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Abstract We consider drones to support post-disaster damage assessment opera-
tions when the disaster-affected area is divided into grids and grids are clustered
based on their attributes. Specifically, given a set of drones and a limited time
for assessments, we address the problem of determining the grids to scan by each
drone and the sequence of visits to the selected grids. We aim to maximize the
total priority score collected from the assessed grids while ensuring that the pre-
specified coverage ratio targets for the clusters are met. We adapt formulations
from the literature developed for electric vehicle routing problems with recharging
stations and propose two alternative mixed-integer linear programming models for
our problem. We use an optimization solver to evaluate the computational difficulty
of solving different formulations and show that both formulations perform similarly.
We also develop a practical constructive heuristic to solve the proposed drone
routing problem, which can find high-quality solutions rapidly. We evaluate the
performance of the heuristic with respect to both mathematical models in a variety
of instances with the different numbers of drones and grids.

Keywords Post-disaster · Drone · Routing · Damage assessment · Constructive
heuristic

1 Introduction

In the last 70 years, the number and severity of disasters have risen exponentially
[39]. The Emergency Events Database (EM-DAT) reports 3,751 natural disasters
that occurred between 2008 and 2017 [24], and the average number of deaths is
about 60,000 per year [22]. Effective and efficient disaster response operations
are essential to delivering relief supplies at the right places and times to minimize
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human suffering and death [25]. Moreover, the overall success of disaster operations
is highly dependent on the speed of rapid needs and damage assessment phases,
during which the extent of disaster’s impact on people and infrastructure is
evaluated [5].

In this study, we focus on rapid damage assessment operations conducted
by using drones. While drones can be used to assess the damages on the built
infrastructure in the aftermath of other disasters such as floods or hurricanes, we
particularly consider a post-disaster environment after an earthquake. Earthquakes
are among the deadliest disasters [22]. For instance, in 2004 and 2010, earthquakes
accounted for 93% and 69% of worldwide deaths due to disasters [22]. It is critical
to assess the earthquake damage on buildings rapidly since the survival rate for the
people who are rescued from the collapsed buildings after an earthquake is 91%
during the first 30min, while it decreases to 81% on the first day and 36% on
the second day [40]. Therefore, using available resources (such as drones or other
technology) effectively after a disaster to identify the damaged buildings can save
many lives.

Areas that are hit by earthquakes can be assessed by a variety of visual imaging
and 3D mapping technologies, such as satellite imagery or radars. However, there
are limitations to using each technology; for instance, satellite mapping may not
meet high-resolution requirements due to clouds blocking the image. Recently,
drones are increasingly used to assess earthquake damages [14, 48]. Drones can be
deployed immediately after a disaster, and high-resolution images can be generated
for the scanned regions, which would help to identify highly damaged areas quickly
and direct the rescue teams to the correct spots and hence prioritize the use of
relief resources effectively [29, 31]. For instance, in the aftermath of the 2015 Nepal
earthquake, drones assisted in creating 3D maps through image processing software
to assess the widespread damage and operate search and evacuation operations.
Additionally, drones were used to identify the damaged infrastructure after an F-
5 tornado in Wichita, Kansas [2]. Although drones have limited battery capacity,
their flight duration can be extended by allowing them to recharge at the recharging
stations (RSs) that would be positioned in the affected regions. Nevertheless, it may
not be possible to assess the entire disaster-affected area rapidly by using a limited
number of drones. However, the amount of useful information obtained by a limited
number of drones in a restricted time period can be improved by selecting which
areas to scan first. For instance, information obtained by drones that scan a part
of the affected region can be used to estimate the damage status of the unscanned
affected regions if different regions share similar disaster risk attributes that could
affect the extent of earthquake damage. This study aims to present mathematical
models and a solution approach that would support managing drones to scan a
disaster-affected area quickly.

We consider a post-disaster setting, in which the drones assess the physical
damage after an earthquake. The disaster-affected area is divided into grids. Each
grid has a set of attributes comprising its infrastructure (e.g., construction types
of the buildings), geographical (e.g., elevation), geological (e.g., soil type), and
socioeconomic (e.g., wealth index) conditions. We assume that the damage level



Drone Routing for Post-disaster Damage Assessment 3

of the built environment in a grid is highly correlated with its attribute values.
The attributes can be associated with pre-disaster and post-disaster aspects. For
instance, the construction types of the buildings and soil type may be specified
before a disaster, while the distance to the earthquake epicenter is a post-disaster
attribute [11, 46]. We assume that grids that have similar attributes are more likely
to exhibit similar damage levels due to an earthquake [47]. Hence, grids can be
clustered based on their similarities according to the relevant set of attributes by
using various clustering methods such as k-modes clustering [47]. Since assessment
of all grids in a limited amount of time may be impossible, scanning two grids
belonging to different clusters may be preferred more than scanning two grids from
the same cluster as information obtained from scanning a particular grid can be
used to estimate the damages in the other grids of the cluster. Moreover, grids can
be given different priorities based on whether a grid is densely populated and/or
there is an important facility in the grid such as hospitals and schools. We focus on
planning the routes of drones by considering grid clusters and priorities.

Given a set of drones and a limited time for assessments, we address the problem
of determining the grids to scan and assess by each drone and the sequence of visits
to the selected grids to maximize the total priority score collected from the assessed
grids. We cluster grids before making routing plans based on various relevant pre-
and post-disaster attributes. Then, a minimum level of coverage ratio for each cluster
is targeted to achieve adequate and balanced information among all clusters, where
the coverage ratio is defined as the ratio of the number of visited grids in a cluster
to the total number of grids in that cluster. Nevertheless, it may not be possible
to achieve the coverage target within a limited time, which may lead to infeasible
solutions. To avoid infeasibilities, we penalize the maximum unfilled coverage ratio
in the objective function. Moreover, if the coverage ratio is satisfied for all clusters
but there is still time in the given assessment period, additional grids can still be
scanned to increase the amount of collected information and hence the total priority
score.

To extend drones’ flight duration, we consider several RSs already positioned
in the region where drones can recharge their batteries. The drone routing problem
has some similarities with the electric vehicle routing problem (E-VRP) or green
vehicle routing problem (G-VRP) since recharging times and locations of drones
must be considered while determining the sequence of visits to the grids. However,
the proposed drone routing problem is different due to its objective function and the
coverage ratio constraint, which are introduced to capture the characteristics of the
post-disaster damage assessment operations. We develop two mixed-integer linear
programming (MILP) models, which are adapted from [19], and propose a novel
heuristic to find high-quality solutions rapidly to assist decision-makers in making
effective and efficient plans for drone routing during the damage assessment phase.

The rest of the paper is organized as follows. Section 2 reviews the relevant
literature. Section 3 describes the system and problem in detail and presents our
MILP model formulations. Section 4 describes the proposed heuristic, whereas
Sect. 5 introduces the data set developed and reports the results of the computational
experiments performed. Finally, we conclude in Sect. 6 and discuss future work.
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2 Literature Review

Drones are relatively inexpensive and easy to deploy and use for supporting not
only military applications but also civilian applications [12]. Since they can carry
cameras [42], sensors [8], and mail [13], they are utilized frequently in several
sectors such as agriculture, commerce, and construction. Nowadays, they are also
used in humanitarian relief operations [15, 17, 33].

