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Abstract. We study fair allocation of indivisible goods among agents.
Prior research focuses on additive agent preferences, which leads to an
impossibility when seeking truthfulness, fairness, and efficiency. We show
that when agents have binary additive preferences, a compelling rule—
maximum Nash welfare (MNW)—provides all three guarantees. Specifi-
cally, we show that deterministic MNW with lexicographic tie-breaking
is group strategyproof in addition to being envy-free up to one good and
Pareto optimal. We also prove that fractional MNW—known to be group
strategyproof, envy-free, and Pareto optimal—can be implemented as a
distribution over deterministic MNW allocations, which are envy-free
up to one good. Our work establishes maximum Nash welfare as the
ultimate allocation rule in the realm of binary additive preferences.

Keywords: Fair division · Mechanism design

1 Introduction

Fair division [13,28] is a sprawling field that cuts across scientific disciplines.
Among its many challenges, the division of indivisible goods—an ostensible
oxymoron—is arguably the most popular in recent years. The goods are “indi-
visible” in the sense that each must be allocated in its entirety to a single agent
(think of pieces of jewelry or tickets to different football games in a season).
Each agent has her own valuation function, which represents the benefit the
agent derives from bundles of goods.

A fully expressive model of valuation functions would have to account for
combinatorial preferences. Classic examples include a right shoe that is worthless
without its matching left shoe (complementarities), and two identical refrigera-
tors (substitutes). However, rich preferences can be difficult to elicit. It is often
assumed, therefore, that the valuation functions are additive, that is, that each
agent’s value for a bundle of goods is the sum of her values for individual goods
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in the bundle. Additive valuations strike a balance between expressiveness and
ease of elicitation; in particular, each agent need only report her value for each
good separately.

Another advantage of additive valuations is that they admit a practical
rule that is both (economically) efficient and fair. Specifically, the Maximum
Nash Welfare (MNW) solution—which maximizes the product of valuations and,
therefore, is obviously Pareto optimal (PO)—is envy-free up to one good (EF1):
for any two agents i and j, it is always the case that i prefers her own bundle to
that of j, possibly after removing a single good from the latter bundle [16].

The MNW solution, however, is not strategyproof, that is, agents can benefit
by misreporting their preferences. In fact, under additive valuations, the only
Pareto optimal and strategyproof rule is serial dictatorship, which is patently
unfair [24]. This profound clash between efficiency and truthfulness holds true
even when agents can only have three possible values for goods!

The only hope for reconciling efficiency, fairness and truthfulness, therefore, is
to assume that agents’ values for goods are binary. This assumption is not just a
theoretical curiosity: while it obviously comes at a significant cost to expressive-
ness, it leads to extremely simple elicitation. In this sense, it arguably represents
another natural point on the conceptual expressiveness-elicitation Pareto fron-
tier. The same bold tradeoff has long been considered sensible in the literature
on voting, where binary values are implicitly represented as approval votes [12];
in fact, the assumption underlying some of the recent work on approval-based
multi-winner elections [17,26] is nothing but that of binary additive valuations.
Thus, it is not surprising that many works in fair division pay special attention
to the case of binary additive valuations [1,6,11,20,23].

With this rather detailed justification for binary additive valuations in mind,
our primary research question is this: do binary additive valuations admit rules
that are efficient, fair, and truthful?

1.1 Our Contribution

We provide a positive answer— and then some. Specifically, Theorem 1 asserts
that, under binary additive valuations, a particular form of the MNW solution
is Pareto optimal, EF1, group strategyproof (even a coalition of agents can-
not misreport its members’ preferences in a way that benefits them all) and
polynomial-time computable.

Furthermore, we show that by randomizing over MNW allocations, we can
achieve ex ante envy-freeness (each agent’s expected value for their random
allocation is at least as high as for any other agent’s), ex ante Pareto optimality,
ex ante group strategyproofness, and ex post EF1 simultaneously in polynomial
time. In other words, randomization allows us to circumvent the mild unfairness
that is inherent in deterministic allocations of indivisible goods without losing
the other guarantees. In our view, these results are essentially the final word on
how to divide indivisible goods under binary additive valuations.
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1.2 Related Work

There is an extensive body of work on fair division, much too large to survey
here. Instead, we focus on the most closely related work on fair division with
binary valuations.

