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Abstract Forecasting earthquakes is one of the most important problems in Earth
science because of their devastating consequences. Current scientific studies related
to earthquake forecasting focus on three key points: when the event will occur,
where it will occur, and how large it will be. In this work we investigate the
possibility to determine when the earthquake will take place.

We formulate the problem as a multiple change-point detection in the time series.
In particular, we refer to the multi-scale formulation described in Fryzlewicz (Ann
Stat 46(6B): 3390–3421, 2018). In that paper a bottom-up hierarchical structure
is defined. At each stage, multiple neighbor regions which are recognized to
correspond to locally constant underlying signal are merged. Due to their multi-
scale structure, wavelets are suitable as basis functions, since the coefficients of
the representation contain local information. The preprocessing stage involves the
discrete unbalanced Haar transform, which is a wavelet decomposition of one-
dimensional data with respect to an orthonormal Haar-like basis, where jumps in
the basis vectors do not necessarily occur in the middle of their support.

The algorithm is tested on data from a well-characterized laboratory system
described in Rouet-Leduc et al. (Geophys Res Lett 44(18): 9276–9282, 2017).
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1 Introduction

Seismic signals recorded on the field result from the interaction of the origi-
nal source with the process of wave propagation. Experiments where seismic
phenomena are induced in laboratory create (partially) controlled environments
where the dynamics of earthquakes can be studied. Statistical learning methods
are increasingly being used to isolate patterns in seismic signals that cannot be
easily detected with traditional waveform analysis techniques [7]. Recently, a study
on data originated from laboratory friction experiments [9] has investigated the
possibility that natural earthquakes could be preceded by precursory signals, so that
the detection and measurement of these signals could be used in forecasting.

When applying an analysis and forecasting model to very long signals, such
as those related to seismic events, the hypotheses made in the model about the
data-generating process may not necessarily be valid for the whole duration of the
signal. Further, adaptation of the model parameters to data may become increasingly
complex and time-consuming. In this perspective, transforming batches of the
original signal into compact representations and observing the variation over time
of such representations could be a valid solution. An evaluation of the potential
of a transformation based on bottom-up data decomposition and change-point
detection through wavelets has been carried out in this study. The next section briefly
recapitulates some ideas about wavelet transforms as tools to estimate change points
in piecewise-constant functions. Section 3 describes the data analyzed, and Sect. 4
discusses the experiments performed and their results.

2 Background

Wavelet thresholding estimators have received much attention in literature, since
wavelet functions show some relevant properties. The key property of wavelets is
referred to as “localization,” which allows one to obtain sparse representation of
certain functions and operators in wavelet bases. For this reason, wavelet techniques
can provide insight beyond other approaches in jump detection in high-frequency
data. Traditional wavelet thresholding estimation proceeds as follows. Take the
discrete wavelet transform of a dataset, set to 0 those coefficients that fall below
a certain threshold, and then take the inverse wavelet transform of the thresholded
coefficients. The definition of wavelet is a quite general one; thus many wavelet
families can be built. They are classified according to certain properties such as
orthogonality, amplitude of the support, smoothness, and the number of vanishing
moments. Each of these properties is important for specific purposes; thus the choice
of the wavelet basis is strongly application dependent. When the focus is data
compression, smoothness, and a compact, narrow support is desirable: in this case,
localization is improved, so that small coefficients are obtained in smooth regions of
the approximated function. They can therefore be neglected, preserving information
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about sub-domains in which the gradient has high values. Wavelet thresholding has
indeed successfully been applied in several fields such as signal denoising, image
analysis, and finance [1, 2, 4].