Drones were utilized in various past disasters to gather information about post-
disaster situations, for example, to measure radiation contamination in the Daiichi
nuclear power plant [43], capture the images of damaged reactors after the Japan
East great earthquake in 2011 [33], monitor the affected area after the 2011 Thailand
floods [34], and assess the damages after the 2016 Kumamoto earthquake [48],
the 2009 L’Aquila earthquake [14], and Typhoon Haiyan in the Philippines [27].
Thus, integrating drones into the existing post-disaster operations may accelerate
the information-gathering process and help rescuers to make timely and efficient
decisions.

Integrating drones at the applications of commercial logistics is well studied in
the literature [1, 21, 35, 36]; however, there are relatively few studies that focus
on humanitarian applications. In particular, the studies that consider using drones
in humanitarian settings address finding the location of relief facilities [7, 10, 20],
distributing relief or medical items [26, 41], and post-disaster monitoring [9, 38].

An edge-based facility location problem where drones deliver relief items to
aid recipients is studied in [20]. In this work, aid recipients are distributed along
the network edges, and they can only travel to the distribution centers by using
the accessible edges. The authors propose a mixed-integer non-linear programming
model and metaheuristic algorithms to find the locations of facilities minimizing the
aggregate traveling time for both the aid recipients and drones. Similarly, in [10],
the authors determine the locations of the distribution centers, their corresponding
service regions, and the number of emergency supplies to be kept in these centers
by proposing a continuous approximation model to minimize the overall distribution
cost of trucks and drones. The authors consider various drone-specific aspects such
as accelerating, decelerating, and velocity changes while calculating the transporta-
tion cost. Additionally, a facility coverage problem is studied in [7] considering
drone energy consumption and drone flight range limitations. A location-allocation
problem for positioning recharging stations is addressed by [45]. In [41], the
authors focus on drone routing decisions for last-mile distribution, where energy
consumption is dependent on the weight of the payload. The authors develop aMILP
model to minimize the total traveling distance while considering several priority
policies on the locations. A MILP and metaheuristics are proposed to scan the post-
disaster-affected areas to minimize the total assessment costs in [9]. In [38], the
authors study a post-disaster damage assessment strategy that focuses on population
points (nodes) and road segments (arcs), where the damage level of nodes and arcs
is assessed by drones and motorcycles. The authors consider the drones’ battery
time as a time limit for damage assessment operations, such that all vehicles must
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return to the depot before the time limit. Drones can assess the roads that are covered
by debris; however, the motorcycles are restricted by the debris. Additionally, the
authors prioritize the critical nodes and arcs in the affected network and present a
multi-objective MILP model to maximize the total profit collected by visiting nodes
and traversing arcs.

In [37], a post-earthquake relief distribution system is proposed where drones are
used to serve areas that are inaccessible by ground transportation. In the proposed
system, there is a data analysis center, where the information from different sources
(e.g., social media, rescue employees, police reports, satellite images, and drone
monitoring) must be analyzed thoroughly. After analyzing the information, the data
analysis center shares relevant information with the other centers that manage the
response stage. In our study, we consider a similar information-sharing system, in
which the damage information of the disaster-affected region is gathered in a single
operation center after drones scan the area.

To extend the flight duration of drones, we allow drones to visit recharging
stations (RS) along their routes. In this respect, the drone routing problem is
similar to the electric vehicle routing problems (E-VRP), which are addressed
by a large number of studies (e.g., [3, 19, 28, 30, 32, 44]). Schneider et al. [44]
formulate an electric vehicle routing problem with time windows and cargo capacity
constraints. The vehicles are fully charged at an RS, and the recharging time is
linearly dependent on the battery level at the RS. Froger et al. [19] allow partial
charging and non-linear charging functions and present three formulations by
utilizing different decision variables: node-based, arc-based, and path-based. The
arc-based formulation is shown to perform better than the node-based formulation
due to the tighter linear relaxation [19]. However, both the node-based and the arc-
based formulations require dummy RSs (i.e., recharging station copies) to allow
multiple visits; and deciding the number of dummy RSs has a critical impact on the
solution [19, 32]. While a large number of dummy RSs increase the computational
time, few dummy RSs may cut off the optimal solutions. On the other hand, the
path-based formulation is not limited by the number of RS replications [19].

In this study, we adapt arc-based and path-based formulations from [19] for our
drone routing problem that addresses post-disaster damage assessment operations.
There are several differences between our problem and the existing E-VRPs.
Specifically, we maximize the total priority scores collected by visiting the grids,
while the objective in [19] is to minimize the total time including the traveling
time and recharging time. Besides, we consider a grid network, where the disaster-
related attributes of the grids are utilized to assign each grid to a cluster, and only
a subset of grids may be visited under a limited assessment period. We additionally
consider a pre-specified coverage target for each cluster. Our study contributes to
the literature by presenting a new routing problem as well as formulations and a
practical heuristic to support decision-making in managing post-disaster damage
assessment operations via drones.
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3 Problem Definition

We consider a post-disaster setting, in which the drones assess the physical damage
in the built environment after an earthquake. The disaster-affected area is divided
into grids, and we address the problem of determining the grids to scan and assess
by each drone and the sequence of visits to the selected grids given a set of identical
drones and a limited time for assessments. We aim to maximize the total priority
score collected from the assessed grids.

Grids may have different priorities, reflecting the urgency of visiting this
grid, based on whether a grid is densely populated and/or there is an important
facility, such as hospitals. Moreover, we propose to utilize the disaster-related
characteristics, attributes, of the grids to make an inference about the physical
damage without covering the entire set of grids as rapid coverage of the entire set of
grids may not be possible. First, grids are clustered according to their attributes so
that grids in the same clusters have similar attributes. Thus, gathering information
about a finite number of grids from a cluster may allow us to predict the damage
level of the remaining grids in that cluster. We also define a coverage ratio target
for each cluster, where the coverage ratio equals the ratio of the number of visited
grids in a cluster to the total number of grids in that cluster. However, it may not
be possible to achieve the pre-specified coverage ratio target for each cluster in
a limited time. Therefore, the coverage ratio constraint is transformed into a soft
constraint, such that the maximum unfulfilled coverage is penalized in the objective
function with a very large number. Thus, we aim to achieve balanced and adequate
information among all clusters with this single objective function.

We assume a single operation center where the scanned images are analyzed.
Each drone has a battery capacity and a maximum tour duration, Tmax. Hence,
drones that leave the operation center have to return within Tmax time units. Drones
are recharged at the RSs to extend their flight time, and the recharging time is
calculated by assuming a linear battery charging rate. We assume that drones leave
the operation center and the RSs fully charged. In addition, we assume that the RSs
are located at the center of grids and the travel time between two grids is equivalent
to the travel time between the center of these grids. Figure 1 illustrates an area of
16 grids, which belong to 5 clusters indicated by different shapes on the figure. For
example, grids #1, #6, and #7 are in the same cluster. There exist three RSs located
at the center of grids #2, #5, and #11. The priority scores of each grid are also shown
on the figure in parenthesis. We present an example route, in which the drone scans
and assesses seven grids in total and is recharged at the RS located at grid #2.

