
Minimising Cycle Time in Assembly
Lines: A Novel Ant Colony Optimisation

Approach

Dhananjay Thiruvady , Atabak Elmi , Asef Nazari(B) ,
and Jean-Guy Schneider

School of IT, Deakin University, Geelong, Australia
{dhananjay.thiruvady,atabak.elmi,asef.nazari,

jeanguy.schneider}@deakin.edu.au

Abstract. We investigate the problem of mixed model assembly line
balancing with sequence dependent setup times. The problem requires
that a set of operations be executed at workstations, in a cyclic fash-
ion, and operations may have precedences between them. The aim is to
minimise the maximum cycle time incurred across all workstations. The
simple assembly line balancing problem (with precedence constraints) is
proven to be NP-hard and is consequently computationally challenging.
In addition, we consider setup times and mixed model product types,
thereby further complicating the problem. In this study, we propose a
novel ant colony optimisation (ACO) based heuristic, which unlike pre-
vious approaches for the problem, focuses on learning permutations of
operations. These permutations are then mapped to workstations using
an efficient assignment heuristic, thereby creating feasible allocations.
Moreover, we develop a mixed integer programming formulation, which
provides a basis for comparing the quality of solutions found by ACO.
Our numerical results demonstrate the efficacy of ACO across a number
of problems. We find that ACO often finds optimal solutions for small
problems, and high quality solutions for medium-large problem instances
where mixed integer programming is unable to find any solutions.

Keywords: Assembly line balancing · Sequence dependent setup
times · Minimise cycle times · Ant colony optimisation · Mixed integer
programming.

1 Introduction

Assembly line balancing deals with subdividing a manufacturing process into
simple operations and to assign those operations to workstations to produce
goods in an optimal fashion. Assembly lines generally consist of a set of worksta-
tions connected by material handling systems including moving belts or robots
[12]. Finding an optimal assignment of operations to workstations consider-
ing precedences between operations, operation durations and the availability
c© Springer Nature Switzerland AG 2020
M. Gallagher et al. (Eds.): AI 2020, LNAI 12576, pp. 125–137, 2020.
https://doi.org/10.1007/978-3-030-64984-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64984-5_10&domain=pdf
http://orcid.org/0000-0002-8011-933X
http://orcid.org/0000-0003-3660-8408
http://orcid.org/0000-0003-4955-9684
http://orcid.org/0000-0002-9827-5496
https://doi.org/10.1007/978-3-030-64984-5_10


126 D. Thiruvady et al.

of workstations is called an assembly line balancing problem (ALBP) [11]. The
problem has several categories depending on line layouts, variability of dura-
tions, objective functions, and so forth. For example, a type I ALBP (ALBP-I)
tries to minimise the number of workstations for given cycle time. In contrast, a
type II ALBP (ALBP-II) minimises the cycle time or maximises the throughput
for a given number of workstations. Moreover, there are other types, namely E
and F, where type F focuses on maximising an effectiveness measure and type
E is used when there is no specific objective [3].

Assembly line problems are also categorised based on the number of models
processed on a line. A single model problem (SALBP), an early variant, aimed to
address a high volume of demand for a particular product. To respond to diver-
sified customer requirements for products and to avoid constructing multiple
assembly lines, the multi-model and mixed model variants (MMALBP) variants
emerged. Here, several models of a product are considered simultaneously but
still only a single assembly line [11]. Production systems differ substantially,
thus leading to new problem variants. The various ALBP type problems include
general (GALBP), resource constrained (RCALBP), robotic (RALBP), worker
assignment (ALWABP), robotic (RMMALBP), etc. Of particular interest in this
study are the type II SALBP and MMALBP problems with setup times, which
are abbreviated as SALBPS and MMALBPS, respectively [1,3,17].

ALBP, in its simplest form, is known to be computationally intractable or
NP-hard [7]. A large body of research is devoted to solve the problem in a time
efficient manner. Several exact algorithms have been proposed for the problem,
but to deal with its complexity, incomplete approaches including dynamic pro-
gramming, heuristics and meta-heuristics have been attempted [12,15]. Simaria
and Vilarinho [14] maximise the production rate of a line (equivalent to min-
imising cycle time of a line) in a MMALBP with parallel workstations for a
pre-determined number of operators using a genetic algorithm. The studies by
Kilincci [9] and Hossain [8] investigate SALBP-II, where the first study proposes
bounded exact methods while the second study proposes a progressive modelling
approach. Seyed-Alagheband et al. [13] propose a simulated annealing algorithm
to solve a general assembly line balancing problem with setups (GALBPS-II) by
using the Taguchi method. In this work, the author represented the problem as
an object-oriented graph. Zheng et al. [20] proposed a version of ant colony opti-
misation (ACO) method in solving a type II ALBP which essentially searches for
different combinations of tasks for each workstation. Despite several approaches
(exact and incomplete) being proposed for variants of the ALBP, there is still
substantial room for improvement.

