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Abstract Research on geological disasters has made several achievements in mon-
itoring, early warning, and risk assessment. Substantial resources are being invested
in prevention projects, but, due to geographical and demographical complexity,
incompleteness of data, and small number of samples, a quantitative analysis on
the number of geological disasters and the entity of investments in their prevention
is a difficult problem. In this work, the relation is studied between the amount
of resources invested in prevention and the number of geological disasters in
subsequent years. The analysis is performed on historical data, using statistical
methods and a LSTM recurrent neural network.
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1 Introduction

Geological disasters are ubiquitous and people awareness about them is rising. It
is also thought that mutations induced by climate change are going to exacerbate
geological disasters in frequency and magnitude [8]. The availability of abundant
data and ability to visualize and analyze them to understand and predict disasters
is changing humanitarian operations, crisis management, and investments into pre-
vention dramatically [1]. Studies targeting the regional heterogeneity of geological
disasters, evaluating risk and the relation with factors such as direct economic losses,
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frequency, and cost of prevention, attract much attention. Methods from several
disciplines have been applied to this problem, ranging from hydrodynamic models
[10] to gray systems [13].

Prevention has many facets, including also the assessment of the extent to
which hill-slope communities are prepared [3]. In this work, the relation is studied
between the number of prevention projects and the number of geological disasters
in subsequent years, accounting for the effect of geographical distribution. The
analysis is performed on historical data provided by the Chinese Statistics Bureau.
A recurrent neural network of the long short-term memory (LSTM) type has been
used to forecast the number of geological disasters in China. The accuracy of
predictions was measured with and without the inclusion of data relative to the
number of projects of prevention.

2 LSTM

In this work, an LSTM neural network has been used. In addition, well-known
statistical methods provided a verification. In recent years, neural networks (NNs)
are back on the stage. New and more powerful architectures, such as recurrent neural
networks (RNNs) and convolutional neural networks (CNNs), have been proposed.
Their main applications include pattern recognition, image processing, anomaly
detection [4], and function approximation [5].

Among RNNs, the LSTM proposed in [6] seems to be one of the most promising
candidates to analyze sequential data. The traditionally RNNs gradually lose their
ability to learn from the past due to the problem of the gradient vanishing. LSTM
networks overcame this problem because their structure, composed by three “gates,”
respectively called input, output, and forget gate and the memory cell resulting from
their interaction, allow to keep the long-term information and to combine it with
short-term memory. This mechanism promotes in-depth data learning and produces
excellent results in terms of performance. An extensive description of NNs and
back-propagation algorithm can be found in [2] and [9].

Formally, let {xt , yt } a sequence of training examples, with xt ∈ X and yt ∈ Y ,
where X ⊂ R

d is the input space and Y ⊂ R the output space. According to the
universal approximation theorem [7], a feed-forward network can approximate any
continuous functions on compact subsets; our aim is to approximate the function g

that links the elements Y and X :

yi = g(xi ) (1)

By denoting i the input gate, o the output gate, f the forget gate, z and the
intermediate state, the general mode of operation of a recurrent network with LSTM
architecture with n ∈ N units can be described by the following set of equations:

it = σ(Wixt + Uiht−1 + bi ) (2)
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ot = σ(Woxt + Uoht−1 + bo) (3)

ft = σ(Wf xt + Uf ht−1 + bf ) (4)

zt = tanh(Wzxt + Uzht−1 + bz) (5)

ct = ct−1 � ft + it � zt (6)

ht = tanh(ct ) � ot (7)

where � denotes the Hadamard product, σ the logistic sigmoid function, and, for
k = i, o, f, z, Wk ∈ R

d×n and Uk ∈ R
n×n are weight matrices and bk ∈ R

n bias
vectors. Weight matrices and bias vectors are adjusted to reflect the characteristics
of training data through a learning algorithm. According to equation (7), the
output of the LSTM network is computed by the long-term filtered information
ct . The information in the memory cell ct is updated according to equation (6).
Equations (2), (3), and (4) describe how the three gates work and how they control
the long-term memory. The first one filters the flow of information entering the
memory cell, while the second one directs the information directly to the output
step. In addition, the forget gate determines which information must be retained or
removed from the long-term memory.

3 Empirical Evidence

The experiments were aimed to analyze the effectiveness of prevention projects in
relation to the number of geological disasters in China. In particular, we investigate
the gain in terms of accuracy, in the prediction of the number of disasters, when the
information concerning the projects of preventions is included.

The data source is the China Statistics Bureau (http://www.stat.gov.cn/) that
provides the number of disasters occurred and prevention projects carried out in
the country in the years between 2004 and 2017, distinguishing by region (Fig. 1).
After collecting the data, a first round of data processing was carried out. The
data source does not contain the observations for 2014 which, for this reason, was
excluded from the analysis. Other data were missing. Since there are only 13 years
of observations, the regions for which more than three values were missing were
excluded. For regions with one or twomissing data, the missing values were imputed
with the average value between the previous and the following observation. After
this preprocessing, the number of regions included in the study, initially equal to 29,
was reduced to 23. In addition, the number of disasters has been transformed into a
logarithmic scale. This transformation has been also confirmed by visual inspection
of the log-log scatterplots of geological disasters and projects of prevention (the
year before) by region, shown in Fig. 2. A log-log chart has been chosen to enhance
readability. However, in the evaluation, the number of prevention projects has not
been transformed in a logarithmic scale, because (i) the range of values is not as

http://www.stat.gov.cn/
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Fig. 1 Geographical distribution of geological disasters in China for the period 2004–2017
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Fig. 2 Geological disasters vs. prevention projects, by region
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extreme as it is the case for the number of geological disasters and (ii) the association
evidenced by models is stronger when the number of prevention projects is in the
original linear scale.

