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Abstract. We investigate traffic routing both from the perspective of
real world data as well as theory. First, we reveal through data analyt-
ics a natural but previously uncaptured regularity of real world rout-
ing behavior. Agents only consider, in their strategy sets, paths whose
free-flow costs (informally their lengths) are within a small multiplica-
tive (1 + θ) constant of the optimal free-flow cost path connecting their
source and destination where θ ≥ 0. In the case of Singapore, θ = 1 is a
good estimate of agents’ route (pre)selection mechanism. In contrast, in
Pigou networks the ratio of the free-flow costs of the routes and thus θ is
infinite, so although such worst case networks are mathematically simple
they correspond to artificial routing scenarios with little resemblance to
real world conditions, opening the possibility of proving much stronger
Price of Anarchy guarantees by explicitly studying their dependency on
θ. We provide an exhaustive analysis of this question by providing prov-
ably tight bounds on PoA(θ) for arbitrary classes of cost functions both
in the case of general congestion/routing games as well as in the special
case of path-disjoint networks. For example, in the case of the standard
Bureau of Public Roads (BPR) cost model, ce(x) = aex

4 + be and more
generally quartic cost functions, the standard PoA bound for θ = ∞
is 2.1505 [21] and it is tight both for general networks as well as path-
disjoint and even parallel-edge networks. In comparison, in the case of
θ = 1, the PoA in the case of general networks is only 1.6994, whereas
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for path-disjoint/parallel-edge networks is even smaller (1.3652), show-
ing that both the route geometries as captured by the parameter θ as
well as the network topology have significant effects on PoA (Fig. 1).
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(a) Comparison between PoA(θ) in the
case of quartic costs for general/path-
disjoint networks resp. and the standard
bound PoA(∞)=2.1505 from [21]. More
results can be found in Table 1.

(b) Shortest free-flow path ver-
sus chosen path. Discussion on
data analytics can be found in
Section 2.

Fig. 1. Improved Price of Anarchy bounds in data-driven routing models

1 Introduction

Modern cities are wonders of emergent, largely self-organizing, behavior. Major
capitals buzz with the collective hum of millions of people whose lives are inter-
twined and coupled in myriad and diverse ways. One of the most palpable
such phenomena of collective behavior is the emergence and diffusion of traffic
throughout the city. A bird’s eye view of any major city would reveal a complex
and heterogeneous landscape of thousands upon thousands of cars, buses, trucks,
motorcycles, running though the veins of a maze of remarkable complexity and
scale consisting of a vast number of streets and highways. As Fig. 2 suggests,
the full magnitude of the multi-scale complexity of these real-life networks lies
outside the perceptive capabilities of any single individual. Nevertheless, as a
phenomenon that we get to experience daily, such as the weather, we would like
to understand at least some macroscopic, high level characteristics of traffic rout-
ing. Quite possibly, one of the most interesting such questions is how efficient is
a traffic network?

This question has received a lot of attention within algorithmic game theory.
Using the model of congestion games, seminal papers in the area established
tight bounds on their Price of Anarchy (PoA), i.e., the worst case inefficiency of
traffic routing [13,23]. For example, the Price of Anarchy of linear non-atomic
congestion games is 4/3, whereas if we apply the standard Bureau of Public
Roads (BPR) cost functions that are polynomials of degree four, then the Price
of Anarchy is roughly 2.151. On the positive side, these bounds apply to all
networks (within the prescribed class of delay/cost functions) regardless of their
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size or their total demand, or number of agents and are tight even for the simplest
possible network instances, i.e., Pigou networks with just two parallel links.

The common interpretation of these bounds is that they are strong and a
PoA anywhere in that range (e.g. PoA = 2) immediately translates to practi-
cal guarantees about real traffic. Some recent purely experimental work, how-
ever, has produced new insights that allow us to reexamine these results from
a different perspective. For example, [16] showed that the efficiency of real-life
traffic networks, as estimated from traffic measurements alone, is really close
to optimal even when compared to very optimistic estimates of optimal perfor-
mance. A Price of Anarchy of 2 implies that the average commuter can increase
their mean speed by 100%. Measurements suggest that this level of inefficien-
cies/improvements is rather unlikely. Since Price of Anarchy is a macroscopic
characteristic of a system with countless moving parts, a more useful analogy is
that of weather or climate (e.g., average temperature). The differences between
10% and 20% increase to system inefficiency are significant and a 100% increase,
i.e., PoA of 2 would have catastrophic consequences.

