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Abstract. A two-sided market consists of two sets of agents, each of
whom have preferences over the other (Airbnb, Upwork, Lyft, Uber, etc.).
We propose and analyze a repeated matching problem, where some set
of matches occur on each time step, and our goal is to ensure fairness
with respect to the cumulative allocations over an infinite time horizon.
Our main result is a polynomial-time algorithm for additive, symmetric
(vi(j) = vj(i)), and binary (vi(j) ∈ {a, 1}) valuations that both (1) guar-
antees envy-freeness up to a single match (EF1) and (2) selects a maximum
weight matching on each time step. Thus for this class of valuations, fair-
ness can be achieved without sacrificing economic efficiency. This result
holds even for dynamic valuations, i.e., valuations that change over time.
Although symmetry is a strong assumption, we show that this result can-
not be extended to asymmetric binary valuations: (1) and (2) together are
impossible even when valuations do not change over time, and for dynamic
valuations, even (1) alone is impossible. To our knowledge, this is the first
analysis of envy-freeness in a repeated matching setting.

1 Introduction

Recent years have seen a dramatic increase in electronic marketplaces, both
in quantity and scale. Many of these are two-sided markets, meaning that the
market makes matches between two sets of agents (homeowners and guests for
Airbnb, employers and workers for Upwork, drivers and riders for Lyft and Uber,
etc.), each of whom has preferences over the other. This is in contrast to tra-
ditional resource allocation (cake cutting, Fisher markets, auctions, etc.) where
only one side of the market has preferences. Although envy-freeness and relax-
ations thereof have been studied extensively in one-sided resource allocation (this
research area is typically referred to as “fair division”), we are aware of just one
paper considering envy-freeness for two-sided preferences [22].1

There are two primary motivations for our work. The first is to simply study
fair division for two-sided preferences. The second is that in some ways, two-
sided electronic marketplaces like Airbnb, Upwork, Lyft, and Uber are actually
1 Although [22] is conceptually similar, it is in different setting of recommendation
algorithms, and so it is technically quite different.
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in a better position to impose fairness than one-sided marketplaces. The reason
is that most one-sided markets are decentralized, in the sense that a seller offers
different goods at different prices, buyers peruse the wares at their leisure, and
make individual decisions about what they wish to purchase. On the contrary,
most two-sided markets operate by way of matches mediated by a centralized
platform, giving the platform the ability to affect the outcomes of the system.
Indeed, on Lyft and Uber, an automated central authority has almost com-
plete control over the matches, giving the algorithm tremendous power over the
outcomes for each individual agent. The power dynamic between the platform
and the participating agents makes it even more important to ensure that the
matching algorithms are fair to each agent.

1.1 Repeated Matching

A crucial element of marketplaces is repeated matching. Agents do not receive
all of their matches at once; typically, an agent can only process a few matches
at a time (a driver can only fit so many riders in the car, a worker can only
handle so many contracts at once). Only after an agent completes some of her
current matches can she be given new matches. This motivates a model where on
each time step, an irrevocable matching decision must be made, and we expect
fairness with respect to the cumulative matching at each time step. We consider
an infinite time horizon and a finite set of agents, so we must allow the same
pair of agents to be matched multiple times; thus each agent’s cumulative set of
matches will be a multiset.

A vital aspect of any repeated setting is that preferences can change. In
some cases, preferences may change in direct response to the matches an agent
receives: if a driver is matched with a rider who wishes to go to location X, once
that ride is completed, the driver will prefer riders whose pickups are close to
X. In other cases, agents may desire variety among matches: Airbnb guests may
not wish to vacation in the same area every time. Additionally, preferences may
simply drift over time. We refer to valuations that change over time as dynamic
valuations.

1.2 Fairness Notions

For one-sided fair division with indivisible items, full envy-freeness is impossible:
for two agents and a single item, one must receive the item and the other agent
will be envious. The same issue applies in our setting: if every agent on one side
of the market is interested in the same agent on the other side, no algorithm can
guarantee envy-freeness.

One solution is to consider relaxations of envy-freeness, such as envy-freeness
up to one good (EF1). An outcome is EF1 if whenever agent i envies agent j,
there exists a good in j’s bundle such that i would not envy j after removing
that good.2 This property has been studied widely for one-sided preferences, but
2 Note that this good is not actually removed: this is simply a thought experiment

used in the definition of EF1.
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to our knowledge has not been considered for two-sided markets. We can define
EF1 equivalently for two-sided preferences: simply replace “there exists a good”
with “there exists a match”, etc.