The most closely related work is that of Babaioff et al. [5], who, independently
and in parallel to our work, also discovered some of the results that we present
for the deterministic MNW rule. Specifically, their prioritized egalitarian mech-
anism is identical to our deterministic MNWtie mechanism presented in Sect. 3.
They show that this rule is strategyproof, EFX,1 PO, Lorenz-dominating, and
polynomial-time computable. This is very similar to our Theorem 1. The dif-
ference is that we strengthen strategyproofness to group strategyproofness, but
only establish EF1 (weaker than EFX) and do not establish Lorenz-dominance.
We note that the EFX property is also established by Amanatidis et al. [3].
We view these results as complementary to ours. Together, they establish that
MNWtie is group strategyproof, EFX, PO, Lorenz-dominating, and polynomial-
time computable, making it even more compelling. We note that Babaioff et al.
[5] do not study randomized allocation rules, which we focus on in Sect. 4.

Ortega [31] studies a slightly more general problem where there may be
multiple copies of each good, but each agent can receive at most one copy of any
good. His egalitarian solution is identical to our fractional MNW rule in terms
of the probability of each good going to each agent, but he does not discuss
how to implement these fractional allocations as a distribution over integral
allocations with good properties. He shows that this rule is ex ante envy-free, ex
ante PO, and ex ante group strategyproof. However, he uses a weaker notion of
strategyproofness, where agents are only allowed to report a good that they like
as one that they do not like, but not vice-versa. As we note in Sect. 4, in our
(standard) setting with a single copy of each good, these guarantees (including
the stronger strategyproofness notion, or even group strategyproofness) follow
directly from prior work [25]. Hence, our main focus in Sect. 4 is to prove an ex
post EF1 guarantee, which Ortega [31] does not provide.

Two central concepts in our work are maximum Nash welfare (MNW) and
leximin allocations. Aziz and Rey [4] show that under binary additive valuations,
all leximin allocations are also MNW allocations. As we observe in Sect. 3, this,
together with known properties of the two solutions, immediately implies that
the sets of MNW and leximin allocations are identical. Benabbou et al. [7] extend
this equivalence to a more general valuation class.

On the computation front, our polynomial-time computability result for the
deterministic MNWtie rule builds upon on efficient algorithms by Darmann and
Schauer [20] and Barman et al. [6] for finding an MNW allocation under binary
additive valuations; specifically, our algorithm starts from an arbitrary MNW
allocation computed by either of these algorithms, and then iteratively finds a
special MNW allocation that MNWtie outputs. Benabbou et al. [7] also show
1 There are two popular definitions of EFX [3]; this result holds for the stronger one:

an allocation is EFX if the envy that one agent has toward another can be eliminated
by removing any good from the envied agent’s bundle.
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that an MNW allocation can be computed efficiently under their more general
valuation class.

2 Preliminaries

For k ∈ N, let [k] = {1, . . . , k}. Let N = [n] denote a set of agents, and M denote
a set of m indivisible goods. Each agent i has a valuation function vi : 2M →
R�0 such that vi(∅) = 0. It is assumed that valuations are additive: ∀T ⊆ M,
vi(T ) =

∑
g∈T vi({g}). To simplify notation, we write vi(g) instead of vi({g}).

We focus on a subclass of additive valuations known as binary additive valu-
ations, under which vi(g) ∈ {0, 1} for all i ∈ N and g ∈ M. We say that agent i
likes good g if vi(g) = 1. Sometimes it is easier to think of the valuation function
of agent i as the set of goods that agent i likes, denoted Vi = {g ∈ M : vi(g) = 1}.
Note that vi(T ) = |Vi ∩ T | for all T ⊆ M. For a set of agents S ⊆ N , let
VS =

⋃
i∈S Vi be the set of goods that at least one agent in S likes. The vector

of agent valuations v = (v1, . . . , vn) is called the valuation profile. A problem
instance is given by the tuple (N ,M,v).

