P ′′′1 ≥ 1/2 we are back in case 1. If the maximum

is assumed on the right side then let P ′′′1 = ∑�
i=1 Pi and P ′′′i = Pi+�−1 for

all 2 ≤ i ≤ n − � + 1. Notice that in this case P ′′′1 ≥ 1/3 (because P ′′′1 ≥
1/2− P ′′′2 /2 ≥ 1/2− P ′′′1 /2). Thus by induction L(P ′′′) ≤ 1+ 3 · 2/3 ≤ 3.

Subcase. � = �′ + 1. If the maximum is on the right side we set P ′′′1 =∑�
i=1 Pi ≥

1/2, P ′′′i = Pi+�−1 for 2 ≤ i ≤ n − � + 1 and we are again back in case 1.

Now suppose the maximum is taken on the left side. Since
∑�
i=1 Pi − 1/2 ≤

1/2 −∑�′
i=1 Pi it follows that δ� ≤ P�/2. Because P�′ ≤ (2�′)−1 we have δ� ≤

(4�′)−1 = (4(� − 1))−1. Also note that � ≥ 2. The case � = 2 is again trivial.
Now let � > 2. Then L(P) < 3 · (1/2+ 1

4(�−1) ) ≤ 3 · (1/2+ 1/8) < 3. ��

5 An Average Identification Length

We consider here the case where not only the source outputs but also the users occur
at random. Thus in addition to the source (U, P ) and RV U , we are given (V,Q),
V ≡ U , with RV V independent of U and defined by Pr (V = v) = Qv for v ∈ V .
The source encoder knows the value u of U , but not that of V , which chooses the
user v with probabilityQv . Again let C = {c1, . . . , cN } be a binary prefix code and
let LC(P, u) be the expected number of checkings on code C for user u. Instead of
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LC(P ) = maxu∈U LC(P, u), the maximal number of expected checkings for a user,
we consider now the average number of expected checkings

LC(P,Q) =
∑

v∈V
QvLC(P, v) (17)

and the average number of expected checkings for a best code

L(P,Q) = min
C
LC(P,Q). (18)

(The models GI and GID can also be considered.)
We also call L(P,Q) the average identification length. LC(P,Q) can be

calculated by the formula

LC(P,Q) =
∑

x∈D(C)
qC(Q, x)qC(P, x). (19)

In the same way as (19) we get the conditional entropy

HC(P‖Q) =
∑

x∈D(C)
qC(Q, x)qC(P, x)h

(
qC(P, x1)

qC(P, x)

)
. (20)

5.1 Q is the Uniform Distribution on V = U

We begin with |U | = N = 2k, choose C = {0, 1}k and note that

∑

x∈D(C)‖x‖=i
qC(P, x) = 1 for all 0 ≤ i ≤ k. (21)

By (12) for all x ∈ {0, 1}∗ with ‖x‖ ≤ k

qC(Q, x) = 2−‖x‖ (22)

and thus by (19) and then by (21)

LC(P,Q) =
k−1∑

i=0

∑

x∈D(C)
‖x‖=i

2−iqC(P, x) (23)

=
k−1∑

i=0

2−i = 2− 2−k+1 = 2− 2

N
. (24)
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We continue with the case 2k−1 < N < 2k and construct the code C again as in
Sect. 3. By (14)

qC(Q, x) ≤ 1

N

(
N − 1

2‖x‖
+ 1

)
. (25)

Therefore

LC(P,Q) =
∑

x∈D(C)
qC(Q, x)qC(P, x) ≤ 1

N

∑

x∈D(C)
(
N − 1

2‖x‖
+ 1)qC(P, x)

= 1

N

k−1∑

i=0

(
N − 1

2i
+ 1)

∑

x∈D(C)
‖x‖=i

qC(P, x) ≤ 1

N

k−1∑

i=0

(
N − 1

2i
+ 1) · 1

= 2+ k − 3

N
+ 2

N2 (see (15)). (26)

With k = �log2(N)� it follows that

Theorem 197 Let N ∈ N and P = (P1, . . . , PN ), then forQ =
(

1
N
, . . . , 1

N

)

lim
N→∞LC(P,Q) = 2. (27)

5.2 The Example Above in Model GID with Average
Identification Length for a Uniform Q∗

We get now

LC(P,Q) =
∑

x∈D(C)

|{v : x ∈ D(Cv)}|
|V | qC(P, x) (28)

and for the entropy in (20)

HC(P‖Q∗) =
∑

x∈D(C)

|{v : x ∈ D(Cv)}|
|V | qC(P, x)h

(
qC(P, x1)

qC(P, x)

)
. (29)
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Furthermore let C0 be the set of all codes C with LC(P,Q∗) = L(P,Q∗). We
define

H(P‖Q∗) = max
C∈C0

HC(P‖Q∗). (30)

Then

L(P,Q) ≥ H(P‖Q∗). (31)

Case N = 2n. We choose C = {0, 1}n and calculate |{v:x∈D(Cv)}|
|V | . Notice that for

any x ∈ D(C) we have 2n−‖x‖ many codewords with x as prefix.
Order this set. There are

(
N−1
K−1

)
(K − 1)-element subsets of C containing the first

codeword in this set. Now we take the second codeword and K − 1 others, but not
the first. In this case we get

(
N−2
K−1

)
further sets and so on.

Therefore

|{v : x ∈ D(Cv)}| =
2n−‖x‖∑

j=1

(
2n − j
K − 1

)
(32)

and (30) yields

LC(P,Q
∗) = 1

(
N
K

)
∑

x∈D(C)

2n−‖x‖∑

j=1

(
2n − j
K − 1

)
qC(P, x)

= 1
(2n
K

)
n−1∑

i=0

⎛

⎝
2n−i∑

j=1

(
2n − j
K − 1

)⎞

⎠

⎛

⎜⎜⎝
∑

x∈D(C)
‖x‖=i

qC(P, x)

⎞

⎟⎟⎠

= 1
(2n
K

)
n−1∑

i=0

⎛

⎝
2n−i∑

j=1

(
2n − j
K − 1

)⎞

⎠ (by (21)). (33)

Lets abbreviate this quantity as g(n,K). Its asymptotic behaviour remains to be
analyzed.

The exact values are

g(n, 1) = 2− 2

2n

g(n, 2) = 2

3

5 · 2−n − 9+ 4 · 2n

2n − 1
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g(n, 3) = −2

7

49 · 2n − 70+ 32 · 2−n − 11 · 4n

(2n − 1)(2n − 2)

g(n, 4) = 4

105

−2220+ 908 · 2−n − 705 · 4n + 1925 · 2n + 92 · 8n

(2n − 1)(2n − 2)(2n − 3)

We calculated the limits (n→∞)

K 1 2 3 4 5 6 7 8 9
lim
n→∞ g(n,K) 2 8

3
22
7

368
105

2470
651

7880
1953

150266
35433

13315424
3011805

2350261538
513010785

This indicates that sup
K

lim
n→∞ g(n,K) = ∞.
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Identification Entropy

Shannon [5] has shown that a source (U, P,U) with output satisfying Prob (U =
u) = Pu, can be encoded in a prefix code C = {cu : u ∈ U} ⊂ {0, 1}∗ such that for
the entropy

H(P) =
∑

u∈U
−pu logpu ≤

∑
pu length(cu) ≤ H(P)+ 1.

We use a prefix code C for another purpose, namely noiseless identification, that
is every user who wants to know whether a u (u ∈ U) of his interest is the actual
source output or not can consider the RV C with C = cu = (cu1, . . . , cu‖cu‖) and
check whether C = (C1, C2, . . . ) coincides with cu in the first, second etc. letter
and stop when the first different letter occurs or when C = cu. Let LC(P, u) be the
expected number of checkings, if code C is used.

Our discovery is an identification entropy, namely the function

HI(P ) = 2

(
1−

∑

u∈U
P 2
u

)
.

We prove that LC(P, P ) =
∑
u∈U

Pu LC(P, u) ≥ HI (P ) and thus also that

L(P) = min
C

max
u∈U

LC(P, u) ≥ HI(P )

and related upper bounds, which demonstrate the operational significance of
identification entropy in noiseless source coding similar as Shannon entropy does
in noiseless data compression.
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Also other averages such as LC(P ) = 1
|U |
∑
u∈U

LC(P, u) are discussed in

particular for Huffman codes where classically equivalent Huffman codes may now
be different.

We also show that prefix codes, where the codewords correspond to the leaves in
a regular binary tree, are universally good for this average.

1 Introduction

Shannon’s Channel Coding Theorem for Transmission [5] is paralleled by a
Channel Coding Theorem for Identification [3] (see Lecture 1 in Part I). In [1]
we introduced noiseless source coding for identification and suggested the study
of several performance measures.

Interesting observations were made already for uniform sources PN =(
1
N
, . . . , 1

N

)
, for which the worst case expected number of checkings L(PN) is

approximately 2. Actually in [4] (see Lecture 18) it is shown that lim
N→∞L(P

N) = 2.

Recall that in channel coding going from transmission to identification leads from
an exponentially growing number of manageable messages to double exponentially
many. Now in source coding roughly speaking the range of average code lengths
for data compression is the interval [0,∞) and it is [0, 2) for an average expected
length of optimal identification procedures. Note that no randomization has to be
used here.

A discovery of the paper presented in this lecture [2] is an identification entropy,
namely the functional

HI(P ) = 2

(
1−

N∑

u=1

P 2
u

)
(1)

for the source (U, P ), where U = {1, 2, . . . , N} and P = (P1, . . . , PN) is a
probability distribution.

Its operational significance in identification source coding is similar to that of
classical entropyH(P) in noiseless coding of data: it serves as a good lower bound.

Beyond being continuous in P it has three basic properties.

I. Concavity

For p = (p1, . . . , pN ), q = (q1, . . . , qN) and 0 ≤ α ≤ 1

HI(αp + (1− α)q) ≥ αHI (p)+ (1− α)HI (q).
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This is equivalent with

N∑

i=1

(αpi+(1−α)qi)2 =
N∑

i=1

α2p2
i +(1−α)2q2

i +
∑

i �=j
α(1−α)piqj ≤

N∑

i=1

αp2
i +(1−α)q2

i

or with

α(1− α)
N∑

i=1

p2
i + q2

i ≥ α(1 − α)
∑

i �=j
piqj ,

which holds, because
N∑
i=1
(pi − qi)2 ≥ 0.

II. Symmetry

For a permutation� : {1, 2, . . . , N} → {1, 2, . . . , N} and�P = (P1�, . . . , PN�)

HI (P ) = HI (�P).

III. Grouping Identity

For a partition (U1,U2) of U = {1, 2, . . . , N}, Qi = ∑u∈Ui Pu and P (i)u = Pu
Qi

for
u ∈ Ui (i = 1, 2)

HI (P ) = Q2
1HI (P

(1))+Q2
2HI(P

(2))+HI (Q), whereQ = (Q1,Q2).

Indeed,

Q2
12

⎛

⎝1−
∑

j∈U1

P 2
j

Q2
1

⎞

⎠+Q2
22

⎛

⎝1−
∑

j∈U2

P 2
j

Q2
2

⎞

⎠+ 2(1−Q2
1 −Q2

2)

= 2Q2
1 − 2

∑

j∈U1

P 2
j + 2Q2

2 − 2
∑

j∈U2

P 2
j + 2− 2Q2

1 − 2Q2
2

= 2

⎛

⎝1−
N∑

j=1

P 2
j

⎞

⎠ .
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Obviously, 0 ≤ HI (P ) with equality exactly if Pi = 1 for some i and by

concavity HI(P ) ≤ 2
(

1− 1
N

)
with equality for the uniform distribution.

Remark Another important property of HI(P ) is Schur convexity.

2 Noiseless Identification for Sources and Basic Concept
of Performance

For the source (U, P ) let C = {c1, . . . , cN } be a binary prefix code (PC) with ‖cu‖
as length of cu. Introduce the RV U with Prob(U = u) = Pu for u ∈ U and
the RV C with C = cu = (cu1, cu2, . . . , cu‖cu‖) if U = u. We use the PC for
noiseless identification, that is a user interested in u wants to know whether the
source output equals u, that is, whether C equals cu or not. He iteratively checks
whether C = (C1, C2, . . . ) coincides with cu in the first, second etc. letter and stops
when the first different letter occurs or when C = cu. What is the expected number
LC(P, u) of checkings?

Related quantities are

LC(P ) = max
1≤u≤N LC(P, u), (2)

that is, the expected number of ckeckings for a person in the worst case, if code C is
used,

L(P) = min
C
LC(P ), (3)

the expected number of checkings in the worst case for the best code, and finally, if
users are chosen by a RV V independent of U and defined by Prob(V = v) = Qv
for v ∈ V = U , (see Lecture 18, 18.5) we consider

LC(P,Q) =
∑

v∈U
QvLC(P, v) (4)

the average number of expected checkings, if code C is used, and also

L(P,Q) = min
C
LC(P,Q) (5)

the average number of expected checkings for a best code.
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A natural special case is the mean number of expected checkings

L̄C(P ) =
N∑

u=1

1

N
LC(P, u), (6)

which equals LC(P,Q) forQ =
(

1
N
, . . . , 1

N

)
, and

L̄(P ) = min
C
L̄C(P ). (7)

Another special case of some “intuitive appeal” is the case Q = P . Here we
write

L(P,P ) = min
C
LC(P, P ). (8)

It is known that Huffman codes minimize the expected code length for PC.
This is not the case for L(P) and the other quantities in identification (see the

last example of the next section). It was noticed already in [1, 4] that a construction
of code trees balancing probabilities like in the Shannon-Fano code is often better.
In fact Theorem 3 of [4] (Theorem 196 here) establishes that L(P) < 3 for every
P = (P1, . . . , PN)!

Still it is also interesting to see how well Huffman codes do with respect to
identification, because of their classical optimality property. This can be put into
the following

Problem Determine the region of simultaneously achievable pairs

(LC(P ),
∑

u

Pu‖cu‖)

for (classical) transmission and identification coding, where the C’s are PC. In
particular, what are extremal pairs? We begin here with first observations.

3 Examples for Huffman Codes

We start with the uniform distribution

PN = (P1, . . . , PN ) =
(

1

N
, . . . ,

1

N

)
, 2n ≤ N < 2n+1.
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Then 2n+1−N codewords have the length n and the other 2N−2n+1 codewords
have the length n + 1 in any Huffman code. We call the N − 2n nodes of length n
of the code tree, which are extended up to the length n+ 1 extended nodes.

All Huffman codes for this uniform distribution differ only by the positions of
the N − 2n extended nodes in the set of 2n nodes of length n.

The average codeword length (for data compression) does not depend on the
choice of the extended nodes.

However, the choice influences the performance criteria for identification!
Clearly there are

( 2n

N−2n
)

Huffman codes for our source.

Example N = 9, U = {1, 2, . . . , 9}, P1 = · · · = P9 = 1
9 . �

Here LC(P ) ≈ 2.111, LC(P, P ) ≈ 1.815 because

LC(P ) = LC(c8) = 4

9
· 1+ 2

9
· 2+ 1

9
· 3+ 2

9
· 4 = 2

1

9

LC(c9) = LC(c8), LC(c7) = 1
8

9
, LC(c5) = LC(c6) = 1

7

9
,

LC(c1) = LC(c2) = LC(c3) = LC(c4) = 1
6

9
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and therefore

LC(P, P ) = 1

9

[
1

6

9
· 4+ 1

7

9
· 2+ 1

8

9
· 1+ 2

1

9
· 2

]
= 1

22

27
= L̄C,

because P is uniform and the
( 23

9−23

) = 8 Huffman codes are equivalent for
identification.

Remark Notice that Shannon’s data compression gives

H(P)+ 1 = log 9+ 1 >
9∑

u=1

Pu‖cu‖ = 1

9
3 · 7+ 1

9
4 · 2 = 3

2

9
≥ H(P) = log 9.

Example N = 10. There are
( 23

10−23

) = 28 Huffman codes.
The four worst Huffman codes are maximally unbalanced.

Here LC(P ) = 2.2 and LC(P, P ) = 1.880, because

LC(P ) = 1+ 0.6+ 0.4+ 0.2 = 2.2

LC(P, P ) = 1

10
[1.6 · 4+ 1.8 · 2+ 2.2 · 4] = 1.880.
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One of the 16 best Huffman codes

Here LC(P ) = 2.0 and LC(P, P ) = 1.840 because

LC(P ) = LC(c̃) = 1+ 0.5+ 0.3+ 0.2 = 2.000

LC(P, P ) = 1

5
(1.7 · 2+ 1.8 · 1+ 2.0 · 2) = 1.840

�
The best identification performances of Huffman codes for the uniform distribu-

tion

N 8 9 10 11 12 13 14 15
LC(P ) 1.750 2.111 2.000 2.000 1.917 2.000 1.929 1.933
LC(P, P ) 1.750 1.815 1.840 1.860 1.861 1.876 1.878 1.880

Actually lim
N→∞ LC(P

N ) = 2, but bad values occur for N = 2k + 1 like N = 9

(see chapter “Identification for Sources”).
One should prove that a best Huffman code for identification for the uniform

distribution is best for the worst case and also for the mean.
However, for non-uniform sources generally Huffman codes are not best.

Example Let N = 4, P(1) = 0.49, P(2) = 0.25, P(3) = 0.25, P(4) = 0.01. Then
for the Huffman code ‖c1‖ = 1, ‖c2‖ = 2, ‖c3‖ = ‖c4‖ = 3 and thus LC(P ) =



4 An Identification Code Universally Good for all P on U = {1, 2, . . . ,N} 383

1+ 0.51+ 0.26 = 1.77, LC(P, P ) = 0.49 · 1+ 0.25 · 1.51+ 0.26 · 1.77 = 1.3277,
and L̄C(P ) = 1

4 (1+ 1.51+ 2 · 1.77) = 1.5125.
However, if we use C ′ = {00, 10, 11, 01} for {1, . . . , 4} (4 is on the branch

together with 1), then LC′(P, u) = 1.5 for u = 1, 2, . . . , 4 and all three criteria
give the same value 1.500 better than LC(P ) = 1.77 and L̄C(P ) = 1.5125.

But notice that LC(P, P ) < LC′(P, P )! �

4 An Identification Code Universally Good for all P
on U = {1, 2, . . . ,N}

Theorem 198 Let P = (P1, . . . , PN) and let k = min{� : 2� ≥ N}, then the
regular binary tree of depth k defines a PC {c1, . . . , c2k }, where the codewords
correspond to the leaves. To this code Ck corresponds the subcode CN = {ci :
ci ∈ Ck, 1 ≤ i ≤ N} with

2

(
1− 1

N

)
≤ 2

(
1− 1

2k

)
≤ L̄CN (P ) ≤ 2

(
2− 1

N

)
(9)

and equality holds for N = 2k on the left sides.

Proof By definition,

L̄CN (P ) =
1

N

N∑

u=1

LCN (P, u) (10)

and abbreviating LCN (P, u) as L(u) for u = 1, . . . , N and setting L(u) = 0 for
u = N + 1, . . . , 2k we calculate with Pu � 0 for u = N + 1, . . . , 2k

2k∑

u=1

L(u) = [(P1 + · · · + P2k )2
k
]

+ [(P1 + · · · + P2k−1)2k−1 + (P2k−1+1 + · · · + P2k )2
k−1]

+ [(P1 + · · · + P2k−2)2k−2 + (P2k−2+1 + · · · + P2k−1)2k−2

+ (P2k−1+1 + · · · + P2k−1+2k−2)2k−2
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+ (P2k−1+2k−2+1 + · · · + P2k )2
k−2]

+ . . .

...

+ [(P1 + P2)2+ (P3 + P4)2+ · · · + (P2k−1 + P2k )2
]

= 2k + 2k−1 + · · · + 2 = 2(2k − 1)

and therefore

2k∑

u=1

1

2k
L(u) = 2

(
1− 1

2k

)
. (11)

Now 2
(

1− 1
N

)
≤ 2

(
1− 1

2k

)
=

2k∑
u=1

1
2k
L(u) ≤

N∑
u=1

1
N
L(u) = 2k

N

2k∑
u=1

1
2k
L(u) =

2k
N

2
(

1− 1
2k

)
≤ 2

(
2− 1

N

)
, which gives the result by (10).

Notice that for N = 2k, a power of 2, by (11)

L̄CN (P ) = 2

(
1− 1

N

)
. (12)

��
Remark 199 The upper bound in (9) is rough and can be improved significantly.

5 Identification Entropy HI(P) and Its Role as Lower Bound

Recall from the Introduction that

HI(P ) = 2

(
1−

N∑

u=1

P 2
u

)
for P = (P1 . . . PN). (13)

We begin with a small source.
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Example Let N = 3. W.l.o.g. an optimal code C has the structure �

Proposition 200

L̄C(P ) =
3∑

u=1

1

3
LC(P, u) ≥ 2

(
1−

3∑

u=1

P 2
u

)
= HI(P ).

Proof Set L(u) = LC(P, u).
3∑
u=1
L(u) = 3(P1 + P2 + P3)+ 2(P2 + P3).

This is smallest, if P1 ≥ P2 ≥ P3 and thus L(1) ≤ L(2) = L(3). Therefore
3∑
u=1
PuL(u) ≤ 1

3

3∑
u=1
L(u). Clearly L(1) = 1, L(2) = L(3) = 1 + P2 + P3 and

3∑
u=1
PuL(u) = P1 + P2 + P3 + (P2 + P3)

2.

This does not change if P2 + P3 is constant. So we can assume P = P2 = P3
and 1− 2P = P1 and obtain

3∑

u=1

PuL(u) = 1+ 4P 2.

On the other hand

2

(
1−

3∑

u=1

P 2
u

)
≤ 2

(
1− P 2

1 − 2

(
P2 + P3

2

)2
)
, (14)

because P 2
2 + P 2

3 ≥ (P2+P3)
2

2 .
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Therefore it suffices to show that

1+ 4P 2 ≥ 2
(
1− (1− 2P)2 − 2P 2)

= 2(4P − 4P 2 − 2P 2)

= 2(4P − 6P 2) = 8P − 12P 2

or that 1+ 16P 2 − 8P = (1− 4P)2 ≥ 0. ��
We are now prepared for the first main result for L(P,P ).
Central in our derivations are proofs by induction based on decomposition

formulas for trees.
Starting from the root a binary tree T goes via 0 to the subtree T0 and via 1 to the

subtree T1 with sets of leaves U0 and U1, respectively. A code C for (U, P ) can be
viewed as a tree T , where Ui corresponds to the set of codewords Ci , U0 ∪ U1 = U .

The leaves are labeled so that U0 = {1, 2, . . . , N0} and U1 = {N0 + 1, . . . , N0 +
N1}, N0 +N1 = N . Using probabilities

Qi =
∑

u∈Ui
Pu, i = 0, 1

we can give the decomposition in

Lemma 201 For a code C for (U, PN )

LC((P1, . . . , PN ), (P1, . . . , PN ))

= 1+ LC0

((
P1

Q0
, . . . ,

PN0

Q0

)
,

(
P1

Q0
, . . . ,

PN0

Q0

))
Q2

0

+ LC1

((
PN0+1

Q1
, . . . ,

PN0+N1

Q1

)
,

(
PN0+1

Q1
, . . . ,

PN0+N1

Q1

))
Q2

1.

This readily yields

Theorem 202 For every source (U, PN )

L(PN) ≥ L(PN , PN ) ≥ HI (PN).

Proof For N = 2 and any C LC(P 2, P 2) ≥ P1 + P2 = 1, but

HI (P
2) = 2(1− P 2

1 − (1− P1)
2) = 2(2P1 − 2P 2

1 ) = 4P1(1− P1) ≤ 1. (15)

This is the induction beginning.
For the induction step use for any code C the decomposition formula in

Lemma 201 and of course the desired inequality for N0 and N1 as induction
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hypothesis.

LC((P1, . . . , PN ), (P1, . . . , PN ))

≥ 1+ 2

⎛

⎝1−
∑

u∈U0

(
Pu

Q0

)2
⎞

⎠Q2
0 + 2

⎛

⎝1−
∑

u∈U1

(
Pu

Q1

)2
⎞

⎠Q2
1

≥ HI (Q)+Q2
0HI(P

(0))+Q2
1HI (P

(1)) = HI (PN),

where Q = (Q0,Q1), 1 ≥ H(Q), P (i) =
(
Pu
Qi

)

u∈Ui
, and the grouping identity is

used for the equality. This holds for every C and therefore also for min
C
LC(PN). ��

6 On Properties of L̄(PN)

Clearly for PN =
(

1
N
, . . . , 1

N

)
L̄(PN ) = L(PN , PN ) and Theorem 202 gives

therefore also the lower bound

L̄(PN ) ≥ HI(PN ) = 2

(
1− 1

N

)
, (16)

which holds by Theorem 198 only for the Huffman code, but then for all distribu-
tions.

We shall see later that HI (PN ) is not a lower bound for general distributions
PN ! Here we mean non-pathological cases, that is, not those where the inequality
fails because L̄(P ) (and also L(P,P )) is not continuous in P , but HI(P ) is, like in
the following case.

Example Let N = 2k + 1, P(1) = 1 − ε, P(u) = ε
2k

for u �= 1, P (ε) =(
1− ε, ε

2k
, . . . , ε

2k

)
, then

L̄(P (ε)) = 1+ ε2
(

1− 1

2k

)
(17)

and lim
ε→0

L̄(P (ε)) = 1 whereas

lim
ε→0

HI (P
(ε)) = lim

ε→0

(
2

(
1− (1− ε)2 −

( ε
2k

)2
2k
))

= 0.

�
However, such a discontinuity occurs also in noiseless coding by Shannon.
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The same discontinuity occurs for L(P (ε), P (ε)).
Furthermore, for N = 2 P (ε) = (1− ε, ε), L̄(P (ε)) = 1 L(P (ε), P (ε)) = 1

and HI (P (ε)) = 2(1− ε2 − (1− ε)2) = 0 for ε = 0.
However, max

ε
HI (P

(ε)) = max
ε

2(−2ε2 + 2ε) = 1 (for ε = 1
2 ). Does this have

any significance?
There is a second decomposition formula, which gives useful lower bounds on

L̄C(PN ) for codes C with corresponding subcodes C0, C1 with uniform distributions.

Lemma 203 For a code C for (U, PN ) and corresponding tree T let TT (PN ) =∑
u∈U L(u). Then (in analogous notation)

TT (P
N ) = N0 +N1 + TT0(P

(0))Q0 + TT1(P
(1))Q1.

However, identification entropy is not a lower bound for L̄(PN ). We strive now
for the worst deviation by using Lemma 203 and by starting with C, whose parts
C0, C1 satisfy the entropy inequality.

Then inductively

TT (P
N ) ≥ N + 2

⎛

⎝1−
∑

u∈U0

(
Pu

Q0

)2
⎞

⎠N0Q0 + 2

⎛

⎝1−
∑

u∈U1

(
Pu

Q1

)2
⎞

⎠N1Q1

(18)
and

TT (PN )
N

≥ 1+
1∑

i=0

2

⎛

⎝1−
∑

u∈Ui

(
Pu

Qi

)2
⎞

⎠ NiQi
N

� A, say.

We want to show that for

2

(
1−

∑

u∈U
P 2
u

)
� B, say,

A− B ≥ 0. (19)

We write

A− B =
[
−1+ 2

1∑

i=0

NiQi

N

]
+ 2

⎡

⎣
∑

u∈U
P 2
u −

1∑

i=0

∑

u∈Ui

(
Pu

Qi

)2
NiQi

N

⎤

⎦

= C +D, say. (20)
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C and D are functions of PN and the partition (U0,U1), which determine the
Qi ’s and Ni ’s. The minimum of this function can be analysed without reference to
codes. Therefore we write here the partitions as (U1,U2), C = C(PN ,U1,U2) and
D = D(PN ,U1,U2). We want to show that

min
PN ,(U1,U2)

C(PN ,U1,U2)+D(PN ,U1,U2) ≥ 0. (21)

6.1 A First Idea

Recall that the proof of (15) used

2Q2
0 + 2Q2

1 − 1 ≥ 0. (22)

Now ifQi = Ni
N
(i = 0, 1), then by (22)

A− B =
[
−1+ 2

1∑

i=0

N2
i

N2

]
+ 2

[
∑

u∈U
P 2
u −

∑

u∈U
P 2
u

]
≥ 0.

A goal could be now to achieveQi ∼ Ni
N

by rearrangement not increasingA−B,

because in case of equalityQi = Ni
N

that does it.
This leads to a nice problem of balancing a partition (U1,U2) of U . More

precisely for PN = (P1, . . . , PN)

ε(PN ) = min
φ �=U1⊂U

∣∣∣∣∣∣

∑

u∈U1

Pu − |U1|
N

∣∣∣∣∣∣
.

Then clearly for an optimal U1

Q1 = |U1|
N

± ε(PN) and Q2 = N − |U1|
N

∓ ε(PN ).

Furthermore, one comes to a question of some independent interest. What is

max
PN
ε(PN ) = max

PN
min

φ �=U1⊂U

∣∣∣∣∣∣

∑

u∈U1

Pu − |U1|
N

∣∣∣∣∣∣
?

One can also go from sets U1 to distributionsR on U and get, perhaps, a smoother
problem in the spirit of game theory.

However, we follow another approach here.



390 Identification Entropy

6.2 A Rearrangement

We have seen that forQi = Ni
N
D = 0 and C ≥ 0 by (22). Also, there is “air” up to

1 in C, if Ni
N

is away from 1
2 . Actually, we have

C = −
(
N1

N
+ N2

N

)2

+ 2

(
N1

N

)2

+ 2

(
N2

N

)2

=
(
N1

N
− N2

N

)2

. (23)

Now if we choose for N = 2m even N1 = N2 = m, then the air is out here,
C = 0, but it should enter the second termD in (20).

Let us check this case first. Label the probabilities P1 ≥ P2 ≥ · · · ≥ PN and
define U1 =

{
1, 2, . . . , N2

}
, U2 =

{
N
2 + 1, . . . , N

}
. Thus obviously

Q1 =
∑

u∈U1

Pu ≥ Q2 =
∑

u∈U2

Pu

and

D = 2

⎛

⎝
∑

u∈U
P 2
u −

2∑

i=1

1

2Qi

∑

u∈Ui
P 2
u

⎞

⎠ .

Write Q = Q1, 1−Q = Q2. We have to show

∑

u∈U1

P 2
u

(
1− 1

(2Q)2

)
≥
∑

u∈U2

P 2
u

(
1

(2Q2)2
− 1

)

or

∑

u∈U1

P 2
u

(2Q)2 − 1

(2Q)2
≥
∑

u∈U2

P 2
u

(
1− (2(1−Q))2
(2(1−Q))2

)
. (24)

At first we decrease the left hand side by replacing P1, . . . , PN
2

all by 2Q
N

. This

works because
∑
P 2
i is Schur-concave and P1 ≥ · · · ≥ PN

2
, 2Q
N
=

2(P1+···+PN
2
)

N
≥

PN
2 +1, because 2Q

N
≥ PN

2
≥ PN

2 +1. Thus it suffices to show that

N

2

(
2Q

N

)2
(2Q)2 − 1

(2Q)2
≥
∑

u∈U2

P 2
u

1− (2(1−Q))2
(2(1−Q))2 (25)
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or that

1

2N
≥
∑

u∈U2

P 2
u

1− (2(1−Q))2
(2(1−Q))2((2Q)2 − 1)

. (26)

Secondly we increase now the right hand side by replacing PN
2 +1, . . . , PN all

by their maximal possible values
(

2Q
N
,

2Q
N
, . . . ,

2Q
N
, q
)
= (q1, q2, . . . , qt , qt+1),

where qi = 2Q
N

for i = 1, . . . , t , qt+1 = q and t · 2Q
N
+ q = 1−Q, t =

⌊
(1−Q)N

2Q

⌋
,

q <
2Q
N

.
Thus it suffices to show that

1

2N
≥
(⌊
(1−Q)N

2Q

⌋
·
(

2Q

N

)2

+ q2

)
1− (2(1−Q))2

(2(1−Q))2((2Q)2 − 1)
. (27)

Now we inspect the easier case q = 0. Thus we have N = 2m and equal
probabilities Pi = 1

m+t for i = 1, . . . ,m+ t = m, say for which (27) goes wrong!
We arrived at a very simple counterexample.

Example In fact, simply forPNM =
(

1
M
, . . . , 1

M
, 0, 0, 0

)
we have lim

N→∞ L̄(P
N
M ) =

0, whereas

HI(P
N
M ) = 2

(
1− 1

M

)
for N ≥ M.

�
Notice that here

sup
N,M

|L̄(PNM )−HI (PNM )| = 2. (28)

This leads to the following problem solved in the next section.

Problem 204 Is sup
P

|L̄(P )−HI (P )| = 2?

7 Upper Bounds on L̄(PN)

We know from Theorem 198 that

L̄(P 2k ) ≤ 2

(
1− 1

2k

)
(29)
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and come to the following problem.

Problem 205 Is L̄(PN) ≤ 2
(

1− 1
2k

)
for N ≤ 2k?

This is the case, if the answer to the next question is positive.

Problem 206 Is L̄
((

1
N
, . . . , 1

N

))
monotone increasing in N?

In case the inequality in Problem 205 does not hold then it should with a very
small deviation. Presently we have the following result, which together with (28)
settles Problem 204.

Theorem 207 For PN = (P1, . . . , PN)

L̄(PN ) ≤ 2

(
1− 1

N2

)
.

Proof (The Induction Beginning L̄(P 2) = 1 ≤ 2
(

1− 1
4

)
Holds) Define now

U1 =
{
1, 2, . . . ,

⌊
N
2

⌋}
, U2 =

{⌊
N
2

⌋+ 1, . . . , N
}

and Q1,Q2 as before. Again by

the decomposition formula of Lemma 2 and induction hypothesis

T (PN) ≤ N + 2

(
1− 1

⌊
N
2

⌋2

)
Q1

⌊
N

2

⌋
+ 2

(
1− 1

⌈
N
2

⌉2

)
Q2 ·

⌈
N

2

⌉

and

L̄(PN) = 1

N
T (PN) ≤ 1+ 2

⌊
N
2

⌋
Q1 + 2

⌈
N
2

⌉
Q2

N
− 2
⌊
N
2

⌋ ·Q1

N
− 2Q2⌈

N
2

⌉
N

(30)

Case N Even L̄(PN) ≤ 1 + Q1 + Q2 −
(

4
N2Q1 + 4

N2Q2

)
= 2 − 4

N2 =
2
(

1− 2
N2

)
≤ 2

(
1− 1

N2

)

Case N Odd L̄(PN) ≤ 1+ N−1
N
Q1+ N+1

N
Q2−4

(
Q1

(N−1)N + Q2
(N+1)N

)
≤ 1+1+

Q2−Q1
N

− 4
(N+1)N

Choosing the
⌈
N
2

⌉
smallest probabilities in U2 (after proper labeling) we get for

N ≥ 3

L̄(PN ) ≤ 1+1+ 1

N · N−
4

(N + 1)N
= 2+ 1− 3N

(N + 1)N2 ≤ 2− 2

N2 = 2

(
1− 1

N2

)
,

because 1− 3N ≤ −2N − 2 for N ≥ 3. ��



8 The Skeleton 393

8 The Skeleton

Assume that all individual probabilities are powers of 1
2

Pu = 1

2�u
, u ∈ U . (31)

Define then k = k(PN) = max
u∈U

�u.

Since
∑
u∈U

1
2�u

= 1 by Kraft’s theorem there is a PC with codeword lengths

‖cu‖ = �u. (32)

Notice that we can put the probability 1
2k

at all leaves in the binary regular tree
and that therefore

L(u) = 1

2
· 1+ 1

4
· 2+ 1

23 3+ · · · + 1

2t
t + · · · + 2

2�u
. (33)

For the calculation we use

Lemma 208 Consider the polynomialsG(x) =
r∑
t=1
t · xt + rxr and f (x) =

r∑
t=1
xt ,

then

G(x) = x f ′(x)+ r xr = (r + 1)xr+1(x − 1)− xr+2 + x
(x − 1)2

+ r xr .

Proof Using the summation formula for a geometric series

f (x) = xr+1 − 1

x − 1
− 1

f ′(x) =
r∑

t=1

t xt−1 = (r + 1)xr(x − 1)− xr+1 + 1

(x − 1)2
.

This gives the formula forG. ��
Therefore for x = 1

2

G

(
1

2

)
= −(r + 1)

(
1

2

)r
−
(

1

2

)r
+ 2+ r

(
1

2

)r

= − 1

2r−1 + 2
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and since L(u) = G
(

1
2

)
for r = �u

L(u) = 2

(
1− 1

2�u

)
= 2

(
1− 1

2log 1
Pu

)

= 2(1− Pu). (34)

Therefore

L(PN , PN ) ≤
∑

u

Pu(2(1− Pu)) = HI (PN) (35)

and by Theorem 202

L(PN , PN ) = HI (PN). (36)

Theorem 209 For PN = (2−�1, . . . , 2−�N ) with 2-powers as probabilities

L(PN , PN ) = HI (P ).

This result shows that identification entropy is a right measure for identification
source coding. For Shannon’s data compression we get for this source

∑
u

pu‖cu‖ =
∑
u
pu�u = −∑

u
pu logpu = H(PN), again an identity.

For general sources the minimal average length deviates there fromH(PN), but
by not more than 1.

Presently we also have to accept some deviation from the identity.
We give now a first (crude) approximation. Let

2k−1 < N ≤ 2k (37)

and that the probabilities are sums of powers of 1
2 with exponents not exceeding k

Pu =
α(u)∑

j=1

1

2�uj
, �u1 ≤ �u2 ≤ · · · ≤ �uα(u) ≤ k. (38)

We now use the idea of splitting object u into objects

u1, . . . , uα(u). (39)
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Since

∑

u,j

1

2�uj
= 1 (40)

again we have a PC with codewords cuj (u ∈ U, j = 1, . . . , α(u)) and a regular
tree of depth k with probabilities 1

2k
on all leaves.

Person u can find out whether u occured, he can do this (and more) by finding
out whether u1 occured, then whether u2 occured, etc. until uα(u). Here

L(us) = 2

(
1− 1

2�us

)
(41)

and

∑

u,s

L(us)Pus = 2

(
1−

∑

u,s

1

2�us
· 1

2�us

)
= 2

⎛

⎝1−
∑

u

⎛

⎝
α(u)∑

s=1

P 2
us

⎞

⎠

⎞

⎠ . (42)

On the other hand, being interested only in the original objects this is to be

compared with HI (PN) = 2

(
1−∑

u

(∑
s

Pus

)2
)

, which is smaller.

However, we get

(
∑

s

Pus

)2

=
∑

s

P 2
us +

∑

s �=s ′
PusPus ′ ≤ 2

∑

s

P 2
us

and therefore

L(PN , PN ) ≤ 2

⎛

⎝1−
∑

u

⎛

⎝
α(u)∑

s=1

P 2
us

⎞

⎠

⎞

⎠ ≤ 2

(
1− 1

2

∑

u

P 2
u

)
. (43)

For Pu = 1
N
(u ∈ U) this gives the upper bound 2

(
1− 1

2N

)
, which is better than

the bound in Theorem 207 for uniform distributions.

9 Directions for Research

1. Study

L(P,R) for P1 ≥ P2 ≥ · · · ≥ PN and R1 ≥ R1 ≥ · · · ≥ RN.
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2. Our results can be extended to q-ary alphabets, for which then identification
entropy has the form

HI,q(P ) = q

q − 1

(
1−

N∑

i=1

P 2
i

)
.

3. So far we have considered prefix-free codes. One also can study

(a) fix-free codes
(b) uniquely decipherable codes

4. Instead of the number of checkings one can consider other cost measures like
the αth power of the number of checkings and look for corresponding entropy
measures.

5. The analysis on universal coding can be refined.
6. In [4] (see Lecture 18) first steps were taken towards source coding for K-

identification. This should be continued with a reflection on entropy and also
towards GTIT.

7. Grand ideas: Other data structures

(a) Identification source coding with parallelism: there are N identical code-
trees, each person uses his own, but informs others

(b) Identification source coding with simultaneity:m(m = 1, 2, . . . , N) persons
use simultaneously the same tree.

8. We know that with probability at least λ ∈ (0, 1) there is a subset U of cardinality
exp{H(P)/(1− λ)}.

Is there such a result for HI(P )?
It is very remarkable that in our world of source coding the classical range

of entropy [0,∞) is replaced by [0, 2)—singular, dual, plural—there is some
appeal to this range.
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An Interpretation of Identification
Entropy

After Ahlswede introduced identification for source coding he discovered identifi-
cation entropy and demonstrated that it plays a role analogously to classical entropy
in Shannon’s noiseless source coding. We give now even more insight into this
functional interpreting its two factors.

1 Introduction

1.1 Terminology

Identification in source coding started in [3]. Then identification entropy was discov-
ered and its operational significance in noiseless source coding was demonstrated in
[4] (see chapter “Identification Entropy”).

Familiarity with that lecture is helpful, but not necessary here. As far as possible
we also use its notation.

Differences come from the fact that we use now a q-ary coding alphabet X =
{0, 1, . . . , q − 1}, whereas earlier only the case q = 2 was considered and it was
remarked only that all results generalize to arbitrary q . In particular the identification
entropy, abbreviated as ID-entropy, for the source (U, P,U) has the form

HI,q(P ) = q

q − 1

(
1−

∑

u∈U
P 2
u

)
. (1)

Shannon (in 1948) has shown that a source (U, P,U) with output U satisfying
Pr(U = u) = Pu, can be encoded in a prefix code C = {cu : u ∈ U} ⊂
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{0, 1, . . . , q − 1}∗ such that for the q-ary entropy

Hq(P ) =
∑

u∈U
= −Pu logq Pu ≤

∑

u∈U
Pu||cu|| ≤ Hq(P ) + 1

where ||cu|| is the length of cu.
We use a prefix code, abbreviated as PC, C for another purpose, namely, noiseless

identification, that is, every user who wants to know whether a v, v ∈ U of his
interest is the actual source output or cannot consider the RV C with C = cu =
(cu1, . . . , cu||cu ||) if U = u and check whether C = (C1, C2, . . . ) coincides with cv
in the first, second, etc., letter and stop when the first different letter occurs or when
C = cu. Let LC(P, u) be the expected number of checkings, if code C is used.

Related quantities are

LC(P ) = max
v∈U

LC(P, u) (2)

that is, the expected number of checkings for a person in the worst case, if code C is
used

L(P) = min
C
LC(P ), (3)

the expected number of checkings in the worst case for a best code, and finally, if
v’s are chosen by a RV V independent of U and defined by Pr(V = v) = Qv for
v ∈ V = U , we consider

LC(P,Q) =
∑

v∈U
QvLC(P, v), (4)

the average number of expected checkings, if code C is used, and also

L(P,Q) = min
C
LC(P,Q) (5)

the average number of expected checkings for a best code.
A natural special case is the mean number of expected checkings

L̄C(P ) =
N∑

u=1

1

N
LC(P, u) if U = [N] (6)

which equals LC(P,Q) forQ =
(

1
N
, . . . , 1

N

)
, and

L̄(P ) = min
C
L̄C(P ). (7)
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Another special case of some “intuitive appeal” is the case Q = P . Here we write

L(P,P ) = min
C
LC(P, P ). (8)

It is known that Huffman codes minimize the expected code length for a PC.
This is not always the case for L(P) and the other quantities in identification.
In this lecture an important incentive comes from Theorem 4 of [1].
For PN = (2−l1, . . . , 2−lN ), that is with 2-powers as probabilitiesL(PN , PN ) =

Hl(P
N ). Here the assumption means that there is a complete prefix code (i.e.,

equality holds in Kraft’s equality).

1.2 A New Terminology Involving Proper Common Prefices

The quantity LC(P,Q) is defined below also for the case of not necessarily
independentU and V . It is conveniently described in a terminology involving proper
common prefices

Definition 210 For an encoding c : U → X ∗, we define for two wordsw,w′ ∈ X ∗
cp(w,w′) as the number of proper common prefices including the empty word,
which equals the length of the maximal proper common prefix plus 1.

For example cp(11 000) = 1, cp(0110 0100) = 3, and cp(1001 1001) = 4
(since the proper common prefices are ∅, 01, 100).

Now with encoding c for PC C and RV’s U and V , cp(cU , cV )measures the time
steps it takes to decide whether U and V are equal, that is, the checking time or
waiting time, which we denote by

WC(U, V ) = cp(cU , cV ). (9)

Clearly, we can write the expected waiting time as

EWC(U, V ) = Ecp(cU , cV ) (10)

It is readily verified that for independentU , V , that is, Pr(U = u, V = v) = PuQv
EWC(U, V ) = LC(P,Q) = Ecp(cU , cV ). (11)

We give now another description for EWC(U, V ). For a word w ∈ X ∗ and a code C
define as subset of U

U(C, w) = {u ∈ U : cu has proper prefix w} (12)
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and its indicator function 1U(C,w). Now

E cp(cU , cV ) =
∑

u,v∈U
Pr(U = u, V = v)cp(cu, cv)

=
∑

u,v∈U
Pr(U = u, V = v)

∑

w

1U(C,w)(u)1U(C,w)(v)

=
∑

w

Pr (U ∈ U(C, w), V ∈ U(C, w))

and by (11)

EWC(U, V ) =
∑

w

Pr
(
U ∈ U(C, w),w ∈ U(C, w)

)
. (13)

1.3 Matrix Notation

Next we look at the double infinite matrix

� = (cp(w,w′))
w∈X ∗,w′∈X ∗ (14)

and its minor�(L) labeled by sequences in X≤L.
Henceforth we assume that U and V are independent and have distributions P

and Q. We can then use (11). For a prefix code C P induces the distribution PC
andQ induces the distributionQC , when for u, v ∈ U

PC(cu) = Pu,QC(cv) = Qv (15)

and

PC(x) = QC(x) = 0 for x ∈ X ∗ \ C. (16)

Viewing both, PC and QC as row vectors, for the corresponding column vector
QTC (11) can be written in the form

LC(P,Q) = PC�QTC . (17)

It is clear from (10) that a non-complete prefix code, that is one for which the Kraft
sum is smaller than 1, can be improved for identification by shortening a suitable
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codeword. Hence an optimal ID source code is necessarily complete. In such a code

max
u∈U

‖cu‖ ≤ |U | − 1 (18)

and one can replace � by its submatrix�(L) for L = |U | − 1. This implies

LC(P,Q) = P (L)C �(L)(Q
(L)

C )T , (19)

where P (L)C , and Q(L)C are row vectors obtained by deleting the components y /∈
X≤L.

Sometimes the expressions (17) or (18) are more convenient for the investigation
of LC(P,Q). For example it is easy to see that � and therefore also �(L) are
positive semidefinite. Indeed, let� (resp.�(L)) be a matrix whose rows are labeled
by sequences in X ∗ (resp. X≤L) and whose columns are labeled by sequences in
X ∗ (resp. X≤L−1 ∪ {empty sequence}) such that its (x, y)-entry is

δ∗y(x) =
{

1 if y is a proper prefix of x

0 otherwise.

Then

� �T = � and �(L)(�(L))T = �(L) (20)

and hence � and �(L) are positive semidefinite. Therefore by (18) LC(P, P ) is
(∪)-convex in P .

Furthermore, for sources (U, P ) with |U | = 2k and for block code C = {0, 1}k,
the uniform distribution on U achieves minP LC(P, P ).1

Another interesting observation on (19) is that as thewth component ofP (L)C �(L)

(resp. Q(L)C �(L)) is P
(
U(C, w)

)
(resp. Q

(
U(C, w)

)
), application of the Cauchy-

Schwarz inequality to (19) yields

[
P
(L)

C �(L)(Q
(L)

C )T
]2 ≤ [P (L)C �(L)(P

(L)

C )T
] · [Q(L)C �(L)(Q

(L)

C )T
]

(21)

and equality holds iff for all w

P
(
U(C, w)

) = Q(U(C, w)).

We state this in equivalent form as follows.

1A proof is given in chapter “L-Identification for Sources”.
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Lemma 211

LC(P,Q)
2 ≤ LC(P, P )LC (Q,Q) (22)

and equality holds iff for all w

P
(
U(C, w)

) = Q(U(C, w)),

which implies LC(P,Q) = LC(P, P ) = LC(Q,Q).
This suggests to introduce

μC(P,Q) = LC(P,Q)2

LC(P, P )LC (Q,Q)
≤ 1

as a measure of similarly of sources P andQ with respect to the code C.
Intuitively we feel that for a good code for source P and Q as user distribution

P and Q should be very dissimilar, because then the user waits less time until he
knows that the output of U is not what he wants.

This idea will be used later for code construction. Actually it is clear even in the
general case where U and V are not necessarily independent.

To simplify the discussion we assume here that the alphabet X is binary, i.e.
q = 2.

Then the first bit of a codeword partitions the source U into two parts Ū(i1);
i1 = 0, 1; where Ū(i1) = {u ∈ U : cu1 = i1}. By (13), to minimize E WC(U, V )
one has to choose a partition such that Pr

(
U ∈ Ū(i1), V ∈ Ū(i1)

)
’s are small

simultaneously for i1 = 0, 1. To construct a good code one can continue this line:
partition Ū(i1) to Ū(i1, i2)’s such that

Pr
(
U ∈ Ū(i1, i2), V ∈ Ū(i1, i2) | U ∈ Ū(i1), V ∈ Ū(i1)

)
’s

are as small as possible for i1, i2 = 0, 1 and so on.
When U and V are independent the requirement for a good code is that the

difference between P
(
Ū(i1, . . . , ik)

)
andQ

(
Ū(i1, . . . , ik)

)
is large.

We call this the Local Unbalance Principle in contrast to the Global Balance
Principle below.

Another extremal case is that U and V are equal with probability one and
in this case one may never use the unbalance principle. However in this case
the identification for the source makes no sense: The user knows that his output
definitely comes! But still we can investigate the problem by assuming that with
high probability U = V . More specifically, we consider the limit of E WC(Uk, Vk)
for a sequence of RV’s (Uk, Vk)∞k=1 such that Uk converges to Vk in probability.
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Then it follows from (11) that E WC(Uk, Vk) converges to the average length of
codewords, the classical object in source coding! In this sense identification for
sources is a generalization of source coding (data compression).

One of the discoveries of [4] is that ID-entropy is a lower bound to LC(P, P ).
In (2) we repeat the original proof and we give in (3) another proof of this fact via
two basic tools, Lemmas 214 and 215 for LC(P n, P n), where Pn is the distribution
of a memoryless source. It provides a clear information-theoretical meaning of the

two factors q
q−1 and

(
1− ∑

u∈U
P 2
u

)
of ID-entropy. Next we consider in (4) sufficient

and necessary conditions for a prefix code C to achieve the ID-entropy lower bound
for LC(P, P ). Quite surprisingly it turns out that the ID-entropy bound for ID-time
is achieved by a variable length code iff the Shannon entropy bound for the average
length of codewords is achieved by the same code (Theorem 213).

Finally we end the lecture in (5) with a global balance principle to find good
codes (Theorem 219).

2 An Operational Justification of ID-Entropy as
Lower Bound for LC(P,P)

Recall from the introduction that for q = 2

HI(P ) = 2

(
1−

N∑

u=1

P 2
u

)
, for P = (P1, . . . , PN ).

We repeat the first main result for L(P,P ) from [4] (see chapter “Identification
Entropy”).

Central in our derivation is a proof by induction based on a decomposition
formula for trees.

Starting from the root a binary tree T goes via 0 to the subtree T0 and via 1 to the
subtree T1 with sets of leaves U0 and U1, respectively. A code C for (U, P ) can be
viewed as a tree T, where Ui corresponds to the set of codewords Ci ,U0 ∪ U1 = U .

The leaves are labeled so that U0 = {1, 2, . . . , N0} and U1 = {N0 + 1, . . . , N0 +
N1}, N0 +N1 = N . Using probabilities

Qi =
∑

u∈Ui
Pu, i = 0, 1
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we can give the decomposition in the following

Lemma 212 For a code C for (U, PN )

LC((P1, . . . , PN ), (P1, . . . , PN ))

= 1+ LC0

((
P1

Q0
, . . . ,

PN0

Q0

)
,

(
P1

Q0
, . . . ,

PN0

Q0

))
Q2

0

+ LC1

((
PN0+1

Q1
, . . . ,

PN0+N1

Q1

)
,

(
PN0+1

Q1
, . . . ,

PN0+N1

Q1

))
Q2

1.

This readily yields the following result

Theorem 213 For every source (U, PN )

L(PN) ≥ L(PN , PN ) ≥ HI (PN).

Proof We proceed by induction on N . The base case N = 2 is established as
follows. For N = 2 and any C LC(P 2, P 2) ≥ P1 + P2 = 1, but

HI(P
2) = 2(1− P 2

1 − (1− P1)
2) = 2(2P1 − 2P 2

1 ) = 4P1(1− P1) ≤ 1.

For the induction step, for any code C the decomposition formula in Lemma 212
and, of course, the desired inequality for N0 and N1 as induction hypothesis.

LC((P1, . . . , PN ), (P1, . . . , PN ))

≥ 1+ 2

⎛

⎝1−
∑

u∈U0

(
Pu

Q0

)2
⎞

⎠Q2
0 + 2

⎛

⎝1−
∑

u∈U1

(
Pu

Q1

)2
⎞

⎠Q2
1

≥ HI (Q)+Q2
0HI(P

(0))+Q2
1HI (P

(1)) = HI (PN),

where Q = (Q0,Q1), 1 ≥ H(Q), P (i) =
(
Pu
Qi

)

u∈Ui
, and the grouping identity is

used for the equality. This holds for every C and therefore also for min
C
LC(PN). ��

The approach readily extends also to the q-ary case.

3 An Alternative Proof of the ID-Entropy Lower Bound
for LC(P,P )

First we establish Lemma 214 below, which holds for the more general case
E WC(U, V ). Let

(
(Un, V n)

)∞
n=1 be a discrete memoryless correlated source with

generic pair of variables (U, V ). AgainUn serves as (random) source and V n serves
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as random user. For a given code C for (U, V ) let Cn be the code obtained by
encoding the components of sequence un ∈ Un iteratively. That is, for all un ∈ Un

cnun = (cu1, cu2, . . . , cun). (23)

Lemma 214

EWCn (U
n, V n) = EWC(U, V )

(
1+

n−1∑

t=1

Pr(Ut = V t )
)

(24)

and therefore,

lim
n→∞E ECn(U

n, V n) = EWC(U, V )
1− Pr(U = V ) . (25)

Proof Since

Pr(Un = V n) =
n∏

t=1

Pr(Ut = Vt) =
n

Pr(U = V )

Equation (25) follows from (24) immediately by the summation formula for
geometric series.

To show (24) we define first for all t ≥ 2 RV’s

Zt =
{

0 if Ut−1 �= V t−1

1 otherwise.
(26)

and for t = 1 we let Z1 be a constant for convenience of notation. Further we letWt
be the waiting time for the random user V n in the t-th block.

Conditional on Zt = 1 it is defined like WC(U, V ) in (9) and conditional on
Zt = 0 obviously Pr(Wt = 0 | Zt = 0) = 1, because the random user has made his
decision before the t-th step. Moreover by the definition of Cn

E[Wt | Zt = 1] = EWC(U, V ) (27)

and consequently,

E[E(Wt | Zt)] =
{

Pr(Ut−1 = V t−1)EWC(U, V ) for t = 2, 3, . . . , n

EWC(U, V ) for t = 1
(28)
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where (28) holds in case t = 1, because the random user has to wait for the first
outcome. Therefore it follows that

EWCn (U
n, V n) = EWn =

n∑

t=1

EWt =
n∑

t=1

E[E(Wt | Zt)]

= EWC(U, V )+
n−1∑

t=1

Pr(Ut , V t )E WC(U, V )

as we wanted to show. ��
Next we consider the case where U and V are i.i.d. with distribution P so that

Pr(Un = un, V n = vn) =
n∏

t=1

Put · Pvt . (29)

More specifically we are looking for a lower bound on LC(P n, P n) for all prefix
codes C over Un.

Lemma 215 For all ε > 0 there exists an η > 0 such that for sufficiently large n
and all positive integers

Ln ≤ n
(
H(P)− ε)(log q)−1 (30)

for all prefix codes C over Un

LC(P
n, P n) > (1− 2−nη)

Ln−1∑

t=0

q−t . (31)

Proof For given ε > 0 we choose δ > 0 such that for a τ > 0 and sufficiently large
n for familiar typical sequences

Pn(T nP,δ) > 1− 2−nτ

and for all un ∈ T nP,δ

P (un) < 2−n(H(P )−
ε
2 ).
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Since for a prefix code C

|{un ∈ Un : ‖cun‖ ≤ Ln}| ≤ qLn (32)

Pr(‖cun‖ ≤ Ln) = Pr(‖cvn‖ ≤ Ln)
≤ Pr(V n /∈ T nP,δ)+ Pr(V n ∈ T nP,δ, ‖cvn‖ ≤ Ln)

< 2−nτ + |{un : ‖cun‖ < Ln}| · 2−n(H(P )−
ε
2 )

≤ 2−nτ + qLn2−n(H(P )− ε2 ). (33)

However, (30) implies that

qLn ≤ 2n(H(P )−ε).

This together with (33) yields

Pr(‖cUn‖ ≤ Ln) < 2−nτ + 2−n
ε
2 < 2−nδ (34)

for δ � min
(
τ
2 ,
ε
4

)
.

Next, for the distribution P and the code C over Un we construct a related source
(Ũ , P̃ ) and a code C̃ over Ũ as follows.

The new set Ũ contains {un ∈ Un : ‖cun‖ ≤ Ln} and for its elements P̃ (un) =
Pn(un) and the new ∼-coding is c̃un = cun .

Now we define the additional elements in Ũ with its P̃ and c̃.
We partition {un ∈ Un : ‖cun‖ > Ln} into subsets Sj (1 ≤ j ≤ J ) according to

the Ln-th prefix and use letter gj to represent Sj and put the set ˜̃U = {gj : 1 ≤ j ≤
J } into Ũ so that

Ũ = {un ∈ Un : ‖cun‖ ≤ Ln} ∪ ˜̃U .

Then we define P̃ (gj ) = ∑
un∈Sj

P (un) and let c̃gj be the common Lnth prefix of the

cun’s for the un’s in Sj . That is, we consider all un sharing the same Lnth prefix in
cun as a single element. Obviously,

LC(P
n, P n) ≥ LC̃(P̃ , P̃ ). (35)

Finally let Ũn and Ṽn be RV’s for the new source and new random user with
distribution P̃ and let Z be a RV such that

Z =
{

0 if both ‖cUn‖ and ‖cVn‖ are larger than Ln

1 otherwise.
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Then

LC̃(P̃ , P̃ ) = EW = E(W | Z) ≥ Pr(Z = 0)E(W | Z = 0)

= Pr(‖cUn‖ ≥ Ln) Pr(‖cV n‖ ≥ Ln) · L ˜̃C(
˜̃
P,

˜̃
P) (36)

where W is the random waiting time, ˜̃P is the common conditional distribution of

Ũn given Ũn ∈ ˜̃U , and Ṽn given Ṽn ∈ ˜̃U , i.e.,

˜̃
P(gj ) = P̃ (g)

P̃ (
˜̃U)

for gj ∈ ˜̃U

and ˜̃C is the restriction of C̃ to ˜̃U .
Notice that ˜̃C is a block code of lengthLn. In order to boundL ˜̃C(

˜̃
P,

˜̃
P) we extend

˜̃U to a set of cardinality qLn in the case of necessity and assign zero probabilities

and a codeword of length Ln not in ˜̃C. This little modification obviously does not

change the value of L ˜̃C(
˜̃
P,

˜̃
P). Thus, if we denote the uniform distribution over the

extended set
˜̄̃U by P̄ , we have

L ˜̃C(
˜̃
P,

˜̃
P) ≥ L ˜̄̃C

(P̄ , P̄ ) (37)

where
˜̄̃C is a bijective block code

˜̄̃U → XLn .
It is clear that U(C̃, ω) �= ∅ iff the length of ω is smaller than Ln − 1 and

U(C̃, ω) = XL∗−1, if ‖ω‖ = � ≤ Ln − 1.

Then it follows from (13) that

L ˜̄̃C
(P̄ , P̄ ) =

Ln−1∑

t=0

qt [qLn−t · q−Ln]2 =
Ln∑

t=0

q−t . (38)

Finally we combine (34)–(38) and Lemma 215 follows. ��
An immediate consequence is the following corollary.

Corollary 216

lim
n→∞

L(Pn, Pn) ≥
∞∑

t=0

q−t = q

q − 1
. (39)



3 An Alternative Proof of the ID-Entropy Lower Bound for LC(P, P ) 411

Furthermore for i.i.d. RV’s U,V with distribution P we have

Pr(U = V ) =
∑

u∈U
P 2
u

and from (25) and (39) follows the ID-entropy bound.

Corollary 217 (See chapter “Identification Entropy”)

LC(P, P ) ≥ q

q − 1

(
1−

∑

u∈U
P 2
u

)
. (40)

This derivation provides a clear information-theoretical meaning to the two
factors in ID-entropy: q

q−1 is a universal lower bound on the ID-waiting time for
a discrete memoryless source with an independent user having the same distribution
P . 1

1−∑
u∈U

P 2
u

is the cost paid for coding the source component-wise and leaving time

for the random user in the following sense.
Let us imagine the following procedure:
At a unit of time the random source Un outputs a symbol Ut and the random

user V n, who wants to know whether Un = V n, checks whether Ut coincides with
his own symbol Vt . He will end if not. Then the waiting time for him is � with
probability

Pr(U�−1 = V �−1) Pr(U� �= V�) = Pr(U = V )�−1(1− Pr(U = V )) for � ≤ n.

Letting n→∞ we obtain a geometric distribution.
The expected waiting time is

EW =
∞∑

�=0

� Pr(U = V )�−1(1− Pr(U = V ))

=
∞∑

�=0

(�+ 1) Pr(U = V )� −
∞∑

�=0

Pr(U = V )�

=
∞∑

�=0

Pr(U = V )� = 1

1− Pr(U = V ) (41)

which equals 1
1−∑

u
P 2
u

in the case of i.i.d. RV’s.
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(Actually (24) holds for all stationary sources and we choose a memoryless
source for simplicity.) In general (25) has the form

lim
n→∞EWCn (U

n, V n) = EWC(U, V ) · lim
n→∞

(
1+

n−1∑

t=1

Pr(Ut = V t )
)
. (42)

By monotonicity the limit at the RHS and therefore also at the LHS exists and equals
a positive finite or infinite value.

When it is finite one may replace Pr(U = V )t−1, Pr(U = V ) and Pr(U = V )t
in the first lines of (41) by Pr(Ut−1 = V t−1), Pr(Ut = Vt | Ut−1 = V t−1) and
Pr(Ut = V t), respectively, and obtain

lim
n→∞

(
1+

n−1∑

t=1

Pr(Ut = V t )
)

=
∞∑

t=0

t Pr(Ut−1 = V t−1) · Pr(Ut �= Vt | Ut−1 = V t−1) = EL, (43)

the expectation of random leaving time L for a stationary source.
Thus (42) is rewritten as

lim
n→∞WCn (U

n, V n) = WC(U, V )EL. (44)

Now the information-theoretical meaning of (44) is quite clear. One encodes a
source (Un, V n)∞n=1 with alphabet U component by component by a variable length
code C. The first term at the right hand side of (44) is the expected waiting time in a
block and the second term is the expected waiting time for different Ut and Vt .

4 Sufficient and Necessary Conditions for a Prefix Code C
to Achieve the ID-Entropy Lower Bound of LC(P,P)

Quite surprisingly the ID-entropy bound to ID-waiting time is achieved by a variable
length code iff the Shannon entropy bound to the average lengths of codewords is
achieved by the same code.

For the proof we use a simple consequence of the Cauchy-Schwarz inequality,
which states for two sequences of real numbers (a1, a2, . . . , ak) and (b1, b2, . . . , bk)

that

(
k∑

i=1

aibi

)2

≤
(
k∑

i=1

a2
i

)(
k∑

i=1

b2
i

)
(45)

with equality iff for some constant, say γ , ai = γ bi for all i or bi = c ai for all i.
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Choosing bi = 1 for all i one has

(
k∑

i=1

ai

)2

≤ k
k∑

i=1

a2
i (46)

with equality iff a1 = a2 = · · · = ak .
Theorem 218 Let C be a prefix code. Then the following statements are equiva-
lent

(i)
∑
u∈U

Pu‖cu‖ = H(P)
(ii) For all ω ∈ X ∗ with U(C, ω) �= ∅

P
(
U(C, ω)

) = q−‖ω‖ (47)

and for all u, u′ ∈ U ‖cu‖ = ‖cu′ ‖ and that cu and cu′ share the same prefix
of length ‖cu‖ − 1 implies

Pu = Pu′ . (48)

(iii)

LC(P, P ) = q

q − 1

(
1−

∑

u∈U
P 2
u

)
. (49)

Proof It is well-known that (i) is equivalent to

(i’) For all u ∈ U

‖cu‖ = −[log q]−1 logPu or Pu = q−‖cu‖. (50)

Notice that for (i) the code C is necessarily complete. We shall show that

(i ′)⇒ (ii)⇒ (iii)⇒ (i ′).

Ad (i’)⇒ (ii) For all ω with U(C, ω) �= ∅ the code Cω obtained by deleting the
common prefix ω from all the codewords cu, u ∈ U(C, ω), is a complete code on
U(C, ω), because C is a complete code. That is,

∑

u∈U(C,ω)
q−[‖cu‖−‖ω‖] = 1
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and, consequently, by (50)

P
(
U(C, ω)

) =
∑

u∈U(C,ω)
Pu =

∑

u∈U(C,ω)
q−‖cu‖ = q−‖ω‖

∑

u∈U(C,ω)
q(‖cu‖−‖ω‖) = q−‖ω‖.

Ad (ii)⇒ (iii) Suppose (47) holds for all ω and we prove (iii) by induction on
�max(C) = max

u∈U
‖cu‖.

In case �max(C) = 1 both sides of (49) are one. Assume (iii) holds for all codes
C ′ with �max(C ′) ≤ L− 1 and let �max(C) = L. Let U1(C) and U(α)(C), be as in the
proof of (11) and let C(α) be the prefix code for the source with alphabet U(α)(C) and
distribution P(α) such that for all u ∈ U(α)(C) and X ′ = {cu : u ∈ U1(C)}

P(α)(u) = P−1(U(α)(C)
)
Pu.

Then (47) and (48) imply that (ii) holds for all C(α), α ∈ U1(C) and for all β ∈
U1(C)

Pβ = |U1(C)|−1P
(
U1(C)

)
. (51)

Next we apply (47) to all ω with U(C, ω) and ‖ω‖ = 1 and obtain

Pr
(
U /∈ U1(C)

) = (q − |U1(C)|
)
q−1, (52)

which with (51) yields for all β ∈ U1(C)

Pβ = q−1. (53)

Moreover, by induction hypothesis for all C(α) and P(α), α ∈ U1(C)

LC(α) (P(α), P(α)) =
q

q − 1

⎛

⎝1− q2
∑

u∈U(α)(C)
P 2
u

⎞

⎠ (54)

as by (47)

P
(
U(α)(C)

) = q−1 (55)

for all α ∈ X� = X \ {cu : u ∈ U1(C)} (say).
Finally, like in the proof of (11) we have

LC(P, P ) = 1+
∑

α∈X�

P 2(U(α)(C)
)
LC(α) (P(α), P(α)) (56)

= 1+
∑

α∈X�

1

q(q − 1)

⎡

⎣1− q2
∑

u∈U(α)(C)
P 2
u

⎤

⎦
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= 1+ |X�|
q(q − 1)

− q

q − 1

∑

u/∈U1(C)
P 2
u (57)

= 1+ q − |U1(C)|
q(q − 1)

− q

q − 1

∑

u∈U
P 2
u +

q

q − 1
|U1(C)|q−2

= q

q − 1

(
1−

∑

u∈U
P 2
u

)
, that is (49), (58)

where the second equality holds by (54), the third equality holds, because
{U1(C),U(α)(C), α ∈ X ′} is a partition of U , and the fourth equality follows
from (53) and the definition of X�.

Ad (iii)⇒ (i’) Again we proceed by induction on the maximum length of code-
words.

Suppose first that for a code C �max(C) = 1. Then LC(P, P ) = 1 and |U | ≤ q .
Applying (46) to the ID-entropy we get

q

q − 1

(
1−

∑

u∈U
P 2
u

)
≤ q

q − 1
(1− |U |−1)

with equality iff P is the uniform distribution. On the other hand, since |U | ≤ q ,
q
q−1 (1 − |U |−1) ≤ q

q−1

(
1− 1

q

)
= 1 and the equality holds iff |U | = q . Then (49)

holds iff P is uniform and |U | = q , i.e., (50).
Assume now that the implication (iii) ⇒ (i’) holds for all codes with maximum

lengths≤ L− 1 and that C is a prefix code of maximum length �max(C) = L.

Without loss of generality we can assume that C is complete, because otherwise
we can add “dummy” symbols with 0 probability to U and assign to them suitable
codewords so that the Kraft sum equals 1, but this does not change equality (49).

Having completeness we can assume that for (ak) ≤ qL−1 there are kq symbols
u(i, j) (1 ≤ i ≤ k, 0 ≤ j ≤ q − 1) in U with ‖cu(i,j)‖ = L and such that
cu(i,0), cu(i,1), . . . , cu(i,q−1) share a prefix ωi of length L− 1 for i = 1, 2, . . . , k.

Let u(1), . . . , u(k) be k “new symbols” not in the original U and consider

U ′ = [U{u(i, j) : 1 ≤ i ≤ k, 0 ≤ j ≤ q − 1}] ∪ {u(i) : 1 ≤ i ≤ k}

and the probability distribution P ′ defined by

P ′u′ =
{
Pu′ if u′ ∈ U ∩ U ′
∑q−1
j=0 Pu(i,j) if u′ = u(i) for some i.

(59)
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Next we define a prefix code C ′ for the source (U ′, P ′) by using C as follows:

c′u′ =
{
cu′ if u′ ∈ U ∩ U ′

ωi if u′ = u(i) for some i.
(60)

Then for u′ ∈ U∩U ′ ‖c′
u′‖ = ‖cu′‖ and ‖c′u(1)‖ = ‖c′u(2)‖ = · · · = ‖c′u(k)‖ = L−1.

Therefore by induction hypothesis

LC′(P
′, P ′) ≥ q

q − 1

(
1−

∑

u′∈U ′
P ′2u′

)
(61)

and equality holds iff Pu = q−‖cu‖ for u ∈ U ∩ U ′ and

q−1∑

j=0

Pu(i,j) = P ′u(i) = q−(L−1) for i = 1, 2, . . . , k.

Furthermore, it follows from (46) and the definition of LC(P, P ) and LC′(P ′, P ′)
that

LC(P, P ) = LC′(P ′, P ′)+
k∑

i=1

⎛

⎝
q−1∑

j=0

Pu(i,j)

⎞

⎠
2

= LC′(P ′, P ′)+
k∑

i=1

P ′2u(i)

≥ q

q − 1

(
1−

∑

u′∈U ′
P ′2u′

)
+

k∑

i=1

P ′2u(i)

= q

q − 1

(
1−

∑

u∈U∩U ′
P 2
u

)
+

k∑

i=1

(
1− q

q − 1

)
P ′2u(i)

= q

q − 1

⎡

⎢⎣1−
∑

u∈U∩U ′
P 2
u −

k∑

i=1

q−1

⎛

⎝
q−1∑

j=0

Pu(i,j)

⎞

⎠
2
⎤

⎥⎦

≥ q

q − 1

[
1−

∑

u∈U
P 2
u

]
. (62)
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By (60) the first inequality holds iff Pu = q−‖cu‖ for u ∈ U∩U ′ and
q−1∑
j=0
Pu(i,j) =

q−(L−1) for i = 1, 2, . . . , k; it follows from (46) that the last inequality holds and
with equality iff

Pu(i,0) = Pu(i,1) = · · · = Pu(i,q−1) for i = 1, 2, . . . , k.

In order to have

LC(P, P ) = q

q − 1

[
1−

∑

u∈U
P 2
u

]

the two inequalities in (62) must be equalities. However, this is equivalent with (50),
i.e. (i’). ��

5 A Global Balance Principle to Find Good Codes

In case U and V are i.i.d. there is no gain in using the local unbalance principle
(LUP). But in this case Corollary 216 and (46) provide a way to find a good code.
We first rewrite Corollary 216 as

EWC(U, V ) =
∑

u

∑

ω∈X u

Pr
(
U ∈ U(C, ω), V ∈ U(C, ω)

)
.

By the assumptions on U and V with their distribution P

LC(P, P ) =
∑

u

∑

ω∈X u

P 2(U(C, ω)
)
. (63)

Notice that in case

Pn,C �
∑

ω∈X n

P
(
U(C, ω)

)

is a constant
∑
ω∈X n

P 2
(
U(C, ω)

)
is minimized by choosing the P

(
U(C, ω)

)
’s

uniformly. This gives us a global balance principle (GBT) for finding good codes.
We shall see the roles of both, the LUP and the GBP in the proof of the following

coding theorem for discrete memoryless sources (DMS’s).
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Theorem 219 For a DMS (Un, V n)∞n=1 with generic distribution PUV = PQ, i.e.
the generic RV’s U and V are independent and PU = P , PV = Q

lim
n→∞L(P

n,Qn) =
{

1 if P �= Q
q
q−1 if P = Q. (64)

Proof Trivially LC(P,Q) ≥ 1 and by Corollary 217, q
q−1 is a lower bound to

limn→∞ L(Pn, Pn). Hence we only have to construct codes to achieve asymptoti-
cally the bounds in (64).

Case P �= Q We choose a δ > 0 so that for sufficiently large n

T nP,δ ∩ T nQ,δ = ∅ (65)

and for a θ > 0

P(T nP,δ) > 1− 2nθ andQ(T nQ,δ) > 1− 2nθ . (66)

Partition Un into two parts U0 and U1 such that U0 ⊃ T nP,δ and U1 ⊃ T nQ,δ.
To simplify matters we assume q = 2. This does not loose generality since

enlarging the alphabet cannot make things worse.
Let �i = �log |Ui |� and ψi : Ui → 2[�i] for i = 1, 2. Then we define a code C by

cun =
(
i, ψi(u

n)
)

if un ∈ Ui and show that LC(P n,Qn) is arbitrarily close to one if
n is sufficiently large. Actually it immediately follows from (11)

LC(P
n,Qn)

=
∑

un,u′n∈Un
P n(cun)Q

n(cu′n)cp(cun , cu′n )

=
∑

un∈U0

∑

u′n∈U0

Pn(cun)Q
n(cu′n)cp(cun , cu′n )

+
∑

un∈U0

∑

u′n∈U1

Pn(cun)Q
n(cu′n )cp(cun , cu′n )

+
∑

un∈U1

∑

u′n∈U0

Pn(cun)Q
n(cu′n )cp(cun , cu′n )

+
∑

un∈U1

∑

u′n∈U1

Pn(cun)Q
n(cu′n )cp(cun , cu′n )

< �0

∑

un∈U0

Pn(cun)
∑

u′n∈U0

Qn(cu′n)+
∑

un∈U0

Pn(cun)
∑

u′n∈U1

Qn(cu′n )
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+
∑

un∈U1

Pn(cun)
∑

u′n∈U0

Qn(cu′n )+ �1

∑

un∈U1

Pn(cun)
∑

u′n∈U1

Qn(cu′n )

≤
⎡

⎣
∑

un∈U0

Pn(cun)
∑

u′n∈U1

Qn(cu′n)+
∑

un∈U1

Pn(cun)
∑

u′n∈U0

Qn(cu′n )

⎤

⎦

+ �n log |U |�
⎡

⎣
∑

un∈U0

(cun)
∑

u′n∈U0

Qn(cu′n)+
∑

un∈U1

Pn(cun)
∑

u′n∈U0

Qn(cu′n )

⎤

⎦

≤ 1+ �n log |U |�
⎡

⎣
∑

u′n∈U0

Qn(cu′n )+
∑

un∈U1

Pn(cun)

⎤

⎦

and therefore,

LC(P
n,Qn) < 1+ �n log |U |�2−nθ+1 → 1 as n→∞, (67)

where the second inequality holds because

�i = �log |Ui |� ≤ �log |Un|� for i = 0, 1

and the last inequality follows from (66).

