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Abstract. Peer prediction mechanisms incentivize self-interested agents
to truthfully report their signals even in the absence of verification, by
comparing agents’ reports with their peers. We propose two new mech-
anisms, Source and Target Differential Peer Prediction, and prove very
strong guarantees for a very general setting.

Our Differential Peer Prediction mechanisms are strongly truthful :
Truth-telling a strict Bayesian Nash equilibrium. Also, truth-telling pays
strictly higher than any other equilibria, excluding permutation equilib-
ria, which pays the same amount as truth-telling.

The guarantees hold for asymmetric priors which the mechanisms
need not know (prior-free) in the signal question setting. Moreover, they
only require three agents, each of which submits a signal item report : one
reports her forecast and the others their signals.

Our proof technique is straightforward, conceptually motivated, and
turns on the logarithmic scoring rule’s special properties.

Moreover, we can recast the Bayesian Truth Serum mechanism [11]
into our framework. We can also extend our results to the setting of con-
tinuous signals with a slightly weaker guarantee on the optimality of the
truthful equilibrium.

Keywords: Peer prediction · Log scoring rule · Prediction market

1 Introduction

Crowd-sourcing relies on eliciting truthful information from agents. Peer predic-
tion is the problem of information elicitation without verification. Incentivizing
agents is important so that they not only participate, but provide thoughtful
and accurate information. This has a multitude of applications including peer-
grading, reviews, and labeling data (for machine learning or research). In the
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single-question setting agents are only asked one question. Our goal is to elicit
truthful information from agents with minimal requirements.

For example, say three friends watch a political debate on television. We
would like to ask each of them who won the debate and pay them to incentivize
truthful answers. This situation will be modeled as each agent receiving some
information from the debate about which candidate won. Moreover, prior to the
debate, there is a joint prior distribution over the signals of the different agents
which is common knowledge among the agents. Thus, one friend’s belief on who
won yields some insights about the perceived winners of the other friends.

We will design mechanisms to compensate the agents for their information.
We would like our mechanisms to have the following desirable properties:

Strongly Truthful [8]. Providing truthful answers is a Bayesian Nash equilib-
rium (BNE) and also guarantees the maximum agents’ welfare among any
equilibrium. This maximum is “strict” with the exception of a few unnatural
permutation equilibria where agents report according to a relabeling of the
signals (defined more formally in Sect. 2).1 This will incentivize the agents to
tell the truth–even if they believe the other agents will disagree with them.
Moreover, they have no incentive to coordinate on an equilibrium where they
do not report truthfully. In particular, note that playing a permutation equi-
librium still requires as much effort from the agents as playing truth-telling.

General Signals. The mechanism should work for heterogeneous agents who
may even have continuous signals (with a weaker truthfulness guarantee). In
our above example, the friends may not have the same political leanings, and
the mechanism should be robust to that. Furthermore, instead of a single
winner, we may want to elicit the magnitude of their (perceived) victory.

Detail-Free. The mechanism is not required to know the specifics about the
different agents (e.g. the aforementioned joint prior). In the above example,
the mechanism should not be required to know the a priori political leanings
of the different agents.

On Few Agents. We would like our mechanisms to work using as few agents
as possible, in our case, three.

Single-Item Reports. We would like to make it easy for agents so that they
provide very little information: only one item, either their signal or a predic-
tion. In our case, two agents will need to provide their signals (e.g. whom they
believe won the debate). The remaining agent will need to provide a predic-
tion on one outcome—a single real value. (e.g. their forecast for how likely a
particular other agent was to choose a particular candidate as the victor).