For a set of goods T ⊆ M and k ∈ N, let Πk(T ) denote the set of partitions of
T into k bundles. We say that A = (A1, . . . , An) is an allocation if A ∈ Πn(T )
for some T ⊆ M. Here, Ai is the bundle of goods allocated to agent i, and
vi(Ai) is the utility to agent i. Let us denote AS =

⋃
i∈S Ai for S ⊆ N . Let

A =
⋃

T⊆M Πn(T ) denote the set of all allocations.
We say that good g is non-valued if vi(g) = 0 for all agents i; all the remaining

goods are called valued. Let Z denote the set of non-valued goods. We say that
an allocation A is complete if it allocates every valued good, i.e., if AN ⊇ M\Z;
we say that it is minimally complete if it is complete and does not allocate any
non-valued goods, i.e., if AN = M \ Z.

We are interested in fair allocations. One of the most prominent notions of
fairness is envy-freeness [21].

Definition 1 (Envy-freeness). An allocation A is called envy-free (EF) if,
for all agents i, j ∈ N , vi(Ai) � vi(Aj).

Envy-freeness requires that no agent prefer another agent’s bundle over her
own. This cannot be guaranteed (imagine two agents liking a single good). Prior
literature focuses on its relaxations, such as envy-freeness up to one good [14,27],
which can be guaranteed.

Definition 2 (Envy-freeness up to one good). An allocation A is called
envy-free up to one good (EF1) if, for all agents i, j ∈ N such that Aj 	= ∅,
there exists g ∈ Aj such that vi(Ai) � vi(Aj \ {g}).

EF1 requires that it should be possible to remove envy between any two
agents by removing at most one good from the envied agent’s bundle. We remark
that there is a stronger fairness notion called envy-freeness up to the least posi-
tively valued good (EFX) [16], which coincides with EF1 under binary additive
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valuations.2 Finally, another classic desideratum in resource allocation is Pareto
optimality, which is a notion of economic efficiency.

Definition 3 (Pareto optimality). An allocation A is called Pareto optimal
(PO) if there does not exist an allocation A′ such that for all agents i ∈ N ,
vi(A′

i) � vi(Ai), and at least one inequality is strict.

It is easy to see that with binary additive valuations, Pareto optimality is
equivalent to ensuring that each valued good is allocated to one of the agents
who likes it, i.e., that the utilitarian social welfare (sum of utilities) is maximized
and is equal to the number of valued goods.

3 Deterministic Setting

In this section, our main goal is to establish the existence of a deterministic allo-
cation rule that is fair, efficient, and truthful under binary additive valuations.
Our rule builds upon the concept of maximum Nash welfare allocations [16],
which we define below. All missing proofs can be found in the full version of this
paper.

Definition 4 (Maximum Nash welfare allocation). We say that A is
a maximum Nash welfare (MNW) allocation if, among the set of allo-
cations A, it maximizes the number of agents receiving positive utility
and, subject to that, maximizes the product of positive utilities. Formally,
let W (A) = {i ∈ N : vi(Ai) > 0} and AM = argmaxA∈A |W (A)|. Then,
argmaxA∈AM

∏
i∈W (A) vi(Ai) is the set of MNW allocations.

Even under general additive valuations, all maximum Nash welfare alloca-
tions satisfy EF1 and PO [16]. Our work uses a connection between MNW allo-
cations and the classic concept of leximin allocations, that holds under binary
additive valuations.

Definition 5 (Leximin comparison). For an allocation A, let its utility vec-
tor be (v1(A1), . . . , vn(An)), and its utility profile be the utility vector sorted
in a non-descending order. Given two utility profiles s = (s1, . . . , sn) and
s′ = (s′

1, . . . , s
′
n), we say that s leximin-dominates s′, denoted s 
lex s′, if there

exists k ∈ [n] such that uk > u′
k and ur = u′

r for all r < k. We say that s weakly
leximin-dominates s′, denoted s �lex s′, if s 
lex s′ or s = s′. Note that this is a
total order among utility profiles. We extend these comparisons to utility vectors
by applying them to the utility profiles they induce, and call two utility vectors
leximin-equivalent if they induce the same utility profile.

2 There are two popular definitions of EFX [3]. The original definition by Caragiannis
et al. [16] asks that agent i not envy agent j after removal of any good from agent
j’s bundle that has positive value for agent i, whereas a latter definition omits
the requirement of “positive value”. Under binary additive valuations, the former
definition is equivalent to EF1 whereas the latter definition is stronger than EF1.
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Definition 6 (Leximin allocations). We say that an allocation A is a lex-
imin allocation if, among all allocations, it lexicographically maximizes the util-
ity profile, i.e., maximizes the minimum utility, subject to that maximizes the
second minimum, and so on. Thus, leximin allocations are those whose utility
profile is the greatest element of the total order 
lex. We also extend the notions
of leximin-dominance and weak leximin-dominance to allocations by comparing
their utility vectors.

