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Abstract. Mammalian brains exhibit functional self-organisation
between different neocortical regions to form virtual hierarchies from
a physical 2D sheet. We propose a biologically-inspired self-organizing
neural network architecture emulating the same. The network is com-
posed of autoencoder units and driven by a meta-learning rule based on
maximizing the Shannon entropy of latent representations of the input,
which optimizes the receptive field placement of each unit within a fea-
ture map. Unlike Neural Architecture Search, here both the network
parameters and the architecture are learned simultaneously. In a case
study on image datasets, we observe that the meta-learning rule causes
a functional hierarchy to form, and leads to learning progressively better
topological configurations and higher classification performance overall,
starting from randomly initialized architectures. In particular, our app-
roach yields competitive performance in terms of classification accuracy
compared to optimal handcrafted architecture(s) with desirable topo-
logical features for this network type, on both MNIST and CIFAR-10
datasets, even though it is not as significant for the latter.

Keywords: Biologically plausible networks · Self-supervised learning ·
Greedy training

1 Introduction

A critical component behind the performance of Artificial Neural Networks
(ANN) remains the manual design of their architectures, which is fixed prior
to the training of networks and requires specialized domain knowledge involving
iterative search, empirical discovery, intuition or trial and error [3].

Automated architecture search methods like Neural Architecture Search
(NAS) with Reinforcement Learning [22], and Evolutionary Algorithm [20] based
approaches provide viable alternatives to explicit tailoring of neural network
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Fig. 1. A simplified high-level representation of the self-organising hierarchy.

architectures for a given task. NAS methods [3] outperform manual architec-
tures in many areas such as semantic segmentation [1], image classification and
object detection [23]. They employ complex strategies to search the space of
possible architectures and evaluate performance which makes them extremely
computationally expensive [23] and hard to reproduce. We propose a biologi-
cally motivated alternative to automated architecture search that attempts to
coarsely mimic how the brain might adapt its own architecture at an abstract
level.

We loosely base our idea on the Gradiental model, proposed by [5], which
claims that functional neocortical organisation is continuous, interactive and
emergent, and introduced a cognitive gradient that referred to gradual changes
in encoded representations and integration between sensory modalities across
the surface. Furthermore, since the mammalian neocortex is physically a thin
2D sheet there is evidence of a functionally self-organising virtual hierarchy (as
opposed to a physical one) between the different neocortical regions [7] (See
Fig. 1). In particular, we study the effects on one sensory modality i.e. visual
modality, and learn useful representations in a partially unsupervised manner.

The primary focus of our approach is discovering the optimal spatial place-
ment of the receptive fields (φ) over the inputs and its latent representations via
a meta-learning rule. We consider a meta-network as a Directed Acyclic Graph
(DAG) in which every node is an autoencoder (AE) unit, with the same number
of hidden units (nhidden), and locally learn useful representations of the inputs
received from the other parts of the network. Two types of learning simulta-
neously take place in this setting i.e. primary (or base) learning (fθ) which is
learning of feed-forward weights θ and secondary (or meta) learning (fφ) which
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is learning the receptive field location (and thus, the topology) of each AE unit
for optimal feature encoding in a lower dimensional space.

To measure the quality of learned representations and drive meta-learning, we
use Shannon entropy as an intrinsic metric. Furthermore, to assess overall quality
of the network and its architecture we use these unsupervised representations to
train a logistic regression classifier and use its accuracy as an extrinsic metric.

A key distinction between our work and NAS [22] approaches is that the
self-organizing network retains the learned weights from previous meta-iterations
which is meant to reflect a smooth adaptation to a given task during training.

The major contributions of this paper are summarized as follows:

1. We propose a self-organising neural network architecture which meta-learns
its architecture during training to produce effective representations of the
inputs for downstream tasks like classification.

2. We formulate a meta-learning rule based on entropy of latent representations
and empirically show that it leads to better topological configurations.