A Natural Question Emerges: Can we create classes of models, i.e., congestion
games, which come closer to representing real world traffic? In this paper we do,
by leveraging an intuitive but largely unexplored characteristic of real world traf-
fic routing. Commuters only consider in their strategy sets paths/routes whose
free-flow costs (informally their lengths) are approximately equal to each other
(within a multiplicative factor of 1 + θ). We call such games θ-free flow games.
We generalize the special case of linear congestion θ-free flow games [4] to the
case of arbitrary classes of cost functions as well as simultaneously studying both
general networks as well as path-disjoint networks. θ = 0 means that all paths
considered by each user have exactly equal free-flow cost/length, whereas θ = 1
allows for paths whose lengths are within a factor of 2. Pigou networks may feel
intuitively very simple and thus natural due to their small size, but they fail to
satisfy this property in the most extreme sense. The ratio of the free-flow costs
of the two edges is infinite (θ = ∞). It is like considering two possible paths from
home to work, one which is the shortest distance route and one that circumnav-
igates the globe along the way. Such unnatural paths may indeed be available
to us, but we unconsciously and automatically prune them out from the set of
alternatives that we consider. Amazingly, enforcing such a natural property on
the set of models (routing games) we consider immediately removes from con-
sideration Pigou networks, the worst case examples from a PoA perspective, and
thus opens up the possibility of proving stronger Price of Anarchy guarantees.
What are the implications of such characteristics to PoA? What other type of
attributes can we take advantage of when creating new models? Finally, how
well do they match real traffic conditions?

We hope that this paper opens up a new direction for tighter coupling
between data analytics, modelling and theory in congestion games and beyond.
Analyzing different cities as well as introducing models that take into account the
difference between public and private transport seem like an exciting direction
for future work.
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Fig. 2. For each trip segment, we find the best free-flow time and the data free-flow
time. The reconstruction of the selected route uses datapoints logged along the trip. In
yellow, the fastest route in free-flow condition is highlighted. The reconstructed route
is in green, along which we find the data free-flow time.

1.1 Our Contribution

In Sect. 2, we start off by experimentally computing estimates of θ from real
world traffic data. We employ an experimental dataset that contains detailed
information (sampled every 13 s) on the routing behavior of tens of thousands of
commuters in Singapore. Based on this fine-grained information and in combina-
tion with a graph representation of the road network of Singapore that we have
created we can estimate numerous characteristics of the actual routing behavior
at an unprecedented level of accuracy. Using these tools that we believe are of
independent interest as well, we find that the θ values for the vast majority of
commuters (close to 80%) are below 1.

Inspired by the above evidence, we introduce a new class of congestion games,
that we call free-flow games, parametrized by θ (Sect. 3). We provide two para-
metric tight bounds on the Price of Anarchy of free-flow games under general
latency functions satisfying mild assumptions, thus largely extending the results
given in [4] which are restricted to affine latencies only. The first of these bounds
applies to the general case of unrestricted network topologies (indeed, it applies
even to congestion games) (Theorem 1), while the second one holds for path-
disjoint networks (Theorem 2) which includes the fundamental parallel-links
topology. These bounds are never equal as long as θ /∈ {0,∞}. In fact, differently
from what happens in the classical setting without the free-flow assumption,
where the worst-case situation already arises in a two parallel-links network (the
Pigou network), for free-flow games the absence of intersections among paths
allows for more efficient equilibria. More precisely, as θ goes to infinity, both
bounds converge to the same limit, but the convergence of the one for parallel-
link networks can be significantly slower (see, for instance, Fig. 1(a)). We also
stress that, with respect to the case of affine latency functions, our findings
improve on the results given in [4], as we close the gap between upper and lower
bound on the Price of Anarchy for parallel-link networks that was left as an open
problem.
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One of the most important messages coming from our investigation is that
the separation outlined by Theorems 1 and 2 sheds new light on the question
of whether the Price of Anarchy is affected by the network topology. In fact, a
famous, and perhaps counter-intuitive, result by Roughgarden [21] states that
the PoA is independent of the network topology as, in almost all notable cases,
worst-case instances are already attained by simple networks, such as parallel-
link graphs. Under the free-flow assumption, however, this situation ceases to
hold, and the network topology begins to play a critical, if not dominant, role in
the efficiency of equilibria. This evidence has major practical implications, as it
signifies the fundamental importance of careful road network design and planning
for selfish routing. As shown in Fig. 1 and in more details in Table 1, in the case
of the standard Bureau of Public Roads (BPR) cost model, ce(x) = aex