In this study, we propose a novel ACO based heuristic and adapt a mixed inte-
ger programming approach for tackling the MMALBPS.1 Previous studies with
the MMALBPS have focused on either modifying solutions based on a neigh-
bourhood structure [19] or the assignment of operations to workstations [1,10].
In contrast to these approaches (including also ACO), our ACO approach splits
the solution creation into two components. The motivation for this is that ACO

1 Note, SALBPS is a special case of MMALBPS.



Minimising Cycle Time in Assembly Lines with ACS 127

is very effective at ‘sequence learning’ but not as effective in dealing with com-
plex constraints. Hence, the first component learns sequences (or equivalently
permutations) of operations (which ACO is very effective at) and the second
component takes a sequence and maps it into a feasible assignment of opera-
tions to workstations. We show that this approach is indeed very effective for
MMALBPS, and our results demonstrate that ACO can find high quality (often
optimal) solutions in short time-frames. Moreover, ACO scales very efficiently
with problem size.

The paper is organized as follows: Sect. 2 defines the MMALBPS problem and
provides its mixed integer programming (MIP) formulation. Section 3 discusses
the ACO-based heuristic specifically designed for this problem. Section 4 details
the experimental setting followed by a presentation of the results. Section 5
concludes the paper and provides some insights into future work.

2 Problem Definition and Mathematical Model

The MMALBPS can be formally described as follows. We are given N operations
which must complete M models of a product in a manufacturing system. The
operations are allowed to use W workstations.2 The assignment of operations
to workstations (sequencing) must satisfy precedence relations Pij (an indicator
variable), where Pij = 1 if operation i must precede operation j. An operation
i ∈ N in model m ∈ M occupies a workstation s ∈ W that it is allocated to for
a duration Tim (process time of operation i in model m). Moreover, when two
operations i and j are allocated sequentially to the same workstation, they incur
a forward setup3 time Fm

ij (setup time between operations i and j in model m).
In this paper we aim to solve an MMALBPS with parameters (N , M , W , Pij ,
Tim, Fm

ij ), which seeks an optimal assignment of N operations pertaining to M
models to workstations so that the maximum cycle time (sum of durations and
setup times) of any workstation is minimised. When M = 1, we are dealing with
the SALBP.

Given the problem definition above, we define the following MIP. Note, we
have adapted the MIP from the study of Akpinar [2] where we relax the con-
straints on cycle time but rather impose constraints on the number of machines.
In the following discussion we provide the list of decision variables and detail
the objective function and the constraints of the MIP model. In addition to the
parameters specified above, we make use of an indicator variable Qim, which is
1 if Tim > 0.

The model makes use of binary variables y, w and x. yis is 1 if operation
i is assigned to workstation s, wijs is 1 if operation i precedes operation j at
machine s and xijms is 1 if operation j directly follows operation i of model m
at workstation s. Additionally, the variable c represents the cycle time.

2 We use workstations and stations synonymously in the remainder of this paper.
3 Backward setups are assumed to be done within the initial setups for all workstations,

at the beginning of a cycle.



128 D. Thiruvady et al.

Minimize c = max
s∈W,m∈M

{
N∑
i=1

⎛
⎝yisTim +

N∑
j=1

(xijmsFijm)

⎞
⎠

}
(1)

subject to
W∑
s=1

yis = 1 ∀i ∈ N (2)

(
W∑
s=1

syis −
W∑
s=1

syjs

)
Pij ≤ 0 ∀i, j ∈ N, i �= j (3)

wijs + wjis + xijms + xjims ≤ 2(1 − yis + yjs) ∀i, j ∈ N,m ∈ M, s ∈ W (4)

wijs + wjis + xijms + xjims ≤ 2(1 + yis − yjs) ∀i, j ∈ N,m ∈ M, s ∈ W (5)

wijs + wjis + xijms + xjims ≤ 2(yis + yjs) ∀i, j ∈ N,m ∈ M, s ∈ W (6)

Pij(yis + yjs) ≤ wijs ∀i, j ∈ N, i �= j, s ∈ W (7)

wiis = 0 ∀i ∈ N, s ∈ W (8)

wiks + wkjs − 1 ≤ wijs ∀i, j, k ∈ N, i �= j �= k, s ∈ W (9)∣∣∣∣∣∣
N∑

k=1

N∑
l=1

wkls −
N∑

v|v<u

v

∣∣∣∣∣∣ ≤ N

∣∣∣∣∣u −
N∑

p=1

yps

∣∣∣∣∣ ∀u ∈ N, s ∈ W (10)

N∑
j=1

W∑
s=1

xijms ≤ 1 ∀i ∈ N,m ∈ M (11)

xijms + xjims ≤ 1 ∀i, j ∈ N, i �= j,m ∈ M, s ∈ W (12)

W∑
s=1

xiims = 0 ∀i ∈ N,m ∈ M (13)

(yisQim + yjsQjm − 1) −
∣∣∣∣∣

N∑
k=1

wiksQkm −
N∑
l=1

wjlsQlm − 1

∣∣∣∣∣ ≤ xijms

∀i, j ∈ N,m ∈ M, s ∈ W

(14)

The objective function minimises the cycle time of the assembly line as given
in (1), which is the maximum cycle time across all workstations. Constraints
sets (2–3) assign tasks to workstations ensuring that the precedence relations
are satisfied. Constraints sets (4–9) order the assigned tasks to each workstation
ensuring that the precedence relations within a workstation are satisfied. The
constraint set (10) determines the number of orderings between all pairs of tasks
at each workstation. Constraints sets (11–13) guarantee that each task can have
a single immediate successor in a workstation. Finally, the constraint set (14)
determines the immediate successor of each task and relevant setup operation
that should be performed between them.