The less obvious question is how to adapt EF1 to the repeated setting. In this
paper, we assume time is divided into discrete steps, where on each step, some
set of matches occur. Each match consists of two agents, one from each side of
the market. We would like the cumulative matching after each time step to be
EF1. We will also assume that each side of the market has the same number of
agents (if not, add “dummy” agents to the smaller side).

We consider two different versions of this model. In the first version, each time
step consists of just a single match, so we are effectively requiring the cumulative
matching to be EF1 at every point in time. We call this EF1-over-time.

However, asking for fairness at every point in time may be too strong.
Furthermore, in most real-world applications, matches would be happening in
parallel anyway. Conversely, EF1-over-time poses no restrictions on how many
matches agents receive. In real life, agents often have similar “capacities” (e.g.,
most cars have a similar number of seats) and thus should arguably receive
matches at similar rates. These concerns motivate a second version of the model,
where on each time step, each agent is matched exactly once (i.e., we select a
perfect matching). Thus each time step represents a “round” of matches (which
may happen in parallel). We still require that the cumulative matching is EF1
after time step, and we call this EF1-over-rounds.

1.3 Our Results

We use vi(j) to denote agent i’s value for agent j, and assume valuations are
additive. We say that valuations are symmetric if vi(j) = vj(i) for all agents
i, j, and binary if there exists a ∈ [0, 1) such that vi(j) ∈ {a, 1} for all i, j.3

It is worth noting that for symmetric valuations, negative values for vi(j) are
subsumed in the following sense: if the algorithm ever says to match agents i
and j where vi(j) < 0, we simply ignore this and never make the match, which
gives both agents value 0 for the “match”.4

We now describe our results. Due to space constraints, all proofs are deferred
to the full version of the paper [16].

EF1-Over-Rounds for Dynamic Symmetric, and Binary Valuations. Our main
result is that for dynamic, symmetric, and binary valuations, we give an algorithm
which both satisfies EF1-over-rounds, and selects a maximum weight matching on
each time step (Theorem 3.1) This holds even when valuations are dynamic.5 This

3 If we wish to add dummy agents to one side of the market, the most natural case
would be a = 0, in order to express that dummy agents have no value.

4 In order for this argument to be complete when considering EF1-over-rounds, this
“match” must still count as part of the perfect matching for that time step.

5 We allow valuations to change arbitrarily between time steps. Furthermore, our algo-
rithm does not need to know how valuations will change in response to a given match.
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shows that for this class of valuations, fairness can be achieved without sacrificing
economic efficiency. Our algorithm runs in time O(n2.5) per time step.

The class of symmetric and binary valuations is somewhat restricted, but is
important to keep several things in mind. First, it is often hard to elicit more
complex valuations. Agents can easily answer binary questions such as “Would
you be happy with this match?”, but may not be able to provide a real number
value for potential matches. Second, the best interpretation of our result (in our
opinion) is that agents’ preferences are not truly binary, but that our algorithm
is guaranteeing EF1 with respect to a binary projection of the preferences. That
is, ask each agent to label each possible match as “good” or “bad”, and guarantee
EF1 with respect to those preferences. This interpretation is reinforced by the
fact that the cumulative matchings computed by our algorithm will be EF1
uniformly across all possible values a, and agents can even have different values
of a. See Sect. 3.1 for a discussion of this.

Symmetry, however, is a significant assumption on the agents’ preferences.
There are reasons to believe real-world preferences are largely symmetric: a rider
is likely to prefer a driver closer to her, and vice versa. However, a natural
question is whether this assumption is necessary.

Counterexamples. Our next set of results shows that the symmetry assumption
is in fact necessary. First, we show that for dynamic binary valuations, EF1-
over-rounds alone is impossible (Theorem 4.1). Second, for non-dynamic (i.e.,
valuations do not change over time) binary valuations, it is impossible to satisfy
EF1-over-rounds while guaranteeing a maximum weight matching for each time
step (Theorem 4.2). These impossibility results suggest that EF1-over-rounds
may be too much to ask for in the setting of two-sided repeated matching.
However, our counterexamples do not rule out the possibility of EF1-over-time,
even for general additive valuations. We leave this as our primary open question.