4 + be

and more generally quartic cost functions, applying the constraint θ = 1 nearly
halves the percentage of inefficiency, and applying the additional constraint of a
path-disjoint network halves it once again.

At the technical level, our general formulas depend on whether the free-
flow traversing time of some edges is larger than zero, i.e., whether the limit of
the edge cost/latency as its load goes to zero is strictly positive. Latency func-
tions for which this does not hold have been termed homogeneous by Rough-
garden [21] and they represent one of the few exceptions for which he could
not prove that the PoA is independent of the network topology. Since under
homogeneous latency functions any congestion game is a 0-free flow game, as a
by-product of our results, we also obtain that, for (free-flow) games with homo-
geneous latency functions, the Price of Anarchy is lower than the one attained
by non-homogeneous latencies, and it is tight even for parallel-links topologies
(Theorem 2), thus answering the open question posed by Roughgarden in [21].

To summarize, we obtain that the Price of Anarchy is independent of the
network topology (i.e., the worst-case PoA is attained by parallel-link games) if
and only if one of the following cases occurs: (i) θ = 0 (which include the case
of homogeneous latency functions as a special case) and (ii) θ = ∞.

For the sake of a more concrete exposition of our results and for empiri-
cal purposes, we provide explicitly an instantiation of the PoA bounds in the
case of polynomial latency functions. The resulting bounds depend on both the
maximum and minimum degree of the polynomials and, in the case of non-
homogeneous polynomials only, they also depend on θ. A quantitative represen-
tation of our results is partially summarized in Table 1.

Due to the lack of space, a detailed discussion of the results and some missing
proofs are deferred to the full version of this paper [1].
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Table 1. The Price of Anarchy of free-flow games with non-homogeneous (i.e., with
constant terms allowed) polynomial latency functions of maximum degree p ≤ 4 and
minimum degree q. Unlabelled bounds are proven in this paper. Bounds for homoge-
neous (i.e., without constant terms) polynomials can be obtained from the case θ = 0
(the same upper bounds have been given in [9], but tight lower bounds were only con-
jectured to exist). As it can be appreciated, the PoA depends on the network topology
whenever 0 < θ < ∞.

(p, q) θ = 0 θ = 1/2 θ = 1 θ = ∞
General Path-disjoint General Path-disjoint General Path-disjoint General Path-disjoint

(1, 1) 1 [4] 1 1.1547 [4] 1.0909 1.2071 [4] 1.1429 1.3333 [23] 1.3333 [23]

(2, 1) 1.0355 1.0355 1.2873 1.1472 1.3852 1.2383 1.6258 [21] 1.6258 [21]

(2, 2) 1 1 1.2873 1.1472 1.3852 1.2383 1.6258 [21] 1.6258 [21]

(3, 1) 1.0982 1.0982 1.4078 1.1869 1.5475 1.3093 1.8956 [21] 1.8956 [21]

(3, 2) 1.0147 1.0147 1.4078 1.1869 1.5475 1.3093 1.8956 [21] 1.8956 [21]

(3, 3) 1 1 1.4078 1.1869 1.5475 1.3093 1.8956 [21] 1.8956 [21]

(4, 1) 1.1676 1.1676 1.5202 1.2170 1.6994 1.3652 2.1505 [21] 2.1505 [21]

