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Abstract. We consider flows over time within the deterministic queue-
ing model and study the solution concept of instantaneous dynamic equi-
librium (IDE) in which flow particles select at every decision point a
currently shortest path. The length of such a path is measured by the
physical travel time plus the time spent in queues. Although IDE have
been studied since the eighties, the efficiency of the solution concept is
not well understood. We study the price of anarchy for this model and
show an upper bound of order O(U ·τ) for single-sink instances, where U
denotes the total inflow volume and τ the sum of edge travel times. We
complement this upper bound with a family of quite complex instances
proving a lower bound of order Ω(U · log τ).
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1 Introduction

Dynamic flows have gained substantial interest over the last decades in modeling
dynamic network systems such as urban traffic or the Internet. A widely used
model for describing dynamic flows is based on the fluid queueing model due
to Vickrey [23]. There is a directed graph G = (V,E), where edges e ∈ E are
associated with a queue with positive rate capacity νe ∈ R+ and a physical
transit time τe ∈ R+. If the total inflow into an edge e = vw ∈ E exceeds the
rate capacity νe, a queue builds up and arriving flow particles need to wait in the
queue before they are forwarded along the edge. The total travel time along e is
thus composed of the waiting time spent in the queue plus the physical transit
time τe.

Due to the decentralized nature of the above mentioned applications, the
physical flow model needs to be complemented by a behavioral model prescrib-
ing the actions of flow particles. Most works in the transportation science litera-
ture as well as recent works in the mathematics and computer science literature
adopt the full information model, i.e., all flow particles have complete infor-
mation on the state of the network for all points in time (including the future
evolution of all flow particles) and based on this information travel along a short-
est path. This leads to the concept of dynamic equilibrium (Nash equilibrium)
and has been analyzed in the transportation science literature for decades, see
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Friesz et al. [7], Meunier and Wagner [18], Zhu and Marcotte [24] and the more
recent works by Koch and Skutella [16] and Cominetti, Correa and Larré [3].
The full information assumption has been justified by assuming that the game is
played repeatedly and a dynamic equilibrium is then an attractor of a learning
process. In light of the wide-spread use of navigation devices, this concept may
not be completely realistic anymore, because drivers are informed in real-time
about the current traffic situation and, if beneficial, reroute instantaneously no
matter how good or bad that route was in hindsight. This aspect is also discussed
in Marcotte et al. [17], Hamdouch et al. [12] and Unnikrishnan and Waller [22].

Instead of the (classical) dynamic equilibrium, we consider in this paper
instantaneous dynamic equilibria (IDE), where for every point in time and at
every decision node, flow only enters those edges that lie on a currently shortest
path towards the respective sink. This concept assumes far less information (only
the network-wide queue length which are continuously measured) and leads to a
distributed dynamic using only present information that is readily available via
real-time information. IDE have been proposed already in the late 80’s (cf. Ran
and Boyce [19, § VII-IX], Boyce, Ran and LeBlanc [2,20], Friesz et al. [8]) and
it is known that IDE do exist under quite general conditions, see Graf, Harks
and Sering [11].

Price of Anarchy. In comparison to dynamic equilibrium, an IDE flow behaves
quite differently and several fundamental aspects of IDE are not well understood.
There are, for instance, simple single-source single-sink instances in which the
unique IDE flow exhibits cycling behavior, that is, some flow particles travel
along cycles before they reach the sink. This behavior is impossible for dynamic
equilibria as every particle chooses a path once and never gets into a cycle. This
raises the question of the (time) price of anarchy of IDE flows.

Question (PoA): Assuming single-sink instances with constant inflow rates
for a finite time interval, what is the maximum time needed so that every flow
particle reaches the sink?1

1.1 Our Results and Proof Techniques

We study the termination time of IDE flows for single-sink instances and derive
the first quantitative upper bound on the termination of IDE flows. Our bound
is parameterized in the numbers U and τ denoting the total flow volume injected
into the sources and the sum of physical travel times, respectively. We denote
by PoA(U, τ) the price of anarchy over the family of instances parameterized by
U and τ .