3. We show functional hierarchy emergence via the self-organizing network.

2 Proposed Framework

The overall framework is shown in Fig. 2. It can be broadly divided into unsuper-
vised, which includes both the base (local) learning in the AE units along with
meta-learning of the receptive fields, and the supervised phase which consists of
training a multinomial logistic regression classifier.

Firstly, we conceive a simple high-level abstraction for the 2D cortical sheet
and refer to it as the feature map of encodings with dimensions as h × w, where
we store the inputs along with the subsequent hidden layer activity of each
AE unit during training. Allocation of both the input and the latent activity
within the feature map is arbitrary and specified prior to training which remains
fixed throughout. This is meant to represent the gradual encoded representations
across the cortical map.

The meta-network is a combination of the feature map and the AE units.
Training in the context of this meta-network is to learn K meta-parameters
φ = {rk | k ∈ {1, . . . , K}}, where rk is the receptive field for the kth AE unit.
Hence, its topological configuration is fully defined by the number of AE units
(K) and location of their receptive fields (rk). The set of receptive fields for a
topology is given as

{rk = {(x(k)
i , x

(k)
j ), (y(k)

a , y
(k)
b )} | k ∈ {1, . . . , K}} (1)

where, x(k) represents the hidden layer row activity with beginning and end-
ing indices as i and j, and y(k) represents the column activity where a, b are the
beginning and ending indices respectively of the kth AE unit within the feature
map. The notion of a receptive field here refers to a subset of input activities
projecting from one layer to the next in the virtual hierarchy as opposed to the
traditional definition that refers to a subset of external inputs to the network.
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Fig. 2. (left) A high level schematic of the framework. (right) Handcrafted architectures
with 3 AE units namely A1, A2 and A3. Different colors represent levels within the
hierarchy. The arrows represent the input to the AE units and their receptive fields.
Here the dotted lines divide the raw image into different regions.

We handcraft several architectures, as shown in Fig. 2 above, in order to
establish correlation between entropy and accuracy. These hierarchical systems
vary in their order, reversibility and pyramidal structure [2], and as a conse-
quence represent various levels of structural optimality.

Once the AE units of a meta-network sufficiently converge, we use it to train
a two layer multinomial logistic regression classifier. Thereafter, we concatenate
the hidden layer activity from all AE units to form a (K × nhidden) dimensional
vector as input to the classifier as shown in Fig. 3.

2.1 Base Learning

We use a single layer, under-complete AE with standard backpropagation learn-
ing where we treat h×w, i.e. the complete feature map size, as the input dimen-
sions and apply a binary indicator matrix δk of the same dimension per AE
unit. δk then has a sub-matrix of ones which is specified by rk. We use mean
squared error (MSE) for the reconstruction loss along with dropout and L2 norm
for regularization. As captured in Fig. 2, each unit targets 2 fixed-size receptive
fields (rk) of N × N dimensions making the effective receptive field size to be
2 × N × N per unit.

During this phase, each AE unit minimizes its reconstruction loss locally and
learns a low dimensional representation of its inputs. Subsequently after each
forward pass, the hidden layer activity of each unit is updated on the feature
map (in its designated location).
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Fig. 3. Left: A simple handcrafted meta-network (A3) with 3 AE units arranged in a
pyramidal fashion. Each unit receives different inputs (a part of the image) based on
the position of its receptive field and its latent encoding becomes a potential input for
the next unit. Right: A logistic regression model trained on the hidden unit activity.

2.2 Meta-Learning

The meta-learning algorithm is shown in Algorithm1. This is used for both the
handcrafted, (where we specify rk) as well as for the meta-learned architectures.

Intrinsic Metric. Tishby and Zaslavsky [21] used information theoretic mea-
sures to highlight the trade-off between effective compression of information and
prediction from it. We use Shannon entropy as the intrinsic metric through which
we can indirectly infer about the information content in the learned representa-
tion and subsequently the fitness of the meta-learned-network.