Case P = Q Now we let P = Q. For 0 < α < H(P) let Pn(> α) be the set of
n-ED’s (n-empirical distributions) P̃ on U with |T n

P̃
| > 2nα . Then there is a positive

θ such that the empirical distribution of the outputUn (resp. V n) is in Pn(> α) with
probability larger than 1− 2nθ .

Next we choose an integer �n such that for

β � 1

4
min(θ, α) 2

n
2 β < q�n ≤ 2nβ. (68)

Label sequences in T n
P̃

for P̃ ∈ Pn(> α) by 0, 1, . . . , |T n
P̃
| − 1 and let �1 be a

mapping from Un to X �n , where X = {0, 1, . . . , q − 1} as follows.
If un has ED P̃ in Pn(> α) and got an index ind(un) with q-ary representation

(xk, xk−1, . . . , x2, x1) i.e., ind(un) =
k∑
i=0
xiq

i−1 for 0 ≤ xi ≤ q − 1, k =
�log |T n

P̃
|�, then let

�1(u
n) = (x1, x2, . . . , x�n). (69)
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If the ED of un is not in Pn(> α), we arbitrarily choose a sequence in X �n as
ψ1(u

n).
For any fixed t ≤ �n, P̃ ∈ Pn(> α), and xt ∈ X t let U(P̃ , xt ) be the set of

sequences in T n
P̃

such that xt is a prefix of ψ1(u
n). Then it is not hard to see that for

all xt, x ′t with t ≤ �n
∣∣|U(P̃ , xt )| − |U(P̃ , x ′t )|∣∣ ≤ 1.

More specifically for all t ≤ �n and xt ∈ X t

|U(P̃ , xt )| =
k∑

j=t+1

ajq
j−1−t or

k∑

j=t+1

ajq
j−1−t + 1,

if |T n
P̃
| =

k∑
j=1
ajq

j−1 with ak �= 0, 0 ≤ aj ≤ q − 1 for j = 1, 2, . . . , k − 1.

Let U(xt ) = ⋃

all P̃

U(P̃ , xt ) (here it does not matter whether P̃ ∈ Pn(> α) or

not).
Thus we partition Un into qt parts as {U(xt ) : xt ∈ X t } for t ≤ �n.
By the asymptotic equipartition property (AEP), the difference of the conditional

probability of the event that the output of Un is in U(xt ) given that the ED of Un is
in Pn(> α) and q−1 is not larger than

min
P̃∈Pn(>α)

|TP̃ |−1 < 2−nα.

Recalling that with probability 1−2−nθ Un has ED in Pn(> α) and the assumption
that V n has the same distribution as Un, we obtain that

Pr
(
Un ∈ U(xt )

) = Pr
(
V n ∈ U(xt )

) = Pn(U(xt ))

and for all xt ∈ X t

(1− 2−nθ )(q−t − 2−nα) ≤ Pn(U(xt )) ≤ (1− 2−nθ )(q−t + 2−nα)+ 2−nθ ,

which implies that for all xt ∈ X t

|Pn(U(xt ))− q−t | ≤ 2−nθ + 2−nα < 2−2nβ, (70)

when β � 1
4 min(θ, α).

Recall that �1 is a function from Un to X �n and that the definition of U(xt ),
U(x�n) is actually the inverse image of X �n under �1, i.e. U(X �n) = �−1

1 (X �n).
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Let furthermore �∗(x�n) �
⌈

log |U(xn)|
logq

⌉
and let �2 be a function on Un such that

its restriction on U(x�n) is an injection into X �∗(x�n ) for all x�n . Then our decoding
function is defined as

c = (�1,�2). (71)

To estimate LC(P n, P n) we introduce an auxiliary source with alphabet X �n and
probability distribution P ∗ such that for all x�n ∈ X �n

P ∗(x�n) = Pn(U(x�n)).
We divide the waiting time for identification with code C into two parts according
to the two components �1 and �2 in (71), and we let W1 and W2 be the random
waiting times of the two parts, respectively. Now let Z be a binary RV such that

Z =
{

0 if �1(U
n) �= �1(V

n)

1 otherwise.

Then

LC(P
n, P n)

= E(W1 +W2) = EW1 + E
(
E(W2 | Z)

)

= EW1 + Pr(Z = 1)E(W2 | Z = 1)

= EW1 +
⎡

⎣
∑

x�n

P n
(
�1(U

n) = x�1
)
Pn
(
�1(V

n) = x�n)
⎤

⎦ · E(W2 | Z = 1)

= EW1 +
⎧
⎨

⎩
∑

x�n

[
Pn
(
U(x�n)

)]2
⎫
⎬

⎭E(W2 | Z = 1). (72)

Let C∗ be the code for the auxiliary source with encoding function c∗ = �1. Then
we have that

EW1 = LC∗(P ∗, P ∗) (73)

and with the notation in Corollary 216 U(C∗, xt ) = U(xt ) and P ∗
(
U(C∗, xt )

) =
Pn
(
U(xt )

)
for xt ∈ X t with t ≤ �n. For all xt ∈ X t , t ≤ �n, we denote

δ(xt ) = q−t − pn(U(xt )).

Then we have for all t ≤ �n ∑
xt∈X t

δ(xt ) = 0 and by (70) δ(xt ) < 2−2nβ .
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Now we apply Corollary 216 to estimate

LC∗(P
∗, P ∗) =

�n∑

t=0

∑

xt∈X t

[
P ∗
(
U(C∗, xt )

)]2

=
�n∑

t=0

∑

xt∈X t

[
Pn
(
U(xt )

)]2 =
�n∑

t=0

∑

xt∈X t

(
q−t − δ(xt ))2

=
�n∑

t=0

[
qt · q−2t − 2q−t

∑

xt∈X t

δ(xt )+
∑

xt∈X t

δ(xt )2

]

≤
�n∑

t=0

q−t +
�n∑

t=0

qt · 2−4nβ

<

∞∑

t=0

q−t + q
�n+1 − 1

q − 1
2−4nβ

<
q

q − 1
+ 1

q − 1
q�n+12−4nβ. (74)

Moreover, by definition of �2 andW2

E
(
W2 | Z = 1)

) ≤
⌈
n log |U |

log q

⌉

and in (74) we have shown that

∑

x�n

[
Pn
(
U(x�n)

)]2 ≤ q−�n + q�n · 2−4nβ.

Consequently
⎧
⎨

⎩
∑

x�n∈X �n

[
Pn
(
U(xt )

)]2
⎫
⎬

⎭E(W2 | Z = 1) ≤ [q−�n + q�n2−4nβ]
⌈
n log |U |

log q

⌉
.

(75)

Finally, by combining (72)–(75) with the choice of β in (68) we have that

lim
n→∞LC(P

n, P n) <
q

q − 1
,

the desired inequality. ��
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It is interesting that the limits of the waiting time of ID-codes in the left hand
side of (64) are independent of the generic distributions P and Q and only depend
on whether they are equal.

In the case that they are not equal it is even independent of the alphabet size.
In particular in case P �= Q, we have seen in the proof that the key step is how
to distribute the first symbol and the local unbalance principle (LUP) is applied
in the second step. Moreover for a good code the random user with exponentially
vanishing probability needs to wait for the second symbol. So the remaining parts
of codewords are not so important.

Similarly in the case P = Q, where we use instead of the LUP the GBP, the key
parts of codewords is a relatively small prefix (in the proof it is the �n-th prefix) and
after that the user with exponentially small probability has to wait. Thus again the
remaining part of codewords is less important.

6 Comments on Generalized Entropies

After the discovery of ID-entropies in [4] work of Tsallis [11] and also [12] was
brought to our attention. The equalities (1) and (2) in [12] are here (76) and (77). The
letter q used there corresponds to our letter α, because for us q gives the alphabet
size. The generalisation of Boltzmann’s entropy

H(P) = −k
∑
PulnPu

is

Sα(P ) = k 1

α − 1

(
1−

N∑

u=1

Pαu

)
(76)

for any real α �= 1. Notice that lim
α→1

Sα(P ) = H(P), which can be named S1(P ).

One readily verifies that for product-distributionsP ×Q for independent RV’s

Sα(P ×Q) = Sα(P ) + Sα(Q)− (α − 1)

k
Sα(P )Sα(Q) (77)

Since in all cases Sα ≥ 0, α < 1, α = 1 and α > 1 respectively correspond
to superadditivity, additivity and subadditivity (also called for the purposes in
statistical physics superextensitivity, extensitivity, and subextensitivity).

We recall the grouping identity of [4] (chapter “Identification Entropy”).



424 An Interpretation of Identification Entropy

For a partition (U1,U2) of U = {1, 2, . . . , N}, Qi = ∑u∈Ui Pu, and P (i)u = Pu
Qi

for u ∈ Ui , i = 1, 2

HI,q(P ) = HI,q(Q)+
∑

i

Q2
i HI,q

(
P (i)

Qi

)
(78)

whereQ = (Q1,Q2). This implies

HI,q(P ×Q) = HI,q(Q)+
∑

j

Q2
jHI,q(P )

and since

(
1−

∑

k

Q2
j

)
= q − 1

q

q

q − 1

⎛

⎝1−
∑

j

Q2
j

⎞

⎠

= q − 1

q
HI,q (Q)

∑

j

Q2
j = 1− q − 1

q
HI,q(Q)

we get

HI,q(P ×Q) = HI,q(Q)+HI,q(P ) − q − 1

q
HI,q(Q)HI,q (P ), (79)

which is (77) for α = 2 and k = q
q−1 .

We have been told by several experts in physics that the operational significance
of the quantities Sα (for α �= 1) in statistical physics seems not to be undisputed.

In contrast, the significance of identification entropy was demonstrated in [4] (see
chapter “Identification Entropy”), which is formally close, but essentially different
from Sα for two reasons: always α = 2 and k = q

q−1 is uniquely determined and
depends on the alphabet size q!

We also have discussed the coding theoretical meanings of the factors q
q−1 and

(
1−

N∑
u=1
P 2
u

)
.

More recently, we learned from referees that already in 1967 Havrda and Charvát
[7] introduced the entropies {HαN } of type α

HαN(P1, P2, . . . , PN ) = (21−α − 1)−1

(
N∑

i=1

Pαi − 1

)
(80)
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[(P1, P2, . . . , PN ) ∈ P([N]),N = 2, 3, . . . , 0α = 0]

lim
α→1

HαN(P1, P2, . . . , PN) = HN(P1, P2, . . . , PN ),

the Boltzmann/Shannon entropy. So, it is reasonable to define

H 1
N(P1, P2, . . . , PN ) = HN(P1, P2, . . . , PN).

This is a generalization of the BGS-entropy different from the Rényi entropies of
order α �= 1 (which according to [2] were introduced by Schützenberger [8]) given
by

αHN(P1, P2, . . . , PN ) = 1

1− α log2

N∑

i=1

Pαi

[(P1, P2, . . . , PN ) ∈ P([N]),N = 2, 3, . . . ].
Comparison shows that

αHN(P1, P2, . . . , PN ) = 1

1− α log2[(21−α − 1)HαN(P1, P2, . . . , PN)+ 1]

[(P1, P2, . . . , PN ) ∈ P([N]),N = 2, 3, . . . ].
So, while the entropies of order α and the entropies of type α are different for

α �= 1, we see that the bijection

t → 1

1− α log2[(21−α − 1)t + 1]

connects them. Therefore, we may ask what the advantage is in dealing with
entropies of type α. We meanwhile also learned that the book [1] gives a com-
prehensive discussion. Also Daróczy’s contribution [6], where “type α” is named
“degree α”, gives an enlightening analysis.

Note that Rényi entropies (α �= 1) are additive, but not subadditive (except for
α = 0) and not recursive, and they have not the branching property nor the sum
property, that is, there exists a measurable function g on (0, 1) such that

HαN(P1, P2, . . . , PN) =
N∑

i=1

g(Pi).
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Entropies of type α, on the other hand, are not additive but do have the subadditivity
property and the sum property and furthermore are

Additive of degree α:

HαMN(P1Q1, P1Q2, . . . , P1QN,P2Q1, P2Q2, . . . , P2QN, . . . , PMQ1,

PMQ2, . . . , PMQN)

= HαM(P1, P2, . . . , PM)+HαN(Q1,Q2, . . . ,QN)

+ (21−α − 1)HαM(P1, P2, . . . , PM)+HαN(Q1,Q2, . . . ,QN)

[(P1, P2, . . . , PM) ∈ P([M]), (Q1,Q2, . . . ,QN) ∈ P([N]);M =
2, 3, . . . ;N = 2, 3, . . . ].
Strong additive of degree α:

HαMN(P1Q11, P1Q12, . . . , P1Q1N, P2Q21, P2Q22, . . . , P2Q2N, . . . , PMQM1,

PMQM2, . . . , PMQMN)

= HαM(P1, P2, . . . , PM)+
M∑

j=1

Pαj H
α
N(Qj1,Qj2, . . . ,QjN)

(P1, P2, . . . , PM) ∈ P([M]), (Qj1,Qj2, . . . ,QjN ) ∈ P([N]); j =
1, 2, . . . ,M;M = 2, 3, . . . ; N = 2, 3, . . . ].
Recursive of degree α:

HαN(P1, P2, . . . , PN )

= HαN−1(P1 + P2, P3, . . . , PN)+ (P1 + P2)
αHα2

(
P1

P1 + P2
,

P2

P1 + P2

)

[(P1, P2, . . . , PN) ∈ {([N]),N = 3, 4, . . . with P1 + P2 > 0].
(In consequence, entropies of type α also have the branching property.)
It is clear now that for binary alphabet the ID-entropy is exactly the entropy of

type α = 2.
However, prior to [11] there are hardly any applications or operational justifica-

tions of the entropy of type α.
Moreover, the q-ary case did not exist at all and therefore the name ID-entropy

is well justified.
We feel that it must be said that in many papers (with several coauthors) Tsallis

at least developed ideas to promote non-standard-equilibrium theory in Statistical
Physics using generalized entropies Sα and generalized concepts of inner energy.
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Our attention has been drawn also to the papers [5, 9], and [10] with possibilities
of connection to our work.

Clear-cut progress was made by Heup in his thesis (see Lecture 21) with a
generalization of ID-entropy motivated by L-identification.
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L-Identification for Sources

1 Introduction

In [3] (see Part II, chapter “Models with Prior Knowledge of the Receiver”)
Ahlswede introduced “a general communication model for one sender”. Suppose
we have a message set M = {1, . . . ,M} whose elements are encoded in such a way
that information about them can be transmitted over a channel. If this channel is
noiseless, i.e., there occur no errors during the transmission, we speak of (noiseless)
source coding. In this case it is common to omit the presence of a channel and speak
simply of source coding.

What do we mean by information? In Shannon’s classical information transmis-
sion problem [15] the decoder is interested in the message which has been encoded
by the encoder. However, the decoder may have different goals. In [3] Ahlswede
writes:

“A nice class of such situations can, abstractly, be described by a family �(M)

of partitions of M. Decoder π ∈ �(M) wants to know only which member of the
partition π = (A1, . . . , Ar) contains m, the true message, which is known to the
encoder.”

In the above citation every partition π ∈ �(M) is identified with a different
decoder. Moreover, the author describes some “seemingly natural families of
partitions”. We focus on the first three models which highlight the differences
between classical information transmission and identification. These are

Model 1:�S = {πsh}, πsh = {{m} : m ∈M}.
Model 2:�I = {πm : m ∈M}, πm = {{m},M \ {m}}.
Model 3:�K = {πS : |S| = K,S ⊂M}, πS = {S,M \ S}.

The first model describes Shannon’s classical transmission problem. Here the
decoder wants to know which message has been encoded by the encoder. Let us
assume we are given a probability distribution P on the message set. In source
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coding we consider a source code C : M → Q∗. Here Q is the q-ary alphabet
{0, 1, . . . , q − 1} and Q∗ =⋃∞

d=0 Qd . C(m) is called the codeword of the message
m. We further assume that C is a prefix code. That is, no codeword is the prefix of
another codeword. The goal of source coding is to construct prefix codes which have
a small average codeword length. In other words, the mean of the codeword lengths
should be as small as possible. It is well-known that this value is lower bounded by
Shannon’s classical entropy

Hq(P ) = −
M∑

m=1

pm logq pm.

There exist codes, e.g. Huffman codes [12] and Shannon-Fano codes [10], which
yield an average codeword length of at most Hq(P ) + 1. The uniform distribution
maximizesHq(P ) and it holds that Hq(1/M, . . . , 1/M) = logq M .

In the second model the decoder πm wants to know whether m occurred
or not. This is the identification problem introduced for noisy channel coding
in [5] (see chapter “Identification via Channels”) and analyzed inter alia in [6]
(see chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas”), [11, 13]. Identification source coding was introduced in [3],
continued in [7] and led to the identification entropy [2]

HI,q(P ) = q

q − 1

(
1−

M∑

m=1

p2
m

)
.

This entropy function again is maximized by the uniform distribution. Unlike
Shannon’s entropy it does not grow logarithmically in M but tends to q/(q − 1)
asM goes to infinity.

A generalization of the identification problem is model 3, which is called K-
identification. This case arises in several situations. Ahlswede writes: “For instance
every person πS may have a set S ofK closest friends and the sender knows that one
personm ∈M is sick. All persons πS want to know whether one of their friends is
sick.”

Another natural problem is somewhat like the opposite of K-identification. For
example, the encoder knows L persons m1, . . . ,mL ∈ M, who have won a lottery.
Every participant, a member of M, wants to know whether or not he or she is
among the winners. However, the information in which a participant is interested
can no longer be represented by a partition of M. We have to partition

(M
L

)
and get

�L,set = {πm : m ∈M}, (1)

where πm = {Sm,
(M
L

) \ Sm} and Sm = {S ∈ (M
L

) : m ∈ S}. We call this model
L-identification for sets.
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One could also think of situations where the L objects, which are known to the
encoder, need not be pairwise different. We call this L-identification for vectors.
The model for this is

�L = {πm : m ∈M}, (2)

where πm = {Am,ML \ Am} and

Am = {A ∈ML : A has at least one component equal to m}.

This can also be applied to K-identification so that we obtain
Model 3’:�K,vec = {πA : A = (a1, . . . , aK) ∈MK}, with

πA =
{
K⋃

i=1

ai,M \
K⋃

i=1

{ai}
}
.

This is called K-identification for vectors and model 3 K-identification (for sets).
The goal of this thesis is the analysis of L-identification in the case of noiseless

coding. We call it L-identification for sources. However, the concept of L-
identification may also be considered in the case of noisy coding. Moreover, we
mainly focus on L-identification for vectors. Thus, if we speak in the remainder of
L-identification, we shall always mean L-identification for vectors.

The first section provides basic definitions and notation. In the first subsection
of Sect. 2 we give a short introduction into source coding. A discrete source is
a pair (U, P ), where the output space U is a finite set of cardinality N and P
is a probability distribution on U . Further, a discrete memoryless source is a pair
(Un, P n), where Un is the Cartesian product of a finite set U . Pn is a probability
distribution on Un, where the probability of an element un ∈ Un is product of the
probabilities of its individual components. We further explain what we mean by
the code tree TC , which corresponds to a given source code C, and provide some
notation.

In the second subsection of Sect. 2 we formally define L-identification for
sources. Let L ∈ N and (UL, PL) be a discrete memoryless source. Due to external
constraints (e.g. hardware limitations) all possible outputs uL = (u1, . . . , uL) ∈ UL
have to be encoded. This is done by a q-ary source code C on U . That is, every
component ui of uL is encoded separately.

Following the model in Eq. (2) the goal of L-identification is that every user
v ∈ U shall be able to distinguish whether or not he or she occurs at least once as
a component of the output vector uL. Therefore, we encode all users with the same
source code C and compare sequentially the q-bits of the codeword cv of the user v
with the individual q-bits of the codewords cu1, . . . , cuL of the components of uL.
After every comparison we delete all output components, whose codewords did not
coincide during this step with the codeword cv , from the set of possible candidates.
If after some steps all codewords have been eliminated, the L-identification process
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terminates with a negative answer. Otherwise we go on until the last q-bit of cv .
The L-identification process terminates with a positive answer if after this last
comparison there still are possible candidates left.

The running time of q-ary L-identification for given output vector uL and user
v with respect to some code C is defined as the number of steps until the L-
identification process terminates. Since we are given a probability distribution PL

on UL, we can calculate the mean of the L-identification running time. We call it
the average running time.

We are interested in several behaviors of the average running time. The first is
the worst-case (average) running time where we maximize the average running time
over all users v ∈ U . Suppose we have given another probability distribution Q on
the set of users U . In this case we calculate the mean of the average running time.
This is called the expected (average) running time. A special case of this is when
Q = P . Then we speak of the symmetric (average) running time.

We note that the above approach to analyze L-identification can also be used
for noiseless K-identification. The only difference between the two models is on
which side the L (resp. K) objects are. For L-identification they are on the side of
the encoder and for K-identification they are on the side of the decoder. Thus, an
immediate conclusion is that the symmetric running time of L- andK-identification
is the same if L = K . In case of the expected running time we also would have
to exchange the probability distributions P andQ. For the worst-case running time
such a direct connection has still to be proven.

We begin our analysis of L-identification in Sect. 3 with two new results for the
case L = 1. This corresponds to identification for sources, which was introduced
before. During this thesis we refer to (1-)identification for sources if we speak of
identification for sources in order to indicate that identification is a special case of
L-identification.

The first result in the first subsection of Sect. 3 concerns the case when the q-
ary source code C is a saturated block code. This means that all codewords have
the same length n and the number of elements equals qn. We show that for such
codes the uniform distribution is optimal for the symmetric running time of (1-
)identification. The main part of this subsection is Lemma 220 where we provide
a modification for a given probability distribution. If this modification is applied
iteratively, it results in the uniform distribution and does not increase the symmetric
running time of (1-)identification. This result is used in chapter “An Interpretation
of Identification Entropy” in the proof of their Lemma 214.

In Theorem 196 of chapter “Identification for Sources” it is proven that the worst-
case running time of binary (1-)identification can be upper bounded by 3 no matter
of how big the output space U is. This was done by an inductive code construction.
We show in the second subsection of Sect. 3 how this upper bound can be improved
by a slight change of their code construction.

In Sect. 4 we analyze the asymptotic behavior of the symmetric running time of
L-identification for the case that P is the uniform distribution. For this we consider
the so-called balanced Huffman codes for the uniform distribution. These codes
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are special cases of the well-known Huffman codes and were introduced in [2]
(chapter “Identification Entropy”).

In the first subsection of Sect. 4 we point out an interesting connection between
balanced Huffman trees and the colexicographic order. This order can be used to
construct a balanced Huffman code.

In the second subsection of Sect. 4 we provide Theorem 227, the main result
of this section. We prove that if we use balanced Huffman codes for the uniform
distribution, the symmetric running time of q-ary L-identification asymptotically
equals a rational numberKL,q , which grows logarithmically in L. In fact, we show
that this number is an approximation of the L-th harmonic number.

The main result of this thesis is in Sect. 5 the discovery of the q-ary identification
entropy of second degree. We begin this section with the illustration of our approach
in finding this entropy function. In order to find a lower bound for 2-identification
concerning general distributions we want to apply our asymptotic result of the
second subsection of Sect. 4 concerning the uniform distribution. Therefore we
first establish a connection between 2-identification inside a given code C and
2-identification inside the concatenated code Cn. It turns out that not only 2-
identification comes into play here but also (1-)identification. In the next step we
prove that if n is sufficiently large, 2-identification inside the concatenated code
can be lower bounded by 2-identification inside a saturated block code of some
given depth. In order to apply Theorem 227 we show that also for 2-identification
the uniform distribution is optimal for saturated block codes. With these results we
obtain an expression as a lower bound which still depends on (1-)identification.
However, the (1-)identification running time appears negatively signed so that we
cannot immediately apply its lower bound. This lower bound is the identification
entropy HI,q established in [2] (see chapter “Identification Entropy”). During this

thesis we refer to H 1,q
ID = HI,q since, as we will see, identification entropy is a

special case of the q-ary identification entropy of degree L.
In the beginning of the second subsection of Sect. 5 we show that if the underly-

ing probability distribution consists only of q-powers, the previously established
lower bound can be attained. This ensures us to define the q-ary identification
entropy of second degree by

H
2,q
ID (P ) = 2

q

q − 1

(
1−

∑

u∈U
p2
u

)
− q2

q2 − 1

(
1−

∑

u∈U
p3
u

)
.

This function obeys some important properties, which appear as desiderata for
entropy functions in [1]. It is symmetric, normalized, decisive and expansible.
Further, it is lower bounded by the probability distribution where all the probability
is concentrated in one point and upper bounded by the uniform distribution. Finally,
we establish a grouping behavior, which is a generalization of the grouping behavior
of the identification entropy function H 1,q

ID . With these properties we finally prove

that H 2,q
ID is indeed a lower bound for the symmetric running time for q-ary 2-

identification. Moreover, we show that this bound can be attained if and only if P
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consists only of q-powers. As a final result of this subsection we show that balanced
Huffman codes are asymptotically optimal for 2-identification.

In the final subsection we provide an upper bound for the worst-case running
time by the same code construction which we used in the third subsection of Sect. 5.

In the following Sect. 6 we turn to L-identification for general distributions and
define the q-ary identification entropy of degree L by

H
L,q
ID (P ) = −

L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1

(
1−

∑

u∈U
pl+1
u

)
.

We show that also this entropy function is symmetric, normalized, decisive and
expansible. It further obeys a grouping behavior, which is a generalized version
of the previous grouping behavior for L = 1, 2. Unfortunately, we were not able
to prove a lower and upper bound. There exist counterexamples for which uniform
distribution is not an upper bound. These counterexamples only occur ifN < q , i.e.,
the size of the output space is strictly less than the alphabet size. However, in order
to show that HL,qID is a lower bound for L-identification we only need the bounds
for the case N = q . We prove this relation under the assumption that in this case
uniform distribution is indeed an upper bound. If, additionally, we assume that it is
the only distribution which attains this upper bound we can show that there exists a
code C with HL,qID (P ) = LL,qC (P, P ) if and only if P consists only of q-powers.

In Sect. 7 we turn to another type of identification namely L-identification for
sets. We begin by defining L-identification for sets and point out the differences
to L-identification (for vectors). After that we show that if we consider the
uniform distribution and balanced Huffman codes, the symmetric running time of
L-identification for sets asymptotically equals the symmetric running time of L-
identification.

In the final Sect. 8 we state some open problems which arose during the analysis
of L-identification.

2 Definitions and Notation

In this section we provide definitions and notations, which are the base for all further
calculations. The first subsection is a short overview of source coding. We further
introduce code trees, which are useful for visualizing behaviors of a given code. In
the second subsection we explain the task of an L-identification code and define the
performance behaviors in which we are interested in this thesis.

We begin with some set-theoretical notation. The set of the natural numbers 1
to n is denoted by [n] and the set of all natural numbers from m + 1 up to n is
denoted by [m + 1, n]. However, [0, 1] still denotes the closed real interval from 0
to 1. Let S be any finite set. Then 2S denotes the power set of S,

(S
k

)
denotes the
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set of all k-element subsets of S and S∗ =⋃∞
d=0 Sd . Further, let P be a probability

distribution on S. Then, supp(P ) = {s ∈ S : P({s}) �= 0} denotes the support of
P .

We often have to deal with functions whose arguments are probability distribu-
tions on some given finite set. Therefore we formally define a domain for these
functions. Following [1] (pp. 26) we define

�n = {(p1, . . . , pn) ∈ [0, 1]n : 0 ≤
n∑

i=1

pi ≤ 1}

to be the set of all (perhaps incomplete) probability distributions on [n] and

�n = {(p1, . . . , pn) ∈ [0, 1]n :
n∑

i=1

pi = 1}

to be the set of all complete probability distributions on [n]. If we want to exclude
zero probabilities, we write for n ≥ 2

�̊n = {(p1, . . . , pn) ∈ (0, 1)n : 0 <
n∑

i=1

pi ≤ 1}

and

�̊n = {(p1, . . . , pn) ∈ (0, 1)n :
n∑

i=1

pi = 1}.

It follows immediately from the above definitions that

�n = {(p1, . . . , pn) ∈ (0, 1)n : (p1, . . . , pn−1) ∈ �n−1 and pn = 1−
n−1∑

i=1

pi}.
(3)

This means that �n is a (n − 1)-dimensional hyperplane in the n-dimensional real
space. Hence, if we analyze a function f : �n → R by differentiation, we only have
to consider n− 1 partial derivatives

δ

δxj
f̃ (p1, . . . , pn−1) ,

with j ∈ [n− 1] and where f̃ (p1, . . . , pn−1) = f (p1, . . . , pn−1, 1−∑n−1
i=1 pi).
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For a mapping f : �n → R we will write f (P ) = f (p1, . . . , pN ). Thus, omit-
ting the additional brackets on the right hand side. For a function g : �2

n → R, how-
ever, we retain the brackets and write g(P,R) = g((p1, . . . , pN), (r1, . . . , rN )).

2.1 Source Coding and Code Trees

A discrete source is a probability space (U, 2U , P ), where U is a finite set, called
the output space. W.l.o.g. we assume that U = [N] for some N ∈ N. Further, P is
a probability distribution on U with pu = P({u}). It is called the output probability
distribution. Often, the indication of 2U is omitted and we will follow this standard
and call (U, P ) a discrete source with output space U = [N] and output probability
P . We further introduce the output RV U = idU . It follows that Pr(U = u) = pu.

A discrete memoryless source (Un, P n) is characterized by Pun = Pn({un}) =∏n
i=1 pui for all un = (u1, u2, .., un). Un = idUn is the output RV for this discrete

memoryless source.
For the alphabetQ = {0, 1, . . . , q − 1} a mapping C : U → Q∗ is a called q-ary

code on U and C(u) = cu = cu,1cu,2 . . . cu,‖cu‖ is the q-ary codeword of u ∈ U . The
individual cu,i ∈ Q are called q-bits. We also write shortly that C = {c1, . . . , cN }.
Further, for u ∈ U and k ∈ [‖cu‖ − 1] we define cku = cu,1 . . . cu,k to be the prefix
of length k of the codeword cu. In addition we set c0

u = e, where e is the empty
codeword.

A code is called a prefix code if no codeword is prefix of another. Formally, for
each c ∈ C let

D(c) =
‖c‖−1⋃

k=0

ck. (4)

Then, C is a prefix code if and only if it holds for all c, c′ ∈ C that c �∈ D(c′).
For more information on prefix codes we refer to [17]. Hereafter, unless otherwise
specified, by a code we shall always understand a prefix code. We also define for
some code C the set of all prefixes of its codewords by

D(C) =
⋃

c∈C
D(c). (5)

A block code is a code where all codewords have the same length. We further use
Cqn to denote the q-ary block code of size qn. It is a special block code and called
saturated.

It is often useful to visualize a code by its code tree. Therefore consider a q-ary
tree, where all branches with the same branching point are labeled with elements of
Q. Such a tree is a code tree TC of a code C if there exists a bijective mapping φ
from the set N̄ (TC) of leaves of TC onto C such that φ(x) equals the labeled path
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Fig. 1 The ternary code tree of C = {00, 01, 020, 021, 10, 11, 12, 2}

from the root of TC to leaf x for all x ∈ N̄ (TC). Figure 1 shows an example of a
code and its corresponding code tree.

We have already used the expression N̄ (T ) for the set of leaves or external nodes.
In addition, we use N̊ (T ) for the set of branching points or inner nodes of a tree T
and N (T ) = N̄ (T )∪ N̊ (T ). The bijective mapping φ from before can be extended
to N (T ) by mapping every inner node x ∈ N̊ (T ) to the element in D(C) which
corresponds to the labeled path from the root of T to x. Because of this direct
connection we do not distinguish between a code and its code tree. We will use
C and N̄ (TC) equivalently and the same we do for D(C) and N̊ (TC).1 That is, we
equivalently use x and φ(x). For example, ‖x‖ = ‖φ(x)‖. Further, Tx (or Tφ(x))
denotes the subtree of T with root in x for some node x ∈ N (T ). If ‖x‖ = 0, then
Tx = Te = T , and if x ∈ N̄ (T ), then Tx = x.

Let C be a source code for the source (U, P ). The concatenated code Cn for
the source (Un, P n) is defined as follows. The codeword for each output un =
(u1, . . . , un) is the concatenation of the individual codewords of the ui’s. That is

cun = cu1 . . . cun.

If we consider a concatenated code Cn, then C is called the basic code. Cn can
also be obtained by a stepwise construction. Therefore consider the code tree TC .
For each concatenation step 1 ≤ t ≤ n − 1 the new code tree TCt+1 is obtained
by replacing each of the leaves of TCt with a copy of TC . Figure 2 shows the first
concatenation step of a binary code by means of its code tree. Every node of the
concatenated tree where two basic trees are connected is called a concatenation
point.

1This can only be done because we consider prefix codes.
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Fig. 2 The concatenated tree
TC2 corresponding to the
binary code
C = {0, 10, 110, 111}

2.2 L-Identification

Consider the discrete memoryless source (UL, PL) together with a source code C
on U . Additionally and in contrast to classical source coding we also introduce the
so-called user space V , with |V | = |U |, together with the user RV V = idV . Let
f : V → U be a bijective mapping. We encode the users v with the same code C as
before. That is, we set cv = cf (v). W.l.o.g. we assume from now on that V = U and
f = idU .

The task of L-identification is to decide for every user v ∈ U and every output
uL = (u1, .., uL) ∈ UL whether or not there exists at least one l ∈ [L] such that
v = ul . To achieve this goal we compare step by step the first, second, third etc.
q-bit of cv with the corresponding q-bits of cu1, . . . , cuL . After each step i all ul
with cul ,i �= cv,i are eliminated from the set of possible candidates. We continue
with step i + 1 comparing only those ul which still are candidates. If at some point
during this procedure the last possible candidate is eliminated, the L-identification
process stops and returns “No, v is not contained in uL.”. On the other hand, if there
are still candidates after the comparison of the last q-bit of cv , the L-identification
process also halts but returns “Yes, v is contained in uL at position(s) . . . ”. The
number of steps until the process halts is called the L-identification running time
for (uL, v) ∈ UL × U .

The algorithm LID presented in the appendix in Table 2 accomplishes L-
identification. As its input serve the codewords cu1, . . . , cuL and cv and it returns
the triple (A, s,S). Here A is a Boolean variable which is “TRUE” if v is contained
in uL and “FALSE” if not. The second component s equals the number of steps
until the algorithm halted and the third component returns the set of positions of the
output vector uL which coincide with the user v. This means that if there exist one
or more components of uL which coincide with v, we also know their exact number
and positions. This is not a requirement to L-identification but an extra feature.
It follows from the fact that up to the last comparison of q-bits still all possible
candidates may not coincide with v.
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In Sect. 7 we turn to L-identification for sets and there this feature is not attained
since we know that all still possible candidates are pairwise distinct. This means
that in some cases L-identification for sets can be faster than L-identification (for
vectors). In this case, however, we do not know where the particular user occurred.
We explain what we mean by L-identification for sets and point out the differences
in greater detail in Sect. 7.

Formally, we define the L-identification running time for given uL, v and q-ary
code C by

LL,qC (uL, v) = LID2(cu1, . . . , cuL, cv), (6)

where LID2(cu1, . . . , cuL, cv) is the second component of the triple returned by the
algorithm LID.

The goal of this thesis is to analyze the expected length of the L-identification
running time, also called the average running time, for a given user v ∈ U

LL,qC (P, v) =
∑

uL∈UL
PuLL

L,q

C (uL, v). (7)

This can be done in different ways. The first is the worst-case scenario where we
are interested in the worst-case average running time, which we shortly call the
worst-case running time,

LL,qC (P ) = max
v∈U

LL,qC (P, v). (8)

We want to find codes which are as close as possible to the optimal worst-case
running time

LL,q(P ) = min
C

LL,qC (P ). (9)

In the second subsection of Sect. 3 and the third subsection of Sect. 5 we provide
upper bounds for L1,2(P ) and L2,2(P ).

Let us assume that also user v is chosen at random according to a probability
distributionQ on U . We are now interested in the expected average running time or
shortly the expected running time

LL,qC (P,Q) =
∑

v∈U
Q({v})LL,qC (P, v) (10)

and in particular in the optimal expected running time

LL,q(P,Q) = min
C

LL,qC (P,Q). (11)
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In this thesis we focus on the special case where Q = P so that Eqs. (10) and (11)
become

LL,qC (P, P ) =
∑

v∈U
pvLL,qC (P, v) =

∑

(uL,v)∈UL+1

PuLpvL
L,q

C (uL, v) (12)

and

LL,q(P, P ) = min
C

LL,qC (P, P ). (13)

We call LL,qC (P, P ) the symmetric running time for a given code C and LL,q(P, P )
the optimal symmetric running time. In Sect. 5 we derive an entropy function for
2-identification. This function provides a lower bound for L2,q(P, P ). In Sect. 6 we
discuss an extension of this approach to the case of L-identification for general L.
It is clear from the above definitions that

LL,q(P, P ) ≤ LL,q(P ) (14)

so that the bounds we derive in Sect. 6 and the second subsection of Sect. 3, and
the second and third subsection of Sect. 5 are lower (resp. upper) bounds for both
values.

All the above values also depend on N = |U |. We do not state this fact explicitly
since it is contained in both P and C.

3 Two New Results for (1-)Identification

In this section we state two new results for (1-)identification. The first result is about
(1-)identification for block codes. In chapter “An Interpretation of Identification
Entropy” it is proven that the q-ary identification entropyH 1,q

ID (P ) is a lower bound

for L1,q
C (P, P ). A key step in this proof is to show that if C is a saturated block

code, the running time of identification is minimized by the uniform distribution.
This result is provided in the first subsection. Although this may seem obvious the
proof is not trivial. Moreover, we will see in Sect. 6 that at least for L ≥ 4 the
uniform distribution is not always optimal for L-identification on block codes.

The second result is about upper bounds for the worst-case running time.
In Sect. 5 of chapter “Identification for Sources” it is proved in Theorem 196 that
L1,2(P ) < 3 by an inductive code construction. We discovered that with a small
alteration of their construction this upper bound can be strengthened.
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3.1 (1-)Identification for Block Codes

In order to show that the uniform distribution is optimal for (1-)identification on
block codes we modify any given probability distribution step by step until we reach
the uniform distribution without increasing L1,q

Cqn (P, P ). It turns out that not only

the uniform distribution is optimal. In fact, all distributions P = (p1, . . . , pqn) are
optimal for which we are able to partition U = [qn] into sets U1, . . . ,Uqn−1 , all
of cardinality q , such that

∑
u∈Ui pu = 1/qn−1 for all i ∈ [qn−1]. This is due to

the fact that the running time regarding v is the same for all u whose codewords cu
coincide with cv in all but the last q-bit. The individual steps of modification and
their monotone decreasing property are content of

Lemma 220 Let n ∈ N, q ∈ N≥2, k ∈ {0, . . . , n−1} and t ∈ {0, . . . , qn−k−1−1}.
Further, let P = (p1, . . . , pqn) and P̃ = (p̃1, . . . , p̃qn ) be probability distributions
on [qn] with

P = (p1, . . . , ptqk+1, r1, . . . , r1︸ ︷︷ ︸
qk

, r2, . . . , r2︸ ︷︷ ︸
qk

, . . . , rq, . . . , rq︸ ︷︷ ︸
qk

, p(t+1)qk+1+1, . . . , pqn)

and

P̃ = (p1, . . . , ptqk+1,
1

q

q∑

i=1

ri , . . . ,
1

q

q∑

i=1

ri

︸ ︷︷ ︸
qk+1

, p(t+1)qk+1+1, . . . , pqn).

Then it holds

L1,q
Cqn (P, P ) − L1,q

Cqn (P̃ , P̃ ) =
qk(qk − 1)

2(q − 1)

q∑

i,j=1

(ri − rj )2 ≥ 0.

The inequality holds with equality if and only if either k = 0 or ri = rj for all
i, j ∈ [q].
Proof W.l.o.g. we assume that t = 0, such that

P = (p1, . . . , pqn) = (r1, . . . , r1, r2, . . . , r2, . . . , rq , . . . , rq , pqk+1+1, . . . , pqn)

and

P̃ = (p̃1, . . . , p̃qn ) = ( 1

q

q∑

i=1

ri , . . . ,
1

q

q∑

i=1

ri , pqk+1+1, . . . , pqn)
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Also, we use for simplicity the abbreviations

Lu,v = L1,q
Cqn (u, v) αu,v = (pupv − p̃up̃v)Lu,v.

It is clear that Lu,v = Lv,u and hence αu,v = αv,u. Also, αu,v = 0 for all u, v ∈
[qk+1 + 1, qn]. This yields

L1,q
Cqn (P, P ) − L1,q

Cqn (P̃ , P̃ ) =
qn∑

u,v=1

αu,v =
qk+1∑

u,v=1

αu,v + 2
qk+1∑

u=1

qn∑

v=qk+1+1

αu,v.

It further holds for u ∈ [qk+1] and v ∈ [qk+1 + 1, qn] that

(i) pv = p̃v ,
(ii) Lu,v = L1,v , which we denote by Lv ,

(iii) p̃u = 1
q

q∑
i=1
ri and

(iv)
qk+1∑
u=1

pu = qk
q∑
i=1
ri .

From (iii) and (iv) it follows that

qk+1∑

u=1

qn∑

v=qk+1+1

αu,v =
qn∑

v=qk+1+1

pvLv

qk+1∑

u=1

(pu − p̃u) = 0

and hence

L1,q
Cqn (P, P ) − L1,q

Cqn (P̃ , P̃ )

=
qk+1∑

u,v=1

⎡

⎣pupv − 1

q2

(
q∑

i=1

ri

)2
⎤

⎦Lu,v

=
q∑

j,m=1

⎡

⎣rj rm − 1

q2

(
q∑

i=1

ri

)2
⎤

⎦
jqk∑

u=(j−1)qk+1

mqk∑

v=(m−1)qk+1

Lu,v.

Here, the first equality follows from (iii) and the definition of P̃ . The second equality
is due to the definition of P .

We now take a look at Lu,v and see that for u ∈ [(j − 1)qk + 1, jqk] and
v ∈ [(m− 1)qk + 1,mqk] we have

Lu,v =
⎧
⎨

⎩
n− k if j �= m
n− k + L1,q

C
qk
(u, v) if j = m.
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With this observation we get

L1,q
Cqn (P, P ) − L1,q

Cqn (P̃ , P̃ ) (15)

= (n− k)q2k
q∑

j,m=1

⎡

⎣rj rm − 1

q2

(
q∑

i=1

ri

)2
⎤

⎦ (16)

+
q∑

j=1

⎡

⎣r2
j −

1

q2

(
q∑

i=1

ri

)2
⎤

⎦
qk∑

u,v=1

L1,q
C
qk
(u, v) (17)

=
q∑

j=1

⎡

⎣r2
j −

1

q2

(
q∑

i=1

ri

)2
⎤

⎦ qk
[
(q − 1)qk

k∑

l=1

lq−l + k
]

(18)

= q

q − 1
qk(qk − 1)

q∑

j=1

⎡

⎣r2
j −

1

q2

(
q∑

i=1

ri

)2
⎤

⎦ . (19)

The first equality follows from the additional fact that
∑jqk

u,v=(j−1)qk+1
Lu,v is

invariant in the choice of j ∈ [q]. The partial sum behavior of the geometric series
yields the third equality. To understand the second equality we see that

q∑

j,m=1

⎡

⎣rj rm − 1

q2

(
q∑

i=1

ri

)2
⎤

⎦ =
q∑

j,m=1

rj rm −
(
q∑

i=1

ri

)2

= 0.

In addition, we have that

qk∑

u,v=1

L1,q
C
qk
(u, v) =

qk∑

v=1

k∑

l=1

l|{u ∈ [qk] : L1,q
C
qk
(u, v) = l}|.

For l = 1, . . . , k − 1 the codeword of each element in the above sets has to
coincide with cv in the first l − 1 q-bits. Those are qk−l+1 many. Furthermore, each
one of those codewords has to differ from cv in the lth q-bit. These are q − 1 out
of q . We end up with (q − 1)qk−l elements. If l = k, also v itself is contained in
the corresponding set. As one can see, this is invariant of the choice of v ∈ [qk]. It
follows that

qk∑

v=1

k∑

l=1

l|{u ∈ [qk] : L1,q
C
qk
(u, v) = l}| = qk

[
k−1∑

l=1

l(q − 1)qk−l + kq
]

= qk
[
(q − 1)qk

k∑

l=1

lq−l + k
]
.
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This proves the second equality of Eq. (19). Finally, since

q∑

j=1

⎡

⎣r2
j −

1

q2

(
q∑

i=1

ri

)2
⎤

⎦ = 1

2q

q∑

i,j=1

(ri − rj )2,

we obtain the expression to be proven. ��
Lemma 220 provides a way to come step by step from any given distribution

P = (p1, . . . , pqn) to the uniform distribution without increasing the symmetric 2-
identification running time on q-ary block codes. In the first step (t = 0) of the first
round (k = 0) we level out the probabilities p1, . . . , pq . In the second step (t = 1,
k = 0) we level out pq+1, . . . , p2q and so on until in the last step (t = qn−1 − 1)
of the first round the remaining probabilities pqn−q+1 up to pqn are leveled out.
We have not changed the symmetric 2-identification running time, and we have
constructed a probability distribution which enables us to go on with Lemma 220.
This is due to the fact that the first q , the second q up to the last q probabilities are
now identical. In round 2 (k = 1) we begin to level out the first q2 probabilities,
then the second q2 probabilities up to the last q2. During these actions Lemma 220
ensures us that the symmetric 2-identification running time does not increase. Again
we end up with a distribution which allows us to apply Lemma 220 also in the third
round k = 2 and so on. Finally, in the last round k = n − 1 we level out the first
qn−1 identical probabilities and the second and last qn−1 identical probabilities and
end up with the uniform distribution. We have proven the following

Corollary 221 Let n ∈ N and q ∈ N≥2. Further, let C = Cqn and T = TC . Then,
for all probability distributions P on [qn] it holds that

L1,q
C (P, P ) ≥ L1,q

C

((
1

qn
, . . . ,

1

qn

)
,

(
1

qn
, . . . ,

1

qn

))
,

with equality if and only if P(Tx) = q−‖x‖ for all inner nodes x ∈ N̊ (T ).

3.2 An Improved Upper Bound for Binary Codes

In 4 of chapter “Identification for Sources” we proved in Theorem 196 that
L1,2(P ) < 3 by an inductive code construction. They assumed that w.l.o.g. p1 ≥
p2 ≥ . . . ≥ pN . In the first step U is partitioned into U0 = [t] and U1 = [t + 1, N]
such that

∑t
i=1 pi is as close as possible to 1/2. Then, they inductively construct

code on U0 and U1. Finally, that they prefixed the codewords for all elements in U0
(resp. U1) by 0 (resp. 1).
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The proof of this theorem contains some cases differentiation. The worst of these
cases is that

∑t
i=1 pi <

1
2 and the user vmax which maximizes L1,2

C (P, v) is in U1.2

In this case we may take up to a certain number additional outputs from U1 and put
them into U0 in order to speed up the identification process. To do so we define

Umax = {u ∈ U : cu,1 = cvmax,1} (20)

and

pmax =
∑

u∈Umax

pu. (21)

Further, Pmax is a probability distribution on Umax defined by

Pmax,u = pu

pmax
(22)

for all u ∈ Umax and Cmax is the code on Umax which we obtain by deleting the
leading bit of all cu’s. With these definitions we get that

LL,qC (P ) =
∑

uL∈UL
pu1 . . . puLL

L,q

C (uL, vmax)

= 1+
L∑

l=1

(
L

l

)
(1− pmax)

L−l ∑

ul∈U lmax

pu1 . . . pulL
l,q

C (u
l, vmax)

= 1+
L∑

l=1

(
L

l

)
(1− pmax)

L−lplmaxL
l,q

C (Pmax, vmax)

≤ 1+
L∑

l=1

(
L

l

)
(1− pmax)

L−lplmaxL
l,q

Cmax
(Pmax). (23)

This simplifies for L = 1 and q = 2 to

L1,2
C (P ) ≤ 1+ pmaxL1,2

Cmax
(Pmax). (24)

This equation provides the induction step for the proof of

Theorem 222 It holds for all probability distributions P on U that the worst-case
running time for binary (1-)identification can be upper bounded by

L1,2(P ) <
5

2
.

2vmax may not be unique, but if there are more than one, it does not matter which of these we
choose.
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Proof W.l.o.g. we assume that p1 ≥ p2 ≥ . . . ≥ pN . For the induction bases
N = 1, 2 we have that L1,2(P ) = 1 < 5/2 for all P . Now let N > 2.

1. Case p1 ≥ 1
2 .

In this case we assign c1 = 0 and U1 = {2, . . . , N}. Inductively we construct a
code C ′ = {c′u : u = 2, . . . , N} on U1 and we extend this code to a code on U
by setting cu = 1c′u for u ∈ U1.
It is clear that vmax �= 1 because in this case L1,2(P ) would equal 1. This is
a contradiction since N > 2 and thereby we have more than one output whose
codeword begins with 1 and each of these outputs results in a running time strictly
greater than 1.
Thus, the maximum is assumed on the “right” side. This yields pmax ≤ 1/2.
Further, by Eq. (24) and the induction hypothesis we have that

L1,2
C (P ) < 1+ 1

2
· 5

2
= 9

4
<

5

2
.

2. Case p1 <
1
2 .

In this case we choose t such that |1/2 − ∑t
u=1 pu| is minimized. Now we

distinguish again between two subcases.

(a) Case t = 1.
In this case we set U0 = {1, 2} and U1 = {3, . . . , N}. Again we inductively
construct C ′ = {c′u : u = 3, . . . , N}. And we obtain C by setting c1 = 00,
c2 = 01 and cu = 1c′u for u = 3, . . . , N .
If vmax ∈ U0, we have that pmax = p1 + p2 and Cmax = {0, 1}. Again by
Eq. (24) we obtain

L1,2
C (P ) ≤ 1+ (p1 + p2)L1,2

Cmax
(Pmax) ≤ 2 <

5

2
.

Otherwise it follows from the definition of t that p1 + p2 > 1/2. By this we
get pmax < 1/2 and Cmax = C1. By induction and Eq. (24) this yields

L1,2
C (P ) < 1+ 1

2
· 5

2
= 9

4
<

5

2
.

(b) Case t ≥ 2.
We now set U0 = {1, . . . , t} and U1 = {t + 1, . . . , N} and construct
inductively codes C ′ = {c′u : u = 1, . . . , t} and C ′′ = {c′′u : u =
t + 1, . . . , N}. We obtain a code C on U by setting

cu =

⎧
⎪⎪⎨

⎪⎪⎩

0c′u for u = 1, . . . , t

1c′′u for u = t + 1, . . . , N.
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(i) Case vmax ∈ U0.
It follows that pmax = ∑t

u=1 pu. If
∑t
u=1 pu ≤ 1/2, we get again by

induction and Eq. (24) that

L1,2
C (P ) < 1+ 1

2
· 5

2
= 9

4
<

5

2
.

In the case that
∑t
u=1 pu > 1/2 we have by the definition of t that

t∑

u=1

pu − 1

2
≤ 1

2
−
t−1∑

u=1

pu.

It follows
∑t
u=1 pu ≤ (pt + 1)/2. Additionally, we have pt−1 <

1/(2(t − 1)) because otherwise
∑t−1
u=1 pu ≥ 1/2. This would be a

contradiction to the definition of t . This together implies

pmax =
t∑

u=1

pu <
1+ 2(t − 1)

4(t − 1)
. (25)

If t = 2, we obtain for the same reasons as in Case 2 that

L1,2
C (P ) <

5

2
.

If t = 3, we get that Cmax = C ′ = {c′1, c′2, c′3}, with c′1 = 0,
c′2 = 10 and c′3 = 11. Further, pmax = p1 + p2 + p3 and Pmax =
(p1/pmax, p2/pmax, p3/pmax). Since p1 ≥ p2 ≥ p3 it follows that

p2 + p3

pmax
≤ 2

3
.

This yields

L1,2
Cmax
(Pmax) = 1+ p2 + p3

pmax
≤ 5

3
.

It now follows from Eqs. (24) and (25) that

L1,2
C (P ) ≤ 1+ 5

3
pmax < 1+ 5

3
· 5

8
= 49

24
<

5

2
.

For t ≥ 4 the induction hypothesis and Eq. (25) yield

L1,2
C (P ) < 1+ 1+ 2(t − 1)

4(t − 1)
· 5

2
≤ 1+ 7

12
· 5

2
= 59

24
<

5

2
.



448 L-Identification for Sources

(ii) Case vmax ∈ U1.
We get that pmax = ∑N

u=t+1 pu. If
∑N
u=t+1 pu ≤ 1/2, we get like

before

L1,2
C (P ) < 1+ 1

2
· 5

2
= 9

4
<

5

2
.

If
∑N
u=t+1 pu > 1/2, it follows that

t∑

u=1

pu ≥ 1

2
− 1

2
pt+1.

Since pt+1 ≤
(∑t

u=1 pu
)
/t , we further obtain

t∑

u=1

pu ≥ t

2t + 1
≥ 2

5
. (26)

Since pmax = 1 −∑t
u=1 pu, we finally get by induction and Eq. (26)

that

L1,2
C (P ) < 1+ 3

5
· 5

2
= 5

2
.

��
From Theorem 98 in chapter “One Sender Answering Several Questions of

Receivers”, Part II, and Theorem 222 follows

Corollary 223 It holds for all probability distributions P on U that

2

(
1−

∑

u∈U
p2
u

)
≤ L1,2(P, P ) ≤ L1,2(P ) <

5

2
.

4 L-Identification for the Uniform Distribution

In the first subsection we point out an interesting connection between the so-called
balanced Huffman codes for the uniform distribution and the colexicographic order
(see e.g. [14]). This order can be used to construct such codes. In the remaining
we refer only to balanced Huffman codes and skip the add on “for the uniform
distribution”. This is somewhat detached from L-identification but since balanced
Huffman codes are crucial for the analysis in the second subsection, we feel that this
section is the right place to state this result.
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We assume familiarity with the concept of Huffman coding (see [12]) and shall
start by recalling the concept of balanced Huffman codes, which was introduced in
[2]. LetN = qn−1+d , where 0 ≤ d ≤ (q−1)qn−1−1. The q-ary Huffman coding
for the uniform distribution of size N yields a code where some codewords have
length n and the other codewords have length n − 1. More precisely, if 0 ≤ d <
qn−1, then qn−1 − d codewords have length n − 1 and 2d codewords have length
n, while in the case qn−1 ≤ d ≤ (q − 1)qn−1 − 1 all codewords have length n. It
is well-known that for data compression all Huffman codes are optimal. This is not
the case for identification.

In [2] (see chapter “Identification Entropy”) it is shown (for q = 2) that for
identification it is crucial which codewords have length n or, in terms of codetrees,
where in the codetree these longer codewords lie. Moreover, those Huffman codes
have a shorter expected and worst-case running time for which the longer codewords
are distributed along the code tree in such a way that for every inner node the
difference between the number of leaves of its left side and the number of leaves
of its right side is at most one. In chapter “Identification Entropy” Huffman trees
satisfying this property were called balanced. By analogy, we shall also say that a
q-ary Huffman code is balanced if its corresponding q-ary codetree H obeys the
property that for every inner node x ∈ N̊ (H) the difference between the number of
leaves of Hxi and Hxj is at most one for all i, j ∈ Q. We further denote by Hq,N
the set of all q-ary balanced Huffman trees with N leaves and the corresponding set
of q-ary balanced Huffman codes of size N is denoted by Cq,N . If N = qn, there
exists only a single balanced Huffman code, namely Cqn . We denote the balanced
Huffman tree which corresponds to Cqn by Hqn .

In identification what is relevant is not the length of a codeword but the length
of the maximal common prefix of two or more different codewords. This is why
a balanced Huffman code is better for identification than an unbalanced one. It is
easy to see by the pigeonhole principle that if we consider Huffman codes with
codewords of lengths n−1 and n, a balanced Huffman code is optimal for the worst-
case running time and we will see in the proof of Theorem 227 that the balancing
property is also crucial for the symmetric running time of L-identification.

The q-ary Shannon-Fano coding procedure [10] constructs codes where for every
inner node the difference between the sum of the normalized probabilities within its
individual branches is as close as possible to 1/q . It is an easy observation that if we
are dealing with uniform distributions, a code is a Shannon-Fano code if and only if
it is a balanced Huffman code.

The main result of this section is the examination of the asymptotic behavior of
LL,qC (P, P ) for the case when P is the uniform distribution. We shall prove that this
is equal to a rational number KL,q (Theorem 227), which grows logarithmically in
L. In fact, we show thatKL,2 approximates theL-th harmonic number. We note that
Theorem 227 also plays a major role in the discovery of the identification entropies,
which are discussed in Sects. 5 and 6.
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4.1 Colexicographic Balanced Huffman Trees

In this subsection we will show how one can construct a balanced Huffman tree for
given q , n and N = qn−1 + d for some d by applying the colexicographic order.
Therefore, let k = �d/qn−1	 ≤ q − 2 and m = d mod qn−1. Since a Huffman
code contains only codewords of lengths n− 1 and n, we begin our construction of
a balanced Huffman tree with Hqn−1 and extend it into the next level by replacing all
its leaves with copies of Hk , which we call extension trees. We call this constructed
tree the base tree B. Obviously, B is a balanced Huffman tree. We still have m
elements left which have to be inserted into the base tree. It remains to determine
which ones of the extension trees will be used for this. Of course, every extension
tree can only be used once, because otherwise the balancing property would be
violated. Before we explain the construction which provides this, we formalize
matters.

Let A ⊆ N̄ (Hqn−1) be a set of leaves of Hqn−1 . Then, we define B(A) to be the
tree which we obtain by replacing all the extension trees of the base tree B with
roots in A by Hk+1. Such a set is called a valid extension set, if

∣∣ |B(A)x1...x‖x‖i | − |B(A)x1...x‖x‖j |
∣∣ ≤ 1 (27)

for all i, j ∈ Q and all inner nodes x ∈ N̊ (B). See Fig. 3 for examples of a valid and
an invalid extension. Equivalently we could have defined that A is a valid extension
set if

∣∣ |Ax,i| − |Ax,j |
∣∣ ≤ 1 (28)

Fig. 3 Examples for a valid and an invalid extension of the ternary base tree B for N = 22
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for all x ∈ N̊ (B) and all i, j ∈ Q and where Ax,i = {a ∈ Ax : a‖x‖+1 = i} and
Ax = {a ∈ A : a1 . . . a‖x‖ = x}. An immediate conclusion is that if A is a valid
extension set, then B(A) is a balanced Huffman tree.

An easy consequence of the balancing property is the following

Lemma 224 Let qn−1 < N ≤ qn,H ∈ Hq,N and x be a node ofH, then it follows

⌊
N

q‖x‖

⌋
≤ |Hx | ≤

⌈
N

q‖x‖

⌉
. (29)

The inequality holds with equality for all x if and only if N = qn. Moreover, it
simplifies to

|Hx | = qn−‖x‖. (30)

For given q and N there may exist many different balanced Huffman trees.
We want to point out an interesting case the so-called colexicographic balanced
Huffman tree. This tree is obtained by taking as the extension set Acol the first m
codewords of length n− 1 in colexicographic order.

Let x, y ∈ Qn−1 and imax = max{i ∈ {1, . . . , n − 1} : xi �= yi}. Then x is
said to be less or equal than y in the colexicographic order, denoted by x . y, if
ximax ≤ yimax . One can easily verify that (Qn−1,.) is a linearly ordered set since
Qn−1 is a product space and the colexicographic order is induced by the trivial linear
≤ order on Q. If we denote by ci the i-th codeword in this order and focus on the
k-th q-bits, we observe the following structure.

c1,k . . . cqn−1,k = Qk . . .Qk︸ ︷︷ ︸
qn−k−1

,

where

Qk = 0 . . . 0︸ ︷︷ ︸
qk−1

1 . . .1︸ ︷︷ ︸
qk−1

. . . .. (q − 1) . . . (q − 1)︸ ︷︷ ︸
qk−1

.

Moreover, the prefixes of length k − 1 of the codewords within a block Qk which
coincide in the k-th q-bit form the complete Qk−1. And all the codewords in such a
block have identical suffixes of length n− k − 1.

We further define sk and rk by m = skqk + rk , where rk < qk and k ∈ [n − 1].
Finally, r ′k and r ′′k are given by rk = r ′kqk−1 + r ′′k , where 0 ≤ r ′′k < qk−1. With this
notation we obtain that the k-th q-bits of the first m codewords look like

c1,k . . . cm,k = Qk . . .Qk︸ ︷︷ ︸
sk

0 . . . 0︸ ︷︷ ︸
qk−1

. . . (r ′k − 1) . . . (r ′k − 1)
︸ ︷︷ ︸

qk−1

r ′k . . . r ′k︸ ︷︷ ︸
r ′′k

.
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Let x ∈ B. With the notation of Eq. (28) we get that Acol
x contains exactly

q codewords from each of the sk blocks Qk each with a different k-th q-bit. In
addition, it contains exactly one codeword from each of the small blocks 0 . . .0 to
(r ′k − 1) . . . (r ′k − 1) and at most one codeword from the partial small block r ′k . . . r ′k .
This yields

|Acol
x,i| =

⎧
⎪⎪⎨

⎪⎪⎩

sk + 1 if i = 1, . . . , r ′k
sk or sk + 1 if i = r ′k + 1

sk if i = r ′k + 2, . . . , q.

This together with Eq. (28) shows that Acol is a valid extension set. For further
information about linear orders see [14].

4.2 An Asymptotic Theorem

The goal of this subsection is to analyze the asymptotic behavior of

LL,qC

((
1
N
, . . . , 1

N

)
,
(

1
N
, . . . , 1

N

))
= 1

NL+1

N∑

u1,...,uL,v=1

LL,qC (uL, v), (31)

with C ∈ Cq,N . This will be done by applying a different counting method. The

above equation suggests to calculate LL,qC (uL, v) for all pairs (uL, v) individually.
Instead we merge all uL having the same running time regarding some v into sets

RL,qC (k, v) =
{
uL ∈ UL : LL,qC (uL, v) = k

}
(32)

for k ∈ [‖cv‖]. The above defined sets also depend on N . As well as the
L-identification functions in the second subsection of Sect. 2 they contain this
dependency implicitly via C. Equation (31) now becomes

LL,qC

((
1
N
, . . . , 1

N

)
,
(

1
N
, . . . , 1

N

))
= 1

NL+1

N∑

v=1

‖cv‖∑

k=1

k|RL,qC (k, v)|. (33)

In order to apply this equation we need to know upper and lower bounds on the
cardinalities of these sets. Corollary 226 below provides such bounds and exact
values for the case whenN is a q-power. The base for this corollary is the following
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Lemma 225 Let qn−1 < N ≤ qn, C ∈ Cq,N , H = TC and v ∈ U .
Then, for k ∈ [‖cv‖ − 1] it holds that

|RL,qC (k, v)| =
L∑

m=1

(
L

m

)
|N̄ (H

ck−1
v
) \ N̄ (Hckv )|m

(
N − |N̄ (H

ck−1
v
)|
)L−m

and

|RL,qC (‖cv‖, v)| =
L∑

m=1

(
L

m

)
|N̄ (H

c
‖cv‖−1
v

)|m
(
N − |N̄ (H

c
‖cv‖−1
v

)|
)L−m

.

Proof In order to simplify notation we shall write R(k, v) for RL,qC (k, v).

1. Case k = 1.
The L-identification algorithm terminates after the first step if and only if the
codewords of all components of uL differ already in the first q-bit from cv,1.
This gives us

R(1, v) =
{
uL ∈ [qn]L : cui ∈ N̄ (H) \ N̄ (Hcv,1) ∀ i ∈ [L]

}

and therewith

|R(1, v)| = |N̄ (H) \ N̄ (Hcv,1)|L = (N − |N̄ (Hcv,1)|)L.

This coincides with the first equation of Lemma 225.
2. Case k = 2, . . . , ‖cv‖ − 1.

The identification time of uL and v equals k if and only if it holds for all i ∈ [L]
that ckui �= ckv and that there exists at least one i ∈ [L] such that ck−1

ui
= ck−1

v .
This consideration yields

R(k, v) =
{
uL ∈ [qn]L : ∃ i ∈ [L] with cui ∈ N̄ (H

ck−1
v
) \ N̄ (Hckv )

and cui �∈ N̄ (Hckv ) ∀ i ∈ [L]
}
.

In order to count the elements we partition R(k, v) into L subsets Sk,1, . . . , Sk,L,
where

Sk,m =
{
uL ∈ [qn]L : ∃ i1, . . . , im ∈ [L] with cui1 , . . . , cuim ∈ N̄ (H

ck−1
v
) \ N̄ (Hckv )

and cui ∈ N̄ (H) \ N̄ (H
ck−1
v
) ∀ i ∈ [L] \ {i1, . . . , im}

}
.
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If we fix the positions i1, . . . , im, we see that the number of possible vectors is

|N̄ (H
ck−1
v
) \ N̄ (Hckv )|m(N − |N̄ (H

ck−1
v
)|)L−m.

Since we have no restrictions for these positions, it follows that

|Sk,m| =
(
L

m

)
|N̄ (H

ck−1
v
) \ N̄ (Hckv )|m

(
N − |N̄ (H

ck−1
v
)|
)L−m

.

Altogether we obtain

|R(k, v)| = |
L⋃

m=1

Sk,m| =
L∑

m=1

|Sk,m|

=
L∑

m=1

(
L

m

)
|N̄ (H

ck−1
v
) \ N̄ (Hckv )|m

(
N − |N̄ (H

ck−1
v
)|
)L−m

.

3. Case k = ‖cv‖.
In this case also cv itself may be one of the components of uL. This yields

R(n, v) = {uL ∈ [qn]L : ∃ i ∈ [L] with cui ∈ N̄ (H
c
‖cv‖−1
v

)}.

According to this we adjust the subsets Sn,1, . . . , Sn,L, such that

Sn,m = {uL ∈ [qn]L :∃ i1, . . . , im ∈ [L] with cui1 , . . . , cuim ∈ N̄ (H
c
‖cv‖−1
v

)

andcui ∈ N̄ (H) \ N̄ (H
c
‖cv‖−1
v

) ∀ i ∈ [L] \ {i1, . . . , im}}.

Of course, these sets partition R(n, 1) and since

|Sn,m| =
(
L

m

)
|N̄ (H

c
‖cv‖−1
v

)|m(N − |N̄ (H
c
‖cv‖−1
v

)|)L−m,

for all m ∈ [L], we obtain the desired result for |R(n, v)|.
��

If we combine Lemma 224 and Lemma 225, we obtain

Corollary 226 With the same definitions as in Lemma 225 we have the following
upper bounds for k ∈ [‖cv‖ − 1]

|RL,qC (k, v)| ≤
L∑

m=1

(
L

m

)(⌈
N

qk−1

⌉
−
⌊
N

qk

⌋)m (
N −

⌊
N

qk−1

⌋)L−m
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and

|RL,qC (‖cv‖, v)| ≤
L∑

m=1

(
L

m

)⌈
N

q‖cv‖−1

⌉m (
N −

⌊
N

q‖cv‖−1

⌋)L−m
.

Additionally, we get lower bounds for k ∈ [‖cv‖ − 1]

|RL,qC (k, v)| ≥
L∑

m=1

(
L

m

)(⌊
N

qk−1

⌋
−
⌈
N

qk

⌉)m (
N −

⌈
N

qk−1

⌉)L−m

and

|RL,qC (‖cv‖, v)| ≥
L∑

m=1

(
L

m

)⌊
N

q‖cv‖−1

⌋m (
N −

⌈
N

q‖cv‖−1

⌉)L−m
.

The above inequalities hold with equality for all v ∈ U if and only if N = qn.
Moreover, they simplify for all k ∈ [n− 1] to

|RL,qC (k, v)| = qnL
L∑

m=1

(
L

m

)
q−km(q − 1)m(1− q−k+1)L−m

and

|RL,qC (‖cv‖, v)| =
L∑

m=1

(
L

m

)
qm(qn − q)L−m.

With the above estimates we are now ready to prove the asymptotic theorem for
uniform distributions. If we consider the uniform distribution and use a balanced
Huffman code for the encoding, the symmetric L-identification running time
asymptotically equals a rational numberKL,q .

Theorem 227 Let L, n ∈ N, q ∈ N≥2, qn−1 < N ≤ qn, C ∈ Cq,N and P be the
uniform distribution on [N]. Then it holds that

lim
N→∞LL,qC (P, P ) = KL,q = −

L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1
.
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Proof

1. Case N = qn.
It follows from Corollary 226 and Eq. (33) that

LL,qC (P, P ) = 1

qnL

[
n−1∑

k=1

kqnL
L∑

m=1

(
L

m

)
q−km(q − 1)m(1− q−k+1)L−m

+ n
L∑

m=1

(
L

m

)
qm(qn − q)L−m

]
. (34)

It is easy to check that the second summand together with the leading factor q−nL
converges to 0 if n goes to infinity. In fact,

L∑

m=1

(
L

m

)
nq−m(n−1)(1− q−n+1)L−m → 0.

This is because nq−m(n−1) → 0 and (1− q−n+1)L−m → 1. Thus, we get

lim
n→∞LL,qC (P, P ) =

∞∑

k=1

k

L∑

m=1

(
L

m

)
q−km(q − 1)m(1− q−k+1)L−m

=
L∑

m=1

L−m∑

t=0

(−q)t
(
L

m

)(
L−m
t

)
(q − 1)m

∞∑

k=1

kq−k(m+t )

=
L∑

m=1

L−m∑

t=0

(−q)t
(
L

m

)(
L−m
t

)
(q − 1)m

qm+t

(qm+t − 1)2
.

(35)

The second equality follows from (1− q−k+1)L−m =∑L−m
t=0

(
L−m
t

)
(−q)tq−tk,

while the last equality is a consequence of the geometric series.
In the following we set xm,t = (−q)t

(
L
m

)(
L−m
t

)
(q−1)m as well as zl = ql/(ql−

1)2 and change the order of summation. This yields

lim
n→∞LL,qC (P, P ) =

L∑

m=1

L−m∑

t=0

xm,t zm+t =
L∑

l=1

zl

l−1∑

t=0

xl−t,t

=
L∑

l=1

ql

(ql − 1)2

l−1∑

t=0

(−q)t
(
L

l − t
)(
L− l + t

t

)
(q − 1)l−t
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=
L∑

l=1

(
L

l

)
ql

(ql − 1)2

l−1∑

t=0

(
l

t

)
(−q)t (q − 1)l−t

=
L∑

l=1

(
L

l

)
ql

(ql − 1)2

(
(−1)l − (−q)l

)

= −
L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1
.

2. Case qn−1 < N < qn.
For this case we obtain

LL,qC (P, P )

≤ 1

NL+1

N∑

v=1

⎡

⎣
‖cv‖−1∑

k=1

k

L∑

m=1

(
L

m

)(
� N
qk−1 � − �

N

qk
	
)m (

N − � N
qk−1 	

)L−m
⎤

⎦

+ 1

NL+1

N∑

v=1

[
‖cv‖

L∑

m=1

(
L

m

)
� N

q‖cv‖−1 �m(N − � N

q‖cv‖−1 	)L−m
]

≤ 1

N

N∑

v=1

⎡

⎣
‖cv‖−1∑

k=1

k

L∑

m=1

(
L

m

)(
q − 1

qk
+ 2

N

)m (
1− q

qk
+ 1

N

)L−m
⎤

⎦

+ 1

N

N∑

v=1

[
‖cv‖

L∑

m=1

(
L

m

)
(q−‖cv‖+1 + 1

N
)m(1− q−‖cv‖+1 + 1

N
)L−m

]
.

(36)

The first inequality is obtained by the insertion of the upper bound in Corol-
lary 226 into Eq. (33). �N/qk� ≤ N/qk + 1 and �N/qk	 ≥ N/qk − 1 yield the
second inequality. We now divide this case into two subcases.

(a) Case 2qn−1 ≤ N < qn.
In this case all codewords have length n. Hence Eq. 36 reduces to

LL,qC (P, P ) ≤
n−1∑

k=1

k

L∑

m=1

(
L

m

)(
q − 1

qk
+ 2

N

)m (
1− q

qk
+ 1

N

)L−m

+ n
L∑

m=1

(
L

m

)
(q−n+1 + 1

N
)m
(

1− q

qn
+ 1

N

)L−m
.

(37)
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As in the case N = qn the second summand goes to zero as N goes to
infinity. Thus, we only have to consider the first summand. In fact, we can
reduce this case to the previous one by applying the binomial theorem. We
obtain

(
q − 1

qk
+ 2

N

)m
=
(
q − 1

qk

)m
+
m−1∑

t=0

(
m

t

)(
q − 1

qk

)t ( 2

N

)m−t

and

(
1− q

qk
+ 1

N

)L−m
=
(

1− q

qk

)L−m
+
L−m−1∑

s=0

(
L−m
s

) (1− q

qk
)s

NL−m−s
.

In the following we use

A =
m−1∑

t=0

(
m

t

)(
q − 1

qk

)t ( 2

N

)m−t

and

B =
L−m−1∑

s=0

(
L−m
s

)
(1− q−k+1)s

1

NL−m−s
.

With this notation the right hand side of Eq. (37) asymptotically equals

n−1∑

k=1

k

L∑

m=1

(
L

m

)[(
q − 1

qk

)m (
1− q−k+1

)L−m +
(
q − 1

qk

)m
B (38)

+
(

1− q−k+1
)L−m

A+ AB
]
.

If we focus on the second summand in the square brackets, we see that

n−1∑

k=1

k

L∑

m=1

(
L

m

)(
q − 1

qk

)m
B

=
L∑

m=1

L−m−1∑

s=0

(
L−m
s

)(
L

m

)
(q − 1)m

NL−m−s
n−1∑

k=1

kq−km
(

1− q

qk

)L−m

=
L∑

m=1

L−m−1∑

s=0

L−m∑

r=0

(−q)r
(
L−m
r

)(
L−m
s

)(
L

m

)
(q − 1)m

NL−m−s
n−1∑

k=1

k

qk(m+r)

=
L∑

m=1

L−m−1∑

s=0

L−m∑

r=0

Nm+s

NL

α(m, s, r)

(qm+r − 1)2

(
qm+r − (q

m+r − 1)n+ qm+r
qn(m+r)

)
,
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where α(m, s, r) = (−q)r(L−m
r

)(
L−m
s

)(
L
m

)
(q−1)m. The last equality follows

from the partial sum behavior of the geometric series. This expression tends
to zero as N (resp. n ≈ logq N) goes to infinity because L−m− s ≥ 1.
In the same way it can be shown that the third and the fourth summand of
Eq. (38) also tend to zero. Thus, we end up with exactly the same expression
like Eq. (35). This proves the upper bound for this case. By using the same
arguments and the lower estimates in Corollary 226 one can easily show the
matching lower bound.

(b) Case qn−1 < N < 2qn−1.
In this case N = qn−1 + d , with 0 < d < qn−1, and there exist exactly
qn−1 − d codewords of length n − 1 and 2d codewords of length n. Then,
Eq. (36) becomes

LL,qC (P, P )

≤ q
n−1 − d
N

[
n−2∑

k=1

k

L∑

m=1

(
L

m

)(
q − 1

qk
+ 2

N

)m (
1− q

qk
+ 1

N

)L−m

+ (n− 1)
L∑

m=1

(
L

m

)(
q2

qn
+ 1

N

)m (
1− q

2

qn
+ 1

N

)L−m ]

+ 2d

N

[
n−1∑

k=1

k

L∑

m=1

(
L

m

)(
q − 1

qk
+ 2

N

)m (
1− q

qk
+ 1

N

)L−m

+ n
L∑

m=1

(
L

m

)(
q

qn
+ 1

N

)m (
1− q

qn
+ 1

N

)L−m ]

=
n−2∑

k=1

k

L∑

m=1

(
L

m

)(
q − 1

qk
+ 2

N

)m (
1− q

qk
+ 1

N

)L−m

+
(
qn

q
− d
)
n− 1

N

L∑

m=1

(
L

m

)(
q2

qn
+ 1

N

)m (
1− q

2

qn
+ 1

N

)L−m

+ 2d
n− 1

N

L∑

m=1

(
L

m

)(
q(q − 1)

qn
+ 2

N

)m (
1− q

2

qn
+ 1

N

)L−m

+ 2d
n

N

L∑

m=1

(
L

m

)(
q

qn
+ 1

N

)m (
1− q

qn
+ 1

N

)L−m
.

