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Abstract. We present a polynomial-time algorithm that computes an
ex-ante envy-free lottery over envy-free up to one item (EF1) determin-
istic allocations. It has the following advantages over a recently proposed
algorithm: it does not rely on the linear programming machinery includ-
ing separation oracles; it is SD-efficient (both ex-ante and ex-post); and
the ex-ante outcome is equivalent to the outcome returned by the well-
known probabilistic serial rule. As a result, we answer a question raised
by Freeman, Shah, and Vaish (2020) whether the outcome of the prob-
abilistic serial rule can be implemented by ex-post EF1 allocations. In
the light of a couple of impossibility results that we prove, our algorithm
can be viewed as satisfying a maximal set of properties. Under binary
utilities, our algorithm is also ex-ante group-strategyproof and ex-ante
Pareto optimal. Finally, we also show that checking whether a given ran-
dom allocation can be implemented by a lottery over EF1 and Pareto
optimal allocations is NP-hard.

1 Introduction

Who gets what is a significant and ubiquitous issue. When making any kind of
allocation among self-interested agents, fairness is an important concern. Does
a fair allocation exist? Is there an efficient algorithm to compute such an alloca-
tion? These are important questions that have been studied in fair division for
decades. In this paper, we consider the issue of finding probabilistic allocations
that are ex-ante and ex-post fair.

Suppose there are two agents who have additive utilities over three items
a, b, c. Both agents have the highest value for items a, then b, and then c. From
an ex-ante perspective, envy-freeness can be achieved by giving each item to
each agent with probability half. However, there are many ways to achieve this
expected probability, some perhaps not too fair. For example, the uniform lottery
over the following two deterministic allocations: ({a, b, c}, ∅) and (∅, {a, b, c}). It
may be desirable to achieve both ex-ante envy-freeness and some weaker form
of ex-post envy-freeness. For example a uniform lottery over the following allo-
cations is fairer ex-post: ({a}, {b, c}) and ({b, c}, {a}).

As seen from the example above, achieving target fairness properties is easy
when we consider fractional outcomes or view outcomes from an ex-ante per-
spective. Implementing such desirable ex-ante outcomes by randomizing over
c© Springer Nature Switzerland AG 2020
X. Chen et al. (Eds.): WINE 2020, LNCS 12495, pp. 341–355, 2020.
https://doi.org/10.1007/978-3-030-64946-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64946-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-64946-3_24


342 H. Aziz

desirable deterministic outcomes can pose interesting challenges (see, e.g. [1,11]).
This issue was explored by Freeman et al. [15]. They focussed on ex-ante envy-
freeness and ex-post envy-freeness up to one item as the target fairness require-
ments. Both of the properties are known to be individually achievable. An ex-
ante envy-free random allocation always exists (for example the outcome of the
probabilistic serial rule [8] achieves ex-ante envy-freeness). Similarly, a determin-
istic envy-free up to one item (EF1) allocation always exists [10]. For example,
running the round robin sequential algorithm obtains an EF1 allocation [12].
Freeman et al. [15] explore the question of achieving ex-ante envy-freeness and
ex-post EF1 simultaneously. They showed that there exists a polynomial-time
algorithm to compute a lottery over envy-free up to one item allocations that is
also ex-ante envy-free.1

The inventive polynomial-time algorithm of Freeman et al. [15] has a couple of
possible limitations. Firstly, it requires using the machinery of linear program-
ming separation oracles. It may be desirable to get similar results by simpler
combinatorial algorithms. Secondly, the algorithm of Freeman et al. is not ex-
post weakly SD (stochastic dominance)-efficient and hence not ex-ante weakly
SD-efficient. This is evident from Example 2 of Freeman et al. where they note
that their algorithm does not satisfy ordinal efficiency.2 The fact that an algo-
rithm is not ex-post weakly SD-efficient implies that it can return a deterministic
allocation such that there exists another deterministic allocation that gives each
agent strictly more utility for all utility functions consistent with the underlying
ordinal preferences. Another implication of violating ex-post weak SD-efficiency
is that all the agents can trade one of their items for another item to get more util-
ity. Such unamiguous compromise on welfare can be undesirable. For example,
the random serial dictatorship rule (which is ex-post SD-efficient) has received
criticism that it is not ex-ante SD-efficient [8].