Minimising Cycle Time in Assembly Lines with ACS 129

Algorithm 1. ACS for MMALBPS
1: Input: An MMALBPS instance, tmax, ns, q0
2: Initialise(T )
3: while time elapsed < tmax do
4: for j = 1 to ns do
5: πj := ConstructPermutation(T , q0)

6: π̂j := AssignOperations(πj)

7: πib := minj=1,...,ns f(πj)
8: πbs := Update(πib)
9: T := PheromoneUpdate(πbs)

10: return πbs

3 Ant Colony Optimisation

The ACO variant used in this study is ant colony system (ACS) [5]. ACS is
proven as one of the most practically effective ACO methods. In particular,
its convergence characteristics are a lot more effective on a range of problems
compared to that of the original Ant System [5].

We use π – a permutation that represents a solution to the problem. The
permutation has an associated assignment π̂, which takes the operations in the
permutation and assigns them one-by-one in the order they appear into worksta-
tions. This assignment heuristic (Sect. 3) ensures that precedence feasible solu-
tions are constructed, and hence the permutation does not need to be precedence
feasible.

An ACS implementation for the MMALBPS is shown in Algorithm 1. The
algorithm has the following inputs: (a) an MMALBPS problem instance, (b) a
terminating criteria, we use a time limit (tmax) for this study, (c) the number
of permutations ns to be constructed at each iteration of the algorithm and (d)
a pre-defined parameter q0 that specifies the level of deterministic selection. In
the first step of the algorithm, the pheromone trails are initialised (Initialise(T )).
Here, we set τij = 1

|N | ∀i, j ∈ N , where τij is the desirability of picking πi = j.
The algorithm executes Lines 4–9 until a terminating criteria, or in this study,

until a time limit expires. Within this time limit, a number of iterations are exe-
cuted. In an iteration, the first step is to construct ns solutions from scratch.
Each solution is built by starting out with an empty permutation, and adding
operations in successive positions of the permutation using the pheromone trails
(ConstructSequence(T , q0)). In the usual ACS way, operations are selected either
deterministically or stochastically. For this purpose, a random number q is gen-
erated from the interval (0, 1] and is compared to the pre-defined parameter q0.
If q < q0, operation k is chosen in position i of the permutation as:

k = argmax
j∈N

{τij · ηij} (15)



130 D. Thiruvady et al.

If q ≥ q0, the operation is selected stochastically according to:

P (πi = k) =
τik · ηik∑

j∈N τij · ηij
(16)

where a heuristic ηik is used to bias the selection of operation i in position k. In
preliminary testing, we investigated several heuristics, for example setup times
μ, but the most effective choice was found to be ηij = 1

Tim
.

In ACS, a local pheromone update is used at every selection step as a mean
to reduce the chance of making a repeated selection. That is, when an operation
j is selected at position i the pheromones are updated according to:

τij = max{τij · (1.0 − ρ), τmin} (17)

where, to ensure that no selection of an operation to a position becomes too low,
we set τmin = 0.0001. This ensures that operation j at least has a small chance
of being selected in position i.

A complete permutation can be mapped in a greedy way to a feasible assign-
ment of operations to workstations in AssignOperation(πj) (Sect. 3). In Line 7,
an iteration best solution is selected as one that minimises the cycle time across
all workstations. In Line 8, πbs is updated to πib if πib is an improvement. The
final step is to update the pheromone trails (T := PheromoneUpdate(πbs)) for
those solution components seen in πbs:

τij = τij · (1.0 − ρ) + δ (18)

where the reward factor δ = Q/f(πbs) applies to all solution components and Q
is a normalising factor that is chosen to ensure that the reward, relative to the
pheromone values, is always between 0.01 ≤ δ ≤ 0.1. For the evaporation rate,
it was found that a value of 0.1 is very effective. This is not unusual as for ACO
implementations with relatively short run-times (as is the case in this study), a
high reward is favourable.

Assigning Operations to Workstations

Previous studies in scheduling have demonstrated the efficacy of learning per-
mutations and mapping these to a schedule [4,18]. Using this idea as a guide,
we develop an assignment heuristic, which maps operations in a permutation to
workstations.