Leximin is a refinement of the traditional Rawlsian fairness, which requires
maximization of the minimum utility. Plaut and Roughgarden [32] and Freeman
et al. [23] study leximin allocations (and variants of this definition), and show
that they have related fairness properties as well.

Important to our work is the observation that for binary additive valuations,
the sets of leximin and MNW allocations coincide. This is established under a
more general valuation class by the contemporary work of Benabbou et al. [7],
but for binary additive valuations, this can also be inferred easily from the
following observations, which we will use in our work.

Lemma 1. All leximin allocations have the same utility profile. Further, any
allocation with this utility profile is a leximin allocation.

Lemma 2 (Lemma 21 of Freeman et al. [23]). Under binary additive valu-
ations, all maximum Nash welfare allocations have the same utility profile. Fur-
ther, any allocation with this utility profile is a maximum Nash welfare allocation.

Under binary additive valuations, given the observations above, the sets of
MNW and leximin allocations can be either identical or disjoint. Aziz and Rey
[4] shows that all leximin allocations are also MNW allocations, which implies
that the two sets are identical.

Lemma 3. Under binary additive valuations, the set of maximum Nash welfare
allocations coincides with the set of leximin allocations.

Henceforth, we will use the terms “MNW allocation” and “leximin allocation”
interchangeably. Before we define our deterministic rule, let us define this concept
formally. Fix the set of agents N and the set of goods M. A deterministic rule f
takes a valuation profile v as input and returns an allocation A. Note that f is
not allowed to return ties. We say that f is EF1 (resp. PO) if it always outputs
an allocation that is EF1 (resp. PO). The game-theoretic literature offers the
following strong desideratum to prevent strategic manipulations by agents.

Definition 7 (Group strategyproofness). A deterministic rule f is called
group strategyproof (GSP) if there do not exist valuation profiles v and v′, and a
group of agents C ⊆ N , such that v′

k = vk for all k ∈ N \C and vj(A′
j) > vj(Aj)

for all j ∈ C, where A = f(v) and A′ = f(v′).

A weaker requirement, which only imposes the above property for group C
of size 1 (i.e. prevents manipulations by a single agent) is commonly known as
strategyproofness (SP). We are now ready to define our rule, which chooses a
special MNW allocation.
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Definition 8 (MNWtie). The deterministic rule MNWtie returns an allocation
A such that:

1. A is an MNW allocation with lexicographically greatest utility vector among
all MNW allocations (i.e., among all MNW allocations, it maximizes v1(A1),
subject to that maximizes v2(A2), and so on);3 and

2. A is minimally complete (i.e. AN = M \ Z).

If there are several allocations satisfying both conditions, MNWtie arbitrarily
picks one.

First, observe that MNWtie is well-defined, i.e., that the set of allocations
satisfying both conditions is non-empty. Indeed, the set of allocations satisfying
the first condition is trivially non-empty. And for any allocation in this set,
there is a corresponding minimally complete allocation—obtained by throwing
away all non-valued goods—which has the same utility vector, and therefore still
satisfies the first condition.

The following result establishes the compelling properties of MNWtie. The
key idea for polynomial-time computability is as follows. Darmann and Schauer
[20] and Barman et al. [6] show that under binary additive valuations, an MNW
allocation can be computed efficiently. Starting from this MNW allocation, we
keep moving to lexicographically better MNW allocations, as in the definition
of MNWtie. The algorithm and proof are formally presented in the full version
of this paper.

Theorem 1. Under binary additive valuations, MNWtie is envy-free up to one
good, Pareto optimal, group strategyproof, and polynomial-time computable.

4 Randomized Setting

In the previous section, we established the existence of a deterministic rule which
is EF1, PO, and GSP. For deterministic rules, it is necessary to relax EF to EF1.
For example, in case of a single good that is liked by two agents, giving it to either
agent would be EF1 but not EF. However, if one is willing to randomize, the
natural solution of assigning the good to an agent chosen at random would be “ex
ante EF” in addition to being “ex post EF1”. This is because each deterministic
allocation in the support is EF1, but in expectation, no agent envies the other.
This leads to a natural question. Can randomness help achieve ex ante EF and
ex post EF1, in addition to PO and GSP?