Beyond Symmetric Valuations. Despite this negative result, we show that it is
possible to relax the symmetry assumption, at least in the context of EF1-over-
time. We show that for {0, 1} binary valuations6 with an assumption that we call
“only symmetric cycles”, EF1-over-time can be guaranteed. We formally define
“only symmetric cycles” in the full version of the paper [16], but this assumption
is strictly weaker than full symmetry of valuations.

Beyond Binary Valuations. In a similar vein, we show that when one side of the
market has two agents, the binary assumption can also be relaxed. Specifically,
we give an algorithm which is EF1-over-time for any additive valuations.

1.4 Related Work

There are two primary bodies of related work: (one-sided) fair division, and
matching markets.
6 For this result, we assume that vi(j) ∈ {0, 1} for each agent, as opposed vi(j) ∈ {a, 1}

for any a ∈ [0, 1).
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Fair Division. Fair division has a long history. In fact, the Bible documents
Abraham and Lot’s use of the cut-and-choose protocol to fairly divide land.
The formal study of fair division was started by [27] in 1948, and envy-freeness
was proposed in 1958 [15] and further developed by [13]. A full overview of the
fair division literature is outside the scope of this paper (we refer the interested
reader to [5,21]), and we discuss only the work most relevant to our own.

There are two main differences between our work and that of traditional fair
division. First, we study two-sided preferences instead of one-sided preferences.
Second, we study a repeated setting, where we must make an irrevocable decision
on each time step; most fair division research considers a “one-shot” model where
all the goods are allocated at once.

We briefly overview some key results in the one-sided one-shot model of fair
division for indivisible items7. The EF1 property was proposed for this model
by [6]. EF1 allocations always exist, and can be computed in polynomial time,
even for general combinatorial valuations [20]8. This sweeping positive result for
the one-sided one-shot model lies in stark contrast to our negative results for
the two-sided repeated model. It was later shown that for additive valuations,
maximizing the product of valuations yields an allocation that is both EF1 and
Pareto optimal [8].

Envy-Freeness up to Any Good (EFX). The same paper suggested a new fairness
notion that is strictly stronger than EF1, which they called EFX9. The first for-
mal results regarding EFX allocations were given by [23]. A major breakthrough
recently proved the existence of EFX allocations for additive valuations and three
agents [9], but despite ongoing effort, the question of existence remains unsolved
for more than three agents (or more complex valuations). This is perhaps the
most significant open problem in the fair division of indivisible items.

In many contexts (especially for additive valuations), it is common to modify
the requirement to be that whenever i envies j, removing any good which i
values positively from j’s bundle is sufficient to eliminate the envy [8].10 Under
the latter definition, for {0, 1} binary valuations, EF1 and EFX coincide. This
is because the only positively valued goods are the maximum value goods. In
this sense, our positive results for {0, 1} binary valuations immediately extend
to EFX as well.

Repeated Fair Division. There are a smattering of recent works studying envy-
freeness for one-sided preferences in a repeated (i.e., not one-shot) setting; see [1]

7 Indivisible items, such as cars, must each go entirely to a single agent. In contrast,
divisible items, such as a cakes, can be split between multiple players. Fair division
studies both of these settings, but the indivisible case is more relevant to our work.

8 The algorithm of [20] was originally developed with a different property in mind.
9 An allocation is envy-free up to any good (EFX) if whenever i envies j, removing
any good from j’s bundle eliminates the envy.

10 The reason this is less common when considering non-additive valuations is that for
general combinatorial valuations, it is less clear what “values positively” means.
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for a short survey. One example is [2], which focuses on minimizing the maximum
envy (i.e., the maximum difference between an agent’s value for her own bundle
and her value for another agent’s bundle) at each time step. Despite the growing
interest in repeated one-sided fair allocation, the literature on the analogous
two-sided problem remains sparse.

Matching Markets. The other relevant field is (bipartite) matching markets11.
In a one-to-one matching market, each agent receives exactly one match. Perhaps
the most famous result for one-to-one matching is that of Gale and Shapley,
whose algorithm finds a stable matching [14]. More relevant to us is the model of
many-to-many matching markets, where each agent can receive multiple matches;
stability has often been the primary criterion in this model as well [11,19,25,26].
There is also some work on stability in dynamic matching markets [10,18].