1.1 Related Work

Single Task Setting. In this setting, each agent receives a single signal from a
common prior. Miller et al. [10] introduce the first mechanism for single task sig-
nal elicitation that has truth-telling as a strict Bayesian Nash equilibrium and
1 Kong and Schoenebeck [8] show that it is not possible for truth-telling to pay strictly

more than permutation equilibrium in detail-free mechanisms.
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does not need verification. However, their mechanism requires full knowledge of
the common prior and there exist some equilibria that agents get paid more than
truth-telling. At a high level, the agents can all simply submit the reports with
the highest expected payment and this will typically yield a payment much higher
than that of truth-telling. Note that this is both natural to coordinate on (in fact,
Gao et al. [3] found that in an online experiment, agents did exactly this) and
does not require any effort toward the task from the agents. Kong et al. [5] modify
the above mechanism such that truth-telling pays strictly better than any other
equilibrium but still requires the full knowledge of the common prior.

Prelec [11] designs the first detail-free peer prediction mechanism—Bayesian
truth serum (BTS). Moreover, BTS is strongly truthful and can easily be made to
have one-item reports. However, BTS requires an infinite number of participants,
does not work for heterogeneous agents, and requires the signal space to be finite.
The analysis, while rather short, is equally opaque. A key insight of this work is
to ask agents not only about their own signals, but forecasts (prediction) of the
other agents’ reports.

A series of works [12,13,17–19] relax the large population requirement of BTS
but lose the strongly truthful property. Zhang and Chen [19] is unique among
prior work in the single question setting in that it works for heterogeneous agents
whereas other previous detail-free mechanisms require homogeneous agents with
conditionally independent signals.

Kong and Schoenebeck [6] introduce the Disagreement Mechanism which
is detail-free, strongly truthful (for symmetric equilibrium), and works for six
agents. Thus it generalizes BTS to the finite agent setting while retaining strong
truthfulness. However, it requires symmetric agents, cannot handle continuous
signals, and fundamentally requires that each agent reports both a signal and
a prediction. Moreover, its analysis is quite involved. However, it is within the
BTS framework, in that it only asks for agents’ signals and predictions, whereas
our mechanism typically asks at least one agent for a prediction after seeing the
signal of another agent.

Truthful # Strongly General

Agents truthful signals

BTS [11] � ∞ �
Robust BTS [17] � 3

Disagreement [6] � 6 �
Knowledge-free peer prediction [19] � 3 �
Differential peer prediction � 3 � �

Continuous Single Task Setting. Kong et al. [9] shows how to generalize both BTS
and the Disagreement Mechanism (with similar properties including homogeneous
agents), into a restricted continuous setting where signals are Gaussians related
in a simple manner. The generalization of the Disagreement Mechanism requires
the number of agents to increase with the dimension of the continuous space.
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The aforementioned Radanovic and Faltings [13] considers continuous singles.
However, it uses a discretization approach which yields exceedingly complex
reports. Additionally, it requires homogeneous agents.

In a slightly different setting, Kong and Schoenebeck [7] study eliciting
agents’ forecasts for some (possibly unverifiable) event, which are continuous
values between 0 and 1. However, here we are concerned with eliciting signals
which can be from a much richer space.

Multi-task Setting. In the multitask setting, introduced in Dasgupta and Ghosh
[2], agents are assigned a batch of a priori similar tasks which require each agents’
private information to be a binary signal. Several works extend this to multiple-
choice questions [2,4,8,14]. The multi-task setting is easier to work in than the
single-task setting because the mechanism can better deduce the strategy of any
particular agent by comparing reports across questions. However, this setting
is substantially more restrictive than the single-question setting of the present
paper in that it is important the questions are all similar and gives no guarantees
when questions have different priors. An example of when this requirement holds
is asking agents to label images as “cat” or “no cat”.

1.2 Our Contributions

– We define two Differential Peer Prediction mechanisms (Mechanism 1 and 2)
which are strongly-truthful and detail-free for the single question setting and
only require a single item report from three agents. Moreover, the agents need
not be homogeneous and their signals may be continuous.

– We provide a simple, conceptually motivated proof for the guarantees of
Differential Peer Prediction mechanisms. Especially in contrast to the most
closely related work [6] our proof is very simple.