In this section, we answer this question affirmatively for binary additive val-
uations. In parallel to our work, Freeman et al. [22] show that ex ante EF and ex
post EF1 can be achieved simultaneously even under general additive valuations,
but they show an impossibility when ex ante PO is added to the combination.

3 We note that tie-breaking by agent index is without loss of generality. One can break
ties according to any given ordering of the agents, and the corresponding rule will
still satisfy all the desiderata.
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Our positive result circumvents this impossibility for binary additive valuations.
Additionally, it satisfies GSP, which Freeman et al. [22] do not consider. Missing
proofs can be found in the full version of this paper.

Let us first formally extend our framework to include randomness.

Definition 9 (Fractional and randomized allocations). A fractional allo-
cation A = (A1, . . . , An) is such that Ai(g) ∈ [0, 1] denotes the fraction of good
g allocated to agent i and

∑
i∈N Ai(g) ≤ 1 for each good g. A randomized allo-

cation A is a probability distribution over deterministic allocations.

There is a natural fractional allocation A associated with each randomized
allocation A, where Ai(g) is the probability of good g being allocated to agent i
under A. In this case, we say that randomized allocation A implements fractional
allocation A. There may be several randomized allocations implementing a given
fractional allocation.

We refer to the expected utility of agent i under a randomized allocation A
as simply the utility of agent i under A. Note that this is equal to the utility
of agent i from the corresponding fractional allocation A, defined as vi(Ai) =∑

g∈M Ai(g) · vi(g). With this notation, the definitions of envy-freeness and
Pareto optimality extend naturally to fractional allocations.4 We say that a
randomized allocation A is ex ante envy-free (resp. ex ante Pareto optimal) if
the corresponding fractional allocation A is envy-free (resp. Pareto optimal).

With a fixed set of agents N and a fixed set of goods M, a randomized rule
f takes a valuation profile v as input and returns a randomized allocation A.
We say that f is ex ante envy-free (resp. ex ante Pareto optimal) if it always
returns a randomized allocation that is ex ante envy free (resp. ex ante Pareto
optimal). We say that f is ex ante group strategyproof if no group of agents
can misreport their preferences so that each agent in the group receives strictly
greater expected utility. Note that these ex ante guarantees depend only on the
fractional allocation corresponding to the randomized allocation returned by f .
Hence, when talking about ex ante guarantees, we will think of the randomized
rule f as directly returning a fractional allocation. However, when talking about
ex post guarantees, we would need to specify which randomized allocation f
returns.

Definition 10 (Ex post EF1). We say that a randomized allocation A is ex
post envy-free up to one good if each deterministic allocation in its support
is EF1. A randomized rule is ex post EF1 if it always returns a randomized
allocation that is ex post EF1.

Fractional leximin allocations, like their deterministic counterpart, lexico-
graphically maximize the utility profile among all fractional allocations. The
same can be said about fractional MNW allocations; however, we can skip the
first step of maximizing the number of agents who receive positive utility because

4 In case of Pareto optimality of a fractional allocation, we require that no other
fractional allocation Pareto-dominate it.
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in the fractional case we can simultaneously give positive utility to every agent
who likes at least one good (and thus can possibly get positive utility).

Definition 11 (Fractional MNW allocations). We say that a fractional
allocation is a fractional maximum Nash welfare allocation if it maximizes the
product of utilities of agents who do not have zero value for every good.

Bogomolnaia and Moulin [9], Bogomolnaia et al. [10], and Kurokawa et al. [25]
study fractional leximin allocations under an assignment setting, and establish
several desirable properties. In addition, fractional MNW allocations, also known
as competitive equilibria with equal incomes (CEEI), are widely studied in fair
division with additive valuations [18,19,30,33]. Our first result shows that under
binary additive valuations, these two concepts coincide.

Theorem 2. Under binary additive valuations, the set of fractional leximin allo-
cations coincides with the set of fractional maximum Nash welfare allocations.
All such allocations have identical utility vectors.