Formally,
H(x) = −

∑

i

Pi log(Pi) (2)

where, Pi is the probability of ith hidden activity.
We initialize the feature map with the input image and zeros representing

non-activation. To ensure a stable pool of activations in the feature map before
backpropagation in AE units, K × K forward passes are performed without
accumulating gradients and the feature map is updated each time. Once it is
saturated, we perform K forward passes for each unit followed by K backward
passes. Finally, we estimate the entropy per unit per epoch.

To estimate the entropy of the latent activity in AE units, we use a histogram
(binning) based approach. For given continuous activation values C, we discretize
the same into discrete activations D, by computing a histogram over the same
which allows for a rough estimation of the probability distribution of C [17]. The
authors noted that the estimated entropy is sensitive to the choice of binning
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Algorithm 1. Steps for Meta-network training.
Input: Receptive fields, rk; Height, h; Width, w;
Output: Shannon entropy, {H(xk) | k in{1 . . . K}}; Trained AE units,
{Ak | k ∈ {1 . . . K}};

1: Initialize: K AE units;
2: while not max epoch do
3: Initialize Feature map F = F

(0)
h×w;

4: for k in 1 ∼ K do
5: for k in 1 ∼ K do
6: Perform forward pass for Ak;
7: Update F := F

(k)
h×w with hidden activity xk;

8: end for
9: end for

10: for k in 1 ∼ K do
11: Perform forward pass for Ak;
12: Perform backward pass for Ak;
13: Update F := F

(k)
h×w with hidden activity xk;

14: Estimate Shannon entropy H(xk) using equation 2;
15: end for
16: end while
17: return ;

as it yields different discrete representations for C. However, [13] showed that
the estimated values fall within the theoretical limits for small and large bins.
We employ a similar strategy as [16], where AE units are allowed to be fully
trained to capture the maximum activation value and to ensure that the resulting
histogram represents the full range of activations (as ReLUs do not have an upper
bound). We selected a constant bin size of 100, independent of the topology.

For a given topology, let xk be the hidden layer activity and H(xk)t be the
local entropy of the kth unit at time t. The intrinsic metric αt at time t is,

αt = H(xk)t (3)

We greedily optimize for local entropy values for each AE unit.

Meta-Learning Rule. We explore memoryless, meta-heuristic approaches,
namely local search and stochastic hill climbing [15], along with random search
to formulate the meta-learning rule with maximizing entropy as the acceptance
criterion as per Algorithm 2.

We introduce a small random perturbation in the rk during each iteration of
meta-learning, constrained to a range between [−1, 1] for a horizontal or vertical
shift i.e. two degrees of freedom. It accepts a randomly selected neighbour as a
candidate solution, only if it leads to a higher local entropy. Although this does
not guarantee a global optima in the case of non-convex optimization problems,
it provides a reasonably optimal solution within a time constrained setting [15].
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Algorithm 2. Stochastic hill climber as Meta-learning rule
Input: Meta-steps, M ;
Output: Receptive fields, rbest;

1: Initialize rbest ← randomTopology();
2: Let α0 ← 0;
3: for m in 1 ∼ M do
4: for i in 1 ∼ K do
5: rcandidate ← rbest;
6: r

(i)
candidate ← randomNeighbor(r

(i)
best);

7: Train Meta-network with rcandidate and get H(xi);
8: αt ← H(xi);
9: if αt > αt−1 then

10: rbest ← rcandidate;
11: break;
12: else
13: continue;
14: end if
15: end for
16: end for
17: return rbest;

The meta-learning rule updates slower than the base learning to ensure that
units were fully trained and converge to a sufficient degree before estimating
the entropy of the hidden activity. Figure 4 shows a forward pass during meta-
learning.

In order to retain weights from previous iterations, we multiply δk with all
current weights of an AE unit as θij := θij × δij where θij is a single weight and
δij is an element of the binary indicator matrix. Hence, only the weights of the
neurons which lie within the rk are subject to be updated during training with
the rest remaining virtually unchanged.1

3 Experiments

3.1 Datasets

For our experiments, we focus on two datasets:

MNIST: We use the widely studied MNIST dataset2 of single-channel, 28 × 28
dimensional images consisting of 10 classes with 60, 000 instances as training set
and 10, 000 as the test set.

