
16th International Conference, WINE 2020
Beijing, China, December 7–11, 2020
Proceedings

Web and 
Internet EconomicsLN

CS
 1

24
95

A
RC

oS
S

Xujin Chen
Nikolai Gravin
Martin Hoefer
Ruta Mehta (Eds.)



Lecture Notes in Computer Science 12495

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558


More information about this subseries at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Xujin Chen • Nikolai Gravin •

Martin Hoefer • Ruta Mehta (Eds.)

Web and
Internet Economics
16th International Conference, WINE 2020
Beijing, China, December 7–11, 2020
Proceedings

123



Editors
Xujin Chen
Academy of Mathematics
and Systems Science
Chinese Academy of Sciences
Beijing, China

Nikolai Gravin
Shanghai University of Finance
and Economics
Shanghai, China

Martin Hoefer
Goethe University Frankfurt
Frankfurt am Main, Germany

Ruta Mehta
University of Illinois at Urbana-Champaign
Urbana, IL, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-64945-6 ISBN 978-3-030-64946-3 (eBook)
https://doi.org/10.1007/978-3-030-64946-3

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7844-5411
https://orcid.org/0000-0003-0131-5605
https://doi.org/10.1007/978-3-030-64946-3


Preface

This volume contains all regular papers and abstracts presented at the 16th Conference
on Web and Internet Economics (WINE 2020). WINE 2020 was held as an Internet
event during December 7–11, 2020, organized at Peking University, Beijing, China.

Over the last 16 years, the WINE conference series has become a leading inter-
disciplinary forum for the exchange of ideas and scientific progress across continents
on incentives and computation arising in diverse areas, such as theoretical computer
science, artificial intelligence, economics, and applied mathematics. WINE 2020 built
on the success of the previous editions of WINE (named Workshop on Internet and
Network Economics until 2013) which were held annually from 2005 to 2019.

The Program Committee was composed of 45 active researchers from the field.
They reviewed 136 submissions and decided to accept 42 papers. Each paper had at
least three reviews, with additional reviews solicited as needed. We are very grateful to
all members of the Program Committee for their insightful reviews and discussions. We
thank EasyChair for providing a virtual platform to organize the review process. We
also thank Springer for providing the proceedings and offering support for Best Paper
and Best Student Paper Awards.

In addition to the contributed talks, the program included four invited talks by
leading researchers in the field: Eric Budish (University of Chicago, USA), Jose Correa
(Universidad de Chile, Chile), Yiling Chen (Harvard University, USA), and Con-
stantinos Daskalakis (MIT, USA).

Our special thanks go to the general chair Xiaotie Deng and the local organization
team, as well as the poster chair Umang Bhaskar.

October 2020 Xujin Chen
Nikolai Gravin
Martin Hoefer

Ruta Mehta



Organization

General Chair

Xiaotie Deng Peking University, China

Program Committee Chairs

Xujin Chen Chinese Academy of Sciences, China
Nikolai Gravin Shanghai University of Finance and Economics, China
Martin Hoefer Goethe University Frankfurt, Germany
Ruta Mehta University of Illinois at Urbana-Champaign, USA

Steering Committee

Xiaotie Deng Peking University, China
Paul Goldberg Oxford University, UK
Christos Papadimitriou Columbia University, USA
Paul Spirakis The University of Liverpool, UK
Rakesh Vohra University of Pennsylvania, USA
Andrew Yao Tsinghua University, China
Yinyu Ye Stanford University, USA

Program Committee

Bo An Nanyang Technological University, Singapore
Siddharth Barman Indian Institute of Science, India
Xiaohui Bei Nanyang Technological University, Singapore
Simina Branzei Purdue University, USA
Yang Cai Yale University, USA
Shuchi Chawla University of Wisconsin-Madison, USA
Jing Chen Stony Brook University, USA
Xi Chen Columbia University, USA
Yukun Cheng Suzhou University of Science and Technology, China
Jose Correa Universidad de Chile, Chile
Edith Elkind University of Oxford, UK
Dimitris Fotakis National Technical University of Athens, Greece
Vasilis Gkatzelis Drexel University, USA
Kira Goldner Columbia University, USA
Tobias Harks University of Augsburg, Germany
Zhiyi Huang The University of Hong Kong, China
Thomas Kesselheim University of Bonn, Germany
Max Klimm Humboldt University Berlin, Germany



Yuqing Kong Peking University, China
Tie-Yan Liu Microsoft Research Asia, China
Irene Lo Stanford University, USA
Brendan Lucier Microsoft Research New England, USA
Luca Moscardelli University of Chieti-Pescara, Italy
Sigal Oren Ben-Gurion University, Israel
Georgios Piliouras Singapore University of Technology and Design,

Singapore
Qi Qi Hong Kong University of Science and Technology,

China
Daniela Saban Stanford University, USA
Rahul Savani The University of Liverpool, UK
Marco Scarsini LUISS Rome, Italy
Alkmini Sgouritsa The University of Liverpool, UK
Xiaoming Sun Chinese Academy of Sciences, China
Vasilis Syrgkanis Microsoft Research New England, USA
Sam Taggart Oberlin College, USA
Christos Tzamos University of Wisconsin-Madison, USA
Adrian Vetta McGill University, Canada
Carmine Ventre King’s College London, UK
Zihe Wang Shanghai University of Finance and Economics, China
Matt Weinberg Princeton University, USA
Lirong Xia Rensselaer Polytechnic Institute, USA
Jialin Zhang Chinese Academy of Sciences, China
Song Zuo Google Research, China

Additional Reviewers

Andreas Abels
Mete Şeref Ahunbay
Michele Aleandri
Maxwell Allman
Siddhartha Banerjee
Umang Bhaskar
Davide Bilò
Vittorio Bilò
Georgios Birmpas
Peter Biro
Shant Boodaghians
Alexander Braun
William Brown
Johannes Brustle
Linda Cai
Rahul Chandan
Wei Chen

Yurong Chen
Zhihuai Chen
Yun Kuen Cheung
Je-Ok Choi
Avi Cohen
Vincent Conitzer
Andrés Cristi
Bart de Keijzer
Argyrios Deligkas
Yuan Deng
Jack Dippel
Shahar Dobzinski
Valerio Dose
Alon Eden
Guillaume Escamocher
Meryem Essaidi
Angelo Fanelli

viii Organization



Yiding Feng
Diodato Ferraioli
Matheus V. X. Ferreira
Aris Filos-Ratsikas
Rupert Freeman
Rafael Frongillo
Sai Ganesh Nagarajan
Evangelia Gergatsouli
Daniele Giachini
Yiannis Giannakopoulos
Sreedurga Gogulapati
Lukas Graf
Hadi Hosseini
Neng Huang
Jan Hazła
Zhihao Jiang
Alkis Kalavasis
Anthimos-Vardis Kandiros
Jamie Kang
Artem Kaznatcheev
Suleyman Kerimov
Pieter Kleer
Vasilis Kontonis
Anand Krishna
Stefanos Leonardos
Bo Li
Minming Li
Weian Li
Thanasis Lianeas
Shengxin Liu
Tian Liu
Tracy Liu
Yang Liu
Zhengyang Liu
Xinhang Lu
Thodoris Lykouris
Weidong Ma
Yishay Mansour
Simon Mauras
Alejandro Melo Ponce
Kaleigh Mentzer
Divyarthi Mohan
Faidra Monachou
Gianpiero Monaco
Barnabé Monnot
Ilan Morgenstern

Daniel Moroz
Rolf H. Möhring
Vishnu Narayan
Ndiamé Ndiaye
Eric Neyman
Kim Thang Nguyen
Rad Niazadeh
Argyris Oikonomou
Dario Paccagnan
Panagiotis Patsilinakos
Dominik Peters
Chara Podimata
Luciano Pomatto
Emmanouil Pountourakis
Bary Pradelski
Li Qian
Goran Radanovic
Nidhi Rathi
Bhaskar Ray Chaudhury
Rebecca Reiffenhäuser
Rojin Rezvan
Fedor Sandomirskiy
Alvaro Sandroni
Daniel Schmand
Marc Schroder
Steffen Schuldenzucker
Ariel Schvartzman
Erel Segal-Halevi
Ella Segev
Xiaohan Shan
Xinkai Shu
Sujoy Sikdar
Ryann Sim
Sahil Singla
Stratis Skoulakis
Warut Suksompong
Ranjani Sundaram
Mashbat Suzuki
Zhihao Tang
Yifeng Teng
Clayton Thomas
Artem Tsikiridis
Marc Uetz
Rohit Vaish
Grigoris Velegkas
Xavier Venel

Organization ix



José Verschae
Cosimo Vinci
Alexandros Voudouris
Bo Waggoner
Chenhao Wang
Hao Wang
Kangning Wang
Xiangning Wang
Yining Wang
Xiaowei Wu
Yifan Wu
Mingyu Xiao
Mobin Yahyazadeh

Xiang Yan
Zhenzhen Yan
Wei Yu
Huishuai Zhang
Jia Zhang
Mengqian Zhang
Peng Zhang
Qiankun Zhang
Yong Zhang
Zhijie Zhang
Mingfei Zhao
Shuran Zheng
Yichi Zhou

x Organization



Contents

Matching

Almost Envy-Free Repeated Matching in Two-Sided Markets. . . . . . . . . . . . 3
Sreenivas Gollapudi, Kostas Kollias, and Benjamin Plaut

Dynamic Weighted Matching with Heterogeneous Arrival
and Departure Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Natalie Collina, Nicole Immorlica, Kevin Leyton-Brown,
Brendan Lucier, and Neil Newman

A Fine-Grained View on Stable Many-To-One Matching Problems
with Lower and Upper Quotas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Niclas Boehmer and Klaus Heeger

The Ad Types Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Riccardo Colini-Baldeschi, Julián Mestre, Okke Schrijvers,
and Christopher A. Wilkens

Multidimensional Stable Roommates with Master List . . . . . . . . . . . . . . . . . 59
Robert Bredereck, Klaus Heeger, Dušan Knop, and Rolf Niedermeier

Markets

Optimal Nash Equilibria for Bandwidth Allocation . . . . . . . . . . . . . . . . . . . 77
Benjamin Plaut

Counteracting Inequality in Markets via Convex Pricing . . . . . . . . . . . . . . . 89
Ashish Goel and Benjamin Plaut

Markets for Efficient Public Good Allocation with Social Distancing. . . . . . . 102
Devansh Jalota, Marco Pavone, Qi Qi, and Yinyu Ye

Mechanism Design and Pricing

Two Strongly Truthful Mechanisms for Three Heterogeneous Agents
Answering One Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Grant Schoenebeck and Fang-Yi Yu

A Generic Truthful Mechanism for Combinatorial Auctions . . . . . . . . . . . . . 133
Hanrui Zhang



The Price of Anarchy of Two-Buyer Sequential Multiunit Auctions. . . . . . . . 147
Mete Şeref Ahunbay and Adrian Vetta

Revenue-Optimal Deterministic Auctions for Multiple Buyers with Ordinal
Preferences over Fixed-Price Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Will Ma

Robust Revenue Maximization Under Minimal Statistical Information . . . . . . 177
Yiannis Giannakopoulos, Diogo Poças,
and Alexandros Tsigonias-Dimitriadis

Revenue Monotonicity Under Misspecified Bidders . . . . . . . . . . . . . . . . . . . 191
Makis Arsenis, Odysseas Drosis, and Robert Kleinberg

On the Power and Limits of Dynamic Pricing in Combinatorial Markets . . . . 206
Ben Berger, Alon Eden, and Michal Feldman

Competitively Pricing Parking in a Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Max Bender, Jacob Gilbert, Aditya Krishnan, and Kirk Pruhs

Routing, Scheduling, Load Balancing

The Price of Anarchy for Instantaneous Dynamic Equilibria . . . . . . . . . . . . . 237
Lukas Graf and Tobias Harks

Data-Driven Models of Selfish Routing: Why Price of Anarchy Does
Depend on Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Francisco Benita, Vittorio Bilò, Barnabé Monnot, Georgios Piliouras,
and Cosimo Vinci

Competition Alleviates Present Bias in Task Completion . . . . . . . . . . . . . . . 266
Aditya Saraf, Anna R. Karlin, and Jamie Morgenstern

Improving Approximate Pure Nash Equilibria in Congestion Games . . . . . . . 280
Vipin Ravindran Vijayalakshmi and Alexander Skopalik

The Curse of Rationality in Sequential Scheduling Games . . . . . . . . . . . . . . 295
Cong Chen and Yinfeng Xu

Sequential Solutions in Machine Scheduling Games . . . . . . . . . . . . . . . . . . 309
Cong Chen, Paul Giessler, Akaki Mamageishvili, Matúš Mihalák,
and Paolo Penna

Nash Social Welfare in Selfish and Online Load Balancing . . . . . . . . . . . . . 323
Vittorio Bilò, Gianpiero Monaco, Luca Moscardelli, and Cosimo Vinci

xii Contents



Fairness

Simultaneously Achieving Ex-ante and Ex-post Fairness . . . . . . . . . . . . . . . 341
Haris Aziz

Optimal Bounds on the Price of Fairness for Indivisible Goods. . . . . . . . . . . 356
Siddharth Barman, Umang Bhaskar, and Nisarg Shah

Fair Division with Binary Valuations: One Rule to Rule Them All . . . . . . . . 370
Daniel Halpern, Ariel D. Procaccia, Alexandros Psomas,
and Nisarg Shah

Consensus Halving for Sets of Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Paul W. Goldberg, Alexandros Hollender, Ayumi Igarashi,
Pasin Manurangsi, and Warut Suksompong

Learning

Learning Strong Substitutes Demand via Queries . . . . . . . . . . . . . . . . . . . . 401
Paul W. Goldberg, Edwin Lock, and Francisco Marmolejo-Cossío

A Cardinal Comparison of Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Itay Kavaler and Rann Smorodinsky

Minimum-Regret Contracts for Principal-Expert Problems . . . . . . . . . . . . . . 430
Caspar Oesterheld and Vincent Conitzer

Bayesian Repeated Zero-Sum Games with Persistent State,
with Application to Security Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Vincent Conitzer, Yuan Deng, and Shaddin Dughmi

Abstracts

Large Random Matching Markets with Localized Preference Structures Can
Exhibit Large Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Ross Rheingans-Yoo

The Influence of One Strategic Agent on the Core of Stable Matchings . . . . . 463
Ron Kupfer

How Many Citizens Have Already Voted? The Effect of (Interim) Turnout
Rate Polls in Elections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Akaki Mamageishvili and Oriol Tejada

Online Hypergraph Matching with Delays . . . . . . . . . . . . . . . . . . . . . . . . . 465
Marco Pavone, Amin Saberi, Maximilian Schiffer, and Matthew Tsao

Contents xiii



Market Equilibrium in Multi-tier Supply Chain Networks. . . . . . . . . . . . . . . 467
Tao Jiang, Young-San Lin, and Thành Nguyen

Decision Scoring Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Caspar Oesterheld and Vincent Conitzer

Bayesian Learning in Dynamic Nonatomic Routing Games . . . . . . . . . . . . . 469
Emilien Macault, Marco Scarsini, and Tristan Tomala

Privacy Rights and Data Security: GDPR and Personal
Data Driven Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

T. Tony Ke and K. Sudhir

Closing the Gap: Mitigating Bias in Online Résumé-Filtering . . . . . . . . . . . . 471
Jad Salem and Swati Gupta

Catastrophe by Design in Population Games: Destabilizing Wasteful
Locked-In Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Stefanos Leonardos, Iosif Sakos, Costas Courcoubetis,
and Georgios Piliouras

Assortment Planning for Two-Sided Sequential Matching Markets . . . . . . . . 475
Itai Ashlagi, Anilesh K. Krishnaswamy, Rahul Makhijani,
Daniela Saban, and Kirankumar Shiragur

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

xiv Contents



Matching



Almost Envy-Free Repeated Matching
in Two-Sided Markets

Sreenivas Gollapudi1, Kostas Kollias1, and Benjamin Plaut2(B)

1 Google Research, Mountain View, USA
sgollapu@google.com, kostaskollias@google.com

2 Stanford University, Stanford, USA
bplaut@stanford.edu

Abstract. A two-sided market consists of two sets of agents, each of
whom have preferences over the other (Airbnb, Upwork, Lyft, Uber, etc.).
We propose and analyze a repeated matching problem, where some set
of matches occur on each time step, and our goal is to ensure fairness
with respect to the cumulative allocations over an infinite time horizon.
Our main result is a polynomial-time algorithm for additive, symmetric
(vi(j) = vj(i)), and binary (vi(j) ∈ {a, 1}) valuations that both (1) guar-
antees envy-freeness up to a single match (EF1) and (2) selects a maximum
weight matching on each time step. Thus for this class of valuations, fair-
ness can be achieved without sacrificing economic efficiency. This result
holds even for dynamic valuations, i.e., valuations that change over time.
Although symmetry is a strong assumption, we show that this result can-
not be extended to asymmetric binary valuations: (1) and (2) together are
impossible even when valuations do not change over time, and for dynamic
valuations, even (1) alone is impossible. To our knowledge, this is the first
analysis of envy-freeness in a repeated matching setting.

1 Introduction

Recent years have seen a dramatic increase in electronic marketplaces, both
in quantity and scale. Many of these are two-sided markets, meaning that the
market makes matches between two sets of agents (homeowners and guests for
Airbnb, employers and workers for Upwork, drivers and riders for Lyft and Uber,
etc.), each of whom has preferences over the other. This is in contrast to tra-
ditional resource allocation (cake cutting, Fisher markets, auctions, etc.) where
only one side of the market has preferences. Although envy-freeness and relax-
ations thereof have been studied extensively in one-sided resource allocation (this
research area is typically referred to as “fair division”), we are aware of just one
paper considering envy-freeness for two-sided preferences [22].1

There are two primary motivations for our work. The first is to simply study
fair division for two-sided preferences. The second is that in some ways, two-
sided electronic marketplaces like Airbnb, Upwork, Lyft, and Uber are actually
1 Although [22] is conceptually similar, it is in different setting of recommendation
algorithms, and so it is technically quite different.

c© Springer Nature Switzerland AG 2020
X. Chen et al. (Eds.): WINE 2020, LNCS 12495, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-64946-3_1
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4 S. Gollapudi et al.

in a better position to impose fairness than one-sided marketplaces. The reason
is that most one-sided markets are decentralized, in the sense that a seller offers
different goods at different prices, buyers peruse the wares at their leisure, and
make individual decisions about what they wish to purchase. On the contrary,
most two-sided markets operate by way of matches mediated by a centralized
platform, giving the platform the ability to affect the outcomes of the system.
Indeed, on Lyft and Uber, an automated central authority has almost com-
plete control over the matches, giving the algorithm tremendous power over the
outcomes for each individual agent. The power dynamic between the platform
and the participating agents makes it even more important to ensure that the
matching algorithms are fair to each agent.

1.1 Repeated Matching

A crucial element of marketplaces is repeated matching. Agents do not receive
all of their matches at once; typically, an agent can only process a few matches
at a time (a driver can only fit so many riders in the car, a worker can only
handle so many contracts at once). Only after an agent completes some of her
current matches can she be given new matches. This motivates a model where on
each time step, an irrevocable matching decision must be made, and we expect
fairness with respect to the cumulative matching at each time step. We consider
an infinite time horizon and a finite set of agents, so we must allow the same
pair of agents to be matched multiple times; thus each agent’s cumulative set of
matches will be a multiset.

A vital aspect of any repeated setting is that preferences can change. In
some cases, preferences may change in direct response to the matches an agent
receives: if a driver is matched with a rider who wishes to go to location X, once
that ride is completed, the driver will prefer riders whose pickups are close to
X. In other cases, agents may desire variety among matches: Airbnb guests may
not wish to vacation in the same area every time. Additionally, preferences may
simply drift over time. We refer to valuations that change over time as dynamic
valuations.

1.2 Fairness Notions

For one-sided fair division with indivisible items, full envy-freeness is impossible:
for two agents and a single item, one must receive the item and the other agent
will be envious. The same issue applies in our setting: if every agent on one side
of the market is interested in the same agent on the other side, no algorithm can
guarantee envy-freeness.

One solution is to consider relaxations of envy-freeness, such as envy-freeness
up to one good (EF1). An outcome is EF1 if whenever agent i envies agent j,
there exists a good in j’s bundle such that i would not envy j after removing
that good.2 This property has been studied widely for one-sided preferences, but
2 Note that this good is not actually removed: this is simply a thought experiment

used in the definition of EF1.
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to our knowledge has not been considered for two-sided markets. We can define
EF1 equivalently for two-sided preferences: simply replace “there exists a good”
with “there exists a match”, etc.

The less obvious question is how to adapt EF1 to the repeated setting. In this
paper, we assume time is divided into discrete steps, where on each step, some
set of matches occur. Each match consists of two agents, one from each side of
the market. We would like the cumulative matching after each time step to be
EF1. We will also assume that each side of the market has the same number of
agents (if not, add “dummy” agents to the smaller side).

We consider two different versions of this model. In the first version, each time
step consists of just a single match, so we are effectively requiring the cumulative
matching to be EF1 at every point in time. We call this EF1-over-time.

However, asking for fairness at every point in time may be too strong.
Furthermore, in most real-world applications, matches would be happening in
parallel anyway. Conversely, EF1-over-time poses no restrictions on how many
matches agents receive. In real life, agents often have similar “capacities” (e.g.,
most cars have a similar number of seats) and thus should arguably receive
matches at similar rates. These concerns motivate a second version of the model,
where on each time step, each agent is matched exactly once (i.e., we select a
perfect matching). Thus each time step represents a “round” of matches (which
may happen in parallel). We still require that the cumulative matching is EF1
after time step, and we call this EF1-over-rounds.

1.3 Our Results

We use vi(j) to denote agent i’s value for agent j, and assume valuations are
additive. We say that valuations are symmetric if vi(j) = vj(i) for all agents
i, j, and binary if there exists a ∈ [0, 1) such that vi(j) ∈ {a, 1} for all i, j.3

It is worth noting that for symmetric valuations, negative values for vi(j) are
subsumed in the following sense: if the algorithm ever says to match agents i
and j where vi(j) < 0, we simply ignore this and never make the match, which
gives both agents value 0 for the “match”.4

We now describe our results. Due to space constraints, all proofs are deferred
to the full version of the paper [16].

EF1-Over-Rounds for Dynamic Symmetric, and Binary Valuations. Our main
result is that for dynamic, symmetric, and binary valuations, we give an algorithm
which both satisfies EF1-over-rounds, and selects a maximum weight matching on
each time step (Theorem 3.1) This holds even when valuations are dynamic.5 This

3 If we wish to add dummy agents to one side of the market, the most natural case
would be a = 0, in order to express that dummy agents have no value.

4 In order for this argument to be complete when considering EF1-over-rounds, this
“match” must still count as part of the perfect matching for that time step.

5 We allow valuations to change arbitrarily between time steps. Furthermore, our algo-
rithm does not need to know how valuations will change in response to a given match.
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shows that for this class of valuations, fairness can be achieved without sacrificing
economic efficiency. Our algorithm runs in time O(n2.5) per time step.

The class of symmetric and binary valuations is somewhat restricted, but is
important to keep several things in mind. First, it is often hard to elicit more
complex valuations. Agents can easily answer binary questions such as “Would
you be happy with this match?”, but may not be able to provide a real number
value for potential matches. Second, the best interpretation of our result (in our
opinion) is that agents’ preferences are not truly binary, but that our algorithm
is guaranteeing EF1 with respect to a binary projection of the preferences. That
is, ask each agent to label each possible match as “good” or “bad”, and guarantee
EF1 with respect to those preferences. This interpretation is reinforced by the
fact that the cumulative matchings computed by our algorithm will be EF1
uniformly across all possible values a, and agents can even have different values
of a. See Sect. 3.1 for a discussion of this.

Symmetry, however, is a significant assumption on the agents’ preferences.
There are reasons to believe real-world preferences are largely symmetric: a rider
is likely to prefer a driver closer to her, and vice versa. However, a natural
question is whether this assumption is necessary.

Counterexamples. Our next set of results shows that the symmetry assumption
is in fact necessary. First, we show that for dynamic binary valuations, EF1-
over-rounds alone is impossible (Theorem 4.1). Second, for non-dynamic (i.e.,
valuations do not change over time) binary valuations, it is impossible to satisfy
EF1-over-rounds while guaranteeing a maximum weight matching for each time
step (Theorem 4.2). These impossibility results suggest that EF1-over-rounds
may be too much to ask for in the setting of two-sided repeated matching.
However, our counterexamples do not rule out the possibility of EF1-over-time,
even for general additive valuations. We leave this as our primary open question.

Beyond Symmetric Valuations. Despite this negative result, we show that it is
possible to relax the symmetry assumption, at least in the context of EF1-over-
time. We show that for {0, 1} binary valuations6 with an assumption that we call
“only symmetric cycles”, EF1-over-time can be guaranteed. We formally define
“only symmetric cycles” in the full version of the paper [16], but this assumption
is strictly weaker than full symmetry of valuations.

Beyond Binary Valuations. In a similar vein, we show that when one side of the
market has two agents, the binary assumption can also be relaxed. Specifically,
we give an algorithm which is EF1-over-time for any additive valuations.

1.4 Related Work

There are two primary bodies of related work: (one-sided) fair division, and
matching markets.
6 For this result, we assume that vi(j) ∈ {0, 1} for each agent, as opposed vi(j) ∈ {a, 1}

for any a ∈ [0, 1).
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Fair Division. Fair division has a long history. In fact, the Bible documents
Abraham and Lot’s use of the cut-and-choose protocol to fairly divide land.
The formal study of fair division was started by [27] in 1948, and envy-freeness
was proposed in 1958 [15] and further developed by [13]. A full overview of the
fair division literature is outside the scope of this paper (we refer the interested
reader to [5,21]), and we discuss only the work most relevant to our own.

There are two main differences between our work and that of traditional fair
division. First, we study two-sided preferences instead of one-sided preferences.
Second, we study a repeated setting, where we must make an irrevocable decision
on each time step; most fair division research considers a “one-shot” model where
all the goods are allocated at once.

We briefly overview some key results in the one-sided one-shot model of fair
division for indivisible items7. The EF1 property was proposed for this model
by [6]. EF1 allocations always exist, and can be computed in polynomial time,
even for general combinatorial valuations [20]8. This sweeping positive result for
the one-sided one-shot model lies in stark contrast to our negative results for
the two-sided repeated model. It was later shown that for additive valuations,
maximizing the product of valuations yields an allocation that is both EF1 and
Pareto optimal [8].

Envy-Freeness up to Any Good (EFX). The same paper suggested a new fairness
notion that is strictly stronger than EF1, which they called EFX9. The first for-
mal results regarding EFX allocations were given by [23]. A major breakthrough
recently proved the existence of EFX allocations for additive valuations and three
agents [9], but despite ongoing effort, the question of existence remains unsolved
for more than three agents (or more complex valuations). This is perhaps the
most significant open problem in the fair division of indivisible items.

In many contexts (especially for additive valuations), it is common to modify
the requirement to be that whenever i envies j, removing any good which i
values positively from j’s bundle is sufficient to eliminate the envy [8].10 Under
the latter definition, for {0, 1} binary valuations, EF1 and EFX coincide. This
is because the only positively valued goods are the maximum value goods. In
this sense, our positive results for {0, 1} binary valuations immediately extend
to EFX as well.

Repeated Fair Division. There are a smattering of recent works studying envy-
freeness for one-sided preferences in a repeated (i.e., not one-shot) setting; see [1]

7 Indivisible items, such as cars, must each go entirely to a single agent. In contrast,
divisible items, such as a cakes, can be split between multiple players. Fair division
studies both of these settings, but the indivisible case is more relevant to our work.

8 The algorithm of [20] was originally developed with a different property in mind.
9 An allocation is envy-free up to any good (EFX) if whenever i envies j, removing
any good from j’s bundle eliminates the envy.

10 The reason this is less common when considering non-additive valuations is that for
general combinatorial valuations, it is less clear what “values positively” means.
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for a short survey. One example is [2], which focuses on minimizing the maximum
envy (i.e., the maximum difference between an agent’s value for her own bundle
and her value for another agent’s bundle) at each time step. Despite the growing
interest in repeated one-sided fair allocation, the literature on the analogous
two-sided problem remains sparse.

Matching Markets. The other relevant field is (bipartite) matching markets11.
In a one-to-one matching market, each agent receives exactly one match. Perhaps
the most famous result for one-to-one matching is that of Gale and Shapley,
whose algorithm finds a stable matching [14]. More relevant to us is the model of
many-to-many matching markets, where each agent can receive multiple matches;
stability has often been the primary criterion in this model as well [11,19,25,26].
There is also some work on stability in dynamic matching markets [10,18].

In contrast, fairness in many-to-many matching has received considerably
less attention. In fact, Gale and Shapley’s algorithm for one-to-one matching is
known to compute the stable matching which is the worst possible for one side
of the market, and best possible for the other.

Fair Ride-Hailing. There is a growing body of work surrounding the ethics of
crowdsourced two-sided markets, especially ride-hailing (e.g., Lyft and Uber)
[3,4,7,12,17]. We are aware of just two works studying fairness for two-sided
markets from an algorithmic perspective: [29] and [28], both of which focus on
ride-hailing. The former paper considers ride-sharing, where multiple passengers
are matched with a single driver. The authors focus on fairness with respect
to the savings achieved by each passenger. This paper is primarily theoretical,
like ours, but is specific to ride-hailing, unlike ours. The latter paper studies a
fairness notion based on the idea that “spread over time, all drivers should receive
benefits proportional to the amount of time they are active in the platform”. The
model considered in this paper is more general than just ride-hailing, however
the paper is primarily experimental, and the experiments are in the ride-hailing
setting.

Consequently, we are not aware of any prior work studying algorithms with
provable fairness guarantees for repeated two-sided matching markets. In this
way, our work can be viewed as simultaneously building on the fair division
literature (by considering two-sided preferences) and building on the matching
market literature (by studying envy-freeness for repeated two-sided markets).

The paper proceeds as follows. Section 2 describes the formal model. Section 3
presents our main result: an algorithm for symmetric and binary valuations such
that (1) the sequence of cumulative matchings is EF1-over-rounds, (2) a max-
imum weight matching is chosen for each time step, and (3) this holds even
for dynamic valuations (Theorem3.1). Section 4 presents our counterexamples:
Theorem 3.1 cannot be extended to non-symmetric binary valuations. Specifi-
cally, without symmetry, (1) and (3) together and (1) and (2) together are both
11 For a broad overview of this topic, see [24].
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impossible (Theorems 4.1 and 4.2, respectively). The rest of the results (and all
of the proofs) can be found in the full version of the paper [16].

2 Model

Let N and M be two sets of agents. We assume that |N | = |M | = n; if this
is not the case, we can add “dummy” agents (i.e., agents i such that vi(j) =
vj(i) = 0 for all j) to the smaller side of the market until both sides have the
same number of agents. We will typically use odd numbers for the elements
of N and even numbers for the elements of M , i.e., N = {1, 3, . . . , 2n − 1} and
M = {2, 4, . . . , 2n}. A matching X assigns a multiset of agents in N to each agent
in M , and a multiset of agents in M to each agent in N . For each i ∈ N ∪M , we
will use Xi to denote agent i’s bundle, i.e., the multiset of agents she is matched
to. Throughout the paper, we will use standard set notation for operations on
the multisets Xi. For example, Xi ∪ {j} increments the multiplicity of j in Xi,
i.e., the number of times j occurs in Xi. In order for X to be a valid matching,
the multiplicity of j in Xi must be equal to the multiplicity of i in Xj for each
i ∈ N , j ∈ M .

Each agent i also has a valuation function vi, which assigns a real number
to each possible bundle she might receive. We will use v to denote the valuation
profile which assigns valuation vi to agent i. We say that vi is additive if for any
bundle Xi,

vi(X) =
∑

j∈X

vi({j})

Since X is a multiset, the sum over j ∈ X includes each j a number of times
equal to its multiplicity. For example, if X = {j, j} and vi({j}) = 1, then
vi(X) = 2. With slight abuse of notation, we will write vi({j}) = vi(j). We say
that a valuation vi is binary if there exists a ∈ [0, 1) such that vi(j) ∈ {a, 1}
for all i, j ∈ N or i, j ∈ M . We say that a valuation profile v is symmetric if
vi(j) = vj(i) for all i ∈ N, j ∈ M .

We say that i envies j under X if vi(Xi) < vi(Xj). We only consider envy
within the same side of the market: it is unclear what it would mean for some
i ∈ N to envy j ∈ M . We can express this by setting vi(j) = 0 for i, j ∈ N or
i, j ∈ M .

Definition 2.1. A matching X is envy-free up to one match (EF1) if whenever
i envies j, there exists k ∈ Xj such that vi(Xi) ≥ vi(Xj \ {k}).

Note that the set subtraction Xj \ {k} decreases the multiplicity of k by 1;
it does not remove k altogether. Also, we will say that X is EF1 with respect to
N (resp., M) if the above holds for every pair i, j ∈ N (resp., i, j ∈ M).

One important tool we will use is the envy graph:

Definition 2.2. The envy graph of a matching X is a graph with a vertex for
each agent, and a directed edge from agent i to agent j if i envies j under X.

We will especially be interested in cycles in the envy graph, and will use the
terms “cycle in the envy graph” and “envy cycle” interchangeably.
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2.1 Repeated Matching

We consider a repeated setting, where on each time step t, some set of matches
occur. Each “match” (alternatively, pairing) consists of one agent in N and one
agent in M .

Let xt denote the set of matches which occur at time t. Each agent will
receive at most one match per time step. If agent i is matched to an agent j at
time t, let xt

i = {j}; otherwise, let xt
i = ∅. For an infinite sequence x1, x2, x3 . . . ,

let Xt denote the cumulative matching up to and including time t. Formally, for
each i ∈ N ∪ M ,

Xt
i =

{
∅ if t = 0
Xt−1

i ∪ xt
i if t > 0

In words, Xt
i is the set of matches i has received up to and including time t.

Our main result holds even when valuations are allowed to vary over time.
Specifically, a dynamic valuation vi will have a value vti(j) for each agent j on
each time step t (as before, we write vti(j) = 0 for i, j ∈ N or i, j ∈ M). A profile
of dynamic valuations is symmetric if vti(j) = vtj(i) for all i, j, t. For a pair of
agents i, j (with i = j allowed), vi(Xt

j) is given by

vi(Xt
j) =

t∑

t′=1

vt
′
i (xt′

j )

where vt
′
i (∅) = 0. That is, i’s value for a bundle Xj is as if i had received exactly

those matches at exactly those times. It is important for this definition to include
both i = j and i �= j, so that we can evaluate envy between agents.

We make no assumptions on how valuations change between time steps: they
can even change adversarially, since our algorithm will not use any knowledge
about future valuations when making matching decisions.

We consider two definitions of EF1 in the repeated matching setting. In both
cases, we require the cumulative matching at the end of each time step to be
EF1. The difference is that for EF1-over-time, each time step consists a single
match, and for EF1-over-rounds, each time step consists of a “round” of matches
where all agents receive exactly one match (i.e., a perfect matching between N
and M).

Definition 2.3. The sequence X = X0,X1,X2 . . . is EF1-over-time if for all
t ≥ 0, each xt contains a single match, and Xt is EF1.

Definition 2.4. The sequence X = X0,X1,X2 . . . is EF1-over-rounds if for
all t ≥ 0, xt is a perfect matching, and Xt is EF1.

Formally, these notions are incomparable: EF1-over-time has a stronger fair-
ness requirement (the cumulative matching should be EF1 after every match,
not just after every round of matches), but does not require agents to receive the
same number of matches. However, EF1-over-rounds does imply EF2-over-time
(where we may remove two matches in order to eliminate the envy): expand each
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“round” into n time steps, each containing one match, in an arbitrary order. We
know that at the end of each round of n time steps, the cumulative matching
is EF1. Within each round, each agent only gains one additional match, and we
can always remove that match to return to an EF1 state.

Our goal will be to show the existence of (and efficiently compute) a sequence
x1, x2, x3 . . . such that the induced sequence X is EF1-over-time and/or EF1-
over-rounds. For brevity, if an algorithm is guaranteed to produce a sequence X
that is EF1-over-time (resp., EF1-over-rounds), we simply say that the algorithm
is EF1-over-time (resp., EF1-over-rounds).

3 EF1 for Dynamic, Symmetric, and Binary Valuations

In this section, we consider binary and symmetric valuations that may change
over time. For this class of valuations, we give a polynomial-time algorithm that
produces a sequence which is EF1-over-rounds, and chooses a maximum weight
matching for each time step. This leads to the following theorem:

Theorem 3.1. For dynamic, binary, and symmetric valuations, Algorithm1 is
EF1-over-rounds, and the matching xt for each time step t is a maximum weight
matching (with respect to the valuations on that time step). Furthermore, the
algorithm runs in time O(n2.5) per time step.

3.1 Algorithm Setup

Before we discuss the algorithm, we need the following definition, which will
imply EF1 (Lemma 3.2):

Definition 3.1. We say that a pair of agents (i, j) is c-envy-bounded if
vi(Xj) − vi(Xi) ≤ c, and we say a matching X is c-envy-bounded if every pair
(i, j) is c-envy-bounded.

A quick note: recall that our goal is to choose a sequence of pairings x1, x2 . . . ,
and that these pairings fully specify the sequence of cumulative matchings
X . Consequently, when giving pseudocode for our algorithms (throughout the
paper), we do not explicitly update X : we assume that whenever some xt is
changed, every Xt′

for t′ ≥ t is automatically updated. We feel that this leads
to more concise and intuitive pseudocode.

Algorithm 1 is very simple. For each time step t, we initialize xt to be an arbi-
trary maximum weight matching for the current valuations, and make changes to
this matching until we are satisfied. Specifically, while there exist agents i, j such
that (i, j) is not (1−a)-envy-bounded in the cumulative matching, we swap their
matches in xt. When no such pair of agents exists, we exit the while loop and
confirm the matches. Throughout all of our algorithms, we will use the function
MakeMatch to indicate that we are confirming the matches in xt.

It is important to note that the algorithm is not going back in time and
changing pairings already made: once a pairing is confirmed with MakeMatch, it
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Algorithm 1. An EF1-over-rounds algorithm for agents with dynamic, sym-
metric, and binary valuations.
1: function EF1Matching(N,M,v)
2: for each t ∈ N≥0 do
3: {xt} ← MaxWeightMatching(N,M,v)
4: while ∃ agents i, j s.t. vi(X

t
j) − vi(X

t
i ) > 1 − a do

5: (xt
i, x

t
j) ← (xt

j , x
t
i)

6: MakeMatch(xt)

is never changed. The algorithm starts with a tentative matching, and changes
tentative matches until it is satisfied for the current time step (see Fig. 1), at
which point the matches are confirmed with MakeMatch. The algorithm then
proceeds to the next time step and never changes pairings from previous time
steps. Note also that the algorithm uses no information about valuations for
future time steps.

1 3

2 4

1 3

2 4

N :

M :

Fig. 1. A hypothetical swap performed by Algorithm 1. On the left we see a tentative
perfect matching: ({1, 2}, {3, 4}). The blue arrow indicates that if this matching were
to be chosen, the pair (3, 1) would not be (1 − a)-envy-bounded. Thus agents 1 and 3
swap their (tentative) matches, and the new tentative matching is ({1, 4}, {3, 2}). The
matching ({1, 2}, {3, 4}) is never confirmed by MakeMatch: it is merely a stepping stone
in the process of computing the eventual matches to be chosen for this time step. For
the case of more than four agents, this process could repeat (although not indefinitely;
see the full version of the paper for this proof [16]. (Color figure online)

Our central correctness lemma will be the following:

Lemma 3.1. Let t ≥ 1 be any time step, and suppose that Xt−1 is (1 − a)-
envy-bounded and has no envy cycles. Then Xt is (1 − a)-envy-bounded and
has no envy cycles. Furthermore, the chosen matching xt is a maximum weight
matching (with respect to the valuations on that time step).

Before diving into the proof of Lemma3.1 (and the runtime analysis), we
briefly show that (1 − a)-envy-boundedness will actually give us the result we
want:

Lemma 3.2. Suppose valuations are binary, and suppose X is (1 − a)-envy-
bounded. Then X is EF1.
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Proof. Suppose i envies j under Xt. If vi(Xt
j) = a|Xt

j |, then vi(Xt
i ) ≥ vi(Xt

j),
which contradicts i envying j. Thus vi(Xt

j) ≥ 1 + a(|Xt
j | − 1). Thus there exists

k ∈ Xt
j such that vi(Xt

j \ {k}) = vi(Xt
j) − 1. Therefore vi(Xi) − vi(Xt

j \ {k}) ≥
1 + (a − 1) = a ≥ 0, which proves the claim.

The role of a. Before diving into the main proof, we briefly discuss the role of
a. For Theorem 3.1, we assume that there exists a ∈ [0, 1) such that vi(j) ∈ {a, 1}
for all i, j ∈ N or i, j ∈ M . For ease of notation, we assume that all agents have
the same value of a, but this is in fact not necessary. In fact, Algorithm 1 will
be EF1-over-rounds simultaneously for all values of a.

Lemma 3.3. Assume (i, j) is (1 − a)-envy-bounded and that |Xt
i | = |Xt

j |. Let
a′ ∈ [0, 1), and define a new valuation v′

i such that v′
i(k) = a′ whenever vi(k) = a,

and v′
i(k) = 1 otherwise. Then (i, j) is (1 − a′)-envy-bounded with respect to v′

i.