We model this drone routing problem by maximizing the total priority score
collected from the assessed locations while ensuring sufficient coverage for each
cluster by twoMILP formulations, (i) an arc-based formulation and (ii) a path-based
formulation, presented in Sects. 3.1 and 3.2, respectively.
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Fig. 1 Representation of a disaster-affected area divided into 16 grids and a drone’s route

3.1 Arc-Based Formulation

The proposed drone routing problem is first formulated by an arc-based formulation,
adapted from [19]. In the arc-based formulation, vertices represent the grid centers,
and arcs connect these vertices. Let I represent the set of grids, and VR specifies
the set of RSs. V ′

R defines the set of dummy RSs generated to allow multiple visits
to each RS. 0 and N + 1 denote the operation center, such that each route starts at
0 and ends at N + 1. Let V0 = I ∪ V ′

R ∪ {0} be the set of departure vertices and
V1 = I ∪ V ′

R ∪ {N + 1} be the set of arrival vertices. V ′ = I ∪ V ′
R denotes the set

of vertices except the operation center. We define the drone routing problem on a
directed graph G = (V ,A), where V = I ∪ V ′

R ∪ {0} ∪ {N + 1} and A is the set of
arcs A = {(i, j) : i, j ∈ V, i �= j}. C denotes the set of clusters.

Let sj denote the survey time of grid j ; and tij is travel time when a drone travels
on arc (i, j). We represent energy consumption on arc (i, j) in terms of travel time.
B specifies the battery capacity, i.e., maximum flight time, and r represents the
recharging rate. The route duration limit is denoted by Tmax, such that each drone
must return to the operation center within Tmax time units. Additionally, the number
of available drones is indicated by D. ρj represents the priority score assigned to the
grid j . Moreover, φjc is the coverage parameter that equals 1 if grid j is assigned
to cluster c and 0 otherwise. Additionally, we define τc which indicates the total
number of grids in cluster c. μ is the coverage ratio target, and M is a sufficiently
large number used to allow the model to report a feasible solution when there exists
an infeasibility related to the coverage ratio target.

Let the binary variable xij equals to 1 if a drone travels on arc (i, j) and 0
otherwise. The continuous variables aij and yij denote the time and the battery level,
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respectively, when a drone departs from vertex i ∈ V0 and travels on arc (i, j) ∈ A.
The binary variable zj takes the value of 1 if and only if the grid j ∈ I is surveyed.
The continuous variable qj denotes the remaining battery when the drone arrives
at RS j ∈ V ′

R . The continuous variable θj denotes the amount of time required to
fully charge a drone at RS j . The continuous variables βc and γ denote the coverage
ratio of cluster c ∈ C and the minimum coverage ratio overall clusters, respectively.
Finally, the continuous variable � is defined as the difference between the achieved
coverage ratio and the coverage ratio target. If the coverage ratio target is satisfied,
� equals zero.

The parameters and variables of the arc-based formulation provided below are
summarized in Appendix 1.

max
∑

j∈I

ρj zj − M� (1)

subject to

∑

j∈V1
j �=i

xij ≤ 1 ∀i ∈ I (2)

∑

j∈V1
j �=i

xij ≤ 1 ∀i ∈ V ′
R (3)

∑

j∈V1
j �=i

xij −
∑

j∈V0
j �=i

xij = 0 ∀i ∈ V ′ (4)

∑

j∈V1

x0j = D (5)

∑

i∈V0

xi,N+1 = D (6)

zj −
∑

i∈V0
i �=j

xij = 0 ∀j ∈ I (7)

y0j = Bx0j ∀j ∈ V1 (8)

∑

i∈V0
i �=j

yij −
∑

i∈V0
i �=j

(tij + sj )xij =
∑

l∈V1
l �=j

yjl ∀j ∈ I (9)
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∑

i∈V0
i �=j

yij −
∑

i∈V0
i �=j

tij xij = qj ∀j ∈ V ′
R (10)

∑

l∈V1
l �=j

yjl =
∑

l∈V1
l �=j

Bxjl ∀j ∈ V ′
R (11)

yij ≤ Bxij ∀i ∈ V0, j ∈ V1, (i �= j) (12)

qj ≤
∑

i∈V0
i �=j

Bxij ∀j ∈ V ′
R (13)

a0j = 0 ∀j ∈ V1 (14)

∑

i∈V0
i �=j

aij + (tij + sj )xij =
∑

l∈V1
l �=j

ajl ∀j ∈ I (15)

∑

i∈V0
i �=j

(aij + (tij + rB)xij ) − rqj =
∑

l∈V1
l �=j

ajl ∀j ∈ V ′
R (16)

aij ≤ (Tmax − tij − sj − tj,N+1)xij ∀i ∈ V0, j ∈ I, (i �= j) (17)

aij ≤ (Tmax − tij − tj,N+1 − rB)xij + rqj ∀i ∈ V0, j ∈ V ′
R, (i �= j) (18)

aij ≤ T xij ∀i ∈ V0, j ∈ V1, (i �= j) (19)

yij ≥
(

tij + min
l∈V ′

R∪{N+1}
{
tj l

}
)

xij ∀i ∈ V ′, j ∈ V1 (20)

∑

j∈I

φjczj /τc = βc ∀c ∈ C (21)

γ ≤ βc ∀c ∈ C (22)

γ + � ≥ μ (23)

aij ≥ 0, yij ≥ 0 ∀i ∈ V0, j ∈ V1 (24)

qj ≥ 0 ∀j ∈ V ′
R (25)

xij ∈ {0, 1} ∀i ∈ V0, j ∈ V1 (26)
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zj ∈ {0, 1} ∀j ∈ I (27)

βc ≥ 0 ∀c ∈ C (28)

γ ≥ 0, � ≥ 0 (29)

The objective function (1) maximizes the total priority scores of the visited grids
and penalizes the maximum unfulfilled coverage ratio target. Constraints (2) and (3)
imply that each grid and dummy RSs can be visited at most once. Constraints (4)
are flow balance equations. Constraints (5) and (6) ensure that the number of
drones that departs from and arrives at the operation center equals the number
of available drones, respectively. Constraints (7) link the xij and the zj variables.
Constraints (8) set drones to be fully charged when they depart from the operation
center. Constraints (9) denote the remaining battery after a drone traverses the arc
(i, j ) and surveys the grid j . Constraints (10) indicate the remaining battery level
at the dummy RS j after traversing the arc (i, j ). Constraints (11) guarantee that
drones leave the RSs as fully charged. Constraints (12) couple the variables xij and
yij , and constraints (13) link the variables xij and qj . Constraints (14) specify the
operation starting time. Constraints (15) and (16) track the departure time from the
grids and the RSs, respectively. Constraints (17) and (18) ensure that drones return to
the operation center within Tmax time units. Constraints (19) link the aij and the xij

variables. Constraints (20) serve as valid inequalities to strengthen the formulation
[19], such that the drone must have sufficient battery to arrive at the nearest RS or
the operation center after traversing arc (i, j ). Constraints (21) denote the coverage
ratio for each cluster. Constraints (22) indicate the minimum coverage ratio among
all clusters. Constraint (23) specifies whether the coverage ratio target is satisfied by
the visited grids and calculates �, which is the difference between the achieved and
targeted coverage ratio. Note that the unsatisfied coverage ratio is penalized in the
objective function. Finally, constraints (24)–(29) define the domains of the decision
variables.