Using Haar wavelets one obtains piecewise-constant estimates. Piecewise-
constant estimators are easy to interpret: jumps in the estimate can be viewed as
relevant changes in the mean level of the data, whereas constant intervals represent
periods in which the mean of the data does not significantly change. This feature
makes them attractive in the field of earthquake forecast, in terms of time. In this
case, one can formulate the problem as a multiple change-point detection in the time
series of acoustic data. A posteriori detection of multiple change points, sometimes
referred to as segmentation, can often serve as the useful first step in the exploratory
analysis of data. Moreover, piecewise-constant estimates are cheap to store, because
the number of jumps is typically significantly less than the size of the analyzed
time series. This is relevant in our application, since a huge volume of data is to be
taken into account. Nonlinear estimators exhibit superior theoretical and practical
performance with respect to linear ones when the underlying function is spatially
inhomogeneous. In [3] authors use piecewise-constant approximation to control the
number of local extremes. On the other hand, a disadvantage of Haar thresholding
is that, due to Haar wavelet construction, jumps always occur at dyadic locations,
even if it is not justified by the data. In [6] authors introduced the unbalanced Haar
(UH) wavelet basis, in which unlike traditional Haar wavelets, jumps in the basis
functions do not necessarily occur in the middle of their support. Thus, they are
potentially useful as building blocks for piecewise-constant estimators that avoid
the restriction of jumps occurring at dyadic locations. These wavelets enjoy the
desirable properties of traditional wavelets, such as a multiresolution structure and
an associated fast transform algorithm.

Our estimation procedure can be summarized as follows. We first take a
transform of the data with respect to an UH basis. We then threshold the coefficients
and take the inverse transform.

3 Data

The data used to test our model comes from a laboratory earthquake experiment
described in [9]:

– The input is a chunk of 0.0375 s of seismic data (ordered in time), which is
recorded at 4MHz, hence 150,000 data points, and the output is time remaining
until the following lab earthquake, in seconds;

– the seismic data is recorded using a piezoceramic sensor, which outputs a voltage
upon deformation by incoming seismic waves. The seismic data of the input is
this recorded voltage, in integers;

– seismic data include both a training set and a testing set, which come from the
same experiment. There is no overlap between the training and testing sets, which
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Table 1 Summary of the 17
blocks the data was found to
de divided in. For each block,
the start and end times are
given, together with the
number of measurements

Block no. Time first Time last No. of readings

1 1.4691 0.0008 5656574

2 11.5408 0.0007 44429304

3 14.1806 0.0008 54591478

4 8.8567 0.0011 34095097

5 12.6940 0.0006 48869367

6 8.0555 0.0011 31010810

7 7.0590 0.0005 27176955

8 16.1074 0.0007 62009332

9 7.9057 0.0002 30437370

10 9.6372 0.0005 37101561

11 11.4264 0.0002 43991032

12 11.0242 0.0001 42442743

13 8.8281 0.0001 33988602

14 8.5660 0.0009 32976890

15 14.7518 0.0006 56791029

16 9.4595 0.0006 36417529

17 11.6186 9.7598 7159806

are contiguous in time. However, since no ground truth is available for the testing
set, in this work n-fold cross-validation has been performed on the training set
only;

– time to failure is based on a measure of fault strength (shear stress, not part of
the published data). When a labquake occurs, this stress drops unambiguously;

– data is recorded in bins of 4096 samples. Within those bins seismic data is
recorded at 4MHz, but there is a 12-microsecond gap between each bin, an
artifact of the recording device.

In addition, additional structure was found by examining the seismic data. The
training set was found to be subdivided into 17 blocks of varying length, separated
by different time gaps (see Table 1 for details).

To gain some insights about the data, an initial step involves computing and
visualizing the autocorrelation. Figures 1 and 2 show, respectively, the autocorre-
lation and the partial autocorrelation averaged over all the bins of for the first data
block. The charts for the subsequent blocks do not differ substantially and were not
reported.

Recall that the autocorrelation is the correlation between yt and yt−k for
different values of the lag k, while the partial autocorrelation gives the same
correlation as above after the effects of the lags 1, 2, . . . , k − 1 have been removed.
Autocorrelations have been averaged over all the bins to smooth out values which
may be due to particular situations in each single 4096-measurement bin.
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Fig. 1 Autocorrelation, computed for each of the 4096-readings bins of the first block of
contiguous measurements, and then averaged
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Fig. 2 Partial autocorrelation, computed for each of the 4096-readings bins of the first block of
contiguous measurements, and then averaged

4 Experiments

The sheer size of the data would have had an adverse effect on the performance
of training machine learning models. In addition, since data are recorded over a
relatively long time with respect to the fine granularity of measurements, using a
“flat” approach where each individual sample is taken separately did not look very
attractive. In a hierarchical perspective, instead, if a way is found to condense each
bin of readings in a representation in a small-dimension space, the evolution over
time of this representation can be studied more easily.