(4, 2) 1.0450 1.0450 1.5202 1.2170 1.6994 1.3652 2.1505 [21] 2.1505 [21]

(4, 3) 1.0080 1.0080 1.5202 1.2170 1.6994 1.3652 2.1505 [21] 2.1505 [21]

(4, 4) 1 1 1.5202 1.2170 1.6994 1.3652 2.1505 [21] 2.1505 [21]

1.2 Related Work

Price of Anarchy in Routing Games: Introduced by Koutsoupias and Papadim-
itriou [13], the ratio between the social cost of the worst equilibrium of a game
and its optimum was given the name Price of Anarchy (PoA) in [20]. For net-
works of linear latency and general topology, PoA was bounded tightly by 4/3
[23] and 5/2 in the atomic case [6]. Following results by Roughgarden [22] stud-
ied more general latency functions and atomic routing games and again gave
tight bounds on PoA. However, for a large class of natural latency functions,
PoA tends to 1 as the demand on the network approaches infinitesimally small
or infinitely high levels [7,8]. This casts doubts on the predictive power of PoA
on the state of a real system, as noted in Monnot et al. [16].

Strategy sets of routing games are typically exponential in the number of
vertices, hence restricting them is a common assumption. The unnatural char-
acter of Pigou in real systems was noted by Lu and Yu [15], who assume players
have at least one strategy that is not more than λ away from the fastest strategy
in congestion games. Restricting the strategy sets to obtain tighter bounds for
PoA is also employed in [3], [?] for load balancing games (i.e., congestion games
where the strategies of players are singleton sets). Fotakis [10] proved a pure PoA
bound for symmetric atomic congestion games on extension-parallel networks,
an interesting class of networks with linearly independent paths, that is equal to
that of non-atomic congestion games.

Primal-dual techniques for bounding the Price of Anarchy in non-cooperative
games have been proposed by Bilò [2], Kulkarni and Mirrokni [14], Nadav and
Roughgarden [18] and Thang [24]. The methods proposed in [2] and [18] operate
by explicitly formulating the problem of maximizing the Price of Anarchy of a
class of games. Despite using the same formulation, they differ in the choice of
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the variables. While [18] uses the probability distributions defining the outcomes
occurring in the formulation, [2] adopts suitable multipliers for the resource cost
functions. The methods in [14] and [24], instead, build on a formulation for
the problem of optimizing the social function, and then implement the equilibria
conditions within the choice of the dual variables. We adopt the method proposed
in [2] as it appears to be more flexible and powerful in our realm of application.
The first advantage is that it generalizes to any type of cost functions, while
all the others require some restrictions: the method in [18] can only be applied
to affine functions, the one in [14] requires convex functions, while that of [24]
needs non-decreasing ones. Secondly, the method (if properly used) always yields
tight bounds on the Price of Anarchy, while those in [14] and [24] are limited by
the integrality gap of the formulation. Last but not least, it models in a simple,
direct and intuitive way any new twist, as the free-flow property considered in
this work, one may want to add to the scenario of application.

Transportation Research: The seminal work of Wardrop [26] introduces and for-
malizes one of the first notions of equilibrium in transportation networks. A
proof of the equal social costs for equilibria and optimum (i.e., PoA = 1) in
parallel links routing games appears in Nagurney and Qiang [19]. Related ideas
from sensitivity analysis for edge cost functions are treated in Tobin and Friesz
[25]. The Price of Anarchy was estimated for the city of Boston with different
means from our study by Zhang et al. [27], where the sensitivity of the social cost
at equilibrium with respect to edge parameters is also discussed. The previously
cited works rely on the BPR estimation of cost functions [5], which are included
in the family of weakly monomial latency functions we define in Sect. 3. The
free-flow property in transportation networks has been first proposed by Jahn
et al. [12] with respect to the problem of optimizing a centralized traffic flow
without imposing too longer detours to some users.

2 Experimental Evidence for θ-Free-Flow Time in
Singapore

We look for experimental evidence that commuters use the heuristic presented in
the introduction to guide their routing decisions. Namely, we make the conjecture
that commuters consider only paths with “length” at most a mutliplicative factor
1 + θ away from the shortest path taking them to their destination (where
“length” is measured as a latency, or travel time). Does this conjecture hold
in practice? To answer, we obtain data on the routing behavior of a sampled
population. Modelling assumptions and a formal definition of θ are presented in
the next Sect. 3.