– We show special properties of the logarithmic scoring rules (see Techniques
below for details). This allows the construction of target incentives where an
agent is rewarded when is signal is predicted well, and we believe will also be
of independent interest.

– We recast the Bayesian Truth Serum mechanism into our framework, showing
that it is a target incentive mechanism (Sect. 4). This gives added intuition
for its guarantees.

1.3 Summary of Our Techniques

Target Incentive Mechanisms. Many of the mechanisms for the single ques-
tion use what we call source incentives: they pay agents for reporting a signal
that improves the prediction of another agent’s signal. The original peer pre-
diction mechanism [10] does exactly this. To apply this idea to the detail-free
setting [17,19], mechanisms take a two-step approach: they first elicit an agent’s
prediction of some target agent’s report, and then measure how much that pre-
diction improves given a report from a source agent.
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In Sect. 3.2, we explicitly develop a technique, which we call target incentives,
for rewarding certain agents for signal reports that agree with a prediction about
them. In particular, we show that log scoring rules can elicit signals as well as
forecasts. This may be of independent interest, and is also the foundation for
the results in Sects. 3.2 and 4.

Information Monotonicity. We use information monotonicity, a tool from infor-
mation theory, to obtain strong truthfulness. Like the present paper, the core
of the argument that the Disagreement Mechanism [6] is strongly truthful (for
symmetric equilibrium) is based on information monotonicity. However, because
it is hard to characterize the equilibria in the Disagreement Mechanism, the
analysis ends up being quite complex. A framework for deriving strongly truth-
ful mechanisms from information monotonicity, which we implicitly employ, is
distilled in Kong and Schoenebeck [8].

In Sect. 3, we use the above techniques to develop strongly truthful mech-
anisms, source-Differential Peer Prediction and target-Differential Peer Predic-
tion, for the single question setting. Source-Differential Peer Prediction is quite
similar to the Knowledge-Free Peer Prediction Mechanism[19], however, it is
strongly truthful. Target-Differential Peer Prediction also uses the target incen-
tive techniques above.

2 Preliminaries

2.1 Peer Prediction Mechanism

There are three characters, Alice, Bob and Chloe in our mechanisms. Alice (and
respectively Bob, Chloe) has a privately observed signal a (respectively b, c) from
a set A (respectively B, C). They all share a common belief that their signals
(a, b, c) are generated from a random variable (A,B,C) which takes values from
A × B × C with a probability measure P called common prior. P describes how
agents’ private signals relate to each other’s.

Agents are Bayesian. For instance, after Alice receives A = a, she updates
her belief to the posterior P ((B,C) = (·, ·) | A = a) which is a distribution over
the remaining signals. We will use PB,C|A(· | a) instead to simplify the notion.
Similarly Alice’s posterior of Bob’s signal is denoted by PB|A(· | a), which is a
distribution on B.

A peer prediction mechanism on Alice, Bob, and Chloe has three payment
functions (UA, UB , UC). The mechanism first collects reports r := (rA, rB , rC)
from agents. We pay Alice with UA(r) (and Bob and Chloe analogously). Alice’s
strategy θA is a (random) function from her signal to a report. All agents are
rational and risk-neutral that are only interested in maximizing their (expected)
payment. Thus, given a strategy profile θ := (θA, θB , θC), Alice, for example,
wants to maximize her expected ex-ante payment under common prior P which
is uA(θ;P ) := EP,θ [UA(r)]. Let ex-ante agents’ welfare denote the sum of ex-
ante payment to all agents, uA(θ;P )+uB(θ;P )+uC(θ;P ). A strategy profile θ is
a Bayesian Nash equilibrium under common prior P if by changing the strategy



124 G. Schoenebeck and F.-Y. Yu

unilaterally, an agent’s payment can only weakly decrease. It is a strict Bayesian
Nash equilibrium if an agent’s payment strictly decreases as her strategy changes.