Theorem 1: For multi-source single-sink networks, any IDE flow over time
terminates after at most O(Uτ) time. Moreover, PoA(U, τ) ∈ O(Uτ).

1 For multi-sink instances, it is known that IDE flows may cycle forever, thus, the
termination time and the PoA is infinity in this case.
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We prove this bound by first deriving a general termination bound for acyclic
graphs. Using this bound, we then show that there exist so-called sink-like sub-
graphs that can effectively be treated as acyclic graphs. This way, we can argue
that at all times a sufficiently large flow volume enters the current sink-like sub-
graph and, by the bound for acyclic graphs, reaches the sink within the claimed
time. The proof technique and the bound itself are completely different to those
for dynamic equilibria in [4].

We then turn to lower bounds on the termination time (PoA) of IDE flows.

Theorem 4: For (U, τ) ∈ N
∗ × N

∗ with U ≥ 2τ , we have PoA(U, τ) ∈
Ω(U log τ).

The lower bound is based on a quite complex instance (see Fig. 2) that works
roughly as follows. We combine two gadgets: A “cycling gadget” consisting of a
large cycle made of edges with capacity ≈U and a “blocking gadget” consisting of
paths with low capacity and length of about τ connecting the nodes on the cycle
to the sink node. An IDE flow within this graph can then alternate between two
different phases: A “charging phase”, wherein the main amount of flow travels
once around the big cycle, loosing a small amount of flow to each of the paths
leading towards the sink, and a “blocking phase”, in which the particles traveling
along the paths form queues again and again in just the right way as to keep
the main amount of flow traveling around on the large cycle without loosing any
more flow. In order to derive a lower bound on the price of anarchy we then
augment this instance in such a way that the optimal flow can just bypass the
two gadgets and reach the sink in constant time while any IDE flow gets diverted
into the cycling gadget.

1.2 Further Related Work

The concept of flows over time was studied by Ford and Fulkerson [5]. Shortly
after, Vickrey [23] introduced a game-theoretic variant using a deterministic
queueing model. Since then, dynamic equilibria have been studied extensively
in the transportation science literature, see Friesz et al. [8]. New interest in this
model was raised after Koch and Skutella [16] gave a novel characterization of
dynamic equilibria in terms of a family of static flows (thin flows). Cominetti,
Correa and Omar [3] refined this characterization and Koch and Sering [21]
incorporated spillbacks in the fluid queuing model.

Regarding the price of anarchy of dynamic equilibria, Koch and Skutella [16]
derived the first results on the price of anarchy for dynamic equilibria, which
were recently improved by Correa, Cristi and Oosterwijk [4] devising a tight
bound of e

e−1 , provided that a certain monotonicity conjecture holds. Israel
and Sering [14] investigated the price of anarchy for the model with spillbacks.
Bhaskar, Fleischer and Anshelevich [1] devised Stackelberg strategies in order to
improve the efficiency of dynamic equilibria. Recently, Frascaria and Olver [6]
considered a flexible departure choice model from an optimization point of view
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and derived insights into devising tolls for improving the performance of dynamic
equilibria.

Ismaili [13] considered a discrete version of IDEs and investigated the price
of anarchy. He used the utilitarian social cost (not the makespan as we do) and
derived lower bounds of order Ω(|V | + n) for the setting that only simple paths
are allowed. Here n denotes the number of discrete players in the game. For
general multi-commodity instances allowing also cycles, he proves that the price
of anarchy is unbounded. Similarly, Graf, Harks and Sering [11] showed that for
the continuous version multi-commodity IDE flows may cycle forever and, thus,
the price of anarchy is infinity. For IDE flows in single-sink networks, on the
other hand, they showed that termination is always guaranteed. However, due
to the non-constructive nature of their proof they could not derive any explicit
bound on the termination time or the price of anarchy for those instances.