In contrast, fairness in many-to-many matching has received considerably
less attention. In fact, Gale and Shapley’s algorithm for one-to-one matching is
known to compute the stable matching which is the worst possible for one side
of the market, and best possible for the other.

Fair Ride-Hailing. There is a growing body of work surrounding the ethics of
crowdsourced two-sided markets, especially ride-hailing (e.g., Lyft and Uber)
[3,4,7,12,17]. We are aware of just two works studying fairness for two-sided
markets from an algorithmic perspective: [29] and [28], both of which focus on
ride-hailing. The former paper considers ride-sharing, where multiple passengers
are matched with a single driver. The authors focus on fairness with respect
to the savings achieved by each passenger. This paper is primarily theoretical,
like ours, but is specific to ride-hailing, unlike ours. The latter paper studies a
fairness notion based on the idea that “spread over time, all drivers should receive
benefits proportional to the amount of time they are active in the platform”. The
model considered in this paper is more general than just ride-hailing, however
the paper is primarily experimental, and the experiments are in the ride-hailing
setting.

Consequently, we are not aware of any prior work studying algorithms with
provable fairness guarantees for repeated two-sided matching markets. In this
way, our work can be viewed as simultaneously building on the fair division
literature (by considering two-sided preferences) and building on the matching
market literature (by studying envy-freeness for repeated two-sided markets).

The paper proceeds as follows. Section 2 describes the formal model. Section 3
presents our main result: an algorithm for symmetric and binary valuations such
that (1) the sequence of cumulative matchings is EF1-over-rounds, (2) a max-
imum weight matching is chosen for each time step, and (3) this holds even
for dynamic valuations (Theorem3.1). Section 4 presents our counterexamples:
Theorem 3.1 cannot be extended to non-symmetric binary valuations. Specifi-
cally, without symmetry, (1) and (3) together and (1) and (2) together are both
11 For a broad overview of this topic, see [24].
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impossible (Theorems 4.1 and 4.2, respectively). The rest of the results (and all
of the proofs) can be found in the full version of the paper [16].

2 Model

Let N and M be two sets of agents. We assume that |N | = |M | = n; if this
is not the case, we can add “dummy” agents (i.e., agents i such that vi(j) =
vj(i) = 0 for all j) to the smaller side of the market until both sides have the
same number of agents. We will typically use odd numbers for the elements
of N and even numbers for the elements of M , i.e., N = {1, 3, . . . , 2n − 1} and
M = {2, 4, . . . , 2n}. A matching X assigns a multiset of agents in N to each agent
in M , and a multiset of agents in M to each agent in N . For each i ∈ N ∪M , we
will use Xi to denote agent i’s bundle, i.e., the multiset of agents she is matched
to. Throughout the paper, we will use standard set notation for operations on
the multisets Xi. For example, Xi ∪ {j} increments the multiplicity of j in Xi,
i.e., the number of times j occurs in Xi. In order for X to be a valid matching,
the multiplicity of j in Xi must be equal to the multiplicity of i in Xj for each
i ∈ N , j ∈ M .

Each agent i also has a valuation function vi, which assigns a real number
to each possible bundle she might receive. We will use v to denote the valuation
profile which assigns valuation vi to agent i. We say that vi is additive if for any
bundle Xi,

vi(X) =
∑

j∈X

vi({j})

Since X is a multiset, the sum over j ∈ X includes each j a number of times
equal to its multiplicity. For example, if X = {j, j} and vi({j}) = 1, then
vi(X) = 2. With slight abuse of notation, we will write vi({j}) = vi(j). We say
that a valuation vi is binary if there exists a ∈ [0, 1) such that vi(j) ∈ {a, 1}
for all i, j ∈ N or i, j ∈ M . We say that a valuation profile v is symmetric if
vi(j) = vj(i) for all i ∈ N, j ∈ M .

We say that i envies j under X if vi(Xi) < vi(Xj). We only consider envy
within the same side of the market: it is unclear what it would mean for some
i ∈ N to envy j ∈ M . We can express this by setting vi(j) = 0 for i, j ∈ N or
i, j ∈ M .