We want to design peer prediction mechanisms to “elicit” all agents to report
their information truthfully without verification. We say Alice’s strategy τA is
truthful for a mechanism M if Alice truthfully reports the information requested
by the mechanism.2 We call the strategy profile τ truth-telling if each agent
reports truthfully. Moreover, we want to design detail-free mechanisms which
have no knowledge about the common prior P except agents’ (possible non-
truthful) reports. However, agents can always relabel their signals and detail-
free mechanisms cannot distinguish such a strategy profile from the truth-telling
strategy profile. We call these strategy profiles permutation strategy profiles.
They can be translated back to truth-telling reports by some permutations
applied to each component of A × B × C—that is, the agents report accord-
ing to a relabeling of the signals.

We now define some goals for our mechanism that differ in how unique the
high payoff of truth-telling is. We call a mechanism truthful if the truth-telling
strategy profile τ is a strict Bayesian Nash equilibrium. However, in a truth-
ful mechanism, often non-truth-telling equilibria may yield a higher ex-ante
payment for each agent. In this paper, we aim for strongly truthful mech-
anisms [8] which are not only truthful but also ensure the ex-ante agents’ wel-
fare in truth-telling strategy profile τ is strictly better than all non-permutation
equilibria. Note that in a symmetric game, this ensures that each agent’s indi-
vidual expected ex-ante payment is maximized by truth-telling compared to any
other symmetric equilibrium.

Now, we define the set of common priors that our detail-free mechanisms
can work on. Note peer’s reports are not useful when every agent’s signal are
independent of each other. Thus, a peer prediction mechanism needs to exploit
some interdependence between agents’ signals.

Definition 1 (Zhang and Chen [19]). A common prior P is 〈A,B,C〉-second
order stochastic relevant if for any distinct signals b, b′ ∈ B, there is a ∈ A, such
that PC|A,B(· | a, b) �= PC|A,B(· | a, b′). Thus, when Alice with a is making a
prediction to Chloe’s signal, Bob’s signal is relevant so that his signal induces
different predictions when B = b or B = b′.

We call P second order stochastic relevant if the above statement holds
for any permutation of {A,B,C}.3

To avoid measure theoretic concerns, we initially require that P has full
support, and the joint signal space A × B × C to be finite. In the full version, we
will show how to extend our results to general measurable spaces.

2 Here we do not define the notion of truthful reports formally, because it is intuitive
in our mechanisms. For general setting, we can use query models to formalize it [15].

3 Our definition has some minor differences from Zhang and Chen [19]’s, for ease of
exposition. For instance, they only require the statement holds for one permutation
of {A, B, C} instead of all the permutations.
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2.2 Proper Scoring Rules

Scoring rules are powerful tools to design mechanisms for eliciting predictions.
Consider a finite set of possible outcomes Ω, e.g., Ω = {sunny, rainy}. An expert,
Alice, first reports a distribution P̂ ∈ P(Ω) as her prediction of the outcome,
where P(Ω) denotes the set of all probability measures on Ω. Then, the mech-
anism and Alice observe the outcome ω. The mechanism gives Alice a score
PS[ω, P̂ ]. To the end, if Alice believes the distribution of ω to be P , she maxi-
mizes her expected score by reporting P truthfully. We call such scoring function
proper defined as follow:

Definition 2. A scoring rule PS : Ω × P(Ω) �→ R is proper if for any dis-
tributions P, P̂ ∈ P(Ω) we have Eω∼P [PS[ω, P ]] ≥ Eω∼P

[
PS[ω, P̂ ]

]
. A scoring

rule PS is strictly proper when the equality holds only if P̂ = P .

Given any convex function f , one can define a new proper scoring rule PSf [8].
In this paper, we consider a special scoring rule called the logarithmic scoring
rule [16], defined as

LSR[ω, P ] := log (p(ω)) , (1)

where p : Ω → R is the probability density function of P .

2.3 Information Theory

Peer prediction mechanisms and prediction markets incentivize agents to truth-
fully report their signals even in the absence of verification . One key idea these
mechanisms use is that agents’ signals are interdependent and strategic manipu-
lation can only dismantle this structure. Here we introduce several basic notions
from information theory [1].