2 Model

Let N = (G, (νe)e∈E , (τe)e∈E , (uv)v∈V \{ t }, t) be a network consisting of a
directed graph G = (V,E), edge capacities νe ∈ N

∗, edge travel times τe ∈ N
∗,2

a single sink node t ∈ V reachable from every other node and for every node
v ∈ V \ { t } a corresponding integrable (network) inflow rate uv : R≥0 → R≥0.
The idea then is that, at all times θ ∈ R≥0 infinitesimal small agents enter the
network at node v at a rate according to uv(θ) and start traveling through the
graph towards the common sink t. Such a dynamic can be described by a flow
over time, a tuple f = (f+, f−) where f+, f− : E × R≥0 → R≥0 are integrable
functions. For any edge e ∈ E and time θ ∈ R≥0 the value f+

e (θ) describes the
(edge) inflow rate into e at time θ and f−

e (θ) is the (edge) outflow rate from e
at time θ.

For any such flow over time f we define the cumulative (edge) in- and outflow
rates F+ and F− as

F+
e (θ) :=

∫ θ

0

f+
e (ζ)dζ and F−

e (θ) :=
∫ θ

0

f−
e (ζ)dζ,

respectively. The queue length of edge e at time θ is then defined as

qe(θ) := F+
e (θ) − F−

e (θ + τe). (1)

We call such a flow f a feasible flow for a given set of network inflow rates
uv : R≥0 → R≥0 for each node v ∈ V \{t}, if it satisfies the following constraints
(2) to (5). The flow conservation constraints are modeled for all nodes v �= t as∑

e∈δ+
v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) = uv(θ) for all θ ∈ R≥0, (2)

2 Throughout this paper we will restrict ourselves to integer travel times and edge
capacities to make the statements and proofs cleaner. However, all results can
be easily applied to instances with rational travel times and capacities by simply
rescaling the instance appropriately. Note, however, that all bounds will then scale
accordingly.
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where δ+v := { vu ∈ E } and δ−
v := {uv ∈ E } are the sets of outgoing edges

from v and incoming edges into v, respectively. For the sink node t we require
∑
e∈δ+

t

f+
e (θ) −

∑
e∈δ−

t

f−
e (θ) ≤ 0 (3)

and for all edges e ∈ E we always assume

f−
e (θ) = 0 f.a. θ < τe. (4)

Finally we assume that the queues operate at capacity which can be modeled by

f−
e (θ + τe) =

{
νe, if qe(θ) > 0
min { f+

e (θ), νe } , if qe(θ) ≤ 0
for all e ∈ E, θ ∈ R≥0. (5)

Termination Time for Flows over Time. We will now introduce some additional
notation in order to formally define the termination time of a feasible flow. Since
termination is only relevant for flows with finitely lasting inflow rates, from here
on we will always assume that there exists some time θ0, such that the supports
of all network inflow rates uv are contained in [0, θ0].

Following [21], for any feasible flow f and every edge e ∈ E we define the
edge load function FΔ

e that gives us for any time θ the total amount of flow
currently on edge e (either waiting in its queue or traveling along the edge):

FΔ
e : R≥0 → R≥0, θ �→ F+

e (θ) − F−
e (θ).

The function FΔ(θ) :=
∑

e∈E FΔ
e (θ) then gives the total amount of flow in the

network at time θ. It is a straightforward calculation to show that after θ0 the
function FΔ is monotonically decreasing.

Lemma 1. Let f be a feasible flow. Then for all θ2 ≥ θ1 ≥ θ0, we have FΔ(θ2) ≤
FΔ(θ1). In particular, for θ̂ ≥ θ0 with FΔ(θ̂) = 0, we have FΔ(θ̂) = 0 for all
θ ≥ θ̂.

This motivates the following definition of termination time.

Definition 1. A feasible flow over time f terminates if it satisfies

inf { θ ≥ θ0 | FΔ(θ) = 0 } < ∞.

We then say that Θ := inf { θ ≥ θ0 | FΔ(θ) = 0 } is the termination time of f or
f terminates by time Θ. Lemma 1 then implies FΔ(θ) = 0 for all θ > Θ.