We overcome the two limitations discussed above and show that the algo-
rithmic result of Freeman et al. [15] can be achieved in a relatively simpler and
faster way while additionally satisfying SD-efficiency. To the best of our knowl-
edge, our is the first algorithm to simultaneously satisfy weak SD-efficiency,
ex-ante EF, and ex-post EF1. The latter two guarantees even hold for all addi-
tive utilities consistent with the agents’ underlying ordinal preferences. In other
words, our algorithm satisfies ex-ante SD-envy-freeness and ex-post SD-EF1. We
also show how the algorithm can be further modified by using parametric net-
work flows to additionally achieve both ex-ante and ex-post SD-efficiency. Our
results can be viewed as being optimal in the view of the following two impossi-
bility results that we prove. Firstly, ex-ante SD-envy-freeness, ex-post EF1, and

1 Freeman et al. [15] also presented several other results charting the landscape of
possibility and impossibility results when considering fairness and efficiency proper-
ties ex post and ex-ante. In particular, they study in detail the rule that maximizes
ex-ante Nash welfare. However, they show that the rule cannot be implemented by
EF1 allocations.

2 SD-efficiency is also referred to as ordinal efficiency in the literature [8].
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ex-post Pareto optimality are incompatible. Secondly, ex-ante Pareto optimality
and ex-ante SD-envy-freeness are incompatible.

Our algorithm calls the probabilistic serial algorithm as well as the Birkhoff’s
decomposition algorithm as subroutines. Freeman et al. raised the question
whether the outcome of the probabilistic serial algorithm can be implemented
using ex-post EF1 randomized allocations: “we were not able to determine
whether the fractional allocation produced by probabilistic serial can always be
implemented using an ex-post EF1 randomized allocation.” We answer the ques-
tion in the affirmative: our algorithm’s outcome is ex-ante equivalent to the
outcome of the probabilistic serial rule. In particular, it can be viewed as a
desirable way to instantiate the probabilistic serial outcome. Under binary util-
ities, our algorithm is group-strategyproof, ex-ante efficient, ex-ante envy-free,
and ex-post EF1. Finally, we also show that checking whether a given random
allocation can be represented over a lottery over EF1 and Pareto optimal allo-
cations is NP-hard.

2 Preliminaries

An allocation problem is a triple (N,O, u) such that N = {1, . . . , n} is the set of
agents, O = {o1, . . . , om} is the set of objects, and u specifies an additive utility
function ui : O → R

+. The utility function profile u induces the preference
profile �= (�1, . . . ,�n) which specifies for each agent i his preferences �i over
objects in O such that o �i o′ if and only if ui(o) ≥ ui(o′). We use �i for the
strict part of �i, i.e., o �i o′ iff o �i o′ but not o′ �i o. A random allocation p
is a (n × m) matrix [pi,oj ] such that pi,oj ∈ [0, 1] for all i ∈ N , and oj ∈ O; and∑

i∈N pi,oj = 1 for all oj ∈ O. For a given set S ⊂ N , we will refer by �S the
preference profile restricted to agents in S.

The value pi,oj represents the probability of object oj being allocated to agent
i. Each row pi = (pi,o1 , . . . , pi,om) represents the allocation of agent i. The set
of columns correspond to the objects o1, . . . , om. A feasible random allocation is
deterministic if pi,o ∈ {0, 1} for all i ∈ N and o ∈ O. When we say ‘an allocation’,
we will mean random allocation unless we specially specify it is deterministic.

For any agent i, j ∈ N and an allocation p, the utility of agent i for a bundle pj
is ui(pj) =

∑
o∈O pj,oui(o). Given two random allocations p and q, pi �SD

i qi that
is, an agent i SD prefers allocation pi to allocation qi if

∑
oj∈{ok:ok�io} pi,oj ≥

∑
oj∈{ok:ok�io} qi,oj for all o ∈ O. We write pi �SD

i qi if pi �SD
i qi and not

qi �SD
i pi.

Fairness Properties. A random allocation p is SD-envy-free if for all i, j ∈ N ,
pi �SD

i pj . An random allocation p is envy-free (EF) if ui(pi) ≥ ui(pj) for all
i, j ∈ N . For an agent’s allocation pj , we will denote by p−o

j the allocation pj in
which pj,o is set to 0. For an agent’s allocation pj and S ⊆ O, we will denote by
p−S
j the allocation pj in which pj,o is set to 0 for all o ∈ S. A random allocation

p is SD-EF1 if for all i, j ∈ N , either pi �SD
i pj or pi �SD

i p−o
j for some o. o. A

random allocation p is envy-free up to k items (EFk) if there exist some S ⊂ O
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such that |S| ≤ k such that ui(p−S
i ) ≥ ui(p−S

j ). Note that SD-envy-freeness
implies envy-freeness which implies EFk. And SD-EF implies SD-EFk.