For the same reason as in the preceding cases the last three summands tend
to zero as N → ∞ and since the first summand asymptotically equals the
first summand of Eq. (37), the upper bound also in this last case is settled.
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Omitting the details we limit ourselves to remark that also in this case
the matching lower bound can be easily obtained by a perfectly analogous
argument.

Thus, the proof of the theorem is complete. ��
A natural question regards the asymptotic growth of KL,q with respect to L.

Table 1 shows some values of KL,2. This motivates the assumption that KL,2
grows logarithmically in L. In fact, this assumption proves true by the following
considerations. First, we see that

KL,2 = −
L∑

l=1

(−1)l
(
L

l

)
2l

2l − 1
= 1−

L∑

l=1

(−1)l
(
L
l

)

2l − 1
.

By using the geometric series we get

KL,2 − 1 = −
L∑

l=1

(−1)l
(
L
l

)

2l

∞∑

k=0

2−kl = −
∞∑

k=0

L∑

l=1

(
L

l

)
(−1)l2−(k+1)l.

The binomial theorem now yields

KL,2 − 1 = −
∞∑

k=0

((1− 2−(k+1))L − 1) =
∞∑

k=1

(1− (1− 2−k)L).

If we now set ξk = (1− 2−k), we obtain

KL,2 − 1 =
∞∑

k=1

(1− ξLk ) =
∞∑

k=1

(1− ξk)(1+ ξk + ξ2
k + . . .+ ξL−1

k )

=
∞∑

k=1

1

2k
(1+ ξk + ξ2

k + . . .+ ξL−1
k ).

Figure 4 shows that this expression is an approximation by the upper sum of the
integral

∫ 1

0
(1+ x + x2 + . . .+ xL−1)dx = 1+ 1

2
+ 1

3
+ . . .+ 1

L
= HL,

Table 1 The growth of KL,2 in L

L 1 2 22 23 25 210 213

KL,2 ≈ 2 2, 6667 3, 5048 4, 4211 6, 3552 11, 3335 14, 3328

KL,2−1
logL ≈ * 1, 6667 1, 2524 1, 1404 1, 0710 1, 0333 1, 0256
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Fig. 4 KL,2 − 1 approximates the integral of f (x) = 1+ x + x2 + . . . + xL−1

whereHL denotes the L-th harmonic number. SinceHL grows logarithmically with
respect to L, so does KL,2.

Strehl [16] generalized this result for the case q > 2. His result is the content of
the following

Proposition 228 (Strehl 2006, [16]) It holds that

lim
L→∞

HL

KL,q
= ln q,

where HL denotes the L-th harmonic number and ln is the natural logarithm.

5 Two-Identification for General Distributions

In the previous section we have seen how L-identification behaves for the uniform
distribution. In this section we turn to general distributions and establish a lower
bound for 2-identification.

Let us focus on the case L = 2, N = qn, P = (1/qn, . . . , 1/qn) and C = Cqn .
Every q-ary comparison, which is done during 2-identification for u2 and v is
itself an l-identification (l ∈ [2]) between the t-th q-bit of the codewords of the
l still possible candidates and cv,t . The running time of each of those “small”
identifications is 1 no matter of the value of l. In fact, we have applied up to
n “small” identifications within the code Cq in order to perform the original 2-
identification within Cqn .
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It is clear that Cqn = Cnq . Further, let rt+1,l be the probability that after the
tth comparison there are still l possible candidates left. We can now calculate 2-
identification running time within Cnq by

L2,q
Cnq

((
1

qn
, . . . ,

1

qn

)
,

(
1

qn
, . . . ,

1

qn

))

= 1+
n−1∑

t=1

2∑

l=1

(
2

l

)
rt+1,lLl,qCq

((
1

q
, . . . ,

1

q

)
,

(
1

q
, . . . ,

1

q

))

= 1+ 2
n−1∑

t=1

rt+1,1 +
n−1∑

t=1

rt+1,2.

Here, the binomial coefficient in the first equality occurs since in the case l = 1
either u1 or u2 is the leftover candidate. We have to take into account both
possibilities. As stated before l-identification running time within Cq always equals
1. This proves the second equality. This approach yields an alternative proof of
Theorem 227 for L = 2 and |U | = qn. However, we stop this analysis here and will
come back to it later.

The above observations lead us to the attempt of doing the same for any given
source code C. Namely, to consider the discrete memoryless source ((Un)2 , (P n)2)
together with the concatenated code Cn and try to establish a connection between
the 2-identification running time within Cn and the l-identification running times
within C. This relation is the content of Lemma 229. It turns out that we also have
to consider (1-)identification within the basic code. This fact makes further analysis
more sophisticated, especially for the general case of Sect. 6.

In order to apply Theorem 227 we firstly let n go to infinity. The result of
this procedure is stated in Corollary 230. It is a consequence of Lemma 229.
Furthermore, we show that from a particular concatenation step on we can lower
bound all further concatenated codes to a saturated code CqKn of some given length
Kn. This is done in the proof of Lemma 233. Finally, Corollary 232 states that the
uniform distribution is optimal for 2-identification within a block code. Altogether
at the end of the first subsection we obtain

L2,q
C (P , P ) ≥ (1−

∑

u∈U
p3
u)

(
2
q

q − 1
− q2

q2 − 1

)
−2

(
1−∑u∈U p3

u

1−∑u∈U p2
u

− 1

)
L1,q
C (P , P ).

as a lower bound for 2-identification.
Unfortunately, (1-)identification appears negatively signed so that we cannot

immediately apply the lower bound L1,q
C (P, P ) ≥ H 1,q

ID (P ), which has been proven
in chapter “An Interpretation of Identification Entropy”. In the same work it has
been shown that this lower bound is attainable if P consists only of q-powers.
Proposition 235 at the beginning of the second subsection proves this equality also
for 2-identification. This is the base for the definition of the q-ary identification
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entropy of second degree

H
2,q
ID (P ) = 2

q

q − 1

(
1−

∑

u∈U
p2
u

)
− q2

q2 − 1

(
1−

∑

u∈U
p3
u

)
.

In the remaining part of the second subsection we prove some fundamental
properties of this function. There are symmetry, expansibility, normalization, deci-
siveness, bounding between 0 and the uniform distribution and a special grouping
behavior. Using these properties we prove Theorem 236 where we show that
H

2,q
ID (P ) is a lower bound for 2-identification. We end this part with a corollary

which states that if we consider the uniform distribution on U , balanced Huffman
codes are asymptotically optimal for 2-identification.

Finally, we establish an upper bound for the binary case in the third Subsection.
The code construction in the proof coincides with the one used for (1)-identification
in the second subsection of Sect. 3

5.1 An Asymptotic Approach

Lemma 229 Let U be a finite set, q ∈ N≥2, P be a probability distribution on U
and C be a prefix code. It holds that

L2,q
Cn (P

n, P n) = L2,q
C (P, P )

(
1+

n−1∑

t=1

(
∑

u∈U
p3
u

)t)

+ 2L1,q
C (P, P )

(
n−1∑

t=1

(
∑

u∈U
p2
u

)t
−
n−1∑

t=1

(
∑

u∈U
p3
u

)t)
.

Proof It is clear that while we are in the first basic tree we have to apply 2-
identification and there are three possibilities of what might happen.

1. Both elements un1 and un2 do not coincide with vn.
The reason would be that their first components u1,1, u2,1 do not coincide with
v1. This stops the identification process.

2. Only one element, e.g. un1, coincides with vn.
This would be because u1,1 = v1 and u2,1 �= v1. Then, we continue with applying
(1-)identification in the next tree (resp. code).

3. Both elements coincide with vn.
In this case also in the next tree 2-identification would have to be applied.

The main idea now is to exploit the fact that the symmetric 2-identification
running time is an expectation. Therefore we introduce Xt+1 as the RV which
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indicates how many components of (Un1 , U
n
2 ) are still candidates at step t . For all

t ∈ {1, . . . , n− 1} we define

Xt+1 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Ut1 �= V t �= Ut2 �
1 otherwise

2 if Ut1 = Ut2 = V t

and we set X1 = 2. In order to calculate the corresponding probabilities we use the
facts that U1, U2 and V are i.i.d. With this we get

Pr(Xt+1 = 2) = Pr(Ut1 = Ut2 = V t )

=
∑

ut∈U t
p3
ut =

∑

u1,...,ut∈U
(pu1 . . . put )

3 =
(
∑

u∈U
p3
u

)t

and

Pr(Xt+1 = 1) = 2 Pr(Ut1 = V t and Ut2 �= V t)
= 2

∑

ut∈U t
p2
ut (1− put )

= 2

⎡

⎣
∑

u1,...,ut∈U
(pu1 . . . put )

2 −
∑

u1,...,ut∈U
(pu1 . . . put )

3

⎤

⎦

= 2

[(
∑

u∈U
p2
u

)t
−
(
∑

u∈U
p3
u

)t]
.

As stated before the symmetric 2-identification running time is an expectation.
Since for the first time-step X1 = 2 and for all other time-steps the case Xt = 0
leads to the termination of the identification process before time-step t , we obtain

L2,q
Cn (P

n, P n) =
n∑

t=1

E(LXt ,qC (P, P )) =
n−1∑

t=0

E(LXt+1,q

C (P, P ))

= L2,q
C (P, P ) +

n−1∑

t=1

Pr(Xt+1 = 1)L1,q
C (P, P )

+
n−1∑

t=1

Pr(Xt+1 = 2)L2,q
C (P, P )
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= L2,q
C (P, P )

(
1+

n−1∑

t=1

(
∑

u∈U
p3
u

)t)

+ 2L1,q
C (P, P )

(
n−1∑

t=1

(
∑

u∈U
p2
u

)t
−
n−1∑

t=1

(
∑

u∈U
p3
u

)t)
.

��
If we now establish the limit for n going to infinity and apply the geometric series

for k = 2, 3 we obtain

∞∑

t=1

(
∑

u∈U
pku

)t
= 1

1−∑u∈U pku
− 1

and thus,

lim
n→∞L2,q

Cn (P
n, P n) = L2,q

C (P, P )

1−∑u∈U p3
u

+2

(
1

1−∑u∈U p2
u

− 1

1−∑u∈U p3
u

)
L1,q
C (P, P ).

This proves

Corollary 230 Let U be a finite set, q ∈ N≥2, P be a probability distribution on U
and C be prefix code. It then holds that

L2,q
C (P, P ) = (1−

∑

u∈U
p3
u) lim
n→∞L2,q

Cn (P
n, P n)−2

(
1−∑u∈U p3

u

1−∑u∈U p2
u

− 1

)
L1,q
C (P, P ).

Let us go back to the case where U = [q], P = (1/q, . . . , 1/q) and C = Cq .

In this case Ll,qC (P, P ) = 1 for l ∈ [2]. It follows immediately from Corollary 230
that

lim
n→∞L2,q

Cn (P
n, P n) = 2

q

q − 1
− q2

q2 − 1
. (39)

This is the promised alternative proof of Theorem 227 for L = 2 and |U | = qn.
What we do now is to lower bound the expression limn→∞ L2,q

Cn (P
n, P n). In

Lemma 233 we show that we can limit ourselves to typical sequences (see [8]).
Then we cut the codetree at some given depth and fill up the shorter branches to this
depth with zero probability elements in order to obtain a saturated tree, resp. a block
code. This does not increase the symmetric identification running time.

In Theorem 227 of Sect. 4, we have shown how L-identification and in particular
2-identification behaves asymptotically on block codes if we consider the uniform
distribution. To use this result we have to show that for 2-identification uniform
distribution is optimal for block codes. The following lemma provides a way
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for coming from any probability distribution to the uniform distribution without
increasing the symmetric identification running time.

Lemma 231 Let n ∈ N, q ∈ N≥2, k ∈ {0, . . . , n−1} and t ∈ {0, . . . , qn−k−1−1}.
Further, let P = (p1, . . . , pqn) and P̃ = (p̃1, . . . , p̃qn ) be probability distributions
on [qn] with

P = (p1, . . . , ptqk+1, r1, . . . , r1︸ ︷︷ ︸
qk

, r2, . . . , r2︸ ︷︷ ︸
qk

, . . . , rq, . . . , rq︸ ︷︷ ︸
qk

, p(t+1)qk+1+1, . . . , pqn)

and

P̃ = (p1, . . . , ptqk+1,
1

q

q∑

i=1

ri , . . . ,
1

q

q∑

i=1

ri

︸ ︷︷ ︸
qk+1

, p(t+1)qk+1+1, . . . , pqn).

Then it holds that

L2,q
Cqn (P, P ) − L2,q

Cqn (P̃ , P̃ ) ≥ 0.

The inequality holds with equality if and only if either k = 0 or ri = rj for all
i, j ∈ [q].
Proof W.l.o.g. we further assume that t = 0 such that for i ∈ [q]

p(i−1)qk+1 = p(i−1)qk+2 = . . . = piqk = ri .

Also, we use for simplicity the abbreviations Lu1u2,v = L2,q
Cqn ((u1, u2), v) and

αu1u2,v = (pu1pu2pv − p̃u1 p̃u2 p̃v)Lu1u2,v . With this notation we obtain

LL,qCqn (P, P ) − LL,qCqn (P̃ , P̃ )

=
qn∑

u1,u2,v=1

αu1u2,v

=
qn∑

v=1

⎡

⎣
qk+1∑

u1,u2=1

αu1u2,v + 2
qk+1∑

u1=1

qn∑

u2=qk+1+1

αu1u2,v +
qn∑

u1,u2=qk+1+1

αu1u2,v

⎤

⎦

=
6∑

i=1

Ri, (40)
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where the second equality comes from the fact that Lu1u2,v = Lu2u1,v and where

R1 =
qk+1∑

u1,u2,v=1

αu1u2,v R2 =
qk+1∑

u1,u2=1

qn∑

v=qk+1+1

αu1u2,v

R3 = 2
qk+1∑

u1,v=1

qn∑

u2=qk+1+1

αu1u2,v R4 = 2
qk+1∑

u1=1

qn∑

u2,v=qk+1+1

αu1u2,v

R5 =
qn∑

u1,u2=qk+1+1

qk+1∑

v=1

αu1u2,v R6 =
qn∑

u1,u2,v=qk+1+1

αu1u2,v.

As one might expect the above summands disappear, except for R1 and R3. This
is obvious for R6 since pu = p̃u for all u ∈ [qk+1 + 1, qn].

If u1, u2 ∈ [qk+1 + 1, qn], we have on the one hand that Lu1u2,v = Lu1u2,1 for
all v ∈ [qk+1]. We denote this by Lu1u2 . On the other hand pui = p̃ui for i = 1, 2.

This yields

R5 =
qn∑

u1,u2=qk+1+1

qk+1∑

v=1

Lu1u2pu1pu2

[
pv − 1

q

q∑

i=1

ri

]

=
qn∑

u1,u2=qk+1+1

Lu1u2pu1pu2

⎡

⎣
qk+1∑

v=1

pv − qk
q∑

i=1

ri

⎤

⎦ = 0.

Here, the final equality follows from
∑qk+1

v=1 pv =
∑q
i=1 q

kri .
If u2, v ∈ [qk+1 + 1, qn] and u1 ∈ [qk+1], we see that Lu1u2,v = L1u2,v and

pu2 = p̃u2 as well as pv = p̃v . Thus, proceeding as before we have that R4 = 0.
If u1, u2 ∈ [qk+1] and v ∈ [qk+1+1, qn], it follows that Lu1u2,v = L11,v , which

is denoted by Lv , and pv = p̃v . With this we get

R2 =
qk+1∑

u1,u2=1

qn∑

v=qk+1+1

Lvpv

⎡

⎣pu1pu2 −
1

q2

(
q∑

i=1

ri

)2
⎤

⎦

=
qn∑

v=qk+1+1

Lvpv

⎡

⎣
qk+1∑

u1,u2=1

pu1pu2 − q2k

(
q∑

i=1

ri

)2
⎤

⎦ = 0.

Here,
∑qk+1

u1,u2=1 pu1pu2 =
(∑q

i=1 q
kri
)2

yields the final equality. Altogether we end
up with

LL,qCqn (P, P ) − LL,qCqn (P̃ , P̃ ) = R1 + R3.
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We begin our remaining examinations with R3. Similar as before we get
Lu1u2,v = Lu11,v , which we denote by Lu1,v , and pu2 = p̃u2 if u1, v ∈ [qk+1]
and u2 ∈ [qk+1 + 1, qn]. We obtain

1

2
R3 =

qk+1∑

u1,v=1

qn∑

u2=qk+1+1

Lu1,vpu2

⎡

⎣pu1pv −
1

q2

(
q∑

i=1

ri

)2
⎤

⎦

=
qk+1∑

u1,v=1

Lu1,v

⎡

⎣pu1pv −
1

q2

(
q∑

i=1

ri

)2
⎤

⎦
qn∑

u2=qk+1+1

pu2

= (1− qk
q∑

i=1

ri )

qk+1∑

u,v=1

Lu,v

⎡

⎣pupv − 1

q2

(
q∑

i=1

ri

)2
⎤

⎦ .

We set A = ∑qk+1

u,v=1Lu,v

[
pupv − 1

q2

(∑q
i=1 ri

)2]
and separate the different

subtrees with roots in level n− k − 1 in which u and v can occur. We get

A =
q∑

s,t=1

sqk∑

u=(s−1)qk+1

tqk∑

v=(t−1)qk+1

Lu,v

⎡

⎣rsrt − 1

q2

(
q∑

i=1

ri

)2
⎤

⎦ .

Since it holds for s, t ∈ [q], u ∈ [(s − 1)qk + 1, sqk] and v ∈ [(t − 1)qk + 1, tqk]
that

Lu,v =
⎧
⎨

⎩
n− k if s �= t
n− k + L1,q

C
qk
(u, v) if s = t,

the above equation becomes

A = (n− k)
⎡

⎣
q∑

s,t=1

q2krsrt − q2k

(
q∑

i=1

ri

)2
⎤

⎦

+
q∑

s=1

qk∑

u,v=1

L1,q
C
qk
(u, v)

⎡

⎣r2
s −

1

q2

(
q∑

i=1

ri

)2
⎤

⎦

= 1

2q

q∑

i,j=1

(ri − rj )2
qk∑

u,v=1

L1,q
C
qk
(u, v).
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The second equation follows on the one hand from
∑q
s,t=1 rsrt =

(∑q
i=1 ri

)2
. From

this follows that the first summand is 0. On the other hand

q∑

s=1

r2
s −

1

q

(
q∑

i=1

ri

)2

= 1

2q

q∑

i,j=1

(ri − rj )2.

By applying Corollary 226 we obtain

qk∑

u,v=1

L1,q
C
qk
(u, v) = qk

k∑

l=1

l|R1,q
C
qk
(qk, l, 1)|

= qk
[
k−1∑

l=1

lqk−l(q − 1)+ kq
]

= qk
[
qk(q − 1)

k∑

l=1

lq−l + k
]

= qk
[
qk(q − 1)

q(qk − 1)− k(q − 1)

qk(q − 1)2
+ k
]

= q

q − 1
qk(qk − 1).

Putting all this together we get

R3 = 1

q − 1
qk(qk − 1)(1− qk

q∑

i=1

ri )

q∑

i,j=1

(ri − rj )2 ≥ 0.

This equals 0 if and only if either k = 0 or ri = rj for all i, j ∈ [q] or
∑q
i=1 ri =

q−k. The last condition is equivalent to pi = 0 for all i ∈ [qk+1 + 1, qn].
We now turn to R1. With the same notation as before we have

R1 =
qk+1∑

u1,u2,v=1

Lu1u2,v

⎡

⎣pu1pu2pv −
1

q3

(
q∑

i=1

ri

)3
⎤

⎦

=
q∑

s1,s2,t=1

2∑

r=1

srq
k∑

ur=(sr−1)qk+1

tqk∑

v=(t−1)qk+1

Lu1u2,v

⎡

⎣rs1rs2rt −
1

q3

(
q∑

i=1

ri

)3
⎤

⎦

=
q∑

s1,s2,t=1

⎡

⎣rs1rs2rt −
1

q3

(
q∑

i=1

ri

)3
⎤

⎦
2∑

r=1

srq
k∑

ur=(sr−1)qk+1

tqk∑

v=(t−1)qk+1

Lu1u2,v.
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For ur ∈ [(sr − 1)qk + 1, srqk] and v ∈ [(t − 1)qk + 1, tqk] it holds that

Lu1u2,v =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n− k if s1 �= t and s2 �= t
n− k + L1,q

C
qk
(u1, v) if s1 = t and s2 �= t

n− k + L1,q
C
qk
(u2, v) if s1 �= t and s2 = t

n− k + L2,q
C
qk
((u1, u2), v) if s1 = s2 = t .

If we insert the above equations into R1, we get

R1 = (n− k)
⎡

⎣
q∑

s1,s2,t=1

q3krs1rs2rt − q3k

(
q∑

i=1

ri

)3
⎤

⎦

+
q∑

s1=1

q∑

s2=1,s2 �=s1
qk

qk∑

u1,v=1

L1,q
C
qk
(u1, v)

⎡

⎣r2
s1
rs2 −

1

q3

(
q∑

i=1

ri

)3
⎤

⎦

+
q∑

s2=1

q∑

s1=1,s1 �=s2
qk

qk∑

u2,v=1

L1,q
C
qk
(u2, v)

⎡

⎣rs1r2
s2
− 1

q3

(
q∑

i=1

ri

)3
⎤

⎦

+
q∑

s=1

qk∑

u1,u2,v=1

L2,q
C
qk
((u1, u2), v)

⎡

⎣r3
s −

1

q3

(
q∑

i=1

ri

)3
⎤

⎦

= 2qk

⎡

⎣
q∑

s=1

q∑

t=1,t �=s
r2
s rt −

q − 1

q2

(
q∑

i=1

ri

)3
⎤

⎦
qk∑

u,v=1

L1,q
C
qk
(u, v)

+
⎡

⎣
q∑

s=1

r3
s −

1

q2

(
q∑

i=1

ri

)3
⎤

⎦
qk∑

u1,u2,v=1

L2,q
C
qk
((u1, u2), v).

If all ri’s are zero, we obtain R1 = 0. We exclude this case and normalize the
probabilities r1, . . . , rq by setting r̄i = ri/∑q

j=1 rj for i ∈ [q]. This yields

R1 =
(
q∑

i=1

ri

)3
⎡

⎣2qk

⎛

⎝
∑

s

∑

t �=s
r̄2
s r̄t −

q − 1

q2

⎞

⎠
qk∑

u,v=1

L1,q
C
qk
(u, v)

+
(
∑

s

r̄3
s −

1

q2

)
qk∑

u1,u2,v=1

L2,q
C
qk
((u1, u2), v)

⎤

⎦ .
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We have already seen during the calculations of R3 that

qk∑

u,v=1

L1,q
C
qk
(u, v) = q

q − 1
qk(qk − 1).

By applying Corollary 226 we further get that

qk∑

u1,u2,v=1

L2,q
C
qk
((u1, u2), v)

= qk
k∑

l=1

l|R2,q
C
qk
(qk, l, 1)|

= qk
[
k−1∑

l=1

lq2k
(

2q−l(q − 1)(1 − q−l+1)+ q−2l(q − 1)2
)]

+ qkk
(

2q(qk − q)+ q2
)

= qk
[
k∑

l=1

lq2k
(

2q−l(q − 1)(1 − q−l+1)+ q−2l(q − 1)2
)]

+ qkk(2qk − 1)

= (q − 1)q3k

[
2
k∑

l=1

lq−l − (q + 1)
k∑

l=1

lq−2l

]

+ kqk(2qk − 1)

= (q − 1)q3k
[

2
q(qk − 1)− k(q − 1)

qk(q − 1)2
− (q + 1)

q2(q2k − 1)− k(q2 − 1)

q2k(q2 − 1)2

]

+ kqk(2qk − 1)

= 2
q

q − 1
q2k(qk − 1)− q2

q2 − 1
qk(q2k − 1)

= q

q − 1
qk(qk − 1)

(q + 2)qk − q
q + 1

.
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Applying this result we obtain

R1 =
(
q∑

i=1

ri

)3
q

q − 1
qk(qk − 1)

[
2qk

(
∑

s

r̄2
s −

∑

s

r̄3
s −

q − 1

q2

)

+ (q + 2)qk − q
q + 1

(
∑

s

r̄3
s −

1

q2

)]

= −
(
q∑

i=1

ri

)3
q

q − 1
qk(qk − 1)

[
q

q + 1
(qk + 1)

∑

s

r̄3
s − 2qk

∑

s

r̄2
s

+ (2q + 1)qk − 1

q(q + 1)

]
.

It remains to show that

q

q + 1
(qk + 1)

∑

s

r̄3
s − 2qk

∑

s

r̄2
s +

(2q + 1)qk − 1

q(q + 1)
≤ 0.

The left hand side obviously equals 0 if r̄1 = . . . = r̄q = 1/q , i.e. r1 = . . . = rq .
Let us define f : �q−1 → R by

f (x1, . . . , xq−1) = a1

⎡

⎢⎣
q−1∑

s=1

x3
s +

⎛

⎝1−
q−1∑

s=1

xs

⎞

⎠
3
⎤

⎥⎦− a2

⎡

⎢⎣
q−1∑

s=1

x2
s +

⎛

⎝1−
q−1∑

s=1

xs

⎞

⎠
2
⎤

⎥⎦ ,

where a1 = q(qk + 1)/(q + 1) and a2 = 2qk. We will show that (1/q, . . . , 1/q) is
the only extremal point of f in �q and that it is a local maximum. The first partial
derivative for j ∈ [q − 1] is

δ

δxj
f (x1, . . . , xq−1) = 3a1

⎛

⎝x2
j − (1−

q−1∑

i=1

xi)
2

⎞

⎠− 2a2

⎛

⎝xj − (1−
q−1∑

i=1

xi)

⎞

⎠

=
⎛

⎝xj − (1−
q−1∑

i=1

xi)

⎞

⎠

⎡

⎣3a1

⎛

⎝xj + 1−
q−1∑

i=1

xi

⎞

⎠− 2a2

⎤

⎦ .

It follows that the gradient∇f = 0 if and only if either xj = 1−∑q−1
i=1 xi for all j ∈

[q−1], which yields x1 = . . . = xq−1 = 1/q , or 3a1(xj +1−∑q−1
i=1 xi)−2a2 = 0
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for all j ∈ [q − 1]. Since

3a1(1−
q−1∑

i=1,i �=j
xi)− 2a2 ≤ 3

q

q + 1
(qk + 1)− 4qk < −qk + 3 ≤ 0,

the latter is impossible. We conclude that the only extremal point of f is
(1/q, .., 1/q). Further, the second partial derivatives are

δ2

δxkδxj
f (x1, . . . , xq−1) =

⎧
⎪⎪⎨

⎪⎪⎩

6a1(1−∑q−1
i=1 xi)− 2a2 if k �= j

6a1(1−∑q−1
i=1,i �=j xi)− 4a2 if k = j

such that

δ2

δxkδxj
f

(
1

q
, ..,

1

q

)
=

⎧
⎪⎪⎨

⎪⎪⎩

6a1
q
− 2a2 if k �= j

12a1
q
− 4a2 if k = j.

Since (6a1/q)− 2a2 = [6(qk + 1)/(q + 1)] − 4qk ≤ −2(qk − 1) < 0, we see that
(1/q, .., 1/q) is a global maximum. With this we obtain that R1 ≥ 0, with equality
if and only if either k = 0 or ri = rj for all i, j ∈ [q]. Remember that R3 ≥ 0. It
equals zero if and only if either k = 0 or ri = rj for all i, j ∈ [q] or pi = 0 for

i ∈ [qk+1 + 1, qn]. Further, L2,q
Cqn (P, P ) − L2,q

Cqn (P̃ , P̃ ) = R1 + R3. It follows that

this difference is not negative. Moreover, it equals 0 if and only if either k = 0 or
ri = rj for all i, j ∈ [q]. This concludes the proof. ��

By applying Lemma 231 in the same way as Lemma 220 in the first subsection
of Sect. 3 we obtain

Corollary 232 Let n ∈ N and q ∈ N≥2. Further, let C = Cqn and T = TC . Then it
holds for all probability distributions P on [qn] that

L2,q
C (P, P ) ≥ L2,q

C

((
1

qn
, . . . ,

1

qn

)
,

(
1

qn
, . . . ,

1

qn

))
.

The inequality holds with equality if and only if P(Tx) = q−‖x‖ for all inner nodes
x ∈ N̊ (T ).

Before we come to Lemma 233, we provide a short excurs on δ-typical
sequences. These are defined e.g. in [9] Definition 2.8 (p. 33). We will change some
of the notation of this definition in order to harmonize it with the notation used in
this thesis and related papers.
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“For any distribution P on U , a sequence un ∈ Un is called P -typical with
constant δ if

∣∣∣∣
1

n
< un|a > −pa

∣∣∣∣ ≤ δ (41)

for every a ∈ U and, in addition, no a ∈ U with pa = 0 occurs in un. The set of
such sequences will be denoted by T nP,δ.”

Here, the value of< un|a > is the number of appearances of a as a component of
un. In words, a sequence un ∈ Un is called P -typical with constant δ if for all a ∈ U
the difference between the relative frequency of a in un and the actual probability
of a with respect to P is at most δ.

Lemma 2.12 in [9] and its subsequent remark state that

Pn(T nP,δ) ≥ 1− |U |
4nδ2

(42)

Further, it follows from Eq. (41) for all un ∈ T nP,δ that

Pnun =
∏

a∈U
p<u

n|a>
a ≤

∏

a∈supp(P )
p
n(pa−δ)
a = 2

−n
(
H(P)+δ∑a∈supp(P) logpa

)

. (43)

Here, H(P) = −∑a∈supp(P ) pa logpa is Shannon’s classical entropy. In the
following we use MP = −∑a∈supp(P ) logpa . It holds that 0 ≤ MP < ∞ with
equality on the left hand side if and only if supp(P ) = 1. We exclude this case in
our further analysis. It follows that for all ε > 0 exists δ > 0 such that on the one
hand it holds that

Pn((T nP,δ)c) ≤
|U |MP
4nε2 . (44)

On the other hand it holds for all un ∈ T nP,δ that

Pnun ≤ 2−n(H(P )−ε). (45)

To see this choose δ = ε/MP and apply Eqs. (42) and (43). Things are now settled
to prove

Lemma 233 Let P be probability distribution on U with |supp(P )| > 1. For all
ε > 0 and all q-ary prefix codes C over U there exist sequences αn(ε) = αn → 0
andKn(ε) = Kn →∞ such that

L2,q
Cn (P

n, P n) ≥ (1− αn)3L2,q
C
qKn

((
1

qKn
, . . . ,

1

qKn

)
,

(
1

qKn
, . . . ,

1

qKn

))

holds for all sufficiently large n.
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Proof The proof of this theorem follows the same guidelines as the proof of
Lemma 214 in chapter “An Interpretation of Identification Entropy”. However, we
changed some of its steps in order to obtain a more explanatory proof.

We begin the proof without explicitly specifying Kn and αn. This will be done
later. We partition Un according to the given code Cn into Un1 = {un ∈ Un :
‖cun‖ ≤ Kn} and Un2 = Un \ Un1 . Since Cn is a q-ary prefix code, we have that

|Un1 | ≤ qKn. (46)

For ε > 0 we choose δ = ε/MP and obtain

Pn(Un1 ) = Pn(Un1 ∩ T nP,δ)+ Pn(Un1 ∩ (T nP,δ)c)
≤ | Un1 ∩ T nP,δ|2−n(H(P )−ε) + Pn((T nP,δ)c)

≤ qKn2−n(H(P )−ε) + |U |MP
4nε2 .

The first inequality follows by Eq. (45). Equations (44) and (46) yield the second
inequality.

We now set Kn =
⌊
n(H(P )−2ε)

logq

⌋
as well as αn = 2−nε + |U |MP

4nε2 and obtain

Pn(Un1 ) ≤ αn
and thus

Pn(Un2 ) ≥ 1− αn. (47)

We will now construct a new source code by cutting all codewords in Un2 back to
length Kn. Formally, we define the new source Ũ = Ũ1 ∪ Ũ2, where Ũ1 = Un1 and
Ũ2 is defined as follows. Let ∼= be an equivalence relation on Un2 with un ∼= vn :⇔
c
Kn
un = cKnvn and let E1, . . . , Em be the equivalence classes. Further, we associate with

every equivalence class Ei the object ei and define Ũ2 = {e1, . . . , em}. Moreover,
we define a probability distribution P̃ on Ũ by P̃ (un) = P(un) for all un ∈ Ũ1 and
P̃ (ek) =∑un∈Ek P (u

n) for k ∈ [m]. Finally, we obtain a new code C̃ : Ũ → Q∗ by

c̃un = cun if un ∈ Ũ1 and c̃ek will be the common prefix of length Kn of the objects
in Ek . This construction step is visualized in Fig. 5. It follows that

L2,q
Cn (P

n, P n) ≥ L2,q

C̃ (P̃ , P̃ ). (48)
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Fig. 5 The cutting of TC at depth Kn yields TC̃ with Ũ1 = {u1, u2, . . . , u9} and Ũ2 =
{e1, e2, e3, e4}
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The next step is to focus only on the Ũ2-part of Ũ . Again we operate without
increasing the symmetric 2-identification running time since

L2,q

C̃ (P̃ , P̃ ) =
∑

ũ1,ũ2,ṽ∈Ũ
P̃ (ũ1)P̃ (ũ2)P̃ (ṽ)L2,q

C̃ ((ũ1, ũ2), ṽ)

≥
∑

ũ1,ũ2,ṽ∈Ũ2

P̃ (ũ1)P̃ (ũ2)P̃ (ṽ)L2,q

C̃ ((ũ1, ũ2), ṽ)

=
m∑

i1,i2,j=1

P̃ (ei1)P̃ (ei2)P̃ (ej )L
2,q

C̃ ((ei1, ei2), ej )

=
(
m∑

k=1

P̃ (ek)

)3 m∑

i1,i2,j=1

P̃2(ei1)P̃2(ei2)P̃2(ej )L2,q

C̃2
((ei1 , ei2), ej ).

Here, P̃2 is a probability distribution on Ũ2 defined by

P̃2(ej ) = P̃ (ej )∑m
k=1 P̃ (ek)

for j ∈ [m]. Further, C̃2 is the restriction of C̃ to Ũ2.
Since

m∑

k=1

P̃ (ek) =
m∑

k=1

∑

un∈Ek
P n(un) = Pn(Un2 ),

we obtain by Eq. (47) that

L2,q

C̃ (P̃ , P̃ ) ≥ (1− αn)3L2,q

C̃2
(P̃2, P̃2). (49)

Although C̃2 is a block code with codewords of length Kn it may be—and maybe
by far—not saturated. To achieve this property we extend Ũ2 to a set of cardinality
qKn , assign zero probabilities to the additional elements and use for them codewords
from QKn \ C̃2. We now obey the conditions of Corollary 232 by which we obtain

L2,q

C̃2
(P̃2, P̃2) ≥ L2,q

C
qKn
((

1

qKn
, . . . ,

1

qKn
), (

1

qKn
, . . . ,

1

qKn
)). (50)

The inequalities (48), (49) and (50) finally yield the statement of the lemma. ��
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By applying Theorem 227 and Lemma 233 to Corollary 230 we obtain

Corollary 234 Let U be a finite set, q ∈ N≥2, P be a probability distribution on U
with |supp(P )| > 1 and C be a q-ary prefix code. It then holds that

L2,q
C (P , P ) ≥ (1−

∑

u∈U
p3
u)

(
2
q

q − 1
− q2

q2 − 1

)
−2

(
1−∑u∈U p3

u

1−∑u∈U p2
u

− 1

)
L1,q
C (P , P ).

5.2 The q-ary Identification Entropy of Second Degree

Since (1-)identification appears negatively signed, we can not immediately apply
its lower bound L1,q

C (P, P ) ≥ H
1,q
ID (P ) (see [4], chapter “An Interpretation of

Identification Entropy”). But we can show that the bound of Corollary 234 is
attained if P consists only of q-powers and C is a code with ‖cu‖ = − logq pu.

Proposition 235 Let P be a probability distribution on U which only consists of
q-powers and C be a q-ary prefix code, where ‖cu‖ = − logq pu for all u ∈ U . It
then holds that

L2,q
C (P, P ) = 2

q

q − 1

(
1−

∑

u∈U
p2
u

)
− q2

q2 − 1

(
1−

∑

u∈U
p3
u

)
.

Proof It is an immediate consequence from the condition ‖cu‖ = − logq pu for all
u ∈ U that

P(Tx) = q−‖x‖ (51)

holds for all x ∈ N (T ), where T = TC . We now introduce for all v ∈ U and
k = 1, . . . , ‖cv‖ the set

R̄1,q
C (k, v) = R1,q

C (1, v) ∪̇ . . . ∪̇R1,q
C (k − 1, v). (52)

Proceeding as in the proof of Theorem 227 we obtain

LL,qC (P, P ) =
∑

v∈U
pv

‖cv‖∑

k=1

k
∑

(u1,u2)∈R2,q
C (k,v)

pu1pu2 .
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In the following we use Sk,v = ∑
(u1,u2)∈R2,q

C (k,v)
pu1pu2 . With the notation of

Eq. (52) it holds that

Sk,v = 2
∑

u1∈R1,q
C (k,v)

∑

u2∈R̄1,q
C (k,v)

pu1pu2 +
∑

u1,u2∈R1,q
C (k,v)

pu1pu2 .

Here, the equality holds because there exists either one component for which
(1-)identification against v takes exactly k time-steps and the other yields a (1-
)identification time regarding v of at most k − 1 or both components have a
(1-)identification time regarding v of k.

1. Case k = 1, . . . , ‖cv‖ − 1.
In this case we have that R1,q

C (k, v) = T̄
ck−1
v
\ T̄ckv and R̄1,q

C (k, v) = U \ T̄
ck−1
v

.
This together with Eq. (51) yields

∑

u∈R1,q
C (k,v)

pu = P(Tck−1
v
)− P(Tckv ) = q−k+1 − q−k = q−k(q − 1)

and

∑

u∈R̄1,q
C (k,v)

pu = 1− P(T
ck−1
v
) = 1− q−k+1.

Thus,

Sk,v = 2q−k(q − 1)(1− q−k+1)+ q−2k(q − 1)2

= (1− q−k)2 − (1− q−k+1)2.

2. Case k = ‖cv‖.
In this case we have that R1,q

C (‖cv‖, v) = T̄c‖cv‖−1
v

and R̄1,q
C (‖cv‖, v) = U \

T̄
c
‖cv‖−1
v

. Equation (51) yields

∑

u∈R1,q
C (‖cv‖,v)

pu = P(Tc‖cv‖−1
v

) = q−‖cv‖+1

and

∑

u∈R̄1,q
C (‖cv‖,v)

pu = 1− P(T
c
‖cv‖−1
v

) = 1− q−‖cv‖+1.
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Thus, we obtain

S‖cv‖,v = 2q−‖cv‖+1(1− q−‖cv‖+1)+ q−2(‖cv‖−1) = 1− (1− q−‖cv‖+1)2.

Together, the above two cases yield

‖cv‖∑

k=1

kSk,v =
‖cv‖−1∑

k=1

k
[
(1− q−k)2 − (1− q−k+1)2

]
+ ‖cv‖

[
1− (1− q−‖cv‖+1)2

]

=
‖cv‖−1∑

k=1

k(1− q−k)2 + ‖cv‖ −
‖cv‖∑

k=1

k(1− q−k+1)2.

If we take a look at the first sum plus ‖cv‖, we see that

‖cv‖−1∑

k=1

k(1− q−k)2 + ‖cv‖ =
‖cv‖−1∑

k=1

k(1− 2q−k + q−2k)+ ‖cv‖

=
‖cv‖∑

k=1

k − 2
‖cv‖−1∑

k=1

kq−k +
‖cv‖−1∑

k=1

kq−2k.

Further, we obtain

‖cv‖∑

k=1

k(1− q−k+1)2 =
‖cv‖∑

k=1

k(1− 2q−k+1 + q−2k+2)

=
‖cv‖∑

k=1

k − 2
‖cv‖∑

k=1

kq−k+1 +
‖cv‖∑

k=1

kq−2k+2.

Subtracting the second from the first result we get

‖cv‖∑

k=1

kSk,v = 2(q − 1)
‖cv‖∑

k=1

kq−k − (q2 − 1)
‖cv‖∑

k=1

kq−2k

+ ‖cv‖q−‖cv‖(2− q−‖cv‖)

= 2
q

q − 1
(1− pv)− 2‖cv‖pv − q2

q2 − 1
(1− p2

v)+ ‖cv‖p2
v

+ ‖cv‖pv(2− pv)

= 2
q

q − 1
(1− pv)− q2

q2 − 1
(1− p2

v).
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Here, the first equality follows from the previously calculated sums. The second
equality holds since by assumption q−‖cv‖ = pv for all v ∈ U and since we have
for j = 1, 2 that

‖cv‖∑

k=1

kq−jk = 1

(qj − 1)2
[qj − (qj (‖cv‖ + 1)− ‖cv‖)q−j‖cv‖]

= ql

(ql − 1)2
(1− plv)−

‖cv‖
ql − 1

plv.

Finally the above calculations yield

LL,qC (P, P ) =
∑

v∈U
pv

‖cv‖∑

k=1

kSk,v

= 2
q

q − 1

(
1−

∑

v∈U
p2
v

)
− q2

q2 − 1

(
1−

∑

v∈U
p3
v

)
.

��
This result encourages us in the believe that the right side of the equation in

Proposition 235 is in general a lower bound for 2-identification. As we will see
soon it obeys some fundamental properties for entropy functions. Therefore, we
defineH 2,q

ID : �N → R by

H
2,q
ID (P ) = 2

q

q − 1

(
1−

∑

u∈U
p2
u

)
− q2

q2 − 1

(
1−

∑

u∈U
p3
u

)
. (53)

We call it the q-ary identification-entropy of second degree. Its role as a lower bound
for 2-identification is expressed in

Theorem 236 Let U be a finite set and q ∈ N≥2. It holds for all probability
distributions P on U and all q-ary prefix codes C that

L2,q
C (P, P ) ≥ H 2,q

ID (P ),

where equality is attained if and only if P consists only of q-powers, and C is a
prefix code, with ‖cu‖ = − logq pu for all u ∈ U .

Before we prove Theorem 236, we will first analyze the functional properties of
H

2,q
ID . A list of desiderata for entropy functions can be found in [1], pp. 50. We now

show that entropy function obeys important ones of them.

Theorem 237 The following properties hold for H 2,q
ID (P ).
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1. Symmetry:

H
2,q
ID (p1, . . . , pN) = H 2,q

ID (pπ(1), . . . , pπ(N)), (54)

where π is a permutation on [N].
2. Expansibility:

H
2,q
ID (p1, . . . , pN) = H 2,q

ID (p1, . . . , pN , 0). (55)

3. Decisiveness:

H
2,q
ID (1, 0, . . . , 0) = 0.

4. Normalization:

H
2,q
ID

(
1

q
, . . . ,

1

q

)
= 1. (56)

5. Bounds:

H
2,q
ID (1, 0, . . . , 0) ≤ H 2,q

ID (P ) ≤ H 2,q
ID

(
1

N
, . . . ,

1

N

)
. (57)

6. Grouping Behavior: For m ≤ N let

(a) U1,U2, . . . ,Um be a partition of U of non-empty sets
(b) Q = (Q1, . . . ,Qm) be the probability distribution on [m] defined by Qi =∑

u∈Ui pu
(c) Pi is the probability distribution on Ui defined by pi,u = pu/Qi for all

i ∈ [m] and u ∈ Ui .

It then holds that

H
2,q
ID (P ) = H 2,q

ID (Q)+
m∑

i=1

[
2Q2

i (1−Qi)H 1,q
ID (Pi)+Q3

i H
2,q
ID (Pi)

]
. (58)

Proof Symmetry, expansibility and decisiveness follow directly from the definition
of H 2,q

ID . Further, the normalization property follows from

H
2,q
ID

(
1

q
, . . . ,

1

q

)
= 2

q

q − 1

(
1− 1

q

)
− q2

q2 − 1

(
1− 1

q2

)
= 1.

Bounds: Let f (p1, . . . , pN−1) = H 2,q
ID (p1, . . . , pN−1, 1 −∑N−1

i=1 pi). We will
show that the gradient ∇f (p1, . . . , pN−1) = 0 if and only if (p1, . . . , pN−1) =
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(1/N, . . . , 1/N). For that we set pN = 1−∑N−1
i=1 pi and obtain that it holds for all

j ∈ [N − 1] that

δ

δpj
f (p1, . . . , pN−1) = −4

q

q − 1
(pj − pN)+ 3

q2

q2 − 1
(p2
j − p2

N).

It follows immediately that ∇f (1/N, . . . , 1/N) = 0.
Assume now that for any P ′ �= (1/N, . . . , 1/N) it holds that ∇f (P ′) = 0. It

follows that there exists j ∈ [N − 1] such that pj �= pN . If we now take a look at
δ
δpj
f (P ′), we see that

δ

δpj
f (P ′) = 0 ⇐⇒ 3

q

q + 1
(pj + pN) = 4.

This is a contradiction because q
q+1 (pj + pN) is clearly smaller than 1.

In order to ensure that (1/N, . . . , 1/N) is indeed a maximum we show that the
Hessian is negative definite. In fact, we will obtain a stronger result namely that all

second derivatives δ2

δpkδpj
f (1/N, . . . , 1/N) are strictly negative.

δ2

δpkδpj
f

(
1

N
, . . . ,

1

N

)
=

⎧
⎪⎪⎨

⎪⎪⎩

4 q
q−1 (

3q
N(q+1) − 2) if k = j

2 q
q−1 (

3q
N(q+1) − 2) if k �= j.

From q ≥ 2 now follows that 3q
N(q+1) − 2 < 0 if N ≥ 2. And for N = 1 we are

in the trivial case, whereH 2,q
ID (1) = 0.

Grouping Behavior:
We use

Si = 2Q2
i (1−Qi)H 1,q

ID (Pi)+Q3
i H

2,q
ID (Pi),

for all i ∈ [m] and observe that

Si = 2Q2
i (1−Qi)

q

q − 1
(1− 1

Q2
i

∑

u∈Ui
p2
u)

+Q3
i

⎡

⎣2
q

q − 1
(1− 1

Q2
i

∑

u∈Ui
p2
u)−

q2

q2 − 1
(1− 1

Q3
i

∑

u∈Ui
p3
u)

⎤

⎦

= 2
q

q − 1
(Q2
i −

∑

u∈Ui
p2
u)−

q2

q2 − 1
(Q3
i −

∑

u∈Ui
p3
u).
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By summing the Si’s up we obtain

m∑

i=1

Si = 2
q

q − 1
(

m∑

i=1

Q2
i −

∑

u∈U
p2
u)−

q2

q2 − 1
(

m∑

i=1

Q3
i −

∑

u∈U
p3
u)

and thus

H
2,q
ID (Q)+

m∑

i=1

Si = 2
q

q − 1
(1−

m∑

i=1

Q2
i )−

q2

q2 − 1
(1−

m∑

i=1

Q3
i )

+ 2
q

q − 1
(

m∑

i=1

Q2
i −

∑

u∈U
p2
u)−

q2

q2 − 1
(

m∑

i=1

Q3
i −

∑

u∈U
p3
u)

= 2
q

q − 1
(1−

∑

u∈U
p2
u)−

q2

q2 − 1
(1−

∑

u∈U
p3
u)

= H 2,q
ID (P ).

��
In order to prove Theorem 236 we need a decomposition formula for the 2-

identification running time. It turns out that the decomposition of the 2-identification
running time behaves mainly in the same way as the grouping behavior of the q-ary
identification entropy of second degree. We prove this formula in its general form
since we will also need this lemma in the next section.

Lemma 238 For all i ∈ Q let

1. Ui = {u ∈ U : cu,1 = i}
2. Qi = ∑

u∈Ui
pu

3. Pi be a probability distribution on Ui defined by pi,u = pu
Qi

for all u ∈ Ui
4. C(i) : Ui → Q∗ be the code on Ui defined by c(i)u = cu,2cu,3 . . . cu,‖cu‖ for all
u ∈ Ui .

Then it holds that

LL,qC (P, P ) = 1+
∑

i∈Q

L∑

l=1

(
L

l

)
Ql+1
i (1−Qi)L−lLl,qC(i) (Pi , Pi).

For L = 2 this becomes

L2,q
C (P, P ) = 1+

∑

i∈Q

[
2Q2

i (1−Qi)L1,q
C(i) (Pi , Pi)+Q3

iL
2,q
C(i) (Pi , Pi)

]
.
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Proof We observe that

LL,qC (P, P ) =
∑

uL∈UL

∑

v∈U
PL
uL
pvLL,qC (uL, v)

=
∑

i∈Q

∑

v∈Ui

∑

uL∈UL
PL
uL
pvLL,qC (uL, v).

Since LL,qC (uL, v) = LL,qC ((u1, . . . , uL), v) = LL,qC ((uπ(1), . . . , uπ(L)), v) for
all permutations π on [L], we get for all i ∈ Q
∑

v∈Ui

∑

uL∈UL
PL
uL
pvLL,qC (uL, v)

=
L∑

l=0

(
L

l

)∑

v∈Ui

∑

u1,...,ul∈Ui

∑

ul+1,...,uL∈U\Ui
P L
uL
pvLL,qC (uL, v)

=
L∑

l=0

(
L

l

)
(1−Qi)L−l

∑

u1,...,ul,v∈Ui
pu1 . . . pulpv(1+ Ll,qC(i) ((u1, . . . , ul), v))

= Qi
L∑

l=0

(
L

l

)
Qli(1−Qi)L−l +

L∑

l=1

(
L

l

)
(1−Qi)L−lQl+1

i Ll,qC(i) (Pi , Pi)

= Qi +
L∑

l=1

(
L

l

)
(1−Qi)L−lQl+1

i Ll,qC(i) (Pi , Pi).

The second equality follows since LL,qC (uL, v) = 1+Ll,qC(i) ((u1, . . . , ul), v) holds if
u1, . . . , ul, v ∈ Ui and ul+1, . . . , uL ∈ U \ Ui . Adding this up for i ∈ Q we obtain
the desired result. ��

As one can see there is a strong relation between the above decomposition
formula for 2-identification and the grouping behavior of the identification entropy
of second degree. In the following inductive proof of Theorem 236 we exploit this
relation in order to apply the induction step.

Proof of Theorem 236. For L = 1 the statement follows for all N ∈ N from
Theorem 202 in chapter “Identification Entropy”. As the induction base for N we
have to consider all the cases N = 1, .., q and since here L2,q

C (P, P ) = 1, we

have to show that H 2,q
ID (P ) ≤ 1. It follows by the expansibility property (55) of

the second degree identification entropy function that we only have to consider
the case N = q . Further, the maximality of the uniform distribution (57) and the
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normalization property (56) yield

H
2,q
ID (p1, . . . , pq) ≤ H 2,q

ID

(
1

q
, . . . ,

1

q

)
= 1.

We set Q = (Q0, . . . ,Qq−1) and use the same notation as in Lemma 238. The
inequality of Theorem 236 now follows from

L2,q
C (P, P ) = 1+

∑

i∈Q

[
2Q2

i (1−Qi)L1,q
C(i) (Pi, Pi )+Q3

iL
2,q
C(i) (Pi , Pi)

]

≥ H 2,q
ID (Q)+

∑

i∈Q

[
2Q2

i (1−Qi)H 1,q
ID (Pi)+Q3

i H
2,q
ID (Pi)

]

= H 2,q
ID (P ). (59)

Here, the equality of the first line follows from Lemma 238. The inequality is a
consequence of the induction step together with the normalization property (56)
and the established bounds (57) of H 2,q

ID . Finally, the grouping behavior (58) of

H
2,q
ID yields the second equality.
The fact that this lower bound is attained for every q-ary prefix code C for which

equality (51) holds has already been proven by Proposition 235. If we instead have
that the inequality of Theorem 236 holds with equality, then also the inequality of
Eq. (59) is in fact an equality and thus

(i) H 2,q
ID (Q) = 1

(ii) H 1,q
ID (Pi) = L1,q

Ci (Pi , Pi)

(iii) H 2,q
ID (Pi) = L2,q

Ci (Pi , Pi).

We have seen in the proof of the bounds of the entropy function that the uniform
distribution is the only point where the first derivative of the identification entropy
function equals zero and thus (1/q, . . . , 1/q) is the only point for whichH 2,q

ID (Q) =
1. Together with (i) this means that we get for all i ∈ Q that

Qi = 1

q
(60)

The crucial part is now (ii). For all i ∈ Q we obtain from Eq. (60) and the
definitions of Pi and C(i) (see Lemma 238) that for u ∈ Ui we have

pu = Qipi,u = pi,u

q
(61)

and

‖cu‖ = ‖c(i)u ‖ + 1. (62)
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Moreover, Theorem 213 in chapter “An Interpretation of Identification Entropy”
stated that for (1-)identification an equality between the running time and identi-
fication entropy is only attained if and only if the probability distribution consists
only of q-powers and the lengths of the codewords equal the negative logarithm of
the probability of their corresponding elements. Thus it follows from (ii) that all the
pi,u’s are q-powers and that ‖c(i)u ‖ = − logq pi,u. Together with Eqs. (61) and (62)
we finally obtain that P consists only of q-powers and that

‖cu‖ = − logq pi,u + 1 = − logq
pi,u

q
= − logq pu.

��
In Theorem 227 we have shown for the uniform distribution that if C is a balanced

Huffman code, its symmetric 2-identification running time asymptotically equals

K2,q = 2
q

q − 1
− q2

q2 − 1
.

Since

H
2,q
ID

(
1

N
, . . . ,

1

N

)
= 2

q

q − 1

N − 1

N
− q2

q2 − 1

N2 − 1

N2

= 2
q

q − 1
− q2

q2 − 1
− 2

q

q − 1

1

N
+ q2

q2 − 1

1

N2

and thus

lim
N→∞H

2,q
ID

(
1

N
, . . . ,

1

N

)
= K2,q ,

we get

Corollary 239 Considering the uniform distribution, balanced Huffman codes are
asymptotically optimal for 2-identification.

5.3 An Upper Bound for Binary Codes

In this subsection we establish an upper bound for q = 2. As said in the introduction
of this section this is done mainly by the same code construction as in the second
subsection of Sect. 3. We define Umax, pmax and Pmax according to Eqs. (20), (21)
and (22). Further, Eq. (23) becomes

L2,2
C (P ) ≤ 1+ 2(1− pmax)pmaxL1,2

Cmax
(Pmax)+ p2

maxL
2,2
Cmax
(Pmax). (63)
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We prove now by induction over N the following

Theorem 240 It holds for all probability distributions P on U that the worst-case
running time for binary 2-identification can be upper bounded by

L2,2(P ) <
55

16
.

Proof W.l.o.g. we assume that p1 ≥ p2 ≥ . . . ≥ pN . As induction base serve the
cases N = 1, 2 for which the running time always equals 1.

In order to apply the upper bound for (1-)identification, we use the same code
construction as in Theorem 222. We partition U into sets U0 and U1, which differ
from case to case. We choose t such that | 1

2 −
∑t
u=1 pu| is minimal and set

U0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

{1} if p1 ≥ 1
2

{1, 2} if p1 <
1
2 and t = 1

{1, . . . , t} if p1 <
1
2 and t ≥ 2.

Once we have chosen U0 and U1 = U \ U0 we inductively construct codes Ci on
Ui . Note that C0 = ∅ if p1 ≥ 1/2. From these codes we derive a code C on U by
prefixing all codewords in Ci with i.

1. Case p1 ≥ 1
2 .

For the same reason as in the proof of Theorem 222 we have that the element
vmax, which maximizes L2,2

C (P, v), is in U1. It follows by induction, Eq. (63) and
Theorem 222 that

L2,2
C (P ) < 1+ 5(1− pmax)pmax + 55

16
p2

max.

Since the right hand side is monotone increasing in pmax and pmax ≤ 1/2 we
obtain

L2,2
C (P ) < 1+ 5

4
+ 55

16
· 1

4
= 199

64
<

55

16
.

In the following, whenever there occurs the case that pmax ≤ 1/2 we obtain for
the same reasons as above that L2,2

C (P ) < 199/64 < 55/16.
2. Case p1 <

1
2 .

(a) Case t = 1.
We obtain by the definition of t that

∑4
u=1 pu > 1/2. If vmax ∈ U0 it follows

that L2,2
C (P ) ≤ 2. Further, we get for vmax ∈ U1 that pmax < 1/2.

(b) Case t ≥ 2.
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(i) Case vmax ∈ U0.
We have pmax = ∑t

u=1 pu. If t = 2, we again get that pmax ≤ 1/2 and
if t = 3 we get as with Case 2 of the proof of Theorem 222 that

L1,2
Cmax
(Pmax) = 1+ p2 + p3

pmax
≤ 5

3
.

Further, for the same reasons we obtain

L2,2
Cmax
(Pmax) = 1+ 2(p2 + p3)

pmax
≤ 7

3
.

Applying the above two equations together with Eqs. (25) and (63)
yields

L2,2
C (P ) ≤ 1+ 2 · 3

8
· 5

8
· 5

3
+ 25

64
· 7

3
= 517

192
<

55

16
.

For t ≥ 4 we get by Eq. (25) that

pmax <
7

12

if pmax ≥ 1/2. This together with the induction hypothesis and
Theorem 222 yields

L2,2
C (P ) < 1+ 5 · 5

12
· 7

12
+ 49

144
· 55

16
= 7799

2304
<

55

16
.

(ii) Case vmax ∈ U1.
We get pmax =∑N

u=t+1 pu. Now, Eq. (26) yields

pmax = 1−
t∑

u=1

pu ≤ 3

5
.

From this it follows together with the induction hypothesis and Theo-
rem 222 that

L2,2
C (P ) < 1+ 5 · 2

5
· 3

5
+ 9

25
· 55

16
= 55

16
.

��
We have established a lower and an upper bound for binary 2-identification so

that we close this section with

Corollary 241 It holds for all probability distributions P on U that

4

(
1−

∑

u∈U
p2
u

)
− 4

3

(
1−

∑

u∈U
p3
u

)
≤ L2,2(P, P ) ≤ L2,2(P ) <

55

16
.



490 L-Identification for Sources

6 L-Identification for General Distributions

We now try to generalize the results of the preceding section. We begin with the
definition of the q-ary identification entropy of degreeL. Again, this function obeys
some important desiderata for entropy functions. However, we did not succeed in
proving the analogous lower and upper bounds for these entropies. In fact, there exist
counterexamples to the natural conjecture that the uniform distribution is an upper
bound. In order to show that HL,qID is a lower bound for L-identification we only
need the bounds for the case where the size of the output space equals the size of
the alphabet. We show that we can prove HL,qID ≤ LL,qC (P, P ) if we assume that in
this case the uniform distribution is indeed an upper bound. Moreover, if we assume
that for N = q the uniform distribution is the only distribution for which the upper
bound of HL,qID is attained, we can show that again if and only if P consists only of

q-powers we get that there exists a code C such that HL,qID (P ) = LL,qC (P, P ).

Definition 242 Let U be a finite set with |U | = N , L ∈ N, q ≥ 2 and
P = (p1, . . . , pN) ∈ �N . Then the q-ary identification entropy of degree L HL,qID :
�N → R is defined by

H
L,q
ID (P ) = −

L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1

(
1−

∑

u∈U
pl+1
u

)
.

It is an easy observation that for L = 1 the above function equals the
identification entropy established in chapter “Identification Entropy”. Also for
L = 2 it coincides with the identification entropy of second degree from the second
subsection of Sect. 5.

This function again obeys important desiderata for entropies from [1]. It is clearly
symmetric, expansible and decisive. It is also normalized. This follows from

H
L,q

ID

(
1

q
, . . . ,

1

q

)
= −

L∑

l=1

(−1)l
(
L

l

)
= 1. (64)

Another interesting property is that HL,qID obeys a grouping behavior which is a
generalized version of the grouping behavior of the q-ary identification entropy of
the second degree. With the same definitions as in 6. of Theorem 237 we obtain

H
L,q

ID (P ) = HL,qID (Q)+
m∑

i=1

L∑

l=1

(
L

l

)
Ql+1
i (1−Qi)L−lH l,qID (Pi). (65)
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To see this we set

Si =
L∑

l=1

(
L

l

)
Ql+1
i (1−Qi)L−lH l,qID (Pi),

for all i ∈ [m] and observe that Si equals

−
L∑

l=1

(
L

l

)
Ql+1
i (1−Qi)L−l

l∑

k=1

(−1)k
(
l

k

)
qk

qk − 1
(1−Q−(k+1)

i

∑

u∈Ui
pk+1
u )

= −
L∑

k=1

(−1)k
qk

qk − 1
(1−Q−(k+1)

i

∑

u∈Ui
pk+1
u )

L∑

l=k

(
L

l

)(
l

k

)
Ql+1
i (1−Qi)L−l

= −
L∑

k=1

(−1)k
(
L

k

)
qk

qk − 1
(Qk+1
i −

∑

u∈Ui
pk+1
u )

L∑

l=k

(
L− k
l − k

)
Ql−ki (1−Qi)L−l

= −
L∑

k=1

(−1)k
(
L

k

)
qk

qk − 1
(Qk+1
i −

∑

u∈Ui
pk+1
u ).

Here, the last equality follows from

L∑

l=k

(
L− k
l − k

)
Ql−ki (1−Qi)L−l =

L−k∑

l=0

(
L− k
l

)
Qli(1−Qi)L−l−k = 1.

If we now replace k by l, we obtain

m∑

i=1

Si = −
L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1
(

m∑

i=1

Ql+1
i −

∑

u∈U
pl+1
u ).

This yields

H
L,q
ID (Q)+

m∑

i=1

Si

= −
L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1

(
1−

m∑

i=1

Ql+1
i +

m∑

i=1

Ql+1
i −

∑

u∈U
pl+1
u

)

= HL,qID (P ).
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The crucial part are the lower and upper bound. It is natural for an entropy
function that it is minimized if the probability is 1 for a single object and upper
bounded by the uniform distribution. However, we encountered counterexamples
such as L ≥ 4, q ≥ 15 and N = 2 or L ≥ 5, q ≥ 100 and N = 3. We conjecture
that it holds at least for N ≥ q and all L and q that

H
L,q
ID (1, 0, . . . , 0) ≤ HL,qID (P ) ≤ HL,qID

(
1

N
, . . . ,

1

N

)
. (66)

This claim, in fact just in the case N = q , would suffice to prove that HL,qID
is a lower bound for L-identification. We did not succeed in proving this claim in
general for all L and q and will discuss this problem in greater detail in Sect. 8.
Before we turn to the cases for which we were able to prove the desired bounds, we
state

Proposition 243 If Eq. (66) holds for N = q , we get

H
L,q

ID (P ) ≤ LL,q(P, P ).

Proof We will use induction over L and N . As the induction base for L serves the
case L = 1 for which it has been proven in chapter “Identification Entropy” that
identification entropy (of first degree) is a lower bound for (1-)identification. Also
the case L = 2 has been settled in the preceding Sect. 5.

The induction base for N is the case N = q . By the expansibility property
this case settles all necessary induction bases 1, . . . , q . Trivially, if C = Q, we
get that LL,qC (P ) = 1. Since we have assumed that Eq. (66) holds, Eq. (64) proves
this induction base.

To prove the proposition we partition U according to some given code C into
U0, . . . ,Uq−1, where Ui = {u ∈ U : cu,1 = i}. Further, let Q be a probability
distribution on Q defined byQi =∑u∈U pu and Pi be probability distributions on
U defined by Pi,u = pu/Qi for all u ∈ U . With these definitions we obtain

LL,qC (P, P ) = 1+
∑

i∈Q

L∑

l=1

(
L

l

)
Ql+1
i (1−Qi)L−lLl,qC(i) (P li , Pi)

≥ HL,qID (Q)+
m∑

i=1

L∑

l=1

(
L

l

)
Ql+1
i (1−Qi)L−lH l,qID (Pi)

= HL,qID (P ). (67)

Here the first equality follows from Lemma 238, the inequality from the normal-
ization property (64), the assumed bounds (66) and the induction base. The final
equality is a consequence of the grouping behavior (65). ��
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As stated before there are some cases for which we can prove Eq. (66). In fact,
we prove more, namely

Proposition 244 HL,2ID (P ) is strictly concave for L ≤ 20.

Proof Let

f (p) = HL,2ID (p, 1 − p) = −
L∑

l=1

(−1)l
(
L

l

)
2l

2l − 1

(
1− pl+1 − (1− p)l+1

)
.

If we now look at all derivatives, we see that for k = 1

δk

δkp
f (p) =

L∑

l=1

(−1)l
(
L

l

)
2l

2l − 1

(l + 1)!
(l − k + 1)!

(
pl−k+1 − (1− p)l−k+1

)

and for all k ∈ {2, . . . , L+ 1}

δk

δkp
f (p) =

L∑

l=k−1

(−1)l
(
L

l

)
2l

2l − 1

(l + 1)!
(l − k + 1)!

(
pl−k+1 + (−1)k(1− p)l−k+1

)
.

A first observation is that if k is odd, we get

δk

δkp
f

(
1

2

)
= 0.

If we sort f (p) with respect to the power of p, we get

f (p) = ((−1)L − 1)
2L

2L − 1
pL+1

+
(
(L+ 1)

2L

2L − 1
− (1+ (−1)L)L

2L−1

2L−1 − 1

)
pL +

L−1∑

l=1

αlp
l,

for some αl . This yields that for even L we have a polynomial of degree L with

δL

δLp
f (p) =

(
(L+ 1)

2L

2L − 1
− 2L

2L−1

2L−1 − 1

)
L! < 0

and for odd L we have a polynomial of degree L+ 1 with

δL+1

δL+1p
f (p) = −2

2L

2L − 1
(L+ 1)! < 0.
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Since for even (resp. odd) L the L-th (resp. (L + 1)th) derivative is a strictly
negative constant, we know that the (L − 2)-th (resp. (L − 1)th) derivative is a
concave function. To show that it is also strictly negative it suffices to show that it
is negative for p = 1/2 since the (L − 1)-th (L-th) derivative is zero only at this
point. This step can then be iterated and if we can show that all even derivatives are
strictly negative at p = 1/2, we finally obtain that HL,2ID is a concave function. For
L = 2, . . . , 20 the values of all even derivatives at p = 1/2 have been computed
and turn out to be strictly negative. ��

For L ≥ 21 there occur positive values within the even derivatives so that
we cannot prove concavity via this argument. Nevertheless, also for these cases
the graphs of the identification entropy functions let us assume that they are still
concave. Since the binary identification entropy of degrees up to 20 are concave and
symmetric, we obtain

Corollary 245 Let L ≤ 20 it then holds that

H
L,2
ID (1, 0, . . . , 0) ≤ HL,2ID (P ) ≤ HL,2ID

(
1

N
, . . . ,

1

N

)
,

with equality on the right hand side if and only if P = (1/N, . . . , 1/N).
The cases proved above and especially the strong connection between the

grouping behavior (65) and Lemma 238 provide us with strong believe that the
q-ary identification entropy of degree L is indeed a lower bound for the symmetric
L-identification running time. But there are two other encouraging facts about the
connection between those two concepts. The first is that we get for the uniform
distribution the same result like for 2-identification. In fact, we have

H
L,q

ID

(
1

N
, . . . ,

1

N

)
= −

L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1
(1− 1

Nl
)

yielding

lim
N→∞H

L,q
ID

(
1

N
, . . . ,

1

N

)
= −

L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1

and thus, if C ∈ Cq,N ,

lim
N→∞H

L,q

ID

(
1

N
, . . . ,

1

N

)
= lim
N→∞LL,qC

(
1

N
, . . . ,

1

N

)
.

Therefore, a proof of Eq. (66) would also imply that for the case of the
uniform distribution balanced Huffman codes are asymptotically optimal for L-
identification.
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The second encouraging fact is stated in the following

Proposition 246 Let P be a probability distribution on U which consists only of
q-powers and C be a code for (U, P ) with ‖cu‖ = − logq pu for all u ∈ U . Then
for all L and q it holds that

H
L,q

ID (P ) = LL,qC (P, P ).

Proof We first introduce for all v ∈ U and k = 1, . . . , ‖cv‖ the following sets

• ULv,k = {uL ∈ UL : LL,qC (uL, v) = k}
• Uv,k = {u ∈ U : L1,q

C (u, v) = k}
• Ūv,k = Uv,1 ∪̇ . . . ∪̇ Uv,k−1

With this notation we obtain

LL,qC (P, P ) =
∑

v∈U
pv

‖cv‖∑

k=1

k
∑

uL∈ULv,k
PL
uL
.

We use Sk =∑uL∈ULv,k pu1 . . . puL and obtain

Sk =
L∑

l=1

(
L

l

) ∑

u1,...,ul∈Uv,k

∑

ul+1,...,uL∈Ūv,k
pu1 . . . puL.

Here, the second equality holds because there has to be at least one output for which
identification against v takes exactly k time-steps while all others (or none if l = L)
have an identification time regarding v of at most k − 1.

1. Case k = 1, . . . , ‖cv‖ − 1.
In this case we have that Uv,k = T̄ck−1

v
\ T̄ckv and Ūv,k = T̄C \ T̄ck−1

v
. This yields

∑

u∈Uv,k
pu = P(Tck−1

v
)− P(Tckv ) = q−k+1 − q−k = q−k(q − 1)

and

∑

u∈Ūv,k
pu = 1− P(T

ck−1
v
) = 1− q−k+1

and therewith

Sk =
L∑

l=1

(
L

l

)
q−kl(q − 1)l(1− q−k+1)L−l = (1− q−k)L − (1− q−k+1)L.
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2. Case k = ‖cv‖.
In this case we have that Uv,‖cv‖ = T̄c‖cv‖−1

v
and Ūv,‖cv‖ = T̄C \ T̄c‖cv‖−1

v
. We obtain

∑

u∈Uv,‖cv‖
pu = P(Tc‖cv ‖−1

v
) = q−‖cv‖+1

and

∑

u∈Ūv,‖cv‖
pu = 1− P(T

c
‖cv ‖−1
v

) = 1− q−‖cv‖+1

and therewith

S‖cv‖ =
L∑

l=1

(
L

l

)
q−(‖cv‖−1)l(1− q−‖cv‖+1)L−l = 1− (1− q−‖cv‖+1)L.

Combining the above two cases yields

‖cv‖∑

k=1

kSk =
‖cv‖−1∑

k=1

k
[
(1− q−k)L − (1− q−k+1)L

]
+ ‖cv‖

[
1− (1− q−‖cv‖+1)L

]

=
‖cv‖−1∑

k=1

k(1− q−k)L + ‖cv‖ −
‖cv‖∑

k=1

k(1− q−k+1)L.

We set A = ∑‖cv‖−1
k=1 k(1 − q−k)L + ‖cv‖ and B = ∑‖cv‖

k=1 k(1 − q−k+1)L. We
then get for A

A =
‖cv‖−1∑

k=1

k

L∑

l=0

(
L

l

)
(−1)L−lq−(L−l)k + ‖cv‖

=
L∑

l=0

(
L

l

)
(−1)L−l

‖cv‖−1∑

k=1

kq−(L−l)k + ‖cv‖

=
L−1∑

l=0

(
L

l

)
(−1)L−l

‖cv‖−1∑

k=1

kq−(L−l)k +
‖cv‖∑

k=1

k

=
L−1∑

l=0

(
L

l

)
(−1)L−l

‖cv‖∑

k=1

kq−(L−l)k −
L−1∑

l=0

(
L

l

)
(−1)L−l‖cv‖q−(L−l)‖cv‖ +

‖cv‖∑

k=1

k
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and for B respectively

B =
‖cv‖∑

k=1

k

L∑

l=0

(
L

l

)
(−1)L−lq−(L−l)(k−1)

=
L∑

l=0

(
L

l

)
(−1)L−lqL−l

‖cv‖∑

k=1

kq−(L−l)k

=
L−1∑

l=0

(
L

l

)
(−1)L−lqL−l

‖cv‖∑

k=1

kq−(L−l)k +
‖cv‖∑

k=1

k.

Subtracting B from A yields

‖cv‖∑

k=1

kSk =
L−1∑

l=0

(
L

l

)
(−1)L−l(1− qL−l)

‖cv‖∑

k=1

kq−(L−l)k

−
L−1∑

l=0

(
L

l

)
(−1)L−l‖cv‖q−(L−l)‖cv‖.

Since

‖cv‖∑

k=1

kq−(L−l)k = qL−l

(qL−l − 1)2
(1− q−(L−l)‖cv‖)− ‖cv‖q−(L−l)‖cv‖

qL−l − 1

and by assumption of the theorem q−‖cv‖ = pv for all v ∈ U , we finally obtain

LL,qC (P, P ) =
∑

v∈U
pv

‖cv‖∑

k=1

kSk = −
L∑

l=1

(
L

l

)
(−1)l

ql

ql − 1
(1−

∑

v∈U
pl+1
v ) = HL,qID (P ).

��
According to the previous results for (1-) and 2-identifications it seems natural

that the equality of Proposition 246 is only assumed for the mentioned cases and
that we have a strict inequality between the q-ary identification entropy of degree
L and the symmetric L-identification running time if P does not consists only of
q-powers. The following proposition formalizes this if we assume that for N = q
the uniform distribution maximizes HL,qID and that

H
L,q

ID (P ′) < HL,qID

(
1

q
, . . . ,

1

q

)

for all other distributions P ′ �= (1/q, . . . , 1/q).
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Proposition 247 Let P be a probability distribution on U for which it holds that

H
L,q

ID (P ) = LL,qC (P, P ).

We further assume that HL,qID (P ′) < H
L,q
ID ((1/q, . . . , 1/q)) for all P ′ �=

(1/q, . . . , 1/q). It then follows that P consists only of q-powers and C is a code for
(U, P ) with ‖cu‖ = − logq pu for all u ∈ U .

Proof As induction base serves the case L = 1, which has been proven in
Theorem 213 in chapter “An Interpretation of Identification Entropy”. For the
induction steps it now follows from the assumptions of that the inequality in Eq. 67
becomes an equality so that we have

1+
∑

i∈Q

L∑

l=1

(
L

l

)
Ql+1
i (1−Qi)L−lLl,qC(i) (P li , Pi)

= HL,qID (Q)+
m∑

i=1

L∑

l=1

(
L

l

)
Ql+1
i (1−Qi)L−lH l,qID (Pi). (68)

For the definitions ofQi , Pi and C(i) see again Lemma 238. From this equation
follows

(i) HL,qID (Q) = 1

(ii) Hl,qID (Pi) = Ll,qC(i) (P
l
i , Pi) for l ∈ [L]

On the one hand it follows from the assumptions and i) that Q = (1/q, . . . , 1/q)
and on the other hand it follows from the induction hypothesis and ii) that Pi consists
only of q-powers and that ‖c(i)u ‖ = − logq pi,u. Since pu = Qipi,u = pi,u/q for
all u ∈ Ui , we obtain that also P consists only of q-powers and finally ‖cu‖ =
− logq pi,u + 1 = − logq

pi,u
q
= − logq pu for all u ∈ Ui . ��

7 L-Identification for Sets

Like before the discrete source (U, P ) together with a source code C forms the
basis for our analysis of L-identification for sets. Unlike in the second subsection
of Sect. 2, however, we do not consider as the output space the discrete memoryless
source (UL, PL) but the discrete source (Ũ, P̃ ), where Ũ = (U

L

)
. We write P̃S for

P̃ ({S}). The task of L-identification for sets is in principle the same as before. It has
to be able to distinguish for all users v ∈ U and all outputs S ∈ Ũ whether there
exists an element u in S with u = v or not.

In this section we will analyze the asymptotic behavior of the symmetric running
time of L-identification for sets for the case when P̃ is the uniform distribution on
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Ũ and also the users are chosen uniformly. We will see that it asymptotically equals
the symmetric running time of L-identification (for vectors) and thus KL,q , which
was examined in the second subsection of Sect. 4.