IDE Flows and their PoA. Following [11] we define an IDE flow as a feasible
flow with the property that whenever a particle arrives at a node v �= t, it can
only enter an edge that is the first edge on a currently shortest v-t path. Here,
the current or instantaneous travel time is defined for any edge e and time θ as

ce(θ) := τe +
qe(θ)
νe

. (6)
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We then define time dependent node labels 	v(θ) corresponding to current short-
est path distances from v to the sink t. For the sink t we set 	t(θ) = 0 for all
times θ ∈ R≥0, while for all other nodes v ∈ V \ { t } and θ ∈ R≥0 we recursively
define 	v(θ) = min

e=vw∈E
{	w(θ) + ce(θ)}. We say that an edge e = vw is active at

time θ, if 	v(θ) = 	w(θ)+ ce(θ) and we denote the set of active edges by Eθ ⊆ E.
We call a v-t path P an active v-t path at time θ, if all edges of P are active for
i at θ or, equivalently,

∑
e∈P ce(θ) = 	v(θ). For differentiation we call paths that

are minimal with respect to the transit times τ physical shortest paths.

Definition 2. A feasible flow over time f is an instantaneous dynamic equilib-
rium (IDE), if for all θ ∈ R≥0 and e ∈ E it satisfies

f+
e (θ) > 0 ⇒ e ∈ Eθ. (7)

Since in an IDE flow particles act selfishly and without cooperation we should
expect that the termination time of an IDE flow is not optimal. To quantify this
difference between termination times of IDE flows and optimal flows we will
use the price of anarchy, which we define as follows: For any instance N =
(G, (νe)e∈E , (τe)e∈E , (uv)v∈V \{ t }, t) we define the worst case termination time
of an IDE flow in N as

ΘIDE(N ) := sup {Θ termination time of f | f an IDE flow in N }
and the optimal termination time in N as

ΘOPT(N ) := inf {Θ termination time of f | f a feasible flow in N } .

Definition 3. For any pair of whole numbers (U, τ) we define the Price of Anar-
chy (PoA) for instances with total flow volume U and total edge length τ as

PoA(U, τ) := sup

⎧⎨
⎩

ΘIDE(N )
ΘOPT(N )

∣∣∣∣∣∣ N s.th.
∑

v∈V \{ t }

∫ θ0

0

uv(θ)dθ = U,
∑
e∈E

τe = τ

⎫⎬
⎭ .

Remark 1. At first it might seem strange that the PoA depends only on U and
τ while being independent of the capacities νe. However, this is only the case
here because we always assume that all capacities are at least 1 throughout
this paper. In order to transfer our results to networks with arbitrary capacities
one has to rescale the network and, in particular, replace U by 1

νmin
U , where

νmin := min { νe | e ∈ E }.

3 Upper Bounds

In this section we will show an upper bound for the termination time of IDE
flows in terms of τ(G) :=

∑
e∈E τe and U :=

∑
v∈V \{ t }

∫ θ0

0
uv(θ)dθ. From this

we can then derive an upper bound for the PoA. However, before we can turn
to these general termination results we first have to look at acyclic graphs and
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give a termination bound for all feasible flows in such networks in terms of U
and τ(Pmax), where the latter denotes the physical length of a longest v-t path.
Even though the bound may seem obvious its proof requires a quite lengthy and
careful analysis which can be found in the full version of this paper [10].

Lemma 2. In an acyclic network, every feasible flow over time terminates
before θ0 + τ(Pmax) + U .

Similarly to the proof of termination in [11, Theorem 4.6] we will apply
our result for feasible flows in acyclic graphs to IDE flows in general graphs
by using the fact ([11, Lemma 4.4]) that, whenever the total flow volume in a
subgraph is small enough, only the physically shortest paths in this subgraph
can be active. Since these edges form an acyclic subgraph, for an IDE flow we
can then apply Lemma 2. For the following proof we will look at a particular
type of subgraph, which we will call a sink-like subgraph: a subgraph containing
all physically shortest paths from its nodes towards the sink, with a sufficiently
low flow volume at the beginning of some interval as well as a low inflow into
this subgraph over the course of said interval.