Note that the assumption of |Xt
i | = |Xt

j | is always satisfied when working
with EF1-over-rounds, since we will match every agent once on each time step.
Therefore we can actually just choose an arbitrary value of a ∈ [0, 1) and run
Algorithm 1. Lemma 3.3 implies that the resulting sequence of matchings will be
EF1-over-rounds simultaneously for all values of a, even if different agents have
different values of a. That said, if we need to include dummy agents in order to
equalize the sizes of N and M , a = 0 probably makes the most sense.

4 Counterexamples

A natural question is whether Theorem 3.1 can be extended to all dynamic binary
valuations (i.e., not necessarily symmetric). The answer is unfortunately no,
which we show in two different ways. First, for dynamic binary valuations, EF1-
over-rounds alone is impossible (Theorem 4.1). Second, for non-dynamic binary
valuations, it is impossible to guarantee both EF1-over-rounds and maximum
weight matching for each time step (Theorem 4.2).

1 3

2 4

1 3

2 4

t = 1 t = 2

Fig. 2. An instance with dynamic and binary valuations where EF1-over-rounds is
impossible.

Theorem 4.1 uses the instance in Fig. 2. Essentially, after the first round,
either agents 1 and 3 form an envy cycle, or agents 2 and 4 form an envy cycle.
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After the second round of matching, one of the agents in the envy cycle will
become even more envious, violating EF1.

Theorem 4.1. For dynamic and binary valuations, there is no algorithm which
is EF1-over-rounds.

1, 3

2 4

5

6

Fig. 3. An instance with binary valuations where guaranteeing both EF1-over-rounds
and maximum weight matching is impossible.

Theorem 4.2 uses the instance in Fig. 3. For some intuition, note that are two
cycles of desire: (1, 4, 5, 6) and (3, 4, 5, 6). Like in the previous counterexample,
these cycles will cause problems, but here we have the additional consideration
that agents 1 and 3 are competing for agent 4. We show that the frequency with
which agents 4 and 5 are matched is at least the frequency with which either
agent 1 or agent 3 is matched with agent 4. For example, if agents 1 and 3 have
each been matched to agent 4 twice, then agents 4 and 5 will have been matched
4 times. This leads to agents 1 and 3 increasingly envying agent 5, until EF1 is
violated.

The assumption of maximum weight is necessary only to prevent agents 2
and 5 from ever being matched: if agents 2 and 5 can be matched, the above
argument can be circumvented.

Theorem 4.2. For binary valuations, there is no algorithm which is EF1-over-
rounds and also chooses a maximum weight matching for each time step, even
for non-dynamic valuations.

5 Conclusion

In this paper, we proposed a model of envy-freeness for repeated two-sided
matching. For binary and symmetric valuations, we gave an algorithm that (1)
satisfies EF1-over-rounds, (2) chooses a maximum weight matching for each time
step, and (3) works even for dynamic valuations (Sect. 3). Furthermore, without
symmetry, (1) + (2) together and (1) + (3) together are each impossible. All
proofs can be found in the full version of the paper, along with several additional
results [16].

Our negative results for even binary valuations suggest that EF1-over-rounds
may be too much to ask for. However, our results do not rule out the possibility
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of EF1-over-time, even for general additive valuations. More broadly, future work
could investigate other possible fairness notions for this setting.

Another possible future direction concerns more general study of two-sided
preferences. Envy-freeness is an example of a topic that has been widely studied
for one-sided resource allocation, but not for two-sided markets. We wonder if
there are other such topics that are worthy of study for two-sided preferences.
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18. Haruvy, E., Ünver, M.U.: Equilibrium selection and the role of information in
repeated matching markets. Econ. Lett. 94(2), 284–289 (2007)
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Abstract. We study a dynamic non-bipartite matching problem. There
is a fixed set of agent types, and agents of a given type arrive and depart
according to type-specific Poisson processes. The value of a match is
determined by the types of the matched agents. We present an online
algorithm that is (1/8)-competitive with respect to the value of the
optimal-in-hindsight policy, for arbitrary weighted graphs. This is the
first result to achieve a constant competitive ratio when both arrivals and
departures are random and unannounced. Our algorithm treats agents
heterogeneously, interpolating between immediate and delayed match-
ing in order to thicken the market while still matching valuable agents
opportunistically.

1 Introduction

Matching markets are ubiquitous in online platforms. Sponsored search auctions
like Google Adwords match ads and users, ridesharing systems like Uber and
Lyft match drivers and riders, online markets like Amazon and eBay match sell-
ers and buyers. In each case, the value of a match is a function of the types of
participating agents. In sponsored search auctions, a restaurant ad is more valu-
able when matched to a geographically co-located user. In ridesharing systems,
a driver and rider have higher utility for being matched to each other if they are
nearby. In an online market, buyers might have heterogeneous preferences over
service/product quality and price trade-offs which impact match quality.

The role of the platform is to find high-value matches. However, this task
is significantly complicated by the fact that agents arrive and depart dynam-
ically over time, and may fail to inform the platform of their departure. In
this paper, we mitigate this complication by assuming that agents have known
Poisson arrival and departure rates that are a function only of their type. This
allows us to characterize the optimal expected value from matches using a linear
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program. This program bounds the rate at which each pair of types match to
one-another in the optimal solution. Our algorithm uses these LP-based esti-
mates of the optimal rates as guidelines. When an agent arrives to the market,
we attempt to match it to each previous agent with a probability equal to a
scaled-back version of the corresponding rate. We prove the resulting algorithm
is a constant approximation to the optimal-in-hindsight policy, with competi-
tive ratio at most 8. While we motivate our problem in the context of bipartite
matchings, we note our solution holds for general non-bipartite graphs.

There is a significant body of prior literature on dynamic stochastic matching
in settings where agent departures are immediate or deterministic (and hence
predictable) [9,11–13,15], or where the platform is informed immediately before
an agent departs [1,5,8,19]. In such settings, it is natural for the platform to
delay matches until an agent is about to depart, in order to maximize the set
of available options. In contrast, when the platform cannot predict departures,
there is a tension between taking a guaranteed (but potentially suboptimal)
match now, or pushing one’s luck to see if a better match arrives later. The main
technical challenge in developing an online policy is navigating this tradeoff for
agents of different types.

Our LP-based approach is certainly not new in the context of stochastic
matching, but we find that our result has several interesting qualitative insights,
especially for settings where agent departures are random, heterogeneous, and
unannounced. First, our algorithm treats matches heterogeneously. For some
matches, the linear program suggests forming them at a high rate. Our algo-
rithm treats these matches as a greedy algorithm would, matching them (almost)
immediately upon arrival. For other matches, the linear program suggests form-
ing them at a low rate. Our algorithm treats these matches more like a periodic
clearing algorithm would, allowing the market to thicken before attempting the
matches.

This heterogeneous treatment is important for good approximations in our
setting. Consider, for example, an environment with two types of buyers, low and
high, and one type of seller. The low buyers arrive frequently to the market and
depart at a constant rate, whereas the sellers arrive less often. The high buyers
arrive much less frequently than the sellers, and depart immediately after they
arrive, but matches involving these high buyers account for almost all the value
of the optimal policy. In this case, it is important to greedily match the high
buyers and delay matches with the low buyers to thicken the market. A uniformly
greedy policy, that immediately matches all agents, will likely have no sellers in
the market when high buyers arrive, as there are always low buyers available to
match with them. A periodic clearing algorithm that attempts to thicken the
market by delaying all matches for a fixed period of time will likely have no
access to high buyers at match time, since high buyers depart immediately after
they arrive. See the full version of the paper for a more detailed description of
such an example.

Another qualitative insight of our result is the importance of being conserva-
tive in matching attempts. Our algorithm scales back the match-rate estimates
of the linear program by 50%. At first blush, this might seem incredibly wasteful.
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However, this scaling is provably necessary: we show in the full version of the
paper that if the algorithm does not perform this scaling then it cannot achieve
any bounded approximation to the optimal matching. Intuitively, the issue is
that the matching policy must leave some slack in the system—by leaving a
certain fraction of agents unmatched—in order to take advantage of unexpected
fortuitous events where a very valuable match becomes possible. Since an opti-
mal LP solution typically would leave no such slack, one can instead guarantee
it by being conservative when matching.

As is common in the dynamic stochastic matching literature, our approach is
to solve an LP relaxation of the offline optimal matching problem, then use this
solution as guidance for our online matching policy. We prove that the resulting
policy obtains a constant approximation to the LP benchmark, which is only
stronger than the offline optimal match value (and hence the optimal online
policy). The main technical hurdle is that the outcome of matching attempts is
determined by the state of which types of agents are present in the market, and
this introduces correlations across time. For instance, whether a certain type of
agent is present in the market is (negatively) correlated with the presence of
other agents that generate high value from matches with it. In principle, such
correlations could result in scenarios where a certain type is either not present
at all or is overabundant, impeding our ability to match the LP relaxation which
assumes smoothness across time. We address this issue by bounding the impact
of such correlations, by coupling the availability of agents in the system with
Poisson processes that dominate (or are dominated by) them.

1.1 Related Literature

There is a vast recent literature on algorithms for online matching (sometimes
called online task arrival). In a seminal paper, Karp et al. [14] consider an
(unweighted) online bipartite matching problem where one side of the graph is
static and the vertices of the other side arrive online. They show that a random-
ized greedy matching method obtains a (1 − 1/e) approximation and that this
is tight. This was later extended by Mehta et al. [17] to a generalized weighted
matching environment motivated by ad auctions, with budget constraints on the
static side of the market. Both of these results assume adversarial types.

Stochastic variants of the online bipartite matching problem have been stud-
ied as well. Feldman et al. [9] consider a stochastic variant in which vertex
types on the online side of the market are drawn i.i.d. from a fixed distribution.
They showed how to beat the adversarial bound of (1 − 1/e) in this stochas-
tic setting, using an LP-based approach that solves for a fractional (expected)
matching, then rounds online using a flow decomposition. This led to a sequence
of papers that improved the approximation factors for both the weighted and
unweighted versions of the stochastic problem [11,15], including variants with
stochastic rewards [16,18] and with capacities on the fixed side [2]. Gravin and
Wang [10] obtain a constant approximation for a related variant inspired by
prophet inequalities, where edges (rather than nodes) arrive online and must be
matched immediately or lost.
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Our model is closer in spirit to the literature on dynamic matching, where
agents on both sides of the market arrive and depart over time. An algorithm
proposes matches online between agents that are simultaneously present. Huang
et al. [12] study an unweighted model in which node arrivals and departures are
adversarial, but nodes announce when they are about to depart. They derive
constant competitive online algorithms; in a later paper, Huang et al. [13] find
tight competitive ratios. Akbarpour et al. [1] similarly consider an unweighted
version in which agents depart at arbitrary times and inform the market when
they are about to depart, but arrivals are stochastic. In this case, it is approx-
imately optimal to match agents as they go critical. On the other hand, they
show that without departure warnings, greedily matching agents as they arrive
is nearly optimal. As the graph is unweighted in their model and agents are
homogenous, analysis can proceed by studying the limiting distribution of the
number of agents in the market.

The case of weighted matching with departure warnings was studied by Ash-
lagi et al. [5], and they obtain a constant approximation to the optimal weighted
matching. When agents on both sides arrive according to a known IID random
process, Dickerson et al. [8] provide constant competitive algorithms under the
assumption that one side (say workers) never depart until they are assigned,
and the other side (say tasks) depart immediately after arrival if unassigned.
Truong and Wang [19] consider a related weighted bipartite matching model
where agents arrive according to a general stochastic process, agents on one
side depart after a fixed deterministic amount of time, agents on the other side
depart immediately after arrival if unassigned, and they likewise obtain constant
competitive algorithms. Importantly, in all of these works it is assumed that the
platform knows when an agent is about to leave the system, either because this
can be perfectly predicted or because the platform is explicitly notified, and the
platform can therefore wait until an agent “goes critical” before attempting a
match. In contrast to these works, we assume the platform is not notified of (and
cannot predict) impending departures.

Independently and concurrently with our work, Aouad and Saritac [4] stud-
ied a similar model of dynamic matching with unannounced departures. They
likewise find that there is a tension between greedy matching and batching. They
develop an online algorithm guided by a quadratic program, and show that it
is (4e/(e − 1))-competitive for arbitrary compatibility graphs. In contrast, our
method is based on linear programming (rather than quadratic programming),
and our competitive ratio bound is weaker (8 versus 4e/(e − 1)). They also
study a cost-minimization version of the problem, for which they develop an
online algorithm that they analyze theoretically and evaluate on empirical data.
We leave open the question of whether a combination of the ideas in these works
could be used to develop algorithms with improved competitive ratio.

Other papers consider the related problem of minimizing average waiting
time. Anderson et al. [3] find that matching agents as they arrive is nearly
optimal even with departure warnings. Ashlagi et al. [6] consider a model with
two agent types – hard-to-match and easy-to-match – and derive structural
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insights about policies that miminize average waiting time. Baccara et al. [7]
consider a hybrid model with two agent types in which agents have varying
match values and also incur waiting costs (but never leave the system).

2 Preliminaries

We consider a model with agents that arrive and depart over time. The type
space of agents is X. Agents of type x ∈ X arrive according to a Poisson point
process of rate λx.1 Each agent of type x that arrives then departs at Poisson
rate μx. For an agent i of type x, we will write ai and di for its realized arrival
and departure times, respectively. Throughout, we refer to types of agents with
letters x and y, and to specific agents with letters i and j.

A matching is a set τ of times and a pair of matched agents for each time
t ∈ τ . A matching is feasible if, for all matching times t ∈ τ , the agents matched
at t a) have already arrived and not yet departed, and b) have not been matched
to anyone else at or before time t. The value of matching an agent of type x ∈ X
to an agent of type y ∈ X is vxy. For convenience, we sometimes denote the total
value of all matches made at time t by vt.

A matching policy chooses, at each time t, based only on the history up until
time t, whether to match a pair of agents or to make no match. A policy with
hindsight can revise past decisions, whereas for an online policy, all decisions are
irrevocable. For any policy and time T , let τ(T ) be all times t ≤ T at which it
made a match,2 and vt be the value of the matches made at time t, if any. Then
the value of the policy is:

lim inf
T→∞

1
T

· E

⎡
⎣ ∑

t∈τ(T )

vt

⎤
⎦

where the expectation is over the randomness in the arrival/departure process as
well as any randomness in the policy. That is, the policy’s value is the long-run
average value of matches made per unit of time.

2.1 Poisson Processes

We now describe Poisson processes more formally. A point process is a random
countable set of points Z = {z1, z2, . . . }. We restrict attention to the case Z ⊂
R≥0, where we can interpret Z as a collection of event times. We refer to a point
process by its set of points Z, which we think of as a random variable.

For any T ≥ 0, we’ll write nZ(T ) for the number of points in Z ∩ [0, T ]; we
think of this as the (random) number of events that occur before time T . Given
two point processes Z and Y , we’ll say that Z stochastically dominates Y if
there is a coupling between Z and Y such that, for each T > 0, Pr[Y ⊆ Z] = 1.

A static Poisson point process of rate λ > 0 is a point process such that
1 We discuss Poisson processes more formally in Sect. 2.1.
2 Note for an online policy, τ(T ) ⊆ τ(T ′) whenever T ≤ T ′; however this need not

hold for a policy with hindsight.
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1. the set of points in any two disjoint intervals are independent, and
2. the number of points in any given interval of length T follows a Poisson

random variable with parameter (mean) λT .

From this point onward we’ll refer to static Poisson point processes as just Pois-
son processes, for convenience. The following standard facts about Poisson pro-
cesses will be helpful in our analysis.

Fact 1. Given a Poisson process Z of rate λ, write nZ(T ) for the num-
ber of events that occur before time T . Then E[nZ(T )] = Tλ. Moreover,
limT→∞ nZ(T )/T exists and equals λ with probability 1.

Fact 2. Suppose we have Poisson processes Z1, . . . , Zn of rates λ1, . . . , λn

respectively. Then the probability that the earliest event (i.e., minimum point) in
∪Zi lies in Zi is λi/(

∑
k λk).

Fact 3. Suppose Z is a Poisson process of rate λ, and Z ′ is a random set gen-
erated by adding each z ∈ Z to Z ′ independently with probability p. Then Z ′ is
a Poisson process of rate λp.

A corollary of Fact 3 is that if Z is a Poisson process of rate λ and Z ′ is
a Poisson process of rate λ′ < λ, then Z stochastically dominates Z ′. This is
because we can couple Z and Z ′ by first realizing Z, then adding each element
of Z to Z ′ independently with probability λ′/λ.

3 An Upper Bound

We construct an online policy whose value is a constant fraction of the optimal-
in-hindsight policy. To do so, we develop a linear-programming upper bound on
the value of the optimal-in-hindsight policy for large time horizons.3 The value
of the optimal solution is the expectation over the randomness in arrivals and
departures of instance-optimal solutions, and so can be written as the expecta-
tion of the sum of match values.

In the following LP, the variable αxy is the fraction of nodes of type y which
match to preexisting nodes of type x, when considered over all arrivals of agents
of type y.

LP − UB : maximize
∑

x,y∈X

vxyαxyλy

subject to αxy ≤ λx

μx
∀x, y ∈ X (1)

∑
y∈X

αxyλy +
∑
y∈X

αyxλx ≤ λx ∀x ∈ X (2)

αxy ∈ [0, 1], ∀x, y ∈ X (3)

3 Taking the limit as the time horizon grows allows us to ignore lower-order terms.
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Constraint (1) bounds the fraction of the time that some node of type y
matches to some previously arrived node of type x by the probability that a
node of type x is present in the system at any given time. Constraint (2) bounds
the total rate at which a type can match by the total rate at which the type
arrives. On the left-hand-side, the first sum captures the rate at which a type
matches to those arriving after it; the second sum captures the rate at which a
type matches to those who arrived before it. Note that constraints (2) and (3)
together imply that

∑
x∈X αxy ≤ 1 for all y. This makes intuitive sense: the

total fraction of the time that a node matches to any preexisting type cannot be
greater than 1.

We will first demonstrate that the value of LP-UB represents an upper bound
on the expected value of the max-weight offline matching. Then in Sect. 4 we
will provide a policy that garners a constant approximation of the LP value in
expectation, and thus of the max-weight offline expectation.

Lemma 1. Let v∗ be the optimal value of LP-UB. Then the value of any match-
ing policy, including policies with hindsight, is at most v∗.

The proof of Lemma 1 is omitted due to space constraints and appears in the
full version of the paper. The idea of the proof is to consider the set of agents who
arrive up to some time T , and interpret the constraints of LP-UB as conditions
on matchings in the induced graph of potential matches. These finite conditions
include lower order terms, but these disappear when taking the limit as T grows
large.

4 Online Matching Policy

We now present our online matching policy, OnlineMatch. Our policy first
solves LP-UB in advance of any arrivals, and then uses the solution to guide its
matching decisions. As demonstrated in the previous section, the solution to the
LP-UB should be thought of as describing the optimal matching rates between
types, subject to constraints that hold as time approaches infinity. Our goal is
to create a policy that approximately matches the value of this LP, which we
will achieve by obtaining a constant approximation to these matching rates.

Suppose that an agent, say agent i of type y, arrives at time t. The algorithm
will then iterate through all potential types (including y) in a random order
(line 3). For each considered type x, if there are any agents of type x present
and unmatched in the market, the algorithm will select one of them arbitrarily
and attempt to match it with agent i. With probability γ ·αxy ·max

(
1, μx

λx

)
the

match occurs, in which case the algorithm completes and awaits the next agent
arrival. Otherwise, the algorithm moves on to the next type in X. If agent i is
not matched after every x ∈ X has been considered, then we leave agent i in the
market unmatched and await the next arrival.
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ALGORITHM 1: Algorithm OnlineMatch

require: scaling parameter γ ∈ (0, 1]
input : Online arrivals of agents

1 (αxy) := Solution to LP-UB;
2 for each agent i arriving at time t, say of type y ∈ X do
3 for each type x ∈ X in a uniformly random order do
4 if there is at least one unmatched agent j of type x in the market then

5 match i and j with probability γ · αxy · max
(
1, μx

λx

)

6 end

7 end

The match probability on line 5 deserves some discussion. This probability
depends on the solution to LP-UB, and is the mechanism by which the algorithm
attempts to follow the matching rates proposed by the LP. One might be tempted
to simply use αxy as the match probability. However, when constructing an online
policy we must consider the difference between unconditional match rates and
matching rates conditional on agent types being present in the market. It may
be that a particular type is extremely unlikely to be present to match during a
given attempt. Consider a problem instance that includes a type x with arrival
rate 1 and departure rate 1/ε, and a corresponding LP solution where αxy = ε
for some y (note that this does not immediately violate any constraints, as the
upper bound on αxy could be as high as ε). The probability that any agent of
type x will be present when an agent of type y arrives is at most ε (see Lemma 2).
Thus an online policy that attempts to match agents of type x to agents of type y
with probability ε will actually generate such a match with probability no greater
than ε2. In order to actually achieve the ε fraction that we desire, we must scale
αxy by 1/ε, or μx

λx
. Intuitively, we have scaled up the match probability according

to the probability that x is present, in order to achieve the rate recommended
by LP-UB. This motivates our choice of scaling factor on line 5.

The algorithm actually scales the probability by an additional factor of γ,
which is a tunable parameter of the algorithm; this is to ensure that each agent
has a constant probability of being available in the system unmatched when its
ideal match arrives. We will optimize γ as part of our analysis of the algorithm.

Theorem 4. Algorithm1 is an 8-approximation to the value of LP-UB.

4.1 Analysis

One challenge in the analysis of OnlineMatch is correlations across time:
whether a certain type of agent is available in the market to be matched at
time t depends on the types of other agents present in the market, as this influ-
ences matching probability. Thus, the availability of different types of agents
are correlated through the pool of agents waiting to be matched at any given
time. This correlation complicates the intuition that OnlineMatch will approx-
imately mirror the aggregate match probabilities from LP-UB at every moment
in time.
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We address this difficulty by showing that while the evolution of which agent
types are available in the market is dependent on the overall market state and
correlated across types, they can be coupled with independent Poisson processes
that are related via first-order stochastic dominance. That is, while agents in
the market are matched at rates that vary over time with the composition of
available agents, these rates are subject to uniform upper and lower bounds that
reflect maximum and minimum possible matching rates. By relating to these
extreme matching scenarios, we can derive uniform bounds on the success rate
of matching attempts under arbitrary market conditions.

We begin by introducing the notion of an agent being present in the market,
and bounding the probability that a node of a given type is present at any given
time. We will say an agent i is present at time t if it has arrived but not yet
departed; that is, if ai ≤ t < di. We’ll say the node is available at time t if it is
present and has not yet been matched to another node.

Importantly, an agent can be present but not available: even after an agent
has been matched, one could simulate the departure process for that agent as
though they had not matched, and we view the agent as being present until
they leave under that simulated process. The advantage of considering presence,
rather than availability, is that whether an agent is present at a given time
depends only on their arrival and departure times, and is independent of all
other agents in the market.

Lemma 2. Choose a type x ∈ X and any time t ≥ 0. Then over all randomness
in arrivals and departures, the probability that at least one agent of type x is
present at time t is at most min{λx/μx, 1}.
Proof. Choose some interval of time of length T , and consider all agents of type
x that arrive during interval T . In expectation λxT agents arrive, and each stays
for an expected length of 1/μx, independently. The sum of times in market for
all such agents is therefore λxT/μx. By a union bound, the total fraction of time
during which such an agent is present in the market is at most 1

T (λxT/μx) =
λx/μx. As this fraction is also at most 1, we have that the probability that such
an agent is present at a given time is at most min(1, λx/μx) as required.

We now wish to bound the probability that agents of a given type are present
in the market, but not available. A present agent becomes unavailable in two
ways: either they were matched immediately upon arriving to the market, or
they are matched to another agent who arrives later. We begin by bounding the
probability of the former, by showing that the occurrences of agents arriving
and not being immediately matched stochastically dominate a Poisson arrival
process with a reduced arrival rate.4

Lemma 3. In an execution of algorithm OnlineMatch, consider the set of
events that a node of type x arrives and is not immediately matched. The occur-
rence of such events stochastically dominates a Poisson arrival process of rate
λx(1 − γ

∑
y∈X αyx).

4 Recall that if Z and Z′ are two (random) point processes, then Z stochastically
dominates Z′ if there is a coupling of Z and Z′ such that Pr[Z′ ⊆ Z] = 1.
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Proof. Agents of type x arrive at rate λx. Suppose agent i of type x arrives at
time t. By Lemma 2, for each y ∈ X a node of type y is present at time t with
probability at most min{λy/μy, 1}. Thus, given that Algorithm OnlineMatch
considers a match with type y, this match will be successful with probability at
least

γαyx max{1, μy/λy} · min{λy/μy, 1} = γαyx.

The total probability that agent i matches to any other agent at time t is there-
fore at most

γ
∑
y∈X

αyx

and hence the probability that agent i is not immediately matched is at least

1 − γ
∑
y∈X

αyx.

We have argued that the event that a node of type x arrives and is not
immediately matched is determined by an arrival process of rate λx, followed by
a (state-dependent) random event of probability at least 1 − γ

∑
y∈X αyx. This

stochastically dominates an alternative event that simply takes this probability
to be exactly 1 − γ

∑
y∈X αyx in all cases. But, by Fact 3, this latter process is

equivalent to a Poisson arrival process of rate λx(1 − γ
∑

y∈X αyx), as required.

We next consider the occurrence of events in which an agent that is currently
available5 in the market is matched to some other agent who arrives. We again
connect this with a Poisson arrival process with a reduced rate.

Lemma 4. In an execution of algorithm OnlineMatch, consider the event
that an agent of any type arrives to the market and would match to an
agent of type x if any such agent is available. The occurrence of such
events is stochastically dominated by a Poisson arrival process of rate
γ

∑
y∈X λyαxy max(1, μx/λx).

Proof. Suppose that an agent of type x is present in the market. Agents of type
y arrive at rate λy. Consider an agent i of type y that arrives at time t. The
probability that agent i matches to a node of type x is dependent on which other
agents are available in the market, but is maximized when no other agents of
other types are available. In the event that no other types are available, agent i
will certainly consider matching to type x, in which case the match occurs with
probability γαxy max(1, μx/λx).

We have argued that a node of type y arrives at rate λy, and then
matches to an agent of type x with a state-dependent probability that is at
most γαxy max(1, μx/λx). This process is stochastically dominated by one in
which the match occurs with probability exactly γαxy max(1, μx/λx) upon each
arrival. But, by Fact 3, this is equivalent to a Poisson arrival process of rate
λyγαxy max(1, μx/λx). Summing over all types y ∈ X completes the proof.

5 Recall by the definition of available, such an agent is also present.
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Having related availability events to independent Poisson processes, we are
now ready to bound the match probabilities of OnlineMatch.

Lemma 5. Choose any x, y ∈ X, and suppose that an agent i of type y ∈ X
arrives at time t. Then OnlineMatch will match i to a node of type x at
time t with probability at least γ(1 − γ/2)1−γ

2−γ αxy, where the probability is over
any randomness in the algorithm and in the arrivals and departures of all other
agents.

Proof. Fix some x, y ∈ X. Suppose an agent i of type y arrives at time t, and
consider the evaluation of OnlineMatch on this agent i. Some terminology:
we’ll say that agent i considers matching to an agent of type x if we enter an
iteration of the loop on line 3 with type x chosen. We’ll say that the agent
attempts to match to an agent of type x if, in addition, the probabilistic match
on line 5 would occur (regardless of whether or not the condition on line 4
evaluates to true). In other word, we can imagine pre-evaluating the probabilistic
check on line 5 before checking the condition on line 4, and an attempted match
corresponds to iterations in which the probabilistic check passes.

We will first bound the probability that agent i considers matching to an
agent of type x. By Lemma 2, for each z ∈ X a node of type z is present at
time t with probability at most min{λz/μz, 1}. Thus, given that our algorithm
considers a match with type z, this match will be successful with probability at
most

γαzy max{1, μz/λz} · min{λz/μz, 1} = γαzy.

The total probability that agent i matches to any other agent at time t is there-
fore at most ∑

z∈X

γαzy ≤ γ

where we used (2) from LP-UB. If we consider only half of the types z ∈ X
uniformly at random, the probability of a match is then at most γ/2 (where the
expectation is over randomness in algorithm and over which types are chosen).
This is a bound on the probability that the algorithm matches to some other
type before type x is considered. So a match to type x will be considered by the
algorithm with probability at least (1 − γ/2).

Assuming it is considered, the match will be attempted with probability γ ·
αxy ·max(1, μx/λx). Note that the conditional attempt probability is independent
of whether the match is considered. Thus the unconditional probability that the
match is attempted is at least

γ(1 − γ/2)αxy · max(1, μx/λx).

We now want to bound the probability that the attempted match to an agent
of type x is successful, given that one was attempted. Consider three different
events, which will occur repeatedly over time:

– Event E1: An agent of type x arrives and is not immediately matched.
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– Event E2: An agent of any type arrives and attempts to match to an agent
of type x.

– Event E3: There is exactly one agent of type x, and that agent departs.

Suppose that the agent i of type y attempts to match to an agent of type x
at time t. That match will be successful if the most recent event that occurred
before t, from among events of type E1, E2, and E3, is an event of type E1.

We now consider two cases, based on the relationship between μx and λx.

Case 1: μx ≤ λx. Then max{1, μx/λx} = 1. By Lemma 3, the occurrences
of event E1 stochastically dominate a Poisson arrival process of rate λ1 :=
λx(1 − γ

∑
y∈X αyx). By Lemma 4, the occurrences of event E2 are stochas-

tically dominated by a Poisson arrival process of rate λ2 := γ
∑

y αxyλy. And
finally, occurrences of event E3 are stochastically dominated by a Poisson arrival
process of rate λ3 := μx, as this is the rate of the event when there is exactly one
agent of type x present in the market (and otherwise the event cannot occur).
Thus, by Fact 2, the probability that the most recent event before time t was an
event of type E1 is at least

λ1

λ1 + λ2 + λ3
=

λx

(
1 − γ

∑
y∈X αyx

)

γ
∑

y∈X αxyλy + λx

(
1 − γ

∑
y∈X αyx

)
+ μx

. (4)

Write q =
∑

y∈X αyx. By constraint (3) of LP-UB, we have that
∑

y∈X αxyλy +
qλx ≤ λx, which implies

∑
y∈X αxyλy ≤ λx(1− q), so in particular q ∈ [0, 1]. We

also have μx ≤ λx by assumption for this case analysis. The probability (4) is
therefore at least

min
q∈[0,1]

1 − γq

γ(1 − q) + (1 − γq) + 1
= min

q∈[0,1]

1 − γq

2 − 2γq + γ
. (5)

The expression in (5) is weakly decreasing in q for all γ ∈ (0, 1), so it achieves
its minimum at q = 1, which is (1 − γ)/(2 − γ). Moreover, recall that this
probability is a uniform bound independent of which agents are available in
the market. Thus, recalling the probability that agent i attempts to match to
an agent of type x, the total unconditional probability that node i successfully
matches to an agent of type x is at least

γ(1 − γ/2)αxy max(1, μx/λx)
1 − γ

2 − γ
= γ(1 − γ/2)

1 − γ

2 − γ
αxy.

Case 2: μx > λx. Then max{1, μx/λx} = μx/λx. As in case 1, Lemma 3 implies
that the occurrences of event E1 stochastically dominate a Poisson arrival process
of rate λx(1 − γ

∑
y∈X αyx). And occurrences of event E3 are still stochastically

dominated by a Poisson arrival process of rate μx. By Lemma 4, the occurrences
of event E2 are stochastically dominated by a Poisson arrival process of rate
γ

∑
y αxyλy(μx/λx). Thus the probability that the most recent event before time
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t was an event of type E1 is at least

λx

(
1 − γ

∑
y∈X αyx

)

γ
∑

y∈X αxyλy(μx/λx) + λx

(
1 − γ

∑
y∈X αyx

)
+ μx

. (6)

As in case 1, write q =
∑

y∈X αxy, so that
∑

y∈X αxyλy ≤ λx(1 − q). Then∑
y∈X αxyλy(μx/λx) ≤ μx(1 − q). Also, since λx < μx by assumption for this

case analysis, λx

(
1 − γ

∑
y∈X αyx

)
< μx(1−γq). The probability (6) is therefore

at most

min
q∈[0,1]

λx(1 − γq)
μxγ(1 − q) + μx(1 − γq) + μx

= min
q∈[0,1]

λx

μx
· 1 − γq

2 − 2γq + γ
. (7)

As in case 1, the expression in (7) achieves its minimum when q = 1, which
is λx

μx
· 1−γ
2−γ . Thus the total unconditional probability that node i successfully

matches to an agent of type x is at least

γ(1 − γ/2)αxy max(1, μx/λx)
λx

μx

1 − γ

2 − γ
= γ(1 − γ/2)

1 − γ

2 − γ
αxy.

Optimizing over the choice of γ, we have that γ(1 − γ/2)1−γ
2−γ takes on its

maximum value at γ = 1/2, in which case γ(1 − γ/2)1−γ
2−γ = 1/8. Thus, by

setting γ = 1/2 in OnlineMatch, Lemma 5 implies that agents of type y arrive
and match to agents of type x at rate at least αxyλy/8. The total value obtained
by OnlineMatch is therefore at least 1

8

∑
x,y∈X vxyαxyλy, which is 1/8 of the

value of LP-UB. We conclude that OnlineMatch is an 8-approximation, as
required.
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Abstract. In the Hospital Residents problem with lower and upper
quotas (HR-QU

L ), the goal is to find a stable matching of residents to
hospitals where the number of residents matched to a hospital is either
between its lower and upper quota or zero [Biró et al., TCS 2010]. We
analyze this problem from a parameterized perspective using several nat-
ural parameters such as the number of hospitals and the number of res-
idents. Moreover, we present a polynomial-time algorithm that finds a
stable matching if it exists on instances with maximum lower quota two.
Alongside HR-QU

L , we also consider two closely related models of inde-
pendent interest, namely, the special case of HR-QU

L where each hospital
has only a lower quota but no upper quota and the variation of HR-
QU

L where hospitals do not have preferences over residents, which is also
known as the House Allocation problem with lower and upper quotas.

1 Introduction

Since its introduction by Gale and Shapely [10], the Hospital Residents prob-
lem, which is also known as the College Admission problem, has attracted a lot
of attention. Besides a rich body of theoretical work [15], also many practical
applications have been identified [22]. In the classical Hospital Residents prob-
lem (HR-QU ), we are given a set of residents, each with strict preferences over
hospitals, and a set of hospitals, each with an upper quota and strict preferences
over residents. In a feasible matching of residents to hospitals, the number of
residents assigned to a hospital is at most its upper quota. A hospital-resident
pair (h, r) blocks a matching if resident r prefers hospital h to the hospital to
which r is currently matched and the number of residents matched to h is either
below its upper quota or h prefers r to one of the residents matched to it. The
task in the Hospital Residents problem is to find a stable matching, i.e., a feasible
matching that does not admit a blocking pair. Gale and Shapely [10] presented a
linear-time algorithm that always finds a stable matching in a Hospital Residents
instance.
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In practice, some hospitals may also have a lower quota, i.e., a minimum
number of assigned residents such that the hospital can open and accommodate
them. For example, at a university, courses of study might have a lower quota
out of economical or political reasons or because all students in a course need
to perform certain task together which require at least a given number of par-
ticipants. Biró et al. [5] captured these considerations by extending the Hospital
Residents problem such that each hospital has a lower and upper quota (HR-
QU

L ). Here, feasibility additionally requires that the number of residents assigned
to a hospital is either zero or at least its lower quota, while stability additionally
requires that there does not exist a blocking coalition, i.e., a sufficiently large
subset of residents that want to open a currently closed hospital together. Biró
et al. [5] proved that deciding the existence of a stable matching in an HR-QU

L

instance is NP-complete. We complement their work with a thorough parameter-
ized complexity analysis of HR-QU

L . Moreover, we study the Hospital Residents
problem where hospitals have only a lower quota (HR-QL), which has not been
considered before. Lower and upper quotas have also been applied to the House
Allocation problem (HA-QU

L ) where the goal is to match a set of applicants to
a set of houses [8,19]. In HA-QU

L , houses have a lower and upper quota but no
preferences over applicants, while applicants have preferences over houses. One
possible application of this model is the assignment of kids to different activities,
where lower quotas could arise due to economical or practical constraints, for
instance, playing soccer with only three kids is less fun. So far, literature on HA-
QU

L mainly focused on finding Pareto optimal matchings. However, in contrast
to the classical House Allocation problem, Pareto optimality in HA-QU

L does not
imply stability. Thus, finding stable matchings is an interesting problem on its
own.

Our Contributions. We provide an extensive complexity analysis of the Hospital
Residents problem with lower and upper quotas (HR-QU

L ) and of the two closely
related problems HR-QL and HA-QU

L . By applying the framework of parameter-
ized complexity, we analyze the influence of various problem-specific parameters
on the complexity of these problems, i.e., the maximum lower quota ql of a
hospital, the number n of residents, the number m of hospitals, and the num-
ber mquota of hospitals with non-unit lower quota. Motivated by the observation
that there might exist stable matchings opening a different set of hospitals (of
possibly different size) [5], we also consider the problem of deciding whether
there exists a stable matching where exactly a given set of hospitals Hopen is
open. In addition, in the full version [7], we also examine the problem of decid-
ing whether there exists a stable matching with exactly mopen (mclosed) open
(closed) hospitals parameterized by mopen (mclosed).

We present an overview of our results in Table 1. Our most important tech-
nical contribution is the design of a polynomial-time algorithm for HR-QU

L (and
therefore also for HR-QL) instances where all hospitals have lower quota at most
two. This answers an open question raised by Biró et al. [5] and Manlove [15,
p. 231]. Such HR-QU

L instances are of special theoretical interest, as they, for
example, subsume a variant of three-dimensional Stable Marriage, where,
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Table 1. Overview of our results. All stated W[1]-hardness results also imply NP-
hardness. Note that most hardness results even hold in cases where the quota of hos-
pitals and the maximum length of a preference list are small constants.

ql ≤ 2 ql ≤ 3 Hopen n m mquota mopen mclosed

HR-QU
L

P (T. 4)
NP-c.
(T. 1)

P (P. 1)
W[1]-h.

(T. 2)

FPT (C. 1) W[1]-h. W[1]-h.
HR-QL

HA-QU
L NP-c.

(P. 2)
NP-c.
(T. 3)

FPT
(P. 2)

paraNP-h.

(P. 2)
paraNP-h. W[1]-h.

given two sets of agents each with preferences over the agents from the other
set, the goal is to find a stable set of triples, each consisting of two agents from
the first and one agent from the second set. Moreover, there also exist several
applications where a lower quota of two is of particular interest, for example,
assuming that hospitals correspond to (tennis) coaches and residents to (tennis)
players, a coach may require that at least two players are assigned to her (as she
does not always want to play herself).

Our rich set of tractability and intractability results highlight the differ-
ences between the three considered models from a computational perspective:
While HR-QL is very similar to HR-QU

L , HA-QU
L is computationally more

demanding than HR-QU
L . The first observation suggests that the complexity of

HR-QU
L comes solely from the lower quotas of hospitals. The second observation

indicates that the hospitals’ preferences in the lower and upper quotas setting
make the problem easier, as they may act as a “tie-breaker” to decide which
resident deserves a better spot in a stable matching.

Due to space constraints, proofs are deferred to the full version [7].

Related Work. After the work of Biró et al. [5], only few papers revisited com-
putational problems related to the Hospital Residents problem with lower and
upper quotas. A notable exception is the work of Agoston et al. [1] who proposed
an ILP formulation to find stable matchings and several preprocessing rules to
decide which hospitals must be open. Apart from this, most of the follow-up
work applied the idea of lower and upper quotas to other settings, such as the
House Allocation problem [8,19] or maximum-weight many-to-one matchings in
bipartite graphs [2], or interpreted it differently.

Hamada et al. [11] introduced an alternative version of the Hospital Res-
idents problem with lower and upper quotas. In their model, hospitals have
lower and upper quotas, but are not allowed to be closed. Thus, in a feasible
matching, the lower and upper quota of each hospital needs to be respected.
As deciding whether a stable matching exists is polynomial-time solvable in
this model, their main focus lied on finding a feasible matching minimizing the
number of blocking pairs. Mnich et al. [18] studied the Stable Marriage
with Covering Constraints problem, which corresponds to the special case
of Hamada et al.’s model where each hospital has unit upper quota, from a
parameterized perspective considering parameters such as the number of block-
ing pairs and the number of hospitals with non-zero lower quota. To capture sta-
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ble matching problems with diversity or distributional constraints, the model of
Hamada et al. [11] has been adapted and further developed in various direc-
tions, for example, by assuming that residents belong to different types and each
hospital has type-specific lower and upper quotas [3,9,13].

Another popular stable matching problem is the Hospital Residents problem
with couples (HRC) [6,17], where some of the residents are grouped in pairs and
submit their preferences together. The HR-QU

L problem where all hospitals have
upper quota at most two is closely related to the special case of HRC where all
hospitals have upper quota one: Switching the roles of residents and hospitals
and interpreting couples as hospitals with lower quota two, the only difference
between the two problems is that the preferences of couples are over pairs of
hospitals, while the preferences of quota-two hospitals are over single residents.