The high-level algorithm is shown in Algorithm 2. Starting with a permu-
tation π (input), the heuristic assigns operations to workstations ensuring that
a minimum cycle time is always maintained. The first step is to initialise the
following data structures: (a) π̂ - the assignment of operations to workstations,
(b ) W - a waiting list and (c) g - the workstation cycle times. The main loop
starts in Line 3 where, for each operation, a feasible assignment to a workstation
is found. The operation is tested to see if its preceding operations have been



Minimising Cycle Time in Assembly Lines with ACS 131

Algorithm 2. Assigning Operations to Workstations
1: input: π
2: π̂ ← ∅ ∀s ∈ S, W ← ∅, gi ← 0 ∀i ∈ S
3: for t ∈ π do
4: t̂ ← t
5: if Prec(t) not done then
6: W ← W ∪ t̂
7: else
8: while t̂ �= ∅ do
9: s := BestWorkStation(t̂)

10: (π̂, gs) ← Update(t̂)
11: t̂ ← ∅
12: for j ∈ W do
13: if Prec(j) done then
14: t̂ ← j, W ← W \ j
15: break
16: output: π̂

completed (Lines 5–7), and if not, it is put on a waiting list W . If the prece-
dences are satisfied, then the operation is assigned to the workstation with the
minimum overall cycle time divided by the number of jobs on the workstation -
that is, workstation j is chosen for operation i under mode m:

j = argmin
s∈S

{
Ĉs + Tim + Fi−1,i,m

|Ns|

}
(19)

where Ĉs is the current cycle time of workstation s and |Ns| is the number
of operations already allocated to station s. In Line 10, the final assignment
π̂ and cycle time of workstation s are updated. An assignment of an oper-
ation leads to examining W , to determine if any other operations can now
be assigned (Lines 12–15). The procedure completes by returning the final
precedence-feasible assignment.

Figure 1 illustrates how the heuristic works. The figure on the left shows a
permutation of operations and 5 workstations. The operations are assigned in
order to workstations while workstations still do not have operations in them
(Fig. 1 – middle). In the figure on the right we see that a new operation is added
to a workstation when an operation is already assigned to it. In this case, the
operation is assigned to the workstation with the lowest overall cycle time.

4 Experimental Setting and Results

ACS for MMALBPS was implemented in C++ and compiled in GCC-5.4.0. The
MIP was implemented in Gurobi 9.0.1 (http://www.gurobi.com/). The experi-
ments were conducted on MonARCH - a Linux cluster at Monash University.4

4 https://confluence.apps.monash.edu/display/monarch/MonARCH+Home.

http://www.gurobi.com/
https://confluence.apps.monash.edu/display/monarch/MonARCH+Home


132 D. Thiruvady et al.

O4

S1 S2 S3 S4 S5

O2 O3 O7 O1 O6 O5 O4

S1 S2 S3 S4 S5

O2 O3 O7 O1 O6 O5

O4
O2 O3

O7
O1

O4

S1 S2 S3 S4 S5

O2 O3 O7 O1 O6 O5

O4
O2 O3

O7
O1

ST31

O6

Fig. 1. An example of an assignment of operations to workstations. The figure on the
left shows a permutation of 7 operations and 5 workstations. The figure in the middle
shows that the first 5 operations are placed in each available workstation (height of a
job is its duration). The figure on the right shows that Operation 6 (O6) is assigned
to the workstation with the shortest cycle time (Station 3 here). A setup time ST31 is
required between the two operations on the workstation.

Table 1. The details of the problem instances; n is the number of operations and W
the number of workstations; The workstation levels are also provided.

Instance number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n 8 11 12 14 15 16 17 19 21 25 28 29 30 32 35 45 53 58 70 75

W WL:1 5 6 7 8 8 9 9 10 11 13 15 15 16 17 18 23 27 30 36 38

WL:2 6 8 9 10 11 11 12 13 15 17 19 20 21 22 24 31 36 39 47 51

WL:3 7 9 10 11 12 13 13 15 16 19 22 22 23 25 27 34 40 44 53 57

To investigate the performance of the algorithms, we consider the problem
instances from [2]. We made two changes: (a) remove the constraint on cycle
time and (b) specify the number of workstations as a function of the number of
operations n: {n

2 , 2·n
2 , 3·n

4 }.5 The details of these problem instances are shown in
Table 1. The table shows, for each problem, the number of operations (n), the
number of workstations (W) split by levels (WL). Overall, we have a total of
120 problem instances, with 60 per model type. For ACS, we allow a run-time
of 2 min and conduct 30 runs per instance. The MIP executes only once per
instance (as it is deterministic) and will allow a time limit of 10 min.6 ACS is
memory efficient requiring only up to 1 GB memory, while the MIP often used
up to 10 GB for the large instances.

We used a subset of the problem instances to tune the parameters of ACS.
For ρ, we tested values in the range {0.2, 0.1, 0.0.5, 0.01} and found that 0.01
was most effective. For q0 we tested {0.5, 0.2, 0.1, 0.01} and found that 0.1 was
best. τmin = 0.0001 was used to ensure that an operation at a workstation will
always have some small chance of being selected.

5 In the industry, workstations are limited in the number of operations they can handle.
6 The MIP is given larger run-time as it struggles to find solutions for large problems.



Minimising Cycle Time in Assembly Lines with ACS 133

In the following, we use workstation level (WL) to denote the varying level of
workstations: 1 = n

2 , 2 = 2·n
2 and 3 = 3·n

4 . Here, WL = 1 can be thought of as the
hardest problem consisting of the fewest machines. The instances are numbered
such that the number of workstations increases with increasing numbers.