A given random allocation can be implemented by a lottery over determin-
istic allocations.3 We call the latter an implementation of the given random
allocation. We say that random allocation p satisfies a property X ex-ante if the
fractional allocation representing p satisfies property X. When we discuss the
ex post properties of a random allocation p, we will also need to consider the
lottery implementation over deterministic allocations which achieves the ran-
dom allocation p. In that case we say that random assignment with a lottery
implementation deterministic allocations over M1, . . . ,MK satisfies property X
ex-post if M1, . . . ,MK satisfy property X. Therefore for any given property for
allocations, we consider it ex-ante as well as ex-post. Figure 1 shows the key fair-
ness concepts that are appropriate from ex-ante and ex-post perspectives. Note
that we do not focus ex-post envy-freeness since a deterministic envy-free allo-
cation is not guaranteed to exist. Furthermore, checking whether a deterministic
envy-free allocation exists is NP-complete even for 1-0 utilities [2].

ex-ante
SD-EF

ex-ante
EF

ex-post
SD-EF1

ex-post
EF1

Fig. 1. Logical relations between fairness concepts.

Example 1. Consider the example in which N = {1, 2}, O = {a, b, c, d} and the
agents have the following utilities over four items.

a b c d
1 4 3 2 1
2 4 2 3 1

Then, the following is one possible random allocation.

p =

a b c d( )
1 1/2 1 0 1/2
2 1/2 0 1 1/2

In the allocation, u1(p1) = 1
2 (4) + 1(3) + 1

2 (1) = 5.5 and u1(p2) = 1
2 (4) +

1(2) + 1
2 (1) = 4.5. Hence agent 1 is not envious of agent 2.

Allocation p can be implemented by the following uniform lottery over two
deterministic allocations as follows.

3 The statement follows from the well-known Carathéodory’s Theorem.
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p = 1
2

a b c d( )
1 1 1 0 0
2 0 0 1 1

+ 1
2

a b c d( )
1 0 1 0 1
2 1 0 1 0

We say that a deterministic allocation q is consistent with a random alloca-
tion p if for each qi,o = 1, we have that pi,o > 0. For n = m, a deterministic
allocation can be represented by a permutation matrix in which an entry of one
denotes the row agent getting the column object. A decomposition of a ran-
dom allocation p is a sum

∑k
i=1 λiPi such that λi ∈ (0, 1] for i ∈ {1, . . . , k},

∑k
i=1 λi = 1, and each Pi is a permutation matrix (consistent with p).

3 The PS-Lottery Algorithm

In this section, we present our main algorithm that we refer to as the PS-Lottery
Algorithm. Before we proceed, we summarize two well-known algorithms that we
will use as building blocks for our algorithm to simultaneously achieve ex-ante
EF and ex-post EF1.

Probabilistic Serial (PS) Algorithm. The PS rule [8] takes as input the strict
ordinal preferences of agents over items as well as the available amounts of each
of the items. Agents start eating their most preferred item at unit speed until the
item is consumed. They continue eating their most preferred items until all the
items are consumed. The outcome is a random allocation in which each agent’s
probability of getting an item is the fraction of the item that she ate. Initially,
only presented for the case of single-unit demands, the rule extends seamlessly
for the case where agents want to get multiple items [21]. Although described
as a continuous rule where agents eat infinitesimal amounts, the PS outcome
can be computed by a discrete algorithm in polynomial time O(nm) (see the
appendix).

Birkhoff’s Algorithm. Consider any random allocation with n agents and n items
in which each agent gets one unit of items. Birkhoff’s algorithm can decom-
pose such a random allocation (which can be represented by a bistochastic
matrix) into a convex combination of at most n2 − n + 1 deterministic allo-
cations (represented by permutation matrices) [7,22]. The following is a descrip-
tion of Birkhoff’s algorithm. We initialize i to 1. For a bistochastic matrix M , a
permutation matrix Pi consistent with M is guaranteed to exist. Such a permu-
tation matrix corresponds to a perfect matching in a bipartite graph (N ∪O,E)
where (i, o) ∈ E iff Mi,o > 0. Such a perfect matching and hence the permuta-
tion matrix can be computed via the Hopcroft-Karp-Karzanov algorithm which
takes time O(n2.5) [18,19]. We initialize index i to 1. M is set to M −λiPi where
λi ∈ (0, 1] is the smallest non-zero entry in Pi. Index i is incremented by one.
The updated M is again bistochastic. The process is repeated (say k − 1 times)
until M is the zero matrix. Then M =