Definition 2.1. A matching X is envy-free up to one match (EF1) if whenever
i envies j, there exists k ∈ Xj such that vi(Xi) ≥ vi(Xj \ {k}).

Note that the set subtraction Xj \ {k} decreases the multiplicity of k by 1;
it does not remove k altogether. Also, we will say that X is EF1 with respect to
N (resp., M) if the above holds for every pair i, j ∈ N (resp., i, j ∈ M).

One important tool we will use is the envy graph:

Definition 2.2. The envy graph of a matching X is a graph with a vertex for
each agent, and a directed edge from agent i to agent j if i envies j under X.

We will especially be interested in cycles in the envy graph, and will use the
terms “cycle in the envy graph” and “envy cycle” interchangeably.



10 S. Gollapudi et al.

2.1 Repeated Matching

We consider a repeated setting, where on each time step t, some set of matches
occur. Each “match” (alternatively, pairing) consists of one agent in N and one
agent in M .

Let xt denote the set of matches which occur at time t. Each agent will
receive at most one match per time step. If agent i is matched to an agent j at
time t, let xt

i = {j}; otherwise, let xt
i = ∅. For an infinite sequence x1, x2, x3 . . . ,

let Xt denote the cumulative matching up to and including time t. Formally, for
each i ∈ N ∪ M ,

Xt
i =

{
∅ if t = 0
Xt−1

i ∪ xt
i if t > 0

In words, Xt
i is the set of matches i has received up to and including time t.

Our main result holds even when valuations are allowed to vary over time.
Specifically, a dynamic valuation vi will have a value vti(j) for each agent j on
each time step t (as before, we write vti(j) = 0 for i, j ∈ N or i, j ∈ M). A profile
of dynamic valuations is symmetric if vti(j) = vtj(i) for all i, j, t. For a pair of
agents i, j (with i = j allowed), vi(Xt

j) is given by

vi(Xt
j) =

t∑

t′=1

vt
′
i (xt′

j )

where vt
′
i (∅) = 0. That is, i’s value for a bundle Xj is as if i had received exactly

those matches at exactly those times. It is important for this definition to include
both i = j and i �= j, so that we can evaluate envy between agents.

We make no assumptions on how valuations change between time steps: they
can even change adversarially, since our algorithm will not use any knowledge
about future valuations when making matching decisions.

We consider two definitions of EF1 in the repeated matching setting. In both
cases, we require the cumulative matching at the end of each time step to be
EF1. The difference is that for EF1-over-time, each time step consists a single
match, and for EF1-over-rounds, each time step consists of a “round” of matches
where all agents receive exactly one match (i.e., a perfect matching between N
and M).

Definition 2.3. The sequence X = X0,X1,X2 . . . is EF1-over-time if for all
t ≥ 0, each xt contains a single match, and Xt is EF1.

Definition 2.4. The sequence X = X0,X1,X2 . . . is EF1-over-rounds if for
all t ≥ 0, xt is a perfect matching, and Xt is EF1.

Formally, these notions are incomparable: EF1-over-time has a stronger fair-
ness requirement (the cumulative matching should be EF1 after every match,
not just after every round of matches), but does not require agents to receive the
same number of matches. However, EF1-over-rounds does imply EF2-over-time
(where we may remove two matches in order to eliminate the envy): expand each
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“round” into n time steps, each containing one match, in an arbitrary order. We
know that at the end of each round of n time steps, the cumulative matching
is EF1. Within each round, each agent only gains one additional match, and we
can always remove that match to return to an EF1 state.

Our goal will be to show the existence of (and efficiently compute) a sequence
x1, x2, x3 . . . such that the induced sequence X is EF1-over-time and/or EF1-
over-rounds. For brevity, if an algorithm is guaranteed to produce a sequence X
that is EF1-over-time (resp., EF1-over-rounds), we simply say that the algorithm
is EF1-over-time (resp., EF1-over-rounds).

3 EF1 for Dynamic, Symmetric, and Binary Valuations

In this section, we consider binary and symmetric valuations that may change
over time. For this class of valuations, we give a polynomial-time algorithm that
produces a sequence which is EF1-over-rounds, and chooses a maximum weight
matching for each time step. This leads to the following theorem:

Theorem 3.1. For dynamic, binary, and symmetric valuations, Algorithm1 is
EF1-over-rounds, and the matching xt for each time step t is a maximum weight
matching (with respect to the valuations on that time step). Furthermore, the
algorithm runs in time O(n2.5) per time step.