From a technical perspective, our work falls in line with previous work on
the parameterized complexity of stable matching problems [16–18].

2 Preliminaries

We consider different models of stable bipartite many-to-one matchings. For the
sake of readability, we refer to all of them as different variants of the Hospital
Residents problem with lower and upper quotas (HR-QU

L ). In HR-QU
L , we are

given a set R = {r1, . . . , rn} of residents and a set H = {h1, . . . , hm} of hospitals,
each with a lower and upper quota. Throughout the paper, n denotes the number
of residents and m the number of hospitals. We refer to the joint set of residents
and hospitals as agents. Each resident r ∈ R accepts a subset of hospitals A(r) ⊆
H and each hospital h ∈ H accepts a subset of residents A(h) ⊆ R. Each
agent a ∈ R ∪ H has a preference list in which all agents from A(a) are ranked
in strict order. For three agents a, a1, and a2, we say that a prefers a1 to a2 and
write a1 �a a2 if a1, a2 ∈ A(a) and a ranks a1 above a2.

A matching M is a subset of R × H where each resident is contained in at
most one pair and for each pair (r, h) ∈ M , agents r and h accept each other. For
a matching M and a resident r ∈ R, we denote by M(r) the hospital to which
r is matched to in M , i.e., M(r) = h if (r, h) ∈ M , and we set M(r) := � if r is
not assigned. All residents r prefer each hospital h ∈ A(r) to being unmatched,
i.e., M(r) = �. Further, for a hospital h ∈ H, we denote by M(h) the set of
residents that are matched to h, i.e., r ∈ M(h) if (r, h) ∈ M . We sometimes
write M as a set of pairs of the form (h, {r1, . . . , rk}), which denotes that the
residents r1, . . . , rk are matched to hospital h in M .

In HR-QU
L , each hospital h ∈ H has an upper quota u(h) and a lower

quota l(h) with 1 ≤ l(h) ≤ u(h). We call a matching M feasible if, for all
hospitals h ∈ H, it either holds that |M(h)| = 0 or l(h) ≤ |M(h)| ≤ u(h). We
say that a hospital h ∈ H is closed in M if |M(h)| = 0 and we say that it is open
otherwise. Moreover, we call an open hospital h ∈ H full if |M(h)| = u(h) and
an open hospital h ∈ H undersubscribed if |M(h)| < u(h). In a matching M ,
a hospital-resident pair (r, h) ∈ R × H is a blocking pair if h is open in M ,
both r and h find each other acceptable, r prefers h to M(r), and h is either
undersubscribed or prefers r to at least one resident from M(h). Moreover, we
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call (h, {r1, . . . , rk}) with k = l(h) a blocking coalition if h is closed in M and,
for all i ∈ [k], resident ri prefers h to M(ri). In this case, we also write that
{r1, . . . , rk} forms a blocking coalition to open h. A feasible matching is called
stable if it neither admits a blocking pair nor a blocking coalition.

We now describe how the other two models considered in this paper can be
formulated as variants of HR-QU

L .

House Allocation Problem with Lower and Upper Quotas. HA-QU
L corresponds

to HR-QU
L with one-sided preferences, i.e., all hospitals are indifferent among all

residents and residents have strict preferences over hospitals. While the definition
of a blocking coalition still applies in this setting, a hospital-resident pair (r, h) ∈
R×H is only blocking if h is open in M , resident r accepts h, resident r prefers h
to M(r), and h is undersubscribed. Note that HR-QU

L does not subsume HA-QU
L ,

as, in HR-QU
L , no ties in the preferences are allowed.

Hospital Residents Problem with Lower Quotas. HR-QL is the special case of
HR-QU

L where each hospital has upper quota n+ 1. Thereby, no hospital can be
full in a matching. Consequently, in a matching M , a resident r forms a blocking
pair with each hospital h she prefers to M(r). Thus, in every stable matching, all
residents need to be matched to their most preferred open hospital. This in turn
implies that the preferences of hospitals over residents can be omitted, as they
have no influence on the stability of a matching. Hence, HR-QL is equivalent to
the House Allocation problem with lower quotas (= HA-QL) and thus lies in the
“intersection” of HR-QU

L and HA-QU
L .

First Observations. As already observed, HR-QL instances can be expressed
both as HR-QU

L and HA-QU
L instances. Notably, most instances constructed in

our reductions fulfill an additional property which directly transfers the hard-
ness results to a variant of HR-QL where only blocking coalitions may make a
matching unstable.

Observation 1. In HR-QL instances where for each hospital h ∈ H, the number
of residents accepting h is equal to its lower quota l(h), no blocking pairs can
exist, while blocking coalitions can still exist.

Unfortunately, a stable matching may fail to exist in HR-QL instances (and
therefore also in HR-QU

L and HA-QU
L instances), even if all hospitals have lower

quota at most two. Consider as an example a HR-QL instance consisting of three
hospitals h1, h2, and h3 each with lower quota two and three residents with the
following preferences r1 : h1 � h2; r2 : h2 � h3; r3 : h3 � h1. Note that this
example resembles the Condorcet paradox.

3 Parameterized Complexity

We analyze the parameterized computational complexity of HR-QL, HR-QU
L , and

HA-QU
L . We start by proving that all three problems are NP-complete. Then,

we consider the influence of several problem-specific parameters including the
number of residents and the number of hospitals.
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An NP-Completeness Result. Biró et al. [5] proved that HR-QU
L is NP-

complete, even if each hospital has upper quota at most three. However, their
reduction does not settle the computational complexity of HR-QL or HA-QU

L .
To answer this question, note that all three models subsume hedonic games (see
[4] for definitions): We introduce a resident for each agent in the given hedonic
game and a hospital for each possible coalition with lower quota equal to the
size of the coalition. We replace the coalitions in the agents’ preferences by the
corresponding hospitals. Core stable outcomes in the hedonic game then corre-
spond to stable matchings in the constructed HR-QL instance, which notably
falls under Observation 1. As deciding the existence of a core stable outcome
is NP-complete, even if all coalitions have size three [20], this implies that all
three problems are NP-complete, even if each hospital has lower quota (and
upper quota) at most three. By slightly adopting the reduction from [20], one
can also bound the number of residents acceptable to a hospital and the number
of hospitals acceptable to a resident:

Theorem 1. HR-QL, HR-QU
L , and HA-QU

L are NP-complete, even if each resi-
dent accepts at most four hospitals, each hospital accepts at most three residents,
and the lower (and upper) quota of every hospital is at most three.

Parameterization by Number of Residents. After establishing the NP-
hardness of all three problems, we now analyze their computational complexity
parameterized by the number of residents. While there exists a straightforward
XP algorithm for this parameter that guesses for each resident the hospital she
is assigned to, all three problems are W[1]-hard.

Theorem 2. Parameterized by the number n of residents, HR-QL, HR-QU
L ,

and HA-QU
L are W[1]-hard, even if every hospital has lower (and upper) quota

at most four and accepts at most four residents.

Compared to Theorem 1, the hardness statement from Theorem 2 does not
bound the number of hospitals accepted by each resident. In fact, combining
these two parameters, all three problems become fixed-parameter tractable, as
the size of the instance (ignoring hospitals which no resident accepts) can be
bounded in a function of the two parameters.

Influence of Hospitals. After studying the parameterization by the number of
residents, we turn to the number of hospitals and several closely related param-
eters. We start by considering the problem of finding a stable matching opening
exactly a given set of hospitals.

Which Hospitals Should be Open? It is possible to think of finding a stable
matching as a two-step process. First, decide which hospitals are open and sec-
ond, compute a stable matching between the residents and the selected set of
open hospitals respecting all quotas. This observation leads to the question what
happens if the first step has been already done, e.g., by an oracle or by some



Stable Many-To-One Matching Problems with Lower and Upper Quotas 37

authority, and we are left with the task of finding a stable matching where exactly
a given set of hospitals is open. We show that while for HR-QL and HR-QU

L this
problem is solvable in polynomial-time, it is NP-hard for HA-QU

L .
As already observed in Sect. 2, in an HR-QL instance (H,R), all residents

are assigned to their most preferred open hospital in a stable matching. Thereby,
checking whether there exists a stable matching where exactly a given set
Hopen ⊆ H of hospitals is open reduces to assigning each resident to her most
preferred hospital in Hopen and checking whether the resulting matching is sta-
ble in (H,R). For HR-QU

L , a slightly more involved reasoning is needed, which
utilizes the famous Rural Hospitals Theorem [21]:

Proposition 1. Given a subset of hospitals Hopen ⊆ H, deciding whether there
exists a stable matching in an HR-QL or HR-QU

L instance (H,R) in which exactly
the hospitals from Hopen are open is solvable in O(nm) time.

This result suggests that the complexity of HR-QL and HR-QU
L comes purely

from deciding which hospitals are open and not from the task of assigning resi-
dents to hospitals. This finding is also strengthened by the general observation
that most of our hardness reductions also work if we ignore blocking pairs.

In sharp contrast to the preceding positive results for HR-QL and HR-QU
L ,

HA-QU
L remains NP-complete even if we know which hospitals are open in a

stable matching.

Theorem 3. Given a subset of hospitals Hopen ⊆ H, deciding whether there
exists a stable matching in an HA-QU

L instance (H,R) in which exactly the hos-
pitals from Hopen are open is NP-complete, even if all hospitals have lower quota
at most two.

Parameterization by the Number of Hospitals (with Non-Unit Lower Quota).
Together with the number n of residents, the number m of hospitals is an impor-
tant and straightforward structural parameter of the studied problems. For both
HR-QL and HR-QU

L , it is possible to iterate over all possible subsets of hospi-
tals Hopen ⊆ H and use Proposition 1 to decide whether there exists a stable
matching in which exactly the hospitals from Hopen are open. Let Hquota ⊆ H
denote the set of hospitals with non-unit lower quota. In fact, it is only necessary
to iterate over all possible subsets Hopen ⊆ Hquota with non-unit lower quota.
Subsequently, we can add all hospitals with lower quota one to Hopen and apply
again Proposition 1 to compute a matching which we then check for stability and
feasibility.

Corollary 1. HR-QL and HR-QU
L are solvable in O(nm · 2mquota) time, where

mquota is the number of hospitals with non-unit lower quota.

Turning to HA-QU
L , despite the fact that it is NP-complete to decide whether

there exists a stable matching even if the set of open hospitals is given, HA-QU
L

parameterized by the number m of hospitals turns out to be fixed-parameter
tractable. The algorithm utilizes that the number of different resident types in
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Algorithm 1. Algorithm for HR-QU
L≤2 (high-level description)

Input: An HR-QU
L≤2 instance I

Output: A stable matching in I or NO if I does not admit a stable matching.
1: Apply Phase 1a - Propose&Reject
2: S ← {residents with non-empty preferences} � Initialization
3: while there exists a resident r with at least two hospitals on her preferences do
4: Apply Phase 1a - Propose&Reject
5: while a hospital holding at least two proposals exists do
6: for each hospital h holding at least two proposals do
7: Split h into u(h) hospitals h1, . . . , hu(h) � Phase 1b

8: Apply Phase 1a - Propose&Reject

9: if there exists a resident r with at least two hospitals on her preferences then
10: Find a generalized rotation R. � Phase 2
11: Eliminate R.
12: if all residents from S have exactly one hospital on their preferences left then
13: return matching M that matches every resident r with non-empty preferences

to the hospital from I corresponding to the remaining hospital on her preferences.

14: return NO

a HA-QU
L instance can be bounded in a function of m, as a resident is fully

characterized by her preferences over hospitals. This observation can be used to
construct an ILP where the number of variables is bounded in a function of m.
Employing Lenstra’s algorithm [14] shows that the problem is fixed-parameter
tractable parameterized by the number of hospitals. However, it is not possible to
follow a similar approach to construct a fixed-parameter tractable algorithm for
the the number mquota of hospitals with non-unit lower quota. In fact, HA-QU

L

is NP-complete even for only three hospitals with non-unit lower quota.

Proposition 2. Parameterized by the number of hospitals, HA-QU
L is fixed-

parameter tractable. HA-QU
L is NP-complete, even if only three hospitals have

lower and upper quota two and all other hospitals have upper quota one.

4 A Restricted Case: Quota Two

In this section, we consider the special case of HR-QU
L where all hospitals have

lower quota at most two. We denote this problem by HR-QU
L≤2. We present a

polynomial-time algorithm for HR-QU
L≤2, which constructs a stable matching

if it exists. As HR-QL is a special case of HR-QU
L , this algorithm also applies

to HR-QL instances where all lower quotas are at most two. In the following,
we refer to all hospitals with lower quota one as quota-one hospitals and to all
hospitals with lower quota two as quota-two hospitals.

High-Level Description of the Algorithm. Algorithm 1 gives a high-level
description of our algorithm. The algorithm consists of two phases (Phase 1
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and Phase 2), where the first phase is again split into Phase 1a and Phase 1b.
Phase 1a identifies hospital-resident pairs which cannot be part of a stable match-
ing using a propose-and-reject approach. Subsequently, for each such hospital-
resident pair (r, h), hospital h is deleted from the preferences of r and vice versa.
Furthermore, Phase 1a identifies some quota-two hospitals which are open in
every stable matching. Phase 1b further simplifies the instance by replacing
quota-two hospitals that are open in every stable matching by multiple copies of
this hospital with lower quota one. Phase 1a and Phase 1b are applied repeatedly
until no hospital from which we know that it is open in every stable matching
exists. After that, in Phase 2, we identify substructures which we call “general-
ized rotations” and subsequently eliminate them by deleting the acceptability of
some hospital-resident pairs. While Phase 1 keeps the number of stable matchings
identical, Phase 2 may reduce the number of stable matchings in the instance,
but still guarantees that at least one stable matching survives (if there exists
one in the original instance).

The algorithm applies Phase 1 and Phase 2 alternately until every resident
has at most one hospital on her preferences. The algorithm returns NO if, after
the initialization, the preferences of a resident got empty, as one can show that
all residents with non-empty preferences are matched in every stable matching.
Otherwise, the algorithm constructs a stable matching where all residents with
empty preferences are unmatched and all residents with non-empty preferences
are matched to the hospital on their preference list (if this hospital was created
by splitting a hospital h, then the resident is matched to h).

Theorem 4. If the lower quota of each hospital is at most two, then HR-QU
L

(and thereby also HR-QL) is solvable in O(n3m) time.

Our algorithm is inspired by Irving’s algorithm for Stable Roommates [12].
While the general structure of the two algorithms is similar (two phases, where
the first one is based on a propose-and-reject approach and the second one on
a substructure called “(generalized) rotation”), the Propose&Reject-Phase and
especially the definition of a rotation needs to be significantly extended and
fundamentally reworked for HR-QU

L≤2. The main reason for this is the presence
of quota-two hospitals for which we do not know whether they are open in a
stable matching, even if they receive a proposal.

We now describe Phases 1a, 1b, and 2 in more detail. We start by observing
that we may assume that quota-one hospitals have upper quota one: It is possible
to replace every quota-one hospital h ∈ H by u(h) copies h1, . . . , hu(h) each with
lower and upper quota one and with the same preferences as h. In the preferences
of residents, h is replaced by h1 � · · · � hu(h).

Phase 1a - Propose and Reject. In Phase 1a, residents and hospitals propose
to one another. Residents always propose to hospitals and hospitals always to
residents. If a resident r ∈ R proposes to a hospital h ∈ H, then the receiver h
of the proposal can either accept or reject the proposal from r. We say that a
hospital h holds a proposal r if r proposed to h and h did not reject the proposal
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(until now). We say that a resident r (currently) issues a proposal if there exists
a hospital h that holds the proposal r. The notation also applies if the roles
of residents and hospitals are swapped. Considering quota-two hospitals, we
distinguish between activated and deactivated hospitals. Initially, all quota-two
hospitals are deactivated.

Algorithm (Phase 1a). We proceed in multiple rounds. In each round, an arbi-
trary resident or quota-one hospital with non-empty preferences that does not
currently issue a proposal or an activated quota-two hospital is selected. If a
resident or quota-one hospital is selected, then it proposes to the first hospital
or resident on its preference list. If an activated quota-two hospital h is selected,
then the hospital proposes to the first u(h) residents on its preference list unless
h received exactly one proposal from a resident r which is among the first u(h)
residents in h’s preferences: In this case, h only proposes to the first u(h) − 1
residents that are not r.

If a resident or a quota-one hospital receives a proposal, then it accepts the
proposal if it does not hold a proposal or if it prefers its new proposal to the
one it currently holds. Similarly, it rejects a proposal if it either already holds or
later receives a better proposal. A quota-two hospital h accepts a proposal r if it
does not hold u(h) proposals it prefers to r. It rejects a proposal r if it holds or
at some point receives u(h) proposals it prefers to r, or if the hospital has been
rejected by all but one resident on its preference list. If an agent a proposes to
an agent a′ and a′ rejects the proposal, then we delete a′ from the preference
list of a and a from the preference list of a′.

A quota-two hospital h gets activated if it receives a proposal or if one of
its proposals gets rejected. If h currently holds exactly one proposal by one
of its u(h) most preferred residents r, then it gets deactivated if it currently
issues u(h) − 1 proposals or has proposed to all residents on its preference list
except r. Otherwise, it gets deactivated if it currently issues u(h) proposals or
has proposed to all residents on its preference list.

At the end of Phase 1a, we delete from the preferences of all quota-one
hospitals and residents holding a proposal all agents to which they prefer the
held proposal. Subsequently, we restore the mutual acceptability of agents by
deleting for each agent a an agent a′ from its preference list if a does not appear
on the preference list of a′. Finally, we delete all quota-two hospitals with at
most one resident on their preference list.

The intuitive reasoning behind Phase 1a is the following. If an agent rejects
the proposal of another agent, then the two can never be matched to each other
in a stable matching. Thereby, no agent can be matched better than the agent it
proposes to. Thus, any agent receiving a proposal can be sure that it does not end
up worse than the proposal it currently holds in a stable matching, since it forms
a blocking pair with the agent issuing its proposal otherwise. After Phase 1a,
each resident and quota-one hospital issues a proposal to the first agent on its
preference list and holds a proposal from the last agent on its preference list.
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I h1 : r3 r1 r1 : h1 h2

h2 : r1 r2 r2 : h4 h2 h3

h3 : r2 r3 r3 : h3 h1 h4

h4 : r2 r3

II h1 : r3 r1 r1 : h1 h2

h2 : r1 r2 r2 : h2 h3

h3 : r2 r3 r3 : h3 h1

h4 :

Fig. 1. An example for Phase 1. Hospital h1 is a quota-one hospital, while the other
three hospitals are quota-two hospitals. In the beginning (see instance I), each resident
and h1 propose to their top-choice, which all accept their received proposal. Thereby,
both h3 and h4 get activated and propose to r2 respectively r3. Resident r3 rejects
the proposal from h4, while r2 accepts the proposal of h3. Then, the preferences of h4

contain only one resident, and thus h4 rejects the proposal from r2. Consequently, r2
proposes to h2, which activates h2. Subsequently, h2 proposes to r1, who accepts the
proposal. As no quota-two hospital received two proposals, no hospital gets split and
Phase 1 ends (see instance II).

Phase 1b - Split Hospitals. In this phase, we identify quota-two hospitals
that are open in every stable matching and replace them by quota-one hospitals:

Algorithm (Phase 1b). We replace each quota-two hospital h holding at least two
proposals by u(h) hospitals h1, . . . , hu(h) with lower and upper quota one with
the same preferences as h. In the preferences of all residents, h is replaced by
h1 � · · · � hu(h).

To summarize, Phase 1 consists of applying Phase 1a and Phase 1b as long
as at least one hospital was split in the last execution of Phase 1b. An example
for the execution of Phase 1 can be found in Fig. 1.

Phase 2 - Eliminate Generalized Rotations. We introduce some notation
for the definition of a generalized rotation. We call a quota-two hospital with
more than two residents on its preferences flexible and all other quota-two hospi-
tals inflexible. Note that while we already know which residents will be assigned
to an open inflexible hospital (as the number of residents on its preferences is
equal to its lower quota), this is not clear for open flexible hospitals. Given a res-
ident r, we denote by h(r) the first hospital on r’s preferences. If h(r) is flexible,
then we define g(r) := h(r). Otherwise, we define g(r) to be the second hospital
on r’s preference list.

A generalized rotation is a sequence (a1, b1), . . . , (ak, bk) consisting of resi-
dents and quota-one hospitals with ai �= aj for all i �= j such that (all following
indices are taken modulo k):

Relationship Between ai and bi+1:

AB+−1 If ai is a quota-one hospital, then bi+1 is the second resident on ai’s
preferences.

AB+−2 If ai is a resident and h(ai) is a flexible hospital, then bi+1 is the
second-most preferred resident on h(ai)’s preferences who is not ai.
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I h1 : r3 r1 r1 : h1 h2

h2 : r1 r2 r2 : h2 h3

h3 : r2 r3 r3 : h3 h1

II h1 : r3 r1 : h2

h2 : r1 r2 r2 : h2

h3 : r3 r3 : h3 h1

Fig. 2. An example for Phase 2. Hospital h1 is a quota-one hospital, while the other
two hospitals are quota-two hospitals. Initially (see instance I), h1 holds the proposal
of r1, hospital h2 the proposal of r2, and h3 the proposal of r3. The instance admits the
following generalized rotation: (r1, h1), (r3, r2). Note that for b1 = h1 case BA-1 applies,
for a1 = r1 case AB+-3b(i) applies, for b2 = r2 case BA-3 applies, and for a2 = r3 case
AB+-3a applies. Eliminating this generalized rotation results in instance II.

If ai is a resident and h(ai) is an inflexible hospital or a quota-one hospital and

AB+−3a if g(ai) is a quota-one hospital, then bi+1 := g(ai).
AB+−3b(i) if g(ai) is a quota-two hospital holding proposal r, then bi+1 := r.
AB+−3b(ii) if g(ai) is a quota-two hospital which does not hold a proposal,

then bi+1 is g(ai)’s most preferred resident who is not ai.

Relationship Between bi and ai:

BA−1 If bi is a quota-one hospital, then ai is the last resident on bi’s preferences.
BA−2 If bi is a resident and the last hospital h on bi’s preferences is of quota

one, then ai := h.
BA−3 If bi is a resident and the last hospital h on bi’s preferences is of quota

two, then ai is the resident with h as top-choice, i.e., the resident proposing
to h.

Algorithm (Phase 2). Phase 2 computes a generalized rotation by starting with
an arbitrary resident whose preference list has length at least two as a1 and
subsequently applying the relationships depicted above to find b2, a2, . . . until
this procedure cycles and a generalized rotation has been found. It is possible to
prove that this procedure always finds a generalized rotation. Subsequently, we
eliminate the found rotation by deleting, for all i ∈ [k], the mutual acceptability
of ai and bi if one of them is a hospital, and otherwise the mutual acceptability
of hospital h(ai) and bi. After that, Phase 1 is applied again to the resulting
instance. An example for Phase 2 can be found in Fig. 2.

In a “classical” rotation (a1, b1), . . . , (ak, bk) for Stable Roommates [12],
for all i ∈ [k], agent bi+1 is the second agent on the preference list of ai and ai is
the last agent on the preference list of bi, which implies that bi is the top-choice
of ai. Here, eliminating a rotation consists of deleting the mutual acceptability
of ai and bi for all i ∈ [k] and results in an instance that admits a stable matching
if the original instance admits one. Part of the reason for this is that if we assume
that there exists a stable matching M which contains the pairs (ai, bi) for all i ∈
[k], then the matching M ′ arising by replacing these pairs by the pairs (ai, bi+1)
is also stable: Each agent bi prefers M ′ over M , and agent ai can only form
a blocking pair with bi, implying that no blocking pair has been introduced.
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However, applying this classical definition to HR-QU
L≤2, the observation from

above does not longer hold. Therefore, we generalize the definition of a rotation
in a way such that no quota-two hospital appears in a generalized rotation, while
keeping the intuition: For BA−1 and BA−2, ai is still bi’s least preferred agent,
while for BA−3 following the classical definition, it would be necessary to set
ai to a quota-two hospital h. Instead, we set ai to be the resident proposing
to h, which can be interpreted as matching bi to h together with ai. For the
relationship between ai and bi+1, for AB+−1, bi+1 is still the second agent in
the preferences of ai. For AB+−2, it is necessary to recall that for a flexible
hospital h there exist multiple possibilities which residents are matched to h in
a stable matching. The “most preferred option” of a resident r is to be matched
to h(r) together with h(r)’s most preferred remaining resident, while her second-
most preferred option is to be matched to h(r) with h(r)’s second-most preferred
remaining resident. If h(r) is inflexible, then there exists only one possibility for
a resident r to be matched to h(r) so her second-most preferred alternative is
to be matched to g(r) with the necessary case distinctions made in AB+−3a,
AB+−3b(i), and AB+−3b(ii).

5 Conclusion

We conducted a thorough parameterized complexity analysis of the Hospital
Residents problem with lower and upper quotas. We have shown that the hard-
ness of this problem arises from choosing the set of open hospitals such that no
blocking coalition exists, as the problem remains hard even if all hospitals have
only lower quotas and pairs cannot block an outcome, but it becomes easy as
soon as the set of open hospitals is given. We have also analyzed two variants of
this problem.

One direction for future work is to analyze what happens if the preferences
may contain ties. Using the ILP approach sketched in Proposition 2, param-
eterized by the number of hospitals, HR-QL and HA-QU

L should remain fixed-
parameter tractable parameterized by the number of hospitals, while for HR-QU

L

the situation is unclear. Notably, in this setting, HR-QU
L subsumes the two other

models. Moreover, it would be also interesting to analyze other stable many-
to-one matching problems using a similar fine-grained parameterized approach
as taken in this paper to enrich our understanding of the complexity of these
problems. Finally, our polynomial-time algorithm for lower quota two might be
adaptable to also work for other problems such as special variants of the three-
dimensional Stable Roommates problem.
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Abstract. In this paper we introduce the Ad Types Problem, a general-
ization of the traditional positional auction model for ad allocation that
better captures some of the challenges that arise when ads of different
types need to be interspersed within a user feed of organic content.

The Ad Types problem (without gap rules) is a special case of the
assignment problem in which there are k types of nodes on one side
(the ads), and an ordered set of nodes on the other side (the slots).
The edge weight of an ad i of type θ to slot j is vi · αθ

j where vi is
an advertiser-specific value and each ad type θ has a discount curve
α
(θ)
1 ≥ α

(θ)
2 ≥ . . . ≥ 0 over the slots that is common for ads of type θ. We

present two contributions for this problem: 1) we give an algorithm that
finds the maximum weight matching that runs in O(n2(k + log n)) time
for n slots and n ads of each type—cf. O(kn3) when using the Hungarian
algorithm—, and 2) we show how to apply reserve prices in total time
O(n3(k + log n)).

The Ad Types Problem (with gap rules) includes a matrix G such
that after we show an ad of type θi, the next Gij slots cannot show an
ad of type θj . We show that the problem is hard to approximate within
k1−ε for any ε > 0 (even without discount curves) by reduction from
Maximum Independent Set. On the positive side, we show a Dynamic
Program formulation that solves the problem (including discount curves)
optimally and runs in O(k · n2k+1) time.

1 Introduction

Feeds aggregate a variety of content into a one-stop source of information. In
order to present content in a way that maximizes engagement, state-of-the-art
feeds like Facebook’s News Feed, Reddit, and Apple News must consider not only
the user’s independent interest in each item but also the position in the feed and
the relative order of items. Optimizing ad placement in these platforms presents
similar challenges; to capture some of them, we introduce a generalization of the
canonical position auction known as the Ad Types Problem.

Position auction [11,39] is the default mechanism for simultaneously selecting
multiple ads. A standard position auction is simple: rank ads according to their
expected advertising value and rank slots according to their prominence (position
c© Springer Nature Switzerland AG 2020
X. Chen et al. (Eds.): WINE 2020, LNCS 12495, pp. 45–58, 2020.
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in the feed); the highest-value ad then appears in the most prominent slot and
so on until all slots are filled. Formally, the auction maximizes value using a
separable value model that combines baseline value for each ad with a position
discount for each slot 1 ≥ α1 ≥ . . . ≥ 0 capturing the decay in value associated
with lower-prominence.

Content feeds bring two important complexities that violate the simple sepa-
rable model: ads are not homogeneous, and spacing matters. Firstly, in the same
way that a feed aggregates many types of content, a feed may simultaneously
include ads in many formats, including text, images, and video. Advertisers may
also have different objectives – some advertisers only want users to see a static
image, while other advertisers want users to finish a video or visit their site and
make a purchase. Prominence impacts every type differently – for example, a
user who has already scrolled deep into a content feed will still see an image
ad but may be less likely to watch a video ad to completion. Secondly, spacing
matters, since a user who (say) sees two video ads in a row may be less likely to
view the second video ad (or simply be annoyed).

Given these complexities, näıvely implementing a position auction using a
traditional separable model will be suboptimal. The following example illustrates
the problem when the probability of a user watching a video ad decays differently
than a link-click ad:

Example 1. Suppose we have a setting with 2 ad types, link-click ads and video
ads, two ad slots, and we have discount curve α1 = 1

2 , α2 = 1
4 . These discounts

are accurate for link-click ads (i.e. α
(link)
1 = 1

2 , α
(link)
2 = 1

4 ), but for video ads,
the user is more likely to watch the video in the second slot than they are to
click a link in that slot: α

(video)
1 = 1

2 , α
(video)
2 = 1

3 .
Consider a video ad with bid $12 and a link-click ad with bid $10. The optimal

allocation assuming that discount curve α is accurate for both ads would assign
the video ad to slot 1 and the link-click ad to slot 2 for total (reported) value
1
2 ·$12+ 1

4 ·$10 = $8.50. However, switching the ads yields total (reported) value
1
2 · $10 + 1

3 · $12 = $9 > $8.50.1

In this paper we propose a new theoretical model for online advertising that
addresses these issues. It captures the position auction as a special case, but
can handle discount curves for multiple types and intersperse advertising with
organic content in a dynamic manner.2 An Ad Types Problem instance has k ad

1 Note that this example also implies that VCG prices w.r.t. α would not be incentive
compatible.

2 While our motivation for studying this problem comes from online advertising in
content streams, it captures many other interesting settings that are unrelated to
online advertising. For example, the setting without gap rules can model a worker
with different time slots and jobs of different types that need to be done; jobs are most
valuable when completed early and delays for jobs of the same type are discounted
similarly. Adding gap rules can model the cost of moving between locations (in the
physical world) or context-switching (in the digital world).
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types3, that each have their own discount curve over n slots, i.e. all ads of type θ

have discount curve α
(θ)
1 ≥ α

(θ)
2 ≥ . . . ≥ α

(θ)
n ≥ 0 that represents the slot-specific

action-rates. All ad types agree on the order of the slots. Gap rules are modeled
by a k × k matrix G, which indicates for each pair of ad types (θi, θj), that after
showing an ad of type θi, the next Gij stories cannot be of type θj .

We first focus on the special case where G = 0, i.e. different ad types have
different discount curves but there are no constraints on the gaps between ads.
In this setting, the Ad Types Problem is a special case of the maximum-weight
bipartite matching problem (also known as the assignment problem), so we could
find an optimal allocation using the Hungarian algorithm in O(kn3) time [36]
(where k is the number of types, n the number of slots, and we have n ads
per type). Our first result is an algorithm that finds the optimal allocation in
O(n2(k +log n)) time, saving a linear factor. We also show that we can compute
incentive-compatible prices with advertiser-specific reserve prices for all ads in
O(n3(k + log n)) time.

Next we consider the more general Ad Types problem with both discount
curves and gap rules (where G �= 0). We show that the problem is hard to
approximate within k1−ε for any ε > 0 (even without discount curves) by reduc-
tion from Maximum Independent Set. On the positive side, we show a Dynamic
Program formulation that solves the problem (including discount curves) opti-
mally and runs in O(k ·n2k+1) time, which is a significant improvement over the
brute-force running time of O(kn) since typically k � n.

1.1 Related Work

Assignment Problem. The maximum-weight bipartite matching problem, also
known as the assignment problem, is a classical problem in operations research.
Let (A,B,E) be a complete bipartite graph with edge weights v : E → R

+, and
V = A ∪ B the set of nodes; the goal is to find a matching M of maximal total
weight

∑
e∈M v(e). Kuhn [28] proposed an algorithm for this problem—which

he called the Hungarian algorithm—based on ideas by Kőnig and Egerváry,
though he only proved that the algorithm would terminate, not what the time
complexity is. Munkres [31] showed that the time complexity of the Hungarian
algorithm is O(|V |4). Edmonds and Karp [12] gave an O(|V |3) time algorithm for
balanced graphs, and Ramshaw and Tarjan [36] more recently gave an algorithm
for unbalanced graphs (without loss of generality, assume |A| < |B|) that runs in
O(|E||A|+|A|2 log |A|). Since the seminal work on the assignment problem, there
has been active research into relevant special cases. In particular there is a line of
work on convex bipartite graphs, where the right side of the graph is ordered, and
nodes on the left can only be connected to a single contiguous block of nodes on
the right. For the unweighted case, a line of work starting with Glover [16,21,29]
shows that the problem can be solved in time linear in the number of nodes

3 In economics literature, “type” sometimes refers to private information. That’s not
the case here: type represents the content type, e.g. video or link-click, and is publicly
known.
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O(|V |). General weights are not considered, though early work on vertex-weighted
bipartite graphs (where each node i has an associated weight wi and the weight of
an edge from i to j is wij = wi +wj) yield an O(|E|+ |B| log |A|) time algorithm
[25]. More recently, Plaxton [34,35] showed that Two-Directional Orthogonal
Ray Graphs (a generalization of convex graphs) admit an O(|V | log |V |) time
algorithm.

Sharathkumar and Agarwal [38] consider a more general set of edge weights,
where nodes are embedded in d-dimensional space, and the weights of the com-
plete bipartite graph are all either the L1 or L∞ metric. They give an algorithm
to solve maximum weight bipartite matching in O(|V |3/2 logd+O(1)(|V |) log Δ),
where Δ is the diameter of the space that contains the points.

None of the results on specializations cover The Ad Types Problem setting
(even without gap rules).

Ad Auctions. The simple separable model for position auctions appears in Varian
[39] and Edelman et al. [11]. One body of related work relaxes the assumption
that action rates are separable. One common theme is to model externalities
between ads (also related to our gap rules) [2,3,14,17–20,22,26]. Of note, [2,13,
18,26] study algorithms for computing allocations in models where the user’s
attention cascades and prove hardness results. A different generalization is to
allow arbitrary action rates that are still independent between ads [1,5,6], which
corresponds to the Ad Type Problem (without gap rules) where each ad has a
unique type.

Another generalization of the basic position auction allows ads to be placed
in complex ways. A few papers study mechanisms that permit presentation con-
straints and/or ads with variable presentation [4,8,23,24,32]. Mahdian et al. [30]
study auctions for ads displayed on maps along with organic results (since places
of interest are connected to a physical location, this imposes constraints on where
ads can be placed).

Finally, the connections between ad auctions and max-weight matching (and
the Hungarian algorithm) have been studied before as well [5,9,10,27].

1.2 Contributions

This paper presents three main contributions:

– Optimal Allocation. Firstly, we give an algorithm to optimally solve the
Ad Types problem without gap rules. This setting is a special case of the
assignment problem with applications beyond ad auctions. Our algorithm
is a specialization of the Hungarian algorithm to find the maximum-weight
matching in the bipartite graph that uses the structure of the Ad Types
Problem to run in O(n2(k + log n)) time (compared to O(kn3) for running
the Hungarian algorithm on the instance; Theorem1).

– Pricing. Secondly, we show that we can do incentive-compatible pricing in
this setting with minimal overhead. First, we show that we can apply reserve
prices (and in fact in all single-parameter environments) without a change-
point algorithm [33,37]. For our case, this yields an O(n3(k + log n)) time
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algorithm. We also confirm that—similar to the general bipartite matching
case—the dual variables in our algorithm for the Ad Types setting (without
reserves) can be used to recover VCG prices without increasing the asymp-
totic running time. This yields VCG prices in O(n2(k + log n)). Due to lack
of space these results appear in the full version of this paper [7].

– Gap Rules. Finally, we consider the more general Ad Types problem with
both discount curves and gap rules (where G �= 0). We show that the prob-
lem is hard to approximate within k1−ε for any ε > 0 (even without discount
curves) by reduction from Maximum Independent Set (Theorem2). On the
positive side, we give a Dynamic Program formulation that solves the problem
(including discount curves) optimally and runs in O(k · n2k+1) time (Theo-
rem 3) which is a significant improvement over the brute-force running time
of O(kn) since typically k � n.

2 Preliminaries

In this section we give a formal definition of the Ad Types problems and with
it, the notation that we will be using throughout the paper. Our results build
on the known results from Auction Theory and the Hungarian Algorithm for
solving the assignment problem.

The Ad Types Problem involves computing an allocation of a set of N ads to
n ≤ N slots. Ads come in one of k different ad types θl, for l ∈ {1, . . . , k}. We let
the ads of type θl be a

(θl)
i for i ∈ 1, . . . , nl, where nl represents the number of ads

of type θl. There are three main components to the definition of the problem:

– Valuations. Ad i of type θ has a value-per-conversion (a.k.a. value-per-
action) v

(θ)
i . Ads of different types have different conversion events, e.g. for a

display ad the conversion event is a view, for a link ad the conversion event is
a link click, and for a video ad the conversion event is the user watching video
ad. For each ad type θ, we index the ads in non-increasing order of valuation,
i.e. v

(θ)
1 ≥ v

(θ)
2 ≥ . . . ≥ v

(θ)
nl ≥ 0.

– Discount Curves. We assume a separable model for discount curves where
we can write

Pr[conversion on ad i (of type θ) in slot j] = αθ
j · βi

where αθ
j is the slot effect for a particular ad type θ (e.g., the probability

that a user will watch a video ad if it is shown in the jth slot) and βi is the
advertiser quality (this separable model is also standard in position auctions
[11,39]). In the remainder of the paper we assume without loss of generality
that the advertiser effect has already been included in the advertiser’s value,
i.e., if the value-per-conversion of the advertiser is v′

i, then vi = βi · v′
i. We

further abuse notation to let vij = αθ
j · vi for ad i of type θ in slot j.

Discounts are monotonically non-increasing, and all ad types agree on the
order of slots, i.e. for each ad type θ, we have α

(θ)
1 ≥ α

(θ)
2 ≥ . . . ≥ α

(θ)
n ≥ 0.
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– Gap Rules. When ads are interspersed with organic content, there must be
some way to control how many ads are shown. In the simplest case, where
there’s only one type of ad, this can be implemented by a gap rule g, which
states that two ads must be at least g slots apart from each other. When
there are multiple ad types, there is a k × k matrix G, which indicates for
each pair of ad types (θi, θj), that after showing an ad of type θi, the next
Gij stories cannot be of type θj .

The Ad Types Problem is to find a social welfare maximizing allocation that
obeys the gap rules.

2.1 The Hungarian Algorithm

The Hungarian Algorithm [28,31] is a classical algorithm for computing a maxi-
mum weight matching in a bipartite graph. Starting from a trivial primal solution
(empty matching) and a trivial dual solution, the algorithm iteratively increases
the cardinality of the matching while improving the value of the dual solution
until the value of the primal solution equals that of the dual.

Let (U, V,E) be a complete bipartite graph with edge weights v : E → R
+.

The primal/dual pair of linear programs capturing the problem are as follows.

maximize
∑

(i,j)∈E vijxij

subject to
∑

j xij ≤ 1 ∀i ∈ U
∑

i xij ≤ 1 ∀j ∈ V
xij ≥ 0 ∀(i, j) ∈ E

minimize
∑

i∈U ui +
∑

j∈V pj

subject to ui + pj ≥ vij ∀(i, j) ∈ E
ui ≥ 0 ∀i ∈ U
pj ≥ 0 ∀j ∈ V

The algorithm starts from an empty primal solution M = ∅, and a trivial
feasible dual solution ui = 0 for all i ∈ U and pj = max(i,j)∈E vij for all j ∈ V .
In each iteration, the algorithm identifies the set of tight edges T = {(i, j) ∈ E :
ui + pj = vij} and builds an alternating BFS tree B (also known as Hungarian
tree) in (U, V, T ) out of the free vertices in V . If the alternating tree contains
an augmenting path A, we augment M with A thus increasing its cardinality; if
no such path is available, we can update the dual solution by reducing the dual
value of V ∩B and increasing the dual value of U ∩B by the same amount until
a new edge becomes tight. This update maintains feasibility while reducing the
value of the dual solution and makes at least one new edge tight, which in turn
allows us to grow the alternating tree further.

Throughout the execution of the algorithm we maintain the invariants that
the dual solution is feasible and that the edges in the matching M are tight. As
a result, at the end of the algorithm we have a matching whose weight equals the
value of the dual feasible solution, which acts as a certificate of its optimality.
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Using the right data structures, it is possible to implement the algorithm so
that the amount of work done between each update to M is O(|E|+ |U | log |U |).
Therefore, if we let M∗ be a maximum weight matching, then the Hungarian
algorithm can be implemented to run in O(|M∗|(|E| + |U | log |U |)) time [15].

Algorithm 1 provides the full pseudo-code of the Hungarian Algorithm
applied to the Ad Types problems.

Algorithm 1. Hungarian algorithm for the Ad Types problem.