∑k
i=1 λiPi.
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Now that we have defined the two algorithms, we are in a position to present
Algorithm 1. The high-level description of the algorithm is as follows. We first
add some dummy items to ensure that there are nc items. The expanded set of
items is called O′. We then simulate PS. We track information about how much
of each item has been eaten at time steps 1, . . . , c. We use this information to
form an allocation q′ of items in O′ to agents in N ′ = {i1, . . . , ic : i ∈ N}. The
agents i1, . . . , ic are called the representative agents of each agent i. An agent
ij ’s allocation is what agent i ate in time interval [j − 1, j]. Allocation q′ can be
represented by a bistochastic matrix. We decompose q′ into a convex combination
of permutation matrices via Birkhoff’s algorithm. The permutation matrices are
suitably modified to remove the dummy items and also give the allocation of
all representatives to the agent they represent. The convex combination over
the modified permutation matrices gives us the desired solution, which is both
ex-ante EF and ex-post EF1.

Algorithm 1. PS-Lottery Algorithm
Input: I = (N,O,�) where |N | = n, |O| = m and c = �m/n�.
Output: EF fractional allocation q =

∑K
j=1 λjPi where each Pj represents a

deterministic EF1 allocation and K ≤ (cn)2 − 2cn + 2.
1: If m is a multiple of n, D = ∅. Else, D = {d1, . . . , dnc−m}.
2: O′ ← O ∪ D so that |O′| = cn.
3: N ′ = {i1, . . . , ic : i ∈ N}. The agents i1, . . . ic are termed as the representa-

tives of agent i.
4: Set preference profile �′ of agents in N ′ ∪ N as follows: for all o, o′ ∈ O and

for all ij for j ∈ {1, . . . , c}, o �′
ij

o′ iff o �i o′. For all o ∈ O and d ∈ D,
o �′

ij
d. All the ties in �′ are broken lexicographically.

5: Run PS on instance (N,O′,�′
N ) to get a random outcome r.

6: For each bundle ri, let agent i re-eat her bundle at unit-speed according to
preferences of her representative agents �′

ik
with each representative agent

ij eating on behalf of agent i in time interval [j − 1, j]. Let the result of this
eating be allocation q′ which is an allocation of items O′ to agent represen-
tatives in N ′.

7: For the (bistochastic) matrix corresponding to q′, compute a Birkhoff decom-
position q′ =

∑K
j=1 λjP

′
j where K ≤ (cn)2 − 2cn + 2.

8: Convert q′ =
∑K

j=1 λjP
′
j into q =

∑K
j=1 λjPj where all the dummy items are

ignored and each agent gets the allocation of its representatives.
9: return Allocation q for instance I and its decomposition

∑K
j=1 λjPj .

Before we prove the main properties of the PS-Lottery Algorithm, we recall a
class of deterministic allocation algorithms. The sequential allocation algorithm
takes as input a sequence π of turns of the agents and returns a deterministic
allocation which is a result of agents picking a most preferred unallocated item
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in their turn. A sequence of turns is called recursively balanced (RB) if at each
prefix, all agents have the same number of turns, or differ by one [5]. An RB
sequence can be viewed as agents coming in c rounds. Note that cn ≤ (m + n).
In each round except the last one, each agent gets exactly one turn. Since each
agent weakly prefers her picked item over all items picked in later rounds, it can
easily be proved that the outcome of sequential allocation with an RB sequence
is EF1 [3].4 Since sequential allocation with an RB sequence only uses ordinal
preferences of the agents, it is EF1 with respect to all positive utilities consistent
with the ordinal preferences [3] and hence SD-EF. An allocation is called an
RB-allocation if it is an outcome of sequential allocation with respect to some
RB-sequence. We will use the perspective of RB-allocations to establish that our
algorithm returns a lottery over EF1 allocations.

Theorem 1. Let c = �m/n�. Algorithm 1 is polynomial-time algorithm that
takes time O((cn)4) that computes a lottery over at most (cn)2 deterministic EF1
allocations that is equivalent to the outcome of the probabilistic serial algorithm.

Proof. Algorithm 1 works as follows. If m < n, we set D = {d1, . . . , dn−m}.
If m > n, we set D = {d1, . . . , dcn−m}. We are now in a position to fix a new
allocation instance I ′ = (N ′, O′,�′) that only uses ordinal preferences. The item
set O′ is O∪D where |O′| = cn. The ‘representative’ set N ′ is {i1, . . . , ic :i ∈ N}.
Note that the number of representatives |N ′| is equal to the number of items
|O′|. The preferences are consistent with the underlying preference profile. The
preferences �′ of the representatives are set as follows: for all o, o′ ∈ O and for
all ij for j ∈ {1, . . . , c} o �′

ij
o iff o �i o. For all o ∈ O and d ∈ D, o �′

ij
d. All

the ties in �′ are broken lexicographically.
Note that for the modified allocation problem instance I ′, an allocation has

a corresponding allocation in the original instance I: an agent i gets all the allo-
cations of its representatives i1, . . . ic. The allocation of dummy items is ignored.