Note that the identical utility vector guarantee in Theorem 2 is much stronger
than the identical utility profile guarantee in the deterministic case.

Even under general additive valuations, it is known that every fractional
MNW allocation is ex ante EF and ex ante PO [33], and one such allocation can
be computed in strongly polynomial time [30,34]. Hence, these properties carry
over to our binary additive valuations domain, and due to Theorem 2, also apply
to fractional leximin allocations.

For ex ante GSP, we build on the literature on fractional leximin alloca-
tions. Kurokawa et al. [25] show that returning a fractional leximin allocation
satisfies ex ante EF, ex ante PO, and ex ante GSP whenever four key require-
ments are satisfied. We describe them in the full version, and show that they
are easily satisfied under binary additive valuations, if we return a minimally
complete leximin allocation. Hence, we define our fractional leximin/MNW rule
to always return a minimally complete fractional leximin/MNW allocation (like
our deterministic rule MNWtie).

Definition 12 (Fractional maximum Nash welfare rule). The fractional
maximum Nash welfare rule returns a minimally complete fractional maximum
Nash welfare allocation.

Theorem 3. Under binary additive valuations, every fractional maximum Nash
welfare (equivalently, leximin) allocation is ex ante envy-free and ex ante Pareto
optimal. Further, the fractional maximum Nash welfare rule is ex ante group
strategyproof.

The only missing property at this point is ex post EF1. Therefore, the main
question we seek to answer in this section is the following: Can every fractional
MNW allocation be implemented as a distribution over deterministic EF1 allo-
cations? We go one step further and show that it can in fact be implemented
as a distribution over deterministic MNW allocations, which are in turn EF1.
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Our main tool is the bihierarchy framework introduced by Budish et al. [15],
which is a generalization of the classic Birkhoff-von Neumann theorem [8,29].
At a high level, the framework allows implementing any fractional allocation
A using deterministic allocations which satisfy a set of constraints, as long as
the set of constraints forms a bihierarchy structure and the fractional allocation
itself satisfies those constraints.

In our case, we start with a minimally complete fractional MNW allocation
A∗. Let u∗

i denote the utility to agent i under this allocation. We want to imple-
ment this as a randomized allocation. We impose the following constraints on a
deterministic allocation A in the support, where A is represented as a matrix
in which Ai(g) ∈ {0, 1} indicates whether good g is allocated to agent i.

H1 :
∑

i∈N Ai(g) =
∑

i∈N A∗
i (g),∀g ∈ M,

H2 :�u∗
i  ≤ ∑

g∈M Ai(g) · vi(g) ≤ �u∗
i �,∀i ∈ N .

(1)

The first family of constraints ensures that under each deterministic alloca-
tion A, the set of goods allocated matches that under A∗. Since A∗ is minimally
complete, this implies that A must be minimally complete as well. Crucially, the
second family of constraints ensures that each agent has utility that is either the
floor or the ceiling of her utility under A∗. That is, A is not allowed to stray far
from A∗.

It can be checked that these constraints form a bihierarchy (each of H1 and
H2 is a hierarchy); for a formal definition of a hierarchy, we refer the reader to
the work of Budish et al. [15]. Importantly, they also provide a polynomial-time
algorithm that computes a random allocation such that (a) it implements the
fractional allocation A∗, and (b) each deterministic allocation A in its support
satisfies the constraints in 1. We show that in this case, every deterministic
allocation in the support must be a deterministic MNW allocation, yielding the
desired result.

Theorem 4. Under binary additive valuations, given any fractional maximum
Nash welfare allocation, one can compute, in polynomial time, a randomized allo-
cation which implements it and has only deterministic maximum Nash welfare
allocations in its support.

Proof. Let A∗ be a given fractional MNW allocation with utility vector u∗.
Let Ā be the randomized allocation implementing A∗ that is returned by the
polynomial-time algorithm of Budish et al. [15] with the bihierarchy constraints
in Eq. 1. Let A denote the set of deterministic allocations in the support of Ā.
Our goal is to show that every allocation in A is an MNW allocation.