3.2 Path-Based Formulation

The arc-based formulation introduced in Sect. 3.1 requires one to generate several
dummy RS nodes to allow multiple visits at each RS. However, increasing the num-
ber of dummy RSs increases the computational difficulty of the model. Moreover,
calculating the exact number of required dummy RSs is not possible without solving
the problem. To overcome these obstacles in the arc-based formulation, a path-based
formulation is introduced in [19], which we adapt to the drone routing problem in
this subsection.

In the path-based formulation, a path corresponds to a set of arcs between two
vertices, which are not RS nodes, including or excluding possible visits to the RSs.
More specifically, the starting and ending points of a path can only be the grid
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centers to be scanned or the operation center, and any number of RS visits can be
included between the starting and the ending points of a path.

We define the drone routing problem on a directed multi-graph Ĝ = (V̂ , Â), with

the set of arcs Â=
{
(i, j) : i, j ∈ V̂ , i �= j

}
where V̂ = I∪{0}∪{N + 1}. V̂0 = I∪{0}

denotes the set of arrival vertices and V̂1 = I ∪ {N + 1} denotes the set of departure
vertices. A path represents an arc between two vertices, such that path p starts at the
center of grid i ∈ I ∪ {0} and ends at the center of grid j ∈ I ∪ {N + 1}. A path
may include varying number of visits to RSs. In other words, a path may include no
visits to any RS. Then, the set of paths on the arc (i, j ) is defined by Pij , and the set
of all paths is indicated by P . The starting and ending points on path p are o(p) and
d(p), respectively. The number of RSs in path p equals np. The ordered set of RSs
in p is represented by Lp =

{
0, 1, . . . , np − 1

}
. πp(l) denotes the RS at position

l ∈ Lp. If Lp = ∅, then the drone doesn’t visit any RS on path p. Traveling time of
p ∈ P is represented by tp that is equal to drone’s energy consumption.

The binary variable xp is equal to 1 if a drone travels on path p ∈ P and 0
otherwise. The continuous variables ap and yp represent the time and remaining
battery level, respectively, before the drone travels on path p ∈ P . The continuous
variable qpl denotes the remaining battery level after the drone travels on path p ∈ P

and visits πp(l).
The parameters and variables of the path-based formulation are summarized in

Appendix 1. We next present the path-based formulation

max
∑

j∈I

ρj zj − M� (30)

subject to

(21) − (23), (27) − (29)

∑

i∈V̂0
i �=j

∑

p∈Pij

xp ≤ 1 ∀j ∈ I (31)

∑

j∈V̂1
i �=j

∑

p∈Pij

xp −
∑

j∈V̂0
i �=j

∑

p∈Pji

xp = 0 ∀i ∈ I (32)

∑

j∈V̂1

∑

p∈P0j

xp = D (33)

∑

i∈V̂0

∑

p∈Pi,N+1

xp = D (34)
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∑

k∈V̂1
k �=j

∑

p∈Pjk

yp =
∑

i∈V̂0
i �=j

∑

p∈Pij

⎛

⎜⎜⎜⎝yp − (tp + sj )xp +
∑

l∈Lp|Lp|�=0

(Bxp − qpl)

⎞

⎟⎟⎟⎠ ∀j ∈ I

(35)
yp − to(p),πp(0)xp = qp0 ∀p ∈ P : ∣∣Lp

∣∣ �= 0 (36)

Bxp − tπp(l−1),πp(l)
xp = qpl ∀p ∈ P : ∣∣Lp

∣∣ �= 0, l ∈ Lp\ {0} (37)

yp = Bxp ∀i ∈ V̂1, p ∈ P0i (38)

yp ≤ Bxp ∀p ∈ P (39)

qpl ≤ Bxp ∀p ∈ P, l ∈ Lp (40)

yp − tpxp +
∑

l∈Lp

(Bxp − qpl) ≥ 0 ∀i ∈ I, p ∈ Pi,N+1 (41)

∑

j∈V̂1

∑

p∈P0j

ap = 0 (42)

∑

k∈V̂1
k �=j

∑

p∈Pjk

ap =
∑

i∈V̂0
i �=j

∑

p∈Pij

⎛

⎜⎜⎜⎝ap + (tp + sj )xp +
∑

l∈Lp|Lp|�=0

r(Bxp − qpl)

⎞

⎟⎟⎟⎠ ∀j ∈ I

(43)
ap ≤ Tmax − (tp + sd(p) + td(p),N+1)xp −

∑

l∈Lp|Lp|�=0

r(Bxp − qpl) ∀p ∈ P (44)

xp ∈ {0, 1} ∀p ∈ P (45)

ap ≥ 0, yp ≥ 0 ∀p ∈ P (46)

qpl ≥ 0 ∀p ∈ P, l ∈ Lp (47)

The objective function (30) is the same as the arc-based formulation (Sect. 3.1).
Constraints (31) indicate that each grid can be surveyed at most once. Con-
straints (32) are for balancing the flows. Constraints (33) and (34) ensure that the
number of drones that depart from and return to the operation center equals to the
number of available drones. Constraints (35) track the drone’s battery level at each
grid. Constraints (36) and (37) indicate the remaining battery level when the drone
arrives at the first RS and departs to the next RS on path p ∈ P , respectively.
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Constraints (38) ensure that drones leave the operation center with a full charge.
Constraints (39) and (40) link the battery level variables. Constraints (41) guarantee
the path feasibility, such that the drone can arrive at its destination with a sufficient
battery level. Constraints (42) define the operation start time. Constraints (43) track
the time at each grid. Constraints (44) indicate the operation duration. Finally,
constraints (45)–(47) indicate the domain of decision variables.

In Sect. 5.2, we compare the computational times of the proposed arc-based and
path-based MILP formulations and show that both MILP models may require high
computational times, especially for large instances. Similar formulations are also
proposed for E-VRPs that are shown to be NP-hard [19]. However, relief agencies
may not be able to access any advanced tools, and the decisions must be applied
immediately after the disaster [4]. To compute reasonable solutions quickly, we
develop a constructive heuristic (CH) in Sect. 4.

4 A Constructive Heuristic (CH)

Our CH developed to solve the proposed drone routing problem consists of three
moves in the main phase: (i) initial route generation, (ii) insertion, and (iii)
exchange. Additionally, we consider two sub-phase moves: (iv) repair and (v)
improvement. The improvement sub-phase includes several operators, which are
performed after every main phase move. The repair sub-phase move is performed
only if the initial route generation produces a solution that does not satisfy the
coverage ratio target. An overview of the CH is provided in Algorithm 1.

Initial solution generation step aims to generate a set of routes that satisfies the
targeted coverage ratio. In other words, our aim in this step is not to maximize the
collected priority scores, but to construct routes that minimize the route duration
while satisfying the coverage ratio target. Therefore, the first step terminates when
the coverage ratio target is satisfied by visiting a set of grids. In this step, a new
route (drone) is initiated when the previous route cannot survey any additional grid
due to time limitations. A drone route starts at the operation center, and we identify
a candidate grid to survey next. The candidate grid is set as the grid that has the
minimum operation time where the operation time is defined as the summation of
survey time and travel time depending on the current position of the drone. If there

Algorithm 1: An Overview of the CH
Step 0: Generate an initial solution.
If the initial solution satisfies the coverage ratio target, go to Step 2; otherwise go to Step 1.
Step 1: Apply the repair move, go to Step 2;
Step 2: Apply the insertion move, followed by the improvement operators.
Step 3: Apply the exchange move, followed by the improvement operators.
If the solution is improved and there are any unvisited grids, go to Step 2; otherwise
terminate the algorithm.
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are multiple grids with the same operation time, the grid with the highest priority
score is selected as the next candidate grid. If the remaining battery is not enough
to visit the candidate grid, the drone visits the nearest RS, and the next candidate
grid to visit is selected dependent on the position of the visited RS. We present the
pseudocode of the initial solution generation step in Algorithm 2. Each time a grid
is appended to the route of the drone, we apply the improvement sub-phase.