Let q′ be the allocation as a result of applying PS with agent set N and
item set O′, but for each j = 0 to c − 1, we change the name of each agent
i to ij+1 in time interval [j, j + 1]. Note that computing r and q′ takes time
(cn)2. The allocation has a corresponding bistochastic matrix in which the rows
correspond to the representatives and the columns correspond to the items. Each
entry in the matrix represents the amount of the corresponding item eaten by
the corresponding representative.

Note that since q′ is bistochastic, a permutation matrix P ′
k consistent with

q′ exists by Birkhoff’s theorem. We want to show that any such matrix P ′
k must

correspond to an RB-allocation of items in O′ to agents in N . The RB-allocation
is viewed as proceeding in rounds. In each round, each of the representatives
representing the n agents pick a most preferred available item. In the j-th round,
the representatives involved are 1j , . . . , nj . In any P ′

k, each item is allocated to
an agent representative and each agent representative gets one item. In order to
4 In fact an RB allocation satisfies a stronger properly called strong EF1. Stronger

EF1 requires that upon removing the same item from agent i’s bundle, no other
agent j envies i, for all i and j. The property was proposed by Conitzer et al. [13].
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establish that P ′
k is an RB-allocation of N , it is sufficient to prove two claims:

(1) no representative agent strictly prefers any item picked in a later round; and
(2) within each round, the items allocated to the representative agents are as a
result of sequential allocation.

Claim (1) follows from the fact that no representative ij strictly prefers any
item allocated in a later round. The reason is that when it stopped eating in its
turn, it was always eating an item at least as preferred as in later rounds.

Next, we prove Claim (2). Consider any round in which each representative
receives one item. We claim that no set of representatives want to reallocate
the items given in that round to get an improvement for all representatives
in the set. Suppose for contradiction there is a trading cycle in which every
agent in the cycle improves: o1, 1, o2, 2, . . . , oj , j. Representative 1 prefers item
o2 over o1 which means that it started eating o1 after o2 was finished. Since 1
ate a strictly positive fraction of o1, it implies that o1 finishes strictly after o2.
By a similar argument each i ∈ {1, . . . j − 1} wants to get oi+1 which means
that it started eating oi after oi+1 was finished. Agent j prefers item o1 over
oj which means that it started eating oj after o1 was finished which means
that oj finishes strictly after o1. But then the order of the items according to
the finishing times is: o1, oj , oj−1, . . . , o3, o2, o1. We have shown that o1 has two
different finishing times which is a contradiction. Since there exists no trading
cycle for representatives in the same round, we know that the items in the round
can be allocated as a result of sequential allocation.

From the two claims above, the allocation P ′
k is an RB-allocation for agents in

N if each agent gets the allocations of its representatives. Since any permutation
matrix consistent with q′ also corresponds to an RB-allocation, we can use P ′

k

as one of the permutation matrices in which q′ is decomposed during Birkhoff’s
decomposition. We can continue decomposing q′ into permutation matrices until
we can represent q′ by a convex combination of at most K ≤ (cn)2 permuta-
tion matrices P ′

1, . . . , P
′
K . Each permutation matrix in the decomposition can be

computed by computing a perfect matching in a corresponding bipartite graph
via the Hopcroft-Karp-Karzanov algorithm which takes time O((cn)2.5).

Finally, note that we can convert allocations (q′, P ′
1, . . . , P

′
K) for instance I ′

into the corresponding allocations (q, P1, . . . , PK) for instance I. We do so by
removing the dummy items and for each i ∈ N , giving the allocations of all the
representatives i1, . . . , ic to agent i. Note that q is the outcome of running PS
on instance I. Also, P1, . . . , PK are RB-allocations for instance I and hence EF1
for instance I. ��
Remark 1. Algorithm 1 is combinatorial algorithm that computes a lottery over
at most (cn)2 ≤ (m + n)2 deterministic allocations. By Carathéodory’s Theo-
rem, any n × m random allocation that is represented by a convex combination
of a given K deterministic allocations, can be represented by at most nm + 1
deterministic allocations among the K deterministic allocations. We can reduce
the support of the lottery returned by Algorithm 1 to one involving at most
nm+1 deterministic EF1 and SD-efficient allocations as follows. By using Gaus-
sian elimination, we compute the subset of the set of matrices {P1, . . . , Pk} that
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forms the basis of P1, . . . , Pk. We can compute a convex combination of the
matrices in the basis to achieve the same outcome q.