Input: Values v
(θ)
1 > v

(θ)
2 > . . . > 0, and

discounts α
(θ)
1 > α

(θ)
2 > . . . > 0 for each ad type θ.

Output: Matching M that maximizes
∑

(i,j)∈M vij .
1: Initialize the dual solution so that

◦ ui ← 0 for all ads i,
◦ pj ← max vi′,j′ for all slots j.

2: Let M ← ∅ be the matching.
3: for slot j in descending order do
4: Let B ← {j} be an alternating BFS tree
5: Let P be an empty priority queue
6: P ← UpdatePossibleNewEdges(P, v, α, M, j)
7: while B does not contain an augmenting path do
8: (i′, j′) ← remove from P next tight edge
9: Δ ← vi′j′ − ui′ − pj′ // note that Δ could be 0

10: Implicitly update the dual solution so that
◦ ui′′ ← ui′′ + Δ for all ads i′′ ∈ B,
◦ pj′′ ← pj′′ − Δ for all slots j′′ ∈ B.

11: if i′ is matched in M then
12: B ← B ∪ {(i′, j′), (i′, M(i′))}
13: UpdatePossibleNewEdges(P, v, α, M(i′))
14: else
15: B ← B ∪ {(i′, j′)} // now an augmenting path exits
16: end if
17: end while
18: A ← augmenting path in B
19: M ← AugmentMatching(M, A).
20: explicitly update the dual solution (u, p)
21: end for

3 Ad Types Problem Without Gap Rules

In this section we consider the ad types problem with discount curves but no
gap rules. In this model we have k ad types, and each ad type has its own
monotonically decreasing discount curve α

(θl)
j for l ∈ 1, 2, . . . , k. Without gap

rules, the problem becomes a simple maximum weight bipartite assignment on
a complete graph with N vertices (ads) on one side of the bipartition and n
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vertices (slots) on the other side of the bipartition, with n < N . Therefore, the
Hungarian algorithm can solve this problem in O(Nn2) time. We will assume
throughout there are exactly n ads of each type4, hence the Hungarian algorithm
runs in O(kn3) time.

In this section we start by giving an algorithm that finds the maximum-
weight bipartite matching in O(n2(k + log n)) time (Sect. 3.1). We show that in
some sense the dependency on k unavoidable: namely if k = n, we show that the
Ad Types problem reduces to the assignment problem (i.e. monotonicity and a
common order of the slots does not improve the running time; see Sect. 3.2).

3.1 Finding the Optimal Allocation

We present an adaptation of the Hungarian algorithm [28,31] that exploits the
special structure of the Ad Types problem. In the following we use the language
of markets to describe the Hungarian algorithm: the dual variable of a slot j
corresponds to a price pj , while a dual variable of an advertiser i corresponds to
the utility ui of the advertiser if they get an item out of their demand set (given
the prices) [10]. Moreover, the instance is a complete bipartite graph with ads
on one side and slots on the other side where the weight of the edge (i, j) is vij .
The maximum-weight matching in the bipartite graph corresponds to the social-
welfare maximizing allocation of ads to slots. For ease of exposition, we assume
that values and discounts are monotonically strictly decreasing, this restriction
can be lifted by consistent tie-breaking.

Algorithm 1 in the preliminaries shows how to compute the optimal allocation
in an Ad Types instance using the Hungarian Algorithm. Our approach is to
implement more efficiently how we maintain the set of possible new edges in
Lines 6 and 13. The algorithm initializes the dual solution (u, p) to be feasible,
and starts with an empty matching M . Algorithm considers slots in descending
order in each iteration of the for loop in Line 3; we call each such iteration a
phase.

During each phase we iteratively update the dual variables until we find an
augmenting path to increase the size of the matching M by one. In each of these
iterations within a phase we explore a tight edge leading to a matched edge
and both edges are added to our alternating tree. Every time we add a new
matched slot j′ to the alternating tree we explore the edges incident on j′ using
the routine UpdatePossibleNewEdges, which scans the edges incident on j′

and works out which edges are tight and when the remaining edges will become
tight. All these new edges are stored in a priority queue for later retrieval.

High-Level Analysis Approach. Even though the algorithm is not fully defined yet
(the implement of UpdatePossibleNewEdges is given in the next subsection),
still we can say something about the running time of the algorithm.

4 If an ad type has fewer than n ads, we can append ads with value 0, if there are
more than n ads of a type, with loss of generality we can restrict attention to the n
highest-value ads.
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Each phase is implemented using a priority queue P over some of the ads
not in B. For each ad i′ in P we keep track of the next edge (i′, j′) that would
become tight given the current structure of B. The priority of i′ captures when
this next edge becomes tight, the smaller the priority the sooner it becomes
tight; similarly, if i′ already has a tight edge incident on itself then it should
have the smallest priority in the queue.

In the normal implementation of the Hungarian Algorithm, the procedure
UpdatePossibleNewEdges(P, v, α, j′) iterates over all edges (i′, j′) incident
on j′. If i′ ∈ B we can ignore the edge as i′ has already been discovered and
its slack vi′,j′ − pj′ − ui′ will not change with future updates (since now both i′

and j′ belong to B). If i′ /∈ B then we compute its current slack vi′,j′ − pj′ − ui′

to work out when it will become tight and compare this against the time of the
current next tight edge incident on i′, which we may need to update.

Without making any assumptions on the structure of the valuations, in
the worst case in each iteration of the while loop in Line 7 we perform
O(nk + log nk) = O(nk) work (assuming a Fibonacci heap implementation for
P ) since there are kn ads in total and kn edges incident on j′ (one per ad).
In each iteration be grow B by adding one new matched edge, so we have
at most j iterations of the while loop. Therefore, the overall running time is
O(

∑n
j=1 jnk) = O(n3k).

However, as we shall see shortly, we can come up with a more efficient imple-
mentation of UpdatePossibleNewEdges(P, v, α, j′) that exploits the special
structure of our valuation function so that P holds at most n + k ads and
only O(k) edges incident on j′ need to be scanned without sacrificing the over-
all correctness of the algorithm. With this improvement in performance, each
iteration of the while loop in Line 7 takes at most O(log n + k) work. Again,
since in each iteration be grow B by adding one new matched edge, we have
at most j iterations of the while loop. Therefore, the overall running time is
O(

∑n
j=1 j(k + log n)) = O(n2(k + log n)).

Theorem 1. Given an input with k ad types and n slots, Algorithm1 can be
implemented to run in time O(n2(k + log n)).

Our goal for the rest of this section is to provide an efficient implementation
of UpdatePossibleNewEdges(P, v, α, j′) where the size of P is always at most
n + k and only O(k) edges are considered in each invocation of the routine. Key
to our analysis is the observation that tight edges cannot cross is the following
sense: Given two ads i < i′ of the same type θ, and two slots j < j′, then we
cannot have the edge from ad i to slot j′ be tight, and simultaneously have the
edge from ad i′ to j be tight.

Lemma 1 (Non-crossing lemma). Given two ads i < i′ of the same type θ,
and two slots j < j′, if vi > vi′ and α

(θ)
j > α

(θ)
j′ then in any feasible dual solution

we cannot have the edge from ad i to slot j′ be tight, and simultaneously have
the edge from ad i′ to j be tight.
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Proof. We prove by contradiction. If the edges between i and j′ and i′ and j are
both tight, then we must have dual variables ui, ui′ , pj , pj′ such that

α
(θ)
j′ · vi = ui + pj′ and α

(θ)
j · vi′ = ui′ + pj .

At the same time, due to the slackness constraints, we must have that

α
(θ)
j · vi ≤ ui + pj and α

(θ)
j′ · vi′ ≤ ui′ + pj′ .

We can combine these and obtain

α
(θ)
j′ · vi + α

(θ)
j · vi′ = ui + pj′ + ui′ + pj ≥ α

(θ)
j · vi + α

(θ)
j′ · vi′ .

Which is false due to the standard exchange argument. We give the argument
for completeness: Rearranging we have (α(θ)

j −α
(θ)
j′ ) · (vi −vi′) ≤ 0; however, due

to strict monotonicity α
(θ)
j > α

(θ)
j′ and vi > vi′ , so have reached a contradiction.

�

UpdatePossibleNewEdges. The goal of UpdatePossibleNewEdges(P, v,
α, j′) is to iterate over the edges incident on j′ that are tight or that can poten-
tially become tight later in the execution of the current phase. For each such
edge (i′, j′) we compare its slack with the priority associated with i′ and update
the entry for i′ in P accordingly if needed.

The exact definition of the edges inspected is given by Algorithm 2. Before we
describe how this works, let us make some observations about the set of edges
that can potentially become tight, and then we shall see that the Algorithm
indeed considers all these edges.

For each ad type θ we first consider the edges of the form (a(θ)
i , j′) where a

(θ)
i

is matched and M(a(θ)
i ) < j′. We claim that we only need to consider the largest

such i. Recall that all the edges in M are tight and remain tight throughout the
execution of the phase; in particular, (a(θ)

i ,M(a(θ)
i )) is tight and remains tight.

Thus, any edge (a(θ)
i′ , j′) with i′ < i) is not tight and will never become tight

due the Non-crossing Lemma 1 and the fact that i′ < i and M(a(θ)
i ) < j′.

Now consider the edges of the form (a(θ)
i , j′) where a

(θ)
i is matched and

M(a(θ)
i ) > j′. We claim that we only need to consider the smallest such i.

Recall that all the edges in M are tight and remain tight throughout the execu-
tion of the phase; in particular, (a(θ)

i ,M(a(θ)
i )) is tight and remains tight. Thus,

any edge (a(θ)
i′ , j′) with i′ > i is not tight and will never become tight due the

Non-crossing Lemma 1 and the fact that i′ > i and M(a(θ)
i ) > j′.

Finally, we need to consider edges of the form (a(θ)
i , j′) where a

(θ)
i is

unmatched. We claim that we only need to consider the smallest such i avail-
able5. Indeed, for any other i′ > i note that v

(θ)
i > v

(θ)
i′ and since the u variable

5 It is worth noting that even this case can be ignored if there exists a matched a
(θ)
i

such that M(a
(θ)
i ) > j′; however, for ease of presentation we add the slot to X even

if such a
(θ)
i exists.
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of both ads is 0 (only slots that are part of an alternating tree get their dual vari-
ables increased and those are always matched) the slack of (a(θ)

i , j′) will always
be smaller than the slack of (a(θ)

i′ , j′) since v
(θ)
i α

(θ)
j′ − pj′ < v

(θ)
i′ α

(θ)
j′ − pj′ . Fur-

thermore, notice that if the edge (a(θ)
i , j′) become tight, then we immediately

have an augmenting path in B, which concludes the phase.
These three cases are precisely those covered by Algorithm 2.

Algorithm 2. UpdatePossibleNewEdges

Input: P, v, α, M, j′

1: X ← ∅
2: for ad type θ do
3: let a

(θ)
i be the unmatched ad of type θ with smallest i

4: add a
(θ)
i to X

5: if exists matched ad a
(θ)
i such that M(a

(θ)
i ) < j′ then

6: let a
(θ)
i be such an ad with largest i

7: add a
(θ)
i to X

8: end if
9: if exists matched ad a

(θ)
i such that M(a

(θ)
i ) > j′ then

10: let a
(θ)
i be such an ad with smallest i

11: add a
(θ)
i to X

12: end if
13: end for
14: for i′ ∈ X do
15: if i′ /∈ B and either i′ /∈ P or i′’ current slack in P is > (vi′,j′ −ui′ −pj′) then
16: update the priority of i′ using (i′, j′) or set if i′ /∈ P
17: end if
18: end for

Lemma 2. There can be at most n + k ads in P at any given point in time.

Proof. Notice that the only edges (i′, j′) that we consider in Line 16 are either
to a matched node in M or to the highest unmatched ad of each type. There are
exactly j < n matched ads in phase j and there are k ad types, so the lemma
follows. �
Lemma 3. UpdatePossibleNewEdges considers only O(k) edges when
updating P and these are the only edges we need to look at. Furthermore, these
edges can be identified in O(k) time provided we carry out O(nk) pre-processing
every time the matching M is augmented in Line 19 of Algorithm1.

Proof. For each ad type we need to consider at most three edges incident on
j′ (namely, those consider the for loop in Line 14) so the algorithm inspects at
most 3k edges. The reason why we can focus just on these edges has already been
explained in the description of the algorithm UpdatePossibleNewEdges.
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In order to identify these edges efficiently, we maintain an array of length k

where for each ad type θ we store the smallest index i such that a
(θ)
i is unmatched.

In addition to this, we maintain a k × n array where for each ad type θ and
position j′ we store the largest index i such that M(a(θ)

i ) < j′ and the smallest
index i such that M(a(θ)

i ) > j′.
It is easy to see that constructing these data structures can be done in O(kn)

time given M and that given these data structures we can execute Algorithm 2
in O(k) time. �

Notice that the pre-processing needed for executing Algorithm 2 efficiently,
does not add to the time complexity of the algorithm since the matching is
updated at most n times, so the overall time spent on the pre-processing step
alluded in Lemma 3 is O(kn2).

Similar to the general bipartite matching case, the dual variables in our
algorithm for the Ad Types setting can be used to recover VCG prices without
increasing the asymptotic running time. This yields VCG prices in O(n2(k +
log n)) time.

3.2 Large Number of Ad Types

When each ad has its own type (so k = n) the running time from Theorem1
becomes O(n3), meaning that it is no faster than running the standard Hun-
garian algorithm. The following lemma shows that this is to be expected as any
instance of the assignment problem can be reduced to an instance where all ads
agree on the order of the slots.

Lemma 4. With k = n ad types, the Ad Types problem is no easier to solve
than the assignment problem, even with monotone discount curves.

Due to lack of space, this proof is deferred to the full version of the paper [7].

4 The Ad Types Problem with Gap Rules

In this section we switch our attention to the full version of the Ad Types problem
where we do have gap rules. This problem is much harder if we do not place any
restriction on the instances.

Theorem 2. The Ad Types problem with Gap Rules is hard to approximate
better than k1−ε for any ε > 0, unless P = NP, even when the discount curves
of all the ad types are identically equal to 1.

On the positive side, we show that the problem is tractable if the number of
ad types is very small. Note that this running time still represents a significant
improvement over the brute-force approach yielding a O(kn) running time.

Theorem 3. The Ad Types Problem with Gap Rules can solved optimally in
O(k · n2k+1) time.

Due to lack of space, the proofs in this section are given in the full version [7].
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Abstract. Since the early days of research in algorithms and complex-
ity, the computation of stable matchings is a core topic. While in the
classic setting the goal is to match up two agents (either from different
“gender” (this is Stable Marriage) or “unrestricted” (this is Stable
Roommates)), Knuth [1976] triggered the study of three- or multidimen-
sional cases. Here, we focus on the study of Multidimensional Stable
Roommates, known to be NP-hard since the early 1990’s. Many NP-
hardness results, however, rely on very general input instances that do
not occur in at least some of the specific application scenarios. With the
quest for identifying islands of tractability, we look at the case of master
lists. Here, as natural in applications where agents express their prefer-
ences based on “objective” scores, one roughly speaking assumes that all
agent preferences are “derived from” a central master list, implying that
the individual agent preferences shall be similar. Master lists have been
frequently studied in the two-dimensional (classic) stable matching case,
but seemingly almost never for the multidimensional case. This work,
also relying on methods from parameterized algorithm design and com-
plexity analysis, performs a first systematic study of Multidimensional
Stable Roommates under the assumption of master lists.

1 Introduction

Computing stable matchings is a core topic in the intersection of algorithm
design, algorithmic game theory, and computational social choice. It has numer-
ous applications such as higher education admission in several countries [2,4],
kidney exchange [31], assignment of dormitories [28], P2P-networks [13], and
wireless three-sided networks [8]. The research started in the 1960’s with the
seminal work of Gale and Shapley [14], introducing the Stable Marriage
problem: given two different types of agents, called “men” and “women”, each
agent of one gender has preferences (i.e., linear orders aka rankings) over the
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agents of the opposite gender. Then, the task is to find a matching which is sta-
ble. Informally, a matching is stable if no pair of agents can improve by breaking
up with their currently assigned partners and instead matching to each other.

Many variations of this problem have been studied; Stable Roommates,
with only one type of agents, is among the most prominent ones. Knuth [22]
asked for generalizing Stable Marriage to dimension three, i.e., having three
types of agents and having to match the agents to groups of size three, where
any such group contains exactly one agent of each type. Here, a matching is
called stable if there is no group of three agents which would improve by being
matched together. We focus on the Multidimensional Stable Roommates
Problem. Here again, there is only one type of agents, now having preferences
over (d−1)-sets (that is, sets of size d−1) of (the other) agents. As this problem
is NP-hard in general [25], we focus on the case where the preferences of all agents
are derived from a master list. For instance, master lists naturally arise when
the agent preferences are based on scores, e.g., when assigning junior doctors
to medical posts in the UK [18] or when allocating students to dormitories [28].
Master lists have been frequently used in the context of (two-dimensional) stable
matchings [3,18,26,28] or the related Popular Matching problem [21]. We
generalize master lists to the multidimensional setting in two natural ways. First,
following the above spirit of preference orders, we assume that the master list
consists of sets of size d − 1. Each agent then derives its preferences from the
master list by just deleting all (d − 1)-sets containing the agent itself. Second,
the master list orders all agents. In this case, any agent a shall prefer a (d −
1)-set t over a (d − 1)-set t′ if t is “better” than t′ according to the master
list, where “better” means that a does not prefer the kth best agent of t′ over
the kth best agent from t (according to the master list). For any tuples t, t′

for which neither t is “better” than t′ nor t′ is “better” than t, an agent may
prefer t over t′ or t′ over t independently of the other agents. More formally,
we require that any agent prefers a set of d − 1 agents t over any set of d − 1
agents t′ dominated by {a1, . . . , ad−1}, where we say that t = {a1, . . . , ad−1}
dominates t′ = {b1, . . . , bd−1} if the master list does not prefer bi over ai for
all i ∈ [d − 1]. The agent preferences of any agent must then fulfill for any two
sets {a1, . . . , ad−1} and {b1, . . . , bd−1} of d−1 agents with bi not being before ai

that in the master list the set {b1, . . . , bd−1} is not before {a1, . . . , ad−1}. In this
case, we also relax the condition that the master list is a strict order by the
condition that the master list is a partially ordered set (poset), and consider the
parameterized complexity with respect to parameters measuring the similarity
to a strict order. Preferences where such a parameter is small might arise if there
are few similar rankings, and each agent derives its ranking from these orders, or
if the objective score consists of several attributes and each agent weights these
attributes slightly differently. Two agents are then incomparable in the master
poset if they are ranked in different order by some agents.

Related Work. Stable Roommates can be solved in linear time [17]. If the
preferences are incomplete and derived from a master list, then both Stable
Marriage and Stable Roommates admit a unique stable matching [18]. If the
preferences are complete but contain ties, then finding a weakly stable matching
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in a Stable Roommates instance becomes NP-hard [30]. However, if the prefer-
ences are complete and derived from a master list, then one can decide whether
an edge of a Stable Marriage instance is contained in a stable matching
in linear time [18], and a stable matching in a Stable Roommates instance
always exists and can be found in linear time. For incomplete preferences with
ties derived from a master list, an O(

√
nm)-time algorithm for finding a strongly

stable matching is known [26] (where n is the number of agents and m is the
number of acceptable pairs), while for general preferences, only an O(mn)-time
algorithm is known [23].

Several Stable Marriage problems become easier for complete preferences
derived from a master list [33, Chapter 8]. Stable Roommates, however, is NP-
hard if the preferences contain ties, are incomplete, and are derived from a master
list [18]. There is quite some work for 3-Dimensional Stable Marriage [9,
27,35,36], but less so for 3-Dimensional Stable Roommates.

While master lists are a standard setting for finding 2-dimensional stable
matchings [3,18,20,26,28], we are only aware of few works combining multidi-
mensional stable matchings with master lists. Escamocher and O’Sullivan [12]
gave a recursive formula for the number of 3-dimensional stable matchings for
cyclic preferences (i.e., the agents are partitioned into three sets V1, V2, and V3,
and each agent from Vi only cares about the agent from Vi+1 it is matched
to) derived from master lists. Cui and Jia [8] showed that if the preferences
are cyclic and the preferences of the agents from V1 are derived from a master
list, while each agent from V3 is indifferent between all agents from V1, then
a stable matching always exists and can be found in polynomial time, but it
is NP-complete to find a maximum-cardinality stable matching. There is some
work on d-dimensional stable matchings and cyclic preferences (without master
lists) [16,24].

Deineko and Woeginger [10] showed that 3-Dimensional Stable Room-
mates is NP-complete for preferences derived from a metric space. For the special
case of the Euclidean plane, Arkin et al. [1] showed that a stable matching does
not always exist, but left the complexity of deciding existence open.

Iwama et al. [19] introduced the NP-hard Stable Roommates with Triple
Rooms, where each agent has preferences over all other agents, and prefers a
2-set p of agents over a 2-set p′ if it prefers the best-ranked agent of p over the
best-ranked agent of p′, and the second-best agent of p over the second-best
agent of p′.

Our scenario of Multidimensional Stable Roommates can be seen as a
special case of finding core-stable outcomes for hedonic games where each agent
prefers size-d coalitions over singleton-coalitions which are then preferred over all
other coalitions [32,34]. Notably, there are fixed-parameter tractability results
for hedonic games (without fixed “coalition” size as we request) with respect
to treewidth (MSO-based) [15,29]. Other research considers hedonic games with
fixed coalition size [7], but aims for Pareto optimal outcomes instead of core
stability which we consider.

To the best of our knowledge, the parameterized complexity of multidimen-
sional stable matching problems has not yet been investigated.
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Table 1. Results overview: six variations of Multidimensional Stable Roommates.

Setting/Parameter Complexity

Master list of 2-sets NP-complete for d = 3 (Theorem 2)

Strict master list of agents Linear time (Proposition 1)

κ (max. # of incomparable agents) O(n2) + (κ2212κ)O(κ2212κ)n (Theorem 3)

Width of poset W[1]-hard for d = 3 (Theorem 4)

Incomplete preferences, strict master list NP-complete for d ≥ 3 (Theorem 5)

Deletion distance to strict master list W[1]-hard for d = 3 (Theorem 6)

Our Contributions. For an overview of our results, we refer to Table 1. To
our surprise, even if the preferences are derived from a master list of 2-sets of
agents (in this case, dimension d = 3), a stable matching is not guaranteed
to exist (Sect. 3). We use such an instance not admitting a stable matching
to show that Three-Dimensional Stable Roommates is NP-complete also
when restricted to preferences derived from a master list of 2-sets (Theorem 2).

If the preferences are derived from a strict master list of agents, then a unique
stable matching always exists and can be found by a straightforward algorithm
(Proposition 1). When relaxing the condition that the master list is strict to
being a poset, then the problem clearly is NP-complete, as a master list which
ties all agents does not impose any condition on the preferences of the agents,
and Three-Dimensional Stable Roommates is NP-complete. Consequently,
in the spirit of “distance from tractability”-parameterization, we investigate the
parameterized complexity with respect to several parameters measuring the dis-
tance of the poset to a strict order. For the parameter maximum number of
agents incomparable to a single agent, we show that Multidimensional Sta-
ble Roommates is fixed-parameter tractable (FPT)1 (even when d is part of
the input) (Theorem3). If this parameter is bounded, then this results in one of
the rare special cases of 3-dimensional stable matching problems which can be
solved by an “efficient” nontrivial algorithm. Considering the stronger parameter
width of the master poset, we show Three-dimensional Stable Roommates
to be W[1]-hard2, and this is true also for the orthogonal parameter deletion (of
agents) distance to a linear master list (Theorem 6). We also show that Multi-
dimensional Stable Roommates is NP-complete even with a linear order of
the agents as a master list if each agent is allowed to declare an arbitrary set of
2-sets unacceptable (Theorem 5).

Proofs omitted due to space restrictions are marked by a star (�) and can be
found in the full version [5].

1 FPT with respect to a parameter k means that the problem can be solved in
f(k) poly(|I|) time, where f is an arbitrary computable function and |I| denotes
the size of the input instance.

2 Informally, W[1]-hardness with respect to a specific parameter indicates that it is
very unlikely to show fixed-parameter tractability.
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2 Preliminaries

Let [n] := {1, 2, 3, . . . , n} and [n,m] := {n, n + 1, . . . , m}. For a set X and
an integer d, we denote by

(
X
d

)
the set of size-d subsets of X. A preference

list � over a set X is a strict order of X. We call a set of pairwise disjoint
d-subsets of V a d-dimensional matching. If it is clear from the context that it
is a d-dimensional matching, then we may only write matching. We say that an
agent v prefers a (d − 1)-set A over a (d − 1)-set B if A �v B where �v is the
preference list of v. Any agent prefers any (d − 1)-set not containing itself over
being unmatched. A blocking d-set for a d-dimensional matching M is a set of
d agents {v1, v2, . . . , vd} such that for all i ∈ [d], either vi is unmatched in M or
{v1, v2, . . . , vd}\{vi} �vi

{wi
1, w

i
2, . . . , w

i
d−1}, where {wi

j : j ∈ [d−1]}∪{vi} ∈ M .
A matching is called stable if it does not admit a blocking d-set.

Input: An integer d, a set V of agents together with a preference list �v

over
(
V \{v}
d−1

)
for each agent v ∈ V .

Task: Decide whether a stable matching exists.

Multidimensional Stable Roommates (MDSR)

Note that we require each agent to list each size-(d − 1) set of other agents.
We denote by �-DSR the restriction of MDSR to instances with d = �. We
set n := |V |. A 3-dimensional stable matching does not always exist, and 3-
DSR is NP-complete [25].

A master list ML is a preference list over
(

V
d−1

)
. A preference list �v for an

agent v is derived from a master list ML by deleting all (d−1)-sets containing v.

Example 1. Let V = {v1, v2, v3, v4} be a set of agents, d = 3, and let {v1, v2} �
{v2, v4} � {v1, v3} � {v3, v4} � {v2, v3} � {v1, v4} be the master list.

Then the preferences of v1 are {v2, v4} �v1 {v3, v4} �v1 {v2, v3}, the pref-
erences of v2 are {v1, v3} �v2 {v3, v4} �v2 {v1, v4}, the preferences of v3 are
{v1, v2} �v3 {v2, v4} �v3 {v1, v4}, and the preferences of v4 are {v1, v2} �v4

{v1, v3} �v4 {v2, v3}.

We now define the Multidimensional Stable Roommates with Master
List of (d − 1)-Sets problem (MDSR-ML-Sets).

Input: An integer d, a set V of agents, and a master list �ML over
(

V
d−1

)
,

from which the preference list of each agent is derived.
Task: Decide whether a stable matching exists.

MDSR-ML-Sets

Again, we denote by �-DSR-ML-Sets the problem MDSR-ML-Sets restricted
to instances with d = �.

We now turn to the case that the master list orders single agents instead of
(d − 1)-sets of agents. We first need the definition of a partially ordered set.
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A partially ordered set (poset) is a pair (V,�), where � is a binary relation
over the set V such that (i) v � v for all v ∈ V , (ii) v � w and w � v if and
only if v = w, and (iii) if u � v and v � w, then u � w.

If v � w and v �= w, then we write v � w. If neither v � w nor w � v, then
we say that v and w are incomparable, and write v ∼ w. Instead of v � w or
v � w, we may also write w 	 v or w ≺ v.

A chain is a subset X = {x1, x2, . . . , xk} ⊆ V such that xi � xi+1 for
all i ∈ [k − 1]. An antichain is a subset X ⊆ V such that for all v, w ∈ X with
v �= w, we have v ∼ w. The width of a poset is the size of a maximum antichain.

For a poset � over a set V , we define κ�(v) := |{w ∈ V : v ∼ w}| to be the
number of elements incomparable with v. We define κ(�) := maxv∈V κ�(v).

Note that if Ḡ� is the incomparability graph of the poset (V,�) (i.e., the
graph whose vertex set is the set V , and there is an edge between v, w ∈ V
if and only if v ∼ w), then Δ(Ḡ�) = κ(�), where Δ(Ḡ�) is the maximum
degree of a vertex in Ḡ�. If � is a weak order (i.e., a linear order with ties), the
parameter κ(�) is equal to the maximum size of a ti.e.

Dilworth’s Theorem [11] states that the width of a poset is the minimum
number of chains such that each element of the poset is contained in one of
these chains.

Having defined posets, we now show the connection to Multidimensional
Stable Roommates by defining preferences derived from a poset of agents.

Definition 1. Given a set of agents V , a poset (V,�ML) (which we call the
master poset), and an integer d, we say that a preference list �v on

(
V \{v}
d−1

)
is

derived from �ML if whenever a1, . . . , ad−1 and b1, . . . , bd−1 with ai �ML bi for
all i ∈ [d − 1], then we have {a1, . . . , ad−1} �v {b1, . . . , bd−1}.

Example 2. Let v1 � v2 � v3 � v4 � v5 be a master poset. Then v1 has
one of the two preferences: {v2, v3} �v1 {v2, v4} �v1 {v2, v5} �v1 {v3, v4} �v1

{v3, v5} �v1 {v4, v5} or {v2, v3} �v1 {v2, v4} �v1 {v3, v4} �v1 {v2, v5} �v1

{v3, v5} �v1 {v4, v5}.
For the master poset v2 � v3 ∼ v4 � v1, agent v1 has one of the following pref-

erences: {v2, v3} �v1 {v2, v4} �v1 {v3, v4} or {v2, v4} �v1 {v2, v3} �v1 {v3, v4}.

We are now ready to formally define MDSR-Poset.

Input: An MDSR instance I = (V, (�v)v∈V , d) and a master poset �ML

such that the preferences �v of each agent v are derived from �ML.
Task: Decide whether there exists a stable matching in I.

MDSR-Poset

3 Three-Dimensional Stable Roommates with Master
List of 2-sets

In this section, we consider the case that the preferences are complete and derived
from a master list of (d − 1)-sets. First, we give a small instance with six agents



Multidimensional Stable Roommates with Master List 65

Table 2. A blocking 3-set for each matching in instance Iinstable from Observation 1.

Matching Blocking 3-set

{a, b, c}, {d, e, f} {a, d, e}
{a, b, d}, {c, e, f} {a, c, e}
{a, b, e}, {c, d, f} {b, c, d}
{a, b, f}, {c, d, e} {a, c, d}
{a, c, d}, {b, e, f} {a, b, e}

Matching Blocking 3-set

{a, c, e}, {b, d, f} {a, b, e}
{a, c, f}, {b, d, e} {a, b, e}
{a, d, e}, {b, c, f} {a, b, e}
{a, d, f}, {b, c, e} {a, b, e}
{a, e, f}, {b, c, d} {a, c, d}

not admitting a stable matching, and use this to show that already for d = 3
and preferences derived from a master list of 2-sets, deciding whether an instance
admits a stable matching is NP-complete.

We first present a 3DSR-ML-Sets instance Iinstable with six agents not
admitting a stable matching, showing that stable matchings do not have to exist
even in the presence of master lists.

The instance Iinstable has six agents a, b, c, d, e, and f . The master list is:
{a, b} � {a, c} � {a, d} � {a, f} � {b, e} � {c, d} � {a, e} � {b, f} � {c, e} �
{b, d} � {d, e} � {b, c} � {c, f} � {d, f} � {e, f}.

Observation 1. The instance Iinstable does not admit a stable matching.

Proof. Table 2 presents for each of the (63)
2 = 10 matchings a blocking 3-set. �

Using the instance Iinstable, we show NP-completeness of 3DSR-ML-Sets,
reducing from 1-in-3 Positive 3-Occurrence-SAT.

Note that MDSR is in NP as the size of the input is Ω(
(

n
d−1

)
), where n

is the number of agents, as the master preference list contains
(

n
d−1

)
sets of

size d − 1, and, thus, stability can be checked in polynomial time in the input
by just checking for each d-set whether it is blocking. We arrive at the following
theorem.

Theorem 2 (�). 3-DSR-ML is NP-complete.

4 Master Lists of Agents

We now consider the case when there does not exist a master list of (d − 1)-
sets of agents, but a master list �ML of single agents. Each agent can derive its
preferences from this master list, meaning that if for two (d − 1)-sets t and t′,
one can find a bijection σ from the elements of t to the elements of t′ such that
v �ML σ(v) for all v ∈ t, then any agent (not occurring in t or t′) shall pre-
fer t over t′. If the master list is an arbitrary poset, then MDSR-Poset clearly
is NP-complete, as the preferences of any instance of 3-DSR are derived from
the poset in which no two different agents are comparable, and 3-Dimensional
Stable Matching is NP-complete. We show that this problem is polynomial-
time solvable if the master list is a strict order. Afterwards, we generalize this
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result by showing fixed-parameter tractability for the parameter κ, the “max-
imum number of agents incomparable to a single agent”. On the contrary, for
the stronger parameter width of the poset, we show W[1]-hardness, leaving open
whether it can be solved in polynomial time for constant width (in parameterized
complexity known as the question for containment in XP).

4.1 Strict Orders

We first consider the case that the master list is a strict order. In this case,
an easy algorithm solves the problem: Just match the first d agents from the
master list together, delete them, and recurse. Note that the preferences of any
agent cannot be directly derived from the master list, as e.g. an agent may prefer
either {v1, v4} over {v2, v3} or {v2, v3} over {v1, v4}. Thus, the input contains
the complete preferences of all agents, and the input size is Θ(d

(
n

d−1

)
). Hence,

the running time subsequent algorithm is sublinear.

Proposition 1 (�). If �ML is a strict order, then any MDSR-Poset instance
admits a unique stable matching that can be found in O(n) time.

4.2 Posets

In two-dimensional stable (or popular) matching problems with master lists, the
master list usually contains ties [3,18,21,26,28]. We allow the master list not only
to contain ties, but to be an arbitrary poset. In this case, the problem clearly
is NP-complete, as the poset where each agent is incomparable to each other
agent does not pose any restrictions on the preferences of the agents. Therefore,
we consider several parameters measuring the similarity of the poset to a strict
order. For the parameter “maximum number of agents incomparable to a single
agent”, we show fixed-parameter tractability, and for the stronger parameter
width of the poset, we show W[1]-hardness.

Maximum Number of Agents Incomparable to a Single Agent. In this
section, we show that MDSR-Poset is fixed-parameter tractable when parame-
terized by κ(�ML). As a first step of the algorithm, we show how to derive a strict
order from the given poset, which guarantees that for any two elements v and w
with v being “much earlier” in the strict order than w, we have that v �ML w.

Lemma 1 (�). For any poset (V,�), there is an order v1, v2, . . . , vn of V such
that (i) for all i < j, we have that vi � vj or vi ∼ vj, and (ii) for all j > i+2κ(�),
we have vi � vj. Moreover, such an order can be found in O(|V |2) time.

For the rest of Sect. 4.2, we fix an instance I = (V, (�v)v∈V ,�ML) of MDSR-
Poset, and an order V = {v1, . . . , vn} of V fulfilling the conditions of Lemma1
for the poset (V,�ML). We set κ := κ(�ML). Furthermore, we denote by V ≤i =
{v1, . . . , vi}, by V [i,j] = {vi, vi+1, . . . , vj}, and by V ≥i = {vi, vi+1, . . . , vn}.

We now show that the agents contained in a d-set of a stable matching are
close to each other in the strict order derived from the master poset by Lemma 1.
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Lemma 2. Let I = (V, (�v)v∈V ,�ML) be an MDSR-Poset-instance and let
V = {v1, v2, . . . , vn} such that this order fulfills Lemma 1 for the poset (V,�ML).

For any stable matching M and any d-set {vi1 , vi2 , . . . , vid
} ∈ M with i1 <

i2 < · · · < id, we have that ij+1 − ij ≤ 2κd2 + 4κ + 3d + 1 for all j ∈ [d − 1].

Proof. Let M be a stable matching, and {vi1 , vi2 , . . . , vid
} ∈ M be a d-set con-

tained in M . We assume i1 < i2 < · · · < id, and fix some j ∈ [d − 1].
Let T + be the set of d-sets in M containing an agent from

V [ij+2κ+1,ij+1−2κ−1], and an agent from V ≥ij+1−2κ, and let T − be the set of
d-sets in M containing an agent from V [ij+2κ+1,ij+1−2κ−1], and an agent from
V ≤ij+2κ. We now give an example for the definitions of T + and T −.

Example 3. Let d = 4, κ = 5, and M be a stable matching. Assume that M
contains the 4-set {v3, v14, v50, v157}. Thus, it holds that i1 = 3, i2 = 14, i3 = 50,
and i4 = 157. Taking j = 3 as an example, the set T + contains all 4-sets
containing an agent from {v61, v62, . . . , v146}, an agent from {v147, v148, . . . , vn},
and two more arbitrary agents. The set T − contains all 4-sets containing an
agent from {v1, v2, . . . , v60}, an agent from {v61, v62, . . . , v146}, and two more
arbitrary agents.

Let t be a d-set from T +. We claim that for every d-set t′ ∈ T + other than t,
there exist agents a ∈ t and a′ ∈ t′ with a ∼ML a′. Assume that there are
two d-sets t and t′ such that there do not exist a ∈ t and a′ ∈ t′ with a ∼ML a′.
Let t∗ contain the d agents with minimum index from t ∪ t′. By the definition
of T +, any d-set from T + contains an agent from V ≤ij+1−2κ−1 and one agent
from V ≥ij+1−2κ. Therefore, at least one agent of t∗ is contained in t, and at least
one agent is contained in t′. For any agent vp ∈ t \ t∗ and any vq ∈ t′ ∩ t∗, it
holds by the definition of t∗ that q < p. By Lemma 1, it follows that vq �ML vp

or vq ∼ML vp. However, the latter is not possible, since we assumed that there
are no two agents a ∈ t and a′ ∈ t′ with a ∼ML a′. Thus, we have that each a ∈ t
prefers t∗ over t, and by symmetry, also each a′ ∈ t′ prefers t∗ over t′. It follows
that the d-set t∗ is blocking, contradicting the assumption that M is stable.

As any agent is incomparable to at most κ other agents, it follows that
|T +| ≤ κd + 1. By analogous arguments, one can show that |T −| ≤ κd + 1.

Any d-set s ∈ M consisting solely of agents from V [ij+2κ+1,ij+1−2κ−1] directly
implies a blocking d-set {vi1 , . . . , vij

}∪Sd−j , where Sd−j contains d−j arbitrary
agents from s.

It follows that M contains at most 2(κd + 1) sets containing an agent from
V [ij+2κ+1,ij+1−2κ−1], implying that (ij+1 − 2κ − 1) − (ij + 2κ + 1) ≤ d · 2(κd +
1) + d − 1, where d − 1 is added since there can be at most d − 1 unmatched
agents. It follows that ij+1 − ij ≤ 2κd2 + 4κ + 3d + 1. �

We call a matching M local if for all t ∈ M and any two agents vj , vj′ ∈ t it
holds that |j − j′| ≤ (d − 1)(2κd2 + 4κ + 3d + 1). Note that any stable matching
is local due to Lemma 2. Using a dynamic program on the local matchings, we
derive an FPT-algorithm for the combined parameter κ + d. This will lead to
an FPT-algorithm for the parameter κ as we will later show that if κ is much
smaller than d, then a stable matching always exists.
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Proposition 2. (�). MDSR-Poset can be solved in O(n2)+(κd4)O(κd4)n time,
where κ is the maximum number of agents incomparable to a single agent, d is
the dimension (i.e., the group size), and n is the number of agents.

Proof (Sketch). We first apply Lemma 1 to the poset (V,�ML) to get an order
v1, . . . , vn of the agents in O(n2) time. Let k := 2(d − 1)d(2κd2 + 4κ + 3d + 1).

We store an entry τ [i,M ] for each i ∈ [n] and each local matching M such
that any d-set t ∈ M contains at least one agent of vi, . . . , vi+k. This entry shall
be true if and only if M can be extended to a local matching M∗ not admitting
a blocking d-set consisting solely of agents from v1, . . . , vi+k.

By Lemma 2, there exists a stable matching if and only if τ [n − k,M ] = true
for some local matching M . It remains to show how to compute these values.

For i = 1, we set τ [1,M ] := true if and only if M does not contain a block-
ing d-set inside v1, . . . , vk+1. For i > 1, given a local matching Mi fulfilling that
every d-set of Mi contains an agent from vi, . . . , vi+k, we look up whether there
exists a local matching Mi−1 of vi−1, . . . , vi+k−1 such that for any j ∈ [i, i+k−1],
we have Mi(vj) = Mi−1(vj), and such that Mi−1 ∪ Mi does not admit a block-
ing d-set consisting of agents from vi−1, . . . , vi+k. If this is the case, then we set
τ [i,Mi] = true, and otherwise we set τ [i,Mi] = false.

Since there are at most kO(k) partitions of a k-elementary set [6], the table τ
contains at most nkO(k) entries. Each entry can be computed in kO(k) time,
resulting in an overall running time of kO(k)n = (κd3)O(κd3)n.

We defer the correctness proof to the full version [5]. �

We now extend Proposition 2 to an FPT-algorithm for the single parameter κ.
To do so, we show that if κ is much smaller than d, then there always exists a
stable matching. Due to space constraints, we only sketch the proof here.

Lemma 3 (�). If 4κ24κ ≤ d, then there exists a stable matching.