CIFAR-10: Contains multi-channel, natural images drawn from 10 classes with
50, 000 and 10, 000 images for training and testing respectively [8].

1 The code is available on github under: https://github.com/Cerenaut/self-organizing.
2 http://yann.lecun.com/exdb/mnist/.

https://github.com/Cerenaut/self-organizing
http://yann.lecun.com/exdb/mnist/
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Fig. 4. A schematic depiction of a forward pass in the meta-network. Here A, B and
C are the AE units and a, b and c are the location of their hidden layer activity in the
feature map. Receptive fields of A and B i.e. rA and rB respectively, target the image
whereas rC targets the hidden layer activations of both A and B. The dotted arrows
represent the updating of the hidden layer activations of the corresponding units in the
feature map.

For MNIST, we first centre-crop the images to be multiples of 10 for making
the manipulation of receptive fields within the feature map simpler. It is cropped
to be 28 × 28 → 20 × 20 followed by min-max normalization to bring the pixels
values of the images from [0, 255] to be between [0, 1]. To ensure center crop-
ping does not impact the classifier’s performance, we evaluate its performance
both with and without cropping and found an increase of only ∼0.003% in the
test error rate. The 8 × 8 region acts mostly as extra padding. For CIFAR-
10, we perform standard data augmentation i.e. zero-pad with 4 pixels on each
side, random crop back to 32× 32 and random horizontal flip [6,9–11,14,18,19].
Thereafter, we convert it to grayscale and normalize.

3.2 Experimental Strategy

For both datasets, here we seek to demonstrate three key features: (1) Hand-
crafted hierarchical architectures perform better than random ones; (2) There
is a near monotonic relationship between extrinsic classification accuracy and
intrinsic entropy of a network that enables the use of maximising entropy by way
of the meta-learning rule to maximise accuracy while at the same time leading
to more hierarchical architectures; (3) That the meta-learning rule can be used
to achieve improvements in accuracy relative to random or initial networks and
at least comparable accuracy to handcrafted hierarchical networks.

Performance of Handcrafted and Random Architectures. We perform a
series of 10 runs per architecture and compile the results in Table 1, where we
report the mean accuracy of each topology.
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Table 1. Accuracy (mean) of all 10 runs for the handcrafted and randomly initialized
architectures for each dataset. The architectures with the highest accuracy is high-
lighted in gray.

Topology Name MNIST CIFAR-10

A1 Flat 96.4 31.69

A2 Columnar 94.21 30.79

A3 Pyramidal 96.6 32.84

AR1 Random 93.03 31.97

AR2 Random 93.76 27.21

AR3 Random 90.28 29.86

From Table 1, we observe that the topology with perfect hierarchy [2], namely
A3, performs the best in each category for both the datasets. Furthermore,
columnar architectures (A2) performs poorly among the handcrafted ones since
they highly deviate from a perfectly hierarchical topology, receive partial infor-
mation overall and have very poor integration of receptive fields as each unit
only targets its receptive field at the unit directly below it.

Flat architecture (A1) yields a mean accuracy below A3 for both datasets.
Random architectures yield lower accuracy scores overall for both datasets and
hierarchical architectures which deviate from the properties of a perfect hierarchy
in general, seem to exhibit lower performance relative to the degree of deviation.

Correlation Analysis. We observe maximum global entropy of a meta-network
to be positively correlated with its accuracy, with a Pearson’s correlation coeffi-
cient of 0.75 and 0.48 for MNIST and CIFAR-10 respectively. This indicates that
the greater the local entropy of the AE units, more is the amount of useful infor-
mation captured in the encoded representation (as measured by the accuracy).
Hence, seeking out regions of high activity on the feature map by the AE which
in turn leads to high entropy ultimately improves performance. Figure 5 shows
a regression line fit to the data highlighting the relationship between maximum
entropy and accuracy for both datasets.