2.1 The National Science Experiment

The NSE is a nationwide project in Singapore in which over 90,000 students from
primary, secondary and junior college wore a sensor, called SENSg, for up to one
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week per student in 2015 and 2016. The SENSg sensors collect various envi-
ronmental data, and 9-degree of freedom motion data sampled every 13 s using
the Wi-Fi based localization system. The semantic data covers the identifica-
tion of individual trips within the discrete stream of locations [11], inference of
the activity performed at each endpoint and transportation mode classification
[16,17].

We use the NSE 2016 dataset which contains data from 49,526 students,
and we implement the mode identification algorithm developed in [28] where
five different modes can be identified, namely: (a) stationary; (b) walking; (c)
riding a train; (d) riding a bus; and (e) riding a car. To ensure the quality of our
empirical results, we perform a strict data cleaning process over the complete
dataset. A total of 34,121 clean trips are considered, with 16,563 unique students
and 89 different schools. This work focuses on morning travels of students who
get to their schools from their homes.

Our dataset contains highly granular information concerning the routing deci-
sions of the subjects. With the help of the onboard sensors in the device and
the mode identification algorithm, we are able to obtain for each trip an accu-
rate representation of its segments and their endpoints. For instance, typical
segments making up a trip may be “Walk - Car - Walk”, or “Walk - Bus - Train
- Bus - Walk”. The following study focuses on car trip segments. In this dataset
[16], looking at the population of public transport users only, Price of Anarchy
was upper bounded by 1.18. Converserly, Price of Anarchy for car users only
was bounded by 1.86. Putting both populations together, Price of Anarchy was
bounded by 1.34.

2.2 Estimation of Free-Flow Time for Selected Route

We compute a graph representation from a road map of Singapore, where each
vertex is located at an intersection or a bend in the road. Every edge is assigned
with a cost representing how much time is needed to traverse it. This latency is
obtained from edge features such as the road type and the posted speed limit
on the road. For each private transportation trip segment in the dataset, we
associate its origin and destination with the closest vertex in the graph. We
run a shortest path algorithm to estimate the free-flow travel time of the trip
segment, referred to in the following as the best free-flow time. This best free-
flow time is compared with the data free-flow time, or the time it would take the
subject to travel its selected route if no one was on the road. We describe how
the data free-flow time is estimated in the following paragraph.

A segment measured by the sensor consists of a stream of geographical loca-
tions. For each datapoint, we associate the closest edge in the graph. The size
of the graph (61,151 vertices and 65,596 edges) implies a lengthy lookup phase
to associate the point to its closest edge. For this reason, we consider a smaller
dataset of 449 car segments out of the 17,897 segments in the larger dataset.
These selected segments are well distributed across Singapore as depicted by
Fig. 2. By adding the free-flow time of traversing each edge associated to the
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data points, connected via heuristics detailed in our online version [1], we obtain
the data free-flow time.

2.3 Estimate of θ

We compare the best free-flow time to the data free-flow time for each sample
in our dataset, and denote by θ the percent increase between the two. A small
value of θ yields support to the hypothesis that agents only consider routes
which connect origin and destination in a straightforward manner (under no
congestion) as part of their strategy set, see Fig. 3.

0

1

2

3

0.00 0.25 0.50 0.75 1.00
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  θ

Quartile 25% 50% 75% 100%
θ 0.17 0.45 0.88 3.53
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Fig. 3. The deviation is measured by the ratio of the selected route free-flow time to
the minimum free-flow time among all routes between the origin and the destination.
Close to 80% of the θ values are below 1, implying that the free-flow time of the selected
route is rarely twice as long as the best free-flow time.