Proof (Sketch). Start with an empty matching M = ∅. Construct a d-set t∗

such that in any matching containing t∗, no agent of t∗ can be contained in a
blocking d-set. Add t∗ to M , delete the agents from t∗ from the instance. Repeat
this as long as there are at least d unmatched agents. Construct t∗ as follows:
For any agent a ∈ V ≤d−2κ and the first (d − 1)-set ta in its preferences, it holds
that {a} ∪ ta contains V ≤d−2κ and 2κ agents from V [d−2κ+1,d+2κ]. Since d � κ,
it follows that there exists a d-set t such that t = {a} ∪ ta for at least 4κ agents.
We set t∗ := t. �

Theorem 3. MDSR-Poset can be solved in O(n2) + (κ5216κ)O(κ5216κ)n time,
where κ is the maximum number of agents an agent is incomparable to, and n
is the number of agents.

Proof. If 4κ24κ ≤ d, then we can safely answer yes by Lemma 3. Otherwise we
have d ≤ 4κ24κ and thus, Proposition 2 yields an algorithm running in h(κ)n
time with h(κ) = f(κ, 4κ24κ) where f(κ, d) = (κd4)O(κd4). �
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In the natural generalization of Stable Marriage to dimension d, the set V
of agents is partitioned into d sets V 1, . . . , V d of agents, and each agent of V i

has preferences over all (d − 1)-sets containing exactly one agent from V j for
all j ∈ [d] \ {i}. This problem is also fixed-parameter tractable parameterized
by κ + d: The master list of agents can then be decomposed into d master
lists of agents, one for each set V i. Then, one can apply Lemma 1 to each of
these d master lists to get a strict order for the agents from V i = {vi

1, . . . , v
i
n}.

Similarly to Lemma 2, one can show that for any stable matching M and any
d-set {v1

i1
, . . . , vd

id
} (w.l.o.g. we have ij ≤ ij+1), it holds that ij+1 ≤ ij +O(κd2).

Now one can apply an algorithm similar to Proposition 2 (sweeping over the
sets V 1, . . . , V d from top to bottom, considering any matching on k = f(κ, d)
consecutive agents) to get an FPT-algorithm parameterized by κ + d. However,
Lemma 3 does not seem to generalize to this case: for d = 3, there exists a small
instance with |V1| = |V2| = |V3| = 3 without a stable matching. “Cloning” the
agents from one of the sets, say V3, an arbitrary number of times will result in
an instance of unbounded d but κ = 3. It is therefore unclear whether Theorem 3
generalizes to the d-partite version of MDSR-Poset.

Remark 1. Until now, we assumed that the input is encoded naively, i.e., for each
agent, its complete preference list is given as part of the input. However, this list
is of length Ω(nd−1), which would result in a total input size of Ω(nd). Thus, it
may be more reasonable to assume that the input is given by an oracle, which can
answer queries about the preferences. In fact, the FPT-algorithm parameterized
by κ+d only needs one type of queries, namely given two (d−1)-sets t and t′ and
an agent a, the oracle tells whether a prefers t over t′. Thus, our FPT-algorithm
parameterized only by κ also works when only using this query; however, in the
case that κ is much smaller than d, it cannot compute a stable matching, but
only state its existence. In order to also compute a stable matching efficiently,
the algorithm would also need to be able to query what, given an agent a and a
set X of agents, the first (d−1)-set in a’s preference list not containing an agent
from X.

Having shown that MDSR-Poset is fixed-parameter tractable for the
parameter κ, we turn to a weaker parameter, the width of the master poset.

Width of the Poset. Reducing from Multicolored Independent Set, we
show that MDSR-Poset is W[1]-hard parameterized by the width of the poset.

Theorem 4 (�). MDSR-Poset is W[1]-hard parameterized by the poset width.

4.3 Incomplete Preferences Derived from a Strict Master List

Let MDSRI be the MDSR problem with incomplete preference lists, i.e., �v

is not a total order of
(
V \{v}
d−1

)
, but a total order of a subset Xv ⊆

(
V \{v}
d−1

)
for

each v ∈ V . In this case, we define a matching M to be a set of disjoint d-sets
such that for all {v1, v2, . . . , vd} ∈ M , we have {v1, v2, . . . , vd} \ {vi} ∈ Xvi

for
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all i ∈ [d]. Similarly, MDSRI-ML is the MDSRI problem restricted to instances
where the preferences are derived from a master list, and �-DSRI is MDSRI
for the special case d = �. We refer to the full version [5] for formal problem
definitions.

In this section, we show that 3-DSRI-ML, the restriction of MDSRI-ML
to d = 3, is NP-complete, even if the master list is strict. In order to do so, we
reduce from Perfect-SMTI-ML. The input of this problem is an instance of
Maximum Stable Marriage with Ties and Incomplete Preferences
such that the preferences of the women are derived from a strict master list,
while the preference list of men is derived from a master list which may contain
ties of size two. The problem asks whether there exists a perfect weakly stable
matching. Perfect-SMTI-ML is known to be NP-complete [18].

Theorem 5 (�). 3-DSRI-ML is NP-complete, even if the master list is derived
from a master list of agents.

Theorem 5 also shows NP-completeness for the tripartite version of 3-DSRI-
ML. By “cloning” each agent corresponding to a man d − 3 times (and for each
“acceptable 3-set”, add the cloned men to this 3-set, and add all d − 1-subsets
of the resulting d-set at their corresponding place in the preferences), one can
derive NP-completeness of d-DSRI-ML for any fixed d ≥ 3.

4.4 Deletion Distance to a Strict Master List

We saw that MDSR-Poset is FPT for the maximum number of agents incom-
parable to a single agent but is W[1]-hard parameterized by the width of the
poset. We now consider another parameter measuring the similarity to a strict
order, namely the deletion distance to a strict order, i.e., the minimum num-
ber of agents which need to be deleted such that the resulting preferences
are derived from a strict order. Note that this parameter is orthogonal to
the two parameters investigated before: If the master list is the weak order
a1 ∼ML a2 �ML a3 ∼ML a4 �ML a5 ∼ML a6 �ML · · · �ML an−1 ∼ML an, then
κ(ML) = 2, while one has to delete n

2 agents in order to arrive at a strict order.
If the preferences of all but one agent are derived from a strict order, and the
last agent’s preferences are derived from the inverse of this strict order, then the
deletion distance is one while any master poset from which this preferences are
derived from is only a single tie and thus has width n. In this section, reduc-
ing from Multicolored clique we show that MDSR-Poset is W[1]-hard
parameterized by the deletion distance to a strict master list.

Theorem 6 (�). 3-DSR parameterized by λ(I) is W[1]-hard, where λ(I)
denotes the minimum number of agents such that the preferences of the instance
arising through the deletion of these agents are derived from a strict master list.
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5 Conclusion

Being a fundamental problem within the field of stable matching and the analy-
sis of hedonic games, our work provides a seemingly first systematic study on the
parameterized complexity of Multidimensional Stable Roommates. Focus-
ing on the concept of master lists with the goal to identify efficiently solvable
special cases, we could only report partial success. While we have one main algo-
rithmically positive result, namely fixed-parameter tractability for the parameter
“maximum number of agents incomparable to a single agent”, all other (single)
parameterizations led again to (often surprising) hardness results (see Table 1).

As to challenges for future research, first, it remained open whether our
fixed-parameter tractability result mentioned above also transfers to the setting
of Multidimensional Stable Marriage. Second, further following the quest
for identifying islands of tractability, the study of further, perhaps also combined
parameters might be a worth-while goal.
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Abstract. In bandwidth allocation, competing agents wish to trans-
mit data along paths of links in a network, and each agent’s utility is
equal to the minimum bandwidth she receives among all links in her
desired path. Recent market mechanisms for this problem have either
focused on only Nash welfare [9], or ignored strategic behavior [21]. We
propose a nonlinear variant of the classic trading post mechanism, and
show that for almost the entire family of CES welfare functions (which
includes maxmin welfare, Nash welfare, and utilitarian welfare), every
Nash equilibrium of our mechanism is optimal. We also prove that fully
strategyproof mechanisms for this problem are impossible in general,
with the exception of maxmin welfare. More broadly, our work shows
that even small modifications (such as allowing nonlinear constraints)
can dramatically increase the power of market mechanisms like trading
post.

1 Introduction

Bandwidth allocation is a classic resource allocation problem where competing
agents wish to transmit data across paths in a network. Each link has a fixed
capacity, and each agent’s utility is equal to the minimum bandwidth she receives
among all links in her desired path, i.e., the rate at which she is able to transmit
data. We follow the standard model of Kelly et al. [24], where each agent’s path
is fixed in advance. We also assume that there are no monetary payments (i.e.,
no “real money”).

Although one could consider a model where bandwidth allocation and rout-
ing are handled simultaneously (i.e., by allowing agents to choose their paths),
that would be less accurate in terms of how the internet actually works: rout-
ing (which is handled by IP) and bandwidth allocation (which is handled by
TCP) are generally separate problems. This paper is about bandwidth alloca-
tion, where pricing-based schemes (like trading post) naturally correspond to
signaling mechanisms that indicate which links are congested, and an end-point
protocol like TCP [11] can be thought of as agent responses. One of the foun-
dational works in the area of bandwidth allocation is Kelly et al. [24], whose
pricing scheme results in the allocation maximizing Nash welfare (the product
of utilities).
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In this paper, we take the role of a social planner, whose goal is to design
a mechanism that leads to a “desirable” outcome (for some definition of “desir-
able”). We study this through the lens of implementation theory. A mechanism
is said to Nash-implement a social choice rule Ψ (for example, Ψ could denote
Nash welfare maximization) if every problem instance has least one Nash equi-
librium, and every Nash equilibrium outcome is optimal with respect to Ψ . This
is similar to saying that the price of anarchy – the ratio of the optimum and the
“worst” Nash equilibrium – of the mechanism is 1.1 In this paper, we focus on
pure Nash equilibria, i.e., we do not consider randomized strategies.

The result of Kelly et al. [24] assumes that agents are not strategic, and thus
the Nash equilibria of their mechanism may be poor. In contrast, our augmented
trading post mechanism will lead to optimal Nash equilibria, not just for Nash
welfare, but for an entire family of welfare functions.

1.1 Trading Post

Our main tool will be an augmented version of the trading post mechanism. In
the standard trading post mechanism, each agent i submits a bid bij ∈ R≥0 on
each good j, with the constraint that

∑
j bij ≤ 1 for each agent i. Let xij be

the fraction of good j that agent i receives: then trading post’s allocation rule is
xij = bij∑

k bkj
. In words, each agent receives a share of the good proportional to

her share of the aggregate bid on that good. The bids consist of “fake money”:
agents have no value for leftover money.

Trading post has the desirable property that the information requirements
are quite light. Each agent’s best response only depends on the aggregate bid
of the other agents (i.e.,

∑
k �=i bkj), not on their individual bids. Furthermore,

the allocation rule is decentralized in the sense that there is no centralized price
computation, and each link j only needs to know the bids b1j , b2j , . . . bnj .

However, the vanilla version of trading post also has limitations. First of
all, it is not even guaranteed to have a Nash equilibrium for every problem
instance.2 A partial solution to this was proposed by [9]. For every ε > 0, they
gave a modified version of trading post (parameterized by ε) that always has
a Nash equilibrium, and where every Nash equilibrium attains at least 1 − ε of
the maximum possible Nash welfare.3 In the language of implementation theory,
this mechanism Nash-implements a 1 − ε approximation of Nash welfare. In the
course of our main result, we will strengthen this to full Nash implementation.
It is important to note that their mechanism still uses the linear constraint of

1 The price of anarchy [25] concept applies only when Ψ can be written as the maxi-
mization of some cardinal function. This is true when Ψ denotes Nash welfare max-
imization, but is not true in general.

2 This happens when there is a good that has large enough supply that is not the
“rate limiting factor” for any agent; see Sect. 3 and the full version of the paper [35]
for additional discussion.

3 They study Leontief utilities, which is a generalization of bandwidth allocation to
the setting where agents may desire goods in different proportions.
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∑
j bij ≤ 1; their modification has to do with a minimum allowable bid (see

Sect. 3 for additional discussion).
In this paper, we augment the trading post mechanism by allowing nonlin-

ear bid constraints: instead of
∑

j bij ≤ 1, we require
∑

j fj(bij) ≤ 1 for each
agent i, where each fj is a nondecreasing function chosen by us ahead of time.
Importantly, all agents are still subject to the same bid constraint, and we use
the same allocation rule of xij = bij∑

k bkj
. This novel augmentation allows us to

Nash-implement a wide range welfare functions, as opposed to just Nash wel-
fare. Specifically, we will Nash-implement almost the entire family of CES welfare
functions (see Sect. 2 for more details). This is our main result.

1.2 CES Welfare Functions

A welfare function [4,37] assigns a real number to each possible outcome, with
higher numbers (i.e, higher welfare) indicating outcomes that are more desirable
to the social planner. Different welfare functions represent different priorities:
in particular the tradeoff of overall efficiency and individual equality. For any
constant ρ ∈ (−∞, 0)∪(0, 1], the constant elasticity of substitution (CES) welfare
of outcome x is defined by

Φρ(x) =
( ∑

agents i

ui(x)ρ
)1/ρ

where ui(x) is agent i’s utility for x. In general, different values of ρ lead to
different optimal allocations, so whenever we say “maximum CES welfare”, we
always mean with respect to a specific value of ρ.

When ρ = 1, CES welfare is just utilitarian welfare, i.e., the sum of utilities.
The limit as ρ → −∞ yields maxmin welfare (the minimum utility) [36,38,39],
whereas ρ → 0 yields Nash welfare (the product of utilities) [23,31]. This class
of welfare functions was first proposed by Atkinson [3], and further developed
by [5]. See [30] for a modern introduction to this class of welfare functions.

The closer ρ gets to −∞, the more the social planner cares about individual
equality (maxmin welfare being the extreme case of this), and the closer ρ gets
to 1, the more the social planner cares about overall societal good (utilitarian
welfare being the extreme case of this). For this reason, ρ is called the inequality
aversion parameter. The CES welfare function (as opposed to the CES agent
utility function) has received almost no attention in the computational economics
community, despite being extremely influential in the traditional economics lit-
erature.

These welfare functions also admit an axiomatic characterization [30]:

1. Monotonicity: if one agent’s utility increases while all others are unchanged,
the welfare function should prefer the new allocation.

2. Symmetry: the welfare function should treat all agents the same.
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3. Continuity: the welfare function should be continuous.4

4. Independence of common scale: scaling all agent utilities by the same factor
should not affect which allocations have better welfare than others.

5. Independence of unconcerned agents: when comparing the welfare of two allo-
cations, the comparison should not depend on agents who have the same
utility in both allocations.

6. The Pigou-Dalton principle: all things being equal, the welfare function should
prefer more equitable allocations [13,34].

Ignoring monotonic transformations of the welfare function (which of course
do not affect which allocations have better welfare than others), the set of welfare
functions satisfying these axioms is exactly the set of CES welfare functions with
ρ ∈ (−∞, 0) ∪ (0, 1]5, including Nash welfare [30].6 This axiomatic characteriza-
tion shows that we are not just focusing on an arbitrary class of welfare functions:
CES welfare functions are arguably the most reasonable welfare functions.

Recently, [21] showed that in the bandwidth allocation setting, for any CES
welfare function except ρ = 1, nonlinear pricing can be used to obtain market
equilibria with optimal CES welfare. Specifically, each good j is assigned a weakly
increasing (potentially nonlinear) function gj , and the cost of buying a bundle
xi = (xi1, xi2, . . . xim) is

∑
j gj(xij). Subject to these prices, each agent purchases

her favorite affordable bundle xi, and if the allocation x = (x1 . . . xn) clears the
market, (x,g) is called a price curve equilibrium. It was shown by [21] that for
any ρ ∈ (−∞, 1), there exists a choice of price curves g = g1 . . . gm such that
(x,g) is a price curve equilibrium if and only if x maximizes CES welfare.

However, their result assumes that agents are not strategic. In this paper, we
present a market mechanism with the same guarantee of optimal CES welfare,
while also handling strategic behavior.

2 Our Results

Our results fall into two categories, both summarized by Table 1. Due to space
constraints, all proofs are deferred to the full version of the paper [35].

Nash-Implementing CES Welfare Functions. We view the Nash imple-
mentation of CES welfare functions by trading post as our main result. For each

4 A slightly weaker version of continuity is often used: given an allocation x, the sets
{y : Φ(x) ≥ Φ(y)} and {y : Φ(x) ≤ Φ(y)} should be closed. This weaker version
only requires a welfare ordering and does not require that this ordering be expressed
by a function. However, any such ordering which also satisfies the rest of our axioms
is indeed representable by a welfare function [30], and so both sets of axioms end up
specifying the same set of welfare functions/orderings.

5 Without the Pigou-Dalton principle, ρ > 1 is also allowed. This can result in unnat-
ural cases where it is optimal to give one agent everything and the rest none, even
when this does not maximize the sum of utilities.

6 This actually does not include maxmin welfare, which obeys weak monotonicity but
not strict monotonicity.
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Table 1. A summary of our main implementation results. Here ρ = −∞ denotes
maxmin welfare, ρ ∈ (−∞, 1) includes Nash welfare as ρ = 0, and ρ = 1 denotes
utilitarian welfare. DSE stands for “dominant strategy equilibrium”. “✓” indicates
that the type of implementation specified by the row is possible for the social choice
rule specified by the column, while “✗” indicates that we give a counterexample, and
“?” indicates an open question.

ρ = −∞ ρ ∈ (−∞, 1) ρ = 1

Nash-implementable? ✓ ✓ ?

DSE-implementable? ✓ ✗ ✗

ρ ∈ (−∞, 1), we define an augmented trading post mechanism with a nonlinear
bid constraint of

∑
j b1−ρ

ij ≤ 1 for each agent i.7 We denote this mechanism by
AT P(ρ). We show that AT P(ρ) has at least one Nash equilibrium, and that all
of its Nash equilibria maximize CES welfare.

Our result improves that of [21] by strengthening their price curve equilib-
rium (which assumes agents are not strategic) to a strategic equilibrium, and
improves that of [9] by generalizing from just Nash welfare to all CES welfare
functions (except ρ = 1) and strengthening their 1 − ε approximation to exact
implementation.8 Furthermore, because the price curve equilibria can be com-
puted in polynomial time [21], our Nash equilibria can also be computed in
polynomial time.

Our proof makes use of the following results (stated informally):

1. Any Nash equilibrium of AT P can be converted into an “equivalent” price
curve equilibrium (full version of this paper: [35]).

2. Any price curve equilibrium can be converted into an “equivalent” Nash equi-
librium of AT P (full version of this paper: [35]).

3. If x is a maximum CES welfare allocation, then there exist price curves g of
the form gj(x) = qjx

1−ρ such that (x,g) is a price curve equilibrium [21].
4. If (x,g) is a price curve equilibrium and each gj has the form gj(x) = qjx

1−ρ,
then x is a maximum CES welfare allocation [21].

Results 3 and 4 together imply that x is a maximum CES welfare allocation if
and only if it is a price curve equilibrium with respect to some price curves g
of the form gj(x) = qjx

1−ρ (where q1 . . . qm are nonnegative constants). Results
1 and 2 allow us to convert between price curve equilibria and Nash equilibria
of AT P, and thus enable us to apply results 1 and 2 to the Nash equilibria of
AT P(ρ). This will show that AT P(ρ) is guaranteed to have at least one Nash

7 The reader may notice that for ρ = 0 – which corresponds to Nash welfare – this
constraint reduces to the standard linear constraint of

∑
j bij ≤ 1, which is what we

should expect: we know from [9] that trading post with the linear constraint leads
to good Nash welfare.

8 It is worth noting that the result of [9] holds for Leontief utilities, a generalization
of bandwidth allocation utilities.
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equilibrium, and every Nash equilibrium maximizes CES welfare (with respect
to ρ).

Our trading post approach breaks down for ρ = −∞ and ρ = 1. We are able
to Nash-implement ρ = −∞ by a different mechanism (see below), but we were
not able to resolve whether ρ = 1 is Nash-implementable. We leave this as an
open question.

Results for Dominant Strategy Implementation and Maxmin Welfare.
A natural question is whether these results can be improved from Nash imple-
mentation to implementation in dominant strategy equilibrium (DSE). We show
that the answer is mostly no: for any ρ ∈ (−∞, 1], there is no mechanism which
DSE-implements CES welfare maximization.

On the positive side, we show that maxmin welfare (ρ = −∞) can in fact be
DSE-implemented by a simple revelation mechanism. This is actually stronger
than strategyproofness: strategyproofness requires truth-telling to be a DSE,
but does not rule out the possibility of additional dominant strategy equilibria
that are not optimal. In contrast, DSE implementation requires every DSE to
be optimal.

Although every DSE is also a Nash equilibrium, DSE-implementability does
not imply Nash-implementability [14]. A DSE implementation requires every
DSE to be optimal, but there could be Nash equilibria (which are not domi-
nant strategy equilibria) that are not optimal. This means that our above result
does not imply Nash-implementability of maxmin welfare. In fact, our revelation
mechanism which DSE-implements maxmin welfare is not a Nash implementa-
tion: there exist Nash equilibria which are not optimal (see the full version of
this paper for the counterexample). Our last result is that there is a different
mechanism which does Nash-implement maxmin welfare.9

All proofs, along with the formal mathematical model, can be found in the
full version of the paper [35].

3 Related Work

Trading Post and Market Games. The trading post mechanism – first pro-
posed by Shapley and Shubik [40], and sometimes called the “Shapley-Shubik
game”10 – is an example of a strategic market game (for an overview of strategic
market games, see [20]). The study of markets has a long history in the eco-
nomics literature [2,7,41,43]11, but most of this work assumes that agents are

9 The mechanism for this result is unrelated to trading post: our trading post approach
breaks down for both maxmin welfare and utilitarian welfare. This is because gj(x) =
qjx

1−ρ is not a valid price curve when ρ → −∞ or when ρ = 1.
10 A plethora of other names have been applied to this mechanism as well, including

the proportional share mechanism [18], the Chinese auction [28], and the Tullock
contest in rent seeking [10].

11 Recently, this topic has garnered significant attention in the computer science com-
munity as well (see [42] for an algorithmic exposition).
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price-taking, meaning that they treat the market prices are fixed, and do not
behave strategically to affect these prices.12 A market game, however, treats
the agents as strategic players who wish to selfishly maximize their own utility.
Trading post does not have explicit prices set by a centralized authority: instead,
prices arise implicitly from agents’ strategic behavior. In particular,

∑
k bkj – the

aggregate bid on good j – functions as the implicit price of good j. Although
the trading post mechanism is well-defined for any utility functions, the Nash
equilibria are not guaranteed to have many nice properties in general, except in
the limit as the number of agents goes to infinity [15] (in this case, the trading
post Nash equilibria converge to the price-taking market equilibria).

The paper most relevant to ours is [9], which analyzed the performance of
trading post (with a linear bid constraint) with respect to Nash welfare. They
showed that for Leontief utilities (which generalize bandwidth allocation), a
modified trading post mechanism approximates the Nash welfare arbitrarily well.
Specifically, for any ε > 0, they gave a mechanism (parameterized by ε) which
achieves a 1 − ε Nash welfare approximation: there is at least one Nash equi-
librium, and every Nash equilibrium has Nash welfare at least 1 − ε times the
optimal Nash welfare. Thus the price of anarchy is at most 1

1−ε ; equivalently,
this mechanism Nash-implements a 1 − ε approximation of Nash welfare. The
reason that they were unable to perfectly implement Nash welfare is because
when there is a good that should have price zero, vanilla trading post may not
even have a Nash equilibrium. To fix this, they added a minimum allowable bid,
and showed that for any ε > 0, there is a minimum bid that gives them a 1 − ε
Nash implementation. Instead of restricting the bid space with a minimum bid,
our mechanism enhances the bid space by adding a special bid β. This which
will allow us to strengthen the result to full Nash implementation.

It is worth noting that [9] also considers a broader class of utility functions
than Leontief (general concave utility functions), but for this broader class, only
a 1/2 approximation is achieved. Another paper gave a strategyproof mecha-
nism achieving a 1/e ≈ .368 approximation of the optimal Nash welfare when
utility functions are homogeneous of degree one (this also generalizes Leon-
tief) [12]. Their 1/e approximation guarantee is weaker than the 1/2 guarantee
of [9] (and the 1 − ε guarantee for Leontief), but strategyproofness is sometimes
more desirable that Nash implementation. Unfortunately, strategyproofness in
the bandwidth allocation setting is generally impossible (see the full version of
the paper: [35]).

Price-Taking Markets. The simplest mathematical model of a price-taking
market is a Fisher market, due to Irving Fisher [7]. In a Fisher market, there
is a set of goods for sale, and each buyer enters the market with a budget she
wishes to spend. Each good has a price, and each buyer purchases her favorite
bundle among those that are affordable under her budget constraint. Prices are
linear, meaning that the cost of a good is proportional to the quantity pur-
chased, and buyers are assumed to have no value for leftover money, so they will
12 There is some work treating price-taking market models as strategic games; see e.g.,

[1,8,9].
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always exhaust their entire budgets. A market equilibrium assigns a price to each
good so that the demand exactly equals the supply. For a wide class of agent
utilities, including bandwidth allocation utilities, an equilibrium is guaranteed
to exist [2].13 The seminal work of Eisenberg and Gale showed that for linear
prices and a large class of agent utilities (including bandwidth allocation), the
market equilibria correspond exactly to the allocations maximizing Nash wel-
fare [16,17].14 Furthermore, the prices are equal to the optimal Lagrange multi-
pliers in the convex program for maximizing Nash welfare (the Eisenberg-Gale
convex program).

Recently, [21] extended this model to allow nonlinear prices, where the cost
of a good may be any nondecreasing function of the quantity purchased. These
functions are called price curves. They showed that for bandwidth allocation, for
any ρ ∈ (−∞, 1), there exist price curves such that the set of market equilibria
are exactly the set of maximum CES welfare allocations. Furthermore, these
prices take a natural form: the cost of purchasing x ∈ R≥0 of good j is gj(x) =
qjx

1−ρ, for some nonnegative constants q1 . . . qm. Interestingly, for ρ = 0 – which
denotes Nash welfare – this function form reduces to a linear price qj , and we
know that linear pricing maximizes Nash welfare. Furthermore, q1 . . . qm are the
optimal Lagrange multipliers in the convex program for maximizing CES welfare.

Trading post with linear bid constraints (
∑

j bij ≤ 1) can be thought of as a
market game equivalent of the Fisher market model: it implements Nash welfare
([9] proved a 1 − ε approximation, but we will strengthen this to exact imple-
mentation), and the implicit trading post prices (the aggregate bids) are equal
to the Fisher market equilibrium prices. Our augmented trading post, with bid
constraint

∑
j fj(bij) ≤ 1, can be thought of as a market game equivalent of the

price curves model. The augmented trading post mechanism we use to imple-
ment CES welfare will use fj(b) = b1−ρ for each good j, further strengthening
this analogy.

Bandwidth Allocation. Bandwidth allocation has been studied both with and
without monetary payments; we focus on the latter setting, following the model
of Kelly et al. [24]. It has been known that different marking schemes (such
as RED and CHOKe [19,33]) and versions of TCP lead to different objective
functions [32], with CES welfare (also known as “α-fairness”) being one such
objective [6,29]. However, a market-based understanding was developed only for
Nash Welfare (also known as “proportional fairness”), starting with the pioneer-
ing work of Kelly et al. [24]. Furthermore, the market scheme of Kelly et al.
is in the price-taking setting; the only strategic market analysis of bandwidth

13 Specifically, an equilibrium is guaranteed to exist as long agent utilities are contin-
uous, quasi-concave, and non-satiated. The full Arrow-Debreu model also allows for
agents to enter to market with goods themselves and not only money; the necessary
conditions on utilities are slightly more complex in that setting.

14 The conditions for the correspondence between Fisher market equilibria and Nash
welfare are slightly stricter than those for market equilibrium existence, but are still
quite general. Sufficient criteria were given in [16] and generalized slightly by [22].
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allocation that we are aware of is the 1 − ε approximation of Nash welfare due
to [9].

Implementation Theory. Implementation theory is the study of designing
mechanisms whose outcomes coincide with some desirable social choice rule. A
social choice rule could be the maximization of a cardinal function, such as a CES
welfare function, or something else, such as the set of Pareto optimal allocations.
A full survey is outside the scope of this paper; we direct the interested reader
to [27].

The “outcome” of a mechanism is not really well-defined; we need to specify
a solution concept. The solution concept that we focus on for most of this paper
is Nash equilibrium. Possibly the most crucial result regarding implementation
in Nash equilibrium (Nash implementation, for short) is due to Maskin [26],
who identified a necessary condition for Nash implementation, and a partial
converse. He showed that in a very general environment (much broader than
bandwidth allocation), any Nash-implementable social choice rule must satisfy
what he calls monotonicity. Monotonicity, in combination with a property called
no veto power, is sufficient for Nash implementation. In the full version of this
paper, we show that CES welfare functions do not satisfy no veto power, and so
cannot be Nash-implemented by Maskin’s approach [35].

4 Conclusion and Future Work

In this paper, we presented an augmented trading post mechanism which can
Nash-implement any CES welfare function except ρ = 1. This strengthened pre-
vious results which only handled Nash welfare [9] or assumed agents did not
behave strategically [21]. In the full version of the paper [35], we show that
DSE implementation for this problem is generally impossible, with the excep-
tion of maxmin welfare, where a simple revelation mechanism does indeed DSE-
implement maxmin welfare. Although this revelation mechanism does not Nash-
implement maxmin welfare, we are able to Nash-implement maxmin welfare with
a different mechanism.

We were not able to resolve whether utilitarian welfare is Nash-implementable
for bandwidth allocation. Our trading post mechanism breaks down in this set-
ting, since fj(b) = b1−1 = 1 is not a valid constraint curve. Maskin’s monotonic-
ity approach is not viable either, since utilitarian welfare does not satisfy no veto
power. We leave this as an open question.

Another interesting direction would be to extend these results to a wider
range of utility functions. Our reduction between price curves and trading post
means that if price curve equilibria maximizing CES welfare were shown to exist
for a wider range of utility functions, it seems likely that our Nash implementa-
tion results would carry over as well (depending on the form of the price curves).

It would also be interesting to consider another dimension of strategic behav-
ior by allowing agents to choose which path in the network to use. In this case, we
could write each agent’s utility function as ui(xi) = maxp∈Pi

minj∈p xij , where
Pi is the set of paths from agent i’s desired source to desired destination. This
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is reminiscent of routing games, in that agents are strategically choosing their
paths, but still distinct, in that each agent may use the same link in different
quantities (i.e., receive different amounts of bandwidth). Although this model is
less accurate in terms of how the internet actually works (see Sect. 1), it may be
an appropriate model for other situations.

More broadly, we feel that trading post is a powerful mechanism that is able
to simulate a price-taking market while also handling strategic behavior. We
wonder if trading post, or variants thereof, may be useful in designing mecha-
nisms for other resource allocation problems as well.
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Abstract. We study market mechanisms for allocating divisible goods
to competing agents with quasilinear utilities. For linear pricing (i.e., the
cost of a good is proportional to the quantity purchased), the First Wel-
fare Theorem states that Walrasian equilibria maximize the sum of agent
valuations. This ensures efficiency, but can lead to extreme inequality
across individuals. Many real-world markets – especially for water – use
convex pricing instead, often known as increasing block tariffs (IBTs).
IBTs are thought to promote equality, but there is a dearth of theoretical
support for this claim.

In this paper, we study a simple convex pricing rule and show that
the resulting equilibria are guaranteed to maximize a CES welfare func-
tion. Furthermore, a parameter of the pricing rule directly determines
which CES welfare function is implemented; by tweaking this parame-
ter, the social planner can precisely control the tradeoff between equality
and efficiency. Our result holds for any valuations that are homogeneous,
differentiable, and concave. We also give an iterative algorithm for com-
puting these pricing rules, derive a truthful mechanism for the case of a
single good, and discuss Sybil attacks.

Keywords: Walrasian equilibrium · Convex pricing · First Welfare
Theorem

1 Introduction

Markets are one of the oldest mechanisms for distributing resources; indeed,
commodity prices were meticulously recorded in ancient Babylon for over 300
years [36,37]. In a market, buyers and sellers exchange goods according to some
sort of pricing system, and Walrasian equilibrium1 occurs when the demand
of the buyers exactly equals the supply of the sellers. This concept was first
studied by Walras in the 1870’s [41]. In 1954, Arrow and Debreu showed that
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1 This is also known as market equilibrium, competitive equilibrium, and general equi-

librium, depending on the context.
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under some conditions, a Walrasian equilibrium is guaranteed to exist [1]. Most
of the literature on Walrasian equilibrium only considers linear pricing, meaning
the cost of a good is proportional to the quantity purchased.

In this paper, we consider the problem of allocating divisible goods to com-
peting agents via a market mechanism. We assume each agent has quasilinear
utility: an agent’s utility is her value for the resources she obtains (her valuation),
minus the money she spends (her payment). The First Welfare Theorem states
that in this setting, the linear-pricing Walrasian equilibria are exactly the allo-
cations maximizing utilitarian welfare, i.e., the sum of agent valuations. Thus
linear pricing implements utilitarian welfare in Walrasian equilibrium (some-
times abbreviated “WE”).

The result is powerful, but also limiting. Maximizing utilitarian welfare yields
the most efficient outcome, but may also cause maximal inequality (see Fig. 1).

One common alternative is convex pricing. In this paper, we study convex
pricing rules p of the form

p(xi) =
(∑

j

qjxij

)1/ρ

where xi is bundle agent i receives, xij ∈ R≥0 is the fraction of good j she
receives, q1, . . . , qm are constants, and ρ ∈ (0, 1] determines the curvature of
the pricing rule. Like linear pricing, p is still anonymous, meaning that agents’
payments depend only on their purchases (and not on their preferences, for
example).

When ρ = 1, p reduces to linear pricing. When ρ < 1, p is strictly convex,
meaning that doubling one’s consumption will more than double the price. This
will make it easy to buy a small amount, but hard to buy a large amount, which
intuitively should lead to a more equal distribution of resources. As the curvature
of the pricing rule grows, this effect should be amplified, leading to a different
equality/efficiency tradeoff.

Our work seeks to formalize that claim. We will show that the Walrasian
equilibria of these convex pricing rules are guaranteed to maximize a constant
elasticity of substitution (CES) welfare function, where the choice of ρ determines
the specific welfare function and thus the precise equality/efficiency tradeoff
(Theorem 2.1). Our result holds for a wide range of agent valuations.

Convex Pricing in the Real World. Convex pricing is especially pervasive in
the water sector, where such pricing rules are known as increasing block tariffs
(IBTs) [42], typically implemented with discrete blocks of water (hence the name).
IBTs have been implemented and empirically studied in Israel [4], South Africa [9],
Spain [17], Jordan [22], and the United States [32], among many other countries.

IBTs are often claimed to promote equality in water access [42], but there
has been limited theoretical evidence supporting this (see [25] for one of the only
examples). On the other hand, a common concern is that IBTs may lead to poor
“economic efficiency” [7,25]. Our work shows that at least on a theoretical level,
convexity of pricing does not necessarily lead to inefficiency: it simply maximizes
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w1 = 1 w2 = 6 w3 = 5

price = 6

w1 = 1 w2 = 6 w3 = 5

Fig. 1. An example of how linear pricing can lead to maximal inequality. Consider the
three agents above and a single good (say, water), where each agent i’s value for x
units of the good is wi ·x. The unique linear-pricing Walrasian equilibrium sets a price
of 6 per unit, which results in agent 2 buying all of the good and the other two agents
receiving nothing. More generally, the equilibrium price reflects the maximum anyone
is willing to pay, and anyone who is not willing to pay that much is priced out of the
market and receives nothing. In contrast, our nonlinear pricing rule always ensures that
everyone receives a nonzero amount; see Sect. 2.

a different welfare function than the traditional utilitarian one. In particular, it
maximizes a CES welfare function.

The Second Welfare Theorem and Personalized Pricing. The Second
Welfare Theorem is perhaps the most famous theoretical result regarding imple-
mentation in Walrasian equilibrium. It states any Pareto optimum can be a WE
when an arbitrary redistribution of initial wealth is allowed.2 Another method
that achieves the same goal is personalized pricing, where different agents can
be charged different (linear) prices. In contrast, convex pricing is anonymous:
agents purchasing the same bundle always pay the same price.

Each of these approaches certainly has its own pros and cons. In this paper,
our goal is not to claim that convex pricing is “better” than other approaches
(or vice versa). Regardless of which is “better” in any given situation, convex
pricing is widely used in practice, and is often claimed to promote equality. Our
goal in this paper is to formally quantify that claim.

1.1 CES Welfare Functions

A welfare function [5,33] assigns a real number to each possible outcome, with
higher numbers (i.e, higher welfare) indicating outcomes that are more desirable
to the social planner. Different welfare functions represent different priorities;
our focus will be the tradeoff between overall efficiency and individual equality.
For a fixed constant ρ ∈ (−∞, 0) ∪ (0, 1], the constant elasticity of substitution
(CES) welfare of outcome x is

Φ(ρ,x) =
( ∑

agents i

vi(x)ρ

)1/ρ

2 Specifically, for any Pareto optimal allocation, there exists a redistribution of initial
wealth which makes that allocation a WE. However, our quasilinear utility model
does not have a concept of initial wealth (alternatively, initial wealth is simply an
additive constant in agents’ utilities which does not affect their behavior), so this
result is not as mathematically relevant. See Sect. 3 for additional discussion.
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where vi(x) is agent i’s value for x. In general, different values of ρ will lead
to different optimal allocations, so whenever we say “maximum CES welfare
allocation”, we mean with respect to a fixed value of ρ.

For ρ = 1, this is utilitarian welfare, i.e., the sum of valuations. The limit as
ρ → −∞ yields max-min welfare (the minimum valuation) [31,34,35], whereas
ρ → 0 yields Nash welfare (the product of valuations) [20,27]. The closer ρ gets
to −∞, the more the social planner cares about individual equality (max-min
welfare being the extreme case of this), and the closer ρ gets to 1, the more
the social planner cares about overall societal good (utilitarian welfare being
the extreme case of this). For this reason, ρ is called the inequality aversion
parameter, and this family of welfare functions is thought to exhibit an equal-
ity/efficiency tradeoff.

These welfare functions were originally proposed by Atkinson [3]; indeed, his
motivation was to measure the level of inequality in a society. Despite being
extremely influential in the traditional economics literature (see [10] for a sur-
vey), the CES welfare function has received almost no attention in the compu-
tational economics community.3

Finally, note that Φ(ρ,x) is defined with respect to the each agent’s valuation
vi and not her overall quasilinear utility ui. We acknowledge that it is standard
to define welfare with respect to the overall utility ui, and we have two reasons
for not doing so. First, in the case of scarce resources, a social planner may be
interested in equality in consumption (e.g., equality in water access), not just
equality in utility derived. Second, it turns out mathematically that this is the
welfare function maximized by convex pricing WE in our model; the version
where Φ(ρ,x) considers ui may be not be maximized by the resulting WE. This
may yield valuable qualitative insights about convex pricing; for example, does
convex pricing lead to equality with respect to consumption but not necessarily
with respect to underlying utility?

CES Welfare in Healthcare. These welfare functions have also seen substan-
tial use in healthcare under the name of isoelastic welfare functions. This began
with [40], largely motivated by concerns about purely utilitarian approaches
to healthcare (i.e., allocating resources to maximize total health in a commu-
nity, without concern for equality). Since these decisions can affect who lives
and who dies, significant effort has been invested into understanding the equal-
ity/efficiency tradeoff, with this class of welfare functions serving as a theoretical
tool [11,29,40]; see Sect. 3 for additional discussion. Despite the ongoing interest
in this tradeoff, the healthcare literature has not (to our knowledge) considered
convex pricing as a mechanism for balancing equality and efficiency.

More broadly, our work can be thought of as weaving together the previously
disjoint threads of CES welfare and convex pricing to provide theoretical support
for the oft-cited but rarely quantified claim that IBTs promote equality.

3 To our knowledge, only three other computational economics papers have studied
CES welfare in any context: [2,18,30].



Counteracting Inequality in Markets via Convex Pricing 93

2 Results

2.1 Main Result: Convex Pricing Implements CES Welfare
Maximization in Walrasian Equilibrium

Our main result is that for convex pricing of the form p(xi) = (
∑

j qjxij)1/ρ for
any ρ ∈ (0, 1]4, a Walrasian equilibrium is guaranteed to exist, and every WE
maximizes CES welfare with respect to ρ. This holds for a wide range of agent
valuations.

Theorem 2.1. Assume each valuation is homogeneous of degree r,5 differen-
tiable, and concave, and fix ρ ∈ (0, 1]. Then an allocation x = (x1, . . . , xn)
maximizes CES welfare if and only if there exist constants q1, . . . , qm ∈ R≥0

such that for the pricing rule

p(xi) =
( ∑

j

qjxij

)1/ρ

,

x and p form a WE.

Note that the ρ in p(xi) is the same ρ for which CES welfare is maximized.
We call the reader’s attention to two important aspects of this result. Per-

haps most importantly, our result is not simply a reformulation of the First
Welfare Theorem: although maximizing CES welfare for valuations v1, . . . , vn is
equivalent to maximizing utilitarian welfare for valuations vρ

1 , . . . , v
ρ
n, the First

Welfare Theorem does not say anything about the agent demands in response to
this convex pricing rule. The First Welfare Theorem also does not help with iden-
tifying the exact conditions under which Theorem2.1 holds, e.g., homogeneity
of valuations.6

Secondly, the class of homogeneous, differentiable, and concave valuations is
quite large: it generalizes most of the commonly studied valuations, e.g., linear,
Cobb-Douglas, and CES (note that here we are referring to CES agent valuations,
not CES welfare functions). Although Leontief valuations are not differentiable,
we handle them as a special case and show that the same result holds.