Definition 4. An induced subgraph T ⊆ G is a sink-like subgraph on an interval
[θ1, θ2] with θ1 ≥ θ0 if the following two properties hold:

– For each node v ∈ V (T ) all physically shortest v-t paths are contained in T .
– T satisfies volT (θ1, θ2) :=

∑
e∈E(T ) FΔ

e (θ1) +
∑

e∈δ−
T

∫ θ2

θ1
f−

e (θ)dθ < 1
2 .

Here δ−
T := { vw ∈ E | v /∈ V (T ), w ∈ V (T ) } denotes the set of edges entering

the subgraph T . Using [11, Lemma 4.4] we can show that inside a sink-like
subgraph only physically shortest paths towards the sink can be active (see [10]
for the full proof).

Lemma 3. Let T be a sink-like subgraph on an interval [θ1, θ2]. Then during
this interval only physically shortest paths towards t can be active.

Together with Lemmas 1 and 2 this implies that any IDE flow will terminate
once the whole graph is sink-like.

Corollary 1. Let f be an IDE flow and θ̃ ≥ θ0 such that the whole graph G is
sink-like at time θ̃. Then, the flow terminates before θ̃ + τ(Pmax) + 1

2 .

To get an upper bound on the termination time of an IDE flow it now suffices
to find a large enough time horizon such that it contains at least one point in
time where the whole graph is sink-like. To determine such a time, we first show
that if we have a sink-like subgraph over a sufficiently long period of time, we
can extend this subgraph to a larger sink-like subgraph over a slightly smaller
subinterval. Note, that the proof of [11, Theorem 4.6] uses a similar strategy, but
is non-constructive and, therefore, only establishes the existence of a termination
time without revealing anything about the length of this time. Thus, a more
thorough analysis is needed here.
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Lemma 4. Let T � G be an induced subgraph, v the closest node to t not in T
and T ′ the subgraph of G induced by V (T ) ∪ { v }. Let θ1 be some time after θ0,
θ2 := θ1 +

∑
e∈E\E(T )(τe + 1

2νe
) and θ′

2 := θ1 +
∑

e∈E\E(T ′)(τe + 1
2νe

).
If T is sink-like on [θ1, θ2], then T ′ is a sink-like subgraph on [θ1, θ′

2].

Proof. Since it is clear that T ′ fulfills the first property of being sink-like (by the
choice of v), we only need to show that volT ′(θ1, θ′

2) ≤ volT (θ1, θ2), from which
the lemma follows immediately (as T is sink-like on [θ1, θ2]). More precisely
we will show that the flow volume on edges between v and T (i.e. edges in
E(T ′)\E(T ) = (δ+v ∩δ−

T )∪ (δ−
v ∩δ+T )) at time θ1 as well as the inflow into v over

the interval [θ1, θ′
2] is already accounted for by the inflow into T on the interval

[θ1, θ2] via edges from v to T . This is formalized in the following three claims:

Fig. 1. A sink-like subgraph T and a closest node v ∈ V \ V (T ) as in the statement
of Lemma 4. By Claim 1 all flow on the dash-dotted edge from T to v will reach v
before time θv. By Claim 2 between θ1 and θv all flow reaching v (either via the dotted
or via the dash-dotted edges) will travel towards T from there (i.e. enter one of the
dashed edges). By Claim 3 the dashed edges will never carry a larger flow volume than
1
2

between θ1 and θv and all flow particles using these edges within this time interval
will reach T before θ2.

Claim 1. All flow on edges from T to v (dash-dotted edges in Fig. 1) at time θ1
reaches v before θv := θ1 +

∑
e∈E\E(T ′)(τe + 1

2νe
) +

∑
e∈δ−

v ∩δ+
T
(τe + 1

2νe
), i.e.

FΔ
e (θ1) ≤

∫ θv

θ1

f−
e (θ)dθ for all e ∈ δ+T ∩ δ−

v .

Claim 2. All flow reaching v (from T or G \ T ′, i.e. via the dash-dotted or
via the dotted edges in Fig. 1) between θ1 and θv will enter an edge towards T
(dashed edges in Fig. 1), i.e.