It is clear that L-identification for sets can be seen as a special case of our
preliminaryL-identification (for vectors) as we exclude all vectors with two or more
identical components. This fact changes the running time of L-identification in the
following way. Again, we compare q-bit by q-bit the codewords of the elements of
S to the corresponding q-bit of cv and after every step we cancel out all elements
which do not coincide. Suppose after some step k during the identification process
we are left over with the same amount of possible candidates as there are codewords
in N̄ (Tckv ). Since we are considering sets and not vectors, we know that each of the

elements which belong to the codewords in N̄ (Tckv ) are elements of S and so does v
itself. At such a point we terminate the identification process and answer: “Yes, v is
in S!”. Figure 6 shows an example of such an event for N = 17 and L = 9. In this
example v equals u1. This is indicated by the thick path from the root to u1. After
the first q-ary comparison u5 and u7 are deleted from the set of possible candidates
but there are more than seven codewords which begin with 0 so that v still might
be not contained in S. After the second comparison u2 and u9 are canceled and we
still have more codewords in N̄ (T00) than possible candidates. After the third step,
however, u6 is not longer a candidate. This leaves us with four possible candidates.
Since |N̄ (T000)| = 4, we know that v has to be an element of S and terminate the
L-identification process.

The L-identification algorithm LID now becomes the L-identification algorithm
for sets. It is called LIDforSets and stated in Table 3 in the appendix. Now let
S = {u1, u2, . . . , uL} ∈ Ũ we then define the L-identification time for S, an user v
and a q-ary code C by

L̃L,qC (S, v) = LIDforSets2(cu1, . . . , cuL, cv), (69)

Fig. 6 An example when the 9-identification process terminates because |S4| = |{u ∈ U : c3
u =

c3
v}| = 4. For the definition of Si see Table 3 in the appendix
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where LIDforSets2(cu1, . . . , cuL, cv) is the second component of the return pair
of the algorithm LIDforSets.

In the same way as in the second subsection of Sect. 2 we now define the average
running time for a given user v ∈ U by

L̃L,qC (P̃ , v) =
∑

S∈Ũ
P̃SL̃L,qC (S, v), (70)

the worst-case running-time by

L̃L,qC (P̃ ) = max
v∈U

L̃L,qC (P̃ , v) (71)

and if we have a probability distribution Q on U , we define the expected running
time by3

L̃L,qC (P̃ ,Q) =
∑

v∈U
Q({v})L̃L,qC (P̃ , v). (72)

In both scenarios we are again interested in the optimal running time. That is

L̃L,q(P̃ ) = min
C

L̃L,qC (P̃ ) (73)

and

L̃L,q(P̃ ,Q) = min
C

L̃L,qC (P̃ ,Q). (74)

We will now take a look at the asymptotic behavior of L̃L,qC (P̃ ,Q) for the case

when both P̃ and Q are uniform distributions on Ũ , resp. U , and that C ∈ Cq,N is

a balanced Huffman code. In this case we call L̃L,qC (P̃ ,Q) as before the symmetric
running time forL-identification for sets. In order to simplify notation we shall write

P̄ =
((
N
L

)−1
, . . . ,

(
N
L

)−1
)

. Equation (72) then becomes

L̃L,qC

(
P̄ , (

1

N
, . . . ,

1

N
)

)
= 1

N
(
N
L

)
∑

S∈Ũ

∑

v∈U
L̃L,qC (S, v). (75)

It turns out that

lim
N→∞ L̃L,qC

(
P̄ , (

1

N
, . . . ,

1

N
)

)
= lim
N→∞LL,qC

(
(

1

N
, . . . ,

1

N
), (

1

N
, . . . ,

1

N
)

)

(76)

3Remember that all those functions implicitly depend also on N = |U | via C, P̃ andQ.
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and thus equals the same rational number KL,q which has been examined in the
second subsection of Sect. 4. This may be somewhat surprising at first glance since
the output spaces UL and Ũ as well as the underlying algorithms differ from each
other. Yet, it becomes clear if we take into account that these differences “disappear”
if N goes to infinity. By this we mean that the cardinality of the family of sets,
which cause the algorithm LIDforSets to terminate with a positive answer before
it reaches the last step, is so small that its probability goes to zero as N tends
to infinity. The same is true for the set of all vectors which have more than one
identical component. We will now formalize the above explanations in order to
prove Eq. (76).

Let f : UL → ⋃L
l=1

(U
l

)
be defined by f (uL) = ⋃Li=1{ui}. Further, let U ′ ⊂ U

be the set of all vectors whose components are pairwise distinct. It follows that the
restriction f |U ′ is a surjective mapping from U ′ onto Ũ and that |f−1(S)| = L! for
all S ∈ Ũ . This yields |U ′| = L!(N

L

)
and

LL,qC

(
(

1

N
, . . . ,

1

N
), (

1

N
, . . . ,

1

N
)

)

= 1

NL+1

∑

v∈U

⎡

⎣
∑

uL∈U ′
LL,qC (uL, v)+

∑

uL∈U\U ′
LL,qC (uL, v)

⎤

⎦ . (77)

Since
∑
uL∈U\U ′ LL,qC (uL, v) ≤ (1 + logq N)L!

(
N
L

)
, it follows that the second

summand multiplied by 1/NL tends to zero for N →∞.
We now turn to Ũ and assume that N = qn such that C = Cqn .4 We define

Ũ ′ ⊂ Ũ to be the family of sets S for which there exists at least one leaf in each
subtree with root in level n − 1 which is not contained in S. We use T = TCqn and
obtain

Ũ ′ = {S ∈ Ũ : N̄ (Tx) \ S �= ∅ ∀x ∈ Qn−1}.

It follows that from the nature of the algorithms LID and LIDforSets that for all
v ∈ U , S ∈ Ũ ′ and uL ∈ f−1(S) we have that

L̃L,qC (S, v) = LL,qC (uL, v). (78)

It is clear that if L < q , we get that Ũ ′ = Ũ and if L ≥ q , we obtain that

Ũ \ Ũ ′ =
⋃

x∈Qn−1

(
N̄ (Tx) ∪

(Ũ \ N̄ (Tx)
L− q

))
.

4The analysis for N �= qn, which we omit, involves the same calculations but includes some more
case distinctions.
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From this follows that

|Ũ \ Ũ ′| ≤
∑

x∈Qn−1

∣∣∣∣∣

(
N̄ (Tx) ∪

(Ũ \ N̄ (Tx)
L− q

))∣∣∣∣∣

= qn−1
(
q +

(
N − q
L− q

))
= N + N

q

(
N − q
L− q

)
.

This yields

1

N
(
N
L

)
∑

v∈U

∑

S∈Ũ\Ũ ′
L̃L,qC (S, v) ≤ 1

(
N
L

) logq N |Ũ \ Ũ ′|

≤ 1
(
N
L

) logq N

(
N + N

q

(
N − q
L− q

))
.

The right hand side of the third line tends to zero as N goes to infinity. We return to
L-identification for vectors and similar to the definition of Ũ ′ we define

U ′′ = {uL ∈ U ′ : ∀x ∈ Qn−1 ∃ w ∈ N̄ (Tx) and l ∈ [L] s.t. w �= ul}

and for similar reasons as above we obtain that for N →∞
1

NL+1

∑

v∈U

∑

uL∈U ′\U ′′
LL,qC (uL, v)→ 0.

Finally, we can partition U ′′ =⋃
S∈Ũ ′ f−1(S) and get

1

NL+1

∑

v∈U

∑

uL∈U ′′
LL,qC (uL, v) = 1

NL+1

∑

v∈U

∑

S∈Ũ ′

∑

uL∈f−1(S)

LL,qC (uL, v)

= L!
NL+1

∑

v∈U

∑

S∈Ũ ′
L̃L,qC (S, v),

where the last equality follows from Eq. (78). Since L!/NL asymptotically equals
1/
(
N
L

)
, we finally proved

Theorem 248 Let L, n ∈ N, q ∈ N≥2, qn−1 < N ≤ qn, C ∈ Cq,N and P̄ be the
uniform distribution on Ũ . Then it holds that

lim
N→∞ L̃L,qC

(
P̄ , (

1

N
, . . . ,

1

N
)

)
= lim
N→∞LL,qC

(
(

1

N
, . . . ,

1

N
), (

1

N
, . . . ,

1

N
)

)
= KL,q,

where KL,q ∈ R is defined in Theorem 227.
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8 Open Problems

In this final section we will give an overview of some open problems which
arose during the study of L-identification. We begin with three types of problems
concerning L-identification (for vectors). The first is to settle the induction base
in the proof of Proposition 243. It is the only fragment left in order to completely
prove that q-ary identification entropy HL,qID of degree L is a lower bound for L-
identification.

The second problem is a generalization of Lemmas 220 and 231 where we
proved that concerning block codes the uniform distribution is optimal for (1-)
and 2-identification. At least for L ≥ 4 this is not longer true in general as there
exist simple counterexamples. However, we claim that if the size of the block is
sufficiently large, again uniform distribution becomes optimal.

The second subsection covers L-identification for sets. We have seen in Sect. 7
that for the uniform distribution L-identification for sets behaves in the same way
as L-identification (for vectors) if the cardinality of the output space tends to
infinity. Unfortunately we have not made any major discoveries if we turn to general
distributions.

8.1 Induction Base for the Proof of Proposition 243

The most important problem is to settle for all L and q the induction base N = q of
the proof of Proposition 243. With the solution of this problem we would obtain
that the q-ary identification entropy HL,qID of degree L is a lower bound for L-
identification. In the following we establish a chain of problems which are partly
subproblems. Figure 7 visualizes this chain.

Problem 1

Show that it holds for all L, q and probability distributions P on [q] that

H
L,q
ID (P ) ≤ 1. (79)

Fig. 7 The logical chain of the problems leading to a proof of Proposition 243
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Since HL,qID is normalized (see Eq. (64)), the above problem is equivalent to

Problem 1∗

Show that it holds for all L, q and probability distributions P on [q] that

H
L,q

ID (P ) ≤ HL,qID

(
1

q
, . . . ,

1

q

)
. (80)

We have claimed in Sect. 6 that Eq. (66) holds which solves problem 1∗ in the
more general form where N ≥ q . This yields

Problem 1.1

Show that it holds for all L, q and probability distributions P on [N], whereN ≥ q ,
that

H
L,q
ID (1, 0, . . . , 0) ≤ HL,qID (P ) ≤ HL,qID

(
1

N
, . . . ,

1

N

)
.

We provide three approaches which possibly are suitable for solving Problem 1.1.
The first is somewhat in the spirit of Lemmas 220 and 231 where we step by
step adjust an arbitrary probability distribution so that it becomes the uniform
distribution without increasing the symmetric L-identification running time. For
this let P �= (1/N, . . . , 1/N) be a probability distribution on [N]. Remember
that we assumed N ≥ q . Clearly, there exists an element, say 1, for which
p1 > 1/N and an element, say 2, for which p2 < 1/N . We now construct a new
probability distribution P̄ by setting p̄1 = p̄2 = (p1 + p2)/2 and p̄i = pi , for
all i ∈ {3, . . . , N}. If we can show that HL,qID (P̄ ) − HL,qID (P ) ≥ 0, we would
have solved problem 1.1 since we can come arbitrarily close to (1/N, . . . , 1/N) by
applying the above construction iteratively and sufficiently many times. Thus we
state

Problem 1.1.1

Show that it holds for all L, q and probability distributions P on [N], whereN ≥ q ,
that

H
L,q
ID (P̄ )−HL,qID (P ) ≥ 0,

where P̄ is defined by p̄1 = p̄2 = (p1 + p2)/2 and p̄i = pi for all i ∈ {3, . . . , N}.
We begin the calculation of this difference and obtain

H
L,q

ID (P̄ )−HL,qID (P )

=
L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1

(
1

2l
(p1 + p2)

l+1 − pl+1
1 − pl+1

2

)
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=
L∑

l=1

(−1)l
(
L

l

)∑

t≥0

q−t l
(

1

2l
(p1 + p2)

l+1 − pl+1
1 − pl+1

2

)

=
2∑

i=1

pi
∑

t≥0

[(
1− p1 + p2

2qt

)L
− (1− pi

qt
)L

]
.

Note that while the first summand is positive the second one is negative. Yet the
positive summand is weighted by p1 which is greater than p2 by which the negative
summand is weighted. We therefore feel that the following problem may be a good
candidate for solving the main problem 1. One has to keep in mind that N ≥ q is
crucial so this fact has to come in play.

Problem 1.1.1.1

Show that if N ≥ q , p1 + p2 ≤ 1 and p1 > 1/N > p2, we get that

2∑

i=1

pi
∑

t≥0

[(
1− p1 + p2

2qt

)L
− (1− pi

qt
)L

]
≥ 0.

We also could try to prove problem 1.1 via the direct way. For this consider an
probability distribution P on [N] (still N ≥ q) and assume w.l.o.g. that

p1 ≥ p2 ≥ . . . ≥ pn1 >
1

N
> pn1+1 ≥ . . . ≥ pn2 (81)

and pn2+1 = . . . = pN = 1/N . With the same calculations as above we obtain

H
L,q

ID

(
1

N
, . . . ,

1

N

)
−HL,qID (P ) =

n2∑

i=1

pi
∑

t≥0

[(
1− 1

Nqt

)L
− (1− pi

qt
)L

]
.

Again the first n1 summands are positive and weighted by the greater weights
p1, . . . , pn1 . We obtain

Problem 1.1.2

Show that if N ≥ q and if (p1, . . . , pN) obeys equation (81), we get that

n2∑

i=1

pi
∑

t≥0

[(
1− 1

Nqt

)L
− (1− pi

qt
)L

]
≥ 0.

Another approach would be to follow the proof of the bounds for the q-ary
identification entropy of second degree (see Theorem 237). In this proof we analyze
the first derivative of the entropy function and showed that there exists only one
extremal point namely a maximum at (1/N, . . . , 1/N). As we have mentioned in
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the definition section we only have to consider N − 1 partial derivatives and obtain
for v ∈ [N − 1]

δ

δpv
H
L,q

ID =
L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1
(l + 1)

(
plv − (1−

N−1∑

u=1

pu)
l

)
.

This obviously is zero if p1 = . . . = pN−1 = 1/N . We are left with

Problem 1.1.3

Show that p1 = . . . = pN−1 = 1/N is the only point in �N−1 which is for all
v ∈ [N − 1] the root of

L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1
(l + 1)

(
plv − (1−

N−1∑

u=1

pu)
l

)
.

8.2 L-Identification for Block Codes

In the first subsection of Sect. 3 and Corollary 232 we proved that concerning block
codes the uniform distribution is optimal for the symmetric running time of (1-) and
2-identification. This, however, is not longer true at least for L ≥ 4. We can show
this by an easy example. Therefore consider q = 2, N = 4, L = 4 and C = C22 . It
follows with the notation of the second subsection of Sect. 4 that

L4,2
C

(
(
1

4
,

1

4
,

1

4
,

1

4
), (

1

4
,

1

4
,

1

4
,

1

4
)

)

= 1

44

(
|R4,2

C (1, 1)| + 2|R4,2
C (2, 1)|

)

= 1

44

(
24 + 224(24 − 1)

)

= 31

16
.

We now take the probability distribution P = (1/8, 1/8, 3/8, 3/8). The assignment
of the individual probabilities to the codewords (resp. the corresponding outputs) is
depicted in Fig. 8. We obtain

L4,2
C

(
(
1

8
,

1

8
,

3

8
,

3

8
), (

1

8
,

1

8
,

3

8
,

3

8
)

)

=
2∑

i=1

2i∑

v=2(i−1)+1

pv

4∑

l=0

(
4

l

) 2i∑

u1,..,ul=2(i−1)+1

∑

ul+1,...,u4∈[4]\{2(i−1)+1,2i}
Pu4L(u4, v)
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Fig. 8 An example for 4-identification on block codes which has a faster symmetric running time
than the uniform distribution

= 1

4

(
34

28 +
1

27

4∑

l=1

(
4

l

)
34−l

)
+ 3

4

(
1

28 +
1

27

4∑

l=1

(
4

l

)
3l
)

= 491

256
<

496

256
= 31

16
= L4,2

C (
1

4
, . . . ,

1

4
).

This inconsistency disappears for 4-identification already for the next level,
where N = 8. In general we claim for all L that if the block code is large enough,
the uniform distribution becomes optimal again. This is the content of

Problem 2

Show that for allL exists nL ∈ N such that it holds for all n ≥ nL and all probability
distributions P on [qn] that

LL,qCqn (P, P ) ≥ LL,qCqn

(
(

1

qn
, . . . ,

1

qn
), (

1

qn
, . . . ,

1

qn
)

)
.

Of course, we cannot solve this problem by applying generalized versions of
Lemmas 220 and 231. Since these lemmas are applied to small subtrees in the
beginning, we would get that during the first modifications of some given probability
the symmetric running time would increase if we level out the corresponding
probabilities. But we think that these small increases are absorbed by later steps
where we level out bigger and bigger subtrees. A big help in order to solve problem
2 would be if we could establish an exact expression for the differences like we
have done in Lemma 220. With this we would hopefully be able to solve problem
2. However, already for L = 2 we do not have such an expression. Like before
in the corresponding lemmas for (1-) and 2-identification let n ∈ N, q ∈ N≥2,
k ∈ {0, . . . , n − 1} and t ∈ {0, . . . , qn−k−1 − 1}. Further, let P = (p1, . . . , pqn)



508 L-Identification for Sources

and P̃ = (p̃1, . . . , p̃qn ) be probability distributions on [qn] with

P = (p1, . . . , ptqk+1, r1, . . . , r1︸ ︷︷ ︸
qk

, r2, . . . , r2︸ ︷︷ ︸
qk

, . . . , rq, . . . , rq︸ ︷︷ ︸
qk

, p(t+1)qk+1+1, . . . , pqn)

and

P̃ = (p1, . . . , ptqk+1,
1

q

q∑

i=1

ri , . . . ,
1

q

q∑

i=1

ri

︸ ︷︷ ︸
qk+1

, p(t+1)qk+1+1, . . . , pqn).

Problem 2.1

Establish for L ≥ 2 an exact expression for the difference

LL,qCqn (P, P ) − LL,qCqn (P̃ , P̃ ).

8.3 L-Identification for Sets for General Distributions

The basic problem if we turn to general distributions is that the connection between
a probability distribution P on U and a distribution P̃ on Ũ = (U

L

)
is not as straight

forward as it is if we consider the discrete memoryless source (UL, PL), where the
probability of a vector is the product of the probabilities of its components. In order
to establish such a connection we provide

Definition 249 Let P be a probability distribution on U . Then we define its
correlated distribution P (L) on Ũ by setting

P
(L)
S =

∑

π∈�L

L∏

l=1

psπ(l)

1−∑l−1
m=1 psπ(m)

for all S = {s1, . . . , sL} ∈ Ũ and where�L is the set of all permutations on [L].
This probability equals the probability of a set S which is filled step by step

with elements from U according to P . The first element, say u1 ∈ U , is chosen
with probability pu1 . Now we normalize the probabilities of the remaining elements
by dividing with 1 − pu1 and chose the next element, say u2, with probability
pu2/(1 − pu1) and so on until S contains L elements. The fact that different
choosing sequences result in the same set S is taken into account by the sum over
all permutations of [L].
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Problem 5

Establish an identification entropy for L-identification for sets which provides a
lower bound for L̃L,q(P (L), P )?

We have seen that a crucial part in the discovery of the q-ary identification
entropy of degree L and its role as a lower bound for L-identification is the
Decomposition Lemma 238. We have

Problem 5.1

Establish a decomposition formula for L̃L,q(P (L), P ) which is suitable to finding a
solution for problem 5?

Appendix

Table 2 The L-identification algorithm

LID{
S1 := [L];
for i from 1 to ‖cv‖ − 1 do {
if

(∀ l ∈ Si : cul ,i �= cv,i
)

then {
return (“FALSE”,i,∅);

}
else {

set Si+1 := {l ∈ Si : cul ,i = cv,i };
}

}

if
(∀ l ∈ S‖cv‖ : cul ,‖cv‖ �= cv,‖cv‖

)
then {

return (“FALSE”,‖cv‖,∅);
}
else {
set S := {l ∈ S‖cv‖ : cul ,‖cv‖ = cv,‖cv‖};
return (“TRUE”,‖cv‖,S);

}
}
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Table 3 The L-identification algorithm for
sets

LIDforSets {
S1 := S
for i from 1 to ‖cv‖ do {

if
(∀ u ∈ Si : cu,i �= cv,i

)
then {

return (“FALSE”,i)

}
else {

set Si+1 := {u ∈ Si : cu,i = cv,i}
if |Si+1| = |N̄ (Tciv )| then {
return (“TRUE”,i)

}
}

}
}
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Testing of Hypotheses and Identification

Marat Burnashev

Identification became a quite popular topic in Information Theory. It is a very good
example of interaction between Mathematical Statistics (Testing of Hypotheses) and
Information Theory. There are still many interesting open problems in it. I am going
to devote a good part of these lectures to that topic. In order to come smoothly to
identification problems we will need first some knowledge on testing of hypotheses
and related notions.

1 Preliminaries: Testing of Hypotheses and L1-Distance

Since later in identification we will deal only with finite alphabets all necessary
preliminaries will be given here also only for finite alphabets.

L1-Distance
Let Y = (y1, y2, . . . , yK) be some finite set (alphabet). A probability measure P
on Y is defined by any collection of nonnegative values {P(y1), P (y2), . . . , P (yK)}
satisfying the condition:

K∑

i=1

P(yi) = 1.
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The L1-distance between a pair of probability measures P andQ on Y is defined
as

‖P −Q‖ =
K∑

i=1

|P(yi)−Q(yi)|

(sometimes it is called a variational distance and sometimes the factor 1/2 in front
of the sum is used).

The support of a measure P is defined as

supp P = {y ∈ Y : P(y) > 0}

(i.e. it consists of all points y of the set Y where the measure P is strongly positive).

Example If P =Q (i.e., P(y) = Q(y) for any y ∈ Y ) then obviously
‖P −Q‖ = 0. �
Example If the supports of measures P andQ do not intersect (i.e. measures P and
Q are orthogonal to each other) then ‖P −Q‖ = 2. �

The L1-distance between a probability measure P and some collection of
probability measures {Qα, α ∈ A} (where A is an arbitrary index set) is defined
as

‖P − {Qα, α ∈ A}‖ = inf
α∈A

‖P −Qα‖

We will need one more operation with probability measures.
Let {Qα, α ∈ A} (where A is an arbitrary index set) be some collection

of probability measures. Convex hull of the family {Qα, α ∈ A} (denoted by
conv {Qα, α ∈ A} or simply conv {Qα}) is the set of all possible finite convex
linear combinations of measures from {Qα}. In other words, conv {Qα} consists of
all measures F that can be represented in the form

F =
∑

i∈A
ciQi

with

ci ≥ 0 for all i , and
∑

i∈A
ci = 1 ,

and only finite number of ci’s are not equal to zero.
We denote by P(Y ) the set of all probability measures on Y . The set P(Y ) is

a complete set with respect to L1-distance (metric). In other words, if {Qn, n =
1, 2, . . . , } is a fundamental sequence (i.e., ‖Qk − Qm‖ ≤ ε if k,m ≥ n(ε) for
any ε > 0 ) then it has a limit Q0 ∈ P(Y ) (i.e., it is also a probability measure).
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Example Let on the set Y = (y1, y2, . . . , yK) be given the collection of probability
measures {Qi , i = 1, . . . ,K} such that Qi(yi) = 1 for any i = 1, . . . ,K (it is
clear that then Qi(yj ) = 0 for any i �= j ). Then conv{Qi} = P(Y ). �
Testing of Simple Hypotheses
Let on a finite space Y there are given two probability measures: P and Q. We get
one observation y ∈ Y according to some distribution F . We know that an unknown
distribution F satisfies one of the following two possibilities (hypotheses):

H0 : F = P ,

or

H1 : F = Q

In other words, due to hypothesis H0 the distribution F coincides with P and due
to hypothesisH1 the distribution F is equal to Q.

Remark Any hypothesis H is called simple if the observation distribution F is
completely determined provided thatH is a true hypothesis (in contrast to composite
hypothesis when provided H is true we know only that F belongs to some class
of distributions). Therefore we consider here the testing of two simple hypotheses
problem.

Now we want to decide in some optimal way which of those hypotheses has
really taken place (i.e., to test those hypotheses). Any non-randomized way of
decision making is determined by some set D ⊆ Y such that

y ∈ D ⇒ H0 ,

y ∈ Dc = Y \D ⇒ H1

(so if our observation belongs to D we make a decision in favor of hypothesis H0
and if it belongs to Dc we make a decision in favor of hypothesisH1).

Since we test here two hypotheses there are possible two kinds of errors:
the 1-st kind error when we make a decision in favor of hypothesis H1 while

hypothesisH0 is true, with probability

α(D) = P(Dc) ,

and the 2-nd kind error when we make a decision in favor of hypothesis H0 while
hypothesisH1 is true, with probability

β(D) = Q(D)
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Of course, we would like to minimize both error probabilities, but usually it is
impossible (except for orthogonal measures P andQ) and therefore we should find
some compromise between them. For that reason, in order to find the optimal way
of testing those hypotheses we need some quality criteria (i.e. some characteristics
allowing us to compare different ways of decision making).

There are widely known several such quality criteria, but we will be interested
in one particular quality criterion: we want to have the test that minimizes the sum
of both error probabilities. Probably, this criterion is not very popular in classic
mathematical statistics, but it fits the best our needs in Identification. In particular,
we will be interested in the value:

δ(P,Q) = min
D
{α(D) + β(D)}

Next result gives a simple answer to that question.

Lemma 250 When testing two simple hypotheses P and Q for minimal possible
sum α + β the following equality holds true:

δ(P,Q) = min
D
{α(D)+ β(D)} = 1− 1

2
‖P −Q‖ , (1)

where ‖P −Q‖ is the L1-distance between measures P andQ.

Proof For any set D ⊆ Y we have

α(D)+ β(D) = P(Y \D)+Q(D) = 1− [P(D)−Q(D)] ≥

≥ 1− sup
D

⎧
⎨

⎩
∑

y∈D
(P (y)−Q(y))

⎫
⎬

⎭ = 1−
∑

{y:P(y)>Q(y)}
(P (y)−Q(y)) =

= 1− 1

2
‖P −Q‖ ,

where we used easy-to-check equalities

‖P −Q‖ =
∑

{y:P(y)>Q(y)}
(P (y)−Q(y))+

∑

{y:Q(y)>P(y)}
(Q(y)− P(y))

and

∑

{y:P(y)>Q(y)}
(P (y)−Q(y)) =

∑

{y:Q(y)>P(y)}
(Q(y)− P(y)) .
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>From that proof it is easy to see also that the optimal set D opt to make a
decision in favor of hypothesisH0 has the form

D opt = {y : P(y) > Q(y)}

Moreover, we can add to this set any points y with P(y) = Q(y). ��
Testing of Simple Hypothesis Against a Composite One
Now we come to the main part of our introduction. Let be, on a finite space Y ,
some probability measure P and some collection 	 of probability measures Q.
The collection 	 may be finite or infinite, but contains more then one element.
We assume that an unknown distribution F satisfies one of the following two
hypotheses:

H0 : F = P ,

or

H1 : F ∈ 	 = {Q} .

In other words, due to hypothesisH0 the distribution F coincides with P and due to
hypothesis H1 the distribution F belongs to the class 	 (i.e., coincides with some
distributionQ from 	).

When dealing with discrete sets (like our finite set Y ) and composite hypothesis
we should enlarge our ways of decision making (i.e., allowing to make a randomized
decisions).

When testing two hypotheses on the set Y any randomized decision (test) is
determined by choosing some decision function 0 ≤ ϕ(y) ≤ 1 , y ∈ Y . Each
value ϕ(y) of that function is simply the probability to make a decision in favor of
hypothesisH0 when y is observed.

For non-randomized tests the function ϕ(y) takes only values 0 and 1. Clear
that in our case of testing two simple hypotheses we had ϕ(y) = 1 , y ∈ D, and
ϕ(y) = 0 , y ∈ Dc.

Coming back to our problem of testing a simple hypothesis H0 against a
composite one H1, suppose that we chose some decision function ϕ(y) , y ∈ Y .
Then we can also make two kinds of errors: 1-st kind and 2-nd kind. We define their
probabilities as:

probability of the 1-st kind error when we make a decision in favor of hypothesis
H1 while hypothesisH0 is true

α(ϕ) = EP (1− ϕ(Y )) =
∑

y∈Y
(1− ϕ(y)) P (y) ;
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and probability of the 2-nd kind error when we make a decision in favor of
hypothesisH0 while hypothesisH1 is true

β(ϕ) = sup
Q∈	

EQϕ(Y ) = sup
Q∈	

∑

y∈Y
ϕ(y)Q(y)

As can be seen in defining the 2-nd kind of error probability we consider the
worst possible case in error probability.

Now we want to have the test (i.e., decision function ϕ(y)) that minimizes
the sum of both error probabilities (it is some kind of the minimax problem of
hypotheses testing). In particular, we will be interested in the value:

δ(P,	) = min
ϕ
δ(P,	, ϕ) = min

ϕ
{α(ϕ)+ β(ϕ)}

Next result gives the answer to that question.

Theorem 251 When testing a simple hypothesis P against a composite hypothesis
	 the minimal possible sum α + β satisfies the following relation:

δ(P,	) = min
ϕ
{α(ϕ)+ β(ϕ)} = 1− 1

2
‖P − conv	‖ , (2)

where conv	 denotes the convex hull of all probability measures Q from the
collection 	.

Let us give first some statistical meaning to the relation (2). Let us take some
finite convex linear combination

∑
πiQi of some elements Qi from 	 (of course,

we get then some element of conv 	). We may think that we put some prior
distribution on the set 	 and replace the composite hypothesis 	 by the simple
hypothesis

∑
πiQi . Then clearly δ(P,	) ≥ δ(P,∑ πiQi) and moreover due to

Lemma 250 we have

δ(P,	) ≥ δ(P,
∑
πiQi) = 1− 1

2
‖P −

∑
πiQi‖

Since the last relation holds true for any finite linear combination
∑
πiQi it then

follows that

δ(P,	) ≥ 1− 1

2
‖P − conv 	‖

Therefore, in order to establish the relation (2) it remains to show the sign ≤ in
it.
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Remark When we put some prior distribution π(Q) , Q ∈ 	 , and define the 2-nd
kind of error probability as

β(ϕ) = Eπ EQϕ(Y ) =
∑

Q∈	
π(Q)

∑

y∈Y
ϕ(y)Q(y) ,

we get a bayesian statement of the testing problem. From that point of view
Theorem 251 is some variation of one of the most crucial principles in mathematical
statistics that can be stated here as follows: the minimax statement of the problem
is equivalent to the bayesian statement with the worst (least-favorable) prior
distribution on conv 	, where conv 	 denotes the closure of the set conv 	 in
metric L1 (remind that conv 	 ⊆ P(Y ) and the set of all probability measures
P(Y ) on finite Y is complete in metric L1).

Unfortunately, Theorem 251 (like any other that kind of result in mathematical
statistics) is an existence result since it shows only the existence of the least-
favorable distribution and says nothing about how to find it (it is usually a difficult
problem).

Sketch of the Proof of Sign ≤ in Theorem 251 We have

δ(P,	) = inf
ϕ

sup
Q∈	

{α(ϕ)+ β(ϕ,Q) ≤ inf
ϕ

sup
π
{α(ϕ)+ β(ϕ, π)} .

Assume now that we can change the order of inf and sup in the last relation (without
changing the value of the resulting function). Then we can continue it as

δ(P,	) ≤ sup
π

inf
ϕ
{α(ϕ)+ β(ϕ, π)} = sup

π

{
1− 1

2
‖P −

∑
πiQi‖

}
=

= 1− 1

2
‖P − conv 	‖ ,

that completes the proof of Theorem 251. ��
It remains to understand when we can change that order. But it is the well-known

minimax theorem in dynamic programming, convex analysis, etc. It is easy to check
that in our case the spaces of ϕ and π are separable and complete, and moreover the
function has necessary properties.

Historical Notes Wald’s book [15] is a classic book on decision functions (includ-
ing relations between minimax and bayesian approaches). Book [14] is another good
source for testing of hypotheses. All essential for us results can be found also in [13].
Relations (1)–(2) appeared first in the paper [6] and both easily follow from [13, 15].
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2 Measures Separated in L1-Metrics

Let Y still be a finite alphabet. Probability measures P andQ on Y are orthogonal if
‖P −Q‖ = 2. We consider first some properties of families of “almost orthogonal”
probability measures on Y .

Definition 252 A collection (Pi , i = 1, . . . ,M) of probability measures Pi on Y
is called (M, δ)-pairwise separated collection (family) if for any i �= j the
following condition is satisfied:

‖Pi − Pj‖ =
∑

Y

|Pi(y)− Pj (y)| ≥ 2(1− δ) . (3)

Definition 253 A collection (Pi , i = 1, . . . ,M) of probability measures Pi on Y is
called (M, δ)—completely separated collection (family) if for any i the following
condition is satisfied:

‖Pi − conv{Pj , j �= i}‖ = min
c
|Pi −

∑

j �=i
cjPj | ≥ 2(1− δ) , (4)

where conv{A}means the convex hull of measures from the family A and minimum
is taken over all probability vectors c = (c1, . . . , cM).

It is clear that any δ-completely separated collection of measures is a δ-pairwise
separated collection as well.

It will turn out later that a completely separated collection of measures is
essentially equivalent to some identification-code that is of our main interest in this
topic. It is natural then to investigate first the maximum possible cardinality of a
completely separated family of measures.

Denote the cardinality of the set Y by N and let Mc(N, δ) and Mp(N, δ) be
the maximal possible cardinalities of completely separated and pairwise separated
collections on the set Y , respectively.

It is obvious that

Mc(N, δ) ≤ Mp(N, δ), 0 ≤ δ ≤ 1 . (5)

Since as usual in that kind of problems we are not able to find the values
Mc(N, δ) andMp(N, δ), we will get some estimates for them through lowerbound-
ing the value Mc(N, δ) and upperbounding the value Mp(N, δ). All bounds below
are oriented to the case when N is large, δ is small and moreoverNδ2 is also large.

Proposition 254 For any N ≥ 2 and 0 < δ < 1 the following bounds are valid:

Mc(N, δ) ≥ exp{Nδ2/(2e2)} , (6)

Mp(N, δ) ≤ (2/(1− δ))N−1 . (7)
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Remark Upperbound (7) will be essentially improved further but in that proof we
will use upperbound (7)).

Proof An analog of the inequality (6) (with a smaller constant instead of 1/(2e2)

was proved in [1, Statement 1] by an “exhaustive” method. Similar inequality in a
more complicated situation was obtained in [3, Theorem 1] also by the “exhaustive”
method. In order to prove the inequality (6) here for the sake of variety we use some
“random choice” arguments.

We put as every measure Pi , i = 1, . . . ,M, an equiprobable distribution on
some subset Di ⊂ Y of cardinality εN (parameter ε < δ will be chosen later).
Assume that the cardinality of the intersection of any pair of regions Di and
Dj , i �= j , does not exceed εδN . Then we get for any i

‖Pi − conv{Pj , j �= i}‖ ≥ 2
[
Pi (Di )− conv{Pj , j �= i} (Di )

] =

= 2− 2 sup
j �=i
Pj (Di ) ≥ 2(1− δ) .

Therefore such collection (Pi , i = 1, . . . ,M) would be a (M, δ)—completely
separated collection. Now, we choose every region Di randomly from equiprobable
elements of the set Y . Moreover all regions are chosen independently from each
other. Then for the probability P that there will be a pair Di and Dj , i �= j , with
|Di ∩Dj | > εδN the following estimate is valid

P ≤ M(M − 1)
∑

i>εδN

(
εN

i

)(
N − εN
εN − i

)[
2

(
N

εN

)]−1

In order to simplify the last sum we use a standard way. Notice that for i > εδN we
have

(
εN

i + 1

)(
N − εN
εN − i − 1

)[(
εN

i

)(
N − εN
εN − i

)]−1

≤ ε(1− δ)2
δ(1− 2ε + δε) ≤

ε

δ
.

Therefore replacing that sum by the geometrical progression we get

P ≤ M(M − 1)δ

(
εN

εδN

)(
N − εN
εN − εδN

)[
2(δ − ε)

(
N

εN

)]−1

. (8)

We can loosen this bound with the easy verifiable inequality

(
K − a
a − i

)
/

(
K

a

)
≤
(

a

K − a
)i (

K − a
K

)a−i
.
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Indeed
(
K − a
a − i

)
/

(
K

a

)
=

= (a − i + 1) . . . a

(K − a + 1) . . . (K − a + i)
(K − 2a + i + 1) . . . (K − a)
(K − a + i + 1) . . .K

≤

≤
(

a

K − a
)i (

max
1≤j≤a−i

K − 2a + i + j
K − a + i + j

)a−i
≤
(

a

K − a
)i (

K − a
K

)a−i

Then, (8) becomes

P ≤ δM(M − 1)

2(δ − ε) exp
{
Nδε ln

eε

δ

}
. (9)

We put now ε = [ε0N]/N , ε0 = δe−2. Since 0 ≤ (ε0 − ε)N ≤ 1 , we get from (9)
after some simple calculations, assuming Nδ ≥ 15

P ≤M(M − 1) exp{−Nδ2e−2} . (10)

Now if the right side of (10) is less than 1, then there exists a collection of M
regions having the required properties, from where the lower bound (6) follows
providedNδ ≥ 15. Since there are always N orthogonal measures on Y (and using
that fact when Nδ < 15), we get that lower bound (6) is valid for any N ≥ 2 and
0 ≤ δ ≤ 1.

We now prove the upper bound (7). Let P = (x1, . . . , xN) be any probability
measure on Y and let PN be the set of all probability measures on Y :

PN =
{
P : xi ≥ 0,

N∑

i=1

xi = 1

}
.

The set PN has a “volume” vN :

vN =
∫
. . .

∫

A(N−1,1)
dx1 . . . dxN−1 = 1

(N − 1)! , (11)

where the following notation was used

A(K, a) =
{
x ∈ RK : xi ≥ 0 , i = 1, . . . ,K ;

K∑

i=1

xi ≤ a
}
.
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Indeed

vN =
∫ a

0

∫
. . .

∫

A(N−2,a−xN−1)

dx1 . . . dxN−2dxN−1

=
∫ a

0
vN−1(a − xN−1)

N−2dxN−1 = vN−1a
N−1/(N − 1) = vNaN−1 .

Therefore vN = vN−1/(N − 1) , v2 = 1, from where formula (11) follows.
We fix now any measure P0 = (z1, . . . , zN ) and consider the set D(P0) of all

measures P such that ‖P − P0‖ ≤ 1− δ. It is possible to show (see Appendix) that
D(P0) has the minimal “volume” wN(δ) when z1 = 1, z2 = · · · = zN = 0 (i.e.,
when P0 is an extreme point of the set PN ). Then, ‖P − P0‖ = 2 − 2x1 and with
the help of (11) we get (b = A(N − 1, 1) ∩ {x : x1 ≥ (1+ δ)/2})

wN(δ) =
∫
. . .

∫

B

dx1 . . . dxN−1

= vN−1

∫ 1

(1+δ)/2
(1− x1)

N−2dx1 = vN(2/(1− δ))N−1 . (12)

SinceMp(N, δ) ≤ vN/wN(δ), we now get the upper bound (7) from (11)–(12). ��
The following result improves the upper bound (7).

Proposition 255 For any 0 < δ < 1 the following inequality holds true:

Mp(N, δ) ≤ N + 1

δ2 +
1

2δ2 exp

{
δ2N

(1−√δ)3 ln
2e

δ2

}
. (13)

To prove Proposition 255 we will need the following lemma.

Lemma 256 Let μi , i = 1, . . . ,M, be the collection of δ-pairwise separated
probability measures on the set Y of cardinality N .

(a) If maxy,i μi(y) ≤ μ then

M ≤ (1− δ)μN
(1− δμN)+ . (14)

(b) If μi(y) ≥ μ ≥ δ/N for all y ∈ Yi = {y : μi(y) > 0} , i = 1, . . . ,M , then

M ≤ (1− δ)μN
2δ

exp

{
δ

μ
ln

2eμN

δ(1− δ)
}
. (15)
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Proof We start with inequality (14). It is clear that

M∑

i=1

M∑

j=1

||μi − μj || ≥ 2(1− δ)M(M − 1). (16)

On the other hand, using the representation

||μ− ν|| = 2

⎛

⎝1−
∑

y∈Y
min{μ(y), ν(y)}

⎞

⎠

(which follow from simple formula |a − b| = a + b− 2 min{a, b} ) and inequality
min{μi(y), μj (y)} ≥ μi(y)μj(y)/μ , we get applying Cauchy–Buniakovsky
inequality:

M∑

i=1

M∑

j=1

‖μi − μj‖ ≤ 2

⎡

⎣M2 − 1

μ

M∑

i=1

M∑

j=1

∑

Y

μi(y)μj (y)

⎤

⎦

= 2

⎡

⎣M2 − 1

μ

∑

Y

(
M∑

i=1

μi(y)

)2⎤

⎦

≤ 2

⎡

⎣M2 − 1

μN

(
∑

Y

M∑

i=1

μi(y)

)2⎤

⎦ 2M2
(

1− 1

μN

)
. (17)

Now from (16)–(17) the inequality (14) follows.
We will prove now the inequality (15). Assume first that μ ≥ δ . Then obviously

Yi
⋂
Yj = ∅ , i �= j and therefore M ≤ N . In order to show that the right side

of (15) is greater than N it is sufficient to show that

0 ≤ δ

μ
ln

2eμN

δ(1− δ) + ln
(1− δ)μ

2δ
=

=
(

1− δ

μ

)
ln(1− δ)+

(
1+ δ

μ

)
ln(
μ

δ
)+ δ

μ
ln(2eN)− ln 2 .

Using simple inequality ln(1/x) ≥ 1 − x we get that the last expression is greater
or equal than

1− ln 2− δ2

μ2 +
δ

μ
ln(2N) ≥ 0 , N ≥ 2 , δ ≤ μ ≤ 1 ,

from where validity of (15) for δ ≤ μ follows.
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Therefore we assume now that μ < δ . Since

μ|Yi ∩ Yj | ≤
∑

Y

min{μi(y), μj (y)} ≤ δ ,

then |Yi∩Yj | ≤ [δ/μ] = T , i �= j ; T ≥ 1 . Therefore the number of measuresμi
with |Yi | > T does not exceed

(
N
T+1

)
and the number of measures μi with |Yi | ≤ T

obviously does not exceed
(
N
T

)
Mp(T , δ) . Therefore

M ≤
(
N

T + 1

)
+
(
N

T

)
Mp(T , δ) ≤ N

T

(
N

T

)
Mp(T , δ) . (18)

Using inequality (7) to upperbound the valueMp(T , δ) and simple inequality
(
n
k

) ≤
(en/k)k we get from (18)

M ≤ N(1− δ)
2

exp

{
T ln

2eN

T (1− δ) − ln T

}
.

The exponent function in the right side of last inequality is ∩-convex on T and
moreover its derivative at T = δ/μ is positive for N ≥ 2. Therefore we can
upperbound it replacing T by δ/μ , that gives the inequality (15). ��
Proof of Proposition 255 Let (μi ; i = 1, . . . ,M) be a set of δ-pairwise separated
measures on the set Y of cardinality N . It is clear that it contains not more than N
measures μi with maxy μi(y) > δ . Therefore below we consider only measures μi
with maxy μi(y) ≤ δ .

Fix now some μ and q such that 0 < μ ≤ δ < q < 1 and put Yi(μ) =
{y ∈ Y : μi(y) ≥ μ} . Consider first all measures μi such that μi

(
Y ci (μ)

) ≥ 1 −
q . Denoting M1(μ, q) the total number of such measures we introduce on their
basis new probability measures νi with supports Y ci (μ) :

νi(y) = μi(y)

μi(Y
c
i (μ))

, y ∈ Y ci (μ) ; i = 1, . . . ,M1 .

For these measures for any i , j = 1, . . . ,M1 ; i �= j , the following relations hold
true:

‖νi − νj‖ ≥ 2

{
1− δ

(1− q)
}
, max

i,y
νi(y) <

μ

μi(Y
c
i (μ))

≤ μ

(1− q) .

Therefore from Lemma 256a) we get the upperbound for the valueM1(μ, q) :

M1(μ, q) ≤ μN(
(1− q)2 − δμN)+

. (19)
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For remainingM −M1(μ, q) = M2(μ, q) measures μi , i = 1, . . . ,M2 , we have
μi(Yi(μ)) ≥ q . Since all measures values do not exceed δ then in every set Yi(μ)
there exists a subset Y ′i (μ) such that q ≤ μi(Y ′i (μ)) ≤ δ + q . Introduce the new
probability measures σi with supports Y ′i (μ) :

σi(y) = μi(y)

μi(Y
′
i (μ))

, a ∈ Y ′i (μ) ; i = 1, . . . ,M2 .

For these measures for any i , j = 1, . . . ,M2 ; i �= j , and y ∈ Y ′i (μ) we have

‖σi − σj‖ ≥ 2

(
1− δ

q

)
, σi(y) ≥ μ

δ + q .

Therefore from Lemma 256(b) we get the upperbound for the valueM2(μ, q) :

M2(μ, q) ≤ μN2δ exp

{
δ(δ + q)
μq

ln
2eμNq

δ(q − δ)
}
, (20)

provided

μ/(δ + q) ≥ δ/Nq . (21)

It follows from (19)–(20) and the remark made at the Proposition’s proof beginning
that

Mp(N, δ) ≤ N + μN(
(1− q)2 − δμN)+

+ (22)

+μN
2δ

exp

{
δ(δ + q)
μq

ln
2eμNq

δ(q − δ)
}
.

Choosing now μδN = (1 − √
δ)3(1 + √

δ) , q = √
δ , we get from (21)–(22)

(and from (14) for δ2N ≤ 1− δ ) that

Mp(N, δ) ≤ N + 1

δ2 +
1

2δ2 exp

{
δ2N

(1−√δ)3 ln
2e

δ2

}
,

for δ ≤ 1/4. If 1/4 < δ < 1 then this upperbound is weaker than upperbound (7)
that concludes the proof of Proposition 255. ��

Statements of Propositions 254–255 are combined in the following theorem.

Theorem 257 For any N ≥ 2 and 0 < δ < 1 the following bounds are valid :

exp{Nδ2/(2e2)} ≤ Mc(N, δ) ≤

≤ Mp(N, δ) ≤ N + 1

δ2 +
1

2δ2 exp

{
δ2N

(1−√δ)3 ln
2e

δ2

}
. (23)
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Remark Lower and upper bounds (23) are essentially oriented to the case when
δ → 0 and Nδ2 → ∞ . In that case, as can be seen from (23), the upperbound
contains an additional factor of order ln(1/δ) . From that factor point of view it is
not known even which of bounds (23) (lower or upper?) can be improved. And
the reason for that is quite serious. In order to understand it, assume that each
probability measure μi is the equiprobable distribution on set Yi and moreover,
|Yi | = δN , i = 1, . . . ,M . Then ‖μi − μj‖ = 2(1− |Yi ∩ Yj |/(δN) ≥ 2(1 − δ)
if |Yi ∩ Yj | ≤ δ2N for any i �= j . Now what is the largest possible number M of
such measures?

This question is equivalent to the following question from coding theorem. We
consider a constant weight w = δN binary code of length N with minimal
distance ≥ (1 − δ)w . What is the maximal cardinality M(N, δ) of such code?
The best known (in coding theory) upperbound for the number M(N, δ) (it is the
so called Johnson’s bound or some its small improvements) contains already that
factor ln(1/δ) ! (see also [3]).

Historical Notes Notions of pairwise and completely separated families were
introduced in [8]. They reflect some geometrical approach to identification problem
considered in [1, 2]. Proposition 254 was proved in [8]. Proposition 255 was proved
in [4].

3 Identification Codes or “How Large is the Set of all Output
Measures for Noisy Channel?”

Identification Codes
We remind the reader of the ID-code definition (see Definition 11)

Remark As can be seen it is allowed here for regions Di to intersect between
each other (for δ > 0). We can generalize also ID-codes allowing to use
randomized decisions (such possibility will be used once below). We didn’t include
such randomization in the definition of ID-codes in order to avoid some over-
complication (nevertheless, all upperbounds for the maximal cardinalities below
remain valid for such generalized ID-codes as well).

The notion of ID-codes was first introduced in [1], where it was shown that
the maximal cardinality M(n, δ,W) of ID-code of length n satisfies the following
lowerbound.

Proposition 258

lim
n→∞

ln lnM(n, δ,W)

n
≥ C(W) , 0 < δ ≤ 1 , (24)

where C(W) is the capacity of the channel W in natural units.
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The converse of the inequality (24)

lim
n→∞

ln lnM(n, δ,W)

n
≤ C(W), 0 ≤ δ ≤ δ0 , (25)

where δ0 is some unspecified positive constant, was obtained in [11]. It should be
mentioned that earlier in [1] some weaker form of the inequality (25) was proved
forM(n, δn,W), where δn ≤ e−εn and ε is any positive constant.

It follows from (24)–(25) that

lim
n→∞

ln lnM(n, δ,W)

n
= C(W), 0 < δ ≤ δ0 . (26)

Such a double exponential growth rate of the cardinality of ID-code (in contrast
to an ordinary exponential one for usual codes) created a certain theoretical and
practical interest to these codes [1–4, 8, 11, 12]. ID-codes are also close to some
cryptography problems [3, 4].

Our more general geometrical approach to ID-codes was introduced in [8]. That
approach is based on a certain equivalence between ID-codes and some families of
“almost orthogonal” measures. Such an approach (and its natural connection with
testing of composite hypotheses in mathematical statistics) not only enlarges the
research analytical apparatus but also enables us to strengthen some results from [1,
11]. In particular, we will show that the inequality (25) remains valid for any 0 ≤
δ < 1/2.

As a result we will be able to prove the following

Theorem 259

lim
n→∞

ln lnM(n, δ,W)

n
=
⎧
⎨

⎩

0 , δ = 0 ;
mathcalC(W) , 0 < δ < 1/2 ;

∞ , 1/2 ≤ δ ≤ 1 .
(27)

Before going to the most interesting case of 0 < δ < 1/2 let us consider the
remaining cases.

If δ = 0 then obviously there are not more than |A|n orthogonal measures on
the output Bn of the channel and therefore M(n, δ = 0) ≤ |A|n from where the
first line of (27) follow.

If δ ≥ 1/2 then we can use any number M of input measures {Pi , i =
1, . . . ,M} (e.g., all of them may even coincide) and make the following stupid
decision at the output of channel: independently of the output we make a decision in
favor of measure Pi with probability 1/2 and against it with the same probability
1/2 . Such a strange ID-code with randomized decision rules will provide all error
probabilities equal to 1/2 from where the last line of (27) follows (this is the
example from [1, p. 16].

Let us consider now the most interesting case 0 < δ < 1/2 .
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How Large is the Set of all Output Measures for Noisy Channel?
For a noisy channel we are able to choose only any input distribution P on An and
so we are able to get output distributions only of the form Q = W(n)P . Therefore
the set P out(Bn) of all possible output distributions on Bn is P out(Bn) =
W(n)P(An) .

In order to stay in our geometrical framework we need to introduce a natural
definition of pairwise and completely separated families of probability measures for
noisy channel W.

Definition 260 (Definition 252’) A collection (Pi , i = 1, . . . ,M) of probability
measures Pi on An (or collection (Qi , i = 1, . . . ,M) of probability measures
Qi = W(n)Pi on Bn ) is called (M, n, δ,W)—pairwise separated collection if for
any i �= j the following condition is satisfied:

∥∥∥W(n)Pi −W(n)Pj

∥∥∥ = ‖Qi −Qj‖ ≥ 2(1− δ) . (28)

Definition 261 (Definition 253’) A collection (Pi , i = 1, . . . ,M) of probability
measures Pi on An (or collection (Qi , i = 1, . . . ,M) of probability measures
Qi = W(n)Pi on Bn ) is called (M, n, δ,W)—completely separated collection if
for any i the following condition is satisfied:

∥∥∥W(n)Pi − conv
{
W(n)Pj , j �= i

}∥∥∥ =

= ∥∥Qi − conv
{
Qj , j �= i

}∥∥ ≥ 2(1− δ) . (29)

Proposition 262 For any (M, n, δ,W)—completely separated collection {Pi }
(or {Qi } ) it is possible to define regions {Di ⊆ Bn} such that {Pi , Di}
will be (M, n, δ,W)—ID-code. Conversely, any (M, n, δ,W)—ID-code is
(M, n, 2δ,W)—completely separated collection.

Proof Let {Pi } (and therefore {Qi } as well) be (M, n, δ,W)—completely
separated collection. Then as the region Di we choose the set D giving the
minimum to the sum of error probabilities when testing Qi against all remaining
measures {Qj , j �= i}. Due to (2) that sum will not exceed δ and therefore each
error probability also will not exceed δ. It means that such collection {Qi , Di} will
be (M, n, δ,W)—ID-code. Converse part of proposition is obvious. ��
Remark The factor 2 that comes out when from (M, n, δ,W)—ID-code we get
(M, n, 2δ,W)—completely separated collection is the reason why the value δ =
1/2 becomes the critical value for the maximal cardinalityM(n, δ,W) of ID-code
(cf. Theorem 259).

We denote also by Mp(n, δ,W) and Mc(n, δ,W) maximal possible cardinal-
ities of pairwise and completely δ-separated families of probability measures for
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noisy channel W , respectively. Then from Proposition 262 similar to (5) we have
for 0 < δ < 1/2 :

Mc(n, δ,W) ≤ M(n, δ,W) ≤Mc(n, 2δ,W) ≤ Mp(n, 2δ,W) . (30)

Due to (30) instead of investigation the maximal cardinality M(n, δ,W) of ID-
codes (and so dealing with error probabilities and regions Di ) it is sufficient to
investigate the maximal cardinalityMc(n, 2δ,W) of completely separated family of
measures on the output set P out(B

n) = W(n)P(An) .
We start that investigation first with getting the lower bound (24). Its validity

follows from (30) and the following

Proposition 263 For any δ > 0 and R < C there exists n0(R, δ) such that for any
n > n0(R, δ) the following inequality holds true :

Mc(n, δ,W) ≥ exp

{
δ2enR

20

}
; R < C , δ > 0 , n > n0(R, δ) .

Proof Due to the direct part of the well-known coding theorem [9, 10] for any
R < C, λ > 0, there exists some n0(R, λ) such that for any n > n0(R, λ)

there exist M > enR input blocks i ∈ An generating measures {Qi} from
P out(Bn) = W(n)P(An) and regions Di ⊆ Bn , i = 1, . . . ,M, such that for
any i, j = 1, . . . ,M; i �= j , the following conditions are satisfied

Di ∩Dj = ∅ , Qi(Di ) ≥ 1− λ .

Now we are almost in the situation of Sect. 2 where we constructed δ-completely
separated family of measures on the alphabet Y (i.e. for the noiseless channel).
Instead of the alphabet Y we have now the family of measures {Qi} and their
“almost” supports {Di} . We can make that analogy complete if we replace (for
a while) every measure Qi by another probability measure Q′

i in the following
way:

Q′
i (y) =

Qi(y)

Qi(Di )
for y ∈ Di ; Q′

i (y) = 0 for y �∈ Di ,

(another words, we bound the measure Qi to the set Di and normalize it to have
the probability measure). Now we are exactly in the situation of Sect. 2 with the
collection of sets {Di} (or the collection of measures {Q′

i} ) instead of the alphabet
Y . It is easy to understand now that any δ-completely separated collection build on
the “alphabet” {Q′

i} generates a similar (1 − (1 − δ)(1 − λ) = δ + λ − δλ)—
completely separated collection build on the “alphabet” {Qi} . Therefore denoting
ε = δ + λ− δλ , we get from Proposition 254

Mc(n, ε,W) ≥ exp

{
(ε − λ)2enR
2(1− λ)2e2

}
; R < C , ε > 0 , n > n0(R, λ) .
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Putting finally λ = ε/10, we get the assertion of Proposition 263. ��
Remark It is not difficult to upper bound the function n0(R, λ) . For example,
from [10, Problem 5.23] follows that

n0(R, λ) ≤ (1+ 4 ln2 B)

(C − R)2+
ln

4

λ
.

We switch now to the proof of converse of (24) for any 0 < δ < 1/2 .
It is a good example of a problem that, if formulated in a right form, will be

reduced to an essentially technical (in mathematical sense) task. In order to ask
ourselves such a right question, let fi(y) be the generated probability measure on the
channel output Y = Bn when input block i ∈ An is used. Assume that we put some
prior distribution {πi} on the input set An and therefore get the output distribution
Qπ(y) = ∑

πifi(y) on Bn . Generally, dimension of the input distribution {πi}
is equal to An . But do we really need to use all blocks from An in order to
approximate (in L1-metrics) the generated distribution Qπ(y) = ∑

πifi(y) on
Bn ? And the answer is no. It turns out that for that purpose it is sufficient to use
only the order of enC input blocks, where C = C(W) is the channel capacity.

Essentially, this kind of result was first obtained in [11, Lemma 1] where authors
showed that any output distribution can be rather accurately approximated by using
some input distribution {πi} on An whose masses take values on a lattice with a
span of the order of e−nC .

We shall give here another proof of an equivalent (but a more geometrical) result
from [8]. It can be formulated in the following way.

Proposition 264 For any δ > 0 there exists n0(δ) such that for any output measure
Q on Bn, n ≥ n0(δ), there exist BnδenC input blocks i ∈ An such that for their
generated measures {Qi} the following inequality holds true :

∥∥∥Q− conv
{
Qi, i = 1, . . . , BnδenC

}∥∥∥ ≤ δ . (31)

In other words, any output distribution Q can be arbitrary closely approximated
by using only the order of enC of input blocks. We should emphasize here that
blocks used for that purpose, generally speaking, depend on measure Q , but the
number n0(δ) does not depend on Q ,

Putting aside for a while the proof of that Proposition, we shall show now how
to get necessary corollaries from it.

We notice first that any channelW (orW(n)) acts like a “compressing” operator
in the following sense.

Lemma 265 For any channel W , any pair of input distributions P1, P2 and
corresponding pair of output distributions Q1,Q2 the following inequality holds
true:

‖Q1 −Q2‖ ≤ ‖P1 − P2‖ . (32)
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Proof Indeed

‖Q1 −Q2‖ =
∑

Y

∣∣∣∣∣
∑

X

W(y|x) (p1(x)− p2(x))

∣∣∣∣∣

≤
∑

X

|p1(x)− p2(x)|
∑

Y

W(y|x)

=
∑

X

|p1(x)− p2(x)| = ‖P1 − P2‖. ��

Now we can prove the converse result. It will follow from (30) and the following

Proposition 266 For any 0 < δ < 1/2 the following inequality holds true:

lim
n→∞

ln lnMp(n, 2δ,W)

n
≤ C(W) , 0 < δ < 1/2 . (33)

Proof Let {Qi, i = 1, . . . ,M} be some 2δ—pairwise separated collection of
output measures. We fix some small ε > 0 such that 2(δ + ε) < 1 . By virtue
of Proposition 264 any measure Qi can be ε-approximated by another output
measure Q′

i where the measure Q′
i is generated by some BnεenC input blocks

from An . Clear that the collection {Q′
i , i = 1, . . . ,M} is 2(δ + ε)—pairwise

separated. Since the channel W(n) is a “compressing” operator (Lemma 265), the
maximal number of 2(δ + ε)—pairwise separated measures, generated by every
collection of N = BnεenC input blocks, is upperbounded by formula (7). The total
number of collections with the cardinality N on the alphabet An does not exceed
AnN . Therefore, for the maximal possible cardinality Mp(n, 2δ,W) of pairwise
separated collection we get (N = BnεenC , 2(δ + ε) < 1 )

Mp(n, 2δ,W) < (2/(1− 2δ − 2ε))NAnN ≤

≤ exp

{(
ln

2

(1− 2δ − 2ε)
+ n lnA

)
en(C+ε lnB)

}
, n > n0(ε) ,

from where relation (33) and (25) follow. ��
Remark It was sufficient for us to use here the upperbound (7) instead of a
much tighter upperbound (13). The reason is that log log kind of asymptotic in
Identification (e.g., (33)) is very insensitive to their difference. Absolutely different
situation is in a closely related Authentication [4].

Now for the purpose of completeness we shall show also how [11, Lemma 1]
follows from Proposition 264.

Corollary 267 Any output distribution Q on Bn can be arbitrary closely approx-
imated by using some input distribution {pi, i = 1, . . . , N}, N ∼ enC , on An ,
taking values only of the form pi = j/N, j—integer.
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Proof For any ε > 0 and any distribution {pi, i = 1, . . . , N} there exists some
distribution {p̂i} , taking values only of the form p̂i = jε/N with |pi−p̂i | ≤ ε/N ,
and moreover,

‖p − p̂‖ =
N∑

i=1

|pi − p̂i | ≤ ε . (34)

Indeed, we choose p̂1 = jε/N with the minimal possible |p1 − p̂1|. Then |p1 −
p̂1| ≤ ε/(2N). Now we choose p̂2 of the same form with the minimal possible
|(p1 + p2) − (p̂1 + p̂2)|. Then |(p1 + p2) − (p̂1 + p̂2)| ≤ ε/(2N) and |p2 −
p̂2| ≤ ε/(2N) . Repeating this process, we get as a result the collection {p̂i} , having
desired properties. Since the channel is a compressing operator, for measures Q and
Q̂ , generated by distributions {pi} and {p̂i} , respectively, due to (34), we have
‖Q− Q̂‖ ≤ ε . From this result and Proposition 264 the assertion of Corollary 267
follows. ��

It remained us only to establish the validity of Proposition 264. The proof below
is essentially technical and is based on “random choice” of approximating input
distribution.

Proof of Proposition 264 We shall need a few simple pure statistical lemmas.
Let Y be a finite alphabet and there are given K probability distributions

fi(y), i = 1, . . . ,K , on it with prior probabilities {pi}. Consider also the
“averaged” distribution

p(y) =
K∑

i=1

pifi(y) .

We choose now randomly and independently s distributions from {fi} with respec-
tive probabilities {pi} (with returns) and put

p̂(y) = 1

s

K∑

i=1

νifi(y) ,

where νi = number of measures fi among s chosen distributions. ��
Lemma 268 The following estimate on the variance of p̂(y) holds :

E|p(y)− p̂(y)|2 ≤ 1

s

K∑

j=1

pj (1− pj )f 2
j (y) , y ∈ Y . (35)
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Proof Let μl be the index of measure chosen from {fi} on the lth step. Then
μ1, . . . , μs are i.i.d.r.v.’s, and moreover

Efμl = p(y) ,
K∑

j=1

νjfj (y) =
s∑

l=1

fμl (y) .

Therefore,

E|p̂(y)− p(y)|2 = E
∣∣∣∣∣
1

s

s∑

l=1

(
fμl (y)− p(y)

)
∣∣∣∣∣

2

= 1

s
E
(
fμ1 − p(y)

)2

= 1

s

(
Ef 2
μ1
(y)− p2(y)

)

= 1

s

⎧
⎪⎨

⎪⎩

K∑

j=1

pjf
2
j (y)−

⎡

⎣
K∑

j=1

pjfj (y)

⎤

⎦
2
⎫
⎪⎬

⎪⎭

≤ 1

s

K∑

j=1

pj (1− pj )f 2
j (y). ��

Now for ε > 0 and i = 1, . . . ,K, we choose some sets Yi(ε) such that
Pi{Yi(ε)} ≥ 1− ε , i = 1, . . . ,K, and put

K(y) = {i : y ∈ Yi(ε)} , Y (ε) =
K⋃

i=1

Yi(ε) .

Lemma 269 For any ε > 0 the following estimate is valid :

∑

Y

E|p̂(y)− p(y)| ≤ 2ε +
⎛
⎜⎝
|Y (ε)|
s

max
j=1,...,K
y∈Yj (ε)

fj (y)

⎞
⎟⎠

1/2

(36)

(|A| means the cardinality of the set A).
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Proof We have

∑

Y

E|p̂(y)− p(y)| ≤
∑

Y (ε)

E

∣∣∣∣∣∣

∑

j∈K(y)

(νj
s
− pj

)
fj (y)

∣∣∣∣∣∣

+
∑

Y

E

∣∣∣∣∣∣

∑

j �∈K(y)

(νj
s
− pj

)
fj (y)

∣∣∣∣∣∣
= �1 +�2 .

Using (35) and Cauchy-Buniakovsky inequality we get for �1

�1 ≤
∑

Y (ε)

⎡

⎢⎣E

∣∣∣∣∣∣

∑

j∈K(y)

(νj
s
− pj

)
fj (y)

∣∣∣∣∣∣

2
⎤

⎥⎦

1/2

≤
∑

Y (ε)

⎛

⎝1

s

∑

j∈K(y)
pjf

2
j (y)

⎞

⎠
1/2

≤
⎛

⎝ |Y (ε)|
s

∑

Y (ε)

∑

j∈K(y)
pjf

2
j (y)

⎞

⎠
1/2

≤
⎛

⎝ |Y (ε)|
s

K∑

j=1

pj
∑

Yj

f 2
j (y)

⎞

⎠
1/2

≤
⎛

⎜⎝
|Y (ε)|
s

max
j=1,...,K
y∈Yj (ε)

fj (y)

⎞

⎟⎠

1/2

.

For �2 we have obviously

�2 ≤
∑

Y

∑

j �∈K(y)
E

∣∣∣
νj

s
− pj

∣∣∣ fj (y)

≤ 2
∑

Y

∑

j �∈K(y)
pj fj (y)

= 2
K∑

j=1

pj
∑

Y\Yj (ε)
fj (y)

≤ 2ε .

Combining these two inequalities we get (25). ��
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In the setting of a noisy channel measure fi(y) represents the conditional
distribution of the channel output y ∈ Bn given the “input” i ∈ An. As sets
Yi(ε) ⊆ Bn some “supports” of measures fi(y) will be chosen. In that meaning
Lemma 269 is supposed to be used for the same type codeblocks i . The next result
generalizes it for codeblocks of different types.

Let L classes of measures {fli(y) , i = 1, . . . ,K(l)} , l = 1, . . . , L , with prior
probabilities {pli} are given and

p(y) =
L∑

l=1

K(l)∑

i=1

pli fli(y) .

In order to approximate p(y) we choose in every class l randomly and
independently sl measures fli proportionally to the distribution pli . Moreover,
for every pair l, i we choose also some set Yli (ε) such that Pli{Yli} ≥ 1 − ε and
put (νli = number of measures fli among sl chosen distributions)

p̂(y) =
L∑

l=1

pl

sl

K(l)∑

i=1

νlifli(y) , pl =
K(l)∑

i=1

pli , Yl(ε) =
K(l)⋃

i=1

Yli(ε) .

Lemma 270 For any ε > 0 the following estimate is valid :

∑

Y

E|p̂(y)− p(y)| ≤ 2ε +
⎛

⎝
L∑

l=1

pl |Yl(ε)|
sl

max
i=1,...,K(l)
y∈Yli (ε)

fli (y)

⎞

⎠
1/2

. (37)

Proof We have from Lemma 269:

∑

Y

E|p̂(y)− p(y)| ≤ 2ε +
L∑

l=1

pl

⎛

⎝ |Yl(ε)|
sl

max
i=1,...,K(l)
y∈Yli (ε)

fli (y)

⎞

⎠
1/2

≤ 2ε +
⎛

⎝
L∑

l=1

pl |Yl(ε)|
sl

max
i=1,...,K(l)
y∈Yli (ε)

fli (y)

⎞

⎠
1/2

.

Now, we return to the channel W(n) with input An and output Bn alphabets.
Application of Lemma 270 to that case is rather standard and it is based on
considering codeblocks from An of the same type (composition) (see [9, Ch. 1.2
and 2.1] or [1]). Necessary formulas (38) below can be also found in [9] or [1].

As usual, we partition all codeblocks from An on classes l consisting of
codeblocks of the same composition (type). In every pair l, i the parameter i
will denote the block’s index inside the class l . An input block (l, i) generates
the distribution fli on the channel output Bn . As a set Yli ⊆ Bn we choose a
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set of “almost 1” probability and consisting of approximately equiprobable points.
More precisely, we fix some arbitrary small ε > 0 and let Pl denotes the type
of codeblock (l, i) [10] and Qli denotes the output distribution generated by that
codeblock. Then for any n ≥ n0(ε) it is possible to choose some sets Yli(ε) ⊆ Bn
with Qli{Yli(ε)} ≥ 1 − ε such that simultaneously for all l, i the following
conditions will be satisfied:

|Yli(ε)| < exp{n(1+ ε)H(W |Pl)} ,

max
i=1,...,K(l)

y∈Yli (ε)

fli(y) < exp{−n(1− ε)H(W |Pl)} , (38)

|Yl(ε)| =
∣∣∣∣∣
⋃

i

Yli(ε)

∣∣∣∣∣ < exp {n(1+ ε)H(WPl)} .

Now we put

sl = ε−2 exp {n [I (Pl,W) + εH(WPl)+ εH(W |Pl)]} . (39)

Then taking into account that H(WPl)−H(W |Pl) = I (Pl,W) ≤ C , H(WPl)+
H(W |Pl) ≤ 2 lnB and that the total number of classes L ≤ (n + 1)|A| , we have
from (38)–(39) for n > n0(ε)

s =
L∑

l=1

sl ≤ ε−2L exp{n[C + 2ε lnB]} ≤ B3εnenC . (40)

Similarly we have from (37)–(39)

∑

Bn

E|p̂(y)− p(y)| ≤ 3ε . (41)

Now from (40)–(41) Proposition 264 follows. ��
On a “Basis” for the Set of all Output Measures
In connection with Proposition 264 some natural question arises: is it possible to
choose some universal collection of N ∼ enC input blocks (like a basis) such that
using them it is possible arbitrary closely to approximate any output distribution?
The answer, generally speaking, is no. To see this consider the example of the binary
symmetrical channel with crossover probability p < 1/2.

Let x0 be the all-zero input block of the length n and x1, . . . , xN be all
possible input blocks of the Hamming weight w(xi) ≥ d (d will be chosen later).
Let also {Qi, i = 0, 1, . . . , N} be the generated measures on the channel output
Bn , respectively. We shall evaluate now how large should be d such that it will
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be impossible to approximate sufficiently accurately the measure Q0 with the
help of all remaining measures {Qi, i = 1, . . . , N} . It is convenient to use here
some statistical interpretation and the formula (1). Let us consider the problem of
testing hypothesis Q0 against {Qi, i = 1, . . . , N}. Notice first that if the vector
xi, i = 0, 1, . . . , N, is transmitted then for the Hamming weight w(y) of output
vector y we have

E (w(y) |xi) = w(xi)+ p (n− 2w(xi)) ,

E
{[
w(y)− E(w(y)|xi

)]2∣∣xi
}
= p(1− p)n .

Now we choose as the decision set D0 of acceptance hypothesis Q0 the
following set:

D0 =
{
y : w(y) ≤ pn+ [2znp(1− p)]1/2

}
,

where the parameter z = z(δ) > 0 will be chosen later. Then, due to the central
limit theorem, we have

Q0(Y
n \D0) = �

(
−√2z

)
+ o(1) , n→∞ , (42)

Qi(D0) = �
[
−w(xi)(1− 2p)√

np(1− p) +√2z

]
+ o(1) , i = 1, . . . , N .

Now, if w2(xi)(1− 2p)2 ≥ 8znp(1− p), i = 1, . . . , N , then due to (42) we have
from formula (1)

‖Q0 − conv{Qi, i = 1, . . . , N}‖
≥ 2

[
1−Q0(Y

n \D0)− conv{Qi, i = 1, . . . , N}(D0)
]

≥ 2
[
1− 2�

(
−√2z

)]
+ o(1) , n→∞. (43)

We use now simple upperbound 2�(−x) ≤ e−x2/2 , x > 0, and put z = ln(1/δ) .
Then we get from (43)

‖Q0 − conv{Qi, i = 1, . . . , N}‖ ≥ 2(1− δ) . (44)

Therefore, if the minimum distance d of arbitrary code {x1, . . . , xN } sat-
isfies the condition d2(1 − 2p)2 ≥ 8np(1 − p) ln(1/δ) , then the collection
{Qi, i = 1, . . . , N} is (N, δ)—completely separated. It is easy to understand that
the maximal cardinality N of such a collection has the order of exp{n ln 2 −
a(δ, p)n1/2 lnn} , i.e., it differs negligibly from the cardinality 2n of the whole
space of input blocks.
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Completely and Pairwise Separated Collections of Measures
As we know already, ID-codes and completely separated collections of measures
are essentially equivalent. But it is rather difficult to check the complete separability
of measures (e.g., condition (4)). It is much easier to check the pairwise separability
of measures. Then the following question naturally arises: if we are given some
collection of δ—pairwise separated measures, is it possible then to select some of
its sub-collection such that it will be ε—completely separated (with ε close to δ )
and will have “practically” the same cardinality?

Or, equivalently, under which conditions a collection of δ—pairwise separated
measures is simultaneously a collection of ε—completely separated measures (with
ε slightly worse than δ)?

>From statistics point of view similar question can be formulated in the following
way. Let some set {Qi, i = 0, 1, . . . , N} of probability measures be given. Assume
that when we test hypothesis Q0 against any simple hypothesis Qi we can achieve
sum of error probabilities δ(Q0,Qi) ≤ δ . Then due to formula (1) we have ‖Q0 −
Qi‖ ≥ 2(1− δ) for any i = 1, . . . , N, . What can we say about the minimal sum of
error probabilities when we test the hypothesis Q0 against all hypothesis Qi, i =
1, . . . , N, ? Or, due to formula (2), what can we say about ‖Q0 − conv{Qi, i =
1, . . . , N}‖ ? Clear that this new sum δ(Q0, conv{Qi}) will be ≥ δ, but when we
can expect that it will be rather close to δ?

Before giving a partial answer to this question we bring two examples, showing
what kind of results can be expected here.

Example Let there be given the equiprobable distribution P0 and measures Pi, i =
1, . . . , |X|, on the alphabet X , such that Pi{xi} = 1 . Then ‖P0 − Pi‖ =
2 − 2|X|−1 ≥ 2 − 2δ , if |X| ≥ 1/δ . On the other hand, it is clear that
‖P0 − conv {Pi, i = 1, . . . , |X|}‖ = 0 , i.e., this collection of measures is not
completely separable for any δ < 1 . From ID-codes point of view for any choice
of a nonempty region D0 we shall have Pi(D0) = 1 for some i > 0 . But if we
remove the measure P0 from that collection, the remaining orthogonal measures
will represent completely separated collection. �

It becomes clear from the next (more meaningful) example that it is hardly
possible to get some easy-to check necessary and sufficient conditions in this
problem. The infinite alphabet used in that example is not crucial. It is always
possible to approximate it arbitrary precisely by a sufficiently large finite alphabet.

Example Let Pi, i = 1, . . . , N be Gaussian measures in Euclidean space Rn

with the identity covariance matrix In and the mean vector A1/2ei , where ei is the
n—dimensional vector with the ith coordinate 1 and all the remaining coordinates
are zeros. That model corresponds to the observation of one ofN orthogonal signals
with energy A in white Gaussian noise. Then with the help of the formula (7) it is
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simple to get

‖Pi − Pj‖ = 2
[
1− 2P

{
ξ > (A/2)1/2

}]
= (45)

= 2
[
2�
(
(A/2)1/2

)
− 1
]
, i �= j ,

where ξ is the Gaussian RV with parameters (0, 1) and �(x) is the standard
distribution function of this RV.

It is hardly possible to calculate explicitly the distance between the measure
P0 and the convex combination of all remaining measures. But it is possible to
upperbound it. Putting on the set Pj , j �= i, the equiprobable prior distribution and
using the simple inequality

‖P −Q‖2 ≤ EP
(
dQ

dP

)2

− 1 ,

we get after some simple calculations (see details in [6])

‖Pi − conv{Pj , j �= i}‖2 ≤ (N − 1)−1e2A . (46)

We can see from (45) that when A is sufficiently large, measures {Pi, i =
1, . . . , N} are pairwise almost orthogonal and hence are well pairwise separated.
But from (46) it follows that if the number of measures N is much larger than
exp{2A} , then this collection of measures is not completely separated for small
δ. Particularly, for such N it is impossible to discriminate hypotheses Pi and
{Pj , j �= i} with small error probabilities. In fact, it is possible to show [7] that the
true critical value here is exp{A} . �

We present now a sufficient condition for a complete separability of measures
which is rather easy to check in some cases.

Proposition 271 Let there be given probability measures Pi, i = 1, . . . , N, on a
finite alphabetX. For any subset A ⊆ X we denote

εij (A) =
∑

A

Pi(x)Pj (x) .