We note that whereas our algorithm provides a way to implement PS by
EF1 allocations, not every implementation of the PS outcome may satisfy ex-
post EF1. For example, consider the case of two agents with identical preferences
over two items. In that case, tossing a coin and then giving both items to one
agent is ex-ante equivalent to the PS outcome. However, it is not EF1 if agents
have strictly positive utilities for both items.

Algorithm 1 bears similarities to the exponential-time Algorithm 1 (Recursive
PS) of Freeman et al. [15]. Just like their algorithm, we make agents successively
eat one unit of items. Unlike the algorithm of Freeman et al., we derive the
lottery decomposition only after the PS outcome has been computed. In contrast,
Freeman et al. probabilistically generate a partial deterministic allocation after
each unit time. Their algorithm “branches out into a polynomial number of
subinstances” a polynomial number of times which makes it an exponential-
time algorithm. In order to ensure polynomial-time computability, they resort
to a result about convex polytopes and separation oracles [16].

4 Additionally Achieving Efficiency

In this section, we consider the additional issue of efficiency. Before, we proceed,
we present some definitions.

Efficiency Properties. A random allocation p is fractional Pareto optimal (fPO)
if there exists no other random allocation q such that ui(qi) ≥ ui(pi) for all i ∈ N
and ui(qi) > ui(pi) for some i ∈ N . A deterministic allocation p is Pareto optimal
(PO) if there exists no other deterministic allocation q such that ui(qi) ≥ ui(pi)
for all i ∈ N and ui(qi) > ui(pi) for some i ∈ N . A random allocation p is SD-
efficient is there exists no random allocation q such that qi �SD

i pi for all i ∈ N
and qi �SD

i pi for some i ∈ N . An allocation p is weakly SD-efficient is there
exists no allocation q such that qi �SD

i pi for all i ∈ N . Note that fPO implies
PO which implies SD-efficiency which in turn implies weak SD-efficiency. Just
as in the case of fairness, we will consider efficiency of both the ex-ante random
allocation as well as efficiency properties of the ex-post deterministic allocations
that are involved in the lottery.

We note that the random allocation maximizing the Nash social welfare is
well-known to be equivalent to the competitive equilibrium with equal incomes
solution (see e.g., [14,23]) and satisfies fPO as well as ex-ante envy-freeness.
However, due to Theorem 3 of Freeman et al. [15], a rule that is fPO and ex-
ante envy-free cannot be ex-post EF1.

Since the outcome returned by Algorithm 1 is a lottery implementation of the
PS rule outcome, our algorithm also inherits all the desirable ex-ante properties
that the PS rule and its outcome are known to satisfy. Note that Algorithm 1
first breaks ties in the ordinal preferences before running the PS algorithm.
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This results in the outcome satisfying weak SD-efficiency rather than SD-
efficiency if there are indeed ties in the original preferences. If we care about
SD-efficiency, then we do not artificially break any ties and can run the extended
probabilistic serial (EPS) algorithm [20]. The EPS algorithm makes coordinated
choices for agents to eat one of their most preferred items and uses paramet-
ric network flows to compute the outcome. For number of items m ≥ n, the
algorithm takes time O(m3 log m).5

The exact specification of our EPS-Lottery algorithm is to take the PS-
Lottery algorithm and replace Step 5 with the following step: Run EPS on
instance (N,O′,�′′

N ) to get a random outcome r. Here, the preference profile �′′

is the same as �′ except that only ties within D are broken lexicographically and
ties are within O are not broken. Therefore the returned outcome r and hence q′

is SD-efficient rather than just weak SD-efficient. The argument of implementing
the outcome with EF1 deterministic allocations remains unchanged. The run-
ning time is unchanged as well as the bottleneck step is to compute a Birkhoff
decomposition which takes time O((cn)4).

Note that if a random allocation q is SD-efficient, then in any decomposition
of q, each of the deterministic allocations is SD-efficient as well. The reason is
that if one of the deterministic allocations is not SD-efficient, then q is not SD-
efficient. Hence, our algorithm additionally achieves SD-efficiency both ex-ante
and ex-post.

Theorem 2. Let c = �m/n�. The EPS-Lottery Algorithm runs takes time
O((cn)4) and computes a lottery over at most (cn)2 ≤ (m + n)2 determinis-
tic EF1 allocations that is equivalent to the outcome of the extended probabilistic
serial algorithm (which is SD-envy-free and SD-efficient).