Table 2 shows a comparison of ACS and the MIP solver. The results are split
by model M (single = 1, two = 2), workstation level WL and solver type. The
table shows the cycle time obtained by the MIP, and for ACS, the best, mean
and standard deviations of 30 runs are reported. The best solutions found are
marked in boldface. When a method fails to find a feasible solution (only in the
case of the MIP) it is marked by a “-”.

For small problem instances, the MIP can often find optimal solutions (up to
problem 8 for single model problems). On instances with many workstations, i.e.,
WL = 2,3, ACS often finds the optimal solution (on average). In fact for a few
small problem instances with two models (e.g., Problem 5), ACS outperforms the
MIP. However, for these instances the ACS solutions are not provably optimal.
When the problem size increases (≥9), ACS easily proves to be the best method,
where the MIP is unable to even find a feasible solution on most occasions. Even
when solutions are found (e.g.. Problem 10 - Model 1 - WL 2), they have very
large cycle times. Interestingly, splitting by models, we see that ACS performs
better when there are two models compared to one despite the instances with
two models being more complex. These results overall demonstrate that despite
running ACS for short run-times, we see very good results.

0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f m
ac

hi
ne

s

Cy
cl

e 
tim

e 
(s

ec
)

Instances

Average cycle time for single model problems 

#machines ACS

0

10

20

30

40

50

60

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f m
ac

hi
ne

s

Cy
cl

e 
tim

e 
(s

ec
)

Instances

Average cycle time for two model problems

#machines ACS

Fig. 2. The performance of ACS on single model and two model instances.

We now delve into the results by focusing on ACS in Fig. 2. The left axis
represents the cycle time, the right axis shows the number of workstations and
the horizontal axis represents the instances. The bars in these plots show the
number of machines. The figure on the left shows the results for single models
while the figure on the right shows the same for two models. The ACS run is
indicated by the green line. An obvious pattern we see is that the variation in
single model problems is much larger than two model problems, demonstrating
the usefulness of ACS in dealing with increased complexity.



134 D. Thiruvady et al.

T
a
b
le

2
.

T
h
e

re
su

lt
s

th
e

cy
cl

e
ti

m
es

o
b
ta

in
ed

b
y

th
e

M
IP

a
n
d

A
C

S
.

S
in

ce
A

C
S

is
ru

n
3
0

ti
m

es
o
n

ea
ch

p
ro

b
le

m
in

st
a
n
ce

,
th

e
b
es

t,
av

er
a
g
e

a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n
s

a
re

sh
ow

n
.
T

h
e

re
su

lt
s

a
re

sp
li
t

b
y

m
o
d
el

ty
p
e

(s
in

g
le

o
r

tw
o

m
o
d
el

)
-
M

-
a
n
d

th
re

e
w

o
rk

st
a
ti

o
n

le
v
el

s
(W

L
);

th
e

va
lu

es
in

b
o
ld

fa
ce

in
d
ic

a
te

th
e

b
es

t
so

lu
ti

o
n

fo
u
n
d

fo
r

a
p
ro

b
le

m
in

st
a
n
ce

;
“
-”

in
d
ic

a
te

s
th

a
t

n
o

fe
a
si

b
le

so
lu

ti
o
n

w
a
s

fo
u
n
d
;
b

is
th

e
b
es

t
so

lu
ti

o
n
,
μ

is
th

e
av

er
a
g
e

so
lu

ti
o
n

a
n
d

sd
is

th
e

st
a
n
d
a
rd

d
ev

ia
ti

o
n

co
n
si

d
er

in
g

3
0

ru
n
s.