∑
e∈δ−

v

∫ θv

θ1

f−
e (θ)dθ =

∑
e∈δ+

v ∩δ−
T

∫ θv

θ1

f+
e (θ)dθ.
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Claim 3. For any edge from v to T (dashed edges in Fig. 1) the total amount of
flow currently traveling on this edge at any time θ ∈ [θ1, θv] is less than 1

2 , i.e.

FΔ
e (θ) <

1
2
for all e ∈ δ+v ∩ δ−

T and θ ∈ [θ1, θv].

Additionally all this flow will reach T before θ2, i.e.

FΔ
e (θ1) +

∫ θv

θ1

f+
e (θ)dθ ≤

∫ θ2

θ1

f−
e (θ)dθ for all e ∈ δ+v ∩ δ−

T .

From Claims 1 to 3 we then directly get

∑
e∈E(T ′)\E(T )

FΔ
e (θ1) +

∑
e∈δ−

T ′

∫ θv

θ1

f−
e (θ)dθ

=
∑

e∈δ+
T ∩δ−

v

FΔ
e (θ1) +

∑
e∈δ+

v ∩δ−
T

FΔ
e (θ1) +

∑
e∈δ−

T \δ+
v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ−

v \δ+
T

∫ θv

θ1

f−
e (θ)dθ

Cl. 1≤
∑

e∈δ+
T ∩δ−

v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ+

v ∩δ−
T

FΔ
e (θ1) +

∑
e∈δ−

T \δ+
v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ−

v \δ+
T

∫ θv

θ1

f−
e (θ)dθ

Cl. 2=
∑

e∈δ+
v ∩δ−

T

FΔ
e (θ1) +

∑
e∈δ−

T \δ+
v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ+

v ∩δ−
T

∫ θv

θ1

f+
e (θ)dθ

Cl. 3≤
∑

e∈δ−
T \δ+

v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ+

v ∩δ−
T

∫ θ2

θ1

f−
e (θ)dθ,

implying volT ′(θ1, θ′
2) ≤ volT ′(θ1, θv) =

∑
e∈E(T ′) FΔ

e (θ1) +
∑

e∈δ−
T ′

∫ θv

θ1
f−

e (θ)dθ

≤ ∑
e∈E(T ) FΔ

e (θ1) +
∑

e∈δ−
T

∫ θ2

θ1
f−

e (θ)dθ = volT (θ1, θ2) < 1
2 . This shows that

T ′ is indeed sink-like on [θ1, θ′
2]. The proofs of the claims are relatively straight-

forward calculations (see [10]) using [11, Lemma 4.4] and a strengthened version
of [11, Lemma 4.2]. Note, that the proofs have to be done in reverse order, as
the proof of Claim 2 uses Claim 3 and the proof of Claim 1 uses both Claims 2
and 3. ��
Theorem 1. For multi-source single-sink networks, any IDE flow over time
terminates before θ̂ := θ0 + 2U

∑
e∈E(τe + 1

2νe
) + τ(Pmax) + 1

2 .

Proof. Starting with the subgraph consisting only of the sink node t (which
trivially contains all shortest paths towards t) and iteratively applying Lemma
4 we immediately get

Claim 4. If, after time θ0, the sink node t has a total cumulative inflow of
less than 1

2 for some interval of length
∑

e∈E(τe + 1
2νe

), then the whole graph is
sink-like at the beginning of this interval. �
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Since all flow reaching t vanishes from the network there can be at most
2U (pairwise disjoint) intervals of length

∑
e∈E(τe + 1

2νe
) with inflow of at least

1
2 into t. Thus, there must be some time θ̃ ≤ 2U

∑
e∈E(τe + 1

2νe
) which is the

beginning of an interval of length
∑

e∈E(τe + 1
2νe

) with total inflow of less than
1
2 into t. So, by Claim 4, the whole graph is sink-like at θ̃, which, by Claim 1,
implies that the flow terminates before θ̃ + τ(Pmax) + 1

2 ≤ θ̂. ��
Remark 2. This means that for any single-sink network any IDE flow terminates
within O(

Uτ(G)
)
.