We note that our algorithm does not achieve ex-post Pareto optimality. One
approach to achieving ex-post PO and ex-post EF1 is to check certain random
allocations for these properties. Next, we show for an arbitrary random alloca-
tion, checking whether it is ex-post EF1 and ex-post Pareto optimal is NP-hard.

Theorem 3. For n agents and n items, checking whether a given random allo-
cation can be implemented by a lottery over EF1 and Pareto optimal allocations
is NP-hard. For n agents and n items, checking whether a given random alloca-
tion can be implemented by a lottery over SD-EF1 and Pareto optimal allocations
is NP-hard.

Proof. It was proved that for n agents and n items, checking whether a given
random allocation can be implemented by a lottery over balanced Pareto opti-
mal allocations is NP-hard [4]. Their setting assumed ordinal preferences but it
works as well for any cardinal preferences consistent with the ordinal preferences.
5 The original EPS algorithm [20] is presented for the case of single-unit demands.

However, it can easily be extended to the case of multiple items (see e.g., the Con-
trolled Cake Eating Algorithm (CCEA) algorithm [6]). CCEA is described in the
context of cake cutting with piecewise constant valuations. It also applies to alloca-
tion of items: each cake segment can be treated as a separate item.
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We consider utility functions ui consistent with ordinal preference �i and assume
that ui(o) > 0 for all o ∈ O. Since ui(o) > 0 for all o ∈ O, we know that in any
unbalanced deterministic allocation one agent i ∈ N gets zero items and another
agent j gets at least two items. Even if one of j’s items is removed, i will be
envious of j. Hence, an unbalanced allocation is not EF1. In the other direction,
a balanced allocation gives one item to each agent. Even if an agent i ∈ N is
envious of agent j, agent i will not be envious if j’s item is removed. We have
established that for n agents and n items, the set of deterministic EF1 alloca-
tions is equal to the set of deterministic balanced allocations. Therefore, the set
of deterministic EF1 and Pareto optimal allocations is equivalent to the set of
deterministic balanced and Pareto optimal allocations. It follows that checking
whether a given random allocation can be implemented by a lottery over EF1
and Pareto optimal allocation is NP-hard.

The same argument also works for the problem of checking whether a given
random allocation can be implemented by a lottery over SD-EF1 and Pareto
optimal allocations. ��

5 Impossibility Results

We first recall that Freeman et al. [15] proved that even for two agents, ex-ante
fPO, ex-ante envy-freeness, and ex-post EF1 are incompatible. In this section,
we present a couple of more impossibility results. The results are logically incom-
parable to the main impossibility result of Freeman et al. [15]. Our first impos-
sibility is the following one.

Theorem 4. Ex-ante SD-EF, ex-post EF1, and ex-post PO are incompatible
even for 2 agents.

Proof. Consider the example in which N = {1, 2}, O = {a, b1, b2, b3} and the
agents have the following utilities over four items.

a b1 b2 b3
1 7 1 1 1
2 4 2 2 2

The three items b1, b2, b3 are identical items that we refer to as b items. Ex-
ante SD-EF implies that each agent in expectation gets 1/2 of a and 1.5 units of
type b items. Our first claim is that in any lottery implementing such an ex-ante
SD-EF allocation, there is at least one ex-post allocation in which agent 2 must
get item a. This follows from the fact that agent 2 gets 1/2 of a in expectation.

Our second claim is that in any deterministic ex-post EF1 and ex-post PO
allocation, agent 2 cannot get item a. Suppose for contradiction that agent 2
gets a. Then, EF1 requires that agent 1 gets at least 2 items of type b. But then,
agent 1 can exchange these two items for a to obtain a Pareto improvement.

From the two claims above, it follows that for the problem instance, there
exists no lottery over ex-post EF1 and ex-post PO outcomes that implements
the SD-EF random outcome. ��
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Next, we point out that ex-ante fPO and ex-ante SD-EF are incompatible
even for 2 agents. The theorem follows directly from Theorem 5 [6] but we re-
prove it in our context for the sake of completeness.

Theorem 5. Ex-ante fPO and ex-ante SD-EF are incompatible even for 2
agents.