M
W

L
S
o
lv
e
r
In

st
a
n
c
e
s

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1
1

M
IP

1
2
2
3
.0

1
0
1
7
.0

9
9
7
.0

1
0
4
5
.0

8
8
9
.0

9
6
8
.0

1
1
3
4
.0

1
1
8
3
.0

–
–

–
–

–
–

–
–

–
–

–
–

A
C
S
b

1
7
9
6
.0

1
2
0
6
.0

1
3
4
1
.0

1
7
2
8
.0

1
0
4
0
.0

1
4
7
0
.0

1
6
1
1
.0

1
3
1
3
.0

2
5
8
9
.0

1
4
2
4
.0

1
2
3
2
.0

1
9
5
0
.0

1
8
4
5
.0

3
5
2
9
.0

2
5
8
3
.0

2
8
1
2
.0

4
7
6
6
.0

5
6
3
8
.0

1
5
0
0
.0

1
5
1
9
.0

µ
1
7
9
6
.0

1
2
0
8
.3

1
3
4
1
.0

1
7
2
8
.0

1
0
8
8
.9

1
4
8
1
.4

1
6
1
3
.0

1
4
0
9
.8

2
6
4
0
.7

1
4
6
9
.4

1
2
8
9
.2

2
6
0
0
.1

2
0
9
6
.7

3
5
2
9
.0

2
5
8
3
.0

2
8
8
4
.2

4
7
6
6

6
0
0
9
.7

1
6
4
6
.4

1
5
9
8
.0

sd
0
.0

1
1
.1
7

0
.0

0
.0

9
4
.5

3
8
.5

5
.5

2
6
.4

5
4
.1

1
3
7
.7

5
1
.5

3
4
0
.9

1
0
7
.2

0
.0

0
.0

1
9
6
.0

0
.0

2
9
5
.9

9
2
.6

5
0
.8

2
M

IP
1
0
6
7
.0

9
6
9
.0

9
4
5
.0

9
6
9
.0

8
8
9
.0

9
6
8
.0

1
0
0
0
.0

9
6
2
.0

1
9
9
4
.0

5
0
0
7
.0

–
–

–
–

–
–

–
–

–
–

A
C
S
b

1
5
0
1
.0

9
6
9
.0

9
4
5
.0

1
1
8
1
.0

8
8
9
.0

9
6
8
.0

1
3
3
3
.0

9
6
2
.0

1
4
3
9
.0

8
8
3
.0

1
0
8
4
.0

1
0
1
1
.0

1
2
3
5
.0

1
1
8
4
.0

1
8
8
0
.0

1
7
7
0
.0

1
0
9
6
.0

1
1
7
4
.0

9
6
6
.0

1
1
7
1
.0

µ
1
5
0
1
.0

9
6
9
.0

9
4
5
.0

1
1
9
2
.9

8
8
9
.0

9
6
8
.0

1
3
3
3
.0

1
0
0
3
.3

1
4
4
4
.7

9
8
5
.0

1
1
1
6
.2

1
0
3
5
.0

1
4
5
1
.2

1
2
7
4
.2

1
9
9
9
.0

2
0
6
3
.8

1
1
8
3
.7

1
2
4
6
.7

1
0
5
4
.9

1
2
0
4
.4

sd
0
.0

0
.0

0
.0

5
8
.2

0
.0

0
.0

0
.0

3
3
.5

2
6
.8

7
0
.0

4
5
.6

5
.0

6
3
.8

9
3
.9

8
1
.6

3
0
9
.4

9
3
.5

1
1
8
.8

6
5
.7

1
5
.2

3
M

IP
9
1
5
.0

9
6
9
.0

9
4
5
.0

9
6
9
.0

8
8
9
.0

9
6
8
.0

8
2
8
.0

9
6
2
.0

2
1
1
2
.0

1
6
9
4
.0

–
–

–
–

–
–

–
–

–
–

A
C
S
b

1
4
0
4
.0

9
6
9
.0

9
4
5
.0

9
6
9
.0

8
8
9
.0

9
6
8
.0

1
3
3
3
.0

9
6
2
.0

1
1
9
5
.0

8
8
3
.0

9
4
7
.0

7
8
3
.0

1
2
3
5
.0

9
5
5
.0

1
4
4
8
.0

9
4
6
.0

9
7
1
.0

9
4
9
.0

9
5
6
.0

9
9
2
.0

µ
1
4
0
4
.0

9
6
9
.0

9
4
5
.0

9
6
9
.0

8
8
9
.0

9
6
8
.0

1
3
3
3
.0

9
6
2
.0

1
1
9
7
.7

8
8
3
.0

9
4
7
.0

8
0
3
.0

1
2
7
2
.6

9
5
5
.0

1
5
2
3
.0

1
0
6
5
.5

9
7
1
.0

9
4
9
.0

9
5
6
.0

1
0
2
7
.8

sd
0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

9
.5

0
.0

0
.0

6
7
.8

8
6
.2

0
.0

7
8
.5

6
3
.9

0
.0

0
.0

0
.0

2
1
.5

2
1

M
IP

1
0
6
6
.0

1
1
9
6
.0

9
5
6
.0

9
7
2
.0

9
3
2
.0

9
3
3
.0

1
0
0
8
.0

1
2
3
2
.0

–
–

–
–

–
–

–
–

–
–

–
–

A
C
S
b

1
1
3
4
.0

1
3
0
0
.0

1
0
5
9
.0

9
7
2
.0

8
9
9
.0

9
3
3
.0

1
1
8
7
.0

1
1
3
8
.0

9
7
0
.0

1
3
6
3
.0

1
0
0
3
.0

9
0
5
.0

1
5
8
5
.0

2
1
9
1
.0

8
9
8
.0

1
8
3
7
.0

2
5
0
0
.0

1
0
1
3
.0

1
4
6
4
.0

1
2
5
0
.0

µ
1
1
3
4
.0

1
3
0
0
.0

1
0
5
9
.0

9
7
2
.0

8
9
9
.0

9
3
3
.0

1
2
4
6
.2

1
1
6
2
.0

9
7
6
.8

1
3
6
3
.0

1
1
7
1
.4

9
0
5
.0

1
8
9
5
.2

2
1
9
1
.0

1
1
0
9
.0

2
4
3
2
.1

2
5
0
0
.0

1
0
6
1
.9

1
6
0
8
.1

1
2
7
5
.6

sd
0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

7
8
.1

4
4
.1

2
3
.6

0
.0

1
4
6
.9

0
2
7
9
.8

0
.0

7
3
.0

2
7
2
.4

0
.0

3
3
.9

7
7
.9

2
4
.1

2
M

IP
9
9
6
.0

9
1
2
.0

9
5
6
.0

9
7
2
.0

9
3
2
.0

9
3
3
.0

8
0
9
.0

9
6
6
.0

3
1
8
6
.0

–
–

–
–

–
–

–
–

–
–

–

A
C
S
b

9
1
3
.0

9
1
2
.0

9
5
6
.0

9
7
2
.0

8
1
7
.0

9
3
3
.0

7
9
7
.0

9
6
5
.0

9
7
0
.0

9
4
6
.0

9
6
2
.0

9
0
5
.0

9
7
5
.0

8
7
7
.0

8
8
5
.0

9
6
7
.0

1
4
4
4
.0

9
6
9
.0

9
6
5
.0

0
9
7
5
.0

µ
9
1
3
.0

9
1
2
.0

9
5
6
.0

9
7
2
.0

8
1
7
.0

9
3
3
.0

7
9
7
.0

9
6
5
.0

9
7
0
.0

9
4
6
.0

1
0
4
7
.4

9
0
5
.0

9
7
5
.0

8
7
7
.0

8
8
5
.0

1
0
0
2
.6

1
4
4
4
.6

9
6
9
.0

1
0
1
9
.7

9
7
5
.0

sd