In order to validate the existence of a connection between the number of
geological disasters and the time-lagged number of prevention projects, and to
identify appropriate values for the lag, we applied statistical analysis. In the
following, results of such analyses are briefly reported and then the outcomes of
LSTM experiments are shown.

3.1 VAR

Since it is reasonable to think that the number of geological disasters influences and
is influenced by the number of prevention projects, the vector autoregressive (VAR)
[11] framework seems appealing for the analysis. In VAR models, all variables are
treated symmetrically and they influence each other equally. A VAR model with lag
one is specified as follows:

xt = b0 + B1xt−1 + ut (8)

where xt is the vector of variables at time t , the components of ut are (possibly
simultaneously correlated) white noise processes, and the coefficients B1 capture
the influence of the lagged (at lag one) variable to itself and b0 is an intercept.

The choice of the maximum number of lags to be included is an important step
in the analysis. Procedure VARselect in the var package [11] provides the best
values for the maximum lag in accordance with four information criteria: Akaike
information criterion (AIC), Hannan-Quinn (HQ), Schwarz criterion (SC) – more
commonly known as Bayesian information criterion – and final prediction error
(FPE). On the basis of that procedure, the suggested maximum lag was one, and
this value has been used in the following.

VAR models were fitted for the pair (number of geological disasters, number of
prevention projects) considering each region separately. Significant effects at the 5%
level were found for each region. The portmanteau test did not permit to reject the
null hypothesis that autocorrelations are significantly different from what would be
expected from a white noise process.

3.2 Dynamical Models

We are interested in studying variation among regions and over time. Dynamical
models [12] allow to estimate the size of current and future reactions of a variable
Y to a change in another variable X. A dynamical model was fit for the number
of geological disasters versus the number of prevention projects in the previous
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year. The maximum lag was kept at one, as in the previous subsection. Effects were
found to be highly significant (p < 10−6). Analysis of the residuals showed that the
residuals were not autocorrelated. When the region was also included, the effects
were found to be highly significant for almost all regions. Again, residuals showed
no autocorrelation.

3.3 LSTM

After data processing, two neural network models were calibrated: in the first one,
the desired quantity yt+1 is the number of disasters in the next year; the predictor xt

contains the number of disasters in the previous 3 years, and the region and year of
interest. In the second model, the number of projects of prevention in the previous
year is also included in the predictors. Hereinafter, the two models will be referred
to as the “basic” and the “advanced” model.

The data are split in two parts: a training set, including the data examples before
2014, and a testing set including the observation after 2014. About the architecture,
the network includes a LSTM component with 64 units to process the multivariate
time series concerning the number of disasters and an additional feed-forward layer
with 64 units, which further jointly processes the partial output with information
relating to the region and year of interest. It is important to note that in the second
model, the information concerning the projects of preventions is included in this last
stage.

The results seem to show that, although the dependence between the number
of geological disasters and project of prevention is very small, the use of the
information concerning the project of prevention in a supervised learning model
with LSTM architecture can be useful. Indeed, by introducing this additional
information, the predictive power of the model increases. Table 1 shows the
performances, in terms of mean absolute error (MAE), in the testing set for both
models. The third column reports the ratio between the errors in the basic and
advanced models. It can be seen as a gain factor in performance. It is clear that the
prediction of the “advanced model” overperforms the other one in most regions. In
particular, a reduction in MAE can be observed in about 70% of regions. The mean
gain factor, overall, is 1.56. This evidence seems to be confirmed also by Fig. 3 that
shows the residuals in the testing set for both models. In fact the residues of the
advanced model seem to be closer to 0 than the others.

4 Conclusions

An LSTM recurrent neural network, a powerful and versatile tool in the analysis
of time series data, can provide interesting insights when it is also coupled with
a module able to handle grouping information. In this work, an LSTM has been
used to assess the relationship between the number of geological disasters and the
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Table 1 Mean absolute error
of the two models and gain
factor, by region

MAE

Region Basic model Advanced model Gain factor

Anhui 0.9405 1.1958 0.79

Chongping 1.3894 1.2183 1.14

Fujian 1.1781 0.9725 1.21

Gansu 1.9216 0.8120 2.37

Guangdong 0.7364 0.2860 2.57

Guangxi 0.8260 0.5254 1.57

Guizhou 0.7932 0.3046 2.60

Hebei 1.0762 0.7563 1.42

Henam 0.7054 0.7905 0.89

Hubei 0.6063 0.9151 0.66

Hunan 0.3630 0.3158 1.15

Jiangsu 1.0412 1.2059 0.86

Jiangxi 0.7794 0.6102 1.28

Jilin 0.7370 0.7271 1.01

Qinghai 0.7978 0.4100 1.95

Shaanxi 1.6862 1.1783 1.43

Shandong 0.9115 0.6442 1.41

Shanxi 1.4275 1.6065 0.89

Sichuan 2.9303 2.2625 1.30

Tibet 0.9344 0.4699 1.99

Xinjiang 0.6832 1.0179 0.67

Yunnan 0.8496 0.1487 5.71

Zhejiang 0.7584 0.6898 1.10

Fig. 3 Residuals of the two models in the testing set
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number of prevention projects in previous years. Although discussing the results as
related to the effectiveness of prevention measures goes far beyond the scope of this
work, results show, in accordance with the findings of statistical methods, that it is
possible to identify evidence of a connection between the prevention projects and a
reduction in the number of disasters.
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