The improvement sub-phase, whose overview is presented in Algorithm 3,
includes four operators: 1-opt, 2-opt, swap, and RS removal. The 1-opt operator
changes the position of one grid in the route. The 2-opt operator removes two
links and replaces them with two different links. The swap operator exchanges the
order of two grids in the route. Note that the previously visited RSs may need to
be updated when routes are modified by these improvement operators. Therefore,
after an operator terminates, we apply the RS removal operator, which removes the
redundant RSs to reduce the total charging time in a route. Each operator applies the
first-improvement strategy; that is, we terminate searching for a new solution once
a battery-feasible solution with a lower route duration is achieved. We apply the
improvement operators in the following order, which are set based on preliminary
experiments: 2-opt, RS removal, 1-opt, RS removal, swap, and RS removal. We
apply the improvement sub-phase iteratively following this order of operators until
no improving solution is found in the last iteration. We apply the improvement
operators on each drone route sequentially.

The initial solution generation step terminates once routes that satisfy the
coverage ratio target are generated. However, if the initial step does not generate
any feasible solutions satisfying the coverage ratio target within Tmax, the repair
sub-phase is implemented, involving a remove-add operator which aims to decrease
the duration of each route and an insertion operator which aims to improve coverage
by inserting grids, and hence it attains a feasible solution. Specifically, we pick each
cluster with unsatisfied coverage ratio targets sequentially and attempt removing a
grid from the solution and insert an unvisited candidate grid to the position of the
removed grid to improve the route duration. If we attain a feasible solution that
yields a lower route duration, we update the route. Note that while applying the
remove-add move, the feasibility of the route with respect to the battery constraint
must be checked. For the battery feasibility check, we evaluate three options for each
candidate grid to be added to the solution: only the candidate grid and adding the
candidate grid with its nearest RS. Specifically, let i be a candidate grid, and RSN is
the nearest RS to the center of i. Then the options are {i}, {i, RSN }, and {RSN, i}.
We select the option with the least route duration in evaluating candidate grid i’s
insertion to the route. The remove-add operator does not change the coverage ratios
directly, but it allows to increase the number of visited grids and the coverage
ratios by reducing the route duration. Hence, an insertion operator is implemented
sequentially for each cluster that is covered less than the coverage ratio target. The
unvisited grids in the regarding cluster are sorted in descending order according
to their priority scores, and three options including the grid-RS combinations are
generated. We try to insert additional grids to the routes until a cluster satisfies the
coverage ratio target or there is no any feasible option to be inserted.
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Algorithm 2: Initial Solution Generation
Initialization;
S+ = Set of surveyed grids
S0 = Set of candidate grids
τk = Route duration of drone k
A = Minimum coverage ratio
Tmax = Route duration limit
while A < Coverage ratio target and ∃τk′ ≤ Tmax do

if S+ == ∅ or τk == Tmax and ∃τk′ == 0 then
% Start a new route
k:= an unused drone;
z:= candidate grid yielded the minimum operation time;
if insertion of z to the route of k is time-feasible and battery-feasible then

Add z to the route of k;
Do improvement
Update S+,S0, A, τk ;

else
if Surveying an updated z is time-feasible after recharging then

Visit the nearest RS, update z;
Add z to the route of k;
Do improvement
Update S+,S0, A, τk ;

else
% Return to the operation center
τk = Tmax;

end
end

else
while τk ≤ Tmax do

% Add to the current route
z:= candidate grid yielded the minimum operation time;
if insertion of z to the route of k is time-feasible and battery-feasible then

Add z to the route of d;
Do improvement
Update S+,S0, A, τk ;

else
if Surveying an updated z is time-feasible after recharging then

Visit the nearest RS, update z;
Add z to the route of k;
Do improvement
Update S+, S0, A, τk ;

else
% Return to the operation center
τk = Tmax;

end
end

end
end

end
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Algorithm 3: Improvement Phase

Initialization;
x:=route
Oi := ith operator for i=1,...,6
impr:=1
while impr �= 6 do

Generate a candidate solution x′ by Oi (x);
if x′ is battery-feasible and better than x then

x = x′;
impr = 1;

else
if i �= 6 then

i = i + 1;
impr = impr + 1

else
i = 1;
impr = impr + 1

end
end

end

If there is any unvisited grid after the initial step terminates, the insertion
move tries to insert them into the current solution to maximize the total priority
score. First, we sort the unvisited grids in descending order according to their
priority scores. Then we generate three insertion options for each candidate grid-
RS combination, as explained in the repair sub-phase. If an insertion option can be
feasibly applied and the grid can be inserted in an existing or a new route (if an
unrouted drone exists), the grid is inserted, and then the improvement sub-phase
is performed. The insertion is performed until no new feasible insertions can be
identified.

The exchangemove searches for an improved solution in terms of priority scores.
If there are unvisited grids in the network after implementing the insertion phase,
and their priority scores are higher than the visited ones, we attempt to exchange
the candidate grid that has the highest priority score with a visited grid with a lower
priority score. While inserting a grid in a route, in this procedure, the three insertion
options explained above are considered. If an exchange attempt produces a feasible
solution in terms of route duration, battery, and coverage ratio target levels, we
perform the exchange move, which is followed by the improvement. We apply the
exchange move only for the non-empty routes (i.e., routes that visit at least one grid).

5 Numerical Analysis

In this section, we describe the results of the numerical study conducted based on
a set of test instances. The objectives of our numerical study are to understand the
impact of the total number of grids and the number of drones on the quality of
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the solutions and to analyze the sensitivity of system performance to changes in
the generation of grid attributes. We solve the proposed MILP formulations by
an optimization solver, CPLEX, and compare their performance with respect to
solution quality and computational time. To evaluate the heuristic performance,
we compare the solution time and the objective value achieved by the proposed
algorithm relative to the best-found CPLEX solution.

We describe test instances in Sect. 5.1 and evaluate the performance of the
alternative formulations and the CH in Sect. 5.2.

5.1 Test Instances

We generate 54 instances with 16, 25, and 36 equal-sized grids. The instances differ
in how we assign attributes to the grids and the number of drones. We assume that
the affected area is divided into square grids with a 1 kilometer side length. The
operation center is assumed to be located at the left bottom corner of each instance
(as in Fig. 1).

Although the area of each grid is equal, we consider different survey times since
the density of buildings in each grid may vary. For instance, the grids may include
areas without any built infrastructure, such as forests and lakes, and these areas
do not require surveying. Thus, the survey times are randomly generated between
[10,17] minutes; here, we consider an eBee drone as a benchmark, which can cover
1 km2 in 17min [6]. The priority score of each grid is randomly generated between
[1,5].