The KL-divergence is a measure of the dissimilarity between two distribu-
tions: Let P and Q be probability measures on a finite set Ω with density func-
tions p and q respectively. The KL divergence (also called relative entropy)
from Q to P is DKL(P‖Q) :=

∑
ω∈Ω −p(ω) log (q(ω)/p(ω)).

We now introduce mutual information, which measures the amount of infor-
mation between two random variables: Given a random variable (X,Y ) on a
finite set X × Y , let pX,Y (x, y) be the probability density of the random vari-
able (X,Y ), and let pX(x) and pY (y) be the marginal probability density of X
and Y respectively. The mutual information I(X;Y ) is the KL-divergence
from the joint distribution to the product of marginals:

I(X;Y ) :=
∑

x∈X ,y∈Y
pX,Y (x, y) log

pX,Y (x, y)
pX(x)pY (y)

= DKL(PX,Y ‖PX ⊗ PY )

where ⊗ denotes the tensor product between distributions. Moreover, if (X,Y,Z)
is a random variable, the mutual information between X and Y conditional on
Z is

I(X;Y | Z) := EZ [DKL(P(X,Y )|Z‖PX|Z ⊗ PY |Z)].
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The data-processing inequality shows no manipulation of the signals can
improve mutual information between two random variables, and the inequality
if of fundamental importance in information theory.

Theorem 1 (Data processing inequality). If X → Y → Z form a Markov
chain,4

I(X;Y ) ≥ I(X;Z).

By basic algebraic manipulations, Kong and Schoenebeck [8] relate proper
scoring rules to mutual information as follows: For two random variables X and
Y ,

Ex,y [LSR[y, P (Y | x)] − LSR[y, P (Y )]] = I(X;Y ). (2)

We can generalize the mutual information in two ways [8]. The first is to
define f − MI using the f -divergence, where f is a convex function, to measure
the distance between the joint distribution and the product of the marginal
distributions. The KL-divergence is just a special case of the f -divergence. This
retains the symmetry between the inputs.

The second way is to us a different proper scoring rule. As mentioned,
any convex function f gives rise to a proper scoring rule PSf . Then the
Bregman Mutual information can be defined as in Eq. (2): BMIf (X,Y ) :=
Ex,y[PSf (y, PY |X(· | x)] − PSf (y, PY (·)]. Note that by the properties of proper
scoring rules BMI is information monotone in the first coordinate; however, in
general it is not information monotone in the second.

Thus, by Eq. (2), mutual information is the unique measure that is both
a Bregman mutual information and an f -MI. This observation is one key for
designing our strongly truthful mechanisms.

3 Experts, Targets and Sources: Strongly Truthful Peer
Prediction Mechanisms

In this section, we show how to design strongly truthful mechanisms to elicit
agents’ signals by implicitly running a prediction market.

Our mechanisms have three characters, Alice, Bob, and Chloe, and there are
three roles: expert, target, and source:

– An expert makes predictions on a target’s report,
– a target is asked to report his signal, and
– a source provides her information to an expert to improve the expert’s pre-

diction.

By asking agents to play these three roles, we design two strongly truthful mech-
anisms based on two different ideas.

The first mechanism is source differential peer prediction (S-DPP). This
mechanism is based on the knowledge-free peer prediction mechanism by Zhang
4 Random variables X, Y and Z form a Markov chain if the conditional distribution

of Z depends only on Y and is conditionally independent of X.
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and Chen [19], which rewards a source by how useful her signal is for an expert
to predict a target’s report. Their mechanism is only truthful but not strongly
truthful. We carefully shift the payment functions and employ Eq. (2) and the
data-processing inequality on log scoring rule to achieve the strongly truthful
guarantee.