3.1 Algorithm Setup

Before we discuss the algorithm, we need the following definition, which will
imply EF1 (Lemma 3.2):

Definition 3.1. We say that a pair of agents (i, j) is c-envy-bounded if
vi(Xj) − vi(Xi) ≤ c, and we say a matching X is c-envy-bounded if every pair
(i, j) is c-envy-bounded.

A quick note: recall that our goal is to choose a sequence of pairings x1, x2 . . . ,
and that these pairings fully specify the sequence of cumulative matchings
X . Consequently, when giving pseudocode for our algorithms (throughout the
paper), we do not explicitly update X : we assume that whenever some xt is
changed, every Xt′

for t′ ≥ t is automatically updated. We feel that this leads
to more concise and intuitive pseudocode.

Algorithm 1 is very simple. For each time step t, we initialize xt to be an arbi-
trary maximum weight matching for the current valuations, and make changes to
this matching until we are satisfied. Specifically, while there exist agents i, j such
that (i, j) is not (1−a)-envy-bounded in the cumulative matching, we swap their
matches in xt. When no such pair of agents exists, we exit the while loop and
confirm the matches. Throughout all of our algorithms, we will use the function
MakeMatch to indicate that we are confirming the matches in xt.

It is important to note that the algorithm is not going back in time and
changing pairings already made: once a pairing is confirmed with MakeMatch, it
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Algorithm 1. An EF1-over-rounds algorithm for agents with dynamic, sym-
metric, and binary valuations.
1: function EF1Matching(N,M,v)
2: for each t ∈ N≥0 do
3: {xt} ← MaxWeightMatching(N,M,v)
4: while ∃ agents i, j s.t. vi(X

t
j) − vi(X

t
i ) > 1 − a do

5: (xt
i, x

t
j) ← (xt

j , x
t
i)

6: MakeMatch(xt)

is never changed. The algorithm starts with a tentative matching, and changes
tentative matches until it is satisfied for the current time step (see Fig. 1), at
which point the matches are confirmed with MakeMatch. The algorithm then
proceeds to the next time step and never changes pairings from previous time
steps. Note also that the algorithm uses no information about valuations for
future time steps.

1 3

2 4

1 3

2 4

N :

M :

Fig. 1. A hypothetical swap performed by Algorithm 1. On the left we see a tentative
perfect matching: ({1, 2}, {3, 4}). The blue arrow indicates that if this matching were
to be chosen, the pair (3, 1) would not be (1 − a)-envy-bounded. Thus agents 1 and 3
swap their (tentative) matches, and the new tentative matching is ({1, 4}, {3, 2}). The
matching ({1, 2}, {3, 4}) is never confirmed by MakeMatch: it is merely a stepping stone
in the process of computing the eventual matches to be chosen for this time step. For
the case of more than four agents, this process could repeat (although not indefinitely;
see the full version of the paper for this proof [16]. (Color figure online)

Our central correctness lemma will be the following:

Lemma 3.1. Let t ≥ 1 be any time step, and suppose that Xt−1 is (1 − a)-
envy-bounded and has no envy cycles. Then Xt is (1 − a)-envy-bounded and
has no envy cycles. Furthermore, the chosen matching xt is a maximum weight
matching (with respect to the valuations on that time step).

Before diving into the proof of Lemma3.1 (and the runtime analysis), we
briefly show that (1 − a)-envy-boundedness will actually give us the result we
want:

Lemma 3.2. Suppose valuations are binary, and suppose X is (1 − a)-envy-
bounded. Then X is EF1.
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Proof. Suppose i envies j under Xt. If vi(Xt
j) = a|Xt

j |, then vi(Xt
i ) ≥ vi(Xt

j),
which contradicts i envying j. Thus vi(Xt

j) ≥ 1 + a(|Xt
j | − 1). Thus there exists

k ∈ Xt
j such that vi(Xt

j \ {k}) = vi(Xt
j) − 1. Therefore vi(Xi) − vi(Xt

j \ {k}) ≥
1 + (a − 1) = a ≥ 0, which proves the claim.