0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
7
3
.9

0
.0

0
.0

0
.0

0
.0

5
4
.2

2
.2

0
.0

5
1
.2

0
.0

3
M

IP
7
3
1
.0

9
1
2
.0

9
5
6
.0

9
7
2
.0

9
3
2
.0

9
3
3
.0

8
0
9
.0

9
6
6
.0

5
1
1
6
.0

–
–

–
–

–
–

–
–

–
–

–

A
C
S
b

7
3
1
.0

9
1
2
.0

9
5
6
.0

9
7
2
.0

8
1
7
.0

9
3
3
.0

7
9
7
.0

9
6
5
.0

9
7
0
.0

9
4
6
.0

9
6
2
.0

9
0
5
.0

9
7
5
.0

8
7
7
.0

8
8
5
.0

9
6
7
.0

1
4
4
4
.0

9
6
9
.0

9
6
5
.0

9
7
5
.0

µ
7
3
1
.0

9
1
2
.0

9
5
6
.0

9
7
2
.0

8
1
7
.0

9
3
3
.0

7
9
7
.0

9
6
5
.0

9
7
0
.0

9
4
6
.0

1
0
4
7
.4

9
0
5
.0

9
7
5
.0

8
7
7
.0

8
8
5
.0

9
6
7
.0

1
4
4
5
.0

9
6
9
.0

9
6
5
.0

9
7
5
.0

sd
0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
7
3
.9

0
.0

0
.0

0
.0

0
.0

0
.0

2
.6

0
.0

0
.0

0
.0



Minimising Cycle Time in Assembly Lines with ACS 135

For single model instances, the cycle times tend to increase when the problem
consist of 20–30 stations (problem instances 11–16 where the number of tasks
are between 28–45). However, for problems with more than 30 stations, the cycle
times return to previous levels (900–1500 time units). A similar effect is seen for
two model problems at around 35 stations. While this aspect warrants further
investigation (e.g.. examining the proportion of operations to workstations or
precedence graphs), we leave this to further work due to space limitations.

0

10

20

30

40

50

60

0
1000
2000
3000
4000
5000
6000
7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 N
um

be
r o

f w
or

ks
ta

tio
ns

Cy
cl

e 
tim

e

Instances

Average cycle time out of 30 runs for 
single model problems

#workstations1 #workstations2 #workstations3
WL=1 WL=2 WL=3

0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f w
or

ks
ta

tio
ns

Cy
cl

e 
tim

e

Instances

Average cycle time for two model 
problems

#workstations1 #workstations2 #workstations3
WL=1 WL=2 WL=3

Fig. 3. The performance of ACS with 120 s execution time cap with different worksta-
tion levels.

In Fig. 3 we focus on ACS with respect to the level of workstations WL. Like
with Fig. 2, the cycle time is presented on the left, the number of workstations
on the right and the instances on the horizontal axis. The plots show a split of
the performance of ACS depending on the number of workstations. We see that,
for single and two models with WL = 1, the cycle times are large and also have
high variability. This is not surprising since the instances with a small number
of workstations are the hardest ones in the sense of minimising cycle times. In
fact, when the instances are “easy”, ACS find very low cycle times consistently
(a number of which are provably optimal, see Table 2). The large spikes in cycle
times seen in Fig. 2 are attributable to those problem instances with relatively
few workstations (where workstations were selected as n ÷ 2) for both models.

5 Conclusion and Future Work

We investigate the multi-model assembly line balancing problem with setup
times, and propose a novel ant colony system based heuristic for solving it.
In comparison to previous ACS methods on similar problems, we focus on learn-
ing permutations of operations, which are then mapped to workstations via an
efficient assignment heuristic. We compare ACS to a mixed integer programming
model and find that ACS performs well overall. In particular, ACS demonstrates
clear advantages in three aspects: (a) high quality solutions are found in short
time-frames when the number of work stations increase compared to the MIP,



136 D. Thiruvady et al.

(b) improved performance on two model problems compared to single model
problems (c) outperforms the MIP for all medium to large problem instances.