Then for any i the following estimate holds true:

‖Pi − conv{Pj , j �= i}‖ ≥ 2 max
A

[
Pi(A)−

(
|A|max

j �=i εij (A)
)1/2

]
(47)
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and {Pi, i = 1, . . . , N} is an (N, δ)—completely separated collection with

δ = max
i

min
A

[
Pi(X \ A)+

(
|A|max

j �=i εij (A)
)1/2

]
. (48)

Proof LetQ =∑ ciPi be any convex combination of measures Pi, i = 1, . . . , N,
and A ⊆ X. Using representation |p− q| = p+ q − 2 min{p, q, } and the Cauchy-
Bunyakowski inequality we carry out the following chain of calculations:

‖P1 −Q‖ = 2

[
1−

∑

X

min{P1(x),Q(x)}
]

≥ 2

[
P1(A)−

∑

A

min{P1(x),Q(x)}
]

≥ 2

[
P1(A)−

∑

A

(P1(x)Q(x))
1/2

]

≥ 2

⎡

⎣P1(A)−
(
|A|
∑

A

P1(x)Q(x)

)1/2
⎤

⎦

≥ 2

[
P1(A)−

(
|A|max

i≥2
ε1i (A)

)1/2
]
,

from where formulas (47)–(48) follow. ��

Appendix

We show that the set D(P0) in the proof of the inequality (8) has the minimum
volume when P0 is an extreme point of the set PN .

Proof Let Pi , i = 1, . . . , N , denotes the N—dimensional vector whose ith
coordinate is 1 and all the remaining coordinates are 0. We fix arbitrary a > 0
and consider sets

Vi = {x ∈ PN : ‖Pi − x‖ ≤ a} , i = 1, . . . , N .
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Let c = (c1, . . . , cN ) be an arbitrary probability vector. Introduce sets

V (c) =
N∑

i=1

ciVi =
{
y ∈ PN : y =

N∑

i=1

ciyi ; y ∈ Vi , i = 1, . . . , N

}
,

D(c) = {y ∈ PN : ‖c − y‖ ≤ a} .

Obviously, sets Vi , V (c) andD(c) are convex. It is simple also to check that V (c) ⊆
D(c). Designating v(A) the set’s A volume and taking into account that volumes
v(Vi) , i = 1, . . . , N are equal, we get by virtue of Brunn-Minkowski theorem [5]

v(D(c)) ≥ v(V (c)) ≥
[
N∑

i=1

civ
1/N (Vi)

]N
= v(V1) . ��
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On Logarithmically Asymptotically
Optimal Testing of Hypotheses and
Identification

We introduce a new aspect of the influence of the information-theoretical methods
on the statistical theory. The procedures of the probability distributions identification
for K(≥ 1) random objects each having one from the known set of M(≥ 2)
distributions are studied. N-sequences of discrete independent RV’s represent
results of N observations for each of K objects. On the base of such samples
decisions must be made concerning probability distributions of the objects. For
N → ∞ the exponential decrease of the test’s error probabilities is considered.
The reliability matrices of logarithmically asymptotically optimal procedures are
investigated for some models and formulations of the identification problems.
The optimal subsets of reliabilities which values may be given beforehand and
conditions guaranteeing positiveness of all the reliabilities are investigated.

“In statistical literature such a problem is referred to as one of classification or discrimina-
tion, but identification seems to be more appropriate”

Radhakrishna Rao [27].

1 Problem Statement

Let Xk = (Xk,n, n ∈ [N]), k ∈ [K], be K(≥ 1) sequences of N discrete i.i.d.
RV’s representing possible results of N observations, respectively, for each of K
randomly functioning objects.

For k ∈ [K], n ∈ [N], Xk,n assumes values xk,n in the finite set X of cardinality
|X |. Let P(X ) be the space of all possible distributions on X . There are M(≥ 2)
probability distributions G1, . . . ,GM from P(X ) in inspection, some of which
are assigned to the vectors X1, . . . ,XK . This assignment is unknown and must
be determined on the base of N-samples (results of N independent observations)
xk = (xk,1, . . . , xk,N ), where xk,n is a result of the nth observation of the kth object.
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WhenM = K and all objects are different (any two objects cannot have the same
distribution), there are K! possible decisions. When objects are independent, there
areMK possible combinations.

Bechhofer, Kiefer, and Sobel presented investigations on sequential multiple-
decision procedures in [7]. This book is concerned principally with a particular class
of problems referred to as ranking problems.

Chapter “Models with Prior Knowledge at the Sender” of the book by Ahlswede
and Wegener [5] is devoted to statistical identification and ranking problems.

We study models considered in [7] and [5] and variations of these models inspired
by the pioneering papers by Ahlswede and Dueck [4] (see chapter “Identification
via Channels” in Part I) and by Ahlswede [1], applying the concept of optimality
developed in [9, 16, 22–24, 28] for the models with K = 1.

Consider the following family of error probabilities of a test

α
(N)
m1,m2,...,mK |l1,l2,...,lK , (m1,m2, . . . ,mK) �= (l1, l2, . . . , lK ), mk, lk ∈ [M] , k ∈ [K],

which are the probabilities of decisions l1, l2, . . . , lK when actual indices of the
distributions of the objects were, respectively,m1,m2, . . . ,mK .

The probabilities to reject all K hypotheses when they are true are the following

α
(N)
m1,m2,...,mK |m1,m2,...,mK

=
∑

(l1,l2,...,lK ) �=(m1,m2,...,mK)

α
(N)
m1,m2,...,mK |l1,l2,...,lK .

We study exponential decrease of the error probabilities when N → ∞ and define
(using logarithms and exponents to the base e)

lim sup
N→∞

− 1

N
logα(N)m1,m2,...,mK |l1,l2,...,lK = Em1,m2,...,mK |l1,l2,...,lK ≥ 0. (1)

These are exponents of error probabilities which we call reliabilities (in association
with Shannon’s reliability function [15]). We shall examine the matrix E =
{Em1,m2,...,mK |l1,l2,...,lK } and call it the reliability matrix.

Our criterion of optimality is: given M,K and values of a part of reliabilities
to obtain the best (the largest) values for others. In addition it is necessary to
describe the conditions under which all these reliabilities are positive. The procedure
that realizes such testing is identification, which following Birgé [9], we call
“logarithmically asymptotically optimal” (LAO).

Let N(x|x) be the number of repetitions of the element x ∈ X in the vector
x ∈ XN , and let

Q = {Q(x) = N(x|x)/N, x ∈ X }

is the distribution, called “the empirical distribution” (ED) of the sample x in
statistics, in information theory called “the type” [14, 15] and in algebraic literature
“the composition”.
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Denote the space of all empirical distributions for given N by P (N)(X ) and by
T (N)Q the set of all vectors of the EDQ ∈ P (N)(X ).

Consider for k ∈ [K], m ∈ [M], relative entropies

D(Qk ||Gm) =
∑

x∈X
Qk(x) log

Qk(x)

Gm(x)
,

and entropies

H(Qk) = −
∑

x∈X
Qk(x) logQk(x).

We shall use the following relations for the probability of the vector x when Gm
is the distribution of the object:

G(N)m (x) =
N∏

n=1

Gm(xn) = exp{−N[D(Q||Gm)+H(Q)]}.

For mk ∈ [M], k ∈ [K], when the objects are independent and Gmk is the
distribution of the kth object:

P (N)m1,m2,...,mK
(x1, x2, . . . , xK) = exp{−N[

K∑

k=1

D(Qk ||Gmk)+H(Qk)]}. (2)

The equalities follow from the independence of N observations of K objects and
from the definitions of relative entropies and entropies. It should be noted that the
equality (2) is valid even when its left part is equal to 0, in that case for one of xk the
distributionQk is not absolutely continuous relative toGmk andD(Qk ||Gmk) = ∞.

Our arguments will be based on the following fact: the “maximal likelihood”
test accepts as the solution values m1,m2, . . . ,mk , which maximize the probability
P
(N)
m1,m2,...,mK (x1, x2, . . . , xK), but from (2) we see that the same solution can be

obtained by minimization of the sum
K∑
k=1

[D(Qk||Gmk) + H(Qk)], that is the

comparison with the help of relative entropies of the ED’s of observed vectors with
their hypothetical distributions may be helpful.

In this lecture we consider the following models.

1. K objects are different, they have different distributions among M ≥ K

possibilities. For simplicity we restrict ourselves to the case K = 2,M = 2.
It is the identification problem in formulations of the books [7] and [5].

2. K objects are independent, that is some of them may have the same distributions.
We consider an example for K,M = 2. It is surprising, but this model has not
been considered earlier in the literature.
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3. We investigate one object, K = 1, and M possible probability distributions.
The question is whether the mth distribution occurred or not. This is the
problem of identification of distributions in the spirit of chapter “Identification
via Channels”.

4. Ranking, or ordering problem [1]. We have one vector of observations X =
(X1,X2, . . . , XN) andM hypothetical distributions. The receiver wants to know
whether the index of the true distribution of the object is in {1, 2, . . . , r} or in
{r + 1, . . . ,M}.

5. r-identification of distribution [1]. Again K = 1. One wants to identify the
observed object as a member either of the subset S of [M], or of its complement,
with r being the number of elements in S.

Section 2 of this lecture presents necessary notions and results on hypothesis
testing. The models of identification for independent objects are considered in 3 and
for different objects in 4. Section 5 is devoted to the problem of identification of
an object distribution and 6 to the problems of r-identification and ranking. Some
results are illustrated by numerical examples and graphs. Many directions of further
research are indicated in the course of the text and in the 7.

2 Background

The study of interdependence of exponential rates of decrease, as the sample size
N goes to the infinity, of the error probabilities α(N)1|2 of the “first kind” and α(N)2|1 of
the “second kind” was started by the works of Hoeffding [23], Csiszár and Longo
[16], Tusnády [28], Longo and Sgarro [24], Birgé [9], and for multiple hypotheses
by Haroutunian [22]. Similar problems for Markov dependence of experiments were
investigated by Natarajan [26], Haroutunian [21], Gutman [18] and others. As it was
remarked by Blahut in his book [11], it is unfortunately confusing that the errors are
denoted type I and type II, while the hypotheses are subscripted 0 and 1. The word
“type” is also used in another sense to refer to the type of a measurement or the type
of a vector. For this reason we do not use the names “0” and “1” for hypotheses and
the name “type” for errors. Note that in [10, 11, 17] an application of the methods
of hypothesis testing to the proper problems of information theory is developed.

It will be very interesting to combine investigation of described models with the
approach initiated by the paper of Ahlswede and Csiszár [3] and developed by many
authors, particularly, for the exponentially decreasing error probabilities by Han and
Kobayashi [20].

In [8] Berger formulated the problem of remote statistical inference. Zhang and
Berger [29] studied a model of an estimation system with compressed information.
Similar problems were examined by Ahlswede and Burnashev [2] and by Han and
AmariAmari, S. [19]. In the paper of Ahlswede, Yang and Zhang [6] identification in
channels via compressed data was considered. Fu and Shen [17] studied hypothesis
testing for an arbitrarily varying source.
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Our further considerations will be based on the results from [22] on multiple
hypotheses testing, so now we expose briefly corresponding formulations and
proofs. In our terms it is the case of one object (K = 1) andM possible distributions
(hypotheses) G1, . . . ,GM . A test ϕ(x) on the base of N-sample x = (x1, . . . , xN)

determines the distribution. Since experiments are independent the probability of
the sample x if the distribution is Gm will be

G(N)m (x) =
N∏

n=1

Gm(xn), m ∈ [M] .

We study error probabilities α(N)m|l for m, l ∈ [M]. Here α(N)m|l is the probability
that the distributionGl was accepted instead of true distributionGm. For m = l the
probability to rejectGm when it is true, is denoted by α(N)m|m thus:

α
(N)
m|m =

∑

l:l �=m
α
(N)
m|l .

This probability is called [12] the test’s “error probability of the kindm”. The matrix
{α(Nm|l )} is sometimes called the “power of the test” [12].

In this lecture we suppose that the list of possible hypotheses is complete.
Remark that, as it was noted by Rao [27], the case, when the objects may have
also some distributions different fromG1, . . . ,GM , is interesting too.

Let us analyze the reliability matrix

E =

⎛
⎜⎜⎜⎜⎜⎝

E1|1 . . . E1|l . . . E1|M
. . . . . . . . . . . . . . . . . . . . .

Em|1 . . . Em|l . . . Em|M
. . . . . . . . . . . . . . . . . . . . .

EM|1 . . . EM|l . . . EM|M

⎞
⎟⎟⎟⎟⎟⎠

with components

Em|l = lim sup
N→∞

− 1

N
logα(N)m|l , m, l ∈ [M] .

According to this definition and the definition of α(N)m|l we can derive that

Em|m = min
l:m�=l Em|l . (3)
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Really,

Em|m = lim sup
N→∞

− 1

N
log

∑

l:m�=l
α
(N)
m|l

= lim sup
N→∞

− 1

N
log max

l:m�=l α
(N)
m|l + lim sup

N→∞
− 1

N
log

⎡

⎣

⎛

⎝
∑

l:m�=l
α
(N)
m|l

⎞

⎠ / max
l:m�=l α

(N)
m|l

⎤

⎦

= min
l:m�=l Em|l .

The last equality is a consequence of the fact that for all m and N

1 ≤ (
∑

l:m�=l
α
(N)
m|l )/ max

l:m�=l α
(N)
m|l ≤M − 1.

In the caseM = 2, the reliability matrix is

E =
(
E1|1 E1|2
E2|1 E2|2

)
(4)

and it follows from (3) that there are only two different values of elements, namely

E1|1 = E1|2 and E2|1 = E2|2, (5)

so in this case the problem is to find the maximal possible value of one of them,
given the value of the other.

In the case of M hypotheses for given positive and finite E1|1, E2|2, . . . ,
EM−1,M−1 let us consider the regions of distributions

Rl = {Q : D(Q||Gl) ≤ El|l}, l ∈ [M − 1] , (6)

RM = {Q : D(Q||Gl) > El|l, l ∈ [M − 1]} = P(X )−
M−1⋃

l=1

Rl , (7)

R(N)l = Rl
⋂

P (N), l ∈ [M]. (8)

Let

E∗l|l = E∗l|l (El|l) = El|l, l ∈ [M − 1] , (9)

E∗m|l = E∗m|l (El|l ) = inf
Q∈Rl

D(Q||Gm), m ∈ [M] , m �= l, l ∈ [M − 1] ,

(10)
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E∗m|M = E∗m|M(E1|1, . . . , EM−1,M−1) = inf
Q∈RM

D(Q||Gm), m ∈ [M − 1] ,

(11)

E∗M|M = E∗M|M(E1|1, . . . , EM−1,M−1) = min
l∈[M−1]

E∗M|l . (12)

If some distribution Gm is not absolutely continuous relative to Gl the reliability
E∗m|l will be equal to the infinity, this means that corresponding α(N)m|l = 0 for some
large N .

The principal result of [22] is:

Theorem 272 If all the distributionsGm are different and all elements of the matrix
{D(Gl ||Gm)}, l,m ∈ [M], are positive, but finite, two statements hold:

(i) when the positive numbers E1|1, E2|2, . . . , EM−1,M−1 satisfy conditions

E1|1 < min
l∈[2,M]

D(Gl ||G1),

... (13)

Em|m < min[ min
l∈[m−1]

E∗m|l (El|l), min
l∈[m+1,M]

D(Gl ||Gm)], m ∈ [2,M − 1] ,

then there exists a LAO sequence of tests, the reliability matrix of which E∗ =
{E∗m|l} is defined in (9)–(12) and all elements of it are positive;

(ii) even if one of conditions (13) is violated, then the reliability matrix of any such
test has at least one element equal to zero (that is the corresponding error
probability does not tend to zero exponentially).

The essence of the proof of Theorem 272 consists in construction of the following
optimal tests sequence. Let the decision l will be taken when x gets into the set

B(N)l =
⋃

Q∈R(N)
l

T (N)Q , l ∈ [M] , N = 1, 2, . . . . (14)

The non-coincidence of the distributionsGm and the conditions (13) guarantee that
the sets from (14) are not empty, they meet conditions

B(N)l

⋂
B(N)m = ∅, l �= m,

and

M⋃

l=1

B(N)l = XN,

and so they define a sequence of tests, which proves to be LAO.
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For the simplest particular case M = 2 elements of the reliability matrix (4)
satisfy equalities (5) and for given E1|1 from (5) and (7) we obtain the value of
E∗2|1 = E∗2|2:

E∗2|1(E1|1) = inf
Q:D(Q||G1)≤E1|1

D(Q||G2). (15)

Here, according to (13), we can take E1|1 from (0,D(G2‖G1)) and E∗2|1(E1|1) will
range betweenD(G1||G2) and 0.

3 Identification Problem for Model with Independent
Objects

We begin with study of the second model. To illustrate possibly arising develop-
ments and essential features we consider a particular caseK = 2,M = 2. It is clear
that the case withM = 1 is trivial. The reliability matrix is (see (1))

E =

⎛

⎜⎜⎝

E1,1|1,1 E1,1|1,2 E1,1|2,1 E1,1|2,2
E1,2|1,1 E1,2|1,2 E1,2|2,1 E1,2|2,2
E2,1|1,1 E2,1|1,2 E2,1|2,1 E2,1|2,2
E2,2|1,1 E2,2|1,2 E2,2|2,1 E2,2|2,2

⎞

⎟⎟⎠ .

Let us denote by α(1)m1|l1 , α(2)m2|l2 and E(1)m1|l1 , E(2)m2|l2 the error probabilities and the
reliabilities as in (4) for, respectively, the first and the second objects.

Lemma 273 If 0 < E
(i)
1|1 < D(G2||G1), i = 1, 2, then the following equalities

hold true:

Em1,m2|l1,l2 = E(1)m1|l1 + E
(2)
m2|l2, if m1 �= l1, m2 �= l2, (16)

Em1,m2|l1,l2 = E(i)mi |li , if m3−i = l3−i , mi �= li , i = 1, 2, (17)

Proof From the independence of the objects it follows that

α
(N)
m1,m2|l1,l2 = α

(N,1)
m1|l1 α

(N,2)
m2|l2 , if m1 �= l1, m2 �= l2, (18)

α
(N)
m1,m2|l1,l2 = α

(N,i)
mi |li (1− α

(N,3−i)
m3−i |l3−i ), if m3−i = l3−i , mi �= li , i = 1, 2, (19)

According to (1), from (18) we obtain (16), from (19) and the conditions of
positiveness of E(i)1|1 and E(i)2|2, i = 1, 2, (17) follows. ��
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Theorem 274 If the distributions G1 and G2 are different, the strictly positive
elements E1,1|1,2, E1,1|2,1 of the reliability matrix E are given and bounded above:

E1,1|1,2 < D(G2||G1), and E1,1|2,1 < D(G2||G1), (20)

then the other elements of the matrix E are defined as follows:

E2,1|2,2 = E1,1|1,2, E1,2|2,2 = E1,1|2,1,

E2,2|1,1 = E1,2|1,1 + E2,1|1,1, E2,1|1,2 = E2,1|1,1 + E1,2|2,2,

E1,2|2,1 = E1,2|1,1 + E1,2|2,2, E1,1|2,2 = E1,1|1,2 + E1,1|2,1,

E1,2|1,1 = E2,2|2,1 = inf
Q:D(Q||G1)≤E1,1|1,2

D(Q||G2),

E2,1|1,1 = E2,2|1,2 = inf
Q:D(Q||G1)≤E1,1|2,1

D(Q||G2), (21)

Em1,m2|m1,m2 = min
(l1,l2) �=(m1,m2)

Em1,m2|l1,l2, m1,m2 = 1, 2.

If one of the inequalities (20) is violated, then at least one element of the matrix E
is equal to 0.

Proof The last equalities in (21) follow (as (3)) from the definition of

α
(N)
m1,m2|m1,m2

=
∑

(l1,l2) �=(m1,m2)

α
(N)
m1,m2|l1,l2, m1,m2 = 1, 2.

Let us consider the reliability matrices of each of the objects X1 and X2

E(1) =
(
E
(1)
1|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|2

)
and E(2) =

(
E
(2)
1|1 E

(2)
1|2

E
(2)
2|1 E

(2)
2|2

)
.

From (5) we know that E(i)1|1 = E(i)1|2 and E(i)2|1 = E(i)2|2, i = 1, 2. From (20) it follows

that 0 < E(1)1|1 < D(G2||G1), 0 < E(2)1|1 < D(G2||G1). Really, if 0 < E1,1|1,2 <
D(G2||G1), but E(2)1|1 ≥ D(G2||G1), then from (19) and (1) we arrive to

lim sup
N→∞

− 1

N
log(1− α(N,2)1|2 ) < 0,

therefore index N0 exists, such that for sub-sequence of N > N0 we will have
1− α(N,2)1|2 > 1. But this is impossible because α(N,2)1|2 is the probability and must be
positive.
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Using Lemma 273 we can deduce that the reliability matrix E can be obtained
from matrices E(1) and E(2) as follows:

E =

⎛
⎜⎜⎜⎜⎝

min(E(1)1|2, E
(2)
1|2) E

(2)
1|2 E

(1)
1|2 E

(1)
1|2 + E(2)1|2

E
(2)
2|1 min(E(1)1|2, E

(2)
2|1) E

(1)
1|2 + E(2)2|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|1 + E(2)1|2 min(E(1)2|1, E

(2)
1|2) E

(2)
1|2

E
(1)
2|1 + E(2)2|1 E

(1)
2|1 E

(2)
2|1 min(E(1)2|1, E

(2)
2|1)

⎞
⎟⎟⎟⎟⎠
,

in other words, providing, that conditions (20) are fulfilled, we find that

E1,1|1,2 = E(2)1|2 = E(2)1|1, E1,1|2,1 = E(1)1|2 = E(1)1|1,

E2,1|2,2 = E1,1|1,2 = E(2)1|2, E1,2|2,2 = E1,1|2,1 = E(1)1|2,

E1,2|1,1 = E2,2|2,1 = E(2)2|1, E2,1|1,1 = E2,2|1,2 = E(1)2|1,

E2,2|1,1 = E(1)2|1 + E(2)2|1, E2,1|1,2 = E(1)2|1 + E(2)1|2, (22)

E1,2|2,1 = E(1)1|2 + E(2)2|1, E1,1|2,2 = E(1)1|2 + E(2)1|2,

and

Em1,m2|m1,m2 = min{E(1)m1|m1
, E

(2)
m2|m2

}, m1,m2 = 1, 2,

From Theorem 272 we know that if E(i)1|1 ∈ (0,D(G2||G1)), i = 1, 2, then the tests

of both objects are LAO and the elementsE(i)2|1, i = 1, 2, can be calculated (see (15))
by

E
(i)
2|1 = inf

Q:D(Q||G1)≤E(i)1|1
D(Q||G2), i = 1, 2, (23)

and if E(i)1|1 ≥ D(G2||G1), then E(i)2|1 = 0.
According to (22) and (23), we obtain, that when (20) takes place, the elements

of the matrix E are determined by relations (21). When one of the inequalities (20)
is violated, then from (23) and the first and the third lines of (22) we see, that some
elements in the matrix E must be equal to 0 (namely, either E1,2|1,1, or E2,1|1,1 and
others).

Now let us show that the compound test for two objects is LAO, that is it is
optimal. Suppose that for given E1,1|1,2 and E1,1|2,1 there exists a test with matrix
E
′
, such that it has at least one element exceeding the respective element of the

matrix E. Comparing elements of matrices E and E
′

different from E1,1|1,2 and
E1,1|2,1, from (22) we obtain that either E1,2|1,1 < E

′
1,2|1,1, or E2,1|1,1 < E

′
2,1|1,1,
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i.e. either E(2)2|1 < E
(2)′
2|1 , or E(1)2|1 < E

(1)′
2|1 . It is contradiction to the fact, that LAO

tests have been used for the objects X1 and X2.
When it is demanded to take the same values for the reliabilities of the first and

the second objectsE(1)1|2 = E(2)1|2 = a1 and, consequently,E(1)2|1 = E(2)2|1 = a2, then the
matrix E will take the following form

E =

⎛

⎜⎜⎝

a1 a1 a1 2a1

a2 min(a1, a2) a1 + a2 a1

a2 a1 + a2 min(a1, a2) a1

2a2 a2 a2 a2

⎞

⎟⎟⎠ . ��

4 Identification Problem for Models with Different Objects

The K objects are not independent, they have different distributions, and so the
number M of the distributions is not less than K . This is the model studied in [7].
For brevity we consider the case K = 2,M = 2. The matrix of reliabilities will be
the following:

E =
(
E1,2|1,2 E1,2|2,1
E2,1|1,2 E2,1|2,1

)
. (24)

Since the objects are strictly dependent this matrix coincides with the reliability
matrix of the first object (see (4))

E(1) =
(
E
(1)
1|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|2

)
,

because the distribution of the second object is uniquely defined by the distribution
of the first one.

We can conclude that among 4 elements of the reliability matrix of two dependent
objects only 2 elements are distinct, the second of which is defined by given E(1)1|1 =
E1,2|1,2.

From symmetry it follows that the reliability matrix of the second object also
may determine the matrix (24).

5 Identification of the Probability Distribution of an Object

Let we have one object, K = 1, and there are knownM ≥ 2 possible distributions.
The question is whether rth distribution occurred, or not. There are two error
probabilities for each r ∈ [M] the probability α(N)m=r |l �=r to accept l different from r ,
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when r is in reality, and the probability α(N)m�=r |l=r that r is accepted, when it is not
correct.

The probability α(N)m=r |l �=r is already known, it coincides with the probability α(N)r |r
which is equal to

∑
l:l �=r

α
(N)
r |l . The corresponding reliability Em=r |l �=r is equal to Er |r

which satisfies the equality (3).
We have to determine the dependence of Em�=r |l=r upon given Em=r |l �=r = Er |r ,

which can be assigned values satisfying conditions (13), this time we will have the
conditions:

0 < Er |r < min
l:l �=r D(Gl‖Gr), r ∈ [M].

We need the probabilities of different hypotheses. Let us suppose that the
hypotheses G1, . . . ,GM have, say, probabilities Pr(r), r ∈ [M]. The only
supposition we shall use is that Pr(r) > 0, r ∈ [M]. We will see, that the result
formulated in the following theorem does not depend on values of Pr(r), r ∈ [M],
if they all are strictly positive.

Now we can make the following reasoning for each r ∈ [M]:

α
(N)
m�=r |l=r =

Pr(N)(m �= r, l = r)
Pr(m �= r) = 1∑

m:m�=r
Pr(m)

∑

m:m�=r
Pr(N)(m, r).

From here we see that for r ∈ [M]

Em�=r |l=r = lim sup
N→∞

(
− 1

N
logα(N)m�=r |l=r

)

= lim sup
N→∞

1

N

⎛

⎝log
∑

m:m�=r
Pr(m)− log

∑

m:m�=r
α
(N)
m|r Pr(m)

⎞

⎠

= min
m:m�=r E

∗
m|r . (25)

Using (25) by analogy with the formula (15) we conclude (with Rr defined as in (6)
for each r including r = M by the values of Er |r from (0,min

l:l �=r D(Gl ||Gr))) that

Em�=r |l=r (Er |r ) = min
m:m�=r inf

Q∈Rr

D(Q‖Gm)

= min
m:m�=r inf

Q:D(Q‖Gr)≤Er|r
D(Q‖Gm), r ∈ [M]. (26)
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We can summarize this result in

Theorem 275 For the model with different distributions, for the given sample x we
define its ED Q, and when Q ∈ R(N)r we accept the hypothesis r . Under condition
that the probabilities of all M hypotheses are positive the reliability of such test
Em�=r |l=r for given Em=r |l �=r = Er |r is defined by (26).

For presentation of examples let us consider the set X = {0, 1} with only 2
elements. Let 5 probability distributions are given on X :

G1 = {0.1, 0.9}
G2 = {0.65, 0.35}
G3 = {0.45, 0.55}
G4 = {0.85, 0.15}
G5 = {0.23, 0.77}

On Fig. 1, the results of calculations of Em�=r |l=r as function of Em=r |l �=r are
presented.

Fig. 1 Em �=r|l=r as function of Em=r|l �=r for r = 1, 2, 3, 4, 5
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Fig. 2 Em �=t |l=t as function of
[
Et |t
]

for t = 1, 2, 3, 4

The elements of the matrix of relative entropies of all pairs of distributions are
used for calculation of conditions (13) for this example.

{D(Gm‖Gl)}l∈[5]m∈[5] =

⎛

⎜⎜⎜⎜⎜⎝

0 0.956 0.422 2.018 0.082
1.278 0 0.117 0.176 0.576
0.586 0.120 0 0.618 0.169
2.237 0.146 0.499 0 1.249
0.103 0.531 0.151 1.383 0

⎞

⎟⎟⎟⎟⎟⎠
.

In Figs. 2 and 3 the results of calculations of the same dependence are presented
for 4 distributions taken from previous 5.
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Fig. 3 Em �=t |l=t as function of
[
Et |t
]

for t = 1, 2, 3, 4

6 r-Identification and Ranking Problems

The model was introduced in [1] and named K-identification. Since in this lecture
the letter K is already used we speak of r-identification. Given N-sample x of
measurements of the object the problem is to answer to the question: is the
distribution of the object in the part S of M possible distributions or in its
complement, here r is the number of elements of the set S.

Again we can make decision on the base of the EDQ of the sample x and suppose
that before experiments all hypotheses have some positive probabilities

Pr(1), . . . ,Pr(M).

Using (6)–(8) with someE1,1, . . . , EM−1,M−1 meeting the conditions (13) when
Q ∈ ⋃

l∈S
R(N)l decision “l is in S” follows.
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The model of ranking is the particular case of the model of r-identification
with S = {1, 2, . . . , r}. But conversely the r-identification problem without loss of
generality may be considered as the ranking problem, to this end we can renumber
the hypotheses placing the hypotheses of S in the r first places. Because these two
models are mathematically equivalent we shall speak below only of the ranking
model.

It is enough to consider the cases r ≤ �M/2�, because in the cases of larger r
we can replace S with its complement. Remark that the case r = 1 was considered
in 5.

We study two error probabilities of a test: the probability α(N)m≤r |l>r to make

incorrect decision when m is not greater than r and the probability α(N)m>r |l≤r to
make error when m is greater than r . The corresponding reliabilities are

E1(r) = Em≤r |l>r and E2(r) = Em>r |l≤r, 1 ≤ r ≤ �M/2�. (27)

With supposition (6) we have

α
(N)
m≤r |l>r =

Pr(N)(m ≤ r, l > r)
Pr(m ≤ r)

= 1∑
m≤r

Pr(m)

∑

m≤r

∑

l>r

Pr(N)(m, l)

= 1∑
m≤r

Pr(m)

∑

m≤r

∑

l>r

α
(N)
m|l Pr(m). (28)

The definition (27) of E1(r) and the equality (28) give

E1(r) = lim sup
N→∞

− 1

N
logα(N)m≤r |l>r

= lim sup
N→∞

− 1

N

[
log
∑

m≤r

∑

l>r

Pr(m)α(N)m|l − log
∑

m≤r
Pr(m)

]

= min
m≤r,l>r Em|l . (29)
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Fig. 4 Calculation of
E2(r) [E1(r)] ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1|1 E1|M

EM |1 EM |M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Er|r

E2(r)[E1(r)] =

= min
m>r,l≤r

Em|l

E1(r)= min
m≤r,l>r

Em|l

m = 1

2

..

.

r
r + 1

..

..

..

..

..

..

M

l = 1, 2, . . . , r, r + 1, . . . . . . . , M

Analogously, at the same time

E2(r) = lim sup
N→∞

− 1

N
logα(N)m>r |l≤r

= lim sup
N→∞

− 1

N

⎡

⎣log
∑

m>r

∑

l≤r
α
(N)
m|l − log

∑

m>r

Pr(m)

⎤

⎦

= min
m>r,l≤r Em|l . (30)

For any test the value of E1(r) must satisfy the condition (compare (3) and (29))

E1(r) ≥ min
m:m≤r Em|m. (31)

Thus for any test meeting all inequalities from (13) form ≤ r and inequality (31)
the reliability E2(r) may be calculated with the equality (30). For given value
of E1(r) the best E2(r) will be obtained if we use liberty in selection of the
biggest values for reliabilities Em|m, r < m ≤ M − 1, satisfying for those m-
s conditions (13). These reasonings may be illuminated by Fig. 4 and resumed as
follows:

Theorem 276 When the probabilities of the hypotheses are positive, for given
E1(r) for m ≤ r not exceeding the expressions on the right in (13), E2(r) may



560 On Logarithmically Asymptotically Optimal Testing of Hypotheses and. . .

Fig. 5 Em �=t |l=t as function of
[
Et |t
]

for t = 1, 2, 3

be calculated in the following way:

E2(r) [E1(r)] = max
{Em|l , m,l∈[M]}: min

m≤r, l>r E
∗
m|l=E1(r)

[
min

m>r, l≤r E
∗
m|l
]

(32)

with E∗m|l defined in (9)–(12).

Remark One can see from (32) that for r = 1 we arrive to (26) for r = 1.

In Figs. 5 and 6 for 2 subsets by 3 distributions taken from 5 defined for Fig. 1 the
results of calculation of the dependence (26) and in Figs. 7 and 8 the corresponding
results of the formula (33) are presented.
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Fig. 6 Em �=t |l=t as function of
[
Et |t
]

for t = 1, 2, 3
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Fig. 7 E2(r), E1(r)
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Fig. 8 E2(r), E1(r)

7 Conclusion and Extensions of Problems

The lecture is a contribution to influence of the information theory methods on
statistical theory. We have shown by simple examples what questions arise in
different models of statistical identification.

Problems and results of the lecture may be extended in several directions some
of which have been already noted above.

It is necessary to examine models in which measurements are described by more
general classes of RV’s and processes [18, 19, 21, 26].

One of the directions is connected with the use of compressed data of measure-
ments [2, 6, 8, 19, 29].

One may see perspectives in application of identification approach and methods
to the authentication theory [25] and steganography [13].
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On Error Exponents in Quantum
Hypothesis Testing

In the simple quantum hypothesis testing problem, upper bounds on the error
probabilities are shown based on a key operator inequality between a density
operator and its pinching. Concerning the error exponents, the upper bounds lead
to a non-commutative analogue of the Hoeffding bound, which is identical with
the classical counterpart if the hypotheses, composed of two density operators, are
mutually commutative. The upper bounds also provide a simple proof of the direct
part of the quantum Stein’s lemma.

1 Introduction

Quantum hypothesis testing is a fundamental problem in quantum information
theory, because it is one of the most simple problems where the difficulty derived
from non-commutativity of operators appears. It is also closely related to other
topics in quantum information theory, as in classical information theory. Actually,
its relation with quantum channel coding is discussed in [7, 15].

Let us outline briefly significant results in classical hypothesis testing for proba-
bility distributions pn(·) versus qn(·), where pn(·) and qn(·) are i.i.d. extensions of
some probability distributions p(·) and q(·) on a finite set X . In the classical case,
the asymptotic behaviors of the first kind error probability αn and the second kind
error probability βn for the optimal test were studied thoroughly as follows.

First, when αn satisfies the constant constraint αn ≤ ε (ε > 0), the error exponent
of βn for the optimal test, say β∗n(ε), is written asymptotically as

lim sup
n→∞

1

n
logβ∗n = −D(p||q) (1)
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for any ε, where D(p||q) is the relative entropy. The equality (1) is called Stein’s
lemma (see e.g. [4, p.115]), and the quantum analogue of (1) was established
recently [8, 14].

Next, when αn satisfies the exponential constraint αn ≤ e−nr (r > 0), the error
exponent of βn for the optimal test is asymptotically determined by

lim sup
n→∞

1

n
logβ†

n(r) = − min
p′:D(p′||p)≤r

D(p′||q) (2)

= − max
0<s≤1

�(s)− (1− s)r
s

(3)

where the function�(s) is defined as

�(s) � − log
∑

x∈X
p(x)1−sq(x)s. (4)

Historically speaking, (2) and the test achieving it were shown in [9], followed
by another expression (3) (see [3]), which we call the Hoeffding bound here. In
quantum hypothesis testing, the error exponent of 1 − βn was studied in [14] to
obtain a similar result to (3), which led to the strong converse property in quantum
hypothesis testing. Concerning quantum fixed-length pure state source coding, the
error exponent of erroneously decoded probability was determined in [5], where the
optimality of the error exponent similar to (3) was discussed.

In this lecture (see [13]), a quantum analogue of the Hoeffding bound (3), (4) is
introduced to derive a bound on the error exponent in quantum hypothesis testing.
As a by-product of the process to derive the exponent, a simple proof of the quantum
Stein’s lemma is also given.

2 Definition and Main Results

Let H be a Hilbert space which represents a physical system in interest. We assume
dimH <∞ for mathematical simplicity. Let us denote the set of linear operators on
H as L(H) and define the set of density operators on H by

S(H) � {ρ ∈ L(H) : ρ = ρ∗ ≥ 0,Tr[ρ] = 1}. (5)

We study the hypothesis testing problem for the null hypothesis

H0 : ρn � ρ⊗n ∈ S(H⊗n)
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versus the alternative hypothesis

H1 : σn � σ⊗n ∈ S(H⊗n)

where ρ⊗n and σ⊗n are the nth tensor powers of arbitrarily given density operators
ρ and σ in S(H).

The problem is to decide which hypothesis is true based on the data drawn
from a quantum measurement, which is described by a positive operator valued
measure (POVM) on H⊗n, i.e., a resolution of identity

∑
i Mn,i = In by non-

negative operators Mn = {Mn,i} on H⊗n. If a POVM consists of projections on
H⊗n, it is called a projection valued measure (PVM). In the hypothesis testing
problem, however, it is sufficient to treat a two-valued POVM {M0,M1}, where
the subscripts 0 and 1 indicate the acceptance of H0 and H1, respectively. Thus, an
operator An ∈ L(H⊗n) satisfying inequalities 0 ≤ An ≤ In is called a test in the
sequel, since An is identified with the POVM {An, In−An}. For a test An, the error
probabilities of the first kind and the second kind are, respectively, defined by

αn(An) � Tr[ρn(In − An)]

βn(An) � Tr[σnAn].

Let us define the optimal value for βn(An) under the constant constraint on
αn(An)

β∗n(ε) � min {βn(An) : An : test , αn(An) ≤ ε} (6)

and let

D(ρ||σ) � Tr[ρ(logρ − log σ)] (7)

which is called the quantum relative entropy. Then we have the following theorem,
which is one of the most essential theorems in quantum information theory.

Proposition 277 (The Quantum Stein’s Lemma) For all 0 < ε < 1, it holds that

lim
n→∞

1

n
logβ∗n(ε) = −D(ρ||σ). (8)

The first proof of (8) was composed of two inequalities, the direct part and the
converse part. The direct part, concerned with existence of good tests, claims that

∀ 0 < ε ≤ 1, lim sup
n→∞

1

n
logβ∗n(ε) ≤ −D(ρ||σ) (9)

and it was given by Hiai and Petz [8]. In this lecture, the main focus is on the direct
part. Note that the direct part (9) is equivalent to the existence of a sequence of tests
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{An} such that

lim
n→∞ αn(An) = 0 and lim sup

n→∞
1

n
logβn(An) ≤ −D(ρ||σ) (10)

(see [14]). On the other hand, the converse part, concerned with nonexistence of too
good tests, asserts that

∀ 0 < ε < 1, lim inf
n→∞

1

n
logβ∗n(ε) ≥ −D(ρ||σ) (11)

which was given by Ogawa and Nagaoka [14]. A direct proof of the equality (8)
was also given by Hayashi [6] using the information spectrum approach in quantum
setting [10, 12], and a considerably simple proof of the converse part (11) was given
in [11].

In this lecture, the asymptotic behavior of the error exponent 1
n

logβn(An) under
the exponential constraint

αn(An) ≤ e−nr , r > 0

is studied, and a non-commutative analogue of the Hoeffding bound [9] similar
to (3) is given as follows.

Theorem 278 (Ogawa and Hayashi 2004, [13]) For all r > 0, there exists a
sequence of tests {An} which satisfies

lim sup
n→∞

1

n
logαn(An) ≤ −r, (12)

lim sup
n→∞

1

n
logβn(An) ≤ − max

0<s≤1

ψ(s)− (1− s)r
s

(13)

where

ψ(s) � − log Tr
[
ρσ

s
2 ρ−sσ

s
2

]
. (14)

We will prove the theorem in 4. If ρ and σ commutate, ψ(s) is identical with
the classical counterpart�(s) defined in (4), and (13) coincides with the Hoeffding
bound (3), which is optimal in classical hypothesis testing.

This lecture is organized as follows. In 3, upper bounds on the error probabilities
are shown based on a key operator inequality [6]. Using the upper bounds, we
will prove Theorem 278 in 4. In 5, we will make some remarks toward further
investigations.

Section 7 is devoted to the definition of pinching (see, e.g., [2], p. 50), which is
known as a special notion of the conditional expectation in literature on the operator
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algebra and is used effectively in 3. In 8, the key operator inequality used in 3 is
summarized along with another proof of it for readers’ convenience.

3 Bounds on Error Probabilities

In the sequel, let Eσn(ρn) be the conditional expectation of ρn to the commutant of
the ∗-subalgebra generated by σn, which we call pinching (see 7) and denote it as ρn
for simplicity. Let v(σn) be the number of eigenvalues of σn mutually different from
others as defined in 7. Then a key operator inequality1 follows from Lemma 285
in 8, which originally appeared in [6]

ρn ≤ v(σn)ρn. (15)

Note that the type counting argument provides

v(σn) ≤ (n+ 1)d (16)

where d � dimH. Following [6], let us apply the operator monotonicity of the
function x 2→ −x−s , 0 ≤ s ≤ 1 (see, e.g, [2, Sec. V.1]) to (15) so that we have

ρn
−s ≤ v(σn)sρ−sn ≤ (n+ 1)sdρ−sn . (17)

Following the notation used in [10, 12], let us define the projection {X > 0} for
a Hermitian operatorX =∑i xiEi as

{X > 0} �
∑

i:xi>0

Ei (18)

where Ei is the projection onto the eigenspace corresponding to an eigenvalue xi .
In the sequel, we will focus on a test defined by

Sn(a) � {ρn − enaσn > 0} (19)

where a is a real parameter, and derive the upper bounds on the error probabilities
for the test Sn(a) as follows.

Theorem 279 (Ogawa and Hayashi 2004, [13])

αn
(
Sn(a)

) ≤ (n+ 1)de−nϕ(a), (20)

βn
(
Sn(a)

) ≤ (n+ 1)de−n[ϕ(a)+a] (21)

1Although the way to derive the operator inequality and the definition of v(σn) are different from
those of [6], it results in the same one as [6] in the case that both of ρn and σn are tensored states.
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where ϕ(a) is defined by ψ(s) given in (14) as

ϕ(a)
def= max

0≤s≤1

{
ψ(s)− as} . (22)

Proof The definition of Sn(a) and commutativity of operators ρn and σn lead to

(
ρn

1−s − ena(1−s)σ 1−s
n

)
Sn(a) ≥ 0 (23)

(
ρn − enasσ sn

) (
In − Sn(a)

) ≤ 0 (24)

for all 0 ≤ s ≤ 1. Note that Sn(a) also commutes with σn. Therefore, the
inequality (24), with the property of pinching (63) in 7, provides

αn(Sn(a)) = Tr[ρn(In − Sn(a))]

= Tr[ρn(In − Sn(a))]

= Tr[ρn1−sρns(In − Sn(a))]

≤ enas Tr[ρn1−sσ sn (In − Sn(a))]

≤ enas Tr[ρn1−sσ sn ]. (25)

In the same way, (23) yields

βn(Sn(a)) = Tr[σnSn(a)]

= Tr[σ snσ 1
nSn(a)]

≤ e−na(1−s) Tr[σ snρn1−sSn(a)]

≤ e−naenas Tr[ρn1−sσ sn . (26)

It follows from (63) and (17) that

Tr[ρn1−sσ sn ] = Tr
[
ρnσ

s
2
n ρn

−sσ
s
2
n

]

= Tr
[
ρnσ

s
2
n ρn

−sσ
s
2
n

]

≤ (n+ 1)sd Tr
[
ρnσ

s
2
n ρ

−s
n σ

s
2
n

]
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= (n+ 1)sd
(

Tr
[
ρσ

s
2 ρ−sσ

s
2

])n

= (n+ 1)sde−nψ(s) (27)

for all 0 ≤ s ≤ 1. Combining (25)–(27), we have

αn
(
Sn(a)

) ≤ (n+ 1)sde−n
[
ψ(s)−as]

≤ (n+ 1)de−n
[
ψ(s)−as], (28)

βn
(
Sn(a)

) ≤ (n+ 1)sde−n
[
ψ(s)−as+a]

≤ (n+ 1)de−n
[
ψ(s)−as+a], (29)

which lead to (20) and (21) by taking the maximum in the exponents. ��

4 Proof of Theorem 278 and the Quantum Stein’s Lemma

In this section, we will prove Theorem 278 by using Theorem 279. To this end, the
behavior of ϕ(a) in the error exponents (20) and (21) is investigated in the following
lemmas. We will also show that Theorem 279 provides a simple proof of the direct
part of the quantum Stein’s lemma (10).

Lemma 280 ϕ(a) is convex and monotonically nonincreasing.

Proof The assertion immediately follows from the definition of ϕ(a). Actually, we
have for all 0 ≤ t ≤ 1

ϕ(ta + (1− t)b) = max
0≤s≤1

{ψ(s)− (ta + (1− t)b)s}

≤ t max
0≤s≤1

{ψ(s)− as} + (1− t) max
0≤s≤1

{ψ(s)− bs}

= tϕ(a)+ (1− t)ϕ(b). (30)

Next, let a ≤ b and sb � arg max0≤s≤1{ψ(s)− bs}. Then we have

ϕ(b) = ψ(sb)− bsb

≤ ψ(sb)− asb
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≤ max
0≤s≤1

{ψ(s)− as}

= ϕ(a). (31)

��
Lemma 281 ϕ(a) ranges from 0 to infinity.

Proof Since we can calculate the derivative of ψ(s) explicitly, ψ(s) is continuous
and differentiable. Therefore, it follows from the mean value theorem that for s > 0
there exists 0 ≤ t ≤ s such that

ψ(t) = ψ(s)− ψ(0)
s − 0

. (32)

Let a ≤ max0≤t≤1ψ
′
(t), then we have

a ≥ ψ(s)− ψ(0)
s − 0

. (33)

and hence,

ψ(0) ≥ ψ(s)− as (34)

which yields

0 = ψ(0) = max
0≤s≤1

{ψ(s)− as} = ϕ(a). (35)

On the other hand, it is obvious that

lim
a→−∞ϕ(a) = ∞. (36)

Since ϕ(a) is continuous, which follows from convexity by Lemma 280, the
assertion follows from (35) and (36). ��

Combined with the above lemma, Theorem 279 leads to Theorem 278 as follows.

Proof of Theorem 278 For all r > 0, there exists ar ∈ R such that r = ϕ(ar) from
Lemma 281. Let u(r) � ϕ(ar)+ ar , then it follows from Theorem 279 that

lim sup
n→∞

1

n
logαn(Sn(ar)) ≤ −r (37)

lim sup
n→∞

1

n
logβnSn(ar)) ≤ −u(r). (38)
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Therefore, it suffices to show that

u(r) = max
0≤s≤1

ψ − (1− s)r
s

(39)

For all 0 ≤ s ≤ 1, we have from the definition of ϕ(a)

r = ϕ(ar) ≥ ψ(s)− ars (40)

and there exists a number s0, 0 < s0 ≤ 1, achieving the equality since r = ϕ(ar) >
0. On the other hand, the definitions of u(r) and ar lead to

u(r) = ϕ(ar)+ ar = r + ar . (41)

Eliminating ar from (40) and (41), we have

u(r) ≥ ψ(s)− (1− s)r
s

) (42)

and s0 achieves the equality in (42) as well. Thus, we have shown (39), and
Theorem 278 has been proved. ��

Next, observing that ψ(0) = 0 and ψ
′
(0) = D(ρ||σ), we have

ϕ(a) > 0 for all a < D(ρ||σ) (43)

which leads to the following theorem combined with Theorem 279.

Theorem 282 (Ogawa and Hayashi 2004, [13]) For all a < D(ρ||σ), we have

lim
n→∞ αn(Sn(a)) = 0 (44)

lim sup
n→∞

1

n
logβn(Sn(a)) ≤ −a. (45)

Since a < D(ρ||σ) can be arbitrarily near D(ρ||σ), we have shown the direct
part of the quantum Stein’s lemma (10).

5 Toward Further Investigations

The error exponents derived here do not seem to be natural, since ψ(s) lacks
symmetry between ρ and σ that the original hypothesis testing problem has. We
need further investigation to determine the error exponents in quantum hypothesis
testing. In this section, we make a few remarks on some candidates for the



576 On Error Exponents in Quantum Hypothesis Testing

alternative to ψ(s) in the expectation that the error exponents would be written in
the form of Theorem 278.

Among many candidates, let us consider the following functions:

ψ1(s) � max
{
ψ(s), ψ̃(s)

}
(46)

ψ2(s) � − log Tr
[
ρ1−sσ s

]
(47)

ψ3(s) � − log Tr
[
e(1−s) logρ+s logσ

]
(48)

where

ψ̃(s) � − log Tr
[
σρ

1−s
2 σ−(1−s)ρ1−s2

]
(49)

and define the corresponding functions

ui(r) � max
0<2≤1

ψi(s)− (1− s)r
s

i = 1, 2, 3. (50)

The reason to consider these functions is as follows. First ψ1(s) is a symmetrized
version of ψ(s), and Theorem 278 still holds with ψ(s) replaced by ψ1(s), since
similar upper bounds to Theorem 279 using ψ̃(s) are valid by exchanging ρ and σ
and replacing s with 1−s. On the other hand,ψ2(s) for−1 ≤ s ≤ 0 appeared in [14]
to show the strong converse property in quantum hypothesis testing. Concerning
ψ3(s), u3(r) is a quantum analogue of (2). Actually, we can show that

u3(r) = min
ρ′:D(ρ′||ρ)≤r

D(ρ′||ρ) (51)

by the same way as [14, Sec. VI]. At present it is not clear whether u2(r) and
u3(r) are achievable exponents in quantum hypothesis testing. It should be noted,
however, that ψi(s), i = 1, 2, 3, are reduced to the classical one (4) if ρ and σ
commute, and they have desirable properties

ψi(0) = ψi(1) = 0

ψ ′i (0) = D(ρ||σ),
ψ ′i (1) = D(ρ||σ) i = 1, 2, 3 (52)

which are consistent with the quantum Stein’s lemma. The above properties ofψ2(s)

and ψ3(s) are verified by the direct calculations while those of ψ1(s) follow from
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the following fact:

ψ1(s) = ψ(s) ≥ ψ̃(s), if s is sufficiently near 0 (53)

ψ1(s) = ψ̃(s) ≥ ψ(s), if s is sufficiently near 1 (54)

which is a consequence of ψ(0) = ψ2(0), ψ̃(1) = ψ2(1), and the following lemma.

Lemma 283 For all 0 ≤ s ≤ 1, we have

ψ(s) ≤ ψ2(s) (55)

ψ̃(s) ≤ ψ2(s) (56)

Proof Let us apply the monotonicity property of the quantum quasi-entropy [17, 18]
to Tr[ρ1−sσ s], 0 ≤ s ≤ 1,2 so that we have

e−nψ2(s) =
(

Tr[ρ1−sσ s ]
)n

= Tr[ρ1−s
n σ sn ]

≤ Tr[ρn1−sσ sn ]

≤ (n+ 1)sde−nψ(s) (57)

where we used (27) in the last inequality. Thus, we obtain

ψ(s) ≤ ψ2(s)+ sd
n

log(n+ 1) (58)

for any natural number n, and we have (55) by letting n go to infinity. Exchanging
ρ and σ and replacing s with 1− s in (55), we obtain (56). ��

It follows immediately from Lemma 283 that ψ1(s) ≤ ψ2(s), and it was pointed
out in [14] that we have ψ2(s) ≤ ψ3(s) as a consequence of the Golden-Thompson
inequality (see, e.g., [16, p. 128])

Tr
[
eA+B

]
≤ Tr

[
eAeB

]
(59)

2Comprehensible explanations of the monotonicity property are found in [1, Sec. 7.2] and [14].
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for Hermitian operatorsA and B with the equality if and only if A and B commute.
These facts are stated as the following proposition

Proposition 284 It holds that

ψ1(s) ≤ ψ2(s) ≤ ψ3(s) ∀ 0 ≤ s ≤ 1 (60)

u1(r) ≤ u2(r) ≤ u3(r) ∀ r > 0 (61)

Especially, if ρ and σ do not commute, we have ψ2(s) < ψ2(s) and u2(r) < u3(r).

As mentioned above, u1(r) is an achievable exponent in quantum hypothesis
testing, while it is not known whether u2(r) and u3(r) are achievable or not. It is
interesting to study the achievability of these functions, especially that of u2(r), and
the problem is left open.

6 Concluding Remarks

In the quantum hypothesis problem, we have presented upper bounds on the error
probabilities of the first and the second kind, based on a key operator inequality
satisfied by a density operator and pinching of it. The upper bounds are regarded
as a noncommutative analogue of the Hoeffding bound [9], which is the optimal
bound in classical hypothesis testing, and the upper bounds provide a simple
proof of the direct part of the quantum Stein’s lemma. Compared with [6], the
proof is considerably simple and leads to the exponential convergence of the error
probability of the first kind.

7 Definition of Pinching

In this section, we summarize the definition of pinching (see, e.g., [2, p. 50]) for
readers’ convenience. Pinching is known as a special notion of the conditional
expectation in the field of operator algebra.

Given a Hermitian operator A ∈ L(H), let A = ∑v(A)
i=1 aiEi be its spectral

decomposition, where v(A) is the number of eigenvalues of A mutually different
from others, and each Ei is the projection corresponding to an eigenvalue ai . The
following map defined by using the PVM E = {Ei}v(A)i=1 is called pinching:

EA : B ∈ L(H)→ EA(B) =�
v(A)∑

i=1

EiBEi ∈ L(H). (62)
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The operator EA(B) is also called pinching when no confusion is likely to arise,
and it is sometimes denoted as EE(B). It should be noted here that pinching is the
conditional expectation (with respect to the tracial state) to the commutant of the
∗-subalgebra generated by A or PVM E, since EA(B) is the one and only operator
which satisfies

Tr[BC] = Tr[EA(B)C] (63)

for any operator C ∈ L(H) commuting with A.

8 Key Operator Inequality

The following lemma has played an important role in this lecture. Although the
lemma for a two-valued PVM has been widely used, it appeared in [6] for the general
case. Here, we will show another proof of it for readers’ convenience.

Lemma 285 (Hayashi 2002, [6]) Given a PVMM = {Mi}v(M)i=1 onH, we have for
all ρ ∈ S(H)

ρ ≤ v(M)EM(ρ) (64)

where EM(ρ) is the pinching defined in 7.

Proof First, note that the following map, defined with respect to a non-negative
operator A ∈ L(H), is operator convex

fA : X ∈ L(H)→ X∗AX ∈ L(H) (65)

which is shown by a direct calculation

tfA(X)+(1−t)fA(Y )−fA(tX+(1−t)Y ) = t (1−t)(X−Y )∗A(X−Y ) ≥ 0 (66)

for 0 ≤ t ≤ 1. Using the convexity, the lemma is verified as follows:

1

v(M)2
ρ =

⎛

⎝ 1

v(M)

v(M)∑

i=1

Mi

⎞

⎠ ρ

⎛

⎝ 1

v(M)

v(M)∑

i=1

Mi

⎞

⎠

≤ 1

v(M)

v(M)∑

i=1

MiρMi

= 1

v(M)
EM(ρ). (67)

��
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Part V
Identification and Statistics



Identification via Compressed Data

We introduce and analyze a new coding problem for a correlated source
(Xn, Y n)∞n=1. The observer ofXn can transmit data depending onXn at a prescribed
rate R. Based on these data the observer of Yn tries to identify whether for some
distortion measure ρ (like the Hamming distance) 1

n
ρ(Xn, Y n) ≤ d , a prescribed

fidelity criterion. We investigate as functions of R and d the exponents of two
error probabilities, the probabilities for misacceptance and the probabilities for
misrejection. Our analysis has led to a new method for proving converses. Its
basis is “The Inherently Typical Subset Lemma”. It goes considerably beyond
the “Entropy Characterisation of [2], the ”Image Size Characterisation of [3], and
its extensions in [7]. It is conceivable that it has a strong impact on Multi-user
Information Theory.

1 Introduction and Formulation of the Problem

Introduction
In this lecture (see [4]), we consider a new model: identification via compressed
data. To put it in perspective, let us first review the traditional problems in source
coding theory. Consider the following diagram, where {Xn}∞n=1 is an i.i.d. source
taking values in a finite alphabet X . The encoder output is a binary sequence which
appears at a rate of R bits per symbol. The decoder output is a sequence {X̂n}∞n=1
which takes values in a finite reproduction alphabet Y . In traditional source coding
theory, the decoder is required to recover {Xn}∞n=1 either completely or with some

allowable distortion. That is, the output sequence {X̂n}∞n=1 of the decoder must

© Springer Nature Switzerland AG 2021
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Fig. 1 Source coding

Fig. 2 Joint source coding and identification

satisfy

1

n

n∑

i=1

Eρ(Xi, X̂i ) ≤ d , (1)

for sufficiently large n, where E devotes the expected value,

ρ : X × Y → [0,+∞) (2)

is a distortion measure, and d is the allowable distortion between the source
sequence and the reproduction sequence. The problem is then to determine the
infimum of the rate R such that the system shown in Fig. 1 can operate in such a
way that (1) is satisfied. It is known from rate distortion theory [5], that the infimum
is given by the rate distortion function of the source {Xn}∞1 .

Let us now consider the system shown in Fig. 2. The sequence {Yn}∞1 is a
sequence of i.i.d RV’s taking values from Y . Knowing Yn, the decoder is now
required to be able to identify whether or not the source sequence Xn and the
sequence Yn have some prescribed relation F in such a way that two kinds of
error probabilities satisfy some prescribed conditions. In parallel with rate distortion
theory, we consider in this lecture the following relation F defined by

n−1
n∑

i=1

ρ(Xi, Yi) ≤ d . (3)

That is, the values Xn and Yn are said to have relation F if (3) is satisfied. The
problem we are interested in is to determine the infimum of the rate R such that
the system shown in Fig. 2 can operate so that the error probability of misrejection,
that is the decoder votes for 0 even though F holds and the error probability of
misacceptance, that is the decoder votes for 1 even though F does not hold, satisfy
certain constraints. So the goal of the decoder is to identify whether Xn is close to
Yn (in the sense of relation F) or not. The encoder is cooperative.
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Formal Statement of Problem
First, we present some notation used throughout the lecture. Script capitals X , Y ,
· · · , denote finite sets. The cardinality of a set A is denoted by |A|. The letters P ,
Q, always stand for probability distributions on finite sets. X, Y , · · · , denote RV’s.
The distributions of RV’s X and Y are denoted by PX and PY , respectively. P(X )
stands for the set of all probability distributions on X . The functions log and exp
are understood to be to the base 2. If A is a finite set, then An denotes the set of all
n-tuples an = (a1, · · · , an) from A. If a = (ai) is a finite or infinite sequence of
letters from A, let anm = (am, · · · , an) and, for simplicity, write an1 as an. A similar
convention also applies to RV’s.

Let {(Xn, Yn)}∞n=1 be a sequence of independent drawings of a pair (X, Y ) of
RV’s with joint distribution PXY taking values in X × Y . Let ρ : X × Y → [0,∞)
be a distortion measure. Let {ρn : n = 1, 2, · · · } be a single-letter fidelity criterion
generated by ρ, where

ρn : X n × Yn → [0,+∞)
is a mapping defined by

ρn(x
n, yn) = 1

n

n∑

i=1

ρ(xi, yi),

for any xn ∈ X n and any yn ∈ Yn. Without loss of generality, we assume that the
distortion measure ρ satisfies

max
x∈X

min
y∈Y

ρ(x, y) = 0 . (4)

Let d ≥ 0 satisfy

d < Eρ(X, Y ) . (5)

An nth order identification source (IDS) code Cn is defined as a triple Cn =
(fn, Bn, gn) where Bn ⊂ {0, 1}∗ is a prefix-free set, fn (called an encoder) is a
mapping from X n to Bn, and gn (called a decoder) is a mapping from Yn × Bn
to {0, 1}. Note that, in this definition, the encoder fn can be of variable-length.
The correspondence between an identification source code as defined here and the
system shown in Figure 2 should be clear. When an identification source code
Cn = (fn, Bn, gn) is used in the system shown in Figure 2, the performance can be
measured by three quantities: the resulting average rate per symbol rn(Cn), the first
kind of error probability Pe1(Cn), and the second kind of error probability Pe2(Cn),
where

rn(Cn) = 1

n
E( the length of fn(Xn)) , (6)

Pe1(Cn) = Pr{gn(Y n, fn(Xn)) = 0|ρn(Xn, Y n) ≤ d} , (7)
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and

Pe2(Cn) = Pr{gn(Y n, fn(Xn)) = 1|ρn(Xn, Y n) > d} . (8)

Clearly, Pe1(Cn) and Pe2(Cn) can be interpreted as the probability of misrejection
and the probability of misacceptance (or false identification), respectively.

Let R ∈ [0,+∞), α ∈ (0,+∞], and β ∈ (0,+∞]. A triple (R, α, β) is said
to be achievable with respect to a given d , if for any ε > 0 there exists a sequence
{Cn}∞n=1 nth order IDS codes Cn, such that for sufficiently large n,

rn(Cn) ≤ R + ε , (9)

Pe1(Cn) ≤ 2−n(α−ε) , (10)

and

Pe2(Cn) ≤ 2−n(β−ε) , (11)

where as a convention, α = +∞(β = +∞, resp.) means that the probability of
misrejection (false identification, resp.) is zero. Let R(d) be the set of all achievable
triples. Let R̄(d) denote the closure ofR(d)with respect to the usual topology under
which an → +∞ means that an is equal to ∞ for all but finitely many integers n.
In this lecture, we are interested in determining the region R̄(d). Specifically, we
define for each pair (α, β) ∈ [0,+∞]2,

R∗XY (α, β, d) = inf{R : (R, α, β) ∈ R̄(d)} . (12)

Our main problem is the determination of this function.
Note that since R̄(d) is closed, the infimum in (12) is actually a minimum. It is

easy to see that R∗XY (α, β, d) ≥ R∗XY (α, 0, d) for any β ≥ 0. On the other hand,
since R̄(d) is closed, it follows from (12) that

R∗XY (α, 0, d) = lim
β→0

R∗XY (α, β, d).

Therefore, R∗XY (α, β, d) is continuous at β = 0. A similar result holds for α = 0.

Discussion
In the last subsection we formulated the problem we are interested in as investigating
the trade-off between the rate R and the error exponents α and β. A natural question
to ask at this point is why the problem should be set up in this way. To answer
this question, we first note that since d < Eρ(X, Y ), it follows immediately that
Pr(ρn(Xn, Y n) ≤ d) → 0 as n goes to infinity. Therefore, if instead of the two
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kinds of error probabilities, we use the error probability

Pe(Cn) = Pr(ρn(X
n, Y n) ≤ d)Pe1(Cn)+ Pr(ρn(X

n, Y n) > d)Pe2(Cn)

as a criterion, as studied by Ahlswede and Csizar in their 1-Bit Theorem [1], then
the present problem becomes trivial and no information needs to be sent. This leads
us to consider the two kinds of error probabilities. Second, let us see what happens if
the two kinds of error probabilities are only required to vanish as n goes to infinity.
The following theorem tells us that in this case the minimum achievable rate is
always equal to zero.

Theorem 286 For any distribution PXY on X × Y ,

R0
XY = 0 , (13)

where R0
XY is the infimum of all positive real numbers R such that there exists for

any ε > 0 a sequence {Cn} of IDS codes, where Cn is an nth order IDS code, such
that for sufficiently large n, rn(Cn) ≤ R + ε, and

lim
n→∞Pe1(Cn) = 0 and lim

n→∞Pe2(Cn) = 0 .

Proof of Theorem 286 To prove RoXY = 0, we construct, for sufficiently large n,
an nth order ID source code Cn = (fn, Bn, gn) as follows. For each xn ∈ X n,
the encoder sends xk completely to the decoder. This needs n−1�k log |X |� bits
per source symbol. Observing yn ∈ Yn and receiving xk, the decoder outputs 1
if ρk(xk, yk) ≤ d + δ and 0 otherwise, where δ > 0 is selected so that d + δ <
Eρ(X, Y ). The probability of false identification is given by

Pe2(Cn) = Pr(ρk(X
k, Y k) ≤ d + δ|ρn(Xn, Y n) > d).

Since d < Eρ(X, Y ), it is easy to see that for sufficiently large n

Pe2(Cn) ≤ 2 Pr(ρk(Xk, Y k) ≤ d + δ).

Let Pd denote the set of allQ ∈ P(X × Y) such that

EQρ(X0, Y0) ≤ d

Clearly, Pd is a convex and closed set. Let Q∗ be the unique element of Pd such
that

D(Q∗||PXY ) = min
Q∈Pd

D(Q||PXY ).
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For any ε > 0, select k so large that

Pe2(Cn) ≤ ε

and

Pr(ρk(X̂k, Ŷ k) > d + δ) < ε.,

where (X̂k, Ŷ k) is the sequence of k-times independent drawings of a pair of RV’s
(X̂, Ŷ ) taking values onX×Y with joint distribution of P

X̂Ŷ
= Q∗. Fix such a k. All

remaining is to prove that for sufficiently large n, the probability of misidentification
Pe1(Cn) will be less than ε. To see this is true, note that

Pe1(Cn) = Pr(ρk(Xk, Y k) > d + δ|ρn(Xn, Y n) ≤ d).

By virtue of the conditional limit theorem [6, 9], it is not hard to prove that

lim
n→∞Pe1(Cn) = Pr(ρk(X̂k, Ŷ k) > d + δ) < ε.

This completes the proof of Theorem 286. ��
Therefore the only interesting problem left is to investigate the trade-off of the

rate R and the two error exponents. Indeed, the results we obtained in this lecture
show that the problem proposed in the last subsection is really very interesting and
even led us to develop a new powerful method for proving converses in information
theory.

2 Statement and Discussion of the Main Results

As before, let (X, Y ) be a pair of RV’s with probability distribution PXY taking
values in X × Y . Let d < Eρ(X, Y ) and define

β(d) = inf
μ∈P(d)

D(μ||PXY ) , (14)

where

P(d) = {μ ∈ P(X × Y) :
∑

x∈X ,y∈Y
μ(x, y)ρ(x, y) ≤ d}

andD(.||.) stands for the relative entropy function. It is not hard to see that

lim
n→∞−

1

n
log Pr{ρn(Xn, Y n) ≤ d} = β(d) . (15)
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We distinguish two cases: (i) X and Y are independent; (ii) X and Y are correlated.
To build up ideas we begin with the easier case (i), in which we have conclusive
results.

Independent Case
In this subsection, we assume thatX and Y are independent, that is PXY = PX×PY .
Without loss of generality we further assume that PX(x) > 0 and PY (y) > 0 for
every x ∈ X and every y ∈ Y .

LetU be a RV taking values in some finite set U . Let PXU be the joint distribution
of X and U on X × U . Define

E(PXU , d) = inf[D(P
Ỹ
||PY )+ I (U ∧ Ỹ )] , (16)

where the infimum is taken over all RV’s Ỹ taking values in Y and being jointly
distributed with X, U such that Eρ(X, Ỹ ) ≤ d . By using the same argument as in
the proof of Lemma 2.2. of [5, pp. 124], it is not hard to prove that E(PXU , d) has
the following property.

Lemma 287 E(PXU , d) is non-increasing and convex as a function of d and
continuous as a function of the pair (PXU , d) where PXU ranges over the set
P(X × U).

For any β > 0, we next define,

R(PX,PY , β, d) = inf{I (X ∧ U) : U is a finite valued RV with E(PXU , d) ≥ β} .
(17)

Let

R(PX,PY , 0, d) = lim
β→0+

R(PX,PY , β, d) . (18)

Clearly

R(PX,PY , 0, d) =

inf{I (X ∧ U) : U is a finite valued RV with E(PXU , d) > 0} . (19)

Define

R̄(PX, PY , β, d) = lim
β ′→β−

R(PX,PY , β
′, d) . (20)

This is well defined since R(PX,PY , β, d) as a function of β is non-decreasing.
The following theorem gives a formula for R∗(+∞, β, d).
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Theorem 288 Assume X and Y are independent. Then for any 0 < d < Eρ(X, Y )

and 0 ≤ β ≤ β(d),

R∗XY (+∞, β, d) = R̄(PX, PY , β, d) . (21)

Remark At this point, let us pause to give a few comments on the issue concerning
the computation of R(PX,PY , β, d). In the following subsection, we shall compute
R(PX,PY , β, d) in the binary symmetric case. It turns out that in this special
case, R(PX,PY , β, d) can be expressed in terms of the rate-distortion function of
the source X. In general, however, the computation of this function may be very
difficult. It seems to the authors that there is no easy way to apply the support lemma
[2, 7, Chapter 3] to upper bound the cardinality of the set U . Instead, we shall take
an alternative approach to the problem. We define for each integer k ≥ 1, and any
β > 0

Rk(PX, PY , β, d) = inf{I (X ∧ U) (22)

where U is a RV taking at most k values with E(PXU , d) ≥ β.
For β = 0, Rk(PX, PY , 0, d) is defined similarly. Clearly, Rk(PX, PY , β, d) as

a function of k is non-increasing and converges to R(PX,PY , β, d) as k goes to
infinity. Later on, we shall estimate the rate at which Rk(PX, PY , β, d) converges to
R(PX,PY , β, d) to provide a partial solution to the problem of the computation of
R(PX,PY , β, d).

To give a general formula for the function R∗XY (α, β, d), we next modify the
definition of the quantities E(PXU , d) and R(PX,PY , β, d) as follows. For any γ ≥
0 and any α ≥ 0, define

E(PXU , α, γ, d) = inf[D(PỸ ||PY )+ I (U ∧ Ỹ )] , (23)

where the infimum is taken over all RV’s Ỹ taking values in Y and being jointly
distributed with X, U such that Eρ(X, Ỹ ) ≤ d and

D(PỸ ||PY )+ I (XU ∧ Ỹ ) ≤ γ + α . (24)

Here we make use of the convention that the infimum taken over an empty set is
+∞. Let

β(PX, d) = inf
Eρ(X,Ỹ )≤d

D(PỸ ||PY )+ I (X ∧ Ỹ ) , (25)

where the infimum is taken over all RV’s Ỹ taking values in Y such that Eρ(X, Ỹ ) ≤
d . Then it is easy to see that in case γ + α < β(PX, d) the following holds

E(PXU , α, γ, d) = +∞ (26)
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for any RV U . In analogy to Lemma 287, it is not hard to see that E(PXU , α, γ, d)
has the following property.

Lemma 289 E(PXU , α, γ, d) is non-increasing and convex as a function of α ( γ
or d resp.) and continuous as a function of the quadruple (PXU , α, γ, d), where the
quadruple (PXU , α, γ, d) ranges over all quadruples satisfying γ + α > β(PX, d),
α > 0 and d > 0.

Similarly to (17) and (18), we define for any β > 0

R(PX,PY , α, γ, β, d) = inf{I (X ∧ U) (27)

where U is a finite valued RV with E(PXU , α, γ, d) ≥ β.
Let

R(PX,PY , α, γ, 0, d) = lim
β→0+

R(PX,PY , α, γ, β, d) . (28)

Define

R̄(PX, PY , α, γ, β, d) = lim
β ′→β−

R(PX,PY , α, γ, β
′, d) . (29)

The following theorem gives a general formula for R∗XY (α, β, d).

Theorem 290 Assume that X and Y are independent, then for any 0 < d <

Eρ(X, Y ), 0 < α �= β(PX, d)− β(d), and 0 ≤ β ≤ β(d), the following holds

R∗XY (α, β, d) = R̄(PX, PY , α, β(d), β, d) . (30)

Remark Obviously, β(d) ≤ β(PX, d). If β(d) < β(PX, d), then it follows
from (26) and (27) that for any α < β(PX, d)− β(d) and β ≥ 0

R(PX,PY , α, β(d), β, d) = 0 . (31)

On the other hand, it is easy to see that in this special case, R∗XY (α, β, d) = 0
for any β ∈ [0,+∞]. (This will become clear when we prove the direct part of
Theorem 290.) Furthermore, it follows from the definition of R∗XY (α, β, d) that as a
function of α it is left continuous. Thus it will suffice for us to prove Theorem 290
for α > β(PX, d)− β(d).

Note that Theorem 288 is actually a special case of Theorem 290, because for
α = +∞

R(PX,PY , α, β(d), β, d) = R(PX,PY , β, d) . (32)

The reasons why we state Theorems 288 and 290 separately can be seen in the
following sections. Similarly to (22), we can also define Rk(PX, PY , α, γ, β, d) for
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each k ≥ 1. We conclude this section with pointing out the following facts on
Rk(PX, PY , β, d) and Rk(PX, PY , α, γ, β, d).

1. Rk(PX, PY , β, d) as a function of the triple (PX, β, d) is lower semi-continuous.
2. Rk(PX, PY , β, d) as a function of β is left continuous.
3. Rk(PX, PY , α, γ, β, d) as a function of the quintuple (PX, α, γ, β, d) is lower

semi-continuous in the range γ + α > β(PX, d), α > 0 and d > 0.
4. Rk(PX, PY , α, γ, β, d) as a function of β is left continuous if γ +α > β(PX, d).
Example: The Binary Symmetric Case
In this subsection, we consider the binary symmetric case where X = Y = {0, 1},
X and Y are independent and uniformly distributed over {0, 1}, and the distortion
measure ρ is the Hamming distance.

We first evaluate R∗XY (+∞, β, d) from Theorem 288 and then show as an
example how to prove Theorem 288 in this special case. Note that in this case,
β(d) = 1− h(d) where h(·) is the binary entropy function.

Theorem 291 For any 0 ≤ d < 1
2 and 0 ≤ β ≤ β(d),

R∗XY (+∞, β, d) = 1− h(dβ − d), (33)

where dβ ≤ 1
2 satisfies h(dβ) = 1− β.

Proof It is easy to see that 1− h(dβ − d) is a continuous function of β. In view of
Theorem 288, it suffices to prove that for any 0 < β < β(d)

R(PX, PY , β, d) = 1− h(dβ − d) . (34)

Let U be a RV taking values uniformly in {0, 1} and such that

I (X ∧ U) = 1− h(dβ − d) and Eρ(X,U) ≤ dβ − d . (35)

Since X takes values uniformly in {0, 1}, such a RV exists [6]. It is easy to verify
that

E(PXU , d) = inf
Eρ(X,Ỹ )≤d

[D(PỸ ||PY )+ I (U ∧ Ỹ )]

= inf
Eρ(X,Ỹ )≤d

[1−H(Ỹ |U)]

≥ inf
Eρ(X,Ỹ )≤d

I (U ∧ Ỹ )

≥ inf
Eρ(U,Ỹ )≤dβ

I (U ∧ Ỹ )

= 1− h(dβ)
= β (36)
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where the last inequality is due to (35). Thus it follows from (17) that

R(PX,PY , β, d) ≤ I (X ∧ U) = 1− h(dβ − d) .