We generate 6 different instances for each network that contains 16, 25, or 36
grids where each instance is differentiated based on the assignment of a set of
attributes to the grids. We consider six different attributes, with each one having
a different number of levels (e.g., four levels for the soil type attribute such as hard
rock, rock, stiff soil, and soft soil; three levels for the wealth index attribute, which
are high, moderate, and low). We assign the attributes to the grids following two
policies: (i) assign similar attribute levels based on the geographical proximity of
grids, which produce C-type instances, C1, C2, and C3, and (ii) assign attribute
levels randomly, which generate R-type instances: R1, R2, and R3 instances. We
then use k-modes algorithm and assign the grids into five clusters [23]. Figure 2
illustrates exemplary areas of C1 and R1 instances for the area of 25 km2 where
there are five clusters represented by different shapes: a rectangle, a diamond, a
triangle, a circle, or a hexagon. Thus, grids represented by the same shape belong to
the same cluster.

We define the target coverage ratio as 0.25 and the battery capacity (i.e.,
maximum flight time) as 50min. Similar to [9], we assume that a drone that
is completely out of charge is fully charged in 5min. Accordingly, we set the
recharging time required to fill the battery for a 1-min flight time as 0.1min. The
speed of a drone is set at 60 km/h. Tmax is assumed to be 180min, and the number
of RSs equals three for each instance. Moreover, to solve the arc-based MILP
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Fig. 2 Illustrative example
of two types of instances for a
25 km2 area

formulation, we set the number of dummy RSs to 3, 5, and 7 for the instances with
16, 25, and 36 grids, respectively. We consider using one, two, and four drones.
Finally, we set the penalty weight “M” for the maximum unfulfilled coverage ratio
target to 10,000 in the objective function. Here, we aim to dominate the objective
function by the coverage penalty and distinguish the total priority score and the
resultant penalty in the objective function value by setting M to a very large number.
In our instances, total priority score can be at most 180 for the instances with 36
grids, and setting M to 10,000 causes a penalty more than 180 for any possible
amount of unfulfilled coverage ratio.

In our instances, the locations of the RSs are set via solving a p-median problem.
Let I be the set of grids in the affected region. J denotes the set of candidate RS
locations. Let sj be the time required to survey grid j . The travel time tij between
grid i and grid j is computed by the Euclidean distance between the center of grids,
and p is the number of RSs to be located. The binary variable xj equals 1 if an RS
is located to the center of grid j , and the binary variable yij equals 1 if grid i is
assigned to RS at grid j . The p-median formulation computing the locations of the
RSs is as follows.
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min
∑

i∈I

∑

j∈J

si tij yij (48)

subject to

∑

j∈J

yij = 1 ∀i ∈ I (49)

∑

j∈J

xj = p ∀i ∈ I (50)

yij − xj ≤ 0 ∀i ∈ I, j ∈ J (51)

xj ∈ {0, 1} ∀j ∈ J (52)

yij ∈ {0, 1} ∀i ∈ I, j ∈ J (53)

The objective (48) is to minimize the demand weighted total distance, where the
demand equals the survey time. Constraint (49) implies that all grids must be
assigned to exactly one RS. Constraint (50) specifies the number of RSs to be
located. Constraint (51) couples the xj and yij variables. Constraints (52) and (53)
define the domains of the decision variables.

5.2 Results

We solve 54 test instances by using the proposed formulations and the CH. CPLEX
12.8.0 is used to solve the proposed mathematical models by imposing a 30-min
time limit. The CH is coded in Python 3.6. All the numerical analyses are conducted
on a HP 8th Generation Intel Core i7 processor with 8 GB of RAM in 64-bit mode.

As explained before, the arc-based formulation requires introducing dummy
RS nodes. Considering a large number of dummy RSs increases the computation
time immensely, whereas setting an insufficient number of RSs may cut off the
optimal solution. Since it is impossible to compute the minimum sufficient number
of dummy RSs in advance, we make experiments by setting a different number of
dummy RSs. Specifically, we consider 3, 5, and 7 dummy RSs for instances with
16, 25, and 36 grids, respectively.

The path-based formulation requires generating all possible paths in advance.
The paths are generated in 3, 20, and 95 s on average for the instances with 16, 25,
and 36 grids, respectively. While we do not apply any strategies to eliminate the
redundant paths in this study, one may strengthen the path-based formulation by
identifying dominance rules (see [19]).

Tables 1 and 2 represent the computational results obtained by CPLEX for both
arc-based and path-based formulations. The objective function values are denoted
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Table 1 Computational results of the arc-based and path-based formulations for R-type and C-
type instances with 16 grids

Arc-based formulation Path-based formulation

# of # of # of CR Gap Comp. # of CR Gap Comp.
Ins. drones grids visits % ZArc % time(s) visits % Zpath % time(s)

R1 1 16 11 34 40 0.0 25.8 11 34 40 0.0 15.5

R1 2 16 16 100 51 0.0 0.6 16 100 51 0.0 1.5

R1 4 16 16 100 51 0.0 0.6 16 100 51 0.0 1.4

R2 1 16 11 33 40 0.0 1.2 11 33 39 0.0 7.9

R2 2 16 16 100 51 0.0 0.6 16 100 51 0.0 1.5

R2 4 16 16 100 51 0.0 0.6 16 100 51 0.0 1.3

R3 1 16 10 25 41 0.0 1.2 10 25 40 0.0 1.5

R3 2 16 16 100 51 0.0 0.6 16 100 51 0.0 1.4

R3 4 16 16 100 51 0.0 0.6 16 100 51 0.0 1.3

C1 1 16 10 25 41 0.0 1.7 10 25 40 0.0 2.1

C1 2 16 16 100 51 0.0 0.6 16 100 51 0.0 1.5

C1 4 16 16 100 51 0.0 0.6 16 100 51 0.0 1.4

C2 1 16 10 50 41 0.0 2.0 10 50 41 0.0 2.2

C2 2 16 16 100 51 0.0 0.6 16 100 51 0.0 1.6

C2 4 16 16 100 51 0.0 0.6 16 100 51 0.0 1.4

C3 1 16 10 25 40 0.0 30.8 10 50 40 0.0 34.3

C3 2 16 16 100 51 0.0 0.6 16 100 51 0.0 1.5

C3 4 16 16 100 51 0.0 0.6 16 100 51 0.0 1.3

by Zarc (Zpath) for the arc-based (path-based) formulation, and CR denotes the
minimum coverage ratio achieved among all clusters. All instances with 16 grids
are solved to optimality by both formulations within a 30-min time limit (usually
within a couple of seconds), as shown in Table 1. When the number of drones is
one, CR is always less than 100%. However, CR becomes 100% as more drones are
used to scan the region.

For instances with 25 grids, 12 out of 18 (12 out of 18) instances are solved to
optimality by the arc-based (path-based) formulation. Average computation times
of the arc-based (path-based) formulation are 624 (754) and 37 (230) seconds
for the all of the instances with 25 grids and for the all of the instances with 25
grids excluding the ones that cannot be solved within the computation time limit,
respectively. Even if the optimality gap of the path-based formulation is higher than
that of the arc-based formulation for some of the instances, the computed objective
function values are all the same for both formulations. Additionally, scanning with
two drones is not enough to reach 100% coverage in 25-grid instances. We observe
that increasing the number of drones from two to four helps to solve these instances
optimally. This implies that the problem may become easier to solve if there exist
enough resources to visit all grids; that is, the problem structure may be more
complicated when grid selection must be made along with routing decisions.