We further propose a second mechanism, target differential peer prediction
(T-DPP). Instead of rewarding a source, the T-DPP mechanism rewards a target
by the difference of the logarithmic scoring rule on her signal between an initial
prediction and an improved prediction. Later in Sect. 4 we show Bayesian truth
serum can be seen as a special case of our T-DPP mechanism.

Then we discuss how to remove the temporal separation between agents
making reports in Sect. 3.3 where agents only need to report once, and their
reports do not depend on other agents’ reports.

3.1 The Source Differential Peer Prediction Mechanism

The main idea of the S-DPP mechanism is that it rewards a source by the use-
fulness of her signal for predictions. Specifically, suppose Alice acts as an expert,
Bob as the target, and Chloe as the source. Our mechanism first asks Alice to
make an initial prediction Q̂ on Bob’s report. Then after Chloe’s reporting her
signal, we collect Alice’s improved prediction Q̂+ after seeing Chloe’s addi-
tional information. In each case, Alice maximizes her utility by reporting her
Bayesian posterior conditioned on her information.

The payments for Alice and Bob are simple. S-DPP pays Alice by the sum
of the logarithmic scoring rule on those two predictions. And S-DPP pays Bob
0. Chloe’s payment consists of two parts: First, we pay her the prediction score
of the improved prediction Q̂+. By the definition of proper scoring rule (Defi-
nition 2), Chloe will report truthfully to maximize it. For the second part, we
subtract Chloe’s payment by three times the score of the initial prediction Q̂.
This ensures the ex-ante agent welfare equals the mutual information, which is
maximized at the truth-telling strategy profile. To ensure Bob also reports his
signal truthfully, we randomly permute Bob and Chloe’s roles in the mechanism.

Theorem 2. If the common prior P is second order stochastic relevant on a
finite set with full support, Mechanism 1 is strongly truthful:

1. The truth-telling strategy profile τ is a strict Bayesian Nash equilibrium.
2. The ex-ante agents’ welfare in the truth-telling strategy profile τ is strictly

better than all non-permutation strategy profiles.

We defer the proof to the full version. Intuitively, because the logarithmic
scoring rule is proper, Alice (the expert) will make the truthful predictions when
Bob and Chloe report their signals truthfully. Similarly, the source is willing to
report her signal truthfully to maximize the improved prediction score. This
shows Mechanism 1 is truthful.

Note that if the agents’ common prior P is symmetric, we can random-
ize the roles among Alice, Bob, and Chloe to create a symmetric game where
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Mechanism 1. Two-round Source Differential Peer Prediction
Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn

from second order stochastic relevant common prior P known to all three agents.
LSR is the logarithmic scoring rule (1).

1: Bob and Chloe report their signals, b̂ and ĉ.
2: Set Alice as the expert. Randomly set Bob or Chloe as the target and the other as

the source. We use t to denote the target’s report, and use s to denote the source’s
report.

3: Alice is informed who is the target and predicts the target’s report t with Q̂.
4: Given the source’s report s, the expert makes another prediction Q̂+.
5: The payment to the expert is LSR[t, Q̂] + LSR[t, Q̂+].
6: The payment to the target is 0.
7: The payment to the source is LSR[t, Q̂+] − 3LSR[t, Q̂].

each agent’s expected payment at the truth-telling strategy profile is both non-
negative and maximized among all symmetric equilibria.

3.2 Target Differential Peer Prediction Mechanism

The target differential peer prediction mechanism (T-DPP) is identical to the
S-DPP except for the payment functions. In contrast to the S-DPP mechanism,
T-DPP rewards a target. We show that paying the difference between initial
prediction and an improved prediction on a target’s signal can incentivize the
target to report truthfully. (Lemma1).

Our mechanism pays Alice by the sum of log scoring on those two predictions.
And the mechanism pays Bob by the improvement from the initial prediction Q̂
to the improved prediction Q̂+. Finally, Chloe’s payment depends on Alice’s first
initial prediction Q̂, which is independent of Chloe’s action. To ensure Chloe also
reports her signal truthfully, we permute the roles of Bob and Chloe randomly
in the mechanism as well.