Since ΘOPT is trivially bounded below by θ0 + 1 this immediately leads to
the following upper bound on the PoA for IDE flows:

Theorem 2. For any pair of integers (U, τ) we have PoA(U, τ) ∈ O(Uτ). ��

4 Lower Bounds on the Termination Time of IDE Flows

It is easy to see that a general bound for the termination time cannot be better
than O(U +τ(G)), since any feasible flow in the network consisting of one source
node with an inflow rate of U over the interval [0, 1], one sink node and a single
edge between the two nodes with capacity 1 and some travel time τ terminates by
U +τ(G). In the following, we will construct a family of instances, parameterized
by K,L ∈ N

∗, that provide a lower bound on the termination time in single-sink
networks of order Ω(U · log(τ(G))) – which is strictly larger than O(U + τ(G)).

For any given pair of positive integers K,L ∈ N
∗ the instance is of the form

sketched in Fig. 2, with u3K+1 as source node and t as its sink. The graph has a
“width” (i.e. length of the horizontal paths from u1 to u3K+1) of ≈3K+1 and a
“height” (length of the vertical paths from nodes ui, vi and wi to t) of ≈K3K+1.
All edges on the horizontal path (including the one edge back to u1) have a
capacity of 2U with U ≈ L3K+1, while all the edges on the vertical paths have
capacities of either 1 or 3.

If we let flow enter at node u3K+1 at a rate of 2U over the interval [−0.5, 0], we
will observe the following behavior: At first, all flow enters the direct downwards
path towards the sink t until a queue of length 1 has built up on the first edge
of this path. After that almost all flow will enter the edge towards u1 and some
flow will go downwards to keep the queue length constant. Assuming U � 1,
most of the flow will travel towards u1 and arrive there one time step later with
a slightly lower inflow rate and over a slightly shorter interval as at u3K+1. At
u1 the same flow split happens again: First all flow enters the edge to u′

1 until
a queue of sufficient length to induce a waiting time of 1 has formed, then most
of flow travels towards the next node v1. Similarly, at all the following nodes on
the horizontal path, this pattern repeats, i.e., a small amount of flow (of volume
≈3) starts traveling downwards while most of the flow is diverted further to the
right. Finally the main block of flow arrives at u3K+1 and is diverted back to u1

(having lost a total volume of ≈3K+1 to the downwards paths). By the time this
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Fig. 2. A network with a total edge travel time of ≈32K that, given an inflow volume
of ≈L3K+1, has a termination time of more than KL3K+1.

flow arrives at u1 again, the flow particles that traveled along the edges u1u
′
1,

v1v
′
1 and w1w

′
1 join up again at node x1 in such a way that they form a queue of

length ≈3 on the edge y1z1. This queue is long enough to divert the main block
of flow away towards u2 (over the direct edge u1u2 of length 3). This pattern,
again, repeats at all subsequent nodes ui until the main flow finally arrives at
node u3K+1 (having lost no additional flow volume) and is again diverted back
to u1. This time, the flow particles from the queues on the edges y1z1, y2z1 and
y3z1 met at node z1 and now form a queue of length ≈9 on edge a1b1. Thus, our
main flow can now be diverted away directly to node u4 and so on. This way, the
main amount of flow can travel along the horizontal path for ≈K times without
losing a significant amount of flow until all the flow on the vertical paths finally
reaches the sink t. After that the pattern described until now repeats. Thus, flow
remains in the network until at least time ≈3K+1K U

3K+1 = 3K+1KL.

Theorem 3. Given any pair K,L ∈ N
∗, there exists an instance GK,L with

τ(GK,L) ∈ O(32K) and UK,L ∈ O(L3K) such that there exists an IDE flow that
does not terminate before LK(3K+1 + 1).