Similar results are observed for the instances with 36 grids. The main differences
are that computed objective function values by the arc-based and path-based
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Table 2 Computational results of the arc-based and path-based formulations for R-type and C-
type instances with 25 and 36 grids

Arc-based formulation Path-based formulation

# of # of # of CR Gap Comp. # of CR Gap Comp.
Ins. drones grids visits % ZArc % time(s) visits % Zpath % time(s)

R1 1 25 10 33 42 0.0 2.9 10 28 42 0.0 5.1

R1 2 25 21 66 68 1.5 1800 21 66 68 2.9 1800

R1 4 25 25 100 73 0.0 2.0 25 100 73 0.0 3.6

R2 1 25 11 25 41 0.0 179.5 11 25 41 0.0 1093

R2 2 25 21 66 68 1.5 1800 21 60 68 2.9 1800

R2 4 25 25 100 73 0.0 2.3 25 100 73 0.0 3.4

R3 1 25 10 33 40 0.0 230.5 10 33 40 0.0 1569

R3 2 25 21 60 68 1.5 1800 21 60 68 3.0 1800

R3 4 25 25 100 73 0.0 2.2 25 100 73 0.0 3.6

C1 1 25 10 33 41 0.0 6.7 10 33 41 0.0 6.1

C1 2 25 21 33 68 1.5 1800 21 33 68 3.0 1800

C1 4 25 25 100 73 0.0 2.3 25 100 73 0.0 3.6

C2 1 25 10 34 42 0.0 8.0 10 34 42 0.0 64

C2 2 25 21 68 68 1.9 1800 21 80 68 2.9 1800

C2 4 25 25 100 73 0.0 2.6 25 100 73 0.0 3.4

C3 1 25 10 25 42 0.0 3.2 10 25 42 0.0 5.2

C3 2 25 21 51 68 1.5 1800 21 66 68 2.9 1800

C3 4 25 25 100 73 0.0 2.1 25 100 73 0.0 3.8

R1 1 36 11 27 50 0.0 779.5 11 27 50 0.0 232.8

R1 2 36 20 45 86 3.8 1800 20 34 85 3.5 1800

R1 4 36 36 100 113 0.0 180.9 36 100 113 0.0 334

R2 1 36 11 27 41 6.3 1800 12 28 42 0.0 1735

R2 2 36 20 30 82 7.3 1800 20 30 82 6.1 1800

R2 4 36 36 100 113 0.0 274.8 36 100 113 0.0 68.1

R3 1 36 12 28 45 9.1 1800 12 28 46 0.0 829.3

R3 2 36 20 40 85 4.6 1800 20 40 85 3.2 1800

R3 4 36 36 100 113 0.0 282.8 36 100 113 0.0 32.8

C1 1 36 12 33 46 6.6 1800 12 33 44 8.1 1800

C1 2 36 20 33 85 4.7 1800 20 33 85 3.3 1800

C1 4 36 36 100 113 0.0 260.9 36 100 113 0.0 1730

C2 1 36 12 33 46 0.0 634.5 11 22 48-Ma 100 1800

C2 2 36 20 33 85 4.7 1800 20 33 85 3.3 1800

C2 4 36 36 100 113 0.0 1076 36 100 113 0.0 64.5

C3 1 36 12 33 45 8.0 1800 12 33 46 0.0 802

C3 2 36 20 34 85 4.7 1800 20 34 85 3.3 1800

C3 4 36 36 100 113 0.0 339 36 100 113 0.0 34.4
aCoverage ratio target cannot be met within 30min time limit and a large negative objective
function value is reported to indicate the unfulfilled coverage ratio target
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formulations are not always the same. For instances with 36 grids, 8 out of 18 (10 out
of 18) instances are solved to optimality by the arc-based (path-based) formulation.
Similar to the instances with 25 grids, increasing the number of drones helps to
solve the instances to optimality for instances. In addition, average computation
times of the arc-based (path-based) formulations are 1214 (1127) and 478 (586)
seconds for the all of the instances with 36 grids and for the all of the instances with
36 grids excluding the ones that cannot be solved within the computation time limit,
respectively. Setting the number of dummy RSs for larger instances is nontrivial
when the arc-based formulation is used; hence, one may prefer utilizing the path-
based formulation as both formulations show similar performances.

Post-disaster relief operations should be organized as quickly as possible. Hence,
one may not prefer waiting for the 30-min time limit. To compute a route for
each drone immediately, we proposed the CH algorithm introduced in Sect. 4. Even
though the proposed CH is relatively simpler than the metaheuristics proposed for
E-VRP (such as [16, 18, 44]), it computes high-quality and feasible solutions for
our instances within less than a second. Specifically, the CH achieves the optimal
solutions in 13 (7 and 6) out of 18 instances when there are 16 (25 and 36) grids,
which are presented in Tables 3 and 4.

We define the CH gap between the CH and the arc- and path-based mathematical
formulations as the ratio of the difference between the best-computed objective
function value by the mathematical formulations (denoted by ZBEST) and the

Table 3 Computational results of the CH and the best solution computed by the mathematical
formulations for R-type and C-type instances with 16 grids

# of # of # of CR Comp. CH
Ins. drones grids visits % time(s) ZCH ZBEST Gap%

R1 1 16 11 34 0.3 40 40 0.0

R1 2 16 16 100 0.2 51 51 0.0

R1 4 16 16 100 0.4 51 51 0.0

R2 1 16 10 33 0.2 35 40 12.5

R2 2 16 16 100 0.1 51 51 0.0

R2 4 16 16 100 0.1 51 51 0.0

R3 1 16 10 50 0.4 39 41 4.9

R3 2 16 16 100 0.2 51 51 0.0

R3 4 16 16 100 0.2 51 51 0.0

C1 1 16 10 50 0.4 40 41 2.4

C1 2 16 16 100 0.2 51 51 0.0

C1 4 16 16 100 0.2 51 51 0.0

C2 1 16 10 25 0.3 40 41 2.4

C2 2 16 16 100 0.2 51 51 0.0

C2 4 16 16 100 0.2 51 51 0.0

C3 1 16 10 50 0.3 38 40 5.0

C3 2 16 16 100 0.2 51 51 0.0

C3 4 16 16 100 0.2 51 51 0.0

CH gap equals (ZBEST-ZCH)/ZBEST where ZBEST is the best-found solution obtained by CPLEX
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Table 4 Computational results of CH and the best solution computed by MILP formulations for
R-type and C-type instances with 25 and 36 grids