This experimental result provides justification for the upper bound of PoA
estimated from the same dataset in previous work [16]. This benchmark is mean-
ingful for real road networks, as latency functions are typically estimated using
affine quartic monomials [5]. As noted in our introduction as well as in more
details in the next section, our model is based on the assumption of a uniform θ
bound over the whole population. We should note that this assumption is con-
sistent with our experimental measurements, since these measurements provide
us with estimates on the lower bounds of the agents’ θ’s. More detailed models
with a heterogeneous population/distribution of θ’s is an interesting direction
for future work.

3 Model and Definitions

For a positive integer i, let [i] := {1, 2, . . . , i}. Given a set A and a set B ⊇ A,
let χA : B → {0, 1} denote the indicator function, i.e., χA(x) = 1 if x ∈ A
and χA(x) = 0 if x /∈ A. Given a tuple of numbers (α1, α2, . . . , αk), we write
(α1, α2, . . . , αk) > 0 if αi ≥ 0 for any i ∈ [k] and αi > 0 for some i ∈ [k].

Non-atomic Congestion Games. A non-atomic congestion game (from
now on, simply a congestion game) is a tuple CG = ([n], (ri)i∈[n], E, (�e)e∈E ,
(Σi)i∈[n]), where [n] is a set of types, E is a set of resources, �e : R>0 → R>0

is the latency function of resource e ∈ E, and, for each i ∈ [n], ri ∈ R≥0 is the
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amount of players of type i and Σi ⊆ 2E \ ∅ is the set of strategies for players
of type i (i.e. a strategy is a non-empty subset of resources). We assume that
latency functions are non-decreasing, positive, and continuous.

Classes of Congestion Games. A network congestion game is a congestion
game based on a graph G = (V,E), where the set of resources coincides with E,
each type i is associated with a pair of nodes (ui, vi) ∈ V × V , so that the set
of strategies of players of type i is the set of paths from ui to vi in graph G. If
there exists u∗ ∈ V such that u∗ = ui for any i ∈ [n], the game is called single-
source network congestion game. Let P be the set of all the paths P connecting
source ui with destination vi, for any pair source-destination (ui, vi). The game
is called path-disjoint network congestion game if all the paths in P are pair-wise
node-disjoint.

A load balancing game is a congestion game in which each strategy is a
singleton, i.e., S = {e} for some e ∈ E, for any strategy S ∈ Σi and type i ∈ [n].
A parallel-link game (or symmetric load balancing game) is a load balancing game
in which all players have the same set of strategies. It is well-known that each
load balancing game (resp. parallel-link game) can be modelled as a single-source
congestion game (resp. path-disjoint network congestion game).

Latency Functions. For the sake of simplicity, we extend the domain of each
latency function �(x) to x = 0 in such a way that �(0) = limx→0+ �(x). Given
a class of latency functions F , let [F ]H := {f : f(x) = g(x) − g(0), g ∈ F}.
Observe that f(0) = 0 for any f ∈ [F ]H by definition. In the following, we use
similar definitions as in [21]. F is homogeneous if F = [F ]H . F is weakly diverse
if [F ]H ⊆ F and it contains at least one constant function (i.e., a function
f such that f(x) = β for any x > 0, for some β > 0). F is scale-closed if
it contains all the functions f such that f(x) = αg(x), for any g ∈ F and
α > 0. F is strongly diverse if contains all the functions f such that f(x) =
αg(x) + β, for any g ∈ [F ]H and (α, β) > 0. A polynomial latency function
of maximum degree p and minimum degree q (with p ≥ q ≥ 1) is defined as
�e(x) :=

∑p
d=q αe,dx

d + βe, where αe,q, αe,q+1, . . . , αe,p, βe > 0. Let Pp,q denote
the class of polynomial latency functions of maximum degree p and minimum
(non-zero) degree q. A latency function �e is affine if �e ∈ PP1.

Strategy Profiles and Pure Nash Equilibria. A strategy profile is a tuple
σ := (σi,S)i∈[n],S∈Σi

with
∑

S∈Σi
σi,S = ri for any i ∈ [n], that is a state

of the game where σi,S ≥ 0 is the total amount of players of type i selecting
strategy S for any i ∈ [n] and S ∈ Σi. Given a strategy profile σ, ke(σ) :=∑

i∈[n],S∈Σi:e∈S σi,S is the congestion of e in σ, i.e., the total amount of players
selecting e in σ, and given a strategy S, cS(σ) :=

∑
e∈S �e(ke(σ)) is the cost

of players selecting S in σ. A strategy profile σ is a pure Nash equilibrium
(or Wardrop equilibrium, or equilibrium flow) if and only if, for each i ∈ [n],
S ∈ Σi : σi,S > 0 and S′ ∈ Σi, it holds that cS(σ) ≤ cS′(σ).