Proof. The detailed construction as well as the formal proof of its correctness
can be found in [10]. ��

In order to derive a lower bound on the price of anarchy from Theorem 3, we
will slightly modify the instance used there in such a way that the termination
time of the worst case IDE flow remains approximately the same, while there
exists an optimal termination time in O(1).
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Theorem 4. For any pair of positive integers (U, τ) satisfying U ≥ 2τ , we have
PoA(U, τ) ∈ Ω(U log τ).

Proof. Wlog assume that there exist positive integers L ≥ 3K such that U =
(L+3K)3K and τ = 32K . Then we take the graph GK,L constructed in the proof
of Theorem 3 and modify it by adding two new vertices s and v and four new
edges as indicating in Fig. 3.

Fig. 3. The instance from the proof of Theorem 3 (on the left), two additional nodes
s and v as well as four new edges.

We now use s as our new source node and a constant inflow rate of 2UK,L +1

over the interval [−0.5−ε, 0], where ε :=
4+τe

3K+1
2UK,L

≤ 1
2 . The optimal termination

time of the resulting network N is then at most 3, since we can just send all flow
on the direct edge from s to t, where the last particle arrives 3 time steps later.

In an IDE flow, however, all flow particles travel first to v (as the path s-v-t
is shorter than the path s-t), where they enter the edge towards t. This continues
until a queue of length τe3K+1

+ 3 has built up at edge vt and the edge towards
u3K+1 becomes active, which happens at time θ = 0.5. From there on, flow splits
between the two edges, entering edge vt at a rate of 1 and edge vu3K+1 at a rate
of 2UK,L throughout the interval [0.5, 1]. Thus, over the interval [1.5, 2] flow
arrives at node u3K+1 at a rate of 2UK,L. Continuing with the flow described
before the statement of Theorem 3 is then again an IDE flow. This shows that
ΘIDE(N ) ≥ LK(3K+1 + 1).
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From τ(N ) = τ(GK,L) + 4 ∈ O(32K) and UN =
(

1
2 + ε

)
(2UK,L + 1) ∈

O(L3K + 32K) = O(L3K) we get 32K ∈ Ω(τ(N )) and L3K ∈ Ω(UN ), which
implies ΘIDE(N ) ≥ LK(3K + 1) ∈ Ω

(
UN log τ(N )

)
. Thus, in particular,

PoA(U, τ) ≥ ΘIDE(N )
ΘOPT(N ) ∈ Ω(U log τ). ��

Remark 3. Expanding the network constructed in the proof of Theorem 4 into
an acyclic network results in an instance with constant optimal termination time,
but IDE termination time of τ(Pmax) � τ(Pmin), where τ(Pmin) is the physical
length of a shortest path from the source to the sink node.

Together with the upper bound from Lemma 2 this implies the following
bounds for the IDE price of anarchy for acyclic networks:

PoA
∣∣
acyclic

∈ Ω(τ(Pmax)) ∩ O(U + τ(Pmax)).

5 Conclusions and Open Questions

We studied the efficiency of IDE flows and derived the first upper and lower
bounds on the time price of anarchy of IDE flows. These bounds are of order
O(Uτ) and Ω(U log τ), respectively. Comparing these bounds to the constant
bound of e

e−1 for dynamic equilibria (cf. Correa, Cristi and Oosterwijk [4]) shows
in some sense a “price of shortsightedness”. While instantaneous dynamic equi-
libria may be significantly less efficient than dynamic equilibria, in many situ-
ations this might be a price one has to pay as the full information needed for
dynamic equilibria might just not be available.

Generally, it would be interesting to test the different equilibria on real
instances and see how their efficiency compares there. A large-scale computa-
tional study seems more feasible for IDEs compared to dynamic equilibria, as
already calculating a single α-extension is much more difficult for the full infor-
mation model, while it is easy for IDE flows using a simple water-filling pro-
cedure. Indeed, for calculating a single extension phase the only positive result
for dynamic equilibria is based on a recent work of Kaiser [15] showing that for
series-parallel graphs a single phase can be computed in polynomial time. The
question of whether a finite number of such extensions is enough to compute a
complete equilibrium flow is still open for dynamic equilibria, while we were able
to answer this question positively for IDE flows in an upcoming paper [9].
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