Mechanism 2. Two-round Target Differential Peer Prediction
Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn

from second order stochastic relevant common prior P known to all three agents.
LSR is the logarithmic scoring rule (1).

1: Bob and Chloe report their signals, b̂ and ĉ.
2: Set Alice as the expert. Randomly set Bob or Chloe as the target and the other as

the source. We use t to denote the target’s report, and use s to denote the source’s
report.

3: Alice is informed who is the target and predicts the target’s report t with Q̂.
4: Given the source’s report s, the expert makes another prediction Q̂+.
5: The payment to the expert is LSR[t, Q̂] + LSR[t, Q̂+].
6: The payment to the target is LSR[t, Q̂+] − LSR[t, Q̂].
7: The payment to the source is −2LSR[t, Q̂].



Differential Peer Prediction 129

Theorem 3. If the common prior P is second order stochastic relevant on a
finite set with full support, Mechanism 2 is strongly truthful

We defer the proof to the full version, and provide a sketc.h here. We first
show Mechanism 2 is truthful. Because the log scoring rule is proper, Alice
(the expert) will make the truthful predictions when Bob and Chloe report their
signals truthfully. Thus, the difficult part is to show the target is willing to report
his signal truthfully, if the expert and the source are truthful. Because the roles
of Bob and Chloe are symmetric in the mechanism, we can assume Bob is the
target and Chloe is the source from now on.

Lemma 1 (Logarithmic proper scoring rule reversed). Suppose Alice
and Chloe are truthful, and the common prior is 〈A,B,C〉-second order stochas-
tic relevant. As the target, Bob’s best response is to report his signal truthfully.

This is a generalization of a lemma in Prelec [11] and Kong and Schoenebeck
[8], and extends to non-symmetric prior and finite agent setting. The main idea
is that to maximize Bob’s expected payment, we show that equivalently Bob
wants to maximize a proper scoring rule with prediction P (C | θ(b)) on pre-
dicting Chloe’s report. Therefore, by the property of proper scoring rules, Bob
is incentivized to tell the truth. We defer the proof to the full version. With
Lemma 1, the rest of the proof is very similar to the proof of Theorem 2.

3.3 Single-Round DPP Mechanism for Finite Signal Spaces

When the signal spaces are finite, the above two-round mechanisms (Mecha-
nisms 1 and 2) can be reduced to single-round mechanisms by using virtual
signal w. That is for Alice’s improved prediction we provide Alice with a ran-
dom virtual signal w instead of the actual report from the source, and pay her
the prediction score when the source’s report is equal to the virtual signal s = w.
We defer the formal mechanism to the full version.

4 Bayesian Truth Serum as a Prediction Market

In this section, we revisit the original Bayesian Truth Serum (BTS) by Prelec
[11] from the perspective of prediction markets. We first define the setting, which
is a special case of ours (Mechanism 2), and use the idea of prediction markets
to understand BTS.

4.1 Setting of BTS

There are n agents. They all share a common prior P . We call P is admissible
if it consists of two main elements: states and signals. The state T is a random
variable in {1, . . . , m}, m ≥ 2 which represents the true state of the world. Each
agent i observes a signal Xi from a finite set Ω. The agents have a common
prior consisting of PT (t) and PX|T (· | t) such that the prior joint distribution of
x1, . . . , xn is Pr(X1 = x1, . . . , Xn = xn) =

∏
t∈[m] PT (t)

∏
i∈[n] PX|T (xi | t).

Now we restate the main theorem concerning Bayesian Truth Serum:
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Mechanism 3. The original BTS
Require: α > 1
Ensure: The common prior is admissible
1: Agent i reports x̂i ∈ Ω and Q̂i ∈ P(Ω).
2: For each agent i, choose a reference agent j �= i uniformly at random. Compute

Q
(n)
−ij ∈ P(Ω) such that for all x ∈ Ω

Q
(n)
−ij(x) =

1

n − 2

∑

k �=i,j

1[x̂k = x] (3)

which is the empirical distribution of the other n − 2 agents’ reports.
3: The prediction score and information score of i are

SPre = LSR
[
x̂j , Q̂i

]
− LSR

[
x̂j , Q

(n)
−ij

]
and SIm = LSR

[
x̂i, Q

(n)
−ij

]
− LSR

[
x̂i, Q̂j

]
.