The role of a. Before diving into the main proof, we briefly discuss the role of
a. For Theorem 3.1, we assume that there exists a ∈ [0, 1) such that vi(j) ∈ {a, 1}
for all i, j ∈ N or i, j ∈ M . For ease of notation, we assume that all agents have
the same value of a, but this is in fact not necessary. In fact, Algorithm 1 will
be EF1-over-rounds simultaneously for all values of a.

Lemma 3.3. Assume (i, j) is (1 − a)-envy-bounded and that |Xt
i | = |Xt

j |. Let
a′ ∈ [0, 1), and define a new valuation v′

i such that v′
i(k) = a′ whenever vi(k) = a,

and v′
i(k) = 1 otherwise. Then (i, j) is (1 − a′)-envy-bounded with respect to v′

i.

Note that the assumption of |Xt
i | = |Xt

j | is always satisfied when working
with EF1-over-rounds, since we will match every agent once on each time step.
Therefore we can actually just choose an arbitrary value of a ∈ [0, 1) and run
Algorithm 1. Lemma 3.3 implies that the resulting sequence of matchings will be
EF1-over-rounds simultaneously for all values of a, even if different agents have
different values of a. That said, if we need to include dummy agents in order to
equalize the sizes of N and M , a = 0 probably makes the most sense.

4 Counterexamples

A natural question is whether Theorem 3.1 can be extended to all dynamic binary
valuations (i.e., not necessarily symmetric). The answer is unfortunately no,
which we show in two different ways. First, for dynamic binary valuations, EF1-
over-rounds alone is impossible (Theorem 4.1). Second, for non-dynamic binary
valuations, it is impossible to guarantee both EF1-over-rounds and maximum
weight matching for each time step (Theorem 4.2).

1 3

2 4

1 3

2 4

t = 1 t = 2

Fig. 2. An instance with dynamic and binary valuations where EF1-over-rounds is
impossible.

Theorem 4.1 uses the instance in Fig. 2. Essentially, after the first round,
either agents 1 and 3 form an envy cycle, or agents 2 and 4 form an envy cycle.
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After the second round of matching, one of the agents in the envy cycle will
become even more envious, violating EF1.

Theorem 4.1. For dynamic and binary valuations, there is no algorithm which
is EF1-over-rounds.

1, 3

2 4

5

6

Fig. 3. An instance with binary valuations where guaranteeing both EF1-over-rounds
and maximum weight matching is impossible.

Theorem 4.2 uses the instance in Fig. 3. For some intuition, note that are two
cycles of desire: (1, 4, 5, 6) and (3, 4, 5, 6). Like in the previous counterexample,
these cycles will cause problems, but here we have the additional consideration
that agents 1 and 3 are competing for agent 4. We show that the frequency with
which agents 4 and 5 are matched is at least the frequency with which either
agent 1 or agent 3 is matched with agent 4. For example, if agents 1 and 3 have
each been matched to agent 4 twice, then agents 4 and 5 will have been matched
4 times. This leads to agents 1 and 3 increasingly envying agent 5, until EF1 is
violated.

The assumption of maximum weight is necessary only to prevent agents 2
and 5 from ever being matched: if agents 2 and 5 can be matched, the above
argument can be circumvented.

Theorem 4.2. For binary valuations, there is no algorithm which is EF1-over-
rounds and also chooses a maximum weight matching for each time step, even
for non-dynamic valuations.

5 Conclusion

In this paper, we proposed a model of envy-freeness for repeated two-sided
matching. For binary and symmetric valuations, we gave an algorithm that (1)
satisfies EF1-over-rounds, (2) chooses a maximum weight matching for each time
step, and (3) works even for dynamic valuations (Sect. 3). Furthermore, without
symmetry, (1) + (2) together and (1) + (3) together are each impossible. All
proofs can be found in the full version of the paper, along with several additional
results [16].

Our negative results for even binary valuations suggest that EF1-over-rounds
may be too much to ask for. However, our results do not rule out the possibility
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of EF1-over-time, even for general additive valuations. More broadly, future work
could investigate other possible fairness notions for this setting.

Another possible future direction concerns more general study of two-sided
preferences. Envy-freeness is an example of a topic that has been widely studied
for one-sided resource allocation, but not for two-sided markets. We wonder if
there are other such topics that are worthy of study for two-sided preferences.
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