First, let us partition the set of agents N into sets S1, . . . , St such that any
two agents i and j are in the same set if and only if �u∗

i  = �u∗
j. For k ∈ [t], let Lk

denote the common floor of utilities of agents in Sk under A∗, and Uk = Lk + 1.
Hence, for k ∈ [t] and each agent i ∈ Sk, u∗

i ∈ [Lk, Uk). Further, order the sets
so that Uk ≤ Lk+1 for each k ∈ [t − 1]. This ensures that if i ∈ Sr, j ∈ Sr′ , and
r′ > r, then u∗

j > u∗
i .
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We argue that for each k ∈ [t], the agents in ∪r∈[k]Sr must be fully allocated
all of the goods that they like (i.e. all the goods in V∪r∈[k]Sr

) under A∗, resulting
in

∑
r∈[k]

∑
i∈Sr

u∗
i = |V∪r∈[k]Sr

|. If this is not true, then a positive fraction of
some good g ∈ V∪r∈[k]Sr

must be allocated to an agent j ∈ Sr′ for r′ > k. Let
i ∈ ∪r∈[k]Sr be an agent such that g ∈ Vi. Let r ∈ [k] be such that i ∈ Sr. Then,
by the above argument, we know that u∗

j > u∗
i . However, then, transferring a

sufficiently small fraction of g from agent j to agent i in A∗ will improve the
Nash welfare, which contradicts the fact that A∗ is a fractional MNW allocation.

Note that in any deterministic allocation A, |V∪r∈[k]Sr
| is the highest utility

that agents in ∪r∈[k]Sr can collectively have; hence, in any feasible utility vector
u, ∑

r∈[k]

∑
i∈Sr

ui ≤ ∑
r∈[k]

∑
i∈Sr

u∗
i ,∀k ∈ [t]. (2)

Because a convex combination of allocations in A yields the allocation A∗, and
utilities are additive, a convex combination of their utility vectors yields the
utility vector u∗. Hence, for the utility vector u of any allocation in A, Eq. 2
must hold with equality. Further, by subtracting each equation from the next,
we get that it must further satisfy the following. Here, H2 is from the bihierarchy
constraints (Eq. 1).

H2 : �u∗
i  ≤ ui ≤ �u∗

i �,∀i ∈ N ,

H3 :
∑

i∈Sk
ui =

∑
i∈Sk

u∗
i ,∀k ∈ [t].

(3)

We say that a utility vector is a rounded if it satisfies the constraints in
Eq. (3), and say that a deterministic allocation is rounded if it has a rounded
utility vector. We have already established that every allocation in A is a rounded
allocation. The following lemma completes the proof of Theorem 4.

Lemma 4. The set of rounded allocations coincides with the set of maximum
Nash welfare allocations.

Let us amend the definition of the fractional MNW rule so that it uses The-
orem 4 to implement a minimally complete fractional MNW allocation. Then,
we have the following.

Corollary 1. Under binary additive valuations, the fractional maximum Nash
welfare rule is ex ante envy-free, ex ante Pareto optimal, ex ante group strate-
gyproof, ex post envy-free up to one good, and polynomial-time computable.

5 Discussion

To recap, we showed that under binary additive valuations a deterministic vari-
ant of the maximum Nash welfare rule is envy-free up to one good (EF1), Pareto
optimal (PO), and group strategyproof (GSP). We also demonstrated that its
randomized variant is ex ante EF, ex ante PO, ex ante GSP, and ex post EF1.
All our rules are polynomial-time computable.
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Amanatidis et al. [2] show that under general additive valuations, there is no
deterministic rule that is envy-free up to one good (EF1) and strategyproof, even
with two agents and m � 5 goods. At first glance, Theorem 1, which establishes
MNWtie as both GSP and EF1, seems to show that this impossibility result
does not hold for the special case of binary additive valuations. However, the
impossibility result of Amanatidis et al. [2] only applies to rules that allocate all
the goods; by contrast, MNWtie does not allocate non-valued goods. This begs
the following question: Under binary additive valuations, is there a deterministic
rule that allocates all the goods and achieves EF1, PO, and GSP? In the full
version, we show that this cannot be achieved by any variant of MNW.

Another open question is whether the ex ante GSP guarantee of Corollary 1
can be strengthened to ex post GSP, which would require the randomized rule
to be implementable as a probability distribution over deterministic GSP rules.

Modulo these minor caveats, though, our results are the strongest one could
possibly hope for in the domain of binary additive valuations.
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