Proof. Consider the following two-agent profile.

a b
1 u1(a) u1(b)
2 u2(a) u2(b)

Consider an SD-EF and ex-ante PO allocation p. Suppose u1(a), v1
b ,

u2(a), u2(b) > 0 in such a way that u1(a) > u1(b) and u2(a) > u2(b) and
u1(a)
u1(b)

> u2(a)
u2(b)

. Due to SD-EF, the outcome should be

p =

a b( )
1 1/2 1/2
2 1/2 1/2

On the other hand, in order for the mechanism to be ex-ante fPO, p1,b = 0 or
p2,a = 1. ��

6 Binary Utilities

We assumed that the agents have additive utilities. If we consider the case in
which agents have 1-0 utilities, we can achieve stronger results. We show that
our EPS-lottery algorithm satisfies very strong properties when agents have 1-0
utilities. In order to ensure ex-ante efficiency of the EPS-lottery algorithm under
1-0 utilities, we can assume that agents do not consume zero utility items and
leave them for the consumption by other agents as is done by the Controlled
Cake Eating Algorithm (CCEA) algorithm [6]. In case this leads to unbalanced
allocations, we can make the allocation balanced by adding appropriate number
of extra dummy items so that we can implement our lottery decomposition
algorithm for a balanced allocation.

Before we proceed, let us recall the definition of leximin optimality. For an
allocation π we denote by u(π) ∈ R

n the vector of the utilities in π sorted in
increasing order. For two vectors u,v ∈ R

k, we say that u leximin-dominates v,
written u �lex v, if there exists an i ≤ k such that uj = vj ,∀j < i, and ui > vi.
Finally, π is leximin-optimal if there is no π′ such that u(π′) �lex u(π).

Under 1-0 utilities, it is known that the following rules are equivalent
and polynomial-time computable: (1) leximin rule (2) maximum Nash welfare
(MNW) rule (3) competitive equilibirum with equal incomes (CEEI) [23] and
(4) Controlled Cake Eating Algorithm (CCEA) rule [6] (which can be viewed
as an extension for EPS for multi-unit demands that is also careful about zero
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utilities). For example, CEEI and MNW are well-known to be equivalent even for
general additive utilities. Under binary utilities, leximin, CEEI, and CCEA are
equivalent [6]. CCEA satisfies envy-freeness. The conclusion about envy-freeness
is also derived from the fact that CEEI outcomes are envy-free (see, e.g. [24]).
It is well-known that under additive utilities, the utility profile of the agents is
unique (see, e.g., [24]).

For 1-0 utilities, the rules above are known to be ex-ante group-strategyproof
(no group of agents can misreport their preferences so that all agents get at least
as much utility and at least one agent gets strictly more utility). This fact has
been known before as well (see, e.g., [9,20] and [6]). Since the rules are equivalent
to the leximin rule, the outcome is by definition leximin optimal and hence ex-
ante fPO.

We have already shown that an outcome of the EPS rule can be implemented
by a lottery over EF1 allocations. Also, every deterministic allocation consistent
with the SD-efficient random outcome is SD-efficient (follows from Lemma 2 [20])
and hence ex-post Pareto optimal for binary utilities. Therefore, we achieve ex-
post EF1 and ex-post Pareto optimality.

Theorem 6. For binary utilities, the EPS-Lottery Algorithm is group-
strategyproof, ex-ante fPO, ex-post fPO, ex-ante envy-free, and ex-post EF1. Its
outcome is ex-ante equivalent to the leximin random allocation as well as the
maximum Nash welfare allocation.

The theorem above recovers some results that have been proved by Halpern
et al. [17] including their Theorem 4 and Corollary 1.

7 Conclusion

We studied the problem of simultaneously achieving desirable fairness properties
ex-post and ex-ante. Our main contribution is an algorithm to find a lottery over
EF1 allocations that is ex-ante equivalent to the outcome of the (E)PS rule. We
noted that we actually compute a lottery over RB-allocations that satisfy strong
EF1.

Figure 2 depicts the logical relations between various properties. It also shows
some sets of properties that are possible or not possible to satisfy simultaneously.
We noted that under 1-0 utilities, all meaningful ex-ante and ex-post fairness
and efficiency properties are simultaneously satisfied. Coming back to general
additive utilities, we recall that our algorithm achieves ex-ante SD-efficiency
and ex-ante SD-EF. If we wish to replace ex-ante SD-efficiency with ex-ante
fPO, then such an algorithm does not exist in view of Theorem 5. Again, note
that our algorithm achieves ex-post SD-efficiency, ex-ante SD-EF, and ex-post
SD-EF1. Even if we weaken ex-post SD-EF1 to ex-post EF1 but strengthen
ex-post SD-efficiency to ex-post PO, we again get an impossibility (Theorem 4).
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Fig. 2. Logical relations between fairness and efficiency concepts. An arrow from (A) to
(B) denotes that (A) implies (B). The properties in green are simultaneously satisfied
by our algorithm. The combined properties in the pink shapes (dotted, dashed, or
shaded) are impossible to simultaneously satisfy. (Color figure online)
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