Quality of Equilibria. A social function that is usually used as a measure of
the quality of a strategy profile in congestion games is the total latency, defined
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as SUM(σ) :=
∑

e∈E ke(σ)�e(ke(σ)) =
∑

i∈[n] rici(σ) at equilibrium σ. A social
optimum is a strategy profile σ∗ minimizing SUM.

The Price of Anarchy of a congestion game CG (with respect to the
social function SUM), denoted as PoA(CG), is the supremum of the ratio
SUM(σ)/SUM(σ∗), where σ is a pure Nash equilibrium for CG and σ∗ is a
social optimum for CG. As shown in [23], all pure Nash equilibria of any con-
gestion game have the same total latency. Thus, the Price of Anarchy can be
redefined as the ratio SUM(σ)/SUM(σ∗), where σ is an arbitrary pure Nash
equilibrium for CG and σ∗ is a social optimum for CG.

Free-Flow Congestion Games. Given θ ∈ [0,∞], a θ-free-flow congestion
game CGθ is a congestion game in which, for each i ∈ [n] and S, S′ ∈ Σi, it holds
that

∑
e∈S �e(0) ≤ (1+ θ)

∑
e∈S′ �e(0), i.e., all the strategies available to players

of type i, when evaluated in absence of congestion, are within a factor 1 + θ one
from the other. Observe that free-flow congestion games are congestion games
obeying some special properties. Thus, all positive results holding for congestion
games carries over to θ-free-flow congestion games for any value of θ. Moreover,
for θ = ∞, any congestion game is a θ-free-flow congestion game.

4 Price of Anarchy of Free-Flow Congestion Games

In this section, we give tight bounds on the Price of Anarchy of free-flow conges-
tion games. A detailed discussion of the implications of our theoretical results on
the Price of Anarchy and how they relate to previous work, is given in the full
version of this paper. Before going into details, we sketch the high level building
blocks of the proofs of the upper bounds. For the general case, by adapting [2],
we formulate the problem of bounding the Price of Anarchy of θ-free-flow con-
gestion games by means of a factor-revealing pair of primal-dual linear programs.
The techniques work as follows.

Given a θ-free-flow congestion game CGθ and a family of latency func-
tions F , we know that we can model the latency of every resource e ∈ E as
�e(x) = αefe(x) + βe, with fe ∈ [F ]H , αe ∈ {0, 1} and βe ≥ 0. We fix a Nash
equilibrium σ and a social optimum σ∗ for CGθ. Hence, for every e ∈ E, the con-
gestions ke(σ) and ke(σ∗) of e in σ and σ∗, respectively, become fixed constants.
As the Price of Anarchy measures the worst-case ratio of SUM(σ) over SUM(σ∗),
our goal becomes that of choosing suitable values for αe and βe, for every e ∈ E,
so as to maximize SUM(σ) under the assumption that SUM(σ∗) = 1, σ is a Nash
equilibrium and CGθ is a θ-free-flow game. In particular, constraint SUM(σ∗) = 1
can be assumed without loss of generality by a simple scaling argument, pro-
vided we relax the condition αe ∈ {0, 1} with αe ≥ 0. Thus, an optimal solution
to the resulting linear program, call it LP, provides an upper bound to the Price
of Anarchy of CGθ. Next step is to compute and analyze the dual of LP, that
we call DLP. DLP has three variables, namely x, y and γ, with x ≥ 0, y ≥ 0
and γ defining its objective value. Thus, by the Weak Duality Theorem, any
feasible solution (x∗, y∗, γ∗) for DLP yields an upper bound of γ∗ to the optimal
solution of LP and so an upper bound to the Price of Anarchy of CGθ. For each
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function fe ∈ FH , DLP has two constraints, namely c1(fe, ke(σ), ke(σ∗), x, γ)
and c2(fe, ke(σ), ke(σ∗), y, γ), providing two lower bounds
on γ, denoted as γ(G) := infx≥1 supl>0,f∈G

(
k+x(−k+l)

l

)
f(k)
f(l) and γθ(G) :=

supk>l>0,f∈G
f(k)(k(1+θ)−l)

f(k)(k−l)(1+θ)+lf(l)θ .