The coefficient of a fitted AR(1) model – an autoregressive model of order one –
was one of the features computed starting from a data bin. In fact, the damped
sinusoidal shape of the autocorrelation, together with the presence of a spike at lag
one in the partial autocorrelation, suggests [8] that fitting an AR(1) model to the
data may be appropriate.
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Since the transformation being sought should in some way capture the “energy”
content of the observed signal, it is intuitive to think at entropy as a measure of
uncertainty. The Shannon entropy of a discrete random variable Y is the expectation
of the information content:

H(Y) = EY

[− log Pr(Y )
]

and, given a sample, it can be estimated from the observed counts. The entropy
package of R has been used in the experiments. Note that, in all experiments,
entropy was measured in bits.

The third transformation that has been used in the tests is the number of change
points in the piecewise-constant mean of the noisy input vector, as described in
Sect. 2. The efficient method implemented in the R package breakfast to estimate
the number of change points was a critical factor in allowing the use of this
technique, since computation times were reduced substantially [5].

Before going into further analysis, an interesting question that arises is at which
scale the aggregation is to be performed. While the transformations can be applied
to individual data bins, they could as well operate on sequences of contiguous bins
(windows). Larger windows would tend to capture long-term effects, smoothing out
fluctuations, whereas smaller windows would enable a more faithful description of
short-lived variations. A preliminary calibration experiment was thus performed to
select an appropriate window size. Out-of-sample correlation has been computed,
after transforming the data in block number 6 (for training) and block number 7 (for
testing) in different ways and for varying window sizes. Table 2 shows the results.

Entropy is seen to be the worst performer, while the number of change points
obtains the best results, and the coefficient of an AR(1) model scores not too far.
Moreover, a growth trend in correlation can be observed for all transformations as
the window size is increased, suggesting that the accumulation of tension in the fault
is a gradual process. Further experiments performed on the NCP transformation only
for larger window sizes yielded correlation values as high as 0.881 for a windows
size of 128 bins and even 0.945 for a window size of 256 bins. However, having the
window size not exceed 32 bins – for a total of 131072 measurements – seemed to
be appropriate, also in consideration that the number of 150,000 readings is used
and mentioned often in [9]. A window size of 32 bins was therefore selected for the
subsequent experiment.

Table 2 Out-of-sample
correlation in calibration
experiments for different
transformations (ENT,
entropy; AR1, coefficient of
an AR(1) model; NCP,
number of change points)

Window size (bins) ENT AR1 NCP

32 0.340 0.684 0.783

16 0.262 0.604 0.737

8 0.232 0.552 0.676

4 0.184 0.502 0.603

2 0.151 0.456 0.526

1 0.136 0.414 0.461
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Table 3 Out-of-sample RMSE and correlation in 17-fold cross-validation experiments: training
set is block i; test set is all other blocks, i = 1, . . . , 17

NCP AR1

Mean RMSE 3.451 3.703

Mean correlation 0.603 0.501

All of the blocks in training data were used for a 17-fold cross-validation
experiment. Each block was used to train a simple linear model from scratch, and all
other blocks were used as testing data to verify the predictions. A linear regression
model was purposely chosen as a very simple tool that would clearly expose
the performance of the transformations being compared. The metrics selected to
evaluate performance were the RMSE (root-mean-square error) and the correlation
between the predicted data and the actual data.

Table 3 shows the results of the 17-fold cross-validation experiment. Note that
n-fold cross-validation experiments are usually performed with n equal to 5 (or, less
often, 10), implying a ratio between training and testing data of 1/5 (or 1/10). Here,
the partitioning into 17 blocks means that the training-to-testing ratio is 1/15.84,
taking into account the different sizes of the blocks.

The NCP transformation was found to outperform AR1. Finally, it was observed
that using both methods in conjunction, i.e., fitting a linear model on both features,
did not produce substantial improvements.
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