While the proposed ACS approach is effective, there are areas where its per-
formance can certainly be improved. This is especially in the case where there
are a small number of workstations leading to large cycle times. For exam-
ple, the assignment heuristic could be enhanced with probabilistic selection for
operations to stations. Furthermore, time-based MIP models could prove very
effective, leading to decompositions [6] and hybrid approaches [16].

References

1. Akpinar, S., Baykasoğlu, A.: Modeling and solving mixed-model assembly line
balancing problem with setups. part I: a mixed integer linear programming model.
J. Manuf. Syst. 33(1), 177–187 (2014)

2. Akpinar, S., Elmi, A., Bektaş, T.: Combinatorial benders cuts for assembly line
balancing problems with setups. Eur. J. Oper. Res. 259(2), 527–537 (2017)

3. Battäıa, O., Dolgui, A.: A taxonomy of line balancing problems and their solution
approaches. Int. J. Prod. Econ. 142(2), 259–277 (2013)

4. Blum, C., Thiruvady, D., Ernst, A.T., Horn, M., Raidl, G.R.: A biased random key
genetic algorithm with Rollout evaluations for the resource constraint job schedul-
ing problem. In: Liu, J., Bailey, J. (eds.) AI 2019. LNCS (LNAI), vol. 11919, pp.
549–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35288-2 44

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
6. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming

problems. Manage. Sci. 50(12 supplement), 1861–1871 (2004)
7. Gutjahr, A., Nemhauser, G.: An algorithm for the line balancing problem. Manage.

Sci. 11(2), 308–315 (1964)
8. Hossain, S.K.M.: Solving assembly line balancing type II problem using progressive

modeling. In Proceedings of the International Annual Conference of the American
Society for Engineering Management, pp. 1–10 (2017)

9. Kilincci, O.: A petri net-based heuristic for simple assembly line balancing problem
of type 2. Int. J. Adv. Manuf. Technol. 46(1–4), 329–338 (2010)

10. Kucukkoc, I., Zhang, D.Z.: Mixed-model parallel two-sided assembly line balancing
problem: a flexible agent-based ant colony optimization approach. Comput. Ind.
Eng. 97, 58–72 (2016)

11. Scholl, A.: Balancing and sequencing of assembly lines. Physica-Verlag HD, Con-
tributions to Management Science (1999)

12. Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for
simple assembly line balancing. Eur. J. Oper. Res. 168(3), 666–693 (2006)

13. Seyed-Alagheband, S.A., Ghomi, S.M.T.F., Zandieh, M.: A simulated annealing
algorithm for balancing the assembly line type II problem with sequence-dependent
setup times between tasks. Int. J. Prod. Res. 49(3), 805–825 (2011)

14. Simaria, A.S., Vilarinho, P.M.: A genetic algorithm based approach to the mixed-
model assembly line balancing problem of type II. Comput. Ind. Eng. 47(4), 391–
407 (2004)

15. Sivasankaran, P., Shahabudeen, P.: Literature review of assembly line balancing
problems. Int. J. Adv. Manuf. Technol. 1665–1694 (2014). https://doi.org/10.1007/
s00170-014-5944-y

https://doi.org/10.1007/978-3-030-35288-2_44
https://doi.org/10.1007/s00170-014-5944-y
https://doi.org/10.1007/s00170-014-5944-y


Minimising Cycle Time in Assembly Lines with ACS 137

16. Thiruvady, D., Morgan, K., Amir, A., Ernst, A.T.: Large neighbourhood search
based on mixed integer programming and ant colony optimisation for car sequenc-
ing. Int. J. Prod. Res. 58(9), 1–16 (2019)

17. Thiruvady, D., Nazari, A., Elmi, A.: An ant colony optimisation based heuristic
for mixed-model assembly line balancing with setups. In: 2020 IEEE Congress on
Evolutionary Computation (CEC), pp. 1–8 (2020)

18. Thiruvady, D., Wallace, M., Gu, H., Schutt, A.: A Lagrangian relaxation and ACO
hybrid for resource constrained project scheduling with discounted cash flows. J.
Heuristics 20(6), 643–676 (2014)

19. Vilarinho, P.M., Simaria, A.S.: ANTBAL: an ant colony optimization algorithm
for balancing mixed-model assembly lines with parallel workstations. Int. J. Prod.
Res. 44(2), 291–303 (2006)

20. Zheng, Q., Li, M., Li, Y., Tang, Q.: Station ant colony optimization for the type 2
assembly line balancing problem. Int. J. Adv. Manuf. Technol. 66(9–12), 1859–1870
(2013)


	Minimising Cycle Time in Assembly Lines: A Novel Ant Colony Optimisation Approach
	1 Introduction
	2 Problem Definition and Mathematical Model
	3 Ant Colony Optimisation
	4 Experimental Setting and Results
	5 Conclusion and Future Work
	References