An important advantage of the primal-dual method is that, whenever LP pro-
vides a tight characterization of the properties possessed by the games and the
equilibria under analysis, an optimal solution to DLP can be fruitfully exploited
to construct, quite systematically, but not without effort, matching lower bound-
ing instances. We manage to achieve this result also in this case, but, given the
very technical nature of the constructions, we refer the interested reader to the
full version of this paper.1

For the case of parallel-links and path-disjoint games, we apply a similar,
although more direct approach. We fix once again CGθ, the family of latency
functions F , the latency of every resource e ∈ E, a Nash equilibrium σ and a
social optimum σ∗ for CGθ, so as to obtain constant values for both ke(σ) and
ke(σ∗). This time, instead of resorting to linear programming, we write down
the parametric expression of the Price of Anarchy as a function of ke(σ), ke(σ∗)
and the latency functions of the resources in the game. A key feature of this case,
that makes it different from the general setting analyzed before, is that, here,
we need have

∑
e∈E ke(σ) =

∑
e∈E ke(σ∗). By exploiting this equality, together

with the equilibrium conditions and the θ-free-flow property of CGθ, we create a
sequence of more and more relaxed upper bounds for the Price of Anarchy, until
we end up to a sufficiently simple formula. Also in this case, we can show that
the performed analysis is tight by providing matching lower bounding instances
whose description is again deferred to the full version of this paper.

4.1 The Main Theorems

Theorem 1. Let CGθ be a θ-free-flow congestion game with latency functions
in F and θ ∈ [0,∞]. We have PoA(CGθ) ≤ γ([F ]H) if θ = 0, PoA(CGθ) ≤ γ(F)
if θ = ∞, and PoA(CGθ) ≤ max{γ([F ]H), γθ([F ]H)} if θ ∈ (0,∞). These bounds
are tight for single-source network games if F is weakly diverse and even for load
balancing games if F is strongly diverse.

We now show that, when considering either parallel-links games or path-
disjoint network congestion games, a better bound on the Price of Anarchy can
be achieved. To this aim, given a class of latency functions G, let us define
ηθ(G) := supk>l>0,f∈G

kf(k)(1+θ)
kf(k)(1+θ)+(lf(l)−lf(k))θ .

Theorem 2. Fix a value θ ∈ [0,∞) and a class of latency functions F . Let PLGθ

be a θ-free-flow path-disjoint network congestion game with latency functions in

1 In the related literature, bounds on the Price of Anarchy are often obtained by
exploiting Roughgarden’s smoothness framework [22]. Similarities and differences
between such framework and the primal-dual method are given in the full version of
this paper [1].
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F . Then, PoA(PLGθ) ≤ max{γ([F ]H), ηθ([F ]H)}. The bound is tight in general
and even for parallel-links networks if F is scale-closed.

By using Theorems 1 and 2, we can determine the exact Price of Anarchy
of free-flow congestion games with polynomial latency functions in Pp,q. In
particular, we show that γθ([Pp,q]H) = supt>1

tp(t(1+θ)−1)
tp(t−1)(1+θ)+θ , γ([Pp,q]H) =

pp

(p+1)p+1

(
p−q

√(
(p+1)p+1qq

(q+1)q+1pp

)p+1
)

(
p−q

√
(p+1)p+1qq

(q+1)q+1pp − 1
)−1

χ[p−1](q) + χ{p}(q),

ηθ([Pp,q]H) = supt>1
tp+1(1+θ)

tp+1(1+θ)+(1−tp)θ , and by using such values in Theorems
1 and 2 we are able to derive tight bounds on the Price of Anarchy.
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