And the payment to i is SPre + α SIm.

Theorem 4 [11]. For all α > 1, if the common prior P is admissible and n →
∞, Mechanism 3 is strongly truthful.

4.2 Information Score and Prediction Market

Prelec [11] uses clever algebraic calculation to prove this main results. Kong and
Schoenebeck [8] use information theory to show that for BTS the ex-ante agents’
welfare for the truth-telling strategy profile is strictly better than for all other
non-permutation equilibria. Here we use prediction markets to show BTS is a
truthful mechanism, and use Mechanism 2 to reproduce BTS.

The payment from BTS consists of two parts, the information score, SIm, and
the prediction score, SPre. The prediction score is exactly the log scoring rule and
is well-studied in the previous literature. However, the role of information score
is more complicated. Here we provide an interpretation based on Mechanism 2.

We consider i = 2 and j = 1 in BTS and call them Bob and Alice respectively.
We let Chloe be the collection of other agent {3, 4, . . . , n}. Let’s run Mechanism 2
on this information structure. Bob is the target. Alice’s initial prediction is Q =
PX2|X1(· | x1). When Chloe’s signal is x3, x4, . . . , xn, Alice’s improved prediction
is Q+ = PX2|X−2(· | x−2) where x−2 = (x1, x3, . . . , xn) is the collection of all
agents’ reports expect Bob’s. By Lemma 1, Bob is still incentivized to report his
private signal x2 which maximizes the expectation, LSR[x̂2, Q

+] − LSR[x̂2, Q]
that equals to

LSR[x̂2, PX2|X−2(· | x−2)] − LSR[x̂2, PX2|X1(· | x1)]. (4)

For the BTS (Mechanism 3), the information score in BTS at truth-telling strat-
egy profile is LSR[x̂i, Q

(n)
−ij ] − LSR[x̂i, Q̂j ] which equals to

LSR
[
x̂2, Q

(n)
−ij

]
− LSR

[
x̂2, PX2|X1(· | x1)

]
. (5)
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The only difference between (4) and (5) is the first term: PX2|X−2(· |
x1, x3, . . . , xn) and Q

(n)
−ij . Therefore, the original BTS reduces to a special case

of Mechanism 2 as n → ∞, if we can show limn→∞ P (X2 | x1, x3, . . . , xn) =
limn→∞ Q

(n)
−ij . Formally,

Proposition 1. For all t = 1, . . . ,m and w ∈ Ω,

Q
(n)
−ij(w) − PX2|X−2(w | x1, x3, . . . , xn)

PX|T (·|t)−−−−−−→ 0 as n → ∞.

That is the difference between these estimators converges to zero in probability
as n goes to infinity.

5 Conclusion

We define two Differential Peer Prediction mechanisms for the single question
setting which are strongly-truthful, detail-free, and only require a single item
report from three agents. Moreover, the agents need not to be homogeneous
and their signals may be continuous. We also show a new property of the loga-
rithmic scoring rules, apply it to make target incentive mechanisms, and show
that BTS can be seen as such a mechanism. One future direction is to use this
machinery to analyse when BTS retains its strongly truthful guarantee, e.g. for
what parameters of finite and/or heterogeneous agents. We define Differential
Peer Prediction, a strongly-truthful, detail-free, mechanism for the single ques-
tion setting that only requires a single item report from three agents. Moreover,
the agents need not be homogeneous and their signals may be continuous. We
provide a simple, conceptually motivated proof for the guarantees of Differential
Peer Prediction, which ties together several themes in the information elicitation
literature.
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