The following additional properties are of note:

1. For this class of utilities, Theorem 2.1 generalizes the First Welfare Theorem:
when ρ = 1, p(xi) yields linear pricing and CES welfare yields utilitarian
welfare.

4 The case of ρ < 0 is slightly unintuitive, as it can result in agents who care more
receiving less of the good. Consequently, implementation in WE is impossible (The-
orem 2.6).

5 A valuation is homogeneous of degree r if scaling any bundle by a constant c scales
the resulting value by cr.

6 In fact, not only is homogeneity necessary, but homogeneity of the same degree is
necessary: if we allow the degree of homogeneity to differ across agents, the result
no longer holds (Theorem 2.5).
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2. The constants q1, . . . , qm will be the optimal Lagrange multipliers for a convex
program maximizing CES welfare.

3. Our pricing rule is strictly convex for ρ < 1, with the curvature growing as
ρ goes to 0. The smaller ρ gets, the easier it is to buy a small amount, but
the harder it is to buy a large amount. Intuitively, this should prevent any
single individual from dominating the market and lead to a more equitable
outcome. Furthermore, the marginal price at xi = 0 is zero, which ensures
that everyone ends up with a nonempty bundle (in contrast to linear pricing:
see Fig. 1). Theorem 2.1 provides a tight relationship between the curvature
of the pricing rule and the exact equality/efficiency tradeoff.

Due to space constraints, all proofs are deferred to the full version of the
paper [19].

Towards an Implementation. We also prove several supporting results: in
particular, regarding implementation. The WE from Theorem2.1 can always be
computed by asking each agent for her entire utility function, and then solving a
convex program for maximizing CES welfare maximization to obtain the optimal
Lagrange multipliers q1, . . . , qm. However, this is not very practical: people are
generally not able to articulate a full cardinal utility function, and even if they
are, doing so could require transmitting an enormous amount of information. Our
first supporting result is an iterative algorithm for computing the WE, where
in each step, each agent only needs to report the gradient of her valuation at
the current point. Our algorithm is based on the ellipsoid method, and inherits
its polynomial-time convergence properties. We recognize that even valuation
gradient queries may be difficult for agents to answer, and we leave the possibility
of an improved implementation – in particular, a tâtonnement7 – as an open
question.

2.2 Truthfulness

Our second supporting result considers a different approach to implementation:
truthful mechanisms. Walrasian equilibria are generally not truthful: agents can
lie about their preferences to affect the equilibrium prices for their personal
gain.8 For ρ = 1, the Vickrey-Clarke-Groves (VCG) mechanism is known to
truthfully maximize utilitarian welfare [28]. For the case of a single good and
any ρ ∈ (0, 1), we give a mechanism which truthfully maximizes CES welfare:

Theorem 2.2. Assume m = 1, and that each vi is homogenous of degree r (with
r publicly known), concave, and differentiable. Then for all ρ ∈ (0, 1), there is a
truthful mechanism which outputs an allocation x maximizing Φ(ρ,x).
7 A tâtonnement is an iterative algorithm which only asks demand queries, i.e., what

would each agent purchase given the current prices. Demand queries may be easier
to answer than the valuation gradient queries in our algorithm.

8 Another interpretation is that WE assumes agents are price-taking (i.e., treat the
prices are given and do not lie about their preferences to affect the equilibrium
prices) and breaks down when agents are price-anticipating.



Counteracting Inequality in Markets via Convex Pricing 95

We also show that our mechanism is the unique truthful mechanism up to an
additive constant in the payment rule The proof of Theorem2.3 is quite involved,
and requires techniques from real analysis such as Kirszbraun’s Theorem for
Lipschitz extensions and the Fundamental Theorem of Lebesgue Calculus.

Theorem 2.3. Assume m = 1, and that each vi is homogenous of degree r
(with r publicly known), concave, and differentiable. Fix ρ ∈ (0, 1), and let Γ be
a truthful mechanism which outputs an allocation x ∈ Ψ(ρ). Then the allocation
rule is the same as the mechanism for Theorem2.2, and the payment rule pi(b)
is the same up to an additive constant.

2.3 Negative Results

We prove the following negative results. Most importantly, we show that for any
ρ �= 1, linear-pricing WE can have arbitrarily poor CES welfare; were this not
the case, perhaps it would suffice to simply use linear pricing and accept an
approximation of CES welfare.

Theorem 2.4. Let m = 1, ρ ∈ (0, 1], v1(x) = (1 + ε)x for some ε > 0, and
vi(x) = x for all i �= 1. Suppose (x, p) is a WE where p is linear. Then

Φ(ρ,x)
maxy Φ(ρ,y)

≤ 1 + ε

n
1
ρ −1

Next, note that Theorem 2.1 requires each agent’s valuation to be homo-
geneous with the same degree r. We show that when agents’ valuations have
different homogeneity degrees, there exist instances where no pricing rule can
implement CES welfare maximization in WE, and thus our assumption is nec-
essary.

Theorem 2.5. Let n = 2 and m = 1, and for x ∈ R≥0, let v1(x) = x and
v2(x) =

√
2x. Then for all ρ ∈ (0, 1), there exists no allocation x ∈ Ψ(ρ) and

pricing rule p : R≥0 → R≥0 such that (x, p) is a WE.

We also show that CES welfare maximization cannot be implemented in WE
for ρ < 0:

Theorem 2.6. Consider the instance with n = 2, m = 1, v1(x) = x and v2(x) =
2x. Then for every ρ < 0, there is no pricing rule p and allocation x ∈ Ψ(ρ)
such that (x, p) is a WE.

There is an additional crucial issue which any practical implementation of
Theorem 2.1 would need to address: Sybil attacks. A Sybil attack is when a selfish
agent attempts to gain an advantage in a system by creating fake identities [13].
Since the pricing rule from Theorem 2.1 is strictly convex for ρ < 1, an agent can
decrease her payment by masquerading as multiple individuals and splitting her
purchase across those identities.9 We propose a model for analyzing Sybil attacks
9 In contrast, for ρ = 1, there is nothing to be gained by creating fake identities.
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in markets, and show that if these attacks are possible, there exist instances
where no pricing rule can implement CES welfare maximization in WE:10

Theorem 2.7. Assume each vi is concave, differentiable, and homogeneous of
degree 1. Let ρ ∈ (0, 1], and define p as in Theorem 2.1. Then for any allocation
x and multiplicities η such that (x, p,η) is a SWE, we have

vi(xi) ≤ κ

1 − ρ

3 Related Work

The study of markets has a long history in economics [1,8,16,38,41]. Recently,
this topic has received substantial attention in the computer science community
as well (see [39] for an algorithmic introduction). We first provide some impor-
tant background on different market models and the First and Second Welfare
Theorems, and then move on to more recent related work.

Quasilinear Markets and Fisher Markets. There are two primary market
models for divisible goods. This paper considers the quasilinear utility model,
where each agent can spend as much as she wants, and the amount spent is
incorporated into her utility function. The other predominant model is the Fisher
market model [8,16], where each agent has a fixed budget constraint, and the
amount spent does not affect her resulting utility (as a result, each agent always
spends exactly her budget). Although these two models share many of the same
conceptual messages, some of the technical results vary. See the full version of
the paper [19] for the precise technical relationship between the two models with
respect to WE and CES welfare maximization.

Since agents in Fisher markets always spend exactly their budgets, there is no
way to elicit the absolute scale of agent valuations. Nash welfare maximization
is invariant to this type of scaling, but no other CES welfare function is [26]. For
this reason, the Fisher market model is not well suited to reason about other
welfare functions. In contrast, the quasilinear model does allow agents to express
the absolute scale of their valuation: specifically, by choosing how much to spend.
That is one reason that we focus on the quasilinear model for this paper. The
other is that convex pricing is most easily applied to a small submarket of the
broader economy (e.g., water pricing), and quasilinear utility captures the fact
that agents may wish to spend money on other goods outside of this submarket.
In contrast, Arrow and Debreu’s model (see below) can arguably capture the
entire economy, so there is nothing outside of the market to spend money on.
10 There are combinations of parameters, however, where our pricing rule is naturally

robust to Sybil attacks: in particular, when vi(x)(1 − ρ) ≤ κ (where vi(x) is agent
i’s value for the maximum CES welfare allocation and κ is the identity creation
cost). This suggests a natural way for an equality-focused social planner to choose a
specific value for ρ: estimate the identity creation cost and scale of valuations in the
system of interest, and pick ρ to be as small as possible without incentivizing Sybil
attacks.
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The First and Second Welfare Theorems. Conceptually, the First Welfare
Theorem establishes an efficiency property that any WE must satisfy, and the
Second Welfare Theorem deals with implementing a wide range of allocations
as WE. The two welfare theorems originate in the context of Arrow-Debreu
markets [1], which generalize Fisher markets to allow for (1) agents to enter the
market with goods (as opposed to just money)11 and (2) production of goods.
The statements of the First and Second Welfare Theorems in that model are,
respectively, “Any (linear pricing) WE is Pareto optimal” and “Any Pareto
optimal allocation can be a (linear pricing) WE with transfers, i.e., under a
suitable redistribution of initial wealth”.

In the Fisher market and quasilinear utility models, the First Welfare The-
orem can be strengthened to “Any (linear pricing) WE maximizes budget-
weighted Nash welfare” [14,15,39] and “Any (linear pricing) WE maximizes
utilitarian welfare”, respectively. The version of the Second Welfare Theorem
stated above is appropriate for Fisher markets, since agents’ budgets consti-
tute the “initial wealth”. However, for quasilinear utilities, there is no notion of
initial wealth (alternatively, initial wealth is an additive constant in agents’ util-
ities which does not affect their behavior). Thus for quasilinear utilities, allowing
transfers actually does not affect the set of WE. This may seem counterintuitive,
since the Second Welfare Theorem (which still holds in this setting) states that
any Pareto optimum can be a WE. However, Pareto optimality here is referring
to agents’ overall quasilinear utilities, not the agents’ valuations. It can be shown
that the only allocations which are Pareto optimal with respect to the quasilinear
utilities are allocations maximizing utilitarian welfare, which are already covered
by the First Welfare Theorem (without transfers).

Thus on a technical level, the Second Welfare Theorem is not helpful in the
world of quasilinear utilities. However, even when the Second Welfare Theorem
is mathematically relevant, a centrally mandated redistribution of wealth is often
out of the question in practice.

The Equality/Efficiency Tradeoff in Healthcare. In Sect. 1.1, we dis-
cussed how CES welfare has been studied from a theoretical perspective in
healthcare [11,29,40]. There have also been several empirical studies aiming
to understand the general population’s view of the equality/efficiency tradeoff,
with results generally indicating a disapproval of purely utilitarian approaches
to healthcare [12,43]. For example, a survey of 449 Swedish politicians found
widespread rejection of purely utilitarian decision-making in healthcare, and
under some conditions, the respondents were willing to sacrifice up to 15 of 100
preventable deaths in order to ensure equality across subgroups [23].

CES Welfare and α-Fairness in Networking. CES welfare functions have
also enjoyed considerable attention from the field of networking, under the name
of α-fairness (the parameter α corresponds to 1 − ρ in our definition). The
α-fairness notion was proposed by [24], motivated in part as a generalization
of the prominent proportional fairness objective (which is equivalent to Nash

11 These are known as “exchange markets” or “exchange economies”.
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welfare) [21]. See [6] and references therein for further background on α-fairness
in networking. To our knowledge, a market-based understanding was developed
only for proportional fairness, starting with the seminal work of Kelly et al. [21].

Nonlinear Market Mechanisms and CES Welfare Maximization. We are
aware of just two papers studying market mechanisms for CES welfare functions:
[18,30]. Like our work, both of these papers explore nonlinear pricing rules, but
unlike our work, only consider Leontief valuations. Furthermore, both of those
papers are in the Fisher market model and only achieve CES welfare maximiza-
tion under strong assumptions on the absolute scale of the agents’ valuations.12

In contrast, our main result holds for any valuations that are homogeneous of
degree r, differentiable, and concave, a much larger range of valuations. (Leontief
valuations are not differentiable, but we handle them as a special case in the full
version of the paper and show that our result still holds [19].) It is worth not-
ing that [18] focuses on the WE model, whereas [30] considers strategic agents
and Nash equilibria. On a related note, we are not aware of any broader results
regarding general nonlinear pricing, i.e., what set of allocations can be imple-
mented if we allow p(xi) to be any nondecreasing function of xi (but still require
anonymity)? This could be an interesting direction for future work.

4 Conclusion

In this paper, we studied a simple family of convex pricing rules, motivated
by the widespread use of convex pricing in the real world, especially for water.
We proved that these pricing rules implement CES welfare maximization in Wal-
rasian equilibrium, providing a formal quantitative interpretation of the frequent
informal claim that convex pricing promotes equality. Furthermore, by tweak-
ing the exponent of the pricing rule, the social planner can precisely control
the tradeoff between equality and efficiency. This result also shows that convex
pricing is not necessarily economically inefficient, as often claimed; it simply
maximizes a different welfare function than the traditional utilitarian one. All
proofs can be found in the full version of the paper [19].

Improved implementation is perhaps the most important of the future direc-
tions we propose. One concrete possibility is a tâtonnement : an iterative algo-
rithm where on each step, each agent reports her demand for the current pricing
rule, and the pricing rule is adjusted accordingly. Demand queries are arguably
easier for agents to answer than valuation gradient queries. Some implementa-
tion questions – in particular, how to deal with Sybil attacks – would likely need
to be handled on a case-by-case basis.

Aside from the implementation itself, there is the additional challenge of con-
vincing market designers to consider using this type of convex pricing. Equality
is generally thought to be desirable, but sellers may be concerned that this will

12 In particular, that each agent’s weight for each good is either 0 or 1. This subclass
of Leontief valuations is known as “bandwidth allocation” valuations, where each
good is a link in a network, and agents transmit data over fixed paths.
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decrease their revenue. In future work, we hope to show that our pricing rule
guarantees a good approximation of the optimal revenue for sellers.

Another possible direction would be CES welfare maximization for indivisible
goods. The analogous pricing rule would be p(S) = (

∑
j∈S qj)1/ρ, where S is a

set of indivisible goods. It seems like very different theoretical techniques would
be needed in this setting (along with perhaps a gross substitutes assumption),
but we suspect that the same intuition of convex pricing improving equality
would hold.
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Abstract. Public goods are often either over-consumed in the absence
of regulatory mechanisms, or remain completely unused, as in the Covid-
19 pandemic, where social distance constraints are enforced to limit the
number of people who can share public spaces. In this work, we plug this
gap through market mechanisms designed to efficiently allocate capacity
constrained public goods. To design these mechanisms, we leverage the
theory of Fisher markets, wherein each agent is endowed with an artificial
currency budget that they can spend to avail public goods. While Fisher
markets provide a strong methodological backbone to model resource
allocation problems, their applicability is limited to settings involving
two types of constraints - budgets of individual buyers and capacities of
goods. Thus, we introduce a modified Fisher market, where each indi-
vidual may have additional physical constraints, characterize its solution
properties and establish the existence of a market equilibrium. Further-
more, to account for additional constraints we introduce a social convex
optimization problem where we perturb the budgets of agents such that
the KKT conditions of the perturbed social problem establishes equilib-
rium prices. Finally, to compute the budget perturbations we present a
fixed point scheme and illustrate convergence guarantees through numer-
ical experiments. Thus, our mechanism, both theoretically and computa-
tionally, overcomes a fundamental limitation of classical Fisher markets,
which only consider capacity and budget constraints.

1 Introduction

A public good is a product that an individual can consume without reducing its
availability to others and of which no one is deprived. In reality, almost no good
can satisfy the precise definitions of both non-rivalry and non-excludability [6], as
these goods often suffer from over consumption [22], which leads to a decreased
utility for consumers. This phenomena becomes more so during the Covid-19
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pandemic, where social distance constraints are enforced so that only a limited
number of people can share public spaces [16]. A consequence of such constraints
is that it results in completely closing parks or beaches [1], which leads to goods
becoming non-public. These contrasting outcomes of overused and underused
public resources in society, illustrated in Fig. 1, highlight the need for regulatory
mechanisms that impose restrictions on the use of shared resources.

Fig. 1. The current scenario involving either an overcrowded beach (left) or a com-
pletely unused beach (right) generating no value to society.

In this paper, we attempt to design market mechanisms to efficiently allocate
shared resources and thereby achieve an intermediate between these opposing and
undesirable outcomes. To achieve such a balance, we study capacity constrained
public resources and distribute consumer load over public good alternatives. As
demand often outweighs supply of public goods, we need to make decisions on
who gets preference to use capacity constrained public spaces. These allocation
decisions are facilitated through a pricing mechanism that ensures the formation
of a market equilibrium, i.e., each agent purchases their most preferred bundle of
goods affordable under the set prices. The pricing decisions must be made with
fairness considerations, as public goods are by design available to all individuals
and of which no person is deprived. We ensure fairness of our mechanism through
two methods. First, we use artificial currencies to ensure that allocations are not
biased towards those with higher incomes. Second, when setting prices we simulta-
neously take into account individual consumer preferences, i.e., each agent’s util-
ity, while ensuring that resulting allocations are beneficial for society.

To study our resource allocation problem under capacity constraints while
considering both individual preferences and societal benefit, we resort to the
canonical model of Fisher markets. In a Fisher market, consumers spend their
budget of money (or artificial currency) to buy goods that maximize their util-
ities, while producers sell capacity constrained goods in exchange for currency.
A key property of interest is the formation of an equilibrium when the market
clears, i.e. all budgets are spent and all goods are sold. At this equilibrium, buyers
get their most preferred bundle of goods, while a social objective is maximized.

We first describe each agent’s individual optimization problem in Fisher mar-
kets. In this framework, the decision variable for agent i is the quantity of
each good j they wish to purchase and is represented by xij . We denote the
allocation vector for agent i as xi ∈ R

m, when there are m goods in the market.
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A key assumption of Fisher markets is that goods are divisible and so fractional
allocations are possible. Thus, we interpret xij as the probability that agent i is
allocated to good j. Finally, denoting wi as the budget of agent i, ui(xi) as the
utility of agent i as a concave function of their allocation and p ∈ R

m
≥0 as the

vector of prices for the goods, individual decision making in Fisher markets can
be modelled as the following optimization problem:

max
xi ∈ R

m
ui(xi) (1a)

s.t. pTxi ≤ wi (1b)
xi ≥ 0 (1c)

where (1b) is a budget constraint and (1c) is a non-negativity constraint.
The vector of prices p ∈ R

m
≥0 that each agent observes are computed through

the solution of a social optimization problem that aggregates the utilities of all
agents. The choice of the social objective is such that under certain conditions
on the utility function, there exists an equilibrium price vector defined as:

Definition 1. A vector p ∈ R
m
≥0 is an equilibrium price vector if

∑n
i=1 x∗

ij(p) =
s̄j, ∀j, i.e., all the goods are sold, where each resource j has a price pj and has a
strict capacity constraint of s̄j ≥ 0, and

∑m
j=1 pjx

∗
ij(p) = wi, ∀i, i.e., budgets of

all agents are completely used. Furthermore, x∗(p)i ∈ R
m is an optimal solution

of the individual optimization problem (1a)-(1c) for all agents i.

When the utilities are homogeneous functions, e.g., linear utilities, the price
vector is computed as the dual variables of the capacity constraint (2b) in the
following social optimization problem:

max
xi ∈ R

m,∀i ∈ [n]
u(x1, ...,xn) =

n∑

i=1

wi log(ui(xi)) (2a)

s.t.
n∑

i=1

xij = s̄j ,∀j ∈ [m] (2b)

xij ≥ 0,∀i, j (2c)

where there are n agents and m shared resources. We denote [a] = {1, 2, ..., a}.
Since both the individual and social problems are convex optimization prob-

lems, the equivalence of their first order KKT conditions is necessary and suffi-
cient at the equilibrium price condition. This establishes that under the prices
set through the solution of the social optimization problem each agent receives
their most favourable bundle of goods [12].

These appealing properties of Fisher markets have been leveraged in appli-
cations including online advertising [20] and revenue optimization [15]; however,
the consideration of only two types of constraints - budgets of buyers and capac-
ities of goods - in Fisher markets limits its use in public good allocation settings.
This is because the availability of public good substitutes imposes additional
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physical constraints that are necessary to consider for the allocation to be mean-
ingful. To model the availability of public good alternatives, we pool together
public goods serving similar functionality, e.g., beaches or parks, into their own
resource types. These additional constraints (described in detail in Sect. 2.1) raise
the question of whether we can still find equilibrium prices, which leads to the
main focus of this paper which is to:

Design a market based mechanism that achieves the same properties as F isher
markets while also supporting additional physical constraints.

1.1 Our Contributions

In our pursuit of such a mechanism, we start by defining each agent’s individual
optimization problem (IOP) with the addition of physical constraints. The prop-
erties of the IOP are fundamentally different from traditional Fisher markets
with linear utilities, as there are no guarantees on the existence and uniqueness
of an equilibrium. However, we derive a technical condition to overcome the
question of existence and provide a characterization of IOPs optimal solution.

Having established the existence of a market equilibrium, we then turn to
deriving market clearing prices with physical constraints. We first show that
market clearing conditions fail to hold when we add physical constraints to the
social optimization problem (2a)–(2c) and derive prices using this constraint aug-
mented problem. This negative result is overcome through a new social optimiza-
tion problem (BP-SOP) wherein we perturb the budgets of agents by constants
that depend on the dual variables of the physical constraints. We then show that
the market clears under the prices set based on the dual variables of BP-SOPs
capacity constraints. Finally, we present a fixed point scheme to determine the
perturbation constants and establish its convergence through experiments.

We note that the physical constraints we consider extend beyond public goods
allocation, as such constraints arise in retail, e-commerce and the AdWords
market, as buyers have restrictions on the amount of goods they can purchase
and advertisers on the number of people in each demographic class they can
target. In addition, such constraints help in achieving fairness by restricting the
purchase of certain goods by individual agents to enable wider access.

1.2 Related Work

Setting market clearing prices has been a prominent topic of research at the
intersection of economic and optimization theory. While Walras [21] was the first
to question whether goods could be priced in a n buyer m good market such
that each person receives a bundle of goods to maximize their utilities, it was
Arrow and Debreu who established the existence of such a market equilibrium
under mild conditions on the utility function of buyers [2]. However, it was not
until Fisher that there was an algorithm to compute equilibrium prices [7]. Later
Eisenberg and Gale formulated Fisher’s original problem with linear utilities as
a convex optimization problem that could be solved in polynomial time [13,14].
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While Fisher markets have since been studied extensively in the computer sci-
ence and algorithmic game theory communities, there has been recent interest in
considering additional constraints in the Fisher market framework. For instance,
Bei et al. [3] impose limits on sellers’ earnings and question the assumption that
utilities of buyers strictly increase in the amount of good allocated. A different
generalization is considered by Vazirani [20], Devanur [10] and Birnbaum et al.
[4], wherein utilities of buyers depend on prices of goods through spending con-
straints. Yet another generalization has been considered by Devanur et al. [11]
in which goods can be left unsold as sellers declare an upper bound on their
earnings and budgets can be left unused as buyers declare an upper bound on
their utilities. Along similar lines Chen et al. [9] study equilibrium properties
when agents keep unused budget for future use. These generalizations of Fisher
markets are primarily associated with spending constraints of buyers and earn-
ing constraints of sellers; however, to the best of our knowledge there has been
no generalization of Fisher markets to the case of additional physical constraints.

While such physical constraints have not been studied in the Fisher market
literature, there have been other market equilibrium characterizations that take
into account such constraints. One notable such work is that on the Combina-
torial Assignment problem by Budish [8] wherein a market mechanism is used
to assign students to courses while respecting student’s schedule constraints. In
Budish’s framework, courses have capacity constraints and students are endowed
with budgets and must submit their preferences to a centralized mechanism that
provides approximately efficient allocations. In contrast to Budish’s approach,
we study the public goods allocation problem from the standpoint of setting
equilibrium prices through the maximization of a societal objective.

Finally, since we are allocating public goods we must take fairness considera-
tions into account. A popular method to achieve an equal playing ground for all
agents is the use of artificial currencies. For instance, Gorokh et al. established
how artificial currencies can be equally distributed to agents to achieve fairness
[17]. We follow a similar idea in our work by endowing agents with (artificial)
budgets that they can spend, to help overcome concerns of priced mechanisms,
e.g., congestion pricing, in regulating the use of public resources.

The rest of this paper is organized as follows. We first present the individual
optimization problem IOP and study properties of the corresponding market
equilibrium in Sect. 2. Then, in Sect. 3, we provide a motivation for why modi-
fying Fisher markets is necessary to guarantee market clearing properties with
the addition of physical constraints and propose a new budget perturbed social
optimization problem that guarantees a market equilibrium. As the budget per-
turbed problem involves setting the perturbation constants as the dual variables
of the added constraints, we present a fixed point procedure to compute these
constants in Sect. 4. Finally, we conclude the paper in Sect. 5.

All details omitted due to space constraints can be found in [18].
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2 Properties of the Individual Optimization Problem

In this section, we study the individual optimization problem with physical con-
straints that are not considered in Fisher markets. We start by defining a new
individual optimization problem IOP in Sect.,2.1 and study the existence and
non-uniqueness of an equilibrium in Sects. 2.2–2.4. Finally, we close this section
through a characterization of the optimal solution of IOP in Sect. 2.5.

2.1 Modelling Framework for Individual Optimization Problem

As in Fisher markets, we model agents as utility maximizers and in this work,
each agent’s utility function is assumed to be linear in the allocations, which is
a common utility function used in the Fisher market literature [5,13]. We model
the preference of an agent i for one unit of good j through the utility uij . Fur-
thermore, we extend the Fisher market framework through the consideration of
each agent’s physical constraints. To model this physical constraint we consider
each public good j as belonging to at most one resource type, with the set of all
resource types denoted as T . Goods not belonging to any resource type do not
have any physical constraints. We further let Ti ⊆ T denote the resource types
for which agent i has physical constraints and assume that agent i would like to
obtain at most bit ≥ 0 unit of goods in each resource type t, i.e.,

∑
j∈t xij ≤ bit,

where we take the sum over all goods j belonging to type t. These physical
constraints can be specified by a 0–1 matrix A(i) ∈ R

li×m, where li = |Ti|. Fur-
thermore, the row corresponding to resource type t ∈ Ti is represented as a row
vector A

(i)
t . Using our notation for budgets and prices, we have the following

individual optimization problem (IOP):

max
xi ∈ R

m
ui(xi) =

m∑

j=1

uijxij (3a)

s.t. pTxi ≤ wi (3b)

A
(i)
t xi ≤ bit,∀t ∈ Ti (3c)

xi ≥ 0 (3d)

with budget (3b), physical (3c) and non-negativity constraints (3d). We further
note that A

(i)
t xi ≤ bit is identical to

∑
j∈t xij ≤ bit, as remarked above.

2.2 Market Equilibrium May Not Exist

In the traditional Fisher market framework with linear utilities, there exists a
unique market equilibrium under mild assumptions [19]. However, with addi-
tional physical constraints an equilibrium price is not guaranteed to exist.

Proposition 1. There exists a market wherein each good j ∈ [m] has a potential
buyer i ∈ [n], i.e., uij > 0, but no equilibrium for IOP exists.
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2.3 Condition to Guarantee Existence of Market Equilibrium

While Proposition 1 indicates that a market equilibrium may not exist for the
IOP, we now show that under a mild condition it is guaranteed to exist.

Theorem 1. There exists a market equilibrium if for any agent i, there exists
a good j, such that j does not belong to any type, i.e., it is not associated with
any physical constraints, and i has positive utility for all goods, i.e., uij > 0, ∀j.

Proof (Sketch). We normalize the capacities of each good and the total budget of
all agents to 1, and consider an excess demand function fj(p) =

∑n
i=1 xij(p)−1

for p ∈ Δm, where Δm is a standard simplex. Next, we define a coloring function
c : p �→ {1, ...,m}, such that c(p) = j if fj(p) ≤ 0 and pj 	= 0. Such a coloring
function on the standard simplex satisfies Sperner’s lemma, which implies that
we can find a p∗, such that fj(p∗) ≤ 0, ∀j, showing ∀j that

∑n
i=1 xij(p∗) ≤ 1.

To prove that the above inequality is an equality, we suppose that ∃j, such
that

∑n
i=1 xij(p∗) < 1. Then we consider two cases: i) pj > 0 and ii) pj = 0. For

both cases we find contradictions and prove the strict inequality is impossible
under the condition that there exists a good j without any physical constraints.
This establishes our claim that p∗ is the equilibrium price vector.

The condition to guarantee existence of a market equilibrium arises as there
may be instances when agents cannot spend all of their budget. Thus, we must
ensure that there is a good not restrained by physical constraints so that agents
can purchase more units of it to spend their budget. We also note the technical
assumption is not very demanding. This is because we can allow agents to keep
unused budget for future use, in which case we can treat budget as a good, which
has been considered and analyzed in [9].

2.4 Market Equilibrium May Not Be Unique

We show that even if the market equilibrium exists, it may not be unique. This
further establishes that the problem of determining a market equilibrium with
physical constraints is fundamentally different from traditional Fisher markets.

Proposition 2. The market equilibrium for IOP may not be unique.

2.5 Characterizing Optimal Solution of IOP

In this section, we characterize the optimal solution of the IOP. In traditional
linear Fisher markets, each agent purchases goods j∗ corresponding to the high-
est bang-per-buck ratio, i.e., j∗ = arg maxj

{
uij

pj

}
. However, with physical con-

straints, when a buyer observes a price p, which goods will they purchase in each
resource type and how many different goods will they purchase in each type?

To answer these questions, we study the influence of physical constraints
through a feasible solution set for buyer i and resource type t ∈ Ti as follows:
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Definition 2. (Feasible Set). Given a price vector p ∈ R
m
≥0, a feasible solution

set for buyer i and resource type t when bit > 0 is given by:

St =
{

(ut, wt)|∃ {xij}j∈t ,
∑

j∈t xij ≤ 1, xij ≥ 0,∀j ∈ t, ut =
∑

j∈t uijxij , wt =
∑

j∈t xijpj

}

Definition 2 specifies agent i’s utility and budget when consuming type t. When
bit = 0, St is {(0, 0)}, i.e., no good is purchased in type t by agent i. However,
when bit > 0, each agent’s physical constraints can be normalized to bit = 1,
as in Definition 2. Next, we observe that the solution set St can be viewed as
lying in the convex hull of the points defined by (uij , pij), j ∈ t and the origin
in the price-utility plane, as shown by the enclosed region in Fig. 2. The lower
frontier of this convex hull, as shown in bold, from the origin to (uijmax , pjmax),
where jmax = arg maxj∈t {uij}, is piece-wise linear and is characterised by slopes
θt = (θt

1, θ
t
2, ..., θ

t
kt

), where kt = |j : j ∈ t|. As shown on the right in Fig. 2, given
a fixed budget wt for type t, the maximal utility that can be obtained from type
t must be the intersection of the line p = wt and the lower frontier of the convex
hull when wt ≤ pjmax . Otherwise the maximal utility is uijmax . Therefore, an
optimal solution of IOP must lie on the lower frontier, with endpoints of the
line segments corresponding to goods and line segments corresponding to virtual
products, defined as:

Definition 3. (Virtual Product). A virtual product is characterized by its two
endpoints A = (uij1 , pj1) and B = (uij2 , pj2) with a slope θj1j2 = pj2−pj1

uij2−uij1
. Then

its bang-per-buck = 1
θj1j2

= uij2−uij1
pj2−pj1

.

Fig. 2. The enclosed region represents the convex hull corresponding to the solution
set St. The vertices on the lower frontier (in bold) correspond to the goods and the
segments correspond to virtual products. The figure on the right shows that any optimal
solution must lie on the lower frontier of the convex hull, as indicated by the point C.

We now show that with physical constraints agents purchase goods in the
descending order of the virtual products’ bang-per-buck ratios.

Theorem 2. Given a price vector p ∈ R
m
≥0, agent i can obtain an optimal

solution x∗
i ∈ R

m of IOP by mixing all virtual products from different types and
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spending their budget in the descending order of virtual products’ bang-per-buck.
Furthermore, each agent i can purchase at most one unit of each virtual product.

Note that when two virtual products have the same slope ties can be broken
arbitrarily. Further, an immediate corollary follows, which answers the question
of how many different goods an agent will purchase in each type.

Corollary 1. For any agent i, there exists an optimal solution x∗
i ∈ R

m, such
that i purchases two different goods in at most one resource type. For all other
resource types, agent i buys at most one good.

We note that x∗
i is the optimal solution for IOP given any price vector p

and may not be unique. Corollary 1 states there exists such an optimal solution
but this does not imply all solutions must satisfy these conditions. Furthermore,
these results can easily be extended to the case when there is a product without
physical constraints. We now turn to the problem of deriving equilibrium prices.

3 Generalizing the Fisher Social Optimization Problem
to Accommodate Physical Constraints

A desirable property of Fisher markets is that the equilibrium outcome maxi-
mizes a social objective while individuals receive their most favoured bundle of
goods given the prices. We now study whether we can still achieve this property
with physical constraints (3c). We start by showing that with these constraints
and no further modifications to Fisher markets, an equilibrium fails to hold. To
do this we define a social optimization problem with additional constraints in
Sect. 3.1 and compare its KKT conditions to that of IOP in Sect. 3.2.

We then address this negative result by defining a perturbed social optimiza-
tion problem (BP-SOP) in Sect. 3.3 in which we adjust budgets of agents. Then,
in Sect. 3.4, we show how to choose these perturbations to guarantee the equiv-
alence of its KKT conditions with that of the IOP when prices are set through
the dual variables of BP-SOPs capacity constraints. Finally, we provide an
economic interpretation of the budget perturbed formulation in Sect. 3.5.

3.1 A Social Optimization Problem with Additional Constraints

We first define the natural extension of the Fisher market social optimization
problem (2a)–(2c) with physical constraints (3c), giving the problem SOP1:

max
xi ∈ R

m,∀i ∈ [n]
u(x1, ...,xn) =

n∑

i=1

wi log

⎛

⎝
m∑

j=1

uijxij

⎞

⎠ (4a)

s.t.
n∑

i=1

xij = s̄j ,∀j ∈ [m] (4b)

A
(i)
t xi ≤ bit,∀t ∈ Ti,∀i ∈ [n] (4c)

xij ≥ 0,∀i, j (4d)
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3.2 A KKT Comparison of IOP and SOP1

In classical Fisher Markets, the equilibrium price corresponds to the dual vari-
ables of the capacity constraints of the social optimization problem, and at this
equilibrium, the KKT conditions of the individual and social optimization prob-
lems are equivalent [12]. We follow a similar approach with IOP and SOP1
and show that market clearing conditions may fail to exist through the following
result.

Theorem 3. The price vector p ∈ R
m
≥0 corresponding to the optimal dual vari-

ables of the capacity constraint (4b) of SOP1 may not be an equilibrium price,
i.e., the market clearing KKT conditions of IOP and SOP1 may not be equiva-
lent. However, they are equivalent if bit = 0 for all i, t, i.e, the feasible constraints
for each individual are homogeneous.

Proof (Sketch). We derive the first order necessary and sufficient KKT conditions
of SOP1 and show that under the optimal price vector corresponding to the
dual variables of the capacity constraint, the budgets of the agents will not be
completely used up. As a result, a market clearing equilibrium cannot hold.

3.3 A Budget Perturbed Social Optimization Problem

We now address this negative result through a reformulated social optimization
problem in which we modify the budget of agents through a variable λi for each
agent i. This variable is introduced because of the additional constraints not
present in Fisher markets and its exact value is derived in the KKT analysis in
Sect. 3.4. The Budget Perturbed Social Optimization Problem (BP-SOP) is:

max
xi ∈ R

m,∀i ∈ [n]
u(x1, ...,xn) =

n∑

i=1

(wi + λi) log

⎛

⎝
m∑

j=1

uijxij

⎞

⎠ (5a)

s.t.
n∑

i=1

xij = s̄j ,∀j (5b)

A
(i)
t xi ≤ bit,∀t ∈ Ti,∀i ∈ [n] (5c)

xij ≥ 0,∀i, j (5d)

with capacity (5b), physical (5c) and non-negativity constraints (5d).

3.4 Deriving Perturbation Constants Using KKT Conditions

We now show that under an appropriate choice of the λi perturbations for all
agents i, the KKT conditions of BP-SOP and IOP are equivalent when prices
are set through the dual variables of the capacity constraints (5b). Observing
that for any choice of λ = (λ1, ..., λn), BP-SOP remains a convex optimization
problem, it is necessary and sufficient to verify the first order KKT conditions for
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BP-SOP and IOP. To establish the first order KKT equivalence between the
two problems, we define rit as the dual variable associated with the allocation
constraint (5c) associated with agent i and good type t. Further, we define a fixed
point of the problem BP-SOP as one when λi =

∑li
t=1 ritbit, where li = |Ti|.

The reasons for this choice of a fixed point is to establish the following theorem:

Theorem 4. There is a one-to-one correspondence of the equilibrium price vec-
tor p ∈ R

m
≥0 and a fixed point solution of BP-SOP, i.e., λi =

∑li
t=1 ritbit, ∀i,

where rit is the optimal dual multiplier of the constraint A
(i)
t xi ≤ bit in BP-

SOP.

Proof (Sketch). We first derive the necessary and sufficient first order KKT
conditions for the BP-SOP and IOP. The forward direction of our claim follows
from considering a market equilibrium of the IOP and using this to show that
λi =

∑li
t=1 ritbit, ∀i is the fixed point of BP-SOP. For the converse, we can

show that if we set λi =
∑li

t=1 ritbit, ∀i, then each agent completely uses up
their budget, while all the goods are sold to capacity.

The above theorem states in one direction that the market clearing KKT
conditions of BP-SOP are equivalent to that of the IOP if λi =

∑li
t=1 ritbit.

Furthermore, it also states the converse that any equilibrium price in the market
for BP-SOP must correspond to a fixed point, i.e., λi =

∑li
t=1 ritbit.

3.5 Economic Relevance of Solution of BP-SOP

We now show the economic relevance of the allocations under the appropriately
chosen budget perturbations. We first observe that due to the KKT equivalence
of BP-SOP and IOP at the equilibrium price and the corresponding fixed point,
each agent obtains their most preferred bundle of goods given the prices.

We now interpret the dual variable rit of the physical constraint as the price
that agent i must pay to purchase one unit of good type t. Hence, the total price
that a buyer must pay to purchase goods j belonging to type t is

∑
j∈t pjxij +

ritbit; however, the buyer only observes the price pj for good j in the IOP. Thus,
to reconcile the price difference the buyer observes and that in BP-SOP, we
need to pay the additional price

∑
t ritbit for buying goods in the different types

by augmenting agents’ budgets. Further, buyers are no longer purchasing goods
with the highest bang-per-buck, and under the adjusted price set p′

j = pj +ritbit,
where one unit of good j is purchased and j ∈ t, agents are purchasing goods with
the highest “adjusted” bang-per-buck. Finally, we observe that more constrained
agents, e.g., healthcare workers in a pandemic environment, have larger weights
λi than less constrained agents, ensuring more constrained agents have “higher
priorities” and thus an allocation that lies within their feasible constraint set.

4 Fixed Point Scheme to Determine Perturbations

In BP-SOP, we required that λi =
∑li

t=1 ritbit, i.e., λi depends on the dual
variables of the problem, which we have no knowledge of apriori. In this section,



Markets for Efficient Public Good Allocation 113

we show how to compute the appropriate value of λi through a fixed point
iteration in Sect. 4.1 and numerically establish its convergence in Sect. 4.2.

4.1 Fixed Point Iteration Algorithm

To determine the true value of the perturbation parameters specified by the
vector λ ∈ R

n
≥0, we consider an iterative scheme of the form G

(
λ
(k)
1 , ..., λ

(k)
n

)
=

(
r(k)1 , ..., r(k)n

)
, where we update the perturbations as:

(
λ
(k+1)
1 , ..., λ

(k+1)
n

)
=

(∑l1
t=1 r

(k)
1t b1t, ...,

∑ln
t=1 r

(k)
nt bnt

)
. Here G is a function that takes in the kth iterate

λ
(k)
i for all agents i, solves the corresponding social optimization problem BP-

SOP and returns the dual variables, r(k)i ∈ R
li
≥0 of the physical constraints.

Algorithm 1 depicts the fixed point scheme, where λ = (λ1, ..., λn), and
R = (r1, ..., rn), the dual variables of BP-SOPs physical constraints.