# of # of # of CR Comp. CH
Ins. drones grids visits % time(s) ZCH ZBEST Gap%

R1 1 25 11 33 0.4 36 42 14.3

R1 2 25 20 55 0.7 66 68 2.9

R1 4 25 25 100 0.3 73 73 0.0

R2 1 25 11 28 0.4 36 41 12.2

R2 2 25 21 66 0.9 68 68 0.0

R2 4 25 25 100 0.4 73 73 0.0

R3 1 25 11 36 0.4 37 40 7.5

R3 2 25 20 60 0.8 65 68 4.4

R3 4 25 25 100 0.4 73 73 0.0

C1 1 25 11 33 0.4 32 41 21.9

C1 2 25 20 33 0.8 66 68 2.9

C1 4 25 25 100 0.4 73 73 0.0

C2 1 25 11 34 0.3 34 42 19.0

C2 2 25 20 40 0.8 65 68 4.4

C2 4 25 25 100 0.3 73 73 0.0

C3 1 25 11 25 0.4 33 42 21.4

C3 2 25 20 50 0.7 66 68 2.9

C3 4 25 25 100 0.4 73 73 0.0

R1 1 36 12 27 0.5 40 50 20.0

R1 2 36 21 45 0.6 79 86 8.1

R1 4 36 36 100 0.5 113 113 0.0

R2 1 36 12 27 0.4 37 42 11.9

R2 2 36 21 30 0.6 79 82 3.7

R2 4 36 36 100 0.6 113 113 0.0

R3 1 36 12 28 0.6 31 46 32.6

R3 2 36 21 40 0.6 73 85 14.1

R3 4 36 36 100 0.6 113 113 0.0

C1 1 36 12 33 0.7 39 46 15.2

C1 2 36 22 34 0.8 75 85 11.8

C1 4 36 36 100 0.6 113 113 0.0

C2 1 36 12 33 0.6 39 46 15.2

C2 2 36 22 34 0.8 75 85 11.8

C2 4 36 36 100 0.6 113 113 0.0

C3 1 36 12 33 0.3 35 46 23.9

C3 2 36 21 34 0.7 80 85 5.9

C3 4 36 36 100 0.5 113 113 0.0

CH gap equals (ZBEST-ZCH)/ZBEST where ZBEST is the best-found solution obtained by CPLEX
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objective function value computed by the CH (denoted by ZCH), to the best-
computed objective function value by the mathematical formulations. The average
percentage gaps are 2, 6, and 10% for the instances with 16, 25, and 36 grids,
respectively. The CH gaps decrease as the number of drones increases since limiting
the number of drones makes it more difficult to satisfy the coverage ratio target.
In other words, the CH first finds a feasible solution that satisfies the coverage
ratio target, and then it improves the initial solution by improvement moves. If
the coverage ratio target is satisfied more easily with the help of more drones, the
solution quality increases since the CH focuses on increasing the collected priority
scores rather than satisfying the coverage ratio target.

To sum up, the arc-based and path-based formulations result in very similar
performances concerning computation times and computed objective function
values. However, some instances cannot be solved to optimality within the 30-
min time interval. To overcome this limitation, we propose the CH heuristic that
computes a feasible solution less than a second for each instance. The quality of
the CH heuristic’s solution gets better as the number of drones increases and/or the
number of grids decreases. One may still prefer utilizing the CH heuristic that has
an average CH gap of 6%.

6 Conclusion

In this paper, we consider a post-disaster setting, in which the drones assess the
physical damages on the built infrastructure caused by an earthquake. The disaster-
affected area is firstly divided into grids where each grid has a set of attributes
comprising its infrastructure, geographical, geological, and socioeconomic condi-
tions. Then, grids are clustered based on their attributes. We address the problem of
determining the grids to scan and assess by each drone and the sequence of visits
to the selected grids given a set of drones and a limited time for assessments. We
aim to maximize the total priority score collected from the assessed grids, while a
minimum coverage ratio for each cluster is targeted.

We propose an arc-based and a path-based formulation and analyze 54 instances
varying the way of assigning attributes to grids, as well as the number of drones and
grids. We conclude that the computational performance of both formulations is very
similar. However, as the number of dummy RSs affects the arc-based formulation’s
performance and computing the adequate number of RSs is nontrivial, using path-
based formulation may be preferred. In addition to the proposed formulations, we
propose a CH that computes a feasible solution that satisfies the coverage ratio target
quickly, that is, in less than a second. The CH achieves a high level of performance
in instances with a larger number of drones since it is easy to generate an initial
feasible solution that satisfies the coverage ratio target in these cases.

Drones may play an important role in humanitarian operations by speeding up the
damage assessment operations and hence supporting relief operations. There exists
scarce literature that explores using drones in humanitarian logistics. Therefore,
there may be several future research directions. For instance, one can extend
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the proposed formulations for post-disaster damage assessment by incorporating
additional aspects of drones such as different speed options which may be affected
by weather conditions. Another possible extension is to consider the availability
of the RS on the arrival of the drone; that is, battery charging processes can be
examined in more detail. Finally, coordination of damage assessment operations
and relief operations can be addressed in future research.

Appendix 1

Tables 5 and 6 demonstrate the sets, parameters, and decision variables of the arc-
based and path-based formulations, respectively.

Table 5 Sets, parameters, and decision variables for the arc-based formulation

Sets and parameters

0 and N + 1: Same operation center for departure and arrival

I : Set of grids to be surveyed

C: Set of clusters

VR : Set of recharging stations

V ′
R : Set of dummy recharging stations

V0 = I ∪ V ′
R ∪ {0}: Set of departure vertices

V1 = I ∪ V ′
R ∪ {N + 1}: Set of arrival vertices

V ′ = I ∪ V ′
R : Set of vertices except the operation center

sj : Survey time of grid j

tij : Travel time between grid i and grid j

B: Battery capacity

r: Recharging rate

Tmax: Route duration limit

D: Number of drones

ρj : Priority score of grid j

φjc: A coverage parameter equals to 1 if grid j is in cluster c and 0 otherwise

τc: Total number of grids in cluster c

μ: Coverage ratio target

M: Sufficiently large number

Decision variables

xij : 1 if a drone travels on arc (i, j) ∈ A; 0 otherwise

aij : Departure time at grid i to grid j , (i, j) ∈ A

yij : Remaining battery departing at grid i to grid j , (i, j) ∈ A

zj : 1 if grid j ∈ I is surveyed; 0 otherwise

qj : Remaining battery before the charging operation at RS j ∈ V ′
R

βc: Coverage ratio of cluster c ∈ C

γ : Minimum coverage ratio

�: Difference between the achieved coverage ratio and the coverage ratio target
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Table 6 Sets, parameters, and decision variables for the path-based formulation

Sets and parameters

0 and N + 1: Same operation center for departure and arrival

I : Set of grids to be surveyed

C: Set of clusters

V̂ = I ∪ {0} ∪ {N + 1}: Set of all vertices
V̂0 = I ∪ {0}: Set of departure vertices
V̂1 = I ∪ {N + 1}: Set of arrival vertices
P : Set of all paths

Pij : Set of paths from i to j , (i, j) ∈ Â

sj : Survey time of grid j

tp: Travel time of path p ∈ P

B: Battery capacity

r: Recharging rate

Tmax: Route duration limit

D: Number of drones

ρj : Priority score of grid j

φjc: A coverage parameter equals to 1 if grid j is in cluster c and 0 otherwise

τc: Total number of grids in cluster c

μ: Coverage ratio target

M: Sufficiently large number

Decision variables

xp : 1 if a drone travels on path p ∈ P ; 0 otherwise
ap: Time before the drone travels on path p ∈ P

yp: Remaining battery before the drone travels on path p ∈ P

zj : 1 if grid j ∈ I is surveyed; 0 otherwise

qpl : Remaining battery before the charging operation on path p ∈ P at the lthRS

βc: Coverage ratio of cluster c ∈ C

γ : Minimum coverage ratio

�: Difference between the achieved coverage ratio and the coverage ratio target
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