To prove the reverse inequality of (37), let U be any RV taking values in some finite
set U such that E(PXU , d) ≥ β. Since X takes values uniformly in {0, 1}, it suffices
to prove that

H(X|U) ≤ h(dβ − d) . (37)

To this end, we solve the following optimization problem

inf
Eρ(X,Ỹ )≤d

[1−H(Ỹ |U)] . (38)

For each u ∈ U , let xu be an element of {0, 1} such that PX|U(xu|u) ≤ 1
2 , where

PX|U(xu|u) denotes the conditional probability of X = xu given U = u. Since

E(PXU , d) ≥ β > 0 , (39)

it is not hard to see that

∑

u∈U
PU(u)(

1

2
− PX|U (xu|u)) > d . (40)

From (40), it follows that the optimization problem (38) is equivalent to the
following optimization problem

inf
Eρ(X,Ỹ )=d

[1−H(Ỹ |U)] . (41)

Since the objective function 1−H(Ỹ |U) depends only on PỸ |U(xu|u), it is not hard
to see that the optimization problem (41) can be reformulated as maximizing

∑

u

PU(u)h(PỸ |U(xu|u)) (42)

subject to

∑

u

PU(u)|PX|U(xu|u))− PỸ |U(xu|u))| = d (43)

and

0 ≤ PỸ |U(xu|u)) ≤ 1 . (44)
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Since PX|U(xu|u)) ≤ 1
2 , conditions (43) and (44) can be replaced by

∑

u

PU(u)(PỸ |U(xu|u))− PX|U(xu|u))) = d (45)

and

PX|U(xu|u)) ≤ PỸ |U(xu|u)) ≤ 1 . (46)

The standard Lagrange Multiplier Method can be used to show that the maximum
of the optimization problem given by (42), (45), and (46) is achieved at the point
{P
Ỹ |U(xu|u))} for which there exists a λ > 0 such that

(i) PỸ |U(xu|u)) = λ for any u ∈ U satisfying PX|U(xu|u)) ≤ λ;
(ii) PỸ |U(xu|u)) = PX|U(xu|u)) for any u ∈ U satisfying PX|U(xu|u)) > λ;

(iii)

∑

u:PX|U (xu|u)≤λ
PU(u)[λ− PX|U (xu|u))] = d . (47)

Clearly, this is something like water-filling. Since E(PXU , d) ≥ β, it follows that

∑

u:PX|U (xu|u)≤λ
PU(u)h(λ)+

∑

u:PX|U (xu|u)>λ
PU(u)h(PX|U(xu|u)) ≤ 1− β . (48)

We now claim that (37) holds. Otherwise, say,

H(X|U) =
∑

u

PU(u)h(PX|U(xu|u)) > h(dβ − d) . (49)

Then, in view of (40), (47) and the fact that the derivative of the function h(s) is
strictly decreasing over the interval s ∈ (0, 1

2 ], we can see that

∑

u:PX|U (xu|u)≤λ
PU(u)h(λ)+

∑

u:PX|U (xu|u)>λ
PU(u)h(PX|U(xu|u)) > h(dβ)

= 1− β . (50)

This contradicts (48). From (37) and (34) follows immediately. This completes the
proof of Theorem 291. ��

Note that 1− h(dβ − d) is the rate distortion function of the source X evaluated
at the point dβ − d . In some sense, therefore, Theorem 291 shows that there exists a
close relationship between the rate R∗XY (+∞, β, d) and the rate distortion function
of X.
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Next we outline the proof of Theorem 288 in the binary symmetric case. The
direct part is easy. For any d ′ < dβ − d , roughly speaking, 2n(1−h(d ′)) balls of
radius nd ′ can almost cover the whole space. For each xn ∈ {0, 1}n, we send simply
the center of the ball in which xn lies. Upon receiving this center, the decoder
first calculates the Hamming distance between yn and the center, and then outputs
1 if the distance is ≤ n(d ′ + d) and 0 otherwise. It is not hard to see that the
misrejection probability is guaranteed to be zero, and the misacceptance probability
is upper bounded by 2−n(1−h(d ′+d)), which is less than or equal to 2−nβ . This implies
R∗XY (+∞, β, d) ≤ 1− h(dβ − d).

To prove the converse part, let (R,+∞, β) be achievable, where β > 0. By
definition, there exists for any ε > 0 and sufficiently large n an nth-order IDS code
Cn = (fn, Bn, gn) such that

rn(Cn) ≤ R + ε , Pe1(Cn) = 0 , and Pe2(Cn) ≤ 2−n(β−ε) . (51)

For any bn ∈ Bn, let

S(bn) = {xn ∈ X n|fn(xn) = bn}

and

Sd(bn) = {yn ∈ Yn| there exist xn ∈ S(bn) : ρn(xn, yn) ≤ d } .

From (51) and the Markov inequality, it follows that with very high probability
bn ∈ Bn satisfies

Pr{Yn ∈ Sd(bn)} ≤ 2−n(β−2ε) .

To continue our derivation, we use at this point an isoperimetric theorem in
combinatorial extremal theory [10] which says roughly that for any subset A ⊂
{0, 1}n with |A| = ∑k

i=0

(
n
i

)
for some k, the cardinality of the Hamming l-

neighbourhood�lA of A is minimized when A is a sphere, where for any l ≥ 0

�lA = {yn ∈ {0, 1}n| there exist xn ∈ A : nρn(xn, yn) ≤ l} .

Using this result, one can prove that with very high probability bn ∈ Bn satisfies
|S(bn)| ≤ 2nh(dβ,ε−d), where dβ,ε ≤ 1/2 satisfies h(dβ,ε) = 1 − β + 2ε. This
implies the converse part of Theorem 288.

The above argument is typical. It will be generalized to the general case in
the subsequent sections. What makes the proof of the converse part easy is the
solution of the isopermetric problem. Unfortunately, the solution of the isopermetric
problem is very difficult in general. For the simplest distortion measure—Hamming
distance—the solution is known only in the binary case and even for general
alphabets, an asymptotically optimal solution can be derived using the image—size
characteristization of [3] (see also [7]) In Sect. 3, we develop a new method which
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yields in particular the asymptotic solution of the general isopermetric problem
for arbitrary finite alphabets and arbitrary distortion measures. Although the exact
solution of the problem is extremly difficult, the asymptotic solution is good enough
for our identification problem at hand.

Correlated Case
In this subsection, X and Y may be correlated. Unlike the independent case, only
partial results on R∗XY (+∞, 0, d) are obtained in this general case. First note that
when X and Y are independent,R(PX,PY , 0, d) given by (19) can be rewritten as

R(PX,PY , 0, d) = inf
U
I (X ∧ U) (52)

where the infimum is taken over all RV’s U taking values in some finite set such
that

Eρ̄(PX|U(·|U), PY ) > d (53)

where ρ̄(PX|U(·|U), PY ) denotes the ρ̄—distance between the conditional distribu-
tion PX|U(·|U) and the distribution PY of Y . (For the definition of ρ̄ distance, we
refer to [8]). The expression (52) of R(PX,PY , 0, d) will be extended to the general
case.

Let W(·|·) : X × Y → [0, 1] be a stochastic matrix such that for any x ∈ X
and any y ∈ Y , W(y|x) is the conditional probability of Y = y given X = x. A
stochastic matrix Ŵ (·|·) : X × Y → [0, 1] is said to be absolutely continuous with
respect to W if for any x ∈ X and y ∈ Y , W(y|x) = 0 implies Ŵ (y|x) = 0. Let
X0(Y0, resp.) denote the projection of X ×Y onto X (Y , resp.). For any P ∈ P(X ),
define

ρ̄e(P ) = inf
Q

EQ ρ(X0, Y0), (54)

where the infimum is taken over allQ ∈ P(X × Y) such that

(i) The marginal ofQ on X is P ;
(ii) The marginal ofQ on Y is PW , where PW ∈ P(Y) is given by

PW(y) =
∑

x∈X
P(x)W(y|x), y ∈ Y (55)

(iii) The transition probability matrix from X0 to Y0 under the distribution Q is
absolutely continuous with respect to W .

Clearly, if W(y|x) > 0 for any x ∈ X and any y ∈ Y , then ρ̄e(P ) is just the
ρ̄-distance between P and PW . For any 0 < d < Eρ(X, Y ), we next define

R̃(PXY , 0, d) = inf
U
[I (X ∧ U)− I (Y ∧ U)], (56)
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where the infimum is taken over all RV’s U taking values in some finite set U such
that (i) U → X→ Y forms a Markov chain, and (ii) Eρ̄e(PX|U(·|U), PY ) > d . We
will prove that R̃(PXY , 0, d) has the following property.

Lemma 292 R̃(PXY , 0, d) as a function of d is convex over the interval 0 < d <
Eρ(X, Y ). Moreover, in evaluating R̃(PXY , 0, d) from (56), it suffices to consider
only sets U with |U | ≤ |X | + 2.

Proof of Lemma 292 For i = 1, 2, let (Ui,Xi, Yi) be a random vector such that

(i) PXiYi = PXY ;
(ii) Ui → Xi → Yi forms a Markov chain;

(iii) Eρ̄e(PXi |Ui (·|Ui)) > di.
Let I be a RV taking values in {1, 2} with Pr(I = 1) = λ. I is assumed to be
independent of (Ui,Xi, Yi) for i = 1, 2. Define

X̃ = XI , Ỹ = YI , and U = (UI , I).

Clearly, PX̃Ỹ = PXY and U → X̃ → Ỹ forms a Markov chain. Furthermore, it is
not hard to see that

Eρ̄e(PX̃|U(·|U)) = λEρ̄e(PX1|U1(·|U1))+ (1−λ)Eρ̄e(PX2|U2(·|U2)) > λd1+ (1−λ)d2

and

I (X̃∧U)−I (Ỹ∧U) = λ(I (X1∧U1)−I (Y1∧U1))+(1−λ)(I (X2∧U2)−I (Y2∧U2)).

From this and the definition of R̃(PXY , 0, d), it follows that R̃(PXY , 0, d) as a
function of d is convex.

To prove the second part of Lemma 292, first note that ρ̄e(P ) is convex as a
function of P overP(X ). Since P(X ) is a convex polytope, it follows from [11] that
ρ̄e(P ) is upper semicontinuous on P(X ). On the other hand, from the definition of
ρ̄e(P ), it is easy to prove that ρ̄e(P ) is lower semicontinuous on P(X ). Therefore,
ρ̄e(P ) is continuous on P(X ). Applying the support lemma to the definition of
R̃(PXY , 0, d) yields immediately the second result of Lemma 292. ��

Similarly to (56), we define for any 0 < d < E(ρ(X, Y ))

R(PXY , 0, d) = inf
U
I (X ∧ U) (57)

where the infimum is taken over all RV’s U taking values in some finite set U such
that (i) U → X → Y forms a Markov chain, (ii) Eρ̄(PX|U(·|U), PY |U(·|U)) > d .
Obviously, (57) is the extension of (52) to the general case. It is easy to see that a
similar result to Lemma 292 holds also for R(PXY , 0, d). The following theorem
gives an upper and a lower bound for R∗XY (+∞, 0, d) in the general case that X
and Y may be correlated.
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Theorem 293 For any 0 < d < Eρ(X, Y ),

R̃(PXY , 0, d) ≤ R∗XY (+∞, 0, d) ≤ R(PXY , 0, d). (58)

Note that when X and Y are independent, the lower and the upper bounds are
the same in Theorem 293 and equal to R(PX,PY , 0, d). Considering the expression
given by (56), a natural question to ask at this point is whether the lower bound
is always tight. Unfortunately, the following example shows that this is not true in
general.

Example LetX,Y,Z be three RV’s taking values in finite sets X , Y , Z respectively,
such that

(i) Y is independent of X,Z,
(ii) PXZ(x, z) > 0 for any pair (x, z) ∈ X ×Z .

Assume the decoder in the system shown in Figure 2 now knows (Y n, Zn) and
wants to identify whether ρn(Xn, Y n) ≤ d . In another word, in addition to Yn, the
decoder knows side informationZn which is correlated withXn. Since PXZ(x, z) >
0 for all pairs (x, z) and the distortion measure is irrelevant to Z, it is not hard to
see that the side information is of no use and the minimum rate in bits per source
symbol required to guarantee the zero probability of misrejection is still equal to
R∗XY (+∞, 0, d) = R(PXY , 0, d). On the other hand, if we think of (Y,Z) as one RV
defined on Y×Z and extend ρ from X×Y to X×(Y×Z) by letting ρ(x, (y, z)) =
ρ(x, y) for all triples (x, y, z), then we have

R̃(PX(YZ), 0, d) = inf
U
[I (X ∧ U)− I (YZ ∧ U))]

= inf
U
[I (X ∧ U)− I (Z ∧ U)], (59)

where the infimum is taken over all RV’s U taking values in some finite set U such
that (i) U → X → (YZ) forms a Markov chain, or equivalently U → X →
Z forms a Markov chain, (ii) Eρ̄(PX|U(·|U), PYZ|U(·|U)) > d , or equivalently
Eρ̄(PX|U (·|U), PY ) > d . From (52), (57), and (59), it follows that if X and Z are
highly correlated, then in general,

R̃(PX(YZ), 0, d) < R(PXY , 0, d) = R(PX(YZ), 0, d). (60)

This shows that, in this case, the upper boundR(PX(YZ), 0, d) is tight, but the lower
bound R̃(PX(YZ), 0, d) is not. �

The example shows a case where side information is of no use to reduce the
transmission rate R in the system shown in Figure 2. Let us now look at a case
where side information does help in reducing the transmission rate R.

Let X,Y,Z be three RV’s taking values on finite sets X , Y , Z respectively,
such that X → Z → Y form a Markov chain. Let {Xn,Zn, Y n} be n independent



3 Inherently Typical Subset Lemma 599

drawings of the triple X,Z, Y . Assume that both the encoder and the decoder now
know the side information Zn. The decoder is still required to identify whether
ρn(X

n, Y n) ≤ d with zero probability of misrejection. Clearly, this is a special case
of the situation we considered in Theorem 293, if we think of (X,Z) and (Y,Z) as
two RV’s, and extend ρ(x, y) to ρ((x, z), (y, z′)) accordingly. Interestingly enough,
in this special case the side information does help in reducing the transmission rate.

Theorem 294 If X → Z → Y form a Markov chain, then for any 0 < d <

Eρ(X, Y ),

R∗(XZ),(YZ)(+∞, 0, d) = R̃(P(XZ)(YZ), 0, d). (61)

In contrast to the example, Theorem 294 gives us another example for which the
lower bound of (58) is tight, but the corresponding upper bound is not.

We conclude this subsection with pointing out that if X → Z → Y forms a
Markov chain, then R̃(P(XZ)(YZ), 0, d) can be rewritten as

R̃(P(XZ)(YZ), 0, d) = inf
U
I (X ∧ U |Z) , (62)

where the infimum is taken over all RV’s U taking values in some finite
set U such that (i) U → (X,Z) → Y forms a Markov chain; and (ii)
Eρ̄(PX|UZ(·|UZ), PY |Z(·|Z)) > d .

3 Inherently Typical Subset Lemma

This section is devoted to develop a new method for proving converses, which can
be used to prove the converse parts of Theorem 288 and 3 and to solve the general
isoperimetric problem (a subject to which we intend to return in another paper).
The main idea of this method is embodied in what we call inherently typical subset
lemma.

For each integer m > 0, let Pm(X ) denote the set of all m-ED’s on X , that is

Pm(X ) = {P ∈ P(X ) : P(x) ∈ {0, 1

m
,

2

m
, · · · , m− 1

m
, 1} ∀ x ∈ X }. (63)

Let Um = {u1, · · · , u|Pm(X )|} be an arbitrary set. Since |Um| = |Pm(X )|, we
can associate with each P ∈ Pm(X ) an element u ∈ Um so that elements of
Um associated with distinct m-ED’s are distinct. If u ∈ Um is associated with
P ∈ Pm(X ), for convenience, we shall write P as P(·|u). In terms of this notation,
we have

Pm(X ) = {P(·|u) : u ∈ Um}. (64)
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Let A be any subset of X n. For any 0 ≤ i ≤ n− 1, define

Ai = {xi ∈ X i : xi is a prefix of some element ofA}. (65)

Here, we make use of the convention that A0 = {�}, where � is the empty string.
Assume that the integerm is greater than or equal to 216|X |2 .

Definition 295 A ⊂ X n is called m-inherently typical if there exists a mapping

φ : ∪n−1
i=0Ai → Um (66)

such that the following hold:

(i) There exists an n-EDQ ∈ Pn(X × Um) such that for any xn ∈ A,

Pxnun(x, u) = Q(x, u), x ∈ X , u ∈ Um (67)

where un = (u1, u2, · · · , un) ∈ Unm is a sequence defined by ui = φ(xi−1) for
all i : 1 ≤ i ≤ n, (Such a sequence is called a sequence associated with xn

through φ) and for any x ∈ X and any u ∈ Um,

Pxnun(x, u) = 1

n
|{i : (xi, ui) = (x, u)}|. (68)

(ii) If (X̂, Û) is a pair of RV’s taking values in X × Um with joint distribution Q,
then

1

n
log |A| ≤ H(X̂|Û) ≤ 1

n
log |A| + log2m

m
. (69)

Let A ⊂ X n be m-inherently typical. Let φ be the corresponding mapping such
that (67) and (69) are satisfied. For any random vector X̃n = (X̃1, · · · , X̃n) taking
values in A, we define another random vector Ũn = (Ũ1, · · · , Ũn) by letting Ũi =
φ(X̃i−1) for all i : 1 ≤ i ≤ n. Clearly (67) implies that with probability one, the
following holds:

PX̃nŨn(x, u) =
1

n

n∑

i=1

Pr{X̃i = x, Ũi = u} x ∈ X , u ∈ Um. (70)

Note that the left hand side of (70) is the frequency, i.e. the average over time,
and the right hand side is the average probability over ensemble. Intuitively,
therefore, (70) just says that with probability one, the average over time is equal to
the average over the ensemble. This is where the word “inherently typical” comes
from. In typical applications, (see the following sections), the random vector X̃n is
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often assumed to be uniformly distributed on A. In this case

1

n
log |A| = 1

n
H(X̃n)

= 1

n

n∑

i=1

H(X̃i |X̃i−1). (71)

Let I be a RV taking values uniformly in {1, · · · , n} and independent of X̃n. Let
X̃ = X̃I and U = (X̃I−1, I ), then

1

n
log |A| = H(X̃|U). (72)

If we extend the mapping φ in the obvious way so that φ(U) = φ(X̃I−1) whenever
U = (X̃I−1, I ), then it is not hard to see that X̃ and Ũ have the joint distribution
PX̃Ũ = Q where Ũ = φ(U). Therefore, (69) just says that

H(X̃|U) ≤ H(X̃|Ũ) ≤ H(X̃|U)+ log2m

m
. (73)

Lemma 296 (Inherently Typical Subset Lemma) For any m ≥ 216|X |2, n
satisfying ((m + 1)5|X |+4 ln(n + 1))/n ≤ 1, and any A ⊂ X n, there exists an
m-inherently typical subset Ã ⊂ A such that

1

n
log

|A|
|Ã| ≤ |X |(m+ 1)|X | log(n+ 1)

n
. (74)

Before proving Lemma 296, we remind the reader of the following two basic
inequalities.

Lemma 297 (Pinsker Inequality, [11]) For any two distributions P1, P2 ∈
P(X ),

D(P1||P2) ≥ 1

2 ln 2
||P1 − P2||2 .

Lemma 298 (Folklore, Lemma 1.2.7 of [7]) If P1 and P2 are two distributions on
X such that

||P1 − P2|| ≤  ≤ 1

2
,
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then

|H(P1)−H(P2)| ≤ − log
 

|X | .

Proof of Lemma 296 Let A be any subset of X n. Let X̃n = (X̃1, · · · , X̃n) be a
random vector taking values uniformly in A. Let p denote the distribution of X̃n on
A. Define a mapping φ from ∪n−1

i=0Ai to Um so that for any xi ∈ Ai , 0 ≤ i ≤ n− 1,

||p(·|xi)− P(·|φ(xi))|| ≤ 2|X |
m

, (75)

where p(·|xi) is the conditional distribution of X̃i+1 given X̃i = xi , P(·|φ(xi)) is
the distribution in Pm(X ) corresponding to u = φ(xi)(see (64)), and || · || denotes
the variational distance between distributions. It is easy to see that such a mapping
exists. (Essentially, this says that we use m-ED’s to quantize distributions p(·|xi),
xi ∈ Ai and 0 ≤ i ≤ n− 1.) For each n-ED Q̄ ∈ Pn(X × Um), let AQ̄ ⊂ A consist
of all sequences xn ∈ A such that

Pxnun(x, u) = Q̄(x, u), x ∈ X and u ∈ Um ,

where un ∈ Unm is the sequence associated with xn through the mapping φ and

Pxnun(x, u) = 1

n
|{i : (xi, ui) = (x, u)}|.

Clearly, {AQ̄ : Q̄ ∈ Pn(X × Um)} is a partition of A. LetQ ∈ Pn(X × Um) satisfy

|AQ| = max{|AQ̄| : Q̄ ∈ Pn(X × Um)} . (76)

We claim that Ã = AQ is the desired subset in Lemma 296. That is, that Ã
satisfies (74) and is an m-inherently typical subset under the mapping φ. To see
this, first note that

|A| =
∑

Q̄∈Pn(X×Um)
|AQ̄| ≤ |Pn(X × Um)||AQ| ≤ (n+ 1)|X ||Um||Ã| . (77)

This, together with |Um| ≤ (m+1)|X |, implies immediately (74). On the other hand,
by the definition of AQ, it follows that for any xn ∈ Ã

Pxnun(x, u) = Q(x, u), x ∈ X , u ∈ Um, (78)

where un is the sequence associated with xn through φ. Therefore, all remaining to
be proved is that if (X̂, Û) is a random vector taking values on X × Um with joint
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distribution P
X̂Û

= Q, then

1

n
log |Ã| ≤ H(X̂|Û) ≤ 1

n
log |Ã| + log2m

m
. (79)

To prove (79), let X̄n = (X̄1, · · · , X̄n) be a random vector taking values uniformly
in Ã. Let p̃ denotes the distribution of X̄n on Ã. As in the analysis following
definition 1, let I be a RV taking values uniformly on {1, · · · , n}. Let X̄ = X̄I ,
U = (X̄I−1, I ) and Ū = φ(U) where φ(U) = φ(X̄I−1) wheneverU = (X̄I−1, I ).
Then

1

n
log |Ã| = H(X̄|U) ≤ H(X̄|Ū). (80)

In view of (78), it is easy to see that X̄ and Ū have the joint distribution PX̄Ū = Q.
Consequently, in the following it suffices to prove

H(X̄|Ū) ≤ H(X̄|U)+ log2m

m
. (81)

To this end, note that for any x ∈ X and u ∈ Um,

Q(x, u) = PX̄Ū (x, u)

= 1

n

n∑

i=1

Pr(X̄i = x, φ(X̄i−1) = u)

=
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

δ(xi, x)δ(φ(x
i−1), u)

=
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

p̃(x|xi−1)δ(φ(xi−1), u) , (82)

where δ(·, ·) is the Kronecker Delta function, that is

δ(z, z′) =
{

1 if z = z′
0 otherwise

and p̃(x|xi−1) is the conditional probability of X̄i = x given X̄i−1 = xi−1. Since
for any xn ∈ Ã,

PŪ (u) =
1

n

n∑

i=1

δ(φ(xi−1), u), u ∈ Um
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it follows from (82) that

PX̄Ū (x, u)− PŪ (u)P (x|u) =
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

(
p̃(x|xi−1)− P(x|u)

)
δ(φ(xi−1, u).

(83)

This implies

∑

x∈X
|PX̄Ū (x, u)− PŪ (u)P (x|u)| ≤

∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

||p̃(·|xi−1)− P(·|u)||δ(φ(xi−1), u).

(84)

On the other hand, from (74) it follows that

1

n

∑

xn∈Ã
p̃(xn) log

p̃(xn)

p(xn)
=
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

log
p̃(xi |xi−1)

p(xi |xi−1)

=
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

D(p̃(·|xi−1)||p(·|xi−1))

≤ |X |(m+ 1)|X | log(n+ 1)

n
. (85)

Using Pinsker’s inequality, we get

∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

||p̃(·|xi−1)−p(·|xi−1)||2 ≤ 2|X |(m+ 1)|X | ln(n+ 1)

n
. (86)

Applying Schwartz inequality to (86) yields

∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

||p̃(·|xi−1)− p(·|xi−1)|| ≤
[

2|X |(m+ 1)|X | ln(n+ 1)

n

] 1
2

.

(87)

Going back to (84), we get

∑

x∈X
|PX̄Ū (x, u)− PŪ (u)P (x|u)|

≤
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

||p̃(·|xi−1)− p(·|xi−1)||δ(φ(xi−1), u)
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+
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

||p(·|xi−1)− P(·|u)||δ(φ(xi−1), u)

≤
[

2|X |(m+ 1)|X |
ln(n+ 1)

n

] 1
2 + 2|X |

m
PŪ (u) , (88)

where the last inequality is due to (87) and (75). Therefore, if

PŪ (u) ≥
[

2|X |(m+ 1)|X |
ln(n+ 1)

n

] 1
4

,

then

||PX̄|Ū (·|u)− P(·|u)|| ≤
[

2|X |(m+ 1)|X | ln(n+ 1)

n

] 1
4 + 2|X |

m

≤ 4|X |
m

, (89)

where PX̄Ū (·|u) is the conditional probability distribution of X̄ given Ū = u and
the last inequality is due to the assumption that [(m + 1)5|X |+4 ln(n + 1)]/n ≤ 1.
From (89) and Lemma 298, we have

H(X̄|Ū) =
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

H(PX̄|Ū (·|φ(xi−1)))

≤
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

H(P(·|φ(xi−1)))+ 4|X | logm

m

+ |Um|
[

2|X |(m+ 1)|X | log(n+ 1)

n

] 1
4

log |X |

≤∗
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

H(P(·|φ(xi−1)))+ (4|X | + 1)
logm

m

≤∗∗
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

H(p(·|xi−1))+ (6|X | + 1)
logm

m
, (90)

where the inequality * is due to the assumption that [(m+1)5|X |+4 ln(n+1)]/n ≤ 1
andm ≥ 216|X |2 , and inequality ** is due to (75) and Lemma 298. To continue (90),



606 Identification via Compressed Data

we next compareH(p(·|xi−1)) with H(p̃(·|xi−1)). Let

F =
{
(i, xi−1) : 1 ≤ i ≤ n, xn ∈ Ã,

‖p̃(·|xi−1)− p(·|xi−1)‖ ≥
[

2|X |(m+ 1)|X |
ln(n+ 1)

n

] 1
4
}
.

From (87) and the Markov inequality,

∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

1F (i, xn) ≤ [2|X |(m+ 1)|X | log(n+ 1)

n
] 1

4 , (91)

where 1F denotes the indicator function of F . From (91) and Lemma 298, it is not
hard to verify that

∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

H(p(·|xi−1)) ≤
∑

xn∈Ã
p̃(xn)

1

n

n∑

i=1

H(p̃(·|xi−1))

+ 2|X |2
m

+ 2|X | logm

m

= H(X̄|U)+ 2|X |2
m

+ 2|X | logm

m

≤ H(X̄|U)+ (2|X | + 1)
logm

m
. (92)

Combining (92) with (90) yields

H(X̄|Ū) ≤ H(X̄|U)+ (8|X | + 2)
logm

m

≤ H(X̄|U)+ log2m

m
, (93)

where the last inequality is due to the assumption that m > 216|X |2 . This completes
the proof of (81) and hence the proof of Lemma 296. ��

Note that Lemma 296 is proved by estimating the variational distance between
the distribution PX̄|Ū (·|φ(xi−1)) and p̃(·|xi−1) where xi−1 ∈ Ãi−1. Roughly
speaking, the attempt we have made in the proof of Lemma 296 is to show that
the variational distance between these two distributions is roughly upper bounded by
log2 m
m

. In fact, this is just what the second condition of the definition ofm-inherently
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typical subset implies. To see this, let us go back to (73), whereA ⊂ X n is assumed
to be m-inherently typical. It is not hard to see that (73) can be rewritten as

H(X̃|Ũ)−H(X̃|U) =
∑

xn∈A
p(xn)

1

n

n∑

i=1

D(p(·|xi−1)||PX̃|Ũ (·|φ(xi−1)))

≤ log2m

m
. (94)

Using Pinsker’s inequality once again, we get

∑

xn∈A
p(xn)

1

n

n∑

i=1

||p(·|xi−1)− PX̃|Ũ (·|φ(xi−1)))||2 ≤ 2
log2m

m
(95)

which, together with Schwartz inequality, implies

∑

xn∈A
p(xn)

1

n

n∑

i=1

||p(·|xi−1)− PX̃|Ũ (·|φ(xi−1))|| ≤
√

2
log2m

m
. (96)

This means that the average variational distance between PX̃|Ũ (·|φ(xi−1)) and

p(·|xi−1) is upper bounded by
√

2 log2m
m

. Therefore, the second condition in the
definition of m-inherently typical subsets is also stringent.

4 Proofs of Theorems 288 and 290

In this section, we assume X and Y are independent. First of all, let us review some
basic facts about ED’s and typical sequences. Let U be a RV taking values on some
finite set U . Let {γn} be a sequence of positive numbers such that γn → 0 and√
nγn → ∞ as n → +∞. Recall that Pn(U) denotes the set of all n-ED’s on U .

For each un ∈ Un, the ED Pun of un is defined by

Pun(u) = 1

n
|{i : ui = u}|, u ∈ U .

For each P ∈ Pn(U), let

T nP (U) = {un ∈ Un : Pun = P }
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and denote by Vn(P,U×X ) the set of all stochastic matricesV = (V (x|u))x∈X ,u∈U
such that

V (x|u) ∈ {0, 1

nP(u)
,

2

nP(u)
, · · · , 1} for all x ∈ X , u ∈ U .

Given un ∈ Un and V ∈ Vn(Pun,U × X ), a sequence xn is said to be V -generated
by un if for all x ∈ X and all u ∈ U ,

Punxn(u, x) = Pun(u)V (x|u).

Denote by T nV (u
n,X ) the set of all sequences xn V -generated by un.

An n-ED P ∈ Pn(U) is said to be (U, γn)-essential if

|P(u)− PU (u)| ≤ γn
and P(u) = 0 whenever PU(u) = 0. A sequence un ∈ Un is called (U, γn)-typical
if Pun is (U, γn)-essential. Denote by T nU,γn the set of all (U, γn)-typical sequences.
Similarly, for un ∈ Un, we call V ∈ Vn(Pun,U × X ) (un,X|U, γn)-essential if

|Pun(u)V (x|u)− Pun(u)PX|U(x|u)| ≤ γn
and V (x|u) = 0 whenever PX|U(x|u) = 0 where PX|U(x|u) is the conditional
probability of X = x given U = u. A sequence xn ∈ X n is called (un,X|U, γn)-
typical if there exists a (un,X|U, γn)-essential stochastic matrix V ∈ Vn(Pun,U ×
X ) such that xn is V -generated by un. Denote by T nX|U,γn(u

n) the set of all
(un,X|U, γn)-typical sequences xn.

Although the above notation is introduced for RV’s X and U and for finite sets
X and U , in the following we shall use freely these notation and terminology for
other RV’s and finite sets. Note that if un is (U, γn)-typical, and xn is (un,X|U, γn)-
typical, then unxn is (UX, 2γn)-typical and xn is (X, 2|U |γn)-typical. The following
facts will be used. For all P ∈ Pn(U), and V ∈ Vn(P,U × X ), un ∈ T nP

|Vn(P,U × X )| ≤ (n+ 1)|U ||X | (97)

(n+ 1)−|U |2nH(P ) ≤ |T nP (U)| ≤ 2nH(P ) (98)

(n+ 1)−|U ||X |2nH(V |P) ≤ |T nV (un,X )| ≤ 2nH(V |P) (99)

where

H(V |P) =
∑

u∈U
P(u)H(V (·|u))

=
∑

u∈U

∑

x∈X
−P(u)V (x|u) logV (x|u) . (100)
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Furthermore,

Pr(Un ∈ T nU,γn) ≥ 1− |U |
4nγ 2

n

(101)

and if Pr(Un = un) > 0, then

Pr(Xn ∈ T nX|U,γn(un)|Un = un) ≥ 1− |X ||U |
4nγ 2

n

, (102)

where (Xn,Un) are n independent drawings of (X,U).

Proof of Theorem 288
In view of the fact that R∗XY (α, β, d) is continuous at β = 0, it suffices to prove
Theorems 288 and 290 for 0 < β < β(d).

Proof of Theorem 288 We first prove the direct part, that is,

R∗XY (+∞, β, d) ≤ R̄(PX, PY , β, d).

By the definition of R∗XY (+∞, β, d), it suffices to prove that (R,+∞, β) is achiev-
able for any R > R̄(PX, PY , β, d). To this end, let us fix R > R̄(PX, PY , β, d)

below and prove (R,+∞, β) is achievable.
In view of the definition of R̄(PX, PY , β, d) and R(PX,PY , β, d), it is not hard

to see that for any δ > 0, there exists a RV U taking values on some finite set U
such that

I (X ∧ U) < R, and E(PXU , d) ≥ β − δ . (103)

Based on the pair (X,U), the standard technique of [2] (see also [7]) can be used to
show that there exists for sufficiently large n a system {(un(i),Si ) : 1 ≤ i ≤ M}
which has the following properties:

(i) logM ≤ n(I (X ∧ U)+ δ),
(ii) For 1 ≤ i ≤M , un(i) ∈ T nU,γn , Si ⊂ T nX|U,γn(un(i)) and

Pr(Xn ∈ Si |Un = un(i)) ≥ δ2 ,

where (Xn,Un) are n-independent drawings of (X,U).
(iii) Si : 1 ≤ i ≤ M are disjoint and

Pr(Xn ∈ ∪Mi=1Si ) ≥ 1− δ.

Based on this system, we construct an nth-order ID source code Cn = (fn, Bn, gn)
as follows. For each xn �∈ ∪Mi=1Si , the encoder simply sends the sequence xn

itself to the decoder. After receiving xn, the decoder outputs 1 if ρn(xn, yn) ≤ d
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and 0 otherwise. The number of bits needed for the lossless transmission of xn

is �n log |X |� plus one bit flag indicating xn �∈ ∪Mi=1Si . For each xn ∈ ∪Mi=1Si , the
encoder first finds the integer i such that xn ∈ Si and then transmits i to the decoder.
Upon receiving i, the decoder outputs 1 if ρn(Si , yn) ≤ d , and 0 otherwise, where

ρn(Si , yn) = min{ρn(x̃n, yn) : x̃n ∈ Si}.

The number of bits needed for the transmission of the integer i is �logM� plus
one bit flag indicating xn ∈ ∪Mi=1Si . Therefore the average rate of the IDS code
described above is upper bounded by

rn(Cn) = 1

n
Pr(Xn ∈ ∪Mi=1Si )(�logM� + 1)+ 1

n
Pr(Xn �∈ ∪Mi=1Si )(�n log |X |� + 1)

≤ I (X ∧ U)+ δ + δ log |X | + 2

n

≤ R + (1+ log |X |)δ + 2

n
, (104)

where the last inequality is due to (103). From the construction of Cn, it is clear that
the probability of misrejection is zero and the probability of false identification is
upper bounded by

Pe2(Cn) ≤ 1

Pr(ρn(Xn, Y n) > d)

M∑

i=1

Pr(Xn ∈ Si ) Pr(Y n ∈ Sdi )

≤ 2
M∑

i=1

Pr(Xn ∈ Si ) Pr(Y n ∈ Sdi ) (105)

for sufficiently large n, where

Sdi = {yn ∈ Yn : ρn(Si , yn) ≤ d} (106)

and the last inequality is due to the fact that d < Eρ(X, Y ). To continue (105),
note that for 1 ≤ i ≤ M and xn ∈ Si , (un(i), xn) is (UX, 2γn)-typical. Since
E(PXU , d) ≥ β−δ, it follows from Lemma 287 that for sufficiently large n and any
xn ∈ Si ,

E(Pxnun(i), d) ≥ β − 2δ . (107)

Clearly, for each 1 ≤ i ≤M ,

Sdi =
⋃

V∈Vn(Pun(i),U×Y)
Sdi ∩ T nV (un(i),Y). (108)
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It is easy to see that if Sdi ∩T nV (un(i),Y) is not empty, then there exists xn ∈ Si and
Q ∈ Pn(U × X × Y) such that

(i) the marginal ofQ on U × X is Pun(i)xn;
(ii) the marginal ofQ on U × Y is given by

Pun(i)(u)V (y|u), u ∈ U and y ∈ Y;

(iii) under the distributionQ, Eρ(X0, Y0) ≤ d .

In view of (16) and (107), this implies

∑

u∈U
Pun(i)(u)D(V (·|u)||PY ) =

∑

u∈U ,y∈Y
Pun(i)(u)V (y|u) log

V (y|u)
PY (y)

> β − 2δ .

(109)

Therefore, if Sdi ∩ T nV (un(i),Y) is not empty, then

Pr(Y n ∈ Sdi ∩ T nV (un(i),Y))
≤ Pr{Yn ∈ T nV (un(i),Y)}
= |T nV (un(i),Y)|2−n[H(V |Pun(i))+

∑
u∈U Pun(i)(u)D(V (·|u)||PY )]

≤∗ 2−n
∑
u∈U Pun(i)(u)D(V (·|u)||PY )

≤ 2−n(β−2δ), (110)

where the inequality * is due to (99) and the last inequality is due to (109). Going
back to (108), we get for sufficiently large n

Pr(Y n ∈ Sdi ) ≤ |Vn(Pun(i),U × Y)|2−n(β−2δ)

≤ 2−n(β−3δ), (111)

where the last inequality is due to (97). Substituting (111) into (105) yields

Pe2(Cn) ≤ 2−n(β−3δ). (112)

Since δ > 0 is arbitrary, by definition, (104) and (112) imply that (R,+∞, β) is
achievable. This completes the proof of the direct part of Theorem 288.

We next turn to the converse part, that is

R∗XY (+∞, β, d) ≥ R̄(PX, PY , β, d).
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Clearly, it is enough to prove that for any achievable triple (R,+∞, β)

R ≥ R̄(PX, PY , β, d).

To this end, let us below fix an achievable triple (R,+∞, β). By definition, there
exists for any ε > 0 a sequence of ID source codes Cn = (fn, Bn, gn) such that for
sufficiently large n,

rn(Cn) ≤ R + ε, Pe1(Cn) = 0, and Pe2(Cn) ≤ 2−n(β−ε). (113)

As in the binary symmetric case, we define for each bn ∈ Bn
S(bn) = {xn ∈ X n : fn(xn) = bn}

and

Sd (bn) = {yn ∈ Yn : ρn(xn, yn) ≤ d for some xn ∈ S(bn)} .

Since Pe1(Cn) = 0, we must have

Sd (bn) ⊂ {yn ∈ Yn : gn(yn, bn) = 1}.

Therefore, the inequality Pe2(Cn) ≤ 2−n(β−ε) implies

∑

bn∈Bn
Pr(Xn ∈ S(bn)) Pr(Y n ∈ Sd (bn)) ≤ 2−n(β−ε) + Pr(ρn(Xn, Y n) ≤ d).

In view of (15) and the fact that β < β(d), it follows that for sufficiently large n

∑

bn∈Bn
Pr(Xn ∈ S(bn)) Pr(Y n ∈ Sd (bn)) ≤ 2−n(β−ε).

From Markov’ s inequality, one gets that

∑

bn∈B ′n
Pr(Xn ∈ S(bn)) ≥ 1− ε, (114)

where

B ′n = {bn ∈ Bn : Pr{Yn ∈ Sd(bn)} ≤ 2−n(β−ε−n−1 log(2/ε))} .

Let m be a sufficiently large positive integer to be specified later. Fix a bn ∈ B ′
n.

Applying the inherently typical subset lemma (i.e., Lemma 296) to S(bn) ∩ T nX,rn ,
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where T nX,rn is the set of all (X, rn)-typical sequences xn, we get an m-inherently
typical subset A ⊂ S(bn) ∩ T nX,rn such that

1

n
log

|S(bn) ∩ T nX,rn|
|A| ≤ |X |(m+ 1)|X | log(n+ 1)

n
. (115)

By the definition of m-inherently typical subsets, there exists a mapping φ from
∪n−1
i=0Ai to Um, where Ai = {xi ∈ X i : xi is a prefix of some element in A}, such

that the following hold:

(i) There exists an n-EDQ ∈ Pn(X × Um) such that for any xn ∈ A,

Pxnun(x, u) = Q(x, u), x ∈ X , u ∈ Um , (116)

where un ∈ Unm is the sequence associated with xn through φ.
(ii) If (X̂, Û) is a random vector taking values on X × Um with joint distribution

Q, then

1

n
log |A| ≤ H(X̂|Û) ≤ 1

n
log |A| + log2m

m
. (117)

As what we did in the analysis following Definition 1, let X̃n = (X̃1, · · · , X̃n)
be a random vector taking values uniformly on A. Define a random vector Ũn =
(Ũ1, · · · , Ũn) by letting Ũi = φ(X̃i−1), 1 ≤ i ≤ n. Let I be a RV taking values
uniformly on {1, 2, · · · , n} and independent of X̃n. Let

X̃ = X̃I , Ũ = ŨI , U = (X̃I−1, I ). (118)

Clearly, if we extend the mapping φ in the obvious way so that φ(U) = φ(X̃I−1)

whenever U = (X̃I−1, I ), then Ũ = φ(U). As pointed out in the analysis
following Definition 1, X̃ and Ũ have the joint distribution PX̃Ũ = Q. Furthermore,
n−1 log |A| = H(X̃|U) and (117) can be rewritten as

H(X̃|U) ≤ H(X̃|Ũ) ≤ H(X̃|U)+ log2m

m
. (119)

Having defined the random pair (X̃, Ũ ) taking values on X × Um, we next lower
bound Pr(Y n ∈ Ad) by a function of E(PX̃Ũ , d − ε), where

Ad = {yn ∈ Yn|there exist xn ∈ A : ρn(xn, yn) ≤ d}.

In view of the definition of E(PX̃Ũ , d−ε), let Ỹ be a RV taking values on Y such
that Eρ(X̃, Ỹ ) ≤ d − ε. Let V = (V (y|xu))x∈X ,u∈Um,y∈Y be a stochastic matrix so
that V (y|xu) is the conditional probability of Ỹ = y given X̃ = x and Ũ = u. Let
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Ỹ n = (Ỹ1, · · · , Ỹn) be the random vector resulting from passing (X̃n, Ũn) through
the channel V . From (102), it follows that for any xn ∈ A,

Pr(Ỹ n ∈ T n
Ỹ |X̃Ũ ,γn(x

nun)|X̃n = xn, Ũn = un) > 1− |X ||Y||Um|
4nγ 2

n

, (120)

where un ∈ Unm is the sequence associated with xn through φ. From (116), it is not
hard to see that for any xn ∈ A,

T n
Ỹ |X̃Ũ,γn(x

n, un) ⊂ T n
Ỹ ,|X̃||Ũ |γn . (121)

Furthermore, since Eρ(X̃, Ỹ ) ≤ d − ε, it follows that for sufficiently large n and
any yn ∈ T n

Ỹ |X̃Ũ ,γn(x
nun),

ρn(x
n, yn) ≤ d.

Therefore, if we let

F = ∪xn∈AT n
Ỹ |X̃Ũ ,γn(x

nun),

where un ∈ Unm is the sequence associated with xn through φ, then F ⊂ Ad and for
any xn ∈ A,

Pr(Ỹ n ∈ F |X̃n = xn, Ũn = un) > 1− |X ||Y||Um|
4nγ 2

n

.

This implies

Pr(Ỹ n ∈ F) > 1− |X ||Y||Um|
4nγ 2

n

. (122)

For convenience, let

δn = |X ||Y||Um|
4nγ 2

n

.

From (122), we have

H(Ỹ n) ≤ h(δn)+ log |F | + nδn log |Y|,
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where h(·) represents the binary entropy function. From this, it is not hard to verify
that

log |F | ≥ H(Ỹ n)− h(δn)− nδn log |Y|

=
n∑

i=1

H(Ỹi |Ỹ i−1)− h(δn)− nδn log |Y|

≥
n∑

i=1

H(Ỹi |Ỹ i−1X̃i−1Ũ i−1)− h(δn)− nδn log |Y|

=∗
n∑

i=1

H(Ỹi |X̃i−1Ũ i−1)− h(δn)− nδn log |Y|

=∗∗
n∑

i=1

H(Ỹi |X̃i−1)− h(δn)− nδn log |Y|, (123)

where equality * is due to the fact that given (X̃i−1, Ũ i−1), Ỹ i−1 and Ỹi are
conditionally independent, and the equality ** follows from the fact that Ũ i−1 =
φ(X̃i−2). Recall that I is the RV which takes values uniformly on {1, · · · , n} and
is independent of X̃n and Ỹ n. Let Ȳ = ỸI . In view of (118) and (123) continues as
follows

log |F | ≥ nH(Ȳ |U))− h(δn)− nδn log |Y|
= nH(Ȳ |Ũ)+ n(H(Ȳ |U)−H(Ȳ |Ũ))− h(δn)− nδn log |Y|
= nH(Ỹ |Ũ)+ n(H(Ȳ |U)−H(Ȳ |Ũ))− h(δn)− nδn log |Y| (124)

where the last equality follows from the observation that (X̃, Ũ , Ȳ ) has the same
joint distribution as that of (X̃, Ũ , Ỹ ). To continue (124) further, we next estimate
the differenceH(Ȳ |Ũ)−H(Ȳ |U). Since Ũ = φ(U), it is not hard to verify that

H(Ȳ |Ũ)−H(Ȳ |U) = 1

n

n∑

i=1

∑

xi−1

∈Ai−1

Pr(X̃i−1 = xi−1)
∑

y∈Y
Pr(Ỹi = y|X̃i−1 = xi−1)·

· log
Pr(Ỹi = y|X̃i−1 = xi−1)

PȲ |Ũ (y|φ(xi−1))
, (125)
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where PȲ |Ũ (y|φ(xi−1)) is the conditional probability of Ȳ = y given Ũ = φ(xi−1).
By construction, it is not hard to see that

Pr(Ỹi = y|X̃i−1 = xi−1) =
∑

x∈X
Pr(X̃i = x|X̃i−1 = xi−1)V (y|xφ(xi−1))

and

P
Ȳ |Ũ (y|φ(xi−1)) =

∑

x∈X
P
X̃|Ũ (x|φ(xi−1))V (y|xφ(xi−1)).

Using the log-sum inequality, one gets that

∑

y∈Y
Pr(Ỹi = y|X̃i−1 = xi−1) log

Pr(Ỹi = y|X̃i−1 = xi−1)

PȲ |Ũ (y|φ(xi−1))

≤
∑

y∈Y

∑

x∈X
Pr(X̃i = x|X̃i−1 = xi−1)V (y|xφ(xi−1)) log

Pr(X̃i = x|X̃i−1 = xi−1)

PX̃|Ũ (x|φ(xi−1))

≤
∑

x∈X
Pr(X̃i = x|X̃i−1 = xi−1) log

Pr(X̃i = x|X̃i−1 = xi−1)

PX̃|Ũ (x|φ(xi−1))
. (126)

Substituting (126) into (125) yields

H(Ȳ |Ũ)−H(Ȳ |U) ≤ H(X̃|Ũ)−H(X̃|U) ≤ log2m

m
, (127)

where the last inequality is due to (119). Combining (124) and (127) yields

log |F | ≥ nH(Ỹ |Ũ)− n log2m

m
−−h(δn)− nδn log |Y|.

From (121),

F ⊂ T n
Ỹ ,|X ||Um|γn .

Thus,

Pr(Y n ∈ F) ≥ |F |2−n(H(Ỹ )+D(PỸ ||PY )+o(1))

≥ exp{−n(I (Ũ ∧ Ỹ )+D(PỸ ||PY )+
log2m

m
+ εn)} , (128)
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where εn → 0 as n goes to infinity. Since F ⊂ Ad , (128) implies

Pr(Y n ∈ Ad) ≥ exp{−n(I (Ũ ∧ Ỹ )+D(PỸ ||PY )+
log2m

m
+ εn)}. (129)

Note that (129) holds for any RV Ỹ taking values on Y such that Eρ(X̃, Ỹ ) ≤ d−ε.
This, together with the definition of E(PX̃Ũ , d − ε), implies

Pr(Y n ∈ Ad) ≥ exp{−n(E(PX̃Ũ , d − ε)+
log2m

m
+ εn)}. (130)

Let us go back to (114) and (115). We next want to estimate the probability
Pr{Xn ∈ S(bn)∩ T nX,γn}, where bn ∈ B ′n. Since A ⊂ S(bn)∩ T nX,γn , it is easy to see
from (116) and (118) that PX̃ is (X, γn)-essential, that is

|PX̃(x)− PX(x)| ≤ γn, x ∈ X (131)

and PX̃(x) whenever PX(x) = 0. For convenience, let

an = |X |(m+ 1)|X | log(n+ 1)

n
.

It is not hard to see that

Pr(Xn ∈ S(bn) ∩ T nX,γn) ≤ |S(bn) ∩ T nX,γn |2−n(H(X̃)−o(1))

≤∗ 2−n(H(X̃)−n−1 log |A|−an−o(1))

≤∗∗ 2−n(H(X̃)−H(X̃|Ũ)−an−o(1))

= 2−n(I (X̃∧Ũ )−ε′n) , (132)

where the inequality * is due to (115), the inequality ** is due to the fact that
n−1 log |A| ≤ H(X̃|Ũ) and ε′n goes to zero as n goes to infinity. Since bn ∈ B ′n, it
follows that

Pr(Y n ∈ Ad) ≤ Pr(Y n ∈ Sd (bn)) ≤ 2−n(β−ε−
1
n log 2

ε ). (133)

Comparing (133) with (130) yields

E(PX̃Ũ , d − ε) ≥ β − ε −
log2m

m
− εn − 1

n
log

2

ε
.
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Note that Ũ takes values on Um. From the definition of Rk(PX, PY , β, d), it follows
that

I (X̃ ∧ Ũ) ≥ R|Um|(PX̃, PY , β − ε −
log2m

m
− εn − 1

n
log

2

ε
, d − ε)

which, combined with (132), implies

− 1

n
log Pr(Xn ∈ S(bn) ∩ T nX,γn)

≥ R|Um|(PX̃, PY , β − ε −
log2m

m
− εn − 1

n
log

2

ε
, d − ε)− ε′n. (134)

In view of Fact 1 in the first subsection of 2 and (131), (134) continues as follows.

−1

n
log Pr(Xn ∈ S(bn) ∩ T nX,γn) ≥ R|Um|(PX, PY , β − ε −

log2m

m
, d − ε)− ε′′n ,

(135)

where ε′′n goes to zero as n goes to infinity.
Note that (135) holds for any bn ∈ B ′n. Now it is not hard to verify that

R + ε ≥ rn(Cn) ≥ 1

n
H(fn(X

n))

≥
∑

bn∈B ′n
−1

n
Pr(Xn ∈ S(bn) ∩ T nX,γn) log Pr(Xn ∈ S(bn) ∩ T nX,γn)−

1

n

≥ (1− ε − |X |
4nγ 2

n

)(R|Um|(PX, PY , β − ε −
log2m

m
, d − ε)− ε′′n)−

1

n
,

(136)

where the last inequality is due to (114) and the following inequality

Pr(Xn ∈ T nX,γn) ≥ 1− |X |
4nγ 2

n

.

In view of Fact 1, letting n→ +∞ and then letting ε → 0 in (136) yield

R ≥ R|Um|(PX, PY , β −
log2m

m
, d).
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Since (R,+∞, β) is an arbitrary achievable triple, this implies

R∗XY (+∞, β, d) ≥ R|Um|(PX, PY , β −
log2m

m
, d). (137)

Thus, for sufficiently largem,

R∗XY (+∞, β, d) ≥ R(PX,PY , β −
log2m

m
, d).

Letting m go to infinity yields

R∗XY (+∞, β, d) ≥ R̄(PX, PY , β, d).

This completes the proof of the converse part and hence the proof of Theorem 288.
��

Remark In response to the remark following Theorem 288, let us note that in view
of Lemma 296, the inequality (137) actually holds for any m ≥ 216|X |2 . From the
proof of Theorem 288, therefore we obtain that for any m ≥ 216|X |2 ,

R|Um|(PX, PY , β −
log2m

m
, d) ≤ R∗XY (+∞, β, d)

= R̄(PX, PY , β, d)
≤ R(PX,PY , β, d)
≤ R|Um|(PX, PY , β, d). (138)

This gives us in a sense how accurate the value obtained could be if we approximate
R̄(PX, PY , β, d) by R|Um|(PX, PY , β, d). If some regular conditions are satisfied,
hopefully this approximation could be as accurate as O(log2m/m).

Proof of Theorem 290
We next turn to the proof of Theorem 290. Although the proof of Theorem 290 is
more complicated than that of Theorem 288, the basic idea is the same and in fact,
most parts of the proof are just the translation of the corresponding parts in the proof
of Theorem 288 to the present case. This is why we stated separately Theorems 288
and 290. Hope this will help the reader understand the proofs more easily.

Proof of Theorem 290 In view of the remark following Theorem 290, it suffices to
prove Theorem 290 for α > β(PX, d) − β(d) and 0 < β < β(d). We first prove
the direct part, that is

R∗XY (α, β, d) ≤ R̄(PX, PY , α, β(d), β, d).
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By the definition of R∗XY (α, β, d), it is enough to prove that for any R satisfying

R > R̄(PX, PY , α, β(d), β, d),

(R, α, β) is achievable. To this end, let us fix below R > R̄(PX, PY , α, β(d), β, d).
As in the proof of Theorem 288, it is not hard to see that for any δ > 0, there exists
a random variable U taking values on some finite set U such that

I (X ∧ U) < R and E(PXU , α, β(d), d) ≥ β − δ. (139)

Corresponding to the random pair (X,U), there exists for sufficiently large n a
system {(un(i),Si )|1 ≤ i ≤ M} which satisfies properties (i)–(iii). Based on this
system, we construct an nth order ID source code Cn = (fn, Bn, gn) as follows. For
each xn �∈ ∪Mi=1Si , the encoder simply sends the sequence xn itself to the decoder.
After receiving xn, the decoder outputs 1 if ρn(xn, yn) ≤ d and 0 otherwise. For
each xn ∈ ∪Mi=1Si , the encoder first finds the integer i such that xn ∈ Si and then
transmits i to the decoder. Upon receiving i, the decoder outputs 1 if yn ∈ Yn
satisfies that there exists some xn ∈ Si such that ρn(xn, yn) ≤ d and

∑

x∈X ,u∈U
Pxnun(i)(x, u)D(Pyn|xnun(i)(·|xu)||PY ) ≤ β(d)+ α, (140)

where

Pyn|xnun(i)(·|xu) ∈ Vn(Pxnun(i), (X × U)× Y)

is defined by Pxnun(i)(x, u)Pyn|xnun(i)(y|xu) = Pxnun(i)yn(x, u, y) for all y ∈ Y;
and otherwise outputs 0. Clearly, the encoder fn defined here is the same as in the
proof of Theorem 288. From (104), therefore, the average rate rn(Cn) is also upper
bounded by

rn(Cn) ≤ R + (1+ log |X |)δ + 2

n
. (141)

For each 1 ≤ i ≤ M , let

Sdi = {yn ∈ Yn|there exist xn ∈ Si : ρn(xn, yn) ≤ d} (142)

Ŝdi = {yn ∈ Yn|gn(yn, i) = 1} (143)

and

S̄di = Yn − Ŝdi . (144)
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Obviously, Ŝdi ⊂ Sdi for 1 ≤ i ≤ M . For each xn ∈ Si , let Bi(xn) denote the set of
all yn ∈ Yn such that ρn(xn, yn) ≤ d and

∑

x∈X ,u∈U
Pxnun(i)(x, u)D(Pyn|xnun(i)(·|xu)||PY ) > β(d)+ α. (145)

From (145), it is not hard to see that

Pr(Y n ∈ Bi(xn)) ≤ (n+ 1)|X ||U ||Y |2−n(β(d)+α) . (146)

By the construction of the ID source code Cn, we can now verify that

Pe1(Cn) = Pr{(Xn, Y n) ∈ ∪Mi=1Si × S̄di ,&ρn(Xn, Y n) ≤ d}
Pr{ρn(Xn, Y n) ≤ d}

≤ 1

Pr{ρn(Xn, Y n) ≤ d}
M∑

i=1

∑

xn∈Si
Pr(Xn = xn) Pr(Y n ∈ Bi(xn))

≤∗ (n+ 1)|X ||U ||Y |

Pr(ρn(Xn, Y n) ≤ d)2
−n(β(d)+α)

≤∗∗ 2−n(α−δ) (147)

for sufficiently large n, where the inequality * follows from (146) and the inequality
** follows from (15). As in the proof of the direct part of Theorem 288, it is clear
that the probability Pe2(Cn) of false identification of the ID source code Cn is upper
bounded by

Pe2(Cn) ≤ 1

Pr{ρn(Xn, Y n) > d}
M∑

i=1

Pr(Xn ∈ Si ) P r(Y n ∈ Ŝdi )

≤ 2
M∑

i=1

Pr(Xn ∈ Si ) Pr(Y n ∈ Ŝdi ) (148)

for sufficiently large n. To continue (148), we do the same thing as we did before.
First note that for any 1 ≤ i ≤ M and xn ∈ Si , (un(i), xn) is (UX, 2γn)-typical. In
view of Lemma 289 and (139), therefore, it follows that for sufficiently large n and
any xn ∈ Si ,

E(Pxnun(i), α, β(d), d) ≥ β − 2δ . (149)
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Let us now look at Ŝdi ∩ T nV (un(i),Y), where V ∈ Vn(Pun(i),U × Y). Clearly, if

Ŝdi ∩T nV (un(i),Y) is not empty, then from the definition of Ŝdi , there exist a xn ∈ Si
and a Q ∈ Pn(U × X × Y) such that

(i) the marginal ofQ on U × X is Pun(i)xn;
(ii) the marginal ofQ on U × Y is given by

Pun(i)(u)V (y|u), u ∈ U and y ∈ Y;

(iii) if (Ũ , X̃, Ỹ ) is a random vector taking values on U × X × Y with joint
distribution PX̃Ũ Ỹ = Q, then Eρ(X0, Y0) ≤ d andD(PỸ ||PY )+I (X̃Ũ∧Ỹ ) ≤
β(d)+ α.

In view of the definition of E(Pxnun(i), α, β(d), d) and the inequality (149), this
implies

∑

u∈U
Pun(i)(u)D(V (·|u)||PY ) > β − 2δ . (150)

Therefore, if Ŝdi ∩ T nV (un(i),Y) is not empty, then

Pr{Yn ∈ Ŝdi ∩ T nV (un(i),Y)} ≤ Pr{Yn ∈ T nV (un(i),Y)}
≤ 2−n

∑
u∈U Pun(i)(u)D(V (·|u)||PY ))

≤ 2−n(β−2δ), (151)

which implies

Pr(Y n ∈ Ŝdi ) ≤ |Vn(Pun(i),U × Y)|2−n(β−2δ) ≤ 2−n(β−3δ) (152)

for sufficiently large n. Substituting (152) into (148) yields

Pe2(Cn) ≤ 22−n(β−3δ) . (153)

Since δ > 0 is arbitrary, (141), (147), and (153) implies that (R, α, β) is achievable.
This completes the proof of the direct part of Theorem 290.

We next turn to the converse part. Clearly, it is enough to prove that for any
achievable triple (R, α, β)

R ≥ R̄(PX, PY , α, β(d)β, d).

To this end, let us below fix an achievable triple (R, α, β). By definition, there exists
for any ε > 0 a sequence of ID source codes Cn = (fn, Bn, gn) such that for



4 Proofs of Theorems 288 and 290 623

sufficiently large n,

rn(Cn) ≤ R + ε, Pe1(Cn) ≤ 2−n(α−ε), and Pe2(Cn) ≤ 2−n(β−ε) . (154)

For each bn ∈ Bn, let

S(bn) = {xn ∈ X n : fn(xn) = bn}

and

G(bn) = {yn ∈ Yn : gn(yn, bn) = 1}.

For each xn ∈ X n, denote by B(xn) the set of sequences yn ∈ Yn such that
ρn(x

n, yn) ≤ d and yn �∈ G(fn(xn)). It is not hard to see that

Pe1(Cn) = 1

Pr(ρn(Xn, Y n) ≤ d)
∑

xn∈X n

Pr(Xn = xn) Pr(Y n ∈ B(xn)).

By virtue of (15) and (154), we have for sufficiently large n

∑

xn∈X n

Pr(Xn = xn) Pr(Y n ∈ B(xn)) ≤ 2−n(α−2ε+β(d)) . (155)

Let

Fn = {xn ∈ X n : Pr(Y n ∈ B(xn)) ≤ ε−12−n(α−2ε+β(d))}.

From (155) and the Markov inequality,

Pr(Xn ∈ Fn) ≥ 1− ε . (156)

As in the proof of the converse part of Theorem 288, it is not hard to prove that the
inequality Pe2(Cn) ≤ 2−n(β−ε) implies that for sufficiently large n,

∑

bn∈Bn
Pr(Xn ∈ S(bn)) Pr(Y n ∈ G(bn)) ≤ 22−n(β−ε).

Using Markov inequality once again, one gets that

∑

bn∈B ′n
Pr(Xn ∈ S(bn)) ≥ 1− ε,
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where

B ′n = {bn ∈ Bn| Pr(Y n ∈ G(bn)) ≤ 2−n(β−ε−
1
n

log 2
ε
)}.

We are now in a position to apply the inherently typical subset lemma
(Lemma 296). Fix a bn ∈ B ′n. Applying the lemma to S(bn) ∩ T nX,γn ∩ Fn, we
get an m-inherently typical subset A ⊂ S(bn) ∩ T nX,γn ∩ Fn such that

1

n
log

|S(bn) ∩ Fn ∩ T nX,γn |
|A| ≤ |X |(m+ 1)|X | log(n+ 1)

n
. (157)

The remaining proof is much the same as that shown in the proof of the converse
part of Theorem 288. In what follows, therefore, we only point out places where
changes are needed. (Unless otherwise specified, all notation below is the same as
in the proof of the converse part of Theorem 288).

Having defined the random pair (X̃, Ũ) taking values on X × Um, we, instead
of lower bounding Pr(Y n ∈ Ad) by a function of E(PX̃Ũ , d − ε), lower bound
Pr(Y n ∈ G(bn)) by a function of E(PX̃Ũ , , α − 4ε, β(d), d − ε). In view of the
definition of E(PX̃Ũ , , α − 4ε, β(d), d − ε), let Ỹ be a RV taking values on Y such
that

Eρ(X̃, Ỹ ) ≤ d − ε andD(PỸ ||PY )+ I (X̃Ũ ∧ Ỹ ) ≤ β(d)+ α − 4ε . (158)

Let V = (V (y|xu))x∈X ,u∈Um,y∈Y be a stochastic matrix so that V (y|xu) is the
conditional probability of Ỹ = y given X̃ = x, Ũ = u. Let Ỹ n = (Ỹ1, · · · , Ỹn) be a
random vector resulting from passing (X̃n, Ũn) through the channel V . From each
xn ∈ A , consider T n

Ỹ |X̃Ũ,rn(x
n, un), where un ∈ Unm is the sequence associated with

xn through φ. In view of (158), it is not hard to see that for sufficiently large n and
for any yn ∈ T n

Ỹ |X̃Ũ ,rn(x
n, un),

ρn(x
n, yn) ≤ d (159)

and

∑

x∈X ,u∈Um
Pxnun(x, u)D(Pyn|xnun(·|xu)||PY ) ≤ β(d)+ α − 3ε. (160)

Let V̂ ∈ Vn(Pxnun , (X × Um) × Y) be (xnun, Ỹ |X̃Ũ , γn)-essential, then (160)
implies

∑

x∈X ,u∈Um
Pxnun(x, u)D(V̂ (·|xu)||PY ) ≤ β(d)+ α − 3ε. (161)
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Since A ⊂ S(bn) ∩ Fn ∩ T nX,γn , xn ∈ A implies xn ∈ Fn. By definition of Fn,
therefore, it follows that

Pr(Y n ∈ B(xn)) ≤ ε−12−n(α+β(d)−2ε). (162)

By comparing (162) with (161), we can obtain that

|T n
V̂
(xnun,Y) ∩ B(xn)| ≤∗ ε−12−nε(n+ 1)|X ||Y ||Um||T n

V̂
(xnun,Y)|

≤ 2−
nε
2 |T n

V̂
(xnun,Y)| (163)

for sufficiently large n, where in derivation of *, the following inequality was used:

|T n
V̂
(xnun,Y)| ≥ (n+ 1)−|X ||Y ||Um| exp{n

∑

x∈X ,u∈Um
Pxnun(x, u)H(V̂ (·|x, u))}.

From (163), it is now easy to check that

Pr(Ỹ n ∈ T n
Ỹ |X̃Ũ ,γn(x

nun) ∩ B(xn)|X̃n = xn, Ũn = un)

=
∑

V̂

Pr(Ỹ ∈ T n
V̂
(xnun,Y) ∩ B(xn)|X̃n = xn, Ũn = un)

≤ 2−
nε
2
∑

V̂

Pr(Ỹ ∈ T n
V̂
(xnun,Y)|X̃n = xn, Ũn = un)

= 2−
nε
2 Pr(Ỹ ∈ T n

Ỹ |X̃Ũ ,γn(x
nun)|X̃n = xn, Ũn = un)

≤ 2−
nε
2 , (164)

where the summation is taken over all V̂ such that V̂ is (xnun, Ỹ |X̃Ũ , γn)-essential.
In view of (120), (159), and (164), it follows that

Pr(Ỹ n ∈ T n
Ỹ |X̃Ũ,γn(x

nun) ∩G(bn)|X̃n = xn, Ũn = un)

≥ 1− |Um||X ||Y|
4nγ 2

n

− 2−
nε
2

≥ 1− δ′n, (165)

where δ′n → 0 as n→∞. Let

G = ∪xn∈AT n
Ỹ |X̃Ũ ,γn(x

nun) ∩G(bn).
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(165) implies that for any xn ∈ A,

Pr(Ỹ n ∈ G|X̃n = xn, Ũn = un) ≥ 1− δ′n,

which in turn implies

Pr(Ỹ n ∈ G) ≥ 1− δ′n. (166)

Note that (166) is in parallel with (122). A similar argument to the derivation
of (128) can be used to show that

Pr(Y n ∈ G) ≥ exp{−n(I (Ũ ∧ Ỹ )+D(PỸ ||PY )+
log2m

m
+ εn)}, (167)

where εn → 0 as n goes to infinity. Since G ⊂ G(bn), (167) implies

Pr(Y n ∈ G(bn)) ≥ exp{−n(I (Ũ ∧ Ỹ )+D(PỸ ||PY )+
log2m

m
+ εn)}. (168)

Note that (168) holds for any RV Ỹ taking values on Y such that (158) is satisfied.
This, together with the definition of E(PX̃Ũ , α − 4ε, β(d), d − ε), implies that

Pr(Y n ∈ G(bn)) ≥ exp{−n(E(PX̃Ũ , α−4ε, β(d), d−ε)+ log2m

m
+εn)}. (169)

On the other hand, since bn ∈ B ′n,

Pr(Y n ∈ G(bn)) ≤ 2−n(β−ε−
1
n

log 2
ε
)

which, combined with (169), yields

E(PX̃Ũ , α − 4ε, β(d), d − ε) ≥ β − ε − log2m

m
− ε′n (170)

where ε′n goes to zero as n goes to infinity. A similar argument to the derivation
of (132) can be used to show that

Pr(Xn ∈ S(bn) ∩ Fn ∩ T nX,γn) ≤ 2−n(I (X̃∧Ũ )−ε′′n),

that is

− 1

n
log Pr(Xn ∈ S(bn) ∩ Fn ∩ T nX,γn) ≥ I (X̃ ∧ Ũ)− ε′′n , (171)
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where ε′′n goes to zero as n goes to infinity. In view of (170) and the definition of
R|Um|(PX̃, PY , α, γ, β, d), (171) continues as follows

− 1

n
log Pr(Xn ∈ S(bn) ∩ Fn ∩ T nX,γn)

≥ R|Um|(PX̃, PY , α − 4ε, β(d), β − ε − log2m

m
− ε′n, d − ε)− ε′′n . (172)

Using Fact 3 in the first subsection of 2, we get

− 1

n
log Pr(Xn ∈ S(bn) ∩ Fn ∩ T nX,γn)

≥ R|Um|(PX, PY , α − 4ε, β(d), β − ε − log2m

m
, d − ε)− ε̄n , (173)

where ε̄n goes to zero as n goes to infinity. Note that (173) holds for any bn ∈ B ′n.
In parallel with (136), we now have

R + ε ≥ rn(Cn) ≥ 1

n
H(fn(X

n))

≥
∑

bn∈B ′n
− 1

n
Pr(Xn ∈ S(bn) ∩ Fn ∩ T nX,γn) log Pr(Xn ∈ S(bn) ∩ Fn ∩ T nX,γn)−

2

n

≥ (1− 2ε − |X |
4nγ 2

n

)(R|Um|(PX, PY , α − 4ε, β(d), β − ε − log2m

m
, d − ε)− ε̄n)− 2

n
.

(174)

In view of Fact 3 in the first subsection of 2 once again, letting n → ∞ and then
letting ε → 0 yields

R ≥ R|Um|(PX, PY , α, β(d), β −
log2m

m
, d),

which implies

R∗XY (α, β, d) ≥ R|Um|(PX, PY , α, β(d), β −
log2m

m
, d). (175)

Letting m→∞ in(175) yields

R∗XY (α, β, d) ≥ R̄(PX, PY , α, β(d), β, d),

which completes the proof of the converse part and hence the proof of Theorem 290.
��
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5 Proofs of Theorems 5 and 6

In this section, X and Y may be correlated. As in the third subsection of 2, let
W = (W(y|x))x∈X ,y∈Y denote the transition probability matrix from X to Y .

Proof of Theorem 293 We begin with proving

R∗XY (+∞, 0, d) ≤ R(PXY , 0, d). (176)

To prove (176), it suffices to prove that for any R > R(PXY , 0, d), there exists
a δ0 > 0 such that (R,+∞, δ0) is achievable. To this end, we fix below R >

R(PXY , 0, d). By the definition of R(PXY , 0, d), there exists a RV U taking values
on some finite set U such that

(i) U → X→ Y form a Markov chain;
(ii) I (X ∧ U) < R and Eρ̄(PX|U(·|U), PY |U(·|U)) > d.
Without loss of generality, in what follows, we shall assume PU(u) > 0 for any
u ∈ U . Let δ be a positive real to be specified later. As in the proof of the direct
part of Theorem 288, corresponding to the random pair (X,U), there exists for
sufficiently large n a system {(un(i),Si )|1 ≤ i ≤ M} which has the properties (i) to
(iii). Let Cn = (fn, Bn, gn) be the nth order IDS code which is based on the system
we just defined and constructed as in the proof of the direct part of Theorem 288.
From the proof of the direct part of Theorem 288, the probability of misidentification
of Cn is zero and the average rate in bits per symbol of Cn is upper bounded by

rn(Cn) ≤ I (X ∧ U)+ (1+ log |X |)δ + 2

n
. (177)

Furthermore, the probability of false identification of Cn is now upper bounded by

Pe2(Cn) ≤ 1

Pr(ρn(Xn, Y n) > d)

M∑

i=1

Pr((Xn, Y n) ∈ Si × Sdi )

≤ 2
M∑

i=1

∑

yn∈Sdi

∑

xn∈Si
Pr{Xn = xn} Pr{Yn = yn|Xn = xn} (178)

for sufficiently large n. Since un(i) ∈ T nU,γn and Si ⊂ T nX|U,γn(u
n(i)) for each

1 ≤ i ≤M , it follows that for sufficiently large n and for any xn ∈ Si ,

Pr(Xn = xn) = 2−n(I (X∧U)+o(1)) Pr(Xn = xn|Un = un(i))
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which, together with (178) and the fact that U → X → Y form a Markov chain,
implies

Pe2(Cn) ≤ 22−n(I (X∧U)+o(1))
M∑

i=1

∑

yn∈Sdi
Pr(Y n = yn|Un = un(i))

= 2−n(I (X∧U)+o(1))
M∑

i=1

Pr(Y n ∈ Sdi |Un = un(i)) , (179)

where (Un,Xn, Y n) is n independent drawings of (U,X, Y ). Let

d0 = Eρ̄(PX|U (·|U), PY |U(·|U)).

For convenience, we think of Eρ̄(PX|U(·|U), PY |U(·|U)) as a function of
(PU , PX|U , PY |U) which is denoted by F(PU , PX|U , PY |U). It is not hard to prove
that this function is continuous. Since d0 > d , there exists a σ > 0 such that for any
P ∈ P(U) and any stochastic matrix V = V (x|u))u∈U ,x∈X ,

||P − Pu|| ≤ σ, ||V − PX|U || ≤ σ �⇒ F(P, V, PY |U ) >
d0 + d

2
, (180)

where

||V − PX|U || =
∑

u∈U
||V (·|u)− PX|U(·|u)||.

Particularly, for sufficiently large n and for any xn ∈ Si ,

F(Pun(i), Pxn|un(i), PY |U) >
d0 + d

2
, (181)

where Pxn|un(i) ∈ Vn(Pun(i),U × X ) is the stochastic matrix so that xn is Pxn|un(i)-
generated by un(i), since (un(i), xn) is (UX, 2γn)-typical. To continue (179), let us
note that if Sdi ∩ T nV (un(i),Y) is not empty, where V ∈ Vn(Pun(i),U × Y), then
there exists xn ∈ Si andQ ∈ Pn(U × X × Y) such that

(i) the marginal ofQ on U × X is Pun(i)xn;
(ii) the marginal ofQ on U × Y is given by

Pun(i)(u)V (y|u), u ∈ U and y ∈ Y;

(iii) under the distributionQ, Eρ(X0, Y0) ≤ d .
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This implies

F(Pun(i), Pxn|un(i), V ) ≤ d. (182)

In view of (180), (181), and (182) implies

∑

u∈U
Pun(i)(u)D(V (·|u)||PY |U(·|u)) > 3δ0, (183)

where δ0 > 0 is a constant independent of i, un(i) and V . Therefore, if Sdi ∩
T nV (u

n(i),Y) is not empty, then

Pr{Yn ∈ Sdi ∩ T nV (un(i),Y)|Un = un(i)}
≤ Pr{Yn ∈ T nV (un(i),Y)|Un = un(i)} ≤ 2−3nδ0 (184)

which in turn implies

Pr{Yn ∈ Sdi |Un = un(i)} ≤ |Vn(Pun(i),U × Y)|2−3nδ0 ≤ 2−2nδ0 (185)

for sufficiently large n. Substituting (185) into (179) yields,

Pe2(Cn) ≤ 2−n(2δ0−δ+o(1)).

Selecting δ < δ0 so small that the right hand side of (177) is less than R.
Accordingly,

Pe2(Cn) ≤ 2−nδ0 (186)

for sufficiently large n. This shows that (R,+∞, δ0) is achievable and hence
completes the proof of (176).

We next turn to proving

R∗XY (+∞, 0, d) ≥ R̃(PXY , 0, d). (187)

By the definition of R∗XY (+∞, 0, d), it suffices to prove that for any achievable
triple (R,+∞, β),

R ≥ R̃(PXY , 0, d). (188)

To this end, let us fix below an achievable triple (R,+∞, β). By definition, there
exists for any ε > 0 a sequence {Cn} of IDS codes, where Cn = (fn, Bn, gn) is an
nth order IDS code, such that for sufficiently large n,

rn(Cn) ≤ R + ε, Pe1(Cn) = 0, and Pe2(Cn) ≤ 2−n(β−ε). (189)
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As what we did before, for each bn ∈ Bn, let

S(bn) = {xn ∈ X n : fn(xn) = bn}.

Let Ŝd (bn) denote the set of all sequences yn ∈ Yn such that

Pr(Xn ∈ S(bn) ∩ Bd(yn)|Yn = yn) > 0. (190)

where

Bd(y
n) = {xn ∈ X n : ρn(xn, yn) ≤ d}.

Clearly, Pe1(Cn) = 0 implies

Ŝd (bn) ⊂ {yn ∈ Yn : gn(yn, bn) = 1}.

From (189), therefore, it is not hard to see that

∑

bn∈Bn
Pr{(Xn, Y n) ∈ S(bn)× Ŝd (bn)} ≤ 2−n(β−ε) + Pr{ρn(Xn, Y n) ≤ d}

which in turn implies

∑

bn∈Bn
Pr{Xn ∈ S(bn)}

∑

xn∈S(bn)

Pr{Xn = xn}
Pr{Xn ∈ S(bn)} Pr{Yn ∈ Ŝd (bn)|Xn = xn} → 0

(191)

as n goes to infinity. Let B ′n consist of all bn ∈ Bn such that

∑

xn∈S(bn)

Pr(Xn = xn)
Pr(Xn ∈ S(bn)) Pr(Y n ∈ Ŝd (bn)|Xn = xn) < ε

d
. (192)

From (191) and the Markov inequality, for sufficiently large,

∑

bn∈B ′n
Pr(Xn ∈ S(bn)) > 1− ε.