Algorithm 1: Fixed Point Scheme
Input : Tolerance ε, Function G(·) to calculate dual variables of physical

constraints of BP-SOP
Output: Budget Perturbation Parameters λ
λ ← 0; R ← G(λ); qi ← ∑li

t=1 ritbit, ∀i ;
while ‖λ − q‖2 > ε do

λi ← ∑li
t=1 ritbit, ∀i; R ← G(λ); qi ← ∑li

t=1 ritbit, ∀i ;
end

4.2 Numerical Experiments with Iterative Scheme

We now numerically evaluate the convergence of Algorithm 1 to the allocate
agents to public spaces. We consider a neighborhood with n = 200 people and
m = 6 public spaces, with three resource types including two grocery stores,
two parks, and two beaches. The capacities of the public spaces are s̄j = 100,
∀j ∈ [m] and the physical constraint is that each individual would not want to
go to more than one of the public spaces within the same resource type over
the course of a day, defining three identical physical constraints for each person.
Furthermore, in this experiment each person i is endowed with a random budget
wi and their preferences are captured through randomly generated utilities.

On the above problem instance, we run Algorithm 1, wherein we terminate
when

∥
∥
∥λ(k) − ∑3

t=1 r
(k)
t

∥
∥
∥ ≤ ε, since bit = 1 for all i, t. Here λ(k) =

(
λ
(k)
1 , ..., λ

(k)
n

)

and r(k)t =
(
r
(k)
1t , ..., r

(k)
nt

)
, where r

(k)
it is the dual variable of the optimization

problem at iteration k, and n is the number of people. The experiment confirmed
that the iterative scheme converges quickly to a fixed point on this and other
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problem instances. Convergence in fewer than 40 iterations can be observed in
Fig. 3, highlighting the computational feasibility of our mechanism. We note
that the experiments confirmed feasibility of allocations with respect to physical
constraints, which may have been violated with classical Fisher markets.

Fig. 3. Numerical Convergence of fixed point scheme with 200 people, 6 goods and 3
good types. The budgets and utilities were assigned randomly to agents.

5 Conclusions and Future Work

In this work, we have developed market based mechanisms to more efficiently
allocate capacity constrained public goods that are priced in non-monetary units.
We defined a new individual optimization problem IOP in the presence of phys-
ical constraints and established market equilibrium properties of this problem,
including existence, non-uniqueness and thoroughly characterized its optimal
solution. Even though the properties of IOP are fundamentally different from
that of the individual optimization problem in Fisher markets, we proposed a
mechanism to derive a market equilibrium in the presence of physical constraints,
thereby generalizing the Fisher market framework. In particular, we reformulated
the Fisher market setup to account for additional physical constraints by per-
turbing the budgets of agents and defining a new social optimization problem
BP-SOP. We then showed a one-to-one correspondence between the equilibrium
price vector and a fixed point solution of BP-SOP through the verification of
KKT conditions. Next, we established the significance of the budget perturba-
tion constants and that under the appropriate choice of these constants, a market
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equilibrium is attained such that under the set prices each agent’s individual util-
ities are maximized. To obtain the right budget perturbation parameters, we used
a fixed point iteration scheme for the reformulated social optimization problem
and numerically showed the convergence of this iterative procedure indicating
the applicability of our mechanism for real world problem instances.

There are various interesting directions for future research that warrant more
study. First, the allocations provided by our market mechanism are fractional,
and as we would like to make discrete allocations, it would be interesting to
investigate the loss in social efficiency under integral constraints. Furthermore,
while we have numerically shown convergence guarantees of our iterative scheme,
it would be beneficial to theoretically understand the convergence to the fixed
point as well as the rate of convergence of our procedure. Next, we believe that
a stronger characterization of the computational complexity of this problem
would provide a more nuanced appreciation of whether computing the exact
fixed point is feasible in polynomial time. Finally, an interesting area of research
is generalizing this framework to an online setting in which customers arrive in
the market platform sequentially and an irrevocable decision needs to be made
about the prices in the market while still achieving a socially efficient allocation.
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Abstract. Peer prediction mechanisms incentivize self-interested agents
to truthfully report their signals even in the absence of verification, by
comparing agents’ reports with their peers. We propose two new mech-
anisms, Source and Target Differential Peer Prediction, and prove very
strong guarantees for a very general setting.

Our Differential Peer Prediction mechanisms are strongly truthful :
Truth-telling a strict Bayesian Nash equilibrium. Also, truth-telling pays
strictly higher than any other equilibria, excluding permutation equilib-
ria, which pays the same amount as truth-telling.

The guarantees hold for asymmetric priors which the mechanisms
need not know (prior-free) in the signal question setting. Moreover, they
only require three agents, each of which submits a signal item report : one
reports her forecast and the others their signals.

Our proof technique is straightforward, conceptually motivated, and
turns on the logarithmic scoring rule’s special properties.

Moreover, we can recast the Bayesian Truth Serum mechanism [11]
into our framework. We can also extend our results to the setting of con-
tinuous signals with a slightly weaker guarantee on the optimality of the
truthful equilibrium.

Keywords: Peer prediction · Log scoring rule · Prediction market

1 Introduction

Crowd-sourcing relies on eliciting truthful information from agents. Peer predic-
tion is the problem of information elicitation without verification. Incentivizing
agents is important so that they not only participate, but provide thoughtful
and accurate information. This has a multitude of applications including peer-
grading, reviews, and labeling data (for machine learning or research). In the
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single-question setting agents are only asked one question. Our goal is to elicit
truthful information from agents with minimal requirements.

For example, say three friends watch a political debate on television. We
would like to ask each of them who won the debate and pay them to incentivize
truthful answers. This situation will be modeled as each agent receiving some
information from the debate about which candidate won. Moreover, prior to the
debate, there is a joint prior distribution over the signals of the different agents
which is common knowledge among the agents. Thus, one friend’s belief on who
won yields some insights about the perceived winners of the other friends.

We will design mechanisms to compensate the agents for their information.
We would like our mechanisms to have the following desirable properties:

Strongly Truthful [8]. Providing truthful answers is a Bayesian Nash equilib-
rium (BNE) and also guarantees the maximum agents’ welfare among any
equilibrium. This maximum is “strict” with the exception of a few unnatural
permutation equilibria where agents report according to a relabeling of the
signals (defined more formally in Sect. 2).1 This will incentivize the agents to
tell the truth–even if they believe the other agents will disagree with them.
Moreover, they have no incentive to coordinate on an equilibrium where they
do not report truthfully. In particular, note that playing a permutation equi-
librium still requires as much effort from the agents as playing truth-telling.

General Signals. The mechanism should work for heterogeneous agents who
may even have continuous signals (with a weaker truthfulness guarantee). In
our above example, the friends may not have the same political leanings, and
the mechanism should be robust to that. Furthermore, instead of a single
winner, we may want to elicit the magnitude of their (perceived) victory.

Detail-Free. The mechanism is not required to know the specifics about the
different agents (e.g. the aforementioned joint prior). In the above example,
the mechanism should not be required to know the a priori political leanings
of the different agents.

On Few Agents. We would like our mechanisms to work using as few agents
as possible, in our case, three.

Single-Item Reports. We would like to make it easy for agents so that they
provide very little information: only one item, either their signal or a predic-
tion. In our case, two agents will need to provide their signals (e.g. whom they
believe won the debate). The remaining agent will need to provide a predic-
tion on one outcome—a single real value. (e.g. their forecast for how likely a
particular other agent was to choose a particular candidate as the victor).

1.1 Related Work

Single Task Setting. In this setting, each agent receives a single signal from a
common prior. Miller et al. [10] introduce the first mechanism for single task sig-
nal elicitation that has truth-telling as a strict Bayesian Nash equilibrium and
1 Kong and Schoenebeck [8] show that it is not possible for truth-telling to pay strictly

more than permutation equilibrium in detail-free mechanisms.
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does not need verification. However, their mechanism requires full knowledge of
the common prior and there exist some equilibria that agents get paid more than
truth-telling. At a high level, the agents can all simply submit the reports with
the highest expected payment and this will typically yield a payment much higher
than that of truth-telling. Note that this is both natural to coordinate on (in fact,
Gao et al. [3] found that in an online experiment, agents did exactly this) and
does not require any effort toward the task from the agents. Kong et al. [5] modify
the above mechanism such that truth-telling pays strictly better than any other
equilibrium but still requires the full knowledge of the common prior.

Prelec [11] designs the first detail-free peer prediction mechanism—Bayesian
truth serum (BTS). Moreover, BTS is strongly truthful and can easily be made to
have one-item reports. However, BTS requires an infinite number of participants,
does not work for heterogeneous agents, and requires the signal space to be finite.
The analysis, while rather short, is equally opaque. A key insight of this work is
to ask agents not only about their own signals, but forecasts (prediction) of the
other agents’ reports.

A series of works [12,13,17–19] relax the large population requirement of BTS
but lose the strongly truthful property. Zhang and Chen [19] is unique among
prior work in the single question setting in that it works for heterogeneous agents
whereas other previous detail-free mechanisms require homogeneous agents with
conditionally independent signals.

Kong and Schoenebeck [6] introduce the Disagreement Mechanism which
is detail-free, strongly truthful (for symmetric equilibrium), and works for six
agents. Thus it generalizes BTS to the finite agent setting while retaining strong
truthfulness. However, it requires symmetric agents, cannot handle continuous
signals, and fundamentally requires that each agent reports both a signal and
a prediction. Moreover, its analysis is quite involved. However, it is within the
BTS framework, in that it only asks for agents’ signals and predictions, whereas
our mechanism typically asks at least one agent for a prediction after seeing the
signal of another agent.

Truthful # Strongly General

Agents truthful signals

BTS [11] � ∞ �
Robust BTS [17] � 3

Disagreement [6] � 6 �
Knowledge-free peer prediction [19] � 3 �
Differential peer prediction � 3 � �

Continuous Single Task Setting. Kong et al. [9] shows how to generalize both BTS
and the Disagreement Mechanism (with similar properties including homogeneous
agents), into a restricted continuous setting where signals are Gaussians related
in a simple manner. The generalization of the Disagreement Mechanism requires
the number of agents to increase with the dimension of the continuous space.



122 G. Schoenebeck and F.-Y. Yu

The aforementioned Radanovic and Faltings [13] considers continuous singles.
However, it uses a discretization approach which yields exceedingly complex
reports. Additionally, it requires homogeneous agents.

In a slightly different setting, Kong and Schoenebeck [7] study eliciting
agents’ forecasts for some (possibly unverifiable) event, which are continuous
values between 0 and 1. However, here we are concerned with eliciting signals
which can be from a much richer space.

Multi-task Setting. In the multitask setting, introduced in Dasgupta and Ghosh
[2], agents are assigned a batch of a priori similar tasks which require each agents’
private information to be a binary signal. Several works extend this to multiple-
choice questions [2,4,8,14]. The multi-task setting is easier to work in than the
single-task setting because the mechanism can better deduce the strategy of any
particular agent by comparing reports across questions. However, this setting
is substantially more restrictive than the single-question setting of the present
paper in that it is important the questions are all similar and gives no guarantees
when questions have different priors. An example of when this requirement holds
is asking agents to label images as “cat” or “no cat”.

1.2 Our Contributions

– We define two Differential Peer Prediction mechanisms (Mechanism 1 and 2)
which are strongly-truthful and detail-free for the single question setting and
only require a single item report from three agents. Moreover, the agents need
not be homogeneous and their signals may be continuous.

– We provide a simple, conceptually motivated proof for the guarantees of
Differential Peer Prediction mechanisms. Especially in contrast to the most
closely related work [6] our proof is very simple.

– We show special properties of the logarithmic scoring rules (see Techniques
below for details). This allows the construction of target incentives where an
agent is rewarded when is signal is predicted well, and we believe will also be
of independent interest.

– We recast the Bayesian Truth Serum mechanism into our framework, showing
that it is a target incentive mechanism (Sect. 4). This gives added intuition
for its guarantees.

1.3 Summary of Our Techniques

Target Incentive Mechanisms. Many of the mechanisms for the single ques-
tion use what we call source incentives: they pay agents for reporting a signal
that improves the prediction of another agent’s signal. The original peer pre-
diction mechanism [10] does exactly this. To apply this idea to the detail-free
setting [17,19], mechanisms take a two-step approach: they first elicit an agent’s
prediction of some target agent’s report, and then measure how much that pre-
diction improves given a report from a source agent.
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In Sect. 3.2, we explicitly develop a technique, which we call target incentives,
for rewarding certain agents for signal reports that agree with a prediction about
them. In particular, we show that log scoring rules can elicit signals as well as
forecasts. This may be of independent interest, and is also the foundation for
the results in Sects. 3.2 and 4.

Information Monotonicity. We use information monotonicity, a tool from infor-
mation theory, to obtain strong truthfulness. Like the present paper, the core
of the argument that the Disagreement Mechanism [6] is strongly truthful (for
symmetric equilibrium) is based on information monotonicity. However, because
it is hard to characterize the equilibria in the Disagreement Mechanism, the
analysis ends up being quite complex. A framework for deriving strongly truth-
ful mechanisms from information monotonicity, which we implicitly employ, is
distilled in Kong and Schoenebeck [8].

In Sect. 3, we use the above techniques to develop strongly truthful mech-
anisms, source-Differential Peer Prediction and target-Differential Peer Predic-
tion, for the single question setting. Source-Differential Peer Prediction is quite
similar to the Knowledge-Free Peer Prediction Mechanism[19], however, it is
strongly truthful. Target-Differential Peer Prediction also uses the target incen-
tive techniques above.

2 Preliminaries

2.1 Peer Prediction Mechanism

There are three characters, Alice, Bob and Chloe in our mechanisms. Alice (and
respectively Bob, Chloe) has a privately observed signal a (respectively b, c) from
a set A (respectively B, C). They all share a common belief that their signals
(a, b, c) are generated from a random variable (A,B,C) which takes values from
A × B × C with a probability measure P called common prior. P describes how
agents’ private signals relate to each other’s.

Agents are Bayesian. For instance, after Alice receives A = a, she updates
her belief to the posterior P ((B,C) = (·, ·) | A = a) which is a distribution over
the remaining signals. We will use PB,C|A(· | a) instead to simplify the notion.
Similarly Alice’s posterior of Bob’s signal is denoted by PB|A(· | a), which is a
distribution on B.

A peer prediction mechanism on Alice, Bob, and Chloe has three payment
functions (UA, UB , UC). The mechanism first collects reports r := (rA, rB , rC)
from agents. We pay Alice with UA(r) (and Bob and Chloe analogously). Alice’s
strategy θA is a (random) function from her signal to a report. All agents are
rational and risk-neutral that are only interested in maximizing their (expected)
payment. Thus, given a strategy profile θ := (θA, θB , θC), Alice, for example,
wants to maximize her expected ex-ante payment under common prior P which
is uA(θ;P ) := EP,θ [UA(r)]. Let ex-ante agents’ welfare denote the sum of ex-
ante payment to all agents, uA(θ;P )+uB(θ;P )+uC(θ;P ). A strategy profile θ is
a Bayesian Nash equilibrium under common prior P if by changing the strategy
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unilaterally, an agent’s payment can only weakly decrease. It is a strict Bayesian
Nash equilibrium if an agent’s payment strictly decreases as her strategy changes.

We want to design peer prediction mechanisms to “elicit” all agents to report
their information truthfully without verification. We say Alice’s strategy τA is
truthful for a mechanism M if Alice truthfully reports the information requested
by the mechanism.2 We call the strategy profile τ truth-telling if each agent
reports truthfully. Moreover, we want to design detail-free mechanisms which
have no knowledge about the common prior P except agents’ (possible non-
truthful) reports. However, agents can always relabel their signals and detail-
free mechanisms cannot distinguish such a strategy profile from the truth-telling
strategy profile. We call these strategy profiles permutation strategy profiles.
They can be translated back to truth-telling reports by some permutations
applied to each component of A × B × C—that is, the agents report accord-
ing to a relabeling of the signals.

We now define some goals for our mechanism that differ in how unique the
high payoff of truth-telling is. We call a mechanism truthful if the truth-telling
strategy profile τ is a strict Bayesian Nash equilibrium. However, in a truth-
ful mechanism, often non-truth-telling equilibria may yield a higher ex-ante
payment for each agent. In this paper, we aim for strongly truthful mech-
anisms [8] which are not only truthful but also ensure the ex-ante agents’ wel-
fare in truth-telling strategy profile τ is strictly better than all non-permutation
equilibria. Note that in a symmetric game, this ensures that each agent’s indi-
vidual expected ex-ante payment is maximized by truth-telling compared to any
other symmetric equilibrium.

Now, we define the set of common priors that our detail-free mechanisms
can work on. Note peer’s reports are not useful when every agent’s signal are
independent of each other. Thus, a peer prediction mechanism needs to exploit
some interdependence between agents’ signals.

Definition 1 (Zhang and Chen [19]). A common prior P is 〈A,B,C〉-second
order stochastic relevant if for any distinct signals b, b′ ∈ B, there is a ∈ A, such
that PC|A,B(· | a, b) �= PC|A,B(· | a, b′). Thus, when Alice with a is making a
prediction to Chloe’s signal, Bob’s signal is relevant so that his signal induces
different predictions when B = b or B = b′.

We call P second order stochastic relevant if the above statement holds
for any permutation of {A,B,C}.3

To avoid measure theoretic concerns, we initially require that P has full
support, and the joint signal space A × B × C to be finite. In the full version, we
will show how to extend our results to general measurable spaces.

2 Here we do not define the notion of truthful reports formally, because it is intuitive
in our mechanisms. For general setting, we can use query models to formalize it [15].

3 Our definition has some minor differences from Zhang and Chen [19]’s, for ease of
exposition. For instance, they only require the statement holds for one permutation
of {A, B, C} instead of all the permutations.
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2.2 Proper Scoring Rules

Scoring rules are powerful tools to design mechanisms for eliciting predictions.
Consider a finite set of possible outcomes Ω, e.g., Ω = {sunny, rainy}. An expert,
Alice, first reports a distribution P̂ ∈ P(Ω) as her prediction of the outcome,
where P(Ω) denotes the set of all probability measures on Ω. Then, the mech-
anism and Alice observe the outcome ω. The mechanism gives Alice a score
PS[ω, P̂ ]. To the end, if Alice believes the distribution of ω to be P , she maxi-
mizes her expected score by reporting P truthfully. We call such scoring function
proper defined as follow:

Definition 2. A scoring rule PS : Ω × P(Ω) �→ R is proper if for any dis-
tributions P, P̂ ∈ P(Ω) we have Eω∼P [PS[ω, P ]] ≥ Eω∼P

[
PS[ω, P̂ ]

]
. A scoring

rule PS is strictly proper when the equality holds only if P̂ = P .

Given any convex function f , one can define a new proper scoring rule PSf [8].
In this paper, we consider a special scoring rule called the logarithmic scoring
rule [16], defined as

LSR[ω, P ] := log (p(ω)) , (1)

where p : Ω → R is the probability density function of P .

2.3 Information Theory

Peer prediction mechanisms and prediction markets incentivize agents to truth-
fully report their signals even in the absence of verification . One key idea these
mechanisms use is that agents’ signals are interdependent and strategic manipu-
lation can only dismantle this structure. Here we introduce several basic notions
from information theory [1].

The KL-divergence is a measure of the dissimilarity between two distribu-
tions: Let P and Q be probability measures on a finite set Ω with density func-
tions p and q respectively. The KL divergence (also called relative entropy)
from Q to P is DKL(P‖Q) :=

∑
ω∈Ω −p(ω) log (q(ω)/p(ω)).

We now introduce mutual information, which measures the amount of infor-
mation between two random variables: Given a random variable (X,Y ) on a
finite set X × Y , let pX,Y (x, y) be the probability density of the random vari-
able (X,Y ), and let pX(x) and pY (y) be the marginal probability density of X
and Y respectively. The mutual information I(X;Y ) is the KL-divergence
from the joint distribution to the product of marginals:

I(X;Y ) :=
∑

x∈X ,y∈Y
pX,Y (x, y) log

pX,Y (x, y)
pX(x)pY (y)

= DKL(PX,Y ‖PX ⊗ PY )

where ⊗ denotes the tensor product between distributions. Moreover, if (X,Y,Z)
is a random variable, the mutual information between X and Y conditional on
Z is

I(X;Y | Z) := EZ [DKL(P(X,Y )|Z‖PX|Z ⊗ PY |Z)].
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The data-processing inequality shows no manipulation of the signals can
improve mutual information between two random variables, and the inequality
if of fundamental importance in information theory.

Theorem 1 (Data processing inequality). If X → Y → Z form a Markov
chain,4

I(X;Y ) ≥ I(X;Z).

By basic algebraic manipulations, Kong and Schoenebeck [8] relate proper
scoring rules to mutual information as follows: For two random variables X and
Y ,

Ex,y [LSR[y, P (Y | x)] − LSR[y, P (Y )]] = I(X;Y ). (2)

We can generalize the mutual information in two ways [8]. The first is to
define f − MI using the f -divergence, where f is a convex function, to measure
the distance between the joint distribution and the product of the marginal
distributions. The KL-divergence is just a special case of the f -divergence. This
retains the symmetry between the inputs.

The second way is to us a different proper scoring rule. As mentioned,
any convex function f gives rise to a proper scoring rule PSf . Then the
Bregman Mutual information can be defined as in Eq. (2): BMIf (X,Y ) :=
Ex,y[PSf (y, PY |X(· | x)] − PSf (y, PY (·)]. Note that by the properties of proper
scoring rules BMI is information monotone in the first coordinate; however, in
general it is not information monotone in the second.

Thus, by Eq. (2), mutual information is the unique measure that is both
a Bregman mutual information and an f -MI. This observation is one key for
designing our strongly truthful mechanisms.

3 Experts, Targets and Sources: Strongly Truthful Peer
Prediction Mechanisms

In this section, we show how to design strongly truthful mechanisms to elicit
agents’ signals by implicitly running a prediction market.

Our mechanisms have three characters, Alice, Bob, and Chloe, and there are
three roles: expert, target, and source:

– An expert makes predictions on a target’s report,
– a target is asked to report his signal, and
– a source provides her information to an expert to improve the expert’s pre-

diction.

By asking agents to play these three roles, we design two strongly truthful mech-
anisms based on two different ideas.

The first mechanism is source differential peer prediction (S-DPP). This
mechanism is based on the knowledge-free peer prediction mechanism by Zhang
4 Random variables X, Y and Z form a Markov chain if the conditional distribution

of Z depends only on Y and is conditionally independent of X.
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and Chen [19], which rewards a source by how useful her signal is for an expert
to predict a target’s report. Their mechanism is only truthful but not strongly
truthful. We carefully shift the payment functions and employ Eq. (2) and the
data-processing inequality on log scoring rule to achieve the strongly truthful
guarantee.

We further propose a second mechanism, target differential peer prediction
(T-DPP). Instead of rewarding a source, the T-DPP mechanism rewards a target
by the difference of the logarithmic scoring rule on her signal between an initial
prediction and an improved prediction. Later in Sect. 4 we show Bayesian truth
serum can be seen as a special case of our T-DPP mechanism.

Then we discuss how to remove the temporal separation between agents
making reports in Sect. 3.3 where agents only need to report once, and their
reports do not depend on other agents’ reports.

3.1 The Source Differential Peer Prediction Mechanism

The main idea of the S-DPP mechanism is that it rewards a source by the use-
fulness of her signal for predictions. Specifically, suppose Alice acts as an expert,
Bob as the target, and Chloe as the source. Our mechanism first asks Alice to
make an initial prediction Q̂ on Bob’s report. Then after Chloe’s reporting her
signal, we collect Alice’s improved prediction Q̂+ after seeing Chloe’s addi-
tional information. In each case, Alice maximizes her utility by reporting her
Bayesian posterior conditioned on her information.

The payments for Alice and Bob are simple. S-DPP pays Alice by the sum
of the logarithmic scoring rule on those two predictions. And S-DPP pays Bob
0. Chloe’s payment consists of two parts: First, we pay her the prediction score
of the improved prediction Q̂+. By the definition of proper scoring rule (Defi-
nition 2), Chloe will report truthfully to maximize it. For the second part, we
subtract Chloe’s payment by three times the score of the initial prediction Q̂.
This ensures the ex-ante agent welfare equals the mutual information, which is
maximized at the truth-telling strategy profile. To ensure Bob also reports his
signal truthfully, we randomly permute Bob and Chloe’s roles in the mechanism.

Theorem 2. If the common prior P is second order stochastic relevant on a
finite set with full support, Mechanism 1 is strongly truthful:

1. The truth-telling strategy profile τ is a strict Bayesian Nash equilibrium.
2. The ex-ante agents’ welfare in the truth-telling strategy profile τ is strictly

better than all non-permutation strategy profiles.

We defer the proof to the full version. Intuitively, because the logarithmic
scoring rule is proper, Alice (the expert) will make the truthful predictions when
Bob and Chloe report their signals truthfully. Similarly, the source is willing to
report her signal truthfully to maximize the improved prediction score. This
shows Mechanism 1 is truthful.

Note that if the agents’ common prior P is symmetric, we can random-
ize the roles among Alice, Bob, and Chloe to create a symmetric game where
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Mechanism 1. Two-round Source Differential Peer Prediction
Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn

from second order stochastic relevant common prior P known to all three agents.
LSR is the logarithmic scoring rule (1).

1: Bob and Chloe report their signals, b̂ and ĉ.
2: Set Alice as the expert. Randomly set Bob or Chloe as the target and the other as

the source. We use t to denote the target’s report, and use s to denote the source’s
report.

3: Alice is informed who is the target and predicts the target’s report t with Q̂.
4: Given the source’s report s, the expert makes another prediction Q̂+.
5: The payment to the expert is LSR[t, Q̂] + LSR[t, Q̂+].
6: The payment to the target is 0.
7: The payment to the source is LSR[t, Q̂+] − 3LSR[t, Q̂].

each agent’s expected payment at the truth-telling strategy profile is both non-
negative and maximized among all symmetric equilibria.

3.2 Target Differential Peer Prediction Mechanism

The target differential peer prediction mechanism (T-DPP) is identical to the
S-DPP except for the payment functions. In contrast to the S-DPP mechanism,
T-DPP rewards a target. We show that paying the difference between initial
prediction and an improved prediction on a target’s signal can incentivize the
target to report truthfully. (Lemma1).

Our mechanism pays Alice by the sum of log scoring on those two predictions.
And the mechanism pays Bob by the improvement from the initial prediction Q̂
to the improved prediction Q̂+. Finally, Chloe’s payment depends on Alice’s first
initial prediction Q̂, which is independent of Chloe’s action. To ensure Chloe also
reports her signal truthfully, we permute the roles of Bob and Chloe randomly
in the mechanism as well.

Mechanism 2. Two-round Target Differential Peer Prediction
Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn

from second order stochastic relevant common prior P known to all three agents.
LSR is the logarithmic scoring rule (1).

1: Bob and Chloe report their signals, b̂ and ĉ.
2: Set Alice as the expert. Randomly set Bob or Chloe as the target and the other as

the source. We use t to denote the target’s report, and use s to denote the source’s
report.

3: Alice is informed who is the target and predicts the target’s report t with Q̂.
4: Given the source’s report s, the expert makes another prediction Q̂+.
5: The payment to the expert is LSR[t, Q̂] + LSR[t, Q̂+].
6: The payment to the target is LSR[t, Q̂+] − LSR[t, Q̂].
7: The payment to the source is −2LSR[t, Q̂].
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Theorem 3. If the common prior P is second order stochastic relevant on a
finite set with full support, Mechanism 2 is strongly truthful

We defer the proof to the full version, and provide a sketc.h here. We first
show Mechanism 2 is truthful. Because the log scoring rule is proper, Alice
(the expert) will make the truthful predictions when Bob and Chloe report their
signals truthfully. Thus, the difficult part is to show the target is willing to report
his signal truthfully, if the expert and the source are truthful. Because the roles
of Bob and Chloe are symmetric in the mechanism, we can assume Bob is the
target and Chloe is the source from now on.

Lemma 1 (Logarithmic proper scoring rule reversed). Suppose Alice
and Chloe are truthful, and the common prior is 〈A,B,C〉-second order stochas-
tic relevant. As the target, Bob’s best response is to report his signal truthfully.

This is a generalization of a lemma in Prelec [11] and Kong and Schoenebeck
[8], and extends to non-symmetric prior and finite agent setting. The main idea
is that to maximize Bob’s expected payment, we show that equivalently Bob
wants to maximize a proper scoring rule with prediction P (C | θ(b)) on pre-
dicting Chloe’s report. Therefore, by the property of proper scoring rules, Bob
is incentivized to tell the truth. We defer the proof to the full version. With
Lemma 1, the rest of the proof is very similar to the proof of Theorem 2.

3.3 Single-Round DPP Mechanism for Finite Signal Spaces

When the signal spaces are finite, the above two-round mechanisms (Mecha-
nisms 1 and 2) can be reduced to single-round mechanisms by using virtual
signal w. That is for Alice’s improved prediction we provide Alice with a ran-
dom virtual signal w instead of the actual report from the source, and pay her
the prediction score when the source’s report is equal to the virtual signal s = w.
We defer the formal mechanism to the full version.

4 Bayesian Truth Serum as a Prediction Market

In this section, we revisit the original Bayesian Truth Serum (BTS) by Prelec
[11] from the perspective of prediction markets. We first define the setting, which
is a special case of ours (Mechanism 2), and use the idea of prediction markets
to understand BTS.

4.1 Setting of BTS

There are n agents. They all share a common prior P . We call P is admissible
if it consists of two main elements: states and signals. The state T is a random
variable in {1, . . . , m}, m ≥ 2 which represents the true state of the world. Each
agent i observes a signal Xi from a finite set Ω. The agents have a common
prior consisting of PT (t) and PX|T (· | t) such that the prior joint distribution of
x1, . . . , xn is Pr(X1 = x1, . . . , Xn = xn) =

∏
t∈[m] PT (t)

∏
i∈[n] PX|T (xi | t).

Now we restate the main theorem concerning Bayesian Truth Serum:
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Mechanism 3. The original BTS
Require: α > 1
Ensure: The common prior is admissible
1: Agent i reports x̂i ∈ Ω and Q̂i ∈ P(Ω).
2: For each agent i, choose a reference agent j �= i uniformly at random. Compute

Q
(n)
−ij ∈ P(Ω) such that for all x ∈ Ω

Q
(n)
−ij(x) =

1

n − 2

∑

k �=i,j

1[x̂k = x] (3)

which is the empirical distribution of the other n − 2 agents’ reports.
3: The prediction score and information score of i are

SPre = LSR
[
x̂j , Q̂i

]
− LSR

[
x̂j , Q

(n)
−ij

]
and SIm = LSR

[
x̂i, Q

(n)
−ij

]
− LSR

[
x̂i, Q̂j

]
.

And the payment to i is SPre + α SIm.

Theorem 4 [11]. For all α > 1, if the common prior P is admissible and n →
∞, Mechanism 3 is strongly truthful.

4.2 Information Score and Prediction Market

Prelec [11] uses clever algebraic calculation to prove this main results. Kong and
Schoenebeck [8] use information theory to show that for BTS the ex-ante agents’
welfare for the truth-telling strategy profile is strictly better than for all other
non-permutation equilibria. Here we use prediction markets to show BTS is a
truthful mechanism, and use Mechanism 2 to reproduce BTS.

The payment from BTS consists of two parts, the information score, SIm, and
the prediction score, SPre. The prediction score is exactly the log scoring rule and
is well-studied in the previous literature. However, the role of information score
is more complicated. Here we provide an interpretation based on Mechanism 2.

We consider i = 2 and j = 1 in BTS and call them Bob and Alice respectively.
We let Chloe be the collection of other agent {3, 4, . . . , n}. Let’s run Mechanism 2
on this information structure. Bob is the target. Alice’s initial prediction is Q =
PX2|X1(· | x1). When Chloe’s signal is x3, x4, . . . , xn, Alice’s improved prediction
is Q+ = PX2|X−2(· | x−2) where x−2 = (x1, x3, . . . , xn) is the collection of all
agents’ reports expect Bob’s. By Lemma 1, Bob is still incentivized to report his
private signal x2 which maximizes the expectation, LSR[x̂2, Q

+] − LSR[x̂2, Q]
that equals to

LSR[x̂2, PX2|X−2(· | x−2)] − LSR[x̂2, PX2|X1(· | x1)]. (4)

For the BTS (Mechanism 3), the information score in BTS at truth-telling strat-
egy profile is LSR[x̂i, Q

(n)
−ij ] − LSR[x̂i, Q̂j ] which equals to

LSR
[
x̂2, Q

(n)
−ij

]
− LSR

[
x̂2, PX2|X1(· | x1)

]
. (5)
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The only difference between (4) and (5) is the first term: PX2|X−2(· |
x1, x3, . . . , xn) and Q

(n)
−ij . Therefore, the original BTS reduces to a special case

of Mechanism 2 as n → ∞, if we can show limn→∞ P (X2 | x1, x3, . . . , xn) =
limn→∞ Q

(n)
−ij . Formally,

Proposition 1. For all t = 1, . . . ,m and w ∈ Ω,

Q
(n)
−ij(w) − PX2|X−2(w | x1, x3, . . . , xn)

PX|T (·|t)−−−−−−→ 0 as n → ∞.

That is the difference between these estimators converges to zero in probability
as n goes to infinity.

5 Conclusion

We define two Differential Peer Prediction mechanisms for the single question
setting which are strongly-truthful, detail-free, and only require a single item
report from three agents. Moreover, the agents need not to be homogeneous
and their signals may be continuous. We also show a new property of the loga-
rithmic scoring rules, apply it to make target incentive mechanisms, and show
that BTS can be seen as such a mechanism. One future direction is to use this
machinery to analyse when BTS retains its strongly truthful guarantee, e.g. for
what parameters of finite and/or heterogeneous agents. We define Differential
Peer Prediction, a strongly-truthful, detail-free, mechanism for the single ques-
tion setting that only requires a single item report from three agents. Moreover,
the agents need not be homogeneous and their signals may be continuous. We
provide a simple, conceptually motivated proof for the guarantees of Differential
Peer Prediction, which ties together several themes in the information elicitation
literature.
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Abstract. We study combinatorial auctions with n agents and m items,
where the goal is to allocate the items to the agents such that the social
welfare is maximized. We present a universally truthful mechanism with
polynomially many queries for combinatorial auctions. Our mechanism
and analysis work adaptively for all classes of valuation functions, guar-
anteeing ˜O(min(d,

√
m))-approximation (where ˜O hides a polylogarith-

mic factor in m) of the optimal social welfare, where d is the degree of
complementarity of the valuation functions. To our knowledge, this is the
first mechanism that achieves an approximation guarantee better than
Ω(

√
m), when the valuations exhibit any kind of complementarity.

Keywords: Truthful combinatorial auctions · Approximate
subadditivity · Pointwise approximation

1 Introduction

The field of algorithmic mechanism design studies protocols for computing an
outcome to optimize a certain social objective (e.g., the social welfare), when
inputs are reported by strategic agents. The main challenge in algorithmic mech-
anism design is twofold: algorithmically, the mechanism has to deal with the
computational hardness of the problem; strategically, the mechanism has to take
into account the incentives of the agents, which often do not align with the
interests of the designer. One popular scheme in the field is to design truthful
mechanisms, where the dominant strategy of all bidders are to report their true
preferences. Restricted to truthful mechanisms, one no longer needs to worry
about complex strategic behavior, and can therefore focus on the algorithmic
properties of the mechanism.

In this paper, we consider a central problem in algorithmic mechanism
design—designing truthful mechanisms for combinatorial auctions. In a com-
binatorial auction, there are n agents and m items. Each agent i has a valuation
function vi, that maps each subset S of the items to her value of the subset vi(S).
The goal is to find an allocation of all items, (A1, . . . , An), such that the total
value (i.e., the social welfare) of the agents,

∑
i∈[n] vi(Ai), is maximized. It is

standard in combinatorial auctions to assume that all valuations are monotone1

1 A valuation v is monotone, if for any S ⊆ T ⊆ [m], v(S) ≤ v(T ).
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and normalized2. Previous research also studies restricted classes of valuations,
e.g., submodular3, fractionally subadditive (XOS)4, and subadditive5 valuations.
It is known that all submodular valuations are fractionally subadditive, and all
fractionally subadditive valuations are subadditive.

Since the size of a valuation function can be exponentially large in m, it is
often impossible to use the entire functions as the input. Instead, two standard
kinds of queries are allowed: (1) value queries, which, given an agent i and a set
S, return the value of S to agent i, vi(S); (2) demand queries, which, given an
agent i and prices {pj}j∈[m], return a utility-maximizing set (i.e., a demand set)
of i under the given prices. That is, the query returns a set S that maximizes
vi(S) − ∑

j∈S pj .
Combinatorial auctions become relatively easy if we remove either one of the

two aspects of the difficulty. Ignoring incentive issues, efficient approximation
algorithms exist for the welfare maximization problem. Vondrak gives a e

e−1 -
approximation for submodular valuations, using only value queries [20], which
is shown tight by Mirrokni et al. [18]. When demand queries are allowed, Feige
and Vondrak give an upper bound of e

e−1 −10−6 for submodular valuations [15],
where a lower bound of 2e

2e−1 is known [9]. Feige gives a e
e−1 -approximation for

XOS valuations and a 2-approximation for subadditive valuations using both
queries [12]. None of these algorithms are truthful. On the other hand, the VCG
mechanism is truthful and guarantees the optimal welfare. Computing the VCG
outcome and payments, however, is usually algorithmically hard. In particular,
approximation usually does not help in implementing the mechanism because of
incentive issues.

Taking into account both computational and strategic issues, there are signif-
icant gaps between known upper and lower bounds. Under the most restrictive
assumptions, for submodular valuations, Dobzinski et al. [7] give a determinis-
tic O(

√
m)-approximation that requires only value queries, which is tight both

information theoretically [5] and complexity theoretically [9]. Allowing random-
ization and demand queries, a series of work improves the upper bound from
O(log2 m) for XOS valuations [8], to O(log m log log m) for subadditive valua-
tions [4], to O(log m) for XOS valuations [17], to O(

√
log m) for XOS valuations

[6], and finally to O((log log m)3) for XOS valuations [1]. For general valuations,
O(

√
m)-approximation randomized mechanisms using both kinds of queries are

known [4,8], accompanied by a matching Ω(m1/2−ε) communication complexity
lower bound by Nisan [19].

All of the above mechanisms are universally truthful. That is, fixing the ran-
domness of the mechanism, no agent has incentive to misreport her valuation. We
focus our attention on universally truthful mechanisms, as opposed to truthful
in expectation ones, since if the mechanism proceeds in stages, as agents observe

2 A valuation v is normalized, if v(∅) = 0.
3 A valuation v is submodular, if for any S, T ⊆ [m], v(S)+v(T ) ≥ v(S∪T )+v(S∩T ).
4 A valuation v is fractionally subadditive, if for any S, {Ti}, and {αi}, v(S) ≤

∑

αiv(Ti), whenever the following holds: for each j ∈ S,
∑

i:j∈Ti
αi ≥ 1.

5 A valuation v is subadditive, if for any S, T ⊆ [m], v(S) + v(T ) ≥ v(S ∪ T ).
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partial realization of the randomness, truthfulness in expectation may not be
able to prevent them from lying. Even if agents do not observe the realization
of the randomness, their attitude toward risk may still lead them to misreport.

Despite all the upper bounds for various restricted classes of valuations, little
is known for classes beyond subadditivity. Subadditive valuations are considered
reasonably general, but they can only model items as substitutes to each other—
that is, possessing some items can never make other items more desirable. While
focusing on subadditive valuations usually allows better approximation ratios,
real world valuations often do involve complementarity. For example, a TV set
seems more valuable when one already has a sofa, because otherwise she might
have to watch on her feet. On the other hand, the amount of complementarity is
usually limited, in the sense that a sofa and a TV set complement each other, but
neither of them would affect the value of a car, a dishwasher, or anything out of
the living room. In other words, possible sets of items that complement each other
are likely not too large. Such valuations with limited complementarity, while
being obviously more general than the subadditive class, still seem intuitively
easier to handle than arbitrary monotone valuations. So, a natural question
arises:

Beyond subadditivity, can we do better than Ω(
√

m), when agents have
valuations exhibiting limited complementarity?

1.1 Our Results

We give a positive answer to the question above. Our main contribution is
twofold:

1. Going beyond subadditive valuations, we establish welfare guarantees that
degrade smoothly as the degree of complementarity of the valuations grows.
We prove fine-grained upper bounds roughly proportional to the degree of
complementarity, which, when the degree is small, improve substantially over
the O(

√
m) bound for general valuations. To our knowledge, no such results

were known before.
2. We provide unified design and analysis that work adaptively for all classes of

valuations, guaranteeing approximation ratios that nearly match the state-
of-the-art for the respective class.

In order to derive parametrized welfare guarantees for valuations beyond the
complement-free class, we need to be able to measure how much complementar-
ity the valuations exhibit (i.e., we need a measure of complementarity). While
several measures have been proposed and referred to in various applications
(e.g., the supermodular degree hierarchy [14] and the Maximum-over-Positive-
Hypergraphs hierarchy [13]), it has been observed that different tasks often
require different measures to capture the transition of hardness from restricted
to general valuations (see, e.g., [11]). For our problem, the superadditive width
hierarchy proposed by Chen et al. [2] seems the best fit. The measure builds on
the concept of superadditive sets:
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Definition 1 (Superadditive Sets [2]). Let v(S|T ) = v(S ∪ T ) − v(T ) be the
marginal of S given T . Given a normalized monotone valuation function v over
a ground set [m], a set T ⊆ [m] is superadditive w.r.t. v if

∃S ⊆ [m] \ T such that: v(S|T ) > max
T ′�T

v(S|T ′).