Performance of Meta-learned Architectures. Using local entropy esti-
mates for α, we perform a series of 10 runs and record how the topology evolves
throughout training. We report the performances of both the randomly initial-
ized architecture and the final meta-learned architecture for the same topology
in Table 2.

We perform Wilcoxon one-sided signed-rank test with a significance level of
0.05, between the final (x̃1) and initial (x̃0) accuracy of the meta-learned archi-
tectures and report the p-values obtained. The null hypothesis (H0) is that the
median difference (x̃1 − x̃0) is negative against the alternative (HA) that it is
positive. We observe p-values < 0.05 for MNIST and hence conclude that our
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Fig. 5. Regression lines fitted between accuracy and the maximum entropy for MNIST
(left) and CIFAR-10 (right) respectively.

Table 2. Median accuracies for both the randomly initialized, x̃0, and meta-learned,
x̃1, architectures over 10 runs.

Dataset x̃0 x̃1 max p-value

MNIST 91.24 92.40 96.22 0.009

CIFAR-10 33.12 32.46 35.02 0.869

results are statistically significant. For CIFAR-10, we do not observe similar evi-
dence against the null which we plan investigate in our future work. We however
note that the meta-learning achieved a competitive performance of 35.02% on
CIFAR-10 over the runs, better than any of the handcrafted ones.

Figure 6 shows accuracies from the randomly initialized architectures after a
few meta-learning iterations (meta-steps) as indicated through the intermediate
architectures during meta-learning. For MNIST, we observe highest improve-
ment in performance among the meta-learned architectures with random initial
configurations which started with very poor performance. Also, configurations
that already yield high accuracies have more or less similar performance through
the meta-learning. It is also apparent that meta-learning is sensitive to initializa-

Fig. 6. Plot showing the change in accuracy per architecture with each meta-step
for MNIST (left) and CIFAR-10 (right), over 10 different runs. Different randomly
initialized architectures are represented by different colors. Meta-step indicates the
number of receptive field updates before termination of the meta-learning loop.
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tion of the receptive fields as is generally the case with local search algorithms.
For CIFAR-10, we observe a lesser performance improvement. However, here
the difference between the best and worst performing handcrafted architectures
is much smaller and therefore we hypothesise that the search space is more
challenging.

4 Conclusions and Future Work

In this paper we propose a self-organising network architecture which optimizes
the spatial placement of receptive fields through a meta-learning rule based on
entropy of the encoded representations. Our experiments demonstrate that meta-
learned architectures are able to self-organise into a hierarchy by maximising
entropy in the network. This appeared especially effective for MNIST, while for
CIFAR-10 the results are still inconclusive. The more effective result on MNIST
suggests the associated error surface is less complex and allows the local meta-
learning to find a more optimal solution.

For MNIST, we observe the baseline to be 96.6% for handcrafted architec-
tures sans augmentation or hyper-parameter tuning. For CIFAR-10, we achieve
a baseline accuracy of 32.84%. When compared with existing results from other
non-convolutional ANN models applied to CIFAR-10 as reported by [12], e.g.
logistic regression on whitened input achieved 41% and much larger, vanilla
FFNN achieved 51% (with 7, 940, 000 trainable parameters vs 48, 000 in our con-
figuration). As [12] noted, convolutional networks are not entirely biologically
plausible (due to weight sharing), there is a need to explore more feasible alterna-
tives. One contrasting feature of our approach with NAS methods is potentially
reducing computational complexity since we meta-learn architectures without
evaluating the classification performance for each candidate architecture.

To that end, we present a brain-inspired learning paradigm without using
topological priors, such as convolutions for image processing, and only use basic
neural network components driven by a meta-learning rule. Future work will
include additional AE units (for more possible topologies), exploring alterna-
tives for meta-learning such as Free-Energy minimization scheme [4] and also
expanding across different sensory modalities and integrating the receptive fields
to achieve better generalization across tasks and domains.
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