Fix bn ∈ B ′n and consider S(bn) ∩ T nX,γn . It is easy to see that there exists A ⊂
S(bn) ∩ T nX,γn such that A ⊂ T nP (X ) for some (X, γn)-essential P and

1

n
log

|S(bn) ∩ T nX,γn|
|A| ≤ |X | logn+ 1

n
. (193)
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From (192),

∑

xn∈A

1

|A| Pr(Y n ∈ Âd |Xn = xn) ≤ ε

d
(194)

where Âd is defined in the same way as Ŝd (bn)was. Focusing on A, we define
a random vector X̃n = (X̃1, · · · , X̃n) taking values uniformly on A. Let Ỹ n =
(Ỹ1, · · · , Ỹn) be the output of the memoryless channel W resulting from passing
X̃n throughW . It is easy to verify that

1

n
log |A| = 1

n
H(X̃n) = 1

n
H(X̃n|Ỹ n)+ 1

n
I (X̃n; Ỹ n)

= 1

n

n∑

i=1

H(X̃i |X̃i−1, Ỹ n)+ 1

n
I (X̃n; Ỹ n)

≤ 1

n

n∑

i=1

H(X̃i |X̃i−1, Ỹi , Ỹ
n
i+1)+

1

n
H(Ỹ n)− 1

n

n∑

i=1

H(Ỹi |X̃i).

(195)

Let I be a RV taking values uniformly on {1, · · · , n} and independent of X̃n and
Ỹ n. Let

X̃ = X̃I , Ỹ = ỸI and U = (X̃I−1, Ỹ nI+1, I ). (196)

Then (195) continues as follows

1

n
log |A| ≤ H(X̃|Ỹ , U)+ I (X̃ ∧ Ỹ ) = H(X̃|U)+ I (U ∧ Ỹ ), (197)

where the last step follows from the fact that U → X̃ → Ỹ form a Markov chain.
From (193) and (197), we now have

Pr(Xn ∈ S(bn) ∩ T nX,γn) ≤ |S(bn) ∩ T nX,γn |2−n(H(X̃)+o(1))

≤ exp{−n[I (X̃ ∧ U)− I (Ỹ ∧ U)− o(1)]}. (198)

Next we show that U, X̃, Ỹ satisfy

Eρ̄e(PX̃|U(·|U)) > d − ε. (199)

To this end, Let U be the finite set on which U takes values, that is

U = {(xi−1, yni+1, i) : xi−1 ∈ X i−1, yni+1 ∈ Yn−i , 1 ≤ i ≤ n}.
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For each u ∈ U , let Ŵu = (Ŵu(y|x)) be a stochastic matrix such that

(i) PX̃|U(·|u)Ŵu = PX̃|U(·|u)W ;
(ii) Ŵu is absolutely continuous with respect toW ;

(iii)

ρ̄e(PX̃|U(·|u)) =
∑

x∈X ,y∈Y
PX̃|U(x|u)Ŵu(y|x)ρ(x, y).

Therefore,

Eρ̄e(PX̃|U(·|U)) =
∑

u∈U ,x∈X ,y∈Y
PU(u)PX̃|U(x|u)Ŵu(y|x)ρ(x, y).

We now write Ŵu(y|x) as Ŵi(y|xi−1, yni+1, x) whenever u = (xi−1, yni+1, i). Think

of Ŵi(·|·) as a channel X i−1 × Yn−i × X → Y and construct a random vector
Ŷ n = (Ŷ1, · · · , Ŷn) as follows:

Step 1. For i = n, Ŵn is from X n−1 × X to Y . Pass X̃n (viewed as (X̃n−1, X̃n))
through Ŵn and denote the output by Ŷn;

Step 2. Pass (X̃n−2, Ŷn, X̃n−1) through Ŵn−1, and denote the output by Ŷn−1;
Step i. So far, Ŷn−j for j = 0, · · · , i − 2 have been constructed. Pass

(X̃n−i , Ŷ nn−i+2, X̃n−i+1) through channel Ŵn−i+1 and denote the output

by Ŷn−i+1.
Continue this procedure until

Step n. Pass (Ŷ n2 , X̃1) through the channel Ŵ1 and denote the output by Ŷ1.

Since PX̃|U(·|u)Ŵu = PX̃|U(·|u)W , from the above construction, we can see that

for any i : 1 ≤ i ≤ n, (X̃n−i , Ŷ nn−i+1) has the same distribution as that of

(X̃n−i , Ỹ nn−i+1). From this, we obtain

Eρ̄e(PX̃|U(·|U)) = Eρn(X̃
n, Ŷ n) = E[E(ρn(X̃n, Ŷ n)|Ŷ n)], (200)

where E(·|Ŷ n) denote the conditional expectation with respect to Ŷ n. Since Ŵu
is absolutely continuous with respect to W for any u ∈ U , it follows from the
construction of Ŷ n that P

X̃nŶ n
is also absolutely continuous with respect to PX̃nỸ n .

Therefore, for any yn �∈ Âd , if Pr(Ŷ n = yn) > 0, or equivalently, Pr(Ỹ n = yn) > 0,
then from the definition of Âd , we have

Pr(ρn(X̃n, yn) ≤ d|Ŷ n = yn) = 0

which implies

E(ρn(X̃
n, Ŷ n)|Ŷ n = yn) ≥ d. (201)
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Note that (194) can be rewritten as

Pr(Ỹ n ∈ Âd) < ε

d
.

This, combined with (200) and (201), yields

Eρ̄e(PX̃|U(·|U)) = E[E(ρn(X̃n, Ŷ n)|Ŷ n)]
≥ d Pr(Ŷ n �∈ Âd)
= d Pr(Ỹ n �∈ Âd)
> d − ε.

Finally, let us go back to (198). In view of the definition of R̃(PX̃Ỹ , 0, d), we have

Pr(Xn ∈ S(bn) ∩ TX,γn) ≤ exp{−nR̃(PX̃Ỹ , 0, d − ε)+ o(n)}
≤ exp{−nR̃(PXY , 0, d − ε)+ o(n)} , (202)

where the last inequality is due to the fact that PX̃ is (X, γn)-essential. Note
that (202) holds for any bn ∈ B ′n. In view of (189), we have

R + ε ≥ rn(Cn)

≥
∑

bn∈B ′n
−1

n
Pr(Xn ∈ S(bn) ∩ T nX,γ ) log Pr(Xn ∈ S(bn) ∩ T nX,γ )−

1

n

≥ (1− ε − |X |
4nγ 2

n

)(R̃(PXY , 0, d − ε)− o(1))− 1

n
.

In view of Lemma 292, letting n→∞ and then letting ε→ 0 yield

R ≥ R̃(PXY , 0, d).

This completes the proof of (188) and hence the proof of Theorem 293. ��
Remark At this point, we point out the reason why the method used in Sect. 4 to
prove Theorems 288 and 290 can not be generalized to the general case in which X
and Y may be correlated. The main difficulty lies in the fact that even in the simplest
case of α = +∞ and β = 0, the auxiliary RV U introduced in the proof of the lower
bound of Theorem 293 involves both sets X and Y .

Proof of Theorem 294 Clearly, we need to prove only

R∗(XZ)(YZ)(+∞, 0, d) ≤ R̃(P(XZ)(YZ), 0, d). (203)
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By using the formula (62) for R̃(P(XZ)(YZ), 0, d), an argument similar to the
derivation of (176) can be used to show (203). ��

6 Open Problems

The following problems remain open:

1. When X and Y are independent, Theorem 290 gives R∗XY (α, β, d) for 0 ≤ β <
β(d). What happens if β ≥ β(d)?

2. What is the counterpart of Theorem 290 in the general case in which X and Y
may be correlated? This problem may be too difficult to solve.

3. An easier problem is the following: what is R∗XY (+∞, 0, d) in the general case?
4. In this lecture, we considered the case when d < Eρ(X, Y ). What happens if
d > Eρ(X, Y )? In the binary symmetric case, of course, the problem associated
with d > Eρ(X, Y ) is equivalent to that associated with d < Eρ(X, Y ). In
general, however, this is not true.
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New Results in Identification Theory

Holger Boche, Christian Deppe(�), Wafa Labidi,
and Roberto Ferrara

Machine-to-machine and human-to-machine communications are essential aspects
incorporated in the framework of fifth generation wireless connectivity.

These new applications demand a strict adherence to end-to-end latency and
robustness/reliability of a communication link. For a comprehensive discussion of
these applications and their requirements concerning end-to-end latency, see [48].

As is shown in [48], the security for these applications and their necessary latency
requirements must be embedded in the physical domain. Furthermore, for many of
the applications discussed, the message transmission problem, as has been defined
by Shannon [70], is too limiting. For this kind of communication, the receiver must
be in a position to successfully decode all the messages from the sender.

To the contrary, as was discussed in [48], it is the communication task of
identification best depicting the communication task in the new applications. The
task of identification was introduced in [8] by R. Ahlswede and G. Dueck.

This survey is a supplement to the Lecture Notes on Identification Theory. Rudolf
Ahlswede work on this lecture notes until his death in 2010. Since then, some new
results and more applications of identification theory have emerged. The BMBF
even supports one project titled “Post Shannon Communication”. This project is
about new communication models that are not implemented in the sense of the
Shannon approach. Identification theory is a first example that new communication
models lead to significant increases in performance. As shown in the book, in this
scenario the receiver only wants to decide if the sender has sent a relevant message
or not. Of course, the sender has no prior information about the messages that the
recipient considers important. The relevance of certain messages to the recipient
may be changed during the application. Ahlswede and Dueck have shown that
there are identification codes with double exponential size in the block length of
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codewords, while in Shannon’s transmission scheme the best possible codes have
exponential size. The benefits offered by communication networks are limited by the
ability of non-intended users (eavesdropping) or the manipulation of the sensitive
data (jamming). These effects are different in the theory of identification than in
Shannon’s approach.

In this section we will be looking at various capacities defined following the
same template. Namely, given a definition for a channel model and a channelW in
this models, and given a definition of (n,M, ε) codes for these channels (where n
is the blocklength,M the size and ε the error), then the pessimistic capacity of the
channels under these codes is defined as

inf
ε>0

lim inf
n→∞

1

n
logM(W,n, ε)

= sup

{
R : ∀ ε > 0, ∃ N, ∀ n ≥ N : 1

n
logM(W, n, ε) ≥ R − ε

}
,

whereM(W,n, ε) is the maximumM for which an (n,M, ε) code (as per the given
definition) forW exists. The optimistic capacity is defined as

inf
ε>0

lim sup
n→∞

1

n
logM(W,n, ε)

= sup

{
R : ∀ ε > 0, ∀ N, ∃ n ≥ N : 1

n
logM(W, n, ε) ≥ R − ε

}
,

The only exceptions are codes marked as ID codes, for which the pessimistic and
optimistic capacity are achievable rates that scale double exponentially and thus are
defined as

inf
ε>0

lim inf
n→∞

1

n
logM(W,n, ε)

and

inf
ε>0

lim sup
n→∞

1

n
logM(W,n, ε)

respectively.
Unless otherwise stated, the capacity is always implicitly taken to be the

pessimistic capacity. Most importantly to remember, we will leave these steps
implicit each time we define denote a capacity after defining a certain set codes.
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1 Secure and Robust Identification Against Eavesdropping
and Jamming Attacks

We present the main results established in [23–25]. Namely, we consider identifica-
tion over robust (protection against systematic random errors), secure (protection
against eavesdropping) channels, and the case if a jammer has influence to the
channel. In this work, the identification capacity is compared to the transmission
capacity of different channels and also in this case we have the double exponential
advantage.

First, the effects are discussed by the example of a simple discrete memoryless
channel. The channel model is then generalized to be include robustness. In
information theory, robustness is modeled with a compound channel or, more
generally, with an arbitrarily varying channel. Both models retain the effect of
double exponential identification capacity. After that, security is considered and
modeled with the help of a wiretapper. Here it turns out that there are even greater
advantages of identification compared to transmission. While using a transmission
code the capacity of a secure code depends directly on the channel to the wiretapper,
for an identification code it is sufficient to know just that secure information can
be transmitted. Once this is guaranteed, the channel can be used to identify the
messages with the same capacity as the channel without wiretapper.

1.1 Compound Channels

In this section, the compound channel (CC) is discussed. In this model, the channel
uncertainty is modeled by a given set of channels. The communication participants
know this set, but they do not know which channel of this set describes the channel
actually used. This compound channel model was introduced in [19] by Blackwell,
Breiman, and Thomasian. It can be considered as a channel with state selector,
choosing t and fixing it for all channel uses, but the sender and the receiver do
not know his selection (see Fig. 1).

For the transmission capacity, the following result is obtained.

Theorem 299 ([19, 81]) The transmission capacity of the CC W is

C(W) = max
P

min
W∈W

I (P ;W). (1)

Fig. 1 The compound
channel. Once t is selected
Wt is used for the whole
bolck

(Wt)
n� �

�

t ∈ Θ
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As in the case of the DMC, the CC has the same identification capacity as the
transmission capacity.

Theorem 300 The ID capacity of the CC W is

CID(W) = C(W). (2)

1.2 Arbitrarily-Varying Channels

Another possibility to model the robustness in terms of information theory is with
the arbitrarily-varying channel. This setting is also modeled by a given set of
channels. The communication participants are aware of the state set but not of the
actual realization of each state, which is determined probabilistically. The choice of
state is arbitrary and can be thought as being controlled by a jammer, where at every
time step the state of the channel can be changed by the jammer, and so that the
sender and the receiver do not know the jamming strategy. Such a model is called
an arbitrarily-varying channel (AVC) (Fig. 2).

It is to note that for an AVC there is the possibility that the channel is
symmetrizable. The intuitive meaning of this is that the jammer can choose the
state of the channel such that any two codewords, x and x ′, may be confused by the
receiver.

Definition 301 An AVC W : X × S → P(Y) is symmetrizable if there exists a
channel U : X → P(S), such that for all x, x ′ ∈ X y ∈ Y

∑

s

U(s|x ′)W(y|x, s) =
∑

s

U(s|x)W(y|x ′, s). (3)

In this situation, the decoder will be unable to tell if the transmitted codeword was
x or x ′. When a channel is symmetrizable, it is not possible to transmit or identify a
message.

Furthermore, to give the capacity of an AVC we need the concept of a correlated
code, where the sender and the receiver have access to some source with correlated
(or common) randomness. The capacity of the AVC W using a correlated random

Fig. 2 The
arbitrarily-varying channel

Wn
sn

sn ∈ Sn

� �

�
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code is called correlated random coding capacity and denoted by

Cran(W) = max
P

min
S
I (P ; SW) = min

S
max
P
I (P ; SW)

where we generalize the notation PW ∈ P(Y) to the case SW : X → P(Y ), where
the probability distribution is only over part of the input of the channel and produces
the channel SW(y|x) =∑s PS(s)W(y|x, s). The correlated randomness codes can
be derandomized whenever the normal capacity is non-zero. Therefore the normal
capacity C, without correlated randomness, of the AVC is discontinuous, as it is
either zero or exactly equal to Cran. In [47], Ericson showed that for positivity of the
capacity it is necessary that W be non-symmetrizable, and in [43] it was proven to
also be sufficient. Namely, the from all the above the following theorem holds.

Theorem 302 ([43]) The transmission capacity of the AVCW is

C(W) =
{

0 if W is symmetrizable

Cran(W) otherwise.
(4)

Notice that examples of symmetrizabe AVCs with positive Cran exist and can be
found for example in [42].

Again, it could be shown that in this case the identification capacity is equal to
the transmission capacity.

Theorem 303 ([7]) The ID capacity of the AVCW is

CID(W) = C(W) (5)

1.3 Compound Wiretap Channels

The two robust models from the previous section are considered again and a
wiretapper is added to the model. First, the case of the compound channel is
discussed. As before, a state selector chooses t , and the sender and the receiver
do not know his selection, but the wiretapper does. This corresponds to an active
attack by the state selector and passive wiretapping. The previously introduced
model allows for joining state selector and wiretapper. In this view the wiretapper
chooses t and the code has to work independently of the choice of t . For that reason,
this is called an active attack.

Definition 304 Let  = {1, . . . , T } and � = {1, . . . , S} be finite index
sets. A discrete memoryless compound wiretap channel (CWC) is a quintuple
(X ,Y,Z,W,V), where X is the finite input alphabet, Y is the finite output
alphabet for the legitimate receiver,Z is the finite output alphabet for the wiretapper,
W = (Wt )t∈ is the CC whose output is available to the legitimate receiver, and
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V = (Vs)t∈� the CC whose output is available to the wiretapper. The channel is
assumed to be memoryless.

Theorem 305 ([17]) The secrecy capacity CS of a CWC (W,V) is given by

CS(W,V) = lim
n→∞

1

n
max

U→Xn→Ynt Zns

(
min
t∈ I (U ∧ Ynt )−max

s∈� I (U ∧ Zns )
)
, (6)

where Yt is the resulting random variable at the output of the intended receiver
channel andZs is the resulting random variable at the output of the wiretap channel,
if the channel is (Wt , Vs). The maximum is taken over all random variables U that
satisfy the Markov chain relationships U → Xn → Ynt Z

n
s .

Theorem 306 ([24]) The ID capacity of the CWC is

CSID(W,V) =
{
C(W) if CS(W,V) > 0,

0 if CS(W,V) = 0.

1.4 Arbitrarily-Varying Wiretap Channels

In the case of the AVWC, symmetrizability also plays a role in the secure
transmission and ID capacity, denoted CS and CSID.

The secret transmission capacity of codes using common randomness is given by

CS,ran(W,V) = lim
n→∞

1

n
sup

U→Xn→Ynt Znsn

(
min
t∈P( )

I (U ∧ Ynt )− max
sn∈Sn

I (U ∧ Znsn)
)

This capacity gives the secret transmission capacity in case of non-symmetrizable
AVC at the intended receiver.

Theorem 307 ([62]) The secret transmission capacity of the AVWC is

CS(W,V) =
{

0 if W is symmetrizable

CS,ran(W,V) otherwise.

The following dichotomy (introduced in Theorem 87) result is obtained.

Theorem 308 ([25]) The secret ID capacity of the AVWC is

CSID(W,V) =
{
Cran(W) if CS,ran(W,V) > 0

0 otherwise.
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2 Classical-Quantum Channels

In this section, we present the most important results cited in [26].
Let H be a Hilbert space, we denote by B(H) the set of bounded operators, by

S(H) the set of quantum states (bounded positive operators of trace one). All Hilbert
spaces here will be finite dimensional, we can then denote by P(H) the set of pure
quantum states (rank-1/projector states).

A POVM defines the most general measurement map from a quantum state to a
classical random variable. As such POVMs also describe the most general form of
decoder of classical information from a quantum state.

Definition 309 Let H be a finite dimensional Hilbert space. A POVM (positive
operator valued measure) on H is a collection (Di)Ni=1 of positive semidefinite

operators Di on H such that
∑N
i=1Di = 1H, where 1H denotes the identity

operator on H.

In identification theory the goal for Bob is changed: Assume that he “only” wants
to know if the transmitted message is equal to some j . Instead of having a single
decoder POVM, we have now a binary POVM for each message.

Definition 310 A set of measurement operators {Di}, i.e. 0 ≤ Di ≤ 1 but
not necessarily a POVM, is called simultaneous if there exist a POVM, called
generating POVM, such that each Di can be written as a sum of some the POVM’s
elements.

Each operator Di implicitly define a binary POVM, namely {Di,1 − Di} for each
message i. A simultaneous set of measurement operators {Di}i means that for each
i the POVM {D − i,1 − Di} can be performed as classical post-processing of the
generating POVM.

2.1 Classical-Quantum Channels

In [26], the identification capacity of classical-quantum channels (“cq-channels”)
under channel uncertainty and privacy constraints is studied. To be precise, the com-
pound memoryless cq-channels are first considered and their identification capacity
is determined; then an eavesdropper is added by considering compound memoryless
wiretap cqq-channels, and their secret identification capacity is determined. In the
first case (without privacy), Boche, Deppe and Winter find that the identification
capacity always equal to the transmission capacity. In the second case, they find
the same dichotomy of classical channels: either the secrecy capacity (also known
as private capacity) of the channel is zero, and then the secrecy identification
capacity is also zero, or the secrecy capacity is positive and then the secrecy
identification capacity equals the transmission capacity of the main channel without
the wiretapper.



646 New Results in Identification Theory

First some basic definitions related to cq-channels are introduced. Cq-channels
have a classical sender, having access to an input alphabet X , but their output is
quantum, being described by a Hilbert space H.

Definition 311 A discrete classical-quantum channel (cq-channel) is a map W :
X −→ S(H) where X is a finite set and S(H) is the set of quantum states of the
complex Hilbert space H, which we assume to be finite dimensional. Furthermore,
we denote a = |X | the cardinality of X , and d = |H| the dimension of H.

Given a probability distribution P ∈ P(X ) we define the state:

PW ≡ W(P) �
∑

x∈X
P(x)W(x).

This is the basic definition upon which all the other models of classical-quantum
channels are built upon.

2.2 Wiretap Classical-Quantum Channels

An important aspect in information theory is security, or privacy. Wyner [82]
introduced the classical wiretap channel, which he solved in the degraded case, and
later Csiszár and Körner [41] in the general case. It can be described by two channels
from the sender (“Alice”) to the intended receiver (“Bob”) and to the eavesdropper
(“Eve”), respectively. The wiretap channel was generalized to the setting of quantum
information theory in [38, 45]. Formally, in contrast to the classical case, quantumly
the channel has to be described by a single quantum operation T , from Alice to the
joint system of Bob and Eve together: then the intended channelW = TrB ◦T and
the wiretapper channel V = TrE ◦T are defined in [26]. Here, only one case of the
cq-channel is considered, where Alice’s input is described by a letter x ∈ X from
a finite alphabet. Then the classical-quantum wiretap channel is defined in a simple
way.

Definition 312 A classical-quantum wiretap channel (wiretap cqq-channel) is a
pair (W, V ) of two discrete memoryless cq-channels W : X −→ S(B) and V :
X −→ S(E). When Alice sends a classical input xn ∈ X n, Bob (intended receiver)
and Eve (eavesdropper) receive the statesW⊗n(xn) and V⊗n(xn), respectively.

Definition 313 An (n,M, ε,μ) wiretap transmission code for the wiretap cqq-
channel (W, V ) is a collection {(Pi,Di) : i ∈ [M]} of pairs consisting of probability
distributions Pi on X n and a POVM (Di)

N
i=1 on Bn such that

∀ i ∈ [M] TrW⊗n(Pi)Di ≥ 1− ε,

∀ i, j ∈ [M] 1

2
‖V ⊗n(Pi)− V⊗n(Pj )‖1 ≤ μ.
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We denote by CS(W, V ) the capacity of the wiretap cq-channel achieved by the
wiretap transmision codes.

Definition 314 An (n,M, ε) wiretap (simultaneous) ID code for the wiretap cqq-
channel (W, V ) is a collection {(Pi,Di) : i ∈ [M]} of pairs consisting of probability
distributions Pi on X n and (simultaneous) measurement operators Di on Bn such
that

∀ i ∈ [M] TrW⊗n(Pi)Di ≥ 1− ε,
∀ i �= j ∈ [M] TrW⊗n(Pi)Dj ≤ ε,

∀ i, j ∈ [M] 1

2
‖V ⊗n(Pi)− V⊗n(Pj )‖1 ≤ ε.

We denote by CSID(W, V ) (Csim
SID(W, V )) the capacity of the wiretap cqq-channel

achieved by the wiretap (simultaneous) ID codes.

Theorem 315 ([38]) The secrecy capacity of a wiretap cqq-channel is given by

CS(W, V ) = lim
n→∞ max

U→Xn→BnEn
1

n

(
I (U : Bn)− I (U : En)

)
,

where the maximum is taken over all random variables that satisfy the Markov chain
relationships U → Xn → BnEn.

The wiretap cqq-channel is considered and a multi-letter formula for its secure
identification capacity is derived. The idea is similar to the classical case. A
combination of two codes is used. For the converse, inequalities of [10] and [49]
are generalized.

Theorem 316 ([24], Dichotomy Theorem) Let C(W) be the capacity of the cq-
channel W and let CS(W, V ) be the secrecy capacity of the wiretap cqq-channel.
Then,

CSID(W, V ) = Csim
SID(W, V ) =

{
C(W) if CS(W, V ) > 0,

0 if CS(W, V ) = 0.

2.3 Compound Classical-Quantum Channels

We will consider robust codes against compound cq-channels. The results for cq-
channels follow as special cases.
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Definition 317 Let  be an index set, X a finite set and H a finite-dimensional
Hilbert space. LetWt : X −→ S(H) be a cq-channel for every t ∈  :

Wt : x 2→ Wt(x) ∈ S(B).

If the memoryless extension of the cq-channel Wt is given by Wt(x
n) =

W⊗n
t (xn) = Wt(x1) ⊗ . . . ⊗ Wt(xn) for xn ∈ X n then we call W = {Wt }t∈ 

a compound cq-channel.

In this case t model a channel that can change from one session to another
(between different blocks of length n). The special case of regular cq-channels is
recovered for | | = 1.

In transmission, Alice uses the classical-quantum channel to transmit messages
from the set X to Bob. Bob tries to find out the transmitted messages by measuring
with a POVM.

Definition 318 An (n,M, ε) transmission code for the compound cq-channel W is
a family C := {(Pm,Dm) : m ∈ [M]} consisting of stochastic encodings given by
probability distributions Pm over X n and a POVM {Di} ⊂ B(B⊗n), such that

∀ t ∈  , ∀ i ∈ [M] TrW⊗n
t (Pi)Di ≥ 1− ε,

whereM is the size of the code and ε the error probability.
We denote C(W) the capacity of the compound cq-channel achieved by the

transmission codes.

In identification, Alice uses the classical-quantum channel to encode from the set
X to Bob. Bob test for the message he is interested in with a binary measurement,
i.e a POVM {D,1−D}. Thus, the collection of all measurement operators used to
test for each identification message does not need to be a POVM.

Definition 319 An (n,N, ε) (simultaneous) ID code for the compound channel

W = {Wt : X → S(H)}t∈ 
is a set of pairs {(Pi,Di) : i ∈ [N]} where the Pi are probability distributions on
X n and the Di are (simultaneous) measurement operators on H⊗n, such that

∀ t ∈  , i ∈ [M] TrW⊗n
t (Pi)Di ≥ 1− ε

∀ t ∈  , i �= j ∈ [M] TrW⊗n
t (Pi)Dj ≤ ε.

We denote CID(W) (Csim
ID (W)) the capacity of the compound cq-channel achieved

by the (simultaneous) ID codes.
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Theorem 320 ([16]) Let W be a compound cq-channel. Then,

C(W) = inf
t∈ sup

Q

I (Q;Wt).

Theorem 321 ([26]) Let W be a compound cq-channel. Then,

CID(W) = Csim
ID (W) = C(W).

The weak converse holds also for the optimistic ID capacity:

CID(W) � inf
ε>0

lim sup
n→∞

1

n
logN(n, ε) = CID(W).

2.4 Compound Wiretap Classical-Quantum Channels

In Theorem 326, the construction for the more general compound model is
described. The same idea is used here to show the direct part: Alice and Bob first
create shared randomness at a rate equal to the channel capacity. A code with an
arbitrary small positive rate is then sufficient to use the method of Ahlswede and
Dueck by sending and decoding the function values.

Definition 322 Let  and � be an index sets and let W = {Wt : X → S(B) :
t ∈  } and V = {Vs : X → S(E) : s ∈ �} be compound cq-channels. We
call the pair (W,V) a compound wiretap cqq-channel. The channel output of W is
available to the legitimate receiver (Bob) and the channel output of V is available to
the wiretapper (Eve).

Definition 323 An (n,M, ε) wiretap transmission code for the compound wiretap
cqq-channel (Wt , Vs)t∈ ,s∈� consists of a family C = (Pi,Di)i∈[M] where the Pi
are probability distributions on X n and (Di)i∈[M] a POVM on B⊗n such that

∀ t ∈  , i ∈ [M] TrW⊗n(Pi)Di ≥1− ε,

∀ s ∈ �, i, j ∈ [M] 1

2
‖V ⊗ns (Pi)− V⊗ns (Pj )‖1 ≤ μ.

The capacity is defined as before.

Definition 324 An (n,N, ε) wiretap (simultaneous) ID code for the compound
wiretap cqq-channel (W,V) is a set of pairs {(Pi,Di) : i ∈ [N]} where the Pi
are probability distributions on X n and the Di are (simultaneous) measurement
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operators on B⊗n such that,

∀ t ∈  , i ∈ [M] TrW⊗n
t (Qi)Di ≥ 1− ε,

∀ t ∈  , i �= j ∈ [M] TrW⊗n
t (Qj )Di ≤ ε,

∀ s ∈ �, i, j ∈ [M] 1

2
‖V ⊗ns (Qj )− V ⊗ns (Qi)‖1 ≤ ε. (7)

We denote by CSID(W,V) (Csim
SID(W,V)) the capacity of the compound wiretap

cqq-channel achieved by the wiretap (simultaneous) ID codes.

Again a dichotomy result is obtained.

Theorem 325 ([21]) Let (W,V) be a compound wiretap cqq-channel. Then

CS(W,V) = lim
n→∞ sup

U→Xn→(Bnt Ens )
1

n

(
inf
t∈ I (U ;B

n
t )− sup

s∈�
I (U ;Ens )

)
.

Theorem 326 ([26]) Let (W,V) be a compound wiretap cqq-channel. Then,

CSID(W,V) = Csim
SID(W,V) =

{
C(W) if CS(W,V) > 0,

0 if CS(W,V) = 0.

2.5 Arbitrarily-Varying Classical-Quantum Channels

Now, the same analysis is performed for the case of arbitrarily-varying cq-channels,
with analogous findings.

Definition 327 We say that the arbitrarily-varying cq-channel W = {Wt : t ∈  }
is symmetrizable if there exists a parametrized set of distributions {τ (·|x) : x ∈ X },
on  also known as a channel τ from X to  , such that for all x, x ′ ∈ X ,

∑

t∈ 
τ(t|x)Wt(x ′) =

∑

t∈ 
τ(t|x ′)Wt (x).

It is worth noting that from now only finite index sets  are considered.

Definition 328 Let be a finite index set, X a finite set and B a finite-dimensional
Hilbert space. LetWt : X −→ S(B) be a cq-channel for every t ∈  :

Wt : X 4 x 2→ Wt(x) ∈ S(B), t ∈  .
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Let tn ∈  n be a state sequence. If the memoryless extension of the cq-channel
Wtn is given by Wtn(xn) = Wt1(x1) ⊗ . . . ⊗ Wtn(xn) for xn ∈ X n, then we call
W = {Wt }t∈ an arbitrarily-varying cq-channel.

In this case tn models a jammer that can change the channel during the transmis-
sion. Again, non-compound or non-arbitrarily-varying channels are recovered for
| | = 1. Like in the compound case, here we allow explicitly stochastic encoders.

Definition 329 An (n,M, λ) transmission code for the arbitrarily-varying cq-
channel W is a family ((Pm,Dm) : m ∈ [M]) consisting of probability distributions
Pm over X n and a POVM {Di} over B⊗n, such that for all

∀ tn ∈  n, ∀ i ∈ [M] TrW⊗n
tn (Pi)Di ≥ 1− ε.

We denote by C(W) the capacity of the arbitrarily-varying cq-channel achieved by
the transmission codes.

Definition 330 An (n,M, ε) (simultaneous) ID code for the arbitrarily-varying cq-
channelW is a family ((Pm,Dm) : m ∈ [M])wherePm are probability distributions
over X n and the Di are (simultaneous) measurement operators on B⊗n, such that
for all

∀ tn ∈  n, ∀ i ∈ [M] TrW⊗n
tn (Pi)Di ≥ 1− ε,

∀ tn ∈  n, ∀ i �= j ∈ [M] TrW⊗n
tn (Pi)Dj ≤ ε.

We denote by CID(W) (Csim
ID (W)) the capacity of the arbitrarily-varying cq-channel

achieved by the (simultaneous) ID codes.

Furthermore, we set

Cran(W) := max
P∈P(X )

min
T ∈P( )

I (P ; TW),

where T is the probability distribution of the jammer input. This is called the
random coding capacity of the channel. Under this notion, the encoding with a
stochastic encoder is generalized to a common-randomness code. It is assumed that
the sender and the receiver have access to some source of common randomness,
which, however, is secret from the jammer. Examples of symmetrizable channels
with non-zero Cran can be found in [27].

Theorem 331 ([4]) Let W be an arbitrarily-varying cq-channel. Then its capacity
C(W) is given by

C(W) =
{

0 if W is symmetrizable,

Cran(W) otherwise.
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With the help of the method from Theorem 321, it is shown in [26] that the
transmission capacity of the channel corresponds to the identification capacity. To
do this, in the proof of the direct part a code for an arbitrary varying cq-channel is
simply used instead of the code for the compound cq-channel. To show the converse,
it is shown that the error of the first type in the identification can not be arbitrarily
small if the channel is symmetrizable. Therefore, the following theorem is obtained.

Theorem 332 ([26]) Let W be an arbitrarily-varying cq-channel. Then its ID
capacity is given by

Csim
ID (W) = CID(W) = C(W)

2.6 Arbitrarily-Varying Wiretap Classical-Quantum Channels

Now, a wiretapper is added to the arbitrarily-varying cq-channel. First the transmis-
sion codes are defined.

Definition 333 Let  and � be finite index sets, and let W = {Wt : X → S(B) :
t ∈  } and V = {Vs : X → S(E) : s ∈ �} be arbitrarily-varying cq-channels.
We call the pair (W,V) an arbitrarily-varying wiretap cqq-channel. The channel
output of W is available to the legitimate receiver (Bob) and the channel output of
V is available to the wiretapper (Eve). We may sometimes write the channel as a
family of pairs (W,V) = (Wt , Vs)t∈ ,s∈�.

Then the secure transmission capacity is determined. Using this result, the secure
identification capacity of the arbitrarily-varying wiretap cq-channel could be then
calculated.

Definition 334 An (n,M, λ) wiretap transmission code for the arbitrarily-varying
wiretap cqq-channel (Wt , Vs)t∈ ,s∈� consists of a family {Pi,Di}i∈[M], where the
Pi are probability distributions on X n and {Di}i∈[M] a POVM on B⊗n such that

∀ tn ∈  n, ∀ i ∈ [M] TrW⊗n
tn (Pi)Di ≥ 1− λ, (8)

∀ sn ∈ �n, ∀ i, j ∈ [M] 1

2
‖V ⊗nsn (Pi)− V ⊗nsn (Pj )‖1 ≤ ε. (9)

We denote by C(W,V) the capacity of the arbitrarily-varying wiretap cq-channel
achieved by the wiretap transmission codes.

Definition 335 An (n,M, λ) wiretap (simultaneous) ID code for the arbitrarily-
varying wiretap cqq-channel (Wt , Vs)t∈ ,s∈� consists of a family {Pi,Di}i∈[M],
where Pm are probability distributions over X n and the Di are (simultaneous)
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measurement operators on B⊗n such that

∀ tn ∈  n, ∀ i ∈ [M] TrW⊗n
tn (Pi)Di ≥ 1− λ, (10)

∀ tn ∈  n, ∀ i �= j ∈ [M] TrW⊗n
tn (Pi)Dj ≤ ε. (11)

∀ sn ∈ �n, ∀ i, j ∈ [M] 1

2
‖V ⊗nsn (Pi)− V⊗nsn (Pj )‖1 ≤ ε. (12)

We denote by CID(W,V) (Csim
ID (W,V)) the capacity of the arbitrarily-varying

wiretap cq-channel achieved by the (simultaneous) wiretap ID codes.

To state the result of [22] we again introduce the random coding capacity,

CS,ran(W,V) � lim
n→∞

1

n
max

U→Xn→Bn
tn
En
sn

(
min

Ŵ∈conv{W⊗n
tn
}
I (P ; Ŵ)− max

sn∈�n I (P ;V
⊗n
sn )

)
.

Here, Bntn are the resulting quantum states at the output of the legitimate receiver’s
channels. Ensn are the resulting quantum states at the output of the wiretap channels.

In [22] the following dichotomy is shown.

Theorem 336 ([22]) Let (W,V) be an arbitrarily-varying wiretap cqq-channel.
Then,

CS(W,V) =
{

0 if W is symmetrizable,

CS,ran(W,V) otherwise.

Again a dichotomy result is shown. We use the idea of Theorem 326. As funda-
mental codes we use a code C′ for the arbitrarily-varying cq-channel and a code C′′
for the arbitrarily-varying wiretap cqq-channel, both reaching the capacity. If the
transmission capacity for W is positive, one gets as an identification capacity the
transmission capacity of W . The security follows by the strong secrecy condition
like in Theorem 326. Also the converse follows the same idea. Therefore following
theorem is obtained.

Theorem 337 (Dichotomy) Let C(W) be the capacity of the arbitrarily-varying
cq-channelW and let CS(W,V) be the secrecy capacity of the arbitrarily-varying
wiretap cq-channel (W,V). Then,

CSID(W,V) = Csim
SID(W,V) =

{
C(W) if CS(W,V) > 0,

0 if CS(W,V) = 0.
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3 Quantum Channels

Here, we report the results reviewed in [80].
As is often the case, in quantum probability, there is not just one but several

quantizations: we know at least two different concepts of identification of classical
information via quantum channels, and three different identification capacities for
quantum information. In this section, we concentrate on conceptual points and open
problems presented by Andreas Winter in [79]. Let P(K) be the space of pure states
of a finite dimensional Hilbert space K .

Definition 338 (Winter [79]) A quantum ID code for the channelN with error ε,
for the Hilbert space K , is a pair of maps E : P(K) −→ S(A) and D : P(K) −→
L(B)with 0 ≤ Dϕ ≤ 1 for all ϕ = |ϕ〉〈ϕ| ∈ P(K), such that for all pure states/rank-
one projectors ψ, ϕ ∈ P(K),

∣∣Trψϕ − TrN (Eψ)Dϕ
∣∣ ≤ ε.

If the encoding E is a quantum channel we speak of a blind code, otherwise we call
it visible.

For the case of an iid channel N⊗n, we denote the maximum dimension of a
blind (visible) quantum ID code byM(n, ε) (Mv(n, ε)).

This notion can be motivated as follows: In quantum transmission, the objective
for the receiver is to recover the state ψ by means of a suitable decoding (cptp)
map D̃ : L(B) −→ L(K), with high accuracy. Of course then the receiver can
perform any measurement on the decoded state, effectively simulating an arbitrary
measurement on the original input state, in the sense that for any state ρ and POVM
M = (Mi)i on K , there exists another POVM M ′ = (M ′

i )i on B such that the
measurement statistics of ρ under M is approximately that of N (E(ρ)) under M ′
(E in this case is a quantum channel). (M ′ can be written down directly via the
adjoint D̃† : L(K) −→ L(B) of the decoding map, which maps measurement
POVMs on K to POVMs on B: M ′

i = D̃†(Mi).) The converse is also true: If
the receiver can simulate sufficiently general measurements on the input state by
suitable measurements on the channel output, then he can actually decode the state
by a cptp map D̃ [66].

This allows us to relax the task of quantum information transmission to requir-
ing only that the receiver be able to simulate the statistics of certain restricted
measurements. In the case of quantum identification, these are (ϕ,1 − ϕ) for
arbitrary rank-one projectors ϕ = |ϕ〉〈ϕ| ∈ P(K). They are the measurements
which allow the receiver to ask the (quantum) question: “Is the state equal to ϕ or
orthogonal to it?”. Obviously, in quantum theory this question cannot be answered
with certainty, but for each test state it yields a characteristic distribution and Trψϕ
is the probability of answering yes when measuring on the state ψ . The quantum-ID
task above is about reproducing this distribution by substituting ψ with the encoded
state followed by the channel action N (Eψ), and ϕ by Dϕ .
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Note that we can always concatenate a blind or visible quantum ID code for
the Hilbert space K with a fingerprinting set of pure states [37] in K , to obtain a
classical ID code. This is because in fingerprinting the encodings are pure states ψi
and the tests precisely the POVMs (ψi,1 − ψi). Hence, as the cardinality of the
fingerprinting set is exponential in the dimension |K|,M(n, ε) andMv(n, ε) can be
at most exponential in n.

Definition 339 For a quantum channel N , the blind, respectively visible, quantum
ID capacity is defined as

QID(N ) := inf
ε>0

lim inf
n→∞

1

n
logM(n, ε),

QID,v(N ) := inf
ε>0

lim inf
n→∞

1

n
logMv(n, ε).

If we leave out the qualifier, the quantum ID capacity is by default the blind variety.

Note that by definition and the above remark,

QID(N ) ≤ QID,v(N ) ≤ CID(N ). (13)

The first quantum ID capacity that had been determined was for the ideal qubit
channel:

Theorem 340 (Winter [79]) For the noiseless channel idA on Hilbert space A,
there exists a (blind) quantum ID code with error ε and encoding a space K of
dimension |K| ≥ C(ε)|A|2, for some universal function C(ε) > 0.

As a consequence,QID(id2) = QID,v(id2) = 2, twice the quantum transmission
capacity.

In view of this theorem, we gain at least 2 in capacity for each noiseless qubit we
use additionally to the given channel. This motivates the following definition.

Definition 341 (Hayden/Winter [52]) For a quantum channel N , the amortized
(blind/visible) quantum ID capacity is defined as

Qam
ID (N ) := sup

k

QID(N ⊗ idk)− 2 log k,

Qam
ID,v(N ) := sup

k

QID,v(N ⊗ idk)− 2 log k,

respectively.

The blind quantum ID-capacities are among the best understood, thanks to
recently made conceptual progress, which we review in the next section. We will
then also ask the question how much amortization is required. This is formalized in
the usual way: Namely, for a rate Q ≤ Qam

ID (N ), we say that A is an achievable
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amortization rate if there exist kn for all n, such that

lim inf
n→∞

1

n

(
QID(N⊗n ⊗ idkn)− 2 log kn

) ≥ Q and lim sup
n→∞

1

n
log kn ≤ A,

giving rise to an achievable quantum ID-rate/amortization region, viz. a tradeoff
betweenQ and A. Similarly of course for the visible variant. To state the following
conceptual points about blind(!) quantum ID codes, it is useful to fix an encoding
cptp map E : L(K) −→ L(A) and to combine it with the noisy channel, N ′ =
N ◦ E , for which we choose a Stinespring dilation V : K ↪→ B ⊗ F . The quantum
ID code is now the entire input spaceK of this effective new channel, together with
the previously given operators Dϕ on B. The next result states that just as quantum
error correctability of N ′ is equivalent to N̂ ′ being decoupling [46], quantum
identification is essentially equivalent to weak decoupling from the environment:

Theorem 342 (Hayden/Winter [52]) If K is a ε quantum ID code for the channel
N ′ with Stinespring dilation V : K ↪→ B⊗F , then the complementary channel N̂ ′
is approximately forgetful:

∀|ϕ〉, |ψ〉 ∈ K 1

2

∥∥N̂ ′(ϕ)− N̂ ′(ψ)
∥∥

1 ≤ δ := 7 4
√
ε.

Conversely, if N̂ ′ is approximately forgetful with error δ, then the trace-norm
geometry is approximately preserved by N ′:

∀|ϕ〉, |ψ〉 ∈ S 0 ≤ ∥∥ϕ − ψ∥∥1 −
∥∥N ′(ϕ)−N ′(ψ)

∥∥
1 ≤ ε := 4

√
2δ.

If, in addition, the nonzero eigenvalues of the environment’s states N̂ ′(ϕ) lie in the
interval [μ, λ] for all |ϕ〉 ∈ K , then one can construct an η quantum ID code for
N ′ (i.e. a set of operators Dϕ for all |ϕ〉 ∈ K as in Definition 338), with η :=
7δ1/8√λ/μ.
Remark 343 While it would be desirable to eliminate the eigenvalue condition
at the end of the theorem, the condition is fairly natural in this context. If the
environment’s states N̂ ′(ϕ) are very close to a single state σF for all |ϕ〉 ∈ K ,
then all the V |ϕ〉 are very close to being purifications of σF , meaning that they
differ from one another only by a unitary plus a small perturbation. If σF is the
maximally mixed state or close to it, then the assumption will be satisfied. In the
asymptotic iid setting we are looking at this turns to be the case.

This characterization of quantum ID codes (albeit “only” blind ones) allows the
determination of capacities by a random coding argument, for which only the weak
decoupling has to be verified. The above duality theorem is not only the basis for
the direct but also for the converse part(s) of the following capacity theorem.
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Theorem 344 (Hayden/Winter [52]) For a quantum channelN , its (blind) quan-
tum ID capacity is given by

QID(N ) = lim
n→∞

1

n
Q
(1)
ID (N

⊗n),

where

Q
(1)
ID (N ) = sup

|φ〉
{
I (A : B)ρ s.t. I (A〉B)ρ > 0

}
,

|φ〉 is the purification of an input state toN , ρAB = (id⊗N )(φ), and I (A : B)ρ =
S(ρA) + S(ρB) − S(ρAB) is the mutual information, and I (A〉B)ρ = S(ρB) −
S(ρAB) the coherent information. We declare the sup to be 0 if the set above is
empty. In particular,QID(N ) = 0 if and only ifQ(N ) = 0.

Furthermore, the amortized quantum ID capacity equals

Qam
ID (N ) = sup

|φ〉
I (A : B)ρ = CE(N ),

the entanglement-assisted classical capacity ofN [14].

4 Classical Gaussian Channels

In this section, we want to recall some results about identification over classical
non-discrete Channels, e.g., Gaussian channels. We then deal with secure identifi-
cation over Gaussian wiretap channels. Burnashev considered in [35] discrete-time
channels with independent additive noise:

• yi = xi + ξi, ∀ i ∈ {1, . . . , n}
• ξi are iid and ξi ∼ f ∈ R

1, ∀ i ∈ {1, . . . , n}. The noise function f should satisfy
some regularity conditions. There exist some constants K,K1, γ , α such that:

∫ ∞

−∞

(
max|t−x|≤u

√
f(t)− min|t−x|≤u

√
f(t)

)2

dx ≤ Kuγ , u > 0, 1 < γ ≤ 2

(14)
∫

|x|≥z
f(x)dx ≤ K1z

−α, z > 0, α > 2 (15)

1/α + 1/γ < 1 (16)

• Average power constraint: 1
n

∑n
i=1 x

2
i ≤ a2, a > 0

• The output set is infinite Y = R, the input set X = [−a√n, a√n].
�⇒ We denote such channel byW(f, a) and its Shannon capacity by C(f, a).
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Burnashev conjectured that the direct part of the identification coding theorem
for the channels described above is similar to the discrete case.

We assume the existence of an (M, n, λ) ID code {(Q(·|i),Di ), i = 1, . . . ,M}
for the channel W(f, a). The maximal cardinality M such that an (M, n, λ) is
denoted byMID(n, δ). Burnashev proved in [36] the following theorem:

Theorem 345 For any output measure Qπ on R
n, there exist input blocks xn(i) ∈

Ln, i = 1, . . . , N with 1
n

lnN ≤ C(f, a) + δ such that their generated output
measures {W(·|xn(i))} satisfy the following inequality:

|Qπ(W(f, a))− conv{W(·|xn(i)), i = 1, . . . , N}| ≤ δ, δ > 0 (17)

In other words, each output measure Qi ∈ P(R) can be δ-approximated by
another output measure Q′

i � conv{W(·|xn(i)), i = 1, . . . , N} generated by N ≈
en(C(f,a)+δ) input blocks in Ln. We fix δ > 0 such that 2(δ + λ) < 1.

Definition 346 A collection {Pi, i = 1, . . . ,M} with ∀ i, Pi ∈ P(Rn) is called an
(M, n, δ,W) pairwise-separated collection if:

|WnPi −WnPj | ≥ 2(1− δ), i �= j

The maximal possible cardinality of pairwise-separated collection for the channel
W is denoted byMp(δ,W).

Definition 347 A collection {Pi, i = 1, . . . ,M} with ∀ i, Pi ∈ P(Rn) is called an
(M, n, δ,W) completely-separated collection if:

|WnPi − conv{WnPj , j �= i}| ≥ 2(1− δ), i �= j

The maximal possible cardinality of completely-separated collection for the channel
W is denoted byMc(δ,W).

Theorem 345 implies the following result:

CID(f, a) ≤ C(f, a)+ δ, 0 < δ <
1

2
(18)

where CID(f, a) denotes the identification capacity of the channelW(f, a).

4.1 Classical Gaussian Wiretap Channels

Now, we consider information theoretical security. Existing cryptographic
approaches commonly used for wireless local area networks can be overridden
sufficient computing power. In contrast, information theory provides a tool for
designing codes that are proven to be unbreakable. In our coding scheme the
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authorized sender wants to transmit a secure identification message to the authorized
receiver so that the receiver is able to identify his message. The unauthorized party
is a wiretapper who can wiretap the transmission. He tries to identify an unknown
message. We develop a coding scheme so that secure identification over an Gaussian
channel is possible. The receiver can identify a message with high probability.
Furthermore, the wiretapper is not able to identify a message with high probability.
We consider the following Gaussian wiretap channel:

yi = xi + ξi , ∀ i ∈ {1, . . . , n}
zi = xi + φi, ∀ i ∈ {1, . . . , n} (19)

where xn = (x1, x2, . . . , xn) is the channel input sequence. yn = (y1, y2, . . . , yn)

and zn = (z1, z2, . . . , zn) are Bob and Eve’s observations, respectively. WY |X is
the main channel, while VZ|X is the wiretapper’s channel. ξn = (ξ1, ξ2, . . . , ξn)

and φn = (φ1, φ2, . . . , φn) are the noise sequences of the main channel and the
wiretapper’s channel, respectively. ξi are identically and independently distributed
(i.i.d) with and drawn from a normal distribution with variance σ 2 denoted by g. φi
are i.i.d and drawn from a normal distribution with variance σ ′2 denoted by g′. The
channel input fulfills the following energy constraint.

1

n

n∑

i=1

x2
i ≤ P (20)

This implies that the input set is reduced to E = [−√nP ,√nP ]. The output sets
are infinite Y = Z = R. In the sequel, we consider only strong secrecy requirement
I (U,Zn) ≤ λ. We denote this channel by (W, V, g, g′, P ) with secrecy capacity
C(g, g′, P ). We denote by W(g, P ) and V (g′, P ) the channels to the legitimate
receiver and to the wiretapper, respectively. A secrecy or a wiretap code for is
defined as follows. In [78] and [73], the following theorem about the strong secrecy
capacity of the Gaussian channel was shown:

Theorem 348 ([78]) Let CS(g, g′, P ) be the secrecy capacity of the channel
(W, V, g, g′, P ) then:

CS(g, g
′, P ) =

⎧
⎪⎨

⎪⎩

1
2 log

(
1+ P

σ2

1+ P

σ ′2

)
if σ ′2 ≥ σ 2

0 else

Based on the definitions of transmission wiretap codes in [82] and identification
wiretap codes in [10], we introduce wiretap codes for the Gaussian wiretap channel
described above (19).
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Definition 349 A randomized (n,M, λ) transmission-code for the Gaussian wire-
tap channel (V ,W, g, g′, P ) is a family of pairs {(Q(·|i),Di ), i = 1, . . . ,M} with

Q(·|i) ∈ P
(
X n
)
, Di ⊂ Yn, ∀ i ∈ {1, . . . , N} (21)

n∑

l=1

x2
l ≤ n · P, ∀ xn ∈ X n (22)

such that for all i ∈ {1, . . . ,M} and i �= j
∫

xn∈X n

Q(xn|i)Wn(Dci |xn)dnxn ≤ λ (23)

Di ∩Dj = ∅ (24)

I (U,Zn) ≤ λ (25)

where U is a uniformly distributed RV on {1, . . . ,M} and Zn is the output of the
channel V i.e., the wiretapper’s observation.

Definition 350 A randomized (n,N, λ1, λ2) identification code for the Gaussian
wiretap channel (V ,W, g, g′, P ) is a family of pairs {(Q(·|i),Di ), i = 1, . . . , N}
with

Q(·|i) ∈ P
(
X n
)
,Di ⊂ Yn, ∀ i ∈ {1, . . . , N} (26)

n∑

l=1

x2
l ≤ n · P, ∀ xn ∈ X n (27)

such that for all i, j ∈ {1, . . . , N}, i �= j and some E ∈ Zn

∫

xn∈X n

Q(xn|i)Wn(Dci |xn)dnxn ≤ λ1 (28)

∫

xn∈X n

Q(xn|j)Wn(Di |xn)dnxn ≤ λ2 (29)

∫

xn∈X n

Q(xn|j)V n(E |xn)dnxn+
∫

xn∈X n

Q(xn|i)V n(Ec|xn)dnxn ≥ 1−λ (30)

The following theorem is proved in [56].

Theorem 351 Let CSID(g, g′, P ) be the secure identification capacity of the wire-
tap channel (W, V, g, g′, P ) and then:

CSID(g, g
′, P ) =

{
C(g, P ) if CS(g, g′, P ) > 0

0 if CS(g, g′, P ) = 0
(31)

C(g, P ) defines the identification capacity of the main GaussianW(g, P ).
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5 Identification and Continuity

Here, we review the results of [25]. A similar work for channels with feedback has
been done in [31].

In this section, we investigate an important performance criterion for the
identification and secure identification capacity. We analyze the dependence of the
capacity on its channel parameters. A communication system is easier to handle if
the capacity continuously depends on the channel parameters, because otherwise,
minor changes in the parameters can lead to dramatic changes in the performance.
Shannon [71] assumed in 1956 that the zero-error capacity is additive. This was
refuted in [11] by Alon. The property shown there is called super-additivity. It
is generally not known which channels are super-additive and which are not. We
have shown that for the AVC, the identification capacity is equal to the transmission
capacity. Thus the analytical properties of the identification capacity are completely
determined by the work [28] and [29]. We first introduce the necessary definitions
for the investigation of continuity and additivity, and then list the known results.

5.1 Basic Definitions and Results

We denote the set of channels from X to Y as CH(X ;Y). In the case of multiple
inputs or outputs sets we separate them with a comma, e.g. CH(X ,X ′;Y,Y ′). For
the analysis that follows, we introduce the function F(W) : CH(X ,S;Y)→ R+

F(W) = inf
σ∈CH(X ;S)

max
x �=x̂
x,x̂∈X

∑

y∈Y

∣∣∣∣∣
∑

s∈S

[
W(y|x, s)σ (s|x̂)−W(y|x̂, s)σ (s|x̂)]

∣∣∣∣∣ .

(32)

Since CH(X ;S) is a bounded and closed set, there exists for any AVC W a
channel σ ∗ ∈ CH(X ; S) such that the infimum above is achieved and F can be
expressed as a minimum. Further, we have F(W) ≥ 0 with equality if and only if
W is symmetrizable. We also need a concept of distance. For two DMCs W1,W2 ∈
CH(X ;Y) we define the distance between W1 and W2 based on the total variation
distance as

d(W1,W2) := max
x∈X

∑

y∈Y
|W1(y|x)−W2(y|x)|. (33)

To extend this concept to AVCs, we consider two AVCs W1 = {W1(·|·, s1)}s1∈S1

and W2 = {W2(·|·, s2)}s2∈S2 withWi(·|·, si ) ∈ CH(X, Si; Y ), i = 1, 2, and define

G(W1,W2) := max
s1∈S1

min
s2∈S2

d(W1(·|·, s1),W2(·|·, s2)) (34)
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which describes how well one AVC can be approximated by the other one. Note
that the function G is not symmetric. Accordingly, we define the distance between
W1 and W2 as

D(W1,W2) := max{G(W1,W2),G(W2,W1)}. (35)

Note that S1 and S2 can be arbitrary finite state sets and we do not necessarily need
to have |S1| = |S2|. In [29] the following basis properties are shown.

Lemma 352 Let W1 and W2 be two finite AVCs. Then the following inequalities
hold:

F(W2) ≤ 2G(W1,W2)+ F(W1) (36)

F(W1) ≤ 2G(W2,W1)+ F(W2) (37)

|F(W1)− F(W2)| ≤ 2D(W1,W2). (38)

Furthermore, the following is shown in [29].

Lemma 353 Let W̃ be an arbitrary finite AVC and let {Wn}∞n=1 be a sequence of
finite AVCs such that

lim
n→∞D(Wn, W̃) = 0. (39)

Then

lim
n→∞F(Wn) = F(W̃). (40)

For the next results, we need the concept of orthogonal (or parallel) AVCs. For
two AVCs W1 and W2 we define the AVC W as

W =W1 ×W2 = {W1(·|·, s1)}s1∈S1 × {W2(·|·, s2)}s2∈S2 (41)

which means that the underlying channel law is

W(y1, y2|x1, x2, s1, s2) = W1(y1|x1, s1)W2(y2|x2, s2) (42)

for all xi ∈ Xi , yi ∈ Yi , and si ∈ Si , i = 1, 2.

Definition 354 Let W be a finite AVC. A capacity C(W) is said to be continuous
in all finite AVCs W , if for all sequences of finite AVCs {Wn}∞n=1 with

lim
n→∞D(Wn,W) = 0 (43)
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we have

lim
n→∞C(Wn) = C(W). (44)

Note that similarly as in Lemma 353, the only restriction on the state set is |Sn| <
∞, but we can have limn→∞ |Sn| = ∞. Based on this definition, the capacityC(W)
is discontinuous in W if and only if there is a sequence {Wn}∞n=1 of finite AVCs
satisfying (43) but

lim sup
n→∞

C(Wn) > lim inf
n→∞ C(Wn) (45)

is satisfied.

5.2 Continuity and Discontinuity Behavior of CID

We have shown that CID(W) = C(W). Therefore, we can use the results from [29]
where C was considered, to give analytical properties of CID.

First we give a complete characterization of the discontinuity points of the
capacity.

Theorem 355 The capacity CID(W) is discontinuous in the finite AVC W if and
only if the following conditions hold:

1. Cran(W) > 0
2. F(W) = 0 and for every ε > 0 there exists a finite AVC W̃ with D(W, W̃ ) < ε

and F(W̃) > 0.

The following result establishes certain robustness properties of the capacity.

Theorem 356 Let W be a finite AVC with F(W) > 0 (non symmetrizable). Then
there exists an ε̃ > 0 such that all finite AVCs W̃ with

D(W̃,W) < ε̃ (46)

are continuity points of CID.

Next, we want to further analyze the discontinuous behavior for finite AVCs. For
this purpose, let

N = {W : F(W) = 0} (47)

be the set of symmetrizable channels (the kernel of F ) and ∂N be the boundary of
N under the distance D, which is given by

∂N = {W ∈ N : ∀ ε > 0, ∃ Ŵ /∈ N such that D(Ŵ,W) < ε}.
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Let {Wn} = {Wn}∞n=1 be a sequence of finite AVCs. We define the variance of
CID over the sequence as

V ({Wn}) � lim sup
n→∞

CID(Wn)− lim inf
n→∞ CID(Wn). (48)

Let now W be a finite AVC. We define the maximum variance around W as

V̄ (W) = supV ({Wn}) (49)

where the sup is taken over all sequences of finite AVCs {Wn}∞n=1 that satisfy

lim
n→∞D(Wn,W) = 0. (50)

With this, V̄ (W) describes the maximal variation of CID(W) in the neighborhood
of a certain AVC W . Then, we define

V̄ � sup
W∈CH(X,S;Y )

V̄ (W) = V̄ (X ,Y) (51)

as the maximal variation for all AVCs W on the given legitimate-input and output
alphabets. Furthermore we set

Nran � {W : Cran(W) = 0}

as the set of channels that cannot transmit even in the presence of common
randomness (the kernel of Cran). A rephrasing of the theorems above is thus the
following.

Theorem 357 For finite AVCsW the following assertions hold:

1. V̄ (W) = 0 forW /∈ N \Nran

2. V̄ (W) = Cran(W) forW ∈ N \Nran

3. V̄ = supW∈D Cran(W).

As noted before, N \Nran is not empty and examples can be found in [42].

5.3 Additivity and Super-Additivity of CID

In this section, we now examine the additivity of the capacity function. Alon was the
first who showed the phenoma of super-additivity for the zero-error capacity [11].
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Definition 358 Then, a capacity is said to be super-additive if there exist two finite
AVCs W1 and W2 such that

C(W1 ×W2) > C(W1)+ C(W2), (52)

i.e., a joint use of both channels yields a higher capacity than the sum of their
individual uses.

Theorem 359 Let W1 andW2 be two AVCs. Then

CID(W1 ×W2) = 0 (53)

if and only if

CID(W1) = CID(W2) = 0. (54)

The theorem above shows that super additivity cannot happen when both channels
have zero capacity, which otherwise would be called super-activation of the
channels. We will see that super-activation can occur for secret identification.

The next result shows that the ID capacity is super-additive.

Theorem 360 Let W1 andW2 be two AVCs. Then

CID(W1 ×W2) > CID(W1)+ CID(W2) (55)

if and only if

min{F(W1), F (W2)} = 0,

max{F(W1), F (W2)} > 0,

Cran(W1), Cran(W2) > 0,

namely if one of the channels is symmetrizable but both can transmit using common
randomness.

5.4 Continuity of CSID for AVWCs

In Theorem 308 we showed:

CSID(W,V) =
{
C(W) if CS(W,V) > 0

0 if CS(W,V) = 0
(56)
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We shall now use this representation to fully characterize the continuity behavior
and the discontinuity behavior of CSID.

Therefore, we will need a suitable measure of distance between AVWCs. Recall
Definition 34 of the G function, which describes how well one AVC can be
approximated by the other one.

Definition 361 Let (W,V) and (W ′,V ′) be two AVWCs, then we set

D((W,V), (W ′,V ′)) := max{G(W × V,W ′ × V ′),G(W ′ × V ′,W × V)}.
(57)

Definition 362 Let (W,V) be a finite AVWC. The capacity C(W,V) is said to be
continuous in (W,V), if for all sequences of finite AVWCs {(Wn,Vn)}∞n=1 with

lim
n→∞D((Wn,Vn), (W,V)) = 0 (58)

we have

lim
n→∞C(Wn,Vn) = C(W,V). (59)

The capacity is said to be discontinuous in (W,V) otherwise.

Let us now fully characterize the discontinuity of CSID. We split the characteri-
sation in two cases:

1. CS,ran(W,V) > 0
2. CS,ran(W,V) = 0

We start with the first case.

Theorem 363 Let CS,ran(W,V) > 0. (W,V) is a discontinuity point of CSID if and
only if F(W) = 0 and for all ε > 0 there exists a finite AVCWε with D(W,Wε) <

ε such that F(Wε) > 0.

We now examine the second case.

Theorem 364 Let CS,ran(W,V) = 0. (W,V) is a point of discontinuity of CSID if
and only if Cran(W) > 0 and for all ε > 0 there exits a finite AVWC (Wε,Vε) with
D(W,Wε) < ε such that F(Wε) > 0 and CS,ran(Wε,Vε) > 0.

Therefore the following corrollary follows from Theorems 363 and 364.

Corollary 365 (W,V) is a point of discontinuity of CSID if and only if Cran(W) >
0 and for all ε > 0 there exits a finite AVWC (Wε,Vε) with D(W,Wε) < ε such
that F(Wε) > 0 and CS,ran(Wε,Vε) > 0.
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5.5 Super-Additivity and Super-Activation for CSID

In this section, we will fully characterize the occurrence of super-activation and
super-additivity for CSID. Of course, super-activation is the most powerful form of
super-additivity, in this case two channels with capacity zero add up to one with
positive capacity. We first prove the complete characterization of super-activation.
Subsequently we prove the cases of super-additivity, which is not caused by super-
activation. First we start with the formal definition.

Definition 366 We say that two AVWCs (W,V) and (W̃, Ṽ) are superactivating if

C(W × W̃,V × Ṽ) > 0 (60)

despite

C(W,V) = C(W̃, Ṽ) = 0. (61)

Super-activation is the extreme case of super-additivity for channels with zero
capacity.

In [24] we showed that CID does not have any super-activation. For CSID this is
different.

Theorem 367 Let (W1,V1), (W2,V2) be two AVWCs. Then

1. Let max{CS,ran((W1,V1), CS,ran((W2,V2)} > 0 then the AVWCs are super-
activating if and only if

min{CS,ran(W1,V1), CS,ran(W2,V2)} = 0. (62)

Let w.l.o.g. CS,ran(W1,V1) > 0, then CS,ran(W2,V2) = 0 and F(W1) =
F(W2) = 0.

2. Let CS,ran(W1,V1) = CS,ran(W2,V2) = 0 then the AVWCs are super-activating
if and only if

F(W1 ×W2) > 0 (63)

(The condition F(W1 ×W2) > 0 is equivalent to max{F(W1), F (W2)} > 0.)

We now want to examine the case in which we observe super-additivity, but
in which no super-activation occurs. This characterization provides the following
theorem.

Theorem 368 Let (W1,V1) and (W2,V2) be two finite AVWCs for which no super-
activation occurs. Then CSID is superadditive for these channels if and only if

Cran(W1), Cran(W2) > 0.
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and exactly one channel has non-zero CSID, i.e.

max{CSID(W1,V1), CSID(W2,V2)} > 0,

min{CSID(W1,V1), CSID(W2,V2)} = 0.

The meaning of the statements above is that super-additivity only happens whenever
the secure ID capacity of at least one of the channels is zero, namely at the
discontinuity points of the capacity, but this channel can be used to produce
common randomness with the help of the key produced by the other channel. The
condition the channels are not super-activating is essentially excluding the case of
CSID(W1,V1) = CSID(W2,V2) = 0

6 Identification and Computability

In this section, we give a summary of [30]. In [30], the problem of identification over
correlation-assisted DMCs is considered. In this scenario, the transmitter and the
receiver have further access to correlated source observations as visualized in Fig. 3.
Based on this resource, the encoder and decoder can be chosen. The corresponding
identification capacity of this communication scenario remains unknown to date
and in [30] analytical properties and representations of the identification capacity
are studied.

Definition 369 A Turing machine is a mathematical model of an abstract machine
that manipulates symbols on a strip of tape according to certain given rules. It can
simulate any given algorithm and therewith provides a simple but very powerful
model of computation. Turing machines have no limitations on computational
complexity, unlimited computing capacity and storage, and execute programs
completely error-free. Accordingly they provide fundamental performance limits for
today’s digital computers. Turing machines account for all those problems and tasks
that are algorithmically solvable on a classical (i.e., non-quantum) machine. They

Fig. 3 Identification via a correlation-assisted DMCW . Transmitter and receiver have access to a
correlated source observations Un and V n and can adapt their encoder and decoder accordingly
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are further equivalent to the von Neumann-architecture without hardware limitations
and to the theory of recursive functions.

Definition 370 In correlation-assisted identification, the transmitter and the
receiver have access to a correlated source PUV ∈ P(U × V). Similarly, the
encoding can be adapted according to the received source sequence un ∈ Un, i.e.,
Q(·|i, un) ∈ P(X n), and the decoding according to the received source sequence
vn ∈ Vn, i.e., Di (vn) ⊂ Yn. The definitions of a code, an achievable rate, and the
identification capacity follow accordingly.

The identification capacity for DMCs with correlated sources is given by the
following theorem.

Theorem 371 There is no natural number n0 ∈ N such that the identification
capacity can be expressed as

CID(W,PUV ) = max
p∈P

F(p,W,PUV ) (64)

with P ⊂ Rn0 a compact set (i.e. closed and bounded) and F : P × CH × P(U ×
V)→ R a continuous function.

Remark 372 Theorem 371 shows that the correlation-assisted identification capac-
ity possesses a completely different behavior than the task of message transmission.
In the case of message transmission, correlated sources can help to increase the
capacity or to stabilize the transmission. For example, for arbitrarily-varying chan-
nels and arbitrarily-varying wiretap channels, the correlation-assisted capacities are
always continuous and the capacity expressions can be expressed as optimization
problems of the structure (64).

The following behavior for identification over DMCs is noted. The identification
capacity without correlation is continuous and can be expressed as an optimization
problem. In the case of correlation, this is not longer true.

Remark 373 Theorem 371 further immediately implies that the correlation-assisted
identification capacity CID cannot be expressed by a finite multi-letter formula. As a
consequence, if CID can be described by entropic quantities, then this must be done
via a corresponding sequence.

Now, the question is: Whether or not the identification capacity is algorithmically
computable. The concept of computability and computable reals goes back to
Turing [74, 75]. A sequence of rational numbers {rn}n∈N is called a computable
sequence if there exist recursive functions a, b, s : N → N with b(n) �= 0 for all
n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N , (65)
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cf. [72, Def. 2.1 and 2.2] for a detailed treatment. A real number x is said to be
computable if there exists a computable sequence of rational numbers {rn}n∈N such
that

|x − rn| < 2−n (66)

for all n ∈ N . We denote the set of computable real numbers by Rc. Based on
this, the set of computable probability distributions Pc(X ) is defined as the set of
all probability distributions P ∈ P(X ) such that P(x) ∈ Rc, x ∈ X . Further, let
CHc be the set of all computable channels, i.e., for a channel W : X → P(Y),
W(·|x) ∈ Pc(Y) for every x ∈ X . This is important since a Turing machine can
only operate on computable real numbers.

Definition 374 A function f : Rc → Rc is called Borel computable if there is an
algorithm that transforms each given computable sequence of a computable real x
into a corresponding representation for f (x).

It is to note that Turing’s definition of computability conforms to the definition
of Borel computability above. This captures the engineering intuition of the
computability of functions. Intuitively, a function f : R → R is computable if
every algorithm that computes the computable input x ∈ R can be algorithmically
transformed into an algorithm that computes the output f (x).

There are weaker forms of computability known as Markov computability and
Banach-Mazur computability, of which the latter one is the weakest form of
computability.

Definition 375 A function f : Rc → Rc is called Banach-Mazur computable if
f maps any given computable sequence {xn}∞n=1 of real numbers into a computable
sequence {f (xn)}∞n=1 of real numbers.

Theorem 376 The identification capacity CID is not Banach-Mazur computable
and therewith also not Turing computable.

The previous results do not exclude that the correlation-assisted identification
capacity can be expressed as

CID(W,PUV ) = lim
n→∞ max

p∈Pn
Fn(p,W,PUV ) (67)

with Pn ⊂ Rln a compact set, ln ∈ N , and Fn : Pn × CH × P(U × V) → R a
continuous function. From a practical point of view, an expression of the form (67)
would not yield any particular problems, if the convergence of this expression is
effective, i.e., algorithmically computable, and the function Fn is Borel computable
according to Definition 374.
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7 Converse Coding Theorems for Identification via Channels

In [64], Oohama deals with the ID channel for general noisy channels. He derives
a function, which serves as an upper bound of the quantity 1 − (μn + λn). This
function has a property that it tends to zero as for noisy channels satisfying the
strong converse property. Hence, this result on upper bound of 1 − (μn + λn)
together with this property yields the result obtained by Han and Verdú [51]. In
particular, for DMCs, Oohama shows that 1− (μn+λn) tends to zero exponentially
as n → ∞ at transmission rates above the ID capacity, deriving an explicit form
of the lower bound of this exponent. For derivation of the results, the channel
resolvability problem formulated by Han and Verdú [51] was considered. a stronger
result on the direct coding theorem for this problem is first established by deriving
an exponential lower bound for the approximation error of channel outputs to tend
to zero as n goes to infinity. Next, the converse coding theorem for the ID channel
is derived based on an idea of converting the direct coding theorem for the channel
resolvability problem into the converse coding theorem of the ID channel.

7.1 Main Results

A noisy channel with input set X n and output set Yn is defined a stochastic matrix
Wn : X n −→ Yn. Formal definition of Wn is Wn � {Wn(·|x)}x∈X n , where
Wn(·|x) ∈ P(Yn) is a conditional distribution on Yn given x ∈ X n.

Proposition 377 For any (n,Nn,μn, λn) ID code with μn + λn < 1, if the rate
rn = 1

n
log logNn satisfies

rn ≥ R + logn

n
+ 1

n
log(2 log |X |)2

then, for any γ ≥ 0, the sum μn + λn of two error probabilities satisfies the
following.

1− μn − λn ≤ 	n,γ (R|Wn)

From this proposition, the following corollary is obtained.

Corollary 378 For any sequence of ID codes {(n,N1, N2, μn, λn)}∞n=1 satisfying
μn + λn < 1, n = 1, 2, . . . , if

lim inf
n→∞ rn ≥ R
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then,for any δ ≥ 0, there exists n0 = n0(δ)

1− μn − λn ≤ 	n,γ (R − δ|Wn)

Next, the speed of the convergence for the sum of two types of error probabilities to
tend to one is discussed.

Theorem 379 For any sequence of ID codes {(n,N1, N2, μn, λn)}∞n=1 satisfying
μn + λn < 1, n = 1, 2, . . . , if

lim inf
n→∞ rn ≥ R

then the sum λn + μn of two error probabilities satisfies the following.

lim inf
n→∞

(
−1

n

)
log(1− μn − λn) ≥ 1

2
σ1(R|W)

In particular, if W is a DMC withW ∈ P(Y|X ), we have

lim inf
n→∞

(
−1

n

)
log(1− μn − λn) ≥ 1

2
G(R|W)

For more details about the used functions, we refer the reader to [64].

7.2 Average Error Criterion

the following average error criterion is considered.

μn �
1

Nn

∑

1≤i≤Nn
μi,n, λn �

1

Nn

∑

1≤i≤Nn
λi,n

For 0 ≤ μ, λ ≤ 1, let CID,a(μ, λ|W) be denoted by the identification capacity
defined by replacing the maximum error probability criterion by the above average
error probability criterion. Since μn ≤ μn and λn ≤ λn, it is obvious that for any
μ, λ ≥ 0

CID(μ, λ|W) ≤ CID,a(μ, λ|W)

It should be shown that CID,a(μ, λ|W) has the same upper bound as CID(μ, λ|W).
An important key result in the case of the average error criterion is given in the
following proposition.
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Proposition 380 Fix τ > 0 arbitrarily. For any (n,N1, N2, μn, λn) code with μn+
λn < 1 if the rate rn = 1

n
log logNn, satisfies

rn ≥ R + τ + logn

n
+ 1

n
log(2 log |X |)

then, for any γ ≥ 0, the sum μn+λn of two average error probabilities satisfies the
following.

1− μn − λn ≤ 	n,γ (R|Wn)+ νn,τ (R, |X |) (68)

where

νn,τ (R, |X |) � |X |−2n(enτ−1)enR

Since enτ − 1 ≥ nτ , we have

0 ≤ νn,τ (R, |X |) ≤ |X |−2n2τenR

which implies that for each fixed τ > 0, νn,τ (R, |X |) decays double exponentially
as n tends to infinity.

From the above proposition, we obtain the following corollary.

Corollary 381 For any sequence of ID codes {(n,N1, N2, μn, λn)}∞n=1 satisfying
μn + λn < 1, n = 1, 2, . . . , if

lim inf
n→∞ rn ≥ R

then,for any δ ≥ 0, there exists n0 = n0(δ)

1− μn − λn ≤ νn,τ (R − δ, |X |)+	n,γ (R − δ|Wn)

Now, the following theorem is established from previous results.

Theorem 382 For any sequence of ID codes {(n,N1, N2, μn, λn)}∞n=1 satisfying
μn + λn < 1, n = 1, 2, . . . , if

lim inf
n→∞ rn > C(W)

then,

lim inf
n→∞ {μn + λn} = 1,
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which implies that for any μ ≥ 0, λ ≥ 0, μ+ λ < 1 and any noisy channelW,

C(W) ≤ CID(μ, λ|W) ≤ CID,a(μ, λ|W) ≤ C(W).

In particular, if

C(W) = C(W)

then for any μ ≥ 0, λ ≥ 0, and μ+ λ < 1

C(W) = CID,a(μ, λ|W) = C(W)

Furthermore, μn + λn converges to one as n→∞ at rates above the ID capacity.
This implies that the strong converse property holds with respect to the sum of two
types of average error probabilities.

Now, the following theorem is established from previous results.

Theorem 383 For any sequence of ID codes {(n,N1, N2, μn, λn)}∞n=1 satisfying
μn + λn < 1, if

lim inf
n→∞ rn ≥ R

8 Converse Coding Theorems for Identification via Multiple
Access Channels

In [63], Oohama deals with the problem of identification via multiple access
channels (MACs) for general noisy channels with two inputs and one output finite
sets and channel transition probabilities that may be arbitrary for every block length
n. First, he established a stronger result on the direct coding theorem for this
problem by deriving an upper bound for the approximation error of channel outputs
to tend to zero as n goes to infinity. Next, he proved the converse coding theorem
by converting the direct coding theorem for the MAC resolvability problem into the
converse coding theorem for the ID via MACs.

8.1 Identification via Multiple Access Channels

Let X , Y and Z be finite sets. Let P(X n) and P(Yn) be sets of probability
distributions on X n and Yn, respectively. A source X with alphabet X is the
sequence {PnX : PnX ∈ P(X n)}∞n=1 and a source Y with alphabet Y is the sequence
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{P :YPnY ∈ P(Yn)}∞n=1. Similarly, a noisy channel W with two inputs alphabets
X and Y and one output alphabet Z is a sequence of conditional distributions
{Wn(·|·, ·)}∞n=1, where Wn(·|·, ·) = {Wn(·|x, y) ∈ P(Zn)}(x,y)∈X n×Yn . Next, for
PXn ∈ P(X n), PYn ∈ P(Yn) and z ∈ Zn, set

PXnPYnW
nz =

∑

(x,y)∈X n×Yn
PXn(x)PYn(y)W

n(z|x, y), (69)

which becomes a probability distribution on Zn. We denote it by PXnPYnWn =
{PXnPYnWn(z)}z∈Zn . Set PZn = PXnPYnW

n and call PZn the response of
(PXn, PYn ) through noisy channelWn.

Definition 384 An (n,N1, N2, μn, λn) ID code forWn is a collection

{(PXn|i , (PYn|j ,Di,j ), i = 1, 2, . . . , N1, j = 1, 2, . . . , N2}

such that

1. PXn|i ∈ P(X n), PYn|j ∈ P(Yn),
2. Di,j ∈ Zn,
3. PZn|i,j is the response of (PXn|i (PYn|j ),
4. μn,ij = PZn|i,j (Dci,j ), μn = max1≤i≤N1

1≤j≤N2

μn,ij

5. λn,ij = max(k,l) �=(i,j) PZn|k,l(Di,j ),max1≤i≤N1
1≤j≤N2

λn = λn,ij
The rate of an (n,N1, N2, μn, λn) ID code is defined by

ri,n �
1

n
log logNi, i = 1, 2 (70)

A rate pair (R1, R2) is said to be (μ, λ)-achievable ID rate pair if there exists an
(n,N1, N2, μn, λn) code such that

lim sup
n→∞

μn ≤ μ, (71)

lim sup
n→∞

λn ≤ λ, (72)

lim inf
n→∞ ri,n ≥ Ri, i = 1, 2 (73)

The set of all (μ, λ)-achievable ID rate pairs for W is denoted by CID(μ, λ|W),
which we call the (μ, λ) ID capacity region.
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8.2 Main Results

The main result of [63] for identification via MACs is the following.

Proposition 385 For any (n,N1, N2, μn, λn) code with μn + λn < 1, if the rate
ri,n = 1

n
log logNi satisfies

r1,n ≥ R1 + logn

n
+ 1

n
log log(3|X |)2, (74)

r2,n ≥ R2 + logn

n
+ 1

n
log log(3|Y|)2, (75)

then, for any γ ≥ 0, the sum μn + λn of two error probabilities satisfies the
following.

1− μn − λn ≤ 	n,γ (R1, R2|Wn)

For more details, we refer to [63].

Theorem 386 For any sequence of ID codes {(n,N1, N2, μn, λn)}∞n=1 satisfying
μn + λn < 1, n = 1, 2, . . . , if

lim inf
n→∞ ri,n ≥ Ri, i = 1, 2, (R1, R2) /∈ C ′(W)

then,

lim inf
n→∞ {μn + λn} = 1,

which implies that for any μ ≥ 0, λ ≥ 0, μ+ λ < 1 and any noisy channelW,

C(W) ⊂ CID(μ, λ|W) ⊂ C′(W).

Furthermore, μn + λn converges to one as n→∞ at rates above the ID capacity.
This implies that the strong converse property holds with respect to the sum of two
types of error probabilities.

Proposition 387 Fix τ > 0 arbitrarily. For any (n,N1, N2, μn, λn) code with μn+
λn < 1 if the rate ri,n = 1

n
log logNi, i = 1, 2, satisfy

r1,n ≥ R1 + τ + logn

n
+ 1

n
log log(|X |)2, (76)

r2,n ≥ R2 + τ + logn

n
+ 1

n
log log(|Y|)2, (77)
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then, for any γ ≥ 0, the sum μn+λn of two average error probabilities satisfies the
following.

1− μn − λn ≤ 	n,γ (R1, R2|Wn)+ νn,τ (R1, R2, |X |, |Y|)

where

νn,τ (R1, R2, |X |, |Y|) � |X |−2n(enτ−1)enR1 + |Y|−2n(enτ−1)enR2

+ |X |−2n(enτ−1)enR1 · |Y|−2n(enτ−1)enR2 (78)

Since enτ − 1 ≥ nτ , we have

0 ≤ νn,τ (R1, R2, |X |, |Y|) (79)

≤ |X |−2n(enτ−1)enR1 + |Y|−2n(enτ−1)enR2

+ |X |−2n(enτ−1)enR1 · |Y|−2n(enτ−1)enR2 (80)

≤ 3|X |−2n(enτ−1)enR1 · |Y|−2n(enτ−1)enR2 (81)

which implies for each fixed τ > 0, νn,τ (R1, R2, |X |, |Y|) decays double exponen-
tially as n tends to infinity.

Theorem 388 For any sequence of ID codes {(n,N1, N2, μn, λn)}∞n=1 satisfying
μn + λn < 1, n = 1, 2, . . . , if

lim inf
n→∞ ri,n ≥ Ri, i = 1, 2, (R1, R2) /∈ C ′(W)

then,

lim inf
n→∞ {μn + λn} = 1,

which implies that for any μ ≥ 0, λ ≥ 0, μ+ λ < 1 and any noisy channelW,

C(W) = CID(μ, λ|W) = CID,a(μ, λ|W) = C′(W).

Furthermore, μn + λn converges to one as n→∞ at rates above the ID capacity.
This implies that the strong converse property holds with respect to the sum of two
types of error probabilities.
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9 Explicit Constructions for Identification

In this section we review the results of [76] and [44]. In particular we report the
results of [76] with the observations and reformulations of [44]. These include
a capacity-achieving explicit construction of identification codes based on Reed-
Solomon codes.

A common way of constructing identification codes is, as first done both in
chapters “Identification via Channels” and “Identification in the Presence of Feed-
back: A Discovery of New Capacity Formulas”, by having all the channel errors
corrected by a transmission code and performing identification for the almost-
noiseless channel provided by the transmission code. In the noiseless channel then,
as done in chapter “Identification in the Presence of Feedback: A Discovery of New
Capacity Formulas”, identification can be done by associating to each identity i
a function Ti and by sending a single input-output pair (j, Ti(j)) for verification
through the channel, with j picked uniformly at random using local randomness.
The receiver, given another identity i ′, can verify whether the two chosen identities
are the same by computing its own output Ti′(j ′) on the input part j ′ of the received
input-output pair (j ′, t ′), and verifying that the received and computed output are
the same (Ti′(j ′) = t ′?). If the channel is noiseless, then (j ′, t ′) = (j, Ti(j)) this
scheme has zero missed identification error (if i = i ′ then the computed outputs will
match) and false identification bounded by the fraction of inputs any two identities
map to the same output (if i �= i ′ then an incorrect accept will happen only on those
j such that Ti′(j) = Ti(j)) [9, 76]. In case of a noisy channel, the error probability of
the transmission code (the probability that (j ′, t ′) �= (j, Ti(j))) adds to the missed-
and false-identification error probabilities of the identification code [8, 76].

The important observation is that these functions are none other than error
correction codes seen and used with a different approach than error correction. In
order to make this observation we first recall the definition of an error correction
code.

Definition 389 (Error-Correction Codes) Let n, N , d , s be integers and let X be
without loss of generality the alphabet X = [s]. An error-correction code of length
n, size N and distance d over an alphabet of size s, or simply an (n,N, d)s error-
correction code, is a subset of words C = {ci}i∈[N] ⊆ X n such that the hamming
distance between any two codewords is at least d . If N = sk for some integer k,
then the codes can be use to encode the elements of X k and the codes are then
called (n, k, d)s block codes.

Observation 390 A set ofN functions {Ti}i=1,...,N from inputs of sizeM to outputs
of size q such that, for any two of these functions their outputs are equal on at most
M − d inputs, corresponds to an error correction code of size N , blocklength M ,
alphabet of size q and distance d , and vice versa. To each function corresponds a

Arguably, in such cases the transmission code should have the error probability comparable to the
error probability of the identification code.
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codeword, obtained by concatenating all the possible function outputs in order as
ci = Ti(1) . . . Ti(M) Similarly, given any correction code, each codeword defines a
function, namely the function Ti(j) = cij that map positions to the symbols of the
codeword.

For the sake of clarity, we repeat the identification pre- and post-processing
using error-correction codes. Given an error-correction code of size N , blocklength
n, alphabet of size q and minimum Hamming distance d , namely a (n,N, d)q
error-correction code, an identification code is constructed as follows. The error-
correction code is not used to correct error, but instead is used in a different manner.
The codewords ci of the error-correction code are associated each to an identity i.
The identification sender of identity i randomly and uniformly chooses a position
j from 1, 2, . . . , n, and then sends j and the j th letter cij to the receiver, using
a transmission code if the channel is noisy. The receiver must make a choice on
what identity he is interested, say i ′. Upon receiving j, cij , the receiver checks
whether j th letter of the codeword associated with his interested message i ′th is
ci . Namely, it checks whether ci′j = cij and says “yes/accept i ′” if so, or “no/reject
i ′” otherwise. In the noiseless case, the only possible error is the false identification
error (error of the second kind), which occurs only when the receiver is interested in
a different message than the one sent, and two codewords ci and ci′ have the same
letter as in the ith position. Thus, the probability of false identification is bounded
by

λ2 ≤ 1− d
n
. (82)

Again, we highlight that this is a bound on the false identification error only in the
absence of a transmission error.

In order to uniquely refer to the input-output pairs (j, Ti(j)) produced in the
pre-processing we will call j the randomness and Ti(j) the tag, since Ti(j) takes
the role of a small label as will become clear next. For convenience we may then
call the functions Ti tagging functions. Traditionally, the identities have been called
messages [8, 9]. However, the identities are not the messages that are sent through
the transmission code. Furthermore, transmission can be performed in parallel to
identification without trade-off, meaning that the capacity of both can be achieved
at the same time [50]. This is because the goal of the pre-processing is to use all
the capacity of the channel to send the local randomness j and produce common
randomness between the sender and receiver. A small tag size (the size of Ti(j) or
cij ) that asymptotically does not use any capacity [9] is then enough to allow a rate
of identities that grows doubly exponentially in the blocklength. The intuition is that
identification is performed by verifying the two tags, the senders and the receivers,
of a random challenge. In other works [24–26], the randomness has been called a
colouring number, the tag a colour and the identity a colouring.
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Observation 391 In [55, 76] error-correction codes are used to construct constant-
weight binary codes that are then used to construct identification codes following
the method in [76]. This at first glance might seem like a different way of
constructing identification codes, however it is implicitly the same use of error-
correction codes presented above. The way the constant-weight binary codes are
further encoded in [76] (via the use of the incidence matrix of the binary code), its
an implicit encoding of the randomness-tag pair. Both in [55, 76] and in the scheme
above, the information that is sent through the channel via the transmission code is
a randomness-tag pair.

9.1 Conditions for Achieving Identification Capacity

As just explained, there is no difference between error correction codes and sets of
mapping functions. However, for the sake of clarity, it is more convenient to keep
the discussion in terms of mapping functions. Thus, to aid the exposition we will
make the following definitions.

Definition 392 (Tag/Coloring Code) Let I ,M ,H be integers and let ε ∈ [0, 1]. A
tag/coloring code of I identities, from messages of sizeM to tags of lengthH , with
error ε, or simply a (I,M,H, ε) tag code, is a collection of maps T = {Ti : [M] →
[H ]}i∈[I ], such that the pairwise collisions satisfy 1

M

∑
m∈[M] δTi(m),Ti′ (m) ≤ ε for

all i �= i ′.
If the messages and the tags are strings over the same alphabets, namely if for

some integer q we have M = qm and H = qh then we denote the tag code by
[logq logq I,m, h, ε]q , and with [log log I,m, h, ε] if q = 2.

The previous observations then simply mean that an (n,N, d)q error-correction
code {ci} defines an (N, n, q, 1− d

n
) tag code {Ti} via Ti(m) = cim, and vice versa.

In particular, a [qn, qk, d]q error-correction code defines a [k, n, 1, 1 − d
n
]q tag

code.
The following is a rephrasing of the main achievability theorems of identification

that reduce the problem of identification over a noisy channel to the problem of
identification over a noiseless channel.

Construction 393 ([8, 76]) Let {(xm,Dm)}m∈[M] be a (n,M, ε) transmission
code, let {(x ′m,D′m)}m∈[M ′] be a (n′,M ′, ε′) transmission code, and let T be a
(I,M,M ′, μ) tag code. Then

{(
xTI
mi = xm · x ′Ti(m), DTI

mi = Dm ×D′Ti (m)
)}

m∈[M],i∈[I ]
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is an (n+ n′,M, I, ε + ε′, ε + ε′ + μ) transmission–identification code as defined
in [50]. Let {Ui}i∈[I ] be i.i.d. uniform random variables over [M], then

{(
P ID
i = xTI

Uii
= xUi · x ′Ti(Ui), DID

i =
⋃

m∈[M]Dm ×D
′
Ti (m)

)}

i∈[I ]

is an (n+ n′, I, ε + ε′, ε + ε′ + μ) identification code.
We will now from the behaviour of the rates of these codes, derive conditions

required for tag codes to achieve capacity as done in [76].

Remark 394 In [76] the term “optimal” is used in the meaning of capacity-
achieving. However, since optimal is also used to mean optimal parameters at finite
blocklengths (which is an independent condition from being capacity achieving),
here we will avoid the term “optimal”

The rates of the new codes are easily computed as follows. Let us first compute the
transmission rate achieved by using the two transmission codes in parallel as

R := logM + logM ′

n+ n′ . (83)

The transmission–identification rate tuple for the above construction, where the
second rate is also the rate of the identification code, is then

(RT, RID) :=
(

logM

n+ n′ ,
log log I

n+ n′
)

(84)

=
(

logM

logM + logM ′ · R,
log log I

logM + logM ′ · R
)

(85)

Notice now that the number of identities I is limited by the number of all functions
M ′M from messages to tags and thus

log log I ≤ logM + log logM ′ ≤ logM + logM ′,

giving

(RT, RID) ≤
(

logM

logM + logM ′ · R,
logM + log logM ′

logM + logM ′ · R
)
≤ (R, R) .

(86)
In particular, this is also a specialized but simple converse proof for such construc-
tions, namely that the transmission–identification and identification capacities they
can achieve cannot exceed the transmission capacity of the channel. With a more
detailed analysis we can gain some insight in what property of tag codes we should
look for(beyond the obvious requirement that μ goes to zero asymptotically) in
order to achieve the best rates with tagged transmission codes. A refinement of
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Eq. (86) actually shows that (asymptotically, namely if we now think of sequence
of codes of increasing blocklength) the achieved RID are always lower than the
achieved RT. Indeed we have more precisely that

RT = 1

1+ logM ′
logM

· R, (87)

RID ≤ 1

1+ logM ′
logM

· R + log logM ′

logM + logM ′ · R (88)

≤ 1

1+ logM ′
logM

· R + log logM ′

logM ′ · R. (89)

Since log log x/ log x ∈ o(1), namely it tends to zero as x goes to infinity,
when taking asymptotically larger codes we see that the achieved identification
rates are always smaller than the achieved transmission rates. In particular, if we
the identification rate achieves the transmission capacity, it also means that both
the transmission rate RT and the identification rate RID achieve the transmission
capacity simultaneously. We will see that asymptotically large M ′ are needed to
send the error μ to zero, thus we can restrict to this case.

Remark 395 Notice that rates RID > RT are of course achievable with general
codes. The reason why we obtain that RID ≤ RT for the codes above, is because by
construction they do not use any randomness at the encoder, but they can be easily
generalized to codes where the random input to the tag code is generated partly by
messages and partly a uniform randomness. This will use some of the transmission
capacity to produce and send the randomness, thus artificially lowering RT below
RID.

We can now extract sufficient conditions for the identification and transmission
rates to achieve the transmission capacity. In order to do this we can rewrite the
transmission–identification rate as

(RT, RID) =
⎛

⎝ 1

1+ logM ′
logM

· R, log log I

logM
· 1

1+ logM ′
logM

· R
⎞

⎠

=
⎛

⎝ 1

1+ logM ′
logM

· R, log log I

logM
· RT

⎞

⎠

We thus have that for RID to achieve the identification capacity with increasingly
larger codes we firstly need R to achieve capacity, namely capacity achieving

transmission codes, and then we need logM ′
logM to approach zero and log log I

logM to
approach one. All this while at the same time having the transmission errors ε and
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ε′ going to zero, which is guaranteed by capacity achieving transmission codes, and
the tag-code error μ also to go to zero. This justifies the following definition.

Definition 396 A sequence of (In,Mn,Hn, εn) tag codes is achieving identification
capacity if

log log In
logMn

→ 1 (90)

logHn
logMn

→ 0

εn → 0.

In case of [πn,mn, hn, εn]qn tag codes the conditions become

πn

mn
→ 1 (91)

hn

mn
→ 0

εn → 1.

The following is a reformulation of the main result in [76] with the error
correction code used to compute the tags extracted. The original formulation uses
these code to create a identification-capacity achieving constant-weight binary code.

Proposition 397 ([76]) Let qn be a sequence of prime powers, and kn and δn
integer sequences satisfying

1 . δ ≺ k ≺ q

(in big-O notation: δn ∈ 	(1), kn ∈ ω(δn), and qn ∈ ω(kn)).
Let C be a [qn, kn] and C ′ a [qknn , qkn−δnn ] Reed-Solomon code, then C ◦ C ′ is an

error-correction code achieving identification capacity.

9.2 A Simple Achievability Proof of Identification

The existence of identification-capacity achieving codes exist was first proven
using a counting argument in the first appearance of identification [8]. However,
in general these do not need to be tag codes, but rather collections of subsets
over which to take the uniform distribution. In such codes, there is thus no
distinction between the message/randomness and the tag. This is inconvenient if
one is interested in adding security requirement on the identities. In the absence
of messages, since the identification rate depends on how much randomness is
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available, performing identification with tag codes allows to achieve higher rates
by sending the randomness in plain while sending the tag secretly. Such proofs
use a random coding argument to prove that tag codes achieving identification
capacity exist and can be chosen randomly with high probability [9]. The explicit
identification codes constructed in [55, 76] actually implicitly construct tag codes.
Because of the correspondence to error correction codes, an analogous to the
counting argument from [8] for the case of tagging function already exists and this
is the Gilbert–Varshamov bound, which proves the existence of tag codes in any
input-output sizes without any random coding. The Gilbert–Varshamov bound had
already been used to get an achievability proof for identification in [10] were it was
used to construct constant-weight binary codes.

Lemma 398 (Gilbert–Varshamov Bound) Let M ≥ 2 and H ≥ 3 be finite
integers, and let 	 = 0, . . . ,M − 1.

Then there exist (I,M,H,	/M) tag codes with

I >

(
H

2

)M
H − 2

(H − 1)M−	 − 1
>
H	

2M
. (92)

In particular, let c > 0, then for logH ≥ c + 1 there always exist

(
2cM, M, H,

c + 1

logH

)

tag codes (by choosing 	 = �(c + 1)M/ logH 	 in the first lower bound).
Corollary 399 For andM ≥ 2 and H ≥ 4 there always exist

(
2M, M, H,

2

logH

)

tag codes.

Since there exist
(
2M,M,H, 2/logH

)
tag codes, by choosing a sequence of tag

codes such that 1 ≺ logHn ≺ logMn, we automatically get a sequence achieving
identification capacity and plugging it in Construction 393 we obtain a capacity
achieving identification code.

10 Secure Storage for Identification

In this section, we present the main contributions in [13].
In [10] the authors consider identification for the wiretap channel. They show

that the number of messages that can reliably be identified in this case grows
doubly exponentially with the block length. The secure identification capacity
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even equals the Shannon capacity of the main channel. This result is generalized
in [23, 24] where the authors consider robust identification for wiretap channels.
In [53] and [58] the authors interpret the discrete memoryless source from the source
model as a biometric source. That is why they consider the privacy leakage of the
protocols for secret key generation.

In [13] the source model from [6] is considered for generating common random-
ness. But in contrast to [7] the privacy leakage of the corresponding protocols is
considered while interpreting the source as a biometric source as in [53] and [58].
This common randomness is then used for identification. So the contribution is
twofold. We characterize the capacity for common randomness generation from
a discrete memoryless source while considering privacy leakage. Then protocols
for identification using a discrete memoryless source are constructed. In contrast
to [7] and [3] the helper message is assumed to be stored on a public database. The
protocols for identification are constructed such that they provide secrecy. So these
protocols allow for secure storage for identification. The privacy leakage of these
protocols are also considered. Secure storage on a public database for identification
is considered. The authors make use of a physical unclonable function (PUF) source.
A PUF source is essentially equivalent to a biometric source. The output of a
biometric source is assumed to uniquely characterize a person whereas the output
of a PUF source uniquely characterizes a device. This allows to use the output of a
PUF source for secure storage as described in this work.

10.1 Storage for Identification Model

Consider the secure storage for identification process depicted in Fig. 4. The process
consists of two phases. In the first phase the system gets the message d that should
be stored on the database consisting of k storage cells which can each store a value
from the alphabet U . The system reads Xn from the PUF source. The system then
generatesUk fromXn using an encoder depending on d and stores Uk on the public
database. In the second phase the system reads Uk from the database and Yn from

Fig. 4 Secure storage for identification process
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the PUF source. The system then uses a decoder, depending on the message of
interest d̄ , to decide whether d̄ is the message stored on the database, making use of
Yn and Uk .

An information theoretic model of the storage process for identification is now
defined.

Definition 400 Let k, n ∈ N. The storage for identification model consists of the
alphabet U , a discrete memoryless multiple source (DMMS) PXY on the alphabet
X × Y , a set of (possibly randomized) encoders {�d}d∈D, �d : X n → Uk for all
d ∈ D and a set of (possibly randomized) decoders {�d}d∈D,�d : Uk×Yn → {0, 1}
for all d ∈ D. LetXn and Yn be the random variables (RVs) generated fromPXY .We
call ({�d}d∈D, {�d}d∈D) a storage for identification protocol.

The authors consider an eavesdropper who reads from the public database and
assume that he wants to identify a specific message. The eavesdropper knows
the protocol used and. T could be even assumed that he knows the message the
decoder wants to identify. The authors want that the sum of the probability that
the eavesdropper makes an error of the first kind and the probability that the
eavesdropper makes an error of the second kind is close to one.

The output of the PUF source uniquely characterizes a device, so the authors
possibly want to reuse parts of it. That is why the attacker should not have a lot of
information about the PUF source outputXn.

This motivates the following definition of achievability for the storage for
identification model.

Definition 401 Let B > 0. We call the tuple (RID, RPL) RID, RPL ≥ 0 an
achievable rate pair for the storage for identification model if for every δ > 0
there is a k0 = k0(δ) such that for all k ≥ k0 and n = �B · k� there exists a storage
for identification protocol such that for all d, d̄ ∈ D, d �= d̄

Pr(�d(�d(Xn), Y n) = 0) ≤ δ
Pr(�d(�d̄(X

n), Y n) = 1) ≤ δ
Pr(�Ed (�d(X

n)) = 0)+ Pr(�Ed (�d̄(X
n)) = 1) ≥ 1− δ (93)

1

k
log log |D| ≥ RID − δ

1

k
I (�d(X

n);Xn) ≤ RPL + δ

for all strategies {�Ed }d∈D of the eavesdropper. We denote the corresponding storage
for identification protocols by secure storage protocols. We call the set of all rate
pairs that are achievable using such storage for identification protocols capacity
regionRID(B).

Lemma 402 Let B > 0. RID(B) is a closed set.
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10.2 Results on Common Randomness and Secret Key
Generation

Some results concerning common randomness (CR) and secret key (SK) generation
from a DMMS are needed now. The following information theoretic model is
considered.

Definition 403 Let n ∈ N. The source model consists of a DMMS PXY , a (possibly
randomized) encoder F : X n → K × M and a (possibly randomized) decoder
G : Yn ×M → K̂. Let Xn and Yn be the output of the DMMS. The RVs (K,M)
are generated from Xn using F and the RV K̂ is generated from (Y n,M) using G.
We call (F,G) a CR/SK generation protocol.

Generation of common randomness [7] is now considered.

Definition 404 Let L ≥ 0. We call R(L) ≥ 0 an achievable CR generation rate
with forward communication rate constraint L for the source model if for every
δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0 there is a CR/SK generation
protocol such that

1

n
log |M| ≤ L+ δ

Pr(K = K̂) ≥ 1− δ
1

n
H(K) ≥ R − δ (94)

1

n
log |K| ≤ c (95)

for a c > 0. We denote the corresponding CR/SK generation protocols by CR
generation protocols with rate constraint. We denote the supremum of all achievable
CR generation rates with forward communication rate constraint L by CR capacity
CCR(L).

We now also consider privacy leakage for the source model. This makes sense when
we assume that the DMMS, that is part of the source model, models a PUF source.

Definition 405 We call the triple (RCR, RFC, RPL), RCR, RFC, RPL ≥ 0 an achiev-
able CR generation rate versus forward communication rate versus privacy leakage
rate triple for the source model if for every δ > 0 there is an n0 = n0(δ) such that
for all n ≥ n0 there is a CR/SK generation protocol such that

Pr(K = K̂) ≥ 1− δ (96)

1

n
log |M| ≤ RFC + δ
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1

n
I (M;Xn) ≤ RPL + δ

1

n
H(K) ≥ RCR − δ

1

n
log |K| ≤ c,

for a c > 0. We denote the corresponding CR/SK generation protocols by private
CR generation protocols. The set of all rate triples that are achievable using private
CR generation protocols is denoted by the CR capacity regionRCR.

In a first approach private CR generation protocols with deterministic encoders
and decoders (f, g) are considered. The corresponding CR capacity region is
denoted by Rd

CR. In [7] the authors also consider deterministic CR generation
protocols with rate constraint and characterize the corresponding capacity, which
is denoted in [13] by Cd

CR(L). The following result is proved in [7].

Theorem 406 It holds that

Cd
CR(L) = max

V
I (V ;X),

where the maximization is over all RVs V such that V − X − Y and I (V ;X) −
I (V ; Y ) ≤ L. We also only have to consider RVs V with |V | ≤ |X |.

The authors in [13] use this result to characterize Rd
CR.

Theorem 407 It holds that

Rd
CR =

⋃

V : V−X−Y

⎧
⎪⎪⎨

⎪⎪⎩
(RCR, RFC, RPL) :

0 ≤ RCR ≤ I (V ;X)
RFC ≥ I (V ;X|Y )
RPL ≥ I (V ;X|Y )

⎫
⎪⎪⎬

⎪⎪⎭
(97)

and the authors in [13] only have to consider RVs V with |V | ≤ |X | + 1.

Secret key generation [6] with perfect secrecy is also considered.

Definition 408 R ≥ 0 is called an achievable SK generation rate for the source
model if for every δ > 0 there is an n0 = n0(δ) such that for all n ≥ n0 there is a
CR/SK generation protocol such that

Pr(K = K̂) ≥ 1− δ (98)

I (K;M) = 0

H(K) = log |K|
1

n
log |K| ≥ R − δ.
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The corresponding CR/SK generation protocols are denoted by perfect SK gener-
ation protocols. We call the supremum of all achievable SK generation rates SK
capacity CSK.

In [6] the authors prove the following result.

Theorem 409 It holds that

CSK = I (X; Y ).

10.3 Achievability Result for Secure Storage for Identification

Now RID(B) is characterized. In order to do so the authors in [13] make use of
results for CR and SK generation while considering the privacy leakage. Firstly con-
sider deterministic secure storage for identification protocols ({φd}d∈D, {ψd}d∈D).
The corresponding capacity region is denoted by Rd

ID(B). The following achiev-
ability result is obtained.

Theorem 410 It holds that

Rd
ID(B) ⊇

⋃

V

{(RID, RPL) : 0 ≤RID ≤ I (V ;X)B (99)

RPL ≥ I (V ;X|Y )B},

where the union is over all RVs V such that V −X−Y and I (V ;X|Y )B ≤ log |U |.
Now we consider randomized secure storage for identification protocols.

Theorem 411 It holds that

RID(B) ⊇
⋃

ε>0

⋃

V

{(RID, RPL) : 0 ≤RID ≤ log |U | + I (V ; Y )B (100)

RPL ≥ I (V ;X|Y )B},

where the union is over all RVs V such that V −X−Y and I (V ;X|Y )B ≤ log |U |−
εB.

10.4 Storage for Identification Model with Two Sources

Consider the secure storage for identification process depicted in Fig. 4. The process
consists of two phases. In the first phase the system gets the message d that should
be stored on the database consisting of k storage cells which can each store a value
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Fig. 5 Secure storage for identification process

from the alphabet U . α is used for timesharing between the PUF source and the
public source. The system reads X�αn�1 from the public source and Xn−�αn�2 from

the PUF source. The system then generates Uk from (X
�αn�
1 ,X

n−�αn�
2 ) using an

encoder depending on d and stores Uk on the public database. In the second phase
the system reads Uk from the database, Y �αn�1 from the public source and Yn−�αn�2
from the PUF source. The system then uses a decoder, depending on the message of
interest d̄ , to decide whether d̄ is the message stored on the database, making use of
(Y

�αn�
1 , Y

n−�αn�
2 ) and Uk (Fig. 5).

We now define an information theoretic model of the storage process for
identification.

Definition 412 Let k, n ∈ N and 1 ≥ α ≥ 0. The storage for identification model
consists of the alphabet U , two discrete memoryless multiple sources (DMMSs)
PX1Y1 and PX2Y2 on the alphabets X1 × Y1 and X2 × Y2 respectively, a set of

(possibly randomized) encoders {�d}d∈D, �d : X �αn�
1 × X n−�αn�2 → Uk for all

d ∈ D and a set of (possibly randomized) decoders {�d}d∈D, �d : Uk × Y�αn�1 ×
Yn−�αn�2 → {0, 1} for all d ∈ D. Let X�αn�1 and Y �αn�1 be the random variables

(RVs) generated from PX1Y1 and Xn−�αn�2 and Yn−�αn�2 be the RVs generated from

PX2Y2 . We define Xn = (X
�αn�
1 ,X

n−�αn�
2 ) and Yn = (Y

�αn�
1 , Y

n−�αn�
2 ).We call

({�d}d∈D, {�d}d∈D, α) a storage for identification protocol.

10.5 Achievability Definition Two Sources

Now the properties that storage for identification protocols should have so that they
are considered good storage for identification protocols intuitively are considered.
It is reasonable to require a small probability that an error of the first kind occurs
when using the decoder d to find out whether d is stored on the database or not. The
error of the second kind should also occur with a small probability.
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An eavesdropper who reads from the public database and who wants to find out
whether d is stored on the database or not is considered here. The eavesdropper also
has access to the public source. The sum of the probabiltiy that the eavesdropper
makes an error of the first kind and the probability that the eavesdropper makes an
error of the second kind should be close to one.

The largest possible identification rate is of most interest, where the number
of storage cells is considered as a resource. A fixed ratio B of the number of
symbols read from the two sources and the number of storage cells in the database
is considered.

The output of the PUF source uniquely characterizes a device, so the authors
in [13] possibly want to reuse parts of it. That is why the attacker should not have a
lot of information about the PUF source output Xn−�αn�2 .

This motivates the following definition of achievability for the storage for
identification model.

Definition 413 Let B > 0. We call the tuple (RID, RPL) RID, RPL ≥ 0 an
achievable rate pair for the storage for identification model if for every δ > 0
there is a k0 = k0(δ) such that for all k ≥ k0 and n = �B · k� there exists a storage
for identification protocol such that for all d, d̄ ∈ D, d �= d̄

Pr(�d(�d(Xn), Y n) = 0) ≤ δ (101)

Pr(�d(�d̄(X
n), Y n) = 1) ≤ δ

Pr(�Ed (�d(X
n),X

�αn�
1 , Y

�αn�
1 ) = 0)

+ Pr(�Ed (�d̄(X
n),X

�αn�
1 , Y

�αn�
1 ) = 1) ≥ 1− δ (102)

1

k
log log |D| ≥ RID − δ

1

k
I (�d(X

n),X
�αn�
1 , Y

�αn�
1 ;Xn−�αn�2 ) ≤ RPL + δ

for all strategies {�Ed }d∈D of the eavesdropper. We denote the set of all rate pairs
that are achievable using such storage for identification protocols by capacity region
RID,2(B).

11 Secure Communication and Identification Systems:
Effective Performance Evaluation on Turing Machines

In this section, we present a summary of the results in [32]. In this work, a
framework based on Turing machines is developed which provides a theoretical
basis for effectively deciding whether or not a communication system meets pre-
specified requirements on spectral efficiency and security. A particular key issue
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for this is to decide whether or not the performance functions, i.e., capacities, of
communication scenarios are Turing computable. Furthermore, a general model of
a communication system of interest is introduced and the different communication
and identification tasks are discussed. Certain communication systems including
the wiretap channel are discussed. In addition, the question of computability is
addressed from a more general point of view and a general necessary condition
is derived under which the capacity function is not computable.

11.1 Verification Framework

11.1.1 Turing Machine

The task of a Turing machine T is to verify the spectral efficiency and security of
a given communication scenario CS ∈ CS which is specified by its communication
requirements, the underlying communication channel CH ∈ CH, and a communi-
cation protocol CP ∈ CP . This specifies for every n ∈ N an encoder-decoder pair
(Encn,Decn) for the legitimate users of the channel where n denotes the number
of available resources such as block length for coding or number of used frequency
bands. The encoder-decoder pair (Encn,Decn) operates at a given rate R. Finally,
the parameter k specifies the efficiency of the communication protocol where 1/k
is the maximum gap of R to the information theoretic optimal performanceC. This
leads to the following definition.

Definition 414 A Turing machine T given by

T : CS × CH× CP ×N → {yes / no}

is a mapping with

T(CS,CH,CP, k) = yes

if and only if the communication protocol CP satisfies the performance requirements
and

C − R < 1

k
(103)

where C denotes the supremum of the information theoretic achievable rates, i.e.,
the capacity.
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11.1.2 Computability

Definition 415 A rapidly converging Cauchy representation of a computable real
x is a sequence {xi}∞i=1 of rationals that converges to x rapidly, i.e., for every i and
j ≥ i it holds that |xj − xi | < 2−i .

Definition 416 A function f : Rc → Rc is called Borel computable if there is an
algorithm that transforms each given rapidly converging Cauchy representation of a
computable real x into a corresponding representation for f (x).

It is to that Turing’s definition of computability conforms to the definition of
Borel computability. There are weaker forms of computability known as Markov
computability and Banach-Mazur computability, of which the latter one is the
weakest form of computability.

Definition 417 A function f : Rc → Rc is called Markov computable if there is
an algorithm that converts an algorithm for a computable real x into an algorithm
for f (x).

Definition 418 A function f : Rc → Rc is called Banach-Mazur computable if
f maps any given computable sequence {xn}∞n=1 of real numbers into a computable
sequence {f (xn)}∞n=1 of real numbers.

In particular, Borel and Markov computability imply Banach-Mazur computabil-
ity, but not vice versa. Fig. 6 illustrates the relations between these computability
notions. Of particular importance for the following analysis is the observation
that every Banach-Mazur computable function is necessarily continuous and, as a
consequence, a discontinuous function cannot be Banach-Mazur computable. For a
detailed treatment and overview of the logical relations between different notions of
computability, Boche Et al., refer to [12].

Fig. 6 Logical relation
between different notions of
computability. Of particular
interest is the relation
between Banach-Mazur
computability and continuity:
For a function f : Rc → Rc
to be Banach-Mazur
computable, it necessarily
must be continuous

f : Rc Rc Borel computable

f : Rc Rc Markov computable

f : Rc Rc Banach-Mazur computable

f : Rc Rc continuous
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11.2 Communication Scenarios

Depending on the presence (or absence) of certain users, the general communication
model specializes to certain communication scenarios. In particular, the Jammer as
an active adversary will account for induced channel uncertainty at the legitimate
users (Fig. 7).

11.2.1 Point-to-Point Channel

If only Alice and Bob are present (without Eve and the Jammer), the model reduces
to the classical point-to-point channel, i.e., CS = {point-to-point channel} and
CH = {W } withW : X → P(Y) the channel between Alice and Bob.

11.2.2 Wiretap Channel

If there is no Jammer, we have the classical wiretap channel [82], i.e., CS =
{wiretap channel}. The underlying channel is given by the pair of channels CH =
{(W, V )} where W : X → P(Y) denotes the channel from Alice to Bob and
V : X → P(Z) from Alice to Eve.

11.2.3 Compound Channel

If there is no Eve, but a Jammer, the transmission from Alice to Bob is affected by
the channel input from the Jammer. If the Jammer’s input s ∈ S is fixed throughout
the whole duration of transmission, this corresponds to the compound channel [19,
81], i.e., CS = {compound channel}, and the underlying channel is given by a whole
family of channels CH = {W} with W = {Ws}s∈S and Ws : X → P(Y) denotes
the channel for s ∈ S.

Jammer

Alice Bob

EveNoisy Channel V

Noisy Channel W
X

S

Y

Z

Fig. 7 General model of the communication system including a passive eavesdropper and an
active jammer
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11.2.4 Compound Wiretap Channel

This model accounts for secure communication under channel uncertainty by
combining the wiretap channel and compound channel as CS = {compound wiretap
channel} with CH = {(W,V)} where (W,V) = {(Ws, Vs)}s∈S and where Ws :
X → P(Y) and Vs : X → P(Z) are the channels to Bob and Eve for s ∈ S
respectively [15, 59].

11.2.5 Channel with an Active Jammer

This is a generalization of the compound channel in the sense that the Jammer’s
input is now allowed to vary in an arbitrary and unknown manner from channel input
to channel input which is also known as the arbitrarily-varying channel (AVC) [1,
20, 43]. Accordingly, for transmission of block length n, state sequences sn ∈ Sn of
length n are taken into account. Therefore, we have CS = {AVC} and CH = {W}
where W = {Wsn}sn∈Sn .

11.2.6 Wiretap Channel with an Active Jammer

Finally, this setup combines the wiretap channel with the AVC and is accordingly
known as the arbitrarily-varying wiretap channel (AVWC) [18, 60, 62, 77]. We have
CS = {AVWC} and CH = {(W,V)} where (W,V) = {(Wsn, Vsn)}sn∈Sn .

11.3 Computability of Communication Scenarios

Boche Et.al, show that with the restriction to computable channels, the secrecy
capacity is Borel computable. As a consequence, it is also computable by Turing
machines so that the following equation is satisfied for any k implying that the infor-
mation theoretic performance requirements and the efficiency of the communication
protocol can be effectively verified by the Turing machine.

CS(W, V )− R < 1

k
, (104)

Theorem 419 The secrecy capacity CS(W, V ) = maxPUX [I (U ; Y )− I (U ;Z)] is
Borel computable.
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11.4 General Computability Analysis

11.4.1 Capacity Function on the Set of Channels

Definition 420 The continuity of a function F(·) is defined as follows:

1. The channel U ∈ CH is a continuity point of F(·) if for all sequences {Un}∞n=1
with

lim
n→∞ d(Un,U) = 0 (105)

we have

lim
n→∞F(Un) = F(U).

2. The channel U ∈ CH is a discontinuity point of F(·) if 1) does not hold, i.e., if
there is a sequence {Un}∞n=1 that satisfies (105) but

lim sup
n→∞

F(Un) > lim inf
n→∞ F(Un) (106)

is satisfied.
3. The function F(·) is a continuous function if all DMCs U ∈ CH are continuity

points according to 1).

Further, let D(F ) be the set of those channels that are discontinuity points of F .
In [32], the following sets of channels are introduced.

N (f ) = {U ∈ CH : f (U) = 0}
∂N (f ) = {U ∈ N (f ) : ∀ ε > 0 ∃ Uε /∈ N (f ) such that d(U,Uε) < ε}
N+(C) =

{
U ∈ CH : C(U) > 0}.

For the following analysis, it is desirable to discuss the sets above and their
properties in greater detail.

Lemma 421 We have

1. N+(C) is an open set
2. N (f ) is a closed set
3. ∂N (f ) is a closed set.

We obtain the following result.

Theorem 422 It holds that

D(F ) = N+(C) ∩ ∂N (f ) (107)

and, in particular, that D(F ) �= ∅ if and only if N+(C) ∩ ∂N (f ) �= ∅.
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11.4.2 Computable Channels

Theorem 423 It holds that

Dc(F ) = D(F ) ∩ CHc.

Theorem 424 If we have for a communication scenario

Dc(F ) = D(F ) ∩ CHc �= ∅, (108)

then F is not Banach-Mazur computable.

11.5 Channel with an Active Jammer

11.5.1 Deterministic Codes

To present and discuss the deterministic code capacity of an AVC, the following
definition of symmetrizability is needed.

Definition 425 An AVC W is called symmetrizable if there exists a stochastic
matrix σ : X → P(S) such that

∑

sn∈Sn
W(y|x, s)σ (s|x ′) =

∑

sn∈Sn
W(y|x ′, s)σ (s|x) (109)

holds for all x, x ′ ∈ X and y ∈ Y .

Roughly speaking, for such a symmetrizable AVC, the Jammer is able to “simulate”
a valid channel input which makes it impossible for the receiver to decide on the
correct codeword.

Theorem 426 The deterministic code capacityC(W) of the AVCW is not Banach-
Mazur computable and therewith not Turing computable.

11.5.2 Random Codes

The deterministic code capacity C(W) of the AVC W is

C(W) =
{

maxPX minq∈P(S) I (X; Y q) if W is non-symmetrizable

0 if W is symmetrizable
(110)
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The random code capacity Cran(W) of the AVC W is

Cran(W) = max
PX

min
q∈P(S)

I (X; Y q). (111)

Comparing the deterministic code capacity (110) with the random code capac-
ity (111), we observe that C(W) displays a dichotomy: it either equals Cran(W)
or else is zero.

Theorem 427 The random code capacity Cran(W) of the AVC W is Borel com-
putable.

11.6 Wiretap Channel with an Active Jammer

Theorem 428 The deterministic code secrecy capacity CS(W,V) of the AVWC
(W,V) is not Banach-Mazur computable and therewith not Turing computable.

11.7 Computability of Identification Scenarios

11.7.1 Identification over Point-to-Point Channels

The identification capacity CID(W) of the DMC W is known [9, 50] and it is not
hard to see that the identification capacity is Borel computable.

Theorem 429 The identification capacity CID(W) = maxPX I (X; Y ) of the DMC
W is Borel computable.

11.7.2 Secure Identification over Point-to-Point Channels

The secure identification capacity CSID(W, V ) of the wiretap channel (W, V ) has
been established in [10]. Boche Et. al, show that it is not Banach-Mazur computable.

Theorem 430 The secure identification capacity

CSID(W, V ) =
{
CID(W) if CS(W, V ) > 0

0 if CS(W, V ) = 0

of the wiretap channel (W, V ) is not Banach-Mazur computable.
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11.7.3 Robust Identification over Compound Channels

The robust identification capacity CID(W) of the compound channel W has been
established in [24] and its Borel computability is immediately obtained.

Theorem 431 The robust identification capacity

CID(W) = max
PX

min
s∈S

I (X; Ys)

of the compound channelW is Borel computable.

11.7.4 Robust and Secure Identification over Compound Channels

The robust and secure identification capacity CSID(W,V) of the compound wiretap
channel (W,V) has been established in [24]. In this work, it is shown that
CSID(W,V) is not Banach-Mazur computable.

Theorem 432 The robust and secure identification capacity

CSID(W,V) =
{
CID(W) if CS(W,V) > 0

0 if CS(W,V) = 0

of the compound wiretap channel (W,V) is not Banach-Mazur computable.

11.7.5 Robust Identification over Channels with Active Jammer

The robust identification capacity CID(W) of the AVC W has been established
in [7]. We have the following result.

Theorem 433 The robust identification capacity

CID(W) =
{
Cran(W) if W is non-symmetrizable

0 if W is symmetrizable

of the AVCW is not Banach-Mazur computable.

11.7.6 Robust and Secure Identification over Wiretap Channels with
Active Jammer

The robust and secure identification capacity CSID(W,V) of the AVWC (W,V)
has been established in [25]. We have the following result.
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Theorem 434 The robust and secure identification capacity

CSID(W,V) =

⎧
⎪⎪⎨

⎪⎪⎩

Cran(W) if CS,ran(W,V) > 0

andW is non-symmetrizable

0 otherwise

of the AVWC (W,V) is not Banach-Mazur computable.

12 Code Reverse Engineering Problem for Identification
Codes

In this section we review the results of [34].
In [34], Bringer and Chabanne formalize the Code Reverse Engineering (CRE)

problem for identification codes and they obtain general estimations of the difficulty
of this new problem either for independent received messages or for not independent
ones. They show that, in fact, an adversary cannot solve this problem easily. The
results cited in [34] are based on those of [40]. In [34], the authors consider
different cases taking into account the noise over the channel and the capacity of
the adversary to isolate or not the communications of a low-cost contactless device
(CLD). Furthermore, they apply these results to the BCCK identification protocol,
introduced in [8] and based on the use of identification codes. The BCCK protocol
relies on a construction of identification codes by Moulin and Koetter [61] using
Reed-Solomon codes.

12.1 CRE for Identification Codes

Definition 435 (Identification CRE Problem) Let X , Y be two alphabets, μ,N
be two integers, λ1 and λ2 be two values between 0 and 1, and C be a family of
identification codes from X to Y , all with parameters (μ,N, λ1, λ2).

• Let C = {(Q(·|i),Di)}i∈{1,...,N} be a code chosen randomly in C and ī =
(i1, . . . , iM) be M random messages chosen independently of C to be encoded
over the channel.

• Given the received messages ȳ = (y1, . . . , yM), the problem is to guess which
C has been used.

Lemma 436 For independent choices of i1, . . . , iM , the conditional entropy
H(C|ȳ) of the identification code C given the received messages ȳ = (y1, . . . , yM)

satisfies

H(C|ȳ) ≥ log2(|C|)−M(I (i; y)+ I (y;C|i)− I (i; y|C)) (112)
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i.e.,

H(C|ȳ) ≥ log2(|C|)−M(H(y)−H(i)+H(i|C, y)−H(y|C, i)) (113)

where i and y are two random variables distributed respectively as the ij ’s and the
yj ’s.

One important difference with the CRE problem for transmission codes is that the
solution is not trivial even for a noiseless channel. In fact, as the encoding is non
deterministic and there are non-empty intersections between different encoding sets,
that makes the reverse engineering of identification codes non trivial in many cases.

Corollary 437 Let X = Y be of size q . Assume that all encoding sets are of the
same size in C, i.e., there exists τ = τ (C) a parameter such that for every code
F ∈ C, the encoding sets of A defined by the probability distribution QC are all of
the same size: for all i ∈ {1, . . . , N}, |{x|QC(x|i) > 0}| = τ (C)qμ. Assume also
that we are in the context of a noiseless channel. We have

H(C|ȳ) ≥ log2(|C|)−M(log2(1/τ(C))) (114)

12.2 Application to BCCK Protocol

Now comes the main contribution of [34]. The authors use the CRE problem for
identification codes to study the security of the BCCK identification protocol from
an information theory perspective. Here is the scheme in details.

1. Setting: here is the description of how the whole identification scheme is
designed. Now, the class of identification codes that will be used is considered.
Let Fq be a finite field of size q , k ≤ n ≤ q − 1, we define C the set of Moulin-
Koetter (μ = log2 n + log2 q,N = qk, λ1 = 0, λ2 = k−1

n
) identification codes

from {0, 1} to {0, 1}. Let Fq [X]k−1 = {P ∈ Fq [X], degP < k} be the set of all
polynomials over Fq of degree at most k−1. We sort the set Fq [X]k−1 following
an arbitrary choice as Fq [X]k−1 = {P1, . . . , PN } and thus index it with integers
i ∈ {1, . . . , N}. An identification code C ∈ C is defined according to some
evaluation domain FC = {αC,1, . . . , αC,n} ⊂ Fq with:

• encoding sets defined by AFC,Pi = {(j, Pi(αC,j ))|j ∈ {1, . . . , n}} for i ∈
{1, . . . , N};

• for all i ∈ {1, . . . , N}, the encoding distributionQ(·|i) is taken as the uniform
distribution over AFC,Pi ;

• for all i ∈ {1, . . . , N}, the decoding set Di is defined as AFC,Pi .

This doing, a random code C ∈ C is determined by the random choice of n
elements in Fq . The size of C is

(
q
n

)
n!.
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DLCredaeR

Shared secret evaluation domain FC = {αC,1, . . . , αC,n} Identifiers Pi, Pi′

Pick j at random 〈j,y=Pi(αC,j)〉 y
?== Pi(αC,j)

Pi′(αC,j)
?== y′ 〈y′=Pi′ (αC,j)〉

Fig. 8 Enhanced BCCK identification protocol with secret identification code

The protocol still follows [33] but with a random choice of a code C in the
family C that becomes a secret shared among all parties (reader and devices).
More precisely it is the evaluation domain FC that is confidential. One instance
of the protocol is illustrated in Fig. 8.

2. Adversary: It is assumed that the adversary knows the family C of identification
codes of the system but he does not know the specific code that is in use.
When eavesdropping on the channel the queries made by a reader and the
answers produced by the devices, the adversary will see a number of messages
(j, y = Pi(αC,j )) and y ′ = Pi′(αC,j )). To be able to track a particular device, he
needs to determine when the same polynomial has been used with two different
values αC,j , αC,j ′ . To do so, he must recover information on the evaluation
domain, i.e., learn information on the code that is used. To simplify the analysis,
the authors in [34] assume that, when trying to reverse engineer the identification
code, the adversary eavesdrops the first message only (〈j, y = Pi(αC,j )〉) when
a reader communicates with a device. This is in fact easy to enforce by taking 2
different random codes, one for the reader query, the second one for the device
answer.

Based on these results, security results on the protocol are derived.

• direct application: Assuming that the channel is noiseless, Corollary 437 leads to
the following result.

Lemma 438 Given M independent eavesdropped messages y1, . . . , yM in the
enhanced BCCK identification protocol, the uncertainty on the knowledge of the
adversary on the secret identification code C that is used satisfies

H(C|y1, . . . , yM) ≥ log2

((
q

n

)
n!
)
−M log2 q

This underlines the difficulty of the CRE problem in this setting when n and q grow
to infinity forM polynomial in log2 n.

• specific lower bound: Via an analysis specific to the Moulin-Koetter construction,
the new following result is derived.
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Proposition 439 For the family C of Moulin-Koetter identification codes defined
as above over Fq with k ≤ n ≤ q − 1, for independent choices of M messages
i1, . . . , iM to be encoded for a random choice of C ∈ C, we have exactly

H(C|y1, . . . , yM) = H(C) = log2(|C|) = log2

(
q

n

)
n!

where y1, . . . , yM are the received messages, independently and randomly chosen
in the encoding sets of i1, . . . , iM , and eavesdropped by the adversary (without
noise).

13 Discrete Identification

In order to achieve the double exponential growth in the identification results, the
transmitter needs a local randomized source, and depending on it, it encodes the
messages into the channel. There are applications where it is difficult or impossible
to implement such a code, because the encoder has to process a bit sequence
of exponential length. Therefore, for such applications, which include molecular
communication, it is important to also consider deterministic identification (DI)
codes (these are also previously referred to as non-randomized identification (NRI)
codes). For DI codes, local randomization is not available to the transmitter. It was
shown in [54] that the DI capacity of a binary symmetric channel is 1 bit per channel
usage. The work inspired Ahlswede and Dueck to their research in [8] described
above. In [5], it was stated that the DI capacity of a discrete memoryless channel
(DMC) with a stochastic matrix W is given by the logarithm of the number of unique
row vectors of W. For the proof, a reference was made to [2], which contains no
identification and deals with a completely different model of an arbitrarily varying
channel. The first rigorous proof of this statement was given in [67]. This result
shows that in the deterministic setting, the number of messages scales exponentially
with block length, as in the traditional transmission setting. Nevertheless, the
achievable identification rates are significantly higher than those of transmission.
Moreover, deterministic codes often have the advantage of simpler implementation
and analysis. Moreover, in [67] and [68], the DMC and the Gaussian channel were
analyzed with input constraints. Such a constraint is often associated with limited
power supply or control. It is worth noting that the DI with power constraint for
the Gaussian channel is infinite. More precisely, the capacitance is infinite in the
exponential domain and zero in the double-exponential domain. In the follow-up
work [69], the authors then considered whether there is another scaling such that the
DI capacity of the Gaussian channel is finite. They found that for Gaussian channels,
the number of messages scales as nnR , and develop lower and upper bounds on
the DI capacity at this scale. They also consider deterministic identification for
Gaussian channels with fast fading and slow fading where channel side information
(CSI) is available at the decoder. For slow fading, the DI capacity is infinite in the
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exponential scale unless the fading gain can be zero or arbitrarily close to zero (with
positive probability), in which case the DI capacity is zero. Compared to the double
exponential scale in RI coding, the scale here is much smaller. Another surprising
result was obtained in [57], where the authors considered DI over Gaussian channels
with noise-free feedback. They showed that if the noise variance is positive, any
rate can be achieved for identification over the Gaussian channel with noise-free
feedback. The result means that for any chosen scaling, the corresponding DI
capacity is infinite. An extended version of this text and applications of identification
can be find in [39].

14 Private Interrogation of Devices via Identification Codes

Contact-less devices are generally assumed to respond automatically to any verifier
scan. In [65], it was suggested that the verifier directly addresses the device with
which it wants to communicate. To this aim, the verifier broadcasts the device
identifier and then the corresponding device responds accordingly. However, the
emission of the device identifier enables an eavesdropper to track it. In [33], the
authors follow this idea and look for a solution which does not require many
computations and many communications efforts, while preventing an eavesdropper
to be able to track a particular device. Changing the paradigm from the situation
where a device initiates the protocol to a situation where the device identifies first
the interrogation request enables to envisage new solutions. The authors in [33]
developed a scheme, which does not rely neither on hash functions nor on a random
generator on the device side and show that this solution is very efficient in terms of
channel usage.

14.1 Identification Codes

The general definition is skipped. Only the Moulin-Koetter definition is considered
here.

Definition 440 Let Fq be a finite field of size q, k ≤ n ≤ q − 1 and an
evaluation domain F = {α1, . . . , αn} ∈ Fq . Set Ap = {(j, P (αj ))|j ∈ {1, . . . , n}}
for P any polynomial on Fq of degree at most k − 1. The Moulin-Koetter RS-
Identification Codes are defined by the family of encoding and decoding sets
{(AP ,AP )}P∈Fq [X],degP<k . This leads to a (log2 n + log2 q, q

k, 0, k−1
n
) identifi-

cation code from {0, 1} to {0, 1}. Using a Reed-Solomon code of dimension k, this
gives λ2 = k−1

n
since d = n− k + 1 (Reed-Solomon codes are Maximum Distance

Separable).

A set of M < qk devices is constructed, and each of them is associated with a
different random polynomial pl ∈ Fq [X] of degree less than k − 1. The memory of
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these devices is then filled with a set of pl(αj ), for αj ∈ F , with F a public subset
of Fq , i.e., the devices contain the evaluation of pl over a subset of Fq . The verifier
is given the polynomial pl . When the verifier wants to initiate communication with
the device number l associated with the identifier pl , it selects a random αj ∈ F
and sends (j, pl(αj )) over the wireless channel. A device that receives this message
checks whether the value stored in its memory at the corresponding address is equal
to pl(αj ), i.e. computes an equality test of two bit strings. If the test is successful,
it replies and goes through the authentication protocol that will be later described.
Otherwise, it remains silent.

14.2 Protocol for Interrogation

The aim in [33] is for a ContactLess Device (CLD) to recognize itself into a verifier
request, but authentication of the CLD toward the verifier is handled as well. System
set-up:

• Setup Authority (1l) generates a set of parameters generates a set of parameters
KAp defining two integers μ,N , two alphabets X ,Y and two error rates λ1, λ2.
No private parameter is defined.

• Setup Verifier KAp constructs an (μ,N, λ1, λ2) identification code from
X to Y following the general definition of Ahlswede and Dueck, IC =
{(Q(·|i),Di )}i∈{1,...,N} and sets KVp = IC. IC is based on the Moulin-Koetter
construction [61].

• Setup CLD KVp(SN) first returns randomly chosen (i, j) ∈ {1, . . . , N}, i �= j
as the parameters of the CLD identified by SN. It then initializes the CLD with
the storage of a description of the decoding set Di of the identified i and the
description ofQ(·|i), the encoding probability mass function for index j . It also
stores (i, j,SN) in the verifier database.

A verifier and a set of devices are set-up as above and the following steps are then
processed to interrogate and authenticate a specific CLD.

• The verifier, who wants to interrogate the CLD of identifier SN, recovers its
identifier i in the database and encodes it viaQ(·|i) into a message x ∈ X n. The
verifier broadcasts the message (ACK, x), where ACK is an acknowledgment
number which will help the verifier to sort the received answers when it emits
simultaneously several such messages.

• Any listening CLD that receives the message (ACK, y) uses its own decoding
set DiCLD to determine whether y encodes iCLD.

• f a CLD identifies y as an encoding of its identifier iCLD, then it sends the message
(ACK, x ′) to the verifier, where ACK is the incoming acknowledgment number
and x ′ is an encoding of jCLD obtained viaQ(·|jCLD).
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DLCredaeR

Pick j at random 〈j,y=Pi(αj)〉 y
?== Pi(αj)

Pi′(αj)
?== y′ 〈y′=Pi′ (αj)〉

Fig. 9 CLD identification via Moulin-Koetter identification codes

• Upon receiving this message, the verifier then checks whether the received
message y ′ is a member of the decoding setDj of the aimed CLD. If so, then the
CLD is declared as authenticated.

Now, the Moulin-Koetter setting is considered. In this setting, a set of CLDs is
constructed where each of them—say CLDl is associated with two different random
polynomial identifiers pl, p′l ∈ Fq[X] o f degree at most k − 1. Here pl and p′l are
good descriptions of the associated encoding functions and the decoding sets; they
are both stored on the CLD side and on the verifier database. When the verifier
wants to initiate communication with CLDl (with identifiers pl, p′l ), it selects a
random αj ∈ F ⊂ Fq[x] and broadcasts (ACK, j, pl(αj )) over the wireless
channel. A CLD with identifiers p,p′ that receives this message checks whether
the polynomial p stored in its memory evaluated in αj is equal to pl(αj ). If the
test is successful, it responds with the value (ACK,p′(αj )). Otherwise, it remains
silent. The verifier authenticates the CLD if the received value p′(αj ) is equal to
p′l (αj ). The description is depicted in Fig. 9.

14.3 Security Analysis

Here, we state the most important results cited in [33].

14.3.1 Effect of Passive Eavesdropping

Proposition 441 Assume that the numberM of devices simultaneously queried by
the verifier is such that

√
q ≥ M ≥ e

√
n/k (with e = exp(1)). Then a passive

adversary, who eavesdrops at most T requests with T < M2k, cannot reconstruct
the polynomial identifiers, except with a negligible probability.

Proposition 442 Assume
√
q ≥ M ≥ e√n/k and T < M2k. A passive adversary

cannot determine whether two requests correspond to the same CLD except if there
is a collision, that happens only with probability 1/

√
n.
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14.3.2 Security Against Impersonation

In the protocol described in Sect. 14.2, a CLD replies to the verifier only if it believes
that the verifier is legitimate. It is thus close to mutual authentication—although
here the authentication of the verifier is only probabilistic with respect to the false-
positive error rate of an identification code. It is a weaker result than general verifier
authentication: a verifier cannot be impersonated in order to interrogate a pre-fixed
CLD.

Proposition 443 Assume
√
q ≥ M ≥ e

√
n/k and T < M2k. In the scheme

described in [33], given a non-corrupted CLD, an adversary cannot impersonate
a verifier to interrogate this specific CLD, without replaying an eavesdropped
transcript, except with probability 1/q .

Proposition 444 Assume
√
q ≥ M ≥ e

√
n/k and T < M2k. The scheme

described in [33] is secure against impersonation of a CLD, i.e. an adversary will
fail with probability 1− 1

q
.

14.3.3 Privacy

Proposition 445 If
√
q ≥ M ≥ e√n/k and T < M2k, then the scheme described

in [33] is weak private.

For more details about weak privacy, we refer the reader to [33].

14.3.4 Advantages for Very Low-Cost Devices

For low-cost devices, instead of storing the two polynomial identifiers p, p′,
we store directly the values p(α1), . . . , p(αn) and p′(α1), . . . , p

′(αn) within the
device. So doing, no computation is needed on the device side. Depending on the
amount of memory available per device, we can also limit the number of such values
by restricting ourselves to a basis of evaluation of size L < n, e.g., (α1, . . . , αL).

15 Applications of Identification

In this section, we present possible application examples cited in [24]. In [24], it is
pointed out that the theory in particular also offers applications for the model with
a transmitter and a receiver. Frequently, it is assumed that identification addresses
several recipients. However, this is not absolutely necessary.

1. Industry 4.0:
In production engineering, sensors are used to monitor the correct sequence of
the production. The sensor data is encoded into states and transmitted to a central
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unit (CU). The CU reads out and processes the states for plausibility checks. If
an error occurs, the receiver is interested in whether there is a critical state in the
system. The exact sensor measurement data are of minor significance for him.
Therefore, an identification code can be used in this case.

In example 5, a completely different application is presented which, however,
operates on the same idea.

2. Online sales:
In the case of online shopping, customers have certain interests. These interests
can be derived from the buying and surfing behavior of the customers in the
corresponding online shop. By using an identification code, the platform operator
(receiver in the identification framework) can identify whether certain items are
of interest to the customer or not. This information can be used in order to
optimize advertising campaigns and shop structure.

In this example, the store owner is the receiver in the identification scheme.
He wonders if a certain article in his shop is interesting for the customer.

3. Hardware store:
In a hardware store, it can be interesting for the customers whether there are any
offers for them at their current location. This customer requested can be handled
with the help of an identification code. In a next step, potential offers can be
sent to the customer using a transmission code. In contrast to 2), the customer
embodies the receiver in the identification scheme in this application example.

In this example, the customer is the receiver. Otherwise the principle is similar
to example 3. The peculiarity is a two-part procedure. Information can be sent to
the customers in a targeted way.

4. Vehicle-to-X communication:
In next-generation driver assistance systems, the sensor data collected by the
vehicle is enriched by additional information gained from other traffic partici-
pants by communication allowing, for plausibility checks concerning the desired
driving maneuvers. In this case, a vehicle may ask whether a certain message,
concerning the future movement of an adjacent vehicle, was transmitted or not.
Since the neighboring vehicle cannot anticipate the desired movement, when
no previous information exchange has happened, it is not aware in which of
its transmitted messages the first vehicle is interested in. In the previously
mentioned scenario, relying on low-latency identification of certain contradictory
driving maneuvers, an identification code can lead to significant performance
improvements compared to a classical transmission code.

5. Healthcare:
In medical applications, a patient may be equipped with multiple, wirelessly
connected sensors in order to monitor his health status. Besides simply reporting
the status of physiological functions, there may occur critical events which can
be anticipated from an unfavorable combination of different individual body
signals. Thus, if a central information merging unit (CU) receives a particular
measurement from one of the sensors, let’s say sensor 1, the CU may calculate
the potential measurements of the other sensors resulting in an overall critical
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state of the patient. Thus, the CU may ask, whether a certain message (encoded
measurement) was transmitted by, e.g., sensor 2. This setting is directly-related
to the introduced identification framework.

16 Omnisophie

In his book “Omnisophie”, Dueck compared the identification process to the
“human flash-mode”; the body’s response to stress. Dueck believes that our body
response is very similar to an identification scheme, where we, in case of a stress
alarm, decide whether we turn on our reaction system. Yes or No! Zero or one!
Dueck explained:

“After a car crash, we are in state of shock. It is more terrible than we could
bear. Before exams sit some of us apathetic. I have lost my house keys and sit in
the cold, 40cm away from” the happiness “inside the house. Endorphin makes us
focused only on our destiny and we just switch off! It is here about whether we
turn on our system! yes or no! zero or one!!” Now, let us know about the story
behind identification. How did Dueck come up with the identification scheme with
Ahlswede?

“ One day, my doctoral supervisor Rudolf Ahlswede came to my office. At that
time, I was a professor in the faculty of mathematics at the university of Bielefeld.
He showed me the work of Joseph Ja’Ja’, university of Maryland, which was called
“Identification is easier than decoding”. That was the first time we realized the
problem of identification. Ahlswede said: “this seems very important somehow! It is
worth to take a look!” The work was easy to understand. It is about a new approach:
Identification.

It is said that messages are transmitted over noisy channels. The noisier the
channel is, the more difficult the transmission is. The Shannon theory is about
how mathematicians and communications engineers insert the minimum amount
of redundancy so that the message can be decoded with a negligible probability
of error. Written languages are quiet redundant, that is why parents can usually
correct their children’s dictations without knowing what was dictated. The classical
transmission consists of the following steps.

• We have a message to be transmitted.
• This message is converted to a Morse code and redundancy is eventually added.

This process is called channel coding.
• This Morse text is transmitted over the channel.
• The message is then affected by noise.
• The channel output is received.
• The channel output is then decoded.

The theory of Shannon is concerned with the maximum rate at which information
can be transmitted over a communications channel. While the mathematicians
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elaborate smarter transmission methods, the engineers are “unfortunately” inventing
better transmitters with less power consumption as well as with much stronger
signals.

However, the approach of Ja’Ja’ was concerned with identification. In the
following, we will give some examples. When I traveled to Hungary in 1980, I had
to submit my documents and then wait for a visa stamping. The lucked ones were
called by loudspeakers to get back their entry permit papers. They are then allowed
to go. In 1980, the loudspeakers were so noisy that we can barely hear our names.
There were a lot of people and it was really crowded. The voice of the announcer
was unclear and we could barely notice it was Hungarian. I was wondering how my
name Dueck with “ue” would be pronounced. Would the announcer repeat it if I did
not understand?!

Waiting and hearing indistinct names was a so difficult exercise. Actually, it did
not matter to understand the name that was called but to distinguish your name! So, I
did not have to decode the called names but just to decide whether Dueck was called
or not! Yes, Dueck or No, it is not! Hopefully you would have flinched and thought
of Ja’Ja’ work. Aha! we have to be careful, it is about Yes or No. Let us take another
example: When the German teacher is circling around and looking for someone who
writes the hourly report then we, the students tremble and wonder who will be the
luckiest one? I always sat there and waited. Would she say “Dueck!”? Yes or No?

Thus, it is not about “what happens” but whether a certain event occurs! In the
theory of identification the decoder is not really interested in what the received
message is, but he only wants to decide whether a message, which is of special
interest to him, had been sent or not. This afternoon, I read the work of Joseph
Ja’Ja’ saying “Yeah, sure. This should be an interesting question and a natural
good solution. What does Ahlswede mean?” Rudolf Ahlswede is famous for his
insight into big things. He is a real phenomenon. He has an extraordinary sense
of anticipating! Indeed, the theory of identification is becoming an increasingly
important area in communications, which enlarged the basis of information theory.
Rudolf said secretly: “It is double exponential”. I thought about that. Next morning,
we both said: “Yes, it’s double exponential.” I, a naive over-optimist, said: “I know
what’s coming out.” Then, I tapped: 2 to the power of 2nC! Very aesthetic, exactly
matching the Shannon law!”
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Supplement

1 Abschied–Ein Gedicht von Alexander Ahlswede

Es füllten mich die Träume
wie immer mit altem Schwank,

im Schatten hoher Bäume
nahm ich den Zaubertrank.

Und nun trat plötzlich jenes
Los in mein stöberndes Licht:
zuviel erbittert Geschehenes,
und Hoffnung gibt es nicht.

Doch tragen die Schatten noch Bilder
vom geliebten Vater dahin,
und meine Seele wird milder,
gab er meiner Liebe doch Sinn.
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Rudolf Ahlswede and his son Alexander Ahlswede

2 Gunter Dueck: Memories of Rudolf Ahlswede

Around 1974, when I met Rudi Ahlswede for the first time, he was a guest professor
at the “Institute of Statistics” of the University of Göttingen, which was led by
Ulrich Krengel. The entrance room of this institute was a kind of a lounge—open for
all scientists and students. We could browse there through the most recent journals—
and more important—play blitz chess and drink a lot of coffee. Being a student of
statistics, I joined the institute nearly daily. Ulrich Krengel was like a father of a
big math-stat family. In this entrance lounge, the students could listen “live” to real
scientific work: Drinking coffee and loud passionated discussions. Legendary: the
heated debates of Lee K. Jones, Gyula O.H. Katona, and Ahlswede about topics
of combinatorics. Now, writing this more than 40 years later, I can still hear their
voices in my ears. . .

Ahlswede began lecturing information theory for the students—promising
newest research results. I asked Ulrich Krengel for the job to write a script of
the upcoming lectures. So I began working with RA as a student. In these times,
Paul Erdös was famous to offer smaller—Prizes for solutions of hard math-ematical
problems. “I solved an Erdös-Problem of 200”—this could be said with all honors.
In one of his first lectures, Ahlswede mentioned the prize tactics of Paul Erdös,
explained an unsolved mathematical problem in information theory to us and
offered 100 Germans Marks and a doctor title for a solution. Afterwards, writing
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the script in my flat, I found a solution! I ran back to the institute and proudly
presented my idea. However, RA found an error, what a pity! We would need
another deep argument to fix my idea. One hour later, RA came with a solution:
Gyula Katona was just finishing a paper on an important combinatorial problem,
and just this theorem filled easily the gap in “my proof”. This lucky punch paid off:
I got 50 German Marks, wrote my first joint scientific paper, got no doctor title, and
RA and I started a close research relationship which lasts until 1987, when I left for
a position at the IBM Scientific Center in Heidelberg.

In 1976, Ahlswede was appointed full professor at the new University of
Bielefeld—as the first professor of applied mathematics in the math faculty. I joined
him as an assistant professor in the brandnew university building. I remember a short
talk in a crowded space in the university hall: “Are you really willing to research in
a new field of research? Do you really know that applied math is in the beginning?
Are you really aware that there might be no professorship in information theory at
all when you will be qualified to earn one? Think over it!”—I did not think, I said:
“Yes, yes, yes.” A decade later, Ahlswede would be right: I did not find any position
which I could apply for—and moved to IBM to work on statistics and optimization.

RA put his heart and soul in a life for math and research. He expected the same for
everyone. We got just a 1-year contract as an assistant. “Your dissertation should be
ready after 1 year. If it is nearly ready at that time—okay, I could consider a second
year.”—“All the other people here get longer contracts. . . —“Hey, you said, you
want to become a professor. Right?”—“Yes.”—“Then, finally, you have to come up
with famous results. Right?”—“Yes.”—“For becoming a full professor, you have to
present at least ten quality papers, some of them famous ones. If you need more than
2 years for the first paper, how long do you think it will take to achieve your goal? I
advise you: Solve your problems fast and begin with the famous papers. This is the
easiest path.” On another occasion: “Think about serious problems only. Try those
whose solution could win the IEEE Information Theory Society Prize Paper Award.
Longstanding conjectures might be easy to prove, because people have given up and
new technology and recent research might have laid a new ground.”—Or: “Please
do not waste too much time on lecturing. It’s a nice time with students but try to
stick to research only.”

RA was the most passionate scientist I ever met. He was solving problems around
the clock. In the theater with his wife, he has been reportedly watched writing ideas
on a sheet of paper. When my wife and friends visited the famous Mont Saint Michel
in France (please google for a picture to understand), we were ready to walk through
the mud flat to reach the monastery. In the distance, we saw a thinking man walking
from the monastery to the landside. “I recognize this body language—it looks like
RA!” After some minutes: Yes, it was RA, with some notes.

Oh, I used to work in a very different time frame. This caused frequent (mild)
conflicts. All the time, RA looked doubtful when I left my office exactly at
4.30 p.m.—every single day. Explanation: My wife worked as a librarian at the
university, she had fixed working hours: 8 a.m. to 4.30 p.m. We owned only one
car to go to work, and RA could not imagine researchers thinking at daytime only.
“Prussian! You’re a Prussian! Prussian steadiness!”, he grumbled very often. For
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me, it worked—my doctor thesis was finished after 15 months. No applause, please:
I was not the fastest finisher in our floor, the 1-year contract strategy just turned out
to be very successful.

In 1976/1977, RA gave short lecture on some forty most important problems of
information theory. “Please solve some of them.” We tried our very best. Somewhat
later, Edward van der Meulen from Leuven (Belgium) published an IEEE survey
paper on these most important problems, and we felt really troubled to learn there
that we were in fact working on the hardest problems of all. . .

Excellence and Excellence! Only excellence counted on our floor. Professors
who served in organizations or faculty committees or who liked to be a dean or to
organize large conferences, were called “clerks” by RA. “Clerks, pure clerks, only
clerks!”, he shouted angrily if someone demanded administrative things.

RA was very proud that no one ever solved a problem after he had worked some
time on it. It was a question of honor. Especially, he had thought a long time about
the proof of the strong converse for the multiple access channel in order to have a
complete solution set for his pioneering work on this channel. Within 10 years, he
had many ideas—all of them failed. In 1980, he failed with a further bright idea.
He wrote a complete paper and noticed the error while typing the last line. He was
really angry for many days and brought the problem to my attention. At the next
Saturday morning, under the shower, I had a simple idea to prove everything. On
Monday morning, I presented my idea: ten lines on a table. He shook his head in
aroused disbelief. I returned to my office next door to him and waited for his final
comments. Some minutes later, I heard him slamming his office door, he left. I
waited nervously for his return. And waited and waited for some days. At Friday
morning RA returned to my office room: “Please start your Habilitation (“professor
exam”) process with your proof!”, still upset. This made my day, of course, and, on
the other side, I felt very sorry or guilty. . .

After my Habilitation, I got a 5-year contract as a professor of Math in Bielefeld.
Our daughter Anne was born, Johannes followed in 1986. In this year, RA came
with a preprint of a rather “easy to see solution” of a new problem of identification.
“However”, he thought over it, “it is a new and exciting question.” We thought
about it over the night. Next day: “It could be double exponential. . . ” It was a
strange feeling. It seemed that identification (extracting a yes-no answer from a
vast amount of information) would be exponentially faster than to read/decode this
information. After two or three days, we knew the solution and we were certain how
to prove everything. However, it took months of hard work to complete the proof.
Johannes, our baby, tried not to sleep at all. I used the long hours of night service
for the proof. . . My contract as a professor expired in this time, I felt very sad. In 5
years, there was not a single professor position to fill with something in the near of
information theory. Now, I could remember: “Are you really sure to research in a
new field? Are you really aware. . . ?”

1987, I switched to the IBM Scientific Center in Heidelberg. There, I invented
some new optimization algorithms which we applied to industry problems. I was
appointed a manager in 1990 and formed a new optimization business group with a
few Million revenue. Some days before Christmas 1990, I got a letter from the IEEE:
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“Your joint paper on identification won the IEEE Information Theory Society Prize
Paper Award.” I had tears in my eyes. . . I was named IEEE fellow in the sequel
which was rewarded by IBM with a “Senior Technical Staff” title and a director’s
salary. At that time, a new university was looking for a professor in information
theory. They called me, and I declined to apply—I had found a new destination
within IBM. A decade later, I learned that RA had pushed hard the request of such
a professorship to “bring me back to research”, and that he was very disappointed
that I preferred to stay with IBM. (He never called/contacted me in this matter!)

Anyway, I have to be deeply thankful. My IBM career was boosted strongly by
the IEEE Fellowship. I benefited from my RA experiences to “originate a culture
of excellence”. I managed successfully people by setting high bars for the IBM
researchers and to celebrate all their successes. “Gunter, you have been extremely
demanding, but after some years we recognized that we really enjoyed this time.” I
just tried to bring RA-spirit to my department. This RA-Spirit might have been the
basement of all my achievements. He was my real mentor. A million thanks.

Gunder Dueck

From left to right: Marat Burnashev, Gunter Dueck and Rudolf Ahlswede
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