In words, a set T is superadditive, if it enables some set S with a larger marginal
than any of its proper subsets does. Based on the concept of superadditive sets,
Chen et al. define a measure of complementarity:

Definition 2 (Superadditive Widths [2]). The superadditive width of a val-
uation function v is defined to be

SAW(v) = max{|T | | T is a superadditive set w.r.t. v}.

The definition essentially says, that the degree of complementarity of a valuation
is proportional to the size of the largest superadditive set with respect to the
valuation.

It is known that for any monotone valuation function v over 2[m], 0 ≤
SAW(v) ≤ m − 1, and SAW(v) = 0 iff v is subadditive [2]. In other words, valu-
ations can be categorized, according to their superadditive width, into m nested
layers, where the lowest layer (layer 0) contains exactly the class of subadditive
valuations, and the highest layer (layer m − 1) contains all monotone valuation
functions. We denote the d-th layer, containing valuations with superadditive
width at most d, by SAW-d (Table 1).

The following theorem summarizes our results:

Theorem 1 (Informal). There is an efficient universally truthful mechanism
which guarantees Õ(min(d,

√
m))-approximation6 of the optimal welfare, where

m is the number of items, and d = maxi∈[n] SAW(vi) is the maximum superad-
ditive width of agents’ valuations.

Table 1. Comparison of approximation ratios of several mechanisms.

Submodular/XOS Subadditive SAW-d General

Mechanism 1 of [4] O(
√
m) O(

√
m) O(

√
m) O(

√
m)

Mechanism 2 of [4] O(logm log logm) O(logm log logm) ? ?

[1] O((log logm)3) ? ? ?

This paper O(logm) O(log2 m) O(d log2 m) O(
√
m logm)

The mechanism and analysis we present enjoy generic applicability—they
require no parameters and automatically work for all kinds of valuations.
Beside our result for limited-complementarity valuations, for complement-free

6
˜O hides a polylogm factor.
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valuations, we recover the polylog approximation ratios, and for general val-
uations, we match the Ω(

√
m) lower bound up to a O(

√
log m) factor. This

adaptivity is particularly desirable when it is unrealistic to know beforehand to
which class the valuations belong7. We also note that our mechanism is con-
siderably simplified compared to previously proposed mechanisms—we intend
to keep the mechanism as simple as possible to demonstrate the power of the
underlying ideas, potentially compromising a minor factor in the approximation
ratio. On the other hand, our analysis does shed light on the potential space for
improvement within the framework we present, possibly by incorporating ideas
from [1,4]. For further related work, see Appendix A in the full version of the
paper.

1.2 Organization and Technical Overview

We present our mechanism in Sect. 2, and then proceed to establishing approxi-
mation guarantees for different classes of valuations in later sections. The overall
idea is to build a framework using the strongest assumptions under which the
argument remains illustrative, and then generalize gradually by adapting the
framework.

We begin our investigation with constraint homogeneous (CH) valuations
(defined in Definition 3), which is arguably the simplest class of valuations
exhibiting complementarity. The class was originally introduced by Devanur
et al. [3] and extended by Feldman et al. [16] to study the PoA of simple auctions.
Roughly speaking, the CH class contains valuations that are additive over small
disjoint bundles, where each bundle’s value is proportional to its size. We show
in Sect. 3 that our mechanism guarantees Õ(d)-approximation for CH valuations
with maximum bundle size d. More specifically, we first show that given com-
plete information about agents’ valuations, there exist prices, such that if we post
these prices on the items, order agents arbitrarily, and let them purchase their
demand sets, the resulting allocation is a O(d)-approximation of the optimal
welfare. We prove this guarantee using a standard argument that decomposes
the welfare into two parts: the total payment, and the total buyer surplus. The
intuition is that, if we post the right prices, then when most items are sold, the
payment must be high enough. Otherwise, since the unsold items are available
to every agent as an option, the total buyer surplus must be high enough. The
welfare bound follows since both terms are nonnegative. We then argue that
without knowing agents’ valuations, we can somehow guess a price, such that if
we post that price on every item, the expected welfare is still reasonably high.
The technique of “guessing a price” has also been shown useful in [4,8].

7 One may argue that running the state-of-the-art mechanism for each class of valu-
ations with constant probability achieves the best approximation guarantee for all
classes simultaneously. The point we try to make here is, we show how one can
achieve this adaptivity with coherent design and analysis, which arguably provides
more insight into the problem, and is more likely to inspire future research on the
topic.
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We further observe that for certain truthful mechanisms, pointwise approxi-
mation between classes of valuations (as defined in Definition 4) in a sense pre-
serves welfare guarantees. The notion of pointwise approximation was explicitly
defined by Devanur et al. in [3], where they show such approximation approxi-
mately preserves PoA bounds. Informally, v is approximated by v′ at set S, if
(1) v′ is always no larger than v at any subset of S, and (2) v′ is not too much
smaller than v at S. In Sect. 4, based on this observation, we provide a way to
translate these approximation relationships into welfare guarantees, by proving
the following lemma:

Lemma 1 (Informal). There is an efficient universally truthful mechanism
which guarantees Õ(d)-approximation of the optimal welfare, when agents have
valuations approximated by disjoint bundle (DB) valuations (as defined in Defi-
nition 5) with maximum bundle size d.

The class of DB valuations is similar to CH, except that each bundle can have an
arbitrary value. We first argue the lemma for CH valuations, and then extend to
DB valuations by assigning a dummy agent to every bundle in a DB valuation.
The proof of the lemma builds on the observation, that if we pretend that the
agents have CH valuations that approximate the actual ones at some optimal
allocation, we can borrow the argument for CH valuations with local modifica-
tions. In particular, since the welfare of the optimal allocation under the dummy
valuations is not too much smaller than the actual optimal welfare, we can use
the dummy welfare as the benchmark without significant loss.

The extension lemma above essentially says, in order to establish welfare
guarantee for a particular class of valuations, one only needs to show approx-
imability of the class by DB valuations. Given the extension lemma, we plug in
previously known approximation results for XOS, subadditive, and SAW-d val-
uations by DB valuations, which immediately yields approximation guarantees
for the respective classes of valuations.

Finally, in Sect. 5, we show that for general valuations, we are able to nearly
recover the optimal O(

√
m) approximation ratio. We take a similar but slightly

different approach. We argue that if the agents’ shares in the optimal allocation
are roughly equally distributed, then we can ignore agents who receive too many
items. The intuition is, since agents receive disjoint sets of items, the number of
agents who receive many items is not too large. Also, since the optimal welfare is
equally distributed, a small number of agents cannot share too large a fraction of
the welfare, and can therefore be removed without hurting the welfare too much.
We then use the optimal allocation projected to agents who receive few items as
the benchmark. We observe, that the valuation of each agent is approximated at
the set she receives, by a CH valuation with reasonably small maximum bundle
size. A similar argument to the one we use to prove the extension lemma gives
the desired approximation guarantee.
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2 A Generic Mechanism

In this section, we present our generic mechanism for truthful combinatorial auc-
tions, and state its approximation guarantees for different classes of valuations.

Notation. Throughout the paper we use [n] and [m] to denote the sets of agents
and items, respectively. W.l.o.g. we assume m = 2p for some integer p. In general
we use i as the index of an agent, and j the index of an item.

The mechanism, as well as the frameworks presented in [4,8], uses two widely
applied subroutines:

– A (grand-bundle) second price auction, where each agent bids on the grand
bundle of all items. The agent with the highest bid wins, receives all items,
and pays the second highest bid.

– A fixed-price auction with price p, where all agents are approached in some
arbitrary order. Each agent, when being asked, can choose to purchase any
subset of the items available at the time, paying p for each item she purchases.
Any item purchased by some agent becomes unavailable immediately.

A generic mechanism.

1. With probability 1
2 , run a second price auction on the grand bundle, give all

items to the winner, charge her the second highest bid, and terminate.
2. Partition all agents into two sets: STAT and FIXED. Each bidder is assigned

independently, with probability 1
2 to STAT, and with probability 1

2 to FIXED.
3. For each agent i ∈ STAT, query vi([m]). Let p0 = maxi∈STAT vi([m]).
4. Draw p uniformly at random from

P =
{ p0

32m2
,

p0
16m2

, . . . ,
p0
2

, p0, 2p0, . . . , 8m2p0, 16m2p0

}
.

Run a fixed-price auction for agents in FIXED with price p, give any pur-
chased item to the agent who purchased it, collect the corresponding pay-
ments, and terminate.

It is easy to check that the above mechanism is universally truthful. If a grand-
bundle second price auction happens, truthfulness follows from that of second
price auctions. Otherwise, for an agent in STAT, since she will not receive any
item anyway, there is no incentive to lie.8 For an agent i in FIXED, when being
asked, her dominant strategy is to purchase her demand set (i.e. a set S that
maximizes vi(S) − p · |S|) according to her actual valuation. We prove in the
following sections that:
8 As suggested by an anonymous reviewer, a slight modification gives all agents strict
incentives to report truthfully: partition agents into two sets (STAT and FIXED)
uniformly at random, and run a second-price auction on the grand bundle for agents
in STAT. Then with probability 1/2, allocate the grand bundle to the highest bidder
in the second-price auction, and with probability 1/2, let p0 be the highest bid, and
proceed to Step 4 (the fixed-price auction) of the original mechanism.
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Theorem 2 (Main Theorem). The generic mechanism is universally truth-
ful, makes exactly one value or demand query to each agent, and returns
a O(min(d log2 m,

√
m log m))-approximately optimal allocation of all items in

expectation, where d = maxi∈[n] SAW(vi). When agents have submodular or XOS
valuations, the approximation ratio improves to O(log m).

It may appear that a tighter analysis should give a bound of Õ(
√

d), which
becomes Õ(1) for complement-free agents (when d = 0) and Õ(

√
m) for general

monotone agents (when d = m − 1). However, we show that the above bound is
in fact almost tight for our protocol, or any protocol within the same framework.
Namely,

Proposition 1. There exist 2m/(d+1) agents with SAW-d valuations such that
the generic mechanism yields a Ω(min{d,m/d})-approximately optimal alloca-
tion.

We postpone the proof of the above proposition to Appendix B in the full version
of the paper.

3 Warmup: Constraint Homogeneous Valuations

As a warmup, we first prove an approximation guarantee of the generic frame-
work when agents are interested in only disjoint bundles of items. The proof will
also be the backbone of the limited-complementarity and general valuation cases
to be discussed later. Formally, we are interested in agents with the following
class of valuations:

Definition 3 (d-Constraint Homogeneous Valuations [16]). A valuation
v is d-constraint homogeneous (d-CH) if there exists a value p (the price-per-
item), and disjoint sets Q1, . . . , Q�, each of size at most d, so that v(Qk) = p·|Qk|
for every Qk, and the value of every set S ⊆ [m] is the sum of values of contained
Qi’s, i.e.,

v(S) =
∑

Qk⊆S

v(Qk) = p
∑

Qk⊆S

|Qk| = p · |{j : ∃k s.t. j ∈ Qk ⊆ S}|.

We prove that the generic mechanism gives a O(d log m) approximation of
the optimal welfare when agents have d-CH valuations. We proceed by two cases:
when there is an agent whose share in the optimal allocation is large, and when
there is no such agent. The former case is directly handled by the grand-bundle
second price auction, while the second case requires more effort. All missing
proofs in this section are postponed to Appendix C in the full version of the
paper.

Notation. Let OPT = (OPT1, . . . ,OPTn) be an optimal allocation, where OPTi

is the set of items that agent i receives. Let v(OPT) =
∑

i vi(OPTi) be the
optimal welfare.
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3.1 The Easy Case: When Heavy Agents Exist

First note that:

Lemma 2. For any t ≥ 1, if for some agent i, vi(OPTi) ≥ v(OPT)
t , then a

grand-bundle second price auction guarantees welfare at least v(OPT)
t .

Therefore, if there is an agent i whose share in the optimal allocation is
at least vi(OPTi) ≥ v(OPT)

log m , with probability 1
2 a grand-bundle second price

auctions happens, in which case the welfare is at least v(OPT)
log m . The expected

welfare is hence at least v(OPT)
2 log m .

3.2 A Thought Experiment: Posted Prices Given Complete
Information

Before proceeding to the hard case, we first consider a scenario where the valu-
ations of all agents are known. We demonstrate that in such a case, there exist
prices, using which a posted-price auction achieves a d-approximation of the opti-
mal welfare when agents have d-CH valuations. The result does not directly imply
a welfare guarantee of our mechanism. Nevertheless, the argument is instrumen-
tal for later discussion. We also note that the result in this subsection for the
complete information case is not a novel contribution of this paper: for example,
a similar statement appears in [10]. We present the entire argument here mainly
to provide intuition about the hard case and to be self-contained.

Posted-Price Auctions. A posted price auction is similar to a fixed price auction,
except that the prices for different items can be different. A price is assigned to
each item before the auction begins. During the auction, agents are approached
in some arbitrary order. Upon being asked, each agent can purchase any subset
of the items available, and pay the total prices assigned to these items.

We claim that:

Proposition 2. For agents with d-CH valuations, there exists prices {qj}j, such
that a posted-price auction with prices {qj}j yields an allocation with welfare at
least v(OPT)

2d .

3.3 The Hard Case: When No Heavy Agents Exist

Now we focus on the case where no agent has a share larger than v(OPT)
log m . In

such a case, we completely ignore the contribution to the welfare by the second
price auction, and analyze solely the contribution of the fixed price auction.

Ideally we would like to run the posted-price auction discussed in the preced-
ing subsection. However, there are two obstacles preventing us from implement-
ing the auction: (1) the valuations of agents are unknown, and (2) computing an
optimal allocation is computationally prohibiting. The latter issue can be solved
in some sense, by running an approximation algorithm (e.g. [13]), presumably
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compromising the approximation ratio. On the other hand, there seems to be no
easy way around the first issue.

To overcome these difficulties, instead of posting the prices constructed in
Proposition 2, our mechanism (1) estimates the interval in which the posted-
prices lie, by querying agents in STAT, (2) guesses an appropriate price for
agents in FIXED from the estimated interval, and (3) runs a fixed-price auction
for agents in FIXED with the price guessed. We show that the expected welfare
resulting from such a procedure is not too much worse than the posted-price
outcome.

The first step is to show that with high probability, the optimal welfare is
relatively equally distributed into STAT and FIXED, so (1) a good approxima-
tion restricted to agents in FIXED is also a good approximation with all agents,
and (2) an estimation from STAT is useful for guessing the price for FIXED.

Let OPTSTAT and OPTFIXED be optimal allocations projected to agents in
STAT and FIXED respectively. That is, OPTSTAT

i (resp. OPTFIXED
i ) is OPTi

if i belongs to STAT (resp. FIXED), and ∅ otherwise.

Lemma 3. If for some t ≥ 1, for all i ∈ [n], vi(OPTi) ≤ v(OPT)
t , then with

probability 1 − 2e−t/8, v(OPTSTAT) ≥ v(OPT)
4 and v(OPTFIXED) ≥ v(OPT)

4 .

Corollary 1. If for all i ∈ [n], vi(OPTi) ≤ v(OPT)
log m , then with probability 1 −

O(1/m), v(OPTSTAT) ≥ v(OPT)
4 and v(OPTFIXED) ≥ v(OPT)

4 .

We now condition everything on the event (denoted by E) that (1) with
probability 1/2, agents are divided into 2 groups, and (2) with probability 1 −
O(1/m), the two groups are roughly balanced. We only need to show, that when
E happens, the expected welfare of the mechanism is Ω

(
v(OPT)
d log m

)
.

Let OPT′ be an allocation obtained by removing from OPTFIXED any item
allocated to an agent whose price-per-item is no larger than v(OPTFIXED)

2m . Observe
that

Lemma 4. v(OPT′) ≥ 1
2v(OPTFIXED).

This means we can safely ignore agents with low price-per-item without losing
too much.

For prices high enough, the next lemma shows that we can estimate and
guess them with relatively high probability.

Lemma 5. Conditioned on E, for any m ≥ 512, price q ∈[
v(OPTFIXED)

2m2 , 4v(OPTFIXED)
]
, with probability 1

|P | ≥ 1
5 log m , the price p guessed

in step 4 of the mechanism satisfies 1
4q ≤ p < 1

2q.

The next step is to show that the fixed-price auction approximates the sum
of values of agents whose price-per-item is close to the guessed price p.
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Lemma 6. Conditioned on E, the welfare of the allocation given by the fixed-
price auction with price p is at least

1
4d

∑

i∈FIXED, 14pi≤p≤ 1
2pi

vi(OPT′
i).

We are ready to prove a lower bound on the expected welfare of the fixed-
price auction.

Lemma 7. Conditioned on E, the expected welfare generated by the fixed-price
auction is Ω

(
v(OPT)
d log m

)
.

Now we can put everything together and conclude:

Proposition 3. When agents have d-CH valuations, the generic mechanism
guarantees O(d log m)-approximation of the optimal welfare.

Proof. When there is a heavy agent (i.e., an agent i with vi(OPTi) ≥ v(OPT)
log m ),

Lemma 2 guarantees expected welfare v(OPT)
2 log m . When there is no heavy agent,

Corollary 1 and Lemma 7 guarantee expected welfare Ω
(

v(OPT)
d log m

)
.

4 Valuations with Limited Complementarity

We show in this section, that for general valuations, the approximation guarantee
of the generic mechanism degrades smoothly as the degree of complementarity
grows. To establish this result, we first show that if a class of valuations V is
approximated by disjoint bundle valuations with limited bundle size, then the
mechanism gives a reasonable guarantee with valuations in V. Then we apply
various existing approximation lemmas to establish approximation guarantees
of the generic mechanism for submodular, XOS, subadditive, and SAW-d valu-
ations.

Formally, we define pointwise approximation between classes of valuations:

Definition 4 (Pointwise Approximation [3]). A valuation class V is point-
wise β-approximated by a valuation class V ′ if for any valuation v ∈ V and for
any set S ⊆ [m], there exists a valuation v′ ∈ V ′ such that β · v′(S) ≥ v(S) and
for all T ⊆ [m] it holds that v′(T ) ≤ v(T ). We also say such a v′ β-approximates
v at S.

We first show that if d-CH β-approximates V, then the generic mechanism
guarantees O(βd log m)-approximation of the optimal welfare, and then extend
the result to d-DB valuations, a superclass of d-CH, as defined below.

Definition 5 (d-Disjoint Bundle Valuations). A valuation v is d-disjoint
bundle (d-DB) if there exists disjoints sets of size at most d and corresponding
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values (Q1, v(Q1)), . . . , (Q�, v(Q�)), so that the value of every set S ⊆ [m] is the
sum of values of contained Qi’s, i.e.,

v(S) =
∑

Qk⊆S

v(Qk).

We first prove the d-CH version of the extension lemma, which plays a central
part in our argument:

Lemma 8. When agents have valuations in class V, for β ≤ m, if V is point-
wise β-approximated by d-CH valuations, then the generic mechanism guarantees
O(βd log m)-approximation of the optimal welfare.

We postpone the proof to Appendix D in the full version of the paper. Now
observe that the above argument can be easily modified to work if we replace
d-CH valuations with d-DB valuations. Formally,

Lemma 9. When agents have valuations in class V, for β ≤ m, if V is point-
wise β-approximated by d-DB valuations, then the generic mechanism guarantees
O(βd log m)-approximation of the optimal welfare.

Again, we postpone the proof of Lemma 9 to Appendix D in the full version
of the paper. Note that we do not need to know the d-CH or d-DB valuations
which approximate the vi’s—the existence of the approximation suffices for our
purpose.

With Lemma 9, we are now ready to translate the approximation lemmas by
d-DB to welfare guarantees of the generic mechanism. Restricted to complement-
free classes, it is well known that:

Lemma 10 (Folklore). Fractionally subadditive (or XOS) valuations are
pointwise 1-approximated by 1-DB (i.e. additive) valuations.

Dobzinski [4] and Devanur et al. [3] independently show that:

Lemma 11 [3,4]. Subadditive valuations are pointwise O(log m)-approximated
by 1-CH (i.e. homogeneously additive) valuations.

And beyond complement-free classes, Chen et al. [2] show that:

Lemma 12 [2]. For any d ≥ 1, the class SAW-d is pointwise 2Hm-
approximated by 2d-CH, where Hi =

∑
k∈[i]

1
k is the i-th harmonic number.

Applying Lemma 9 to Lemmas 10, 11, and 12, we obtain:

Theorem 3. When agents have (1) submodular or XOS, (2) subadditive, or (3)
SAW-d valuations for d ≥ 1, the generic mechanism guarantees (1) O(log m)-,
(2) O(log2 m)-, or (3) O(d log2 m)-approximation of the optimal welfare, respec-
tively.

Proof. The Theorem follows from Lemma 9 by setting β to (1) 1, (2) O(log m),
and (3) 2Hm = O(log m), and d to (1) 1, (2) 1, and (3) 2d′ respectively.
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5 General Monotone Valuations

In this section, we show that the generic mechanism guarantees O(
√

m log m)-
approximation of the optimal welfare, thereby concluding the proof of Theo-
rem 2. We do this, again, by modifying the outline given in Sect. 4 (proof deferred
to Appendix E in the full version of the paper).

Theorem 4. When agents have monotone valuations, the generic mechanism
guarantees O(

√
m log m)-approximation of the optimal welfare.

Putting Theorems 3 and 4 together, Theorem 2 follows directly.
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10. Düetting, P., Feldman, M., Kesselheim, T., Lucier, B.: Prophet inequalities made
easy: stochastic optimization by pricing non-stochastic inputs. In: IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS 2017), pp. 540–
551. IEEE (2017)

https://doi.org/10.1007/978-3-540-74208-1_7
https://doi.org/10.1007/978-3-540-74208-1_7


146 H. Zhang

11. Eden, A., Feldman, M., Friedler, O., Talgam-Cohen, I., Weinberg, S.M.: A simple
and approximately optimal mechanism for a buyer with complements. In: Pro-
ceedings of the 2017 ACM Conference on Economics and Computation, p. 323
(2017)

12. Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J.
Comput. 39(1), 122–142 (2009)

13. Feige, U., Feldman, M., Immorlica, N., Izsak, R., Lucier, B., Syrgkanis, V.: A
unifying hierarchy of valuations with complements and substitutes. In: Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

14. Feige, U., Izsak, R.: Welfare maximization and the supermodular degree. In: Pro-
ceedings of the 4th Conference on Innovations in Theoretical Computer Science,
pp. 247–256. ACM (2013)

15. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: improv-
ing the factor of 1-1/e, pp. 667–676. IEEE (2006)

16. Feldman, M., Friedler, O., Morgenstern, J., Reiner, G.: Simple mechanisms for
agents with complements. In: Proceedings of the 2016 ACM Conference on Eco-
nomics and Computation, pp. 251–267. ACM (2016)
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adrian.vetta@mcgill.ca

Abstract. We study the efficiency of sequential multiunit auctions with
two buyers and complete information. For general valuation functions,
we show that the price of anarchy is exactly 1/T for auctions with T
items for sale. For concave valuation functions, we show that the price
of anarchy is bounded below by 1 − 1/e � 0.632. This bound is asymp-
totically tight as the number of items sold tends to infinity.

1 Introduction

In a sequential multiunit auction, T identical copies of an item are sold one
at a time. We evaluate the price of anarchy in two-buyer sequential multiunit
auctions with complete information, under the standard model introduced by
Gale and Stegeman [6] where each item is sold via a second-price auction. Our
main result is that, for concave valuation functions, the price of anarchy is at
least 1 − 1/e � 0.632, and this bound is asymptotically tight as the number of
items T tends to infinity. We also show that, for general valuation functions,
the price of anarchy is exactly 1/T for sequential multiunit auctions with T
items for sale. To obtain these results we show how to lower bound the price of
anarchy via a linear programming formulation. Key to our analyses is a detailed
examination of the properties of equilibria. These properties lead to a collection
of valid constraints whose incorporation into the linear program produces the
optimal lower bounds. The optimality of these bounds is certified by providing
examples of two-buyer sequential auctions with matching upper bounds on the
price of anarchy.

1.1 Related Work

There is an extensive literature studying the price of anarchy of sequential mul-
tiunit auctions. For the case of identical items, our price of anarchy bound of
1 − 1/e for two-buyer auctions with concave valuations has previously been
claimed by Bae et al. [2,3]. However, those papers contain flaws and the proofs
c© Springer Nature Switzerland AG 2020
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do not hold; see [1] for details. Recently, Ahunbay et al. [1] were able to prove
that the price of anarchy is 1 − 1/e under the restriction that a buyer may not
bid higher than its incremental value for winning the next item. But, even with
concave valuations, equilibrium bids can be higher than incremental values –
thus the results of [1] do not apply to the traditional equilibrium concept stud-
ied in this paper. The price of anarchy of sequential auctions with non-identical
items has also been studied in depth; see, for example [5,8,11,12].

To evaluate the price of anarchy we apply primal-dual methods. Previously
for sequential auctions, Nguyen [13] provided through a primal-dual formulation
price of anarchy bounds for sequential second-price sponsored search auctions,
and for sequential first-price auctions with unit-demand valuations. Primal-dual
methods have also been applied to inspect the efficiency of other classes of games.
For example, Nadav and Roughgarden [9] characterized the set of outcomes for
which smoothness [10] arguments apply for price of anarchy bounds by a primal-
dual argument, and proposed a refinement of smoothness to obtain better price
of anarchy bounds for coarse correlated equilibria. Nguyen [13], in addition to the
previously mentioned results on sequential auctions, also provided price of anar-
chy bounds for congestion games and simultaneous auctions. Bilo [4] showed that
constant-ratio efficiency bounds may be obtained for weighted congestion games
even with quadratic and cubic latency functions through a primal-dual formula-
tion. Likewise, Kulkarni and Mirrokni [7] provided bounds on the robust price of
anarchy for several classes of games through the use of LP and Fenchel duality.

2 The Sequential Auction Model

We study two-buyer sequential auctions under the complete information model
of Gale and Stegeman [6], and our notion of efficiency is that of Bae et al. [2,3].
Here, we present the model, notation and the concept of efficiency as in Ahunbay
et al. [1]. There are T identical items which are sold one by one in a sequence of
second-price auctions. Buyer i ∈ {1, 2} has value Vi(k) for winning k items. Given
the valuations, we will say buyer i has incremental value vi(k) for obtaining a kth
item: formally, vi(k) = Vi(k)−Vi(k−1). We also make the standard assumption
of free disposal. Thus, the valuation functions are non-decreasing; in particular,
the incremental values are non-negative, i.e. vi(k) ≥ 0, for any buyer i and any
k ∈ [T ] := {1, 2, . . . , T}. Furthermore, we say the valuation function is concave
if the incremental values are non-increasing; that is vi(k) ≥ vi(k + 1) for any
k ∈ [T ].

2.1 Forward Utilities and Equilibria

To find an equilibrium in the sequential auction we make a Markov perfection
assumption: in each round of the auction, buyer i makes a bid conditioned on
the number of items previously won by each buyer. The set of histories is then
given by H = {x ∈ Z

2 : x ≥ 0, x1 + x2 ≤ T}. For x ∈ H, if x1 + x2 = T , then x
is called a terminal node; otherwise, x is called a decision node.
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We can find an equilibrium by computing the forward utility ui(x) of each
buyer i at each node x ∈ H. The forward utility at x is the profit a buyer will
earn from period x1 + x2 onwards, provided that each buyer i has won xi items.
This can be calculated by backwards induction on x1+x2. If x is a terminal node
then the auction has ended. Hence the forward utility of each buyer is zero at
such a terminal node, i.e. ui(x) = 0 for any i ∈ {1, 2}. It remains to evaluate the
forward utility of each buyer at a decision node x. Decision node x has two direct
successors: the decision node x + ei, where ei is the standard basis vector with
the ith coordinate equal to 1 and the other coordinate equal to 0, corresponds to
buyer i winning an item at x. Then, in a second-price auction at decision node
x, the unique bidding strategies that survive the iterative elimination of weakly
dominated strategies are:

b1(x) = v1(x1 + 1) + u1(x1 + 1, x2) − u1(x1, x2 + 1)
b2(x) = v2(x2 + 1) + u2(x1, x2 + 1) − u2(x1 + 1, x2) (1)

Let p(x) denote the price paid by the winning buyer at decision node x. As this
is a second-price auction, this price is simply the minimum of the two bids:

p(x) = min
i∈{1,2}

bi(x) (2)

Now, if b1(x) > b2(x) then buyer 1 wins and the utilities of the buyers are given
by:

u1(x) = v1(x1 + 1) − b2(x) + u1(x1 + 1, x2)

= v1(x1 + 1) + u1(x1 + 1, x2) + u2(x1 + 1, x2) − u2(x1, x2 + 1) − v2(x2 + 1)

u2(x) = u2(x1 + 1, x2) (3)

Conversely, if b1(x) < b2(x) then buyer 2 wins, and the utilities are defined
symmetrically as:

u1(x) = u1(x1, x2 + 1)

u2(x) = v2(x2 + 1) − b1(x) + u2(x1, x2 + 1)

= v2(x2 + 1) + u1(x1, x2 + 1) + u2(x1, x2 + 1) − u1(x1 + 1, x2) − v1(x1 + 1)
(4)

Finally, if b1(x) = b2(x) then by (1), for any buyer i:

ui(x + e−i) = vi(xi + 1) − bi(x) + ui(x + ei) (5)

Thus in the case of a tie, the utilities are invariant to which way the tie is
broken. In particular, the forward utilities and bids of the buyers at each node
are uniquely determined. Observe that this means that the Markov perfection
assumption does not result in any loss of generality. We remark that a two-
buyer sequential multiunit auction may be represented by a labelled directed
tree rooted at decision node (0, 0). This notation allows for a simple description
of the forward utilities at each decision node. Denote by U(x) =

∑
i∈{1,2} ui(x)

the sum of the forward utilities of the two buyers at node x = (x1, x2).
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Claim 1. Let x be a decision node. Then bi(x) ≥ b−i(x) if and only if:

vi(xi + 1) + U(x + ei) ≥ v−i(x−i + 1) + U(x + e−i)

Proof. By (1), we have bi(x) ≥ b−i(x) at decision node x if and only if:

vi(xi +1)+ui(x+ei)−ui(x+e−i) ≥ v−i(x−i +1)+u−i(x+e−i)−u−i(x+ei)

Rearranging, this is equivalent to:

vi(xi +1)+ui(x+ei)+u−i(x+ei) ≥ v−i(x−i +1)+ui(x+e−i)+u−i(x+e−i)

The claim then follows by definition of U(x + ei) and U(x + e−i). ��
Together with (3) and (4), Claim 1 implies the following.

Claim 2 ([6], Eq. 7). The forward utility of buyer i at decision node x is exactly:

ui(x) = max
j∈{1,2}

[vj(xj + 1) + U(x + ej)] − v−i(x−i + 1) − u−i(x + e−i) ��

2.2 Social Welfare and Efficiency

The purpose of this paper is to evaluate the price of anarchy in the sequential
auction. This requires us to formally define the social welfare of an allocation.
To wit, let x be a decision node and denote by t(x) = T − x1 − x2 the number
of items for sale starting from x. Then the social welfare from decision node x
of the allocation where buyer 1 wins exactly k more items is:

sw(k|x) = V1(x1 + k) − V1(x1) + V2(T − x1 − k) − V2(x2)

=
x1+k∑

j=x1+1

v1(j) +
T−x1−k∑

j=x2+1

v2(j) (6)

The optimal social welfare from decision node x is then given by:

opt(x) = max
k∈[t(x)]∪{0}

sw(k|x) (7)

Our formal treatment of efficiency will relate the optimal social welfare at a
decision node x to the social welfare of some terminal node x + (k, t(x) − k),
given that there exists some equilibrium path connecting the two nodes. To do
this, we first present the formal definition of an (equilibrium) path from [1]. A
path from decision node x is a (t(x) + 1)-tuple P = (xt(x),xt(x)−1, ...,x1,x0)
such that: (i) the path starts from x, i.e. xt(x) = x, and (ii) each successive
node follows from some buyer j acquiring an item, i.e. for each k ∈ [t(x)],
xk−1 = xk + ej for some j ∈ {1, 2}. A path P is called an equilibrium path if
each successive node follows from some buyer j acquiring an item by outbidding
the other player, i.e. for any k ∈ [t(x)], if xk−1 = xk +ej , then bj(xk) ≥ b−j(xk).
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Finally, for any path P = (xt(x),xt(x)−1, ...,x1,x0) and any s ∈ [t(x)], we denote
by P s = (xs,xs−1, ...,x1,x0) the final segment of P of s + 1 nodes.

We now present our notion of efficiency. The efficiency along path P , denoted
Γ (P ), satisfies:

Γ (P ) =

{
sw(x0

1−x
t(x)
1 |x)

opt(x) opt(x) �= 0

1 opt(x) = 0
(8)

The price of anarchy (over some class) is then the infimum of the set of possi-
ble efficiency values along equilibrium paths of auctions in class. Here, of course,
the class of auctions we consider is two-buyer sequential multiunit auctions.

We remark that because the valuation functions Vi(·) are non-decreasing, the
price of anarchy is meaningful; in particular, it always lies between 0 and 1. To
see this, as the incremental valuations are non-negative, (6) and (7) imply that
opt(x) ≥ sw(k|x) ≥ 0 at any decision node x, for any 0 ≤ k ≤ t(x). Thus
Γ (P ) ∈ [0, 1] for any path P starting from x.

3 A Linear Programming Formulation

In this section, we provide a linear programming approach for bounding the
price of anarchy in a two-buyer sequential auction. We begin in Subsect. 3.1 by
presenting a set of structural results concerning equilibria in the sequential auc-
tion. These structural properties will induce a class of linear programs that can
be used to lower bound the price of anarchy. Then, in Subsect. 3.2, we moti-
vate and generate an additional class of valid inequalities that must hold along
equilibrium paths. In Sects. 4 and 5, we will prove that the incorporation of
these valid inequalities into our linear programs suffices to provide tight price of
anarchy bounds for concave valuation functions and general valuation functions,
respectively.

3.1 Structural Results

Let us first note two results from Gale and Stegeman [6]. The first is the intuitive
result that buyer i does not derive any benefit from letting buyer −i win an item
at no cost:

Lemma 1 ([6], Lemma 1). Let x be a decision node. Then ui(x) ≥ ui(x+e−i)
for any buyer i. Moreover, this inequality is strict if and only if bi(x) > b−i(x),
that is, buyer i wins with a strictly greater bid at decision node x. ��

The second result is the declining price anomaly: prices are non-increasing
along any equilibrium path.

Lemma 2 ([6], Lemma 2). Let x be a decision node such that t(x) > 1. If
buyer i wins at x, then p(x) ≥ p(x+ ei). Moreover, p(x) = p(x+ ei) if and only
if buyer i also wins at decision node x + e−i. ��
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Because the forward utilities are zero at each terminal node, an immediate
consequence of Lemma 1 is that the forward utility of any buyer at any decision
node is non-negative.

Corollary 1. Let x ∈ H and i ∈ {1, 2}, then ui(x) ≥ 0. ��
Furthermore, given the assumption of non-decreasing valuation functions,

Lemma 2 implies that prices are non-negative.

Lemma 3. At any decision node x, p(x) ≥ 0.

We may now derive a simple upper bound on the forward utility of any buyer.
Observe that, for any equilibrium path P starting at x, the forward utility of
buyer i at x is the value it has for the items it wins on the path P minus the
total price it pays. Thus, because the prices are non-negative by Lemma 3, the
total value buyer i has for the items it wins on the equilibrium path P is an
upper bound on its forward utility at x.

Lemma 4. Let x be a decision node and P = (xt(x), ...,x0) an equilibrium path
starting at x. Then, for any i ∈ {1, 2}, ui(x) ≤ ∑x0

i
j=xi+1 vi(j). ��

Claim 2 also immediately provides an explicit form for the difference of the
buyers’ forward utilities.

Lemma 5. Let x be a decision node. Then:

ui(x) − u−i(x) = vi(xi + 1) + ui(x + ei) − v−i(x−i + 1) − u−i(x + e−i) ��

Finally, we turn our attention to the efficiency of paths. As the valuations are
non-decreasing, we can show that the efficiency along a path P = (xt(x),xt(x)−1,
...,x1,x0) may be bounded below by the efficiency along a specific subpath P s

of P (which may be P itself), such that the unique optimum allocation from xs

has one buyer winning all the remaining items. The result generalises arguments
made in the proofs of Theorem 2 in [3], and Lemma 6.2 and Lemma 6.3 in [1]
to possibly non-concave valuations.

Lemma 6. Let x be a decision node and P = (xt(x),xt(x)−1, ...,x1,x0) a path
from x. Then:

(a) If xt(x)−1 = x + e1 and ∃k > 0, sw(k|x) = opt(x), then Γ (P ) ≥
Γ (P t(x)−1).
(b) If xt(x)−1 = x + e2 and ∃k < t(x), sw(k|x) = opt(x), then Γ (P ) ≥
Γ (P t(x)−1).

Proof. It suffices to prove (a), as (b) then follows from relabelling the buyers.
If opt(x) = 0 then, because the efficiency is between 0 and 1 along any path,
we have Γ (P ) = 1 ≥ Γ (P t(x)−1). So suppose that opt(x) > 0. Note that
t(x+e1) = t(x)−1. So, by definition (6), sw(k|x+e1) = sw(k+1|x)−v1(x1+1)
for any k ∈ [t(x + e1)] ∪ {0}. By assumption, there exists k > 0 such that
sw(k|x) = opt(x). Thus opt(x + e1) = opt(x) − v1(x1 + 1). Therefore:
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Γ (P ) =
sw(x0

1 − x1|x)
opt(x)

=
sw(x0 − x1 − 1|x + e1) + v1(x1 + 1)

opt(x + e1) + v1(x1 + 1)

If opt(x + e1) = 0 then Γ (P ) = 1 and so Γ (P ) ≥ Γ (P t(x)−1), as desired.
Therefore, we may assume that opt(x + e1) > 0. Then:

Γ (P ) =
sw(x0 − x1 − 1|x + e1) + v1(x1 + 1)

opt(x + e1) + v1(x1 + 1)

≥ sw(x0 − (x1 + 1)|x + e1)
opt(x + e1)

= Γ (P t(x)−1)

Here the inequality holds because v1(x1 + 1) ≥ 0. ��
Corollary 2. Let x be a decision node and P = (xt(x),xt(x)−1, ...,x1,x0) a path
from x. If Γ (P ) < Γ (P t(x)−1) then exactly one of the following holds:

(a) Buyer 1 winning all the items is the unique optimal allocation but buyer 2
wins an item at x, i.e. arg maxk∈[t(x)]∪{0} sw(k|x) = {t(x)} and xt(x)−1 =
xt(x) + e2.
(b) Buyer 2 winning all the items is the unique optimal allocation but buyer 1
wins an item at x, i.e. arg maxk∈[t(x)]∪{0} sw(k|x) = {0} and xt(x)−1 =
xt(x) + e1. ��
Corollary 2 implies that, if we are interested in obtaining a lower bound

for efficiency, it is sufficient to consider auctions in which the unique optimal
allocation is (T, 0) but buyer 1 wins less than T items on an equilibrium path.
Furthermore, any auction with efficiency less than 1 must have positive optimal
welfare. Consequently, by multiplying all valuations, forward utilities and bids
by a constant, we may normalize so that opt(0) = sw(T |0) = 1.

Now, suppose further that buyer 1 wins k items on the equilibrium path.
Then efficiency is equal to sw(k|0). To obtain a lower bound on the efficiency,
we may consider minimizing sw(k|0) subject to constraints following from our
assumptions. Note that the objective is linear in the incremental valuations of
buyers, and so too are the constraints that imply opt(0) = sw(T |0) = 1. We
may, of course, also add in any valid inequality that holds when buyer 1 wins
k items on the equilibrium path. Then the following class of linear programs
provides lower bounds on the efficiency of the auction:
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minimize
k∑

j=1

v1(j) +
T−k∑

j=1

v2(j) (9)

subject to
T∑

j=1

v1(j) = 1

l∑

j=1

v1(j) +
T−l∑

j=1

v2(j) ≤ 1 ∀ 0 ≤ l < T

vi(j) ≥ 0 ∀i ∈ {1, 2}, j ∈ [T ]
(+ valid inequalities)

Specifically, we obtain a lower bound for the efficiency of a T item auction by
finding the minimum value of the linear program for 0 ≤ k < T . Of course, the
lower bound produced will depend upon the choice of additional valid inequali-
ties. The difficulty is to select inequalities that must be satisfied at equilibrium
and that are strong enough to provide an exact efficiency bound. Thus, our task
reduces to finding such a set of inequalities.

3.2 A Set of Valid Inequalities

The following theorem will allow us to obtain a collection of valid inequalities
that are strong enough to induce tight price of anarchy bounds.

Theorem 3. Let x be a decision node and P an equilibrium path from x with
endpoint (k, T − k). Then:

t(x)∑

j=0

u2(x + je1) ≤
T−k∑

i=x2+1

[
(T − x1 − i + 1) · v2(i) −

T−i+1∑

j=k+1

v1(j)
]

(10)

Proof. Proceed by induction on t(x). The base case t(x) = 1 is trivial, so consider
t(x) > 1. First suppose that, on an equilibrium path P , buyer 1 wins at decision
node x. Then:

t(x)∑

j=0

u2(x + je1) = u2(x) +
t(x)∑

j=1

u2(x + je1) = u2(x) +
t(x+e1)∑

j=0

u2

(
(x + e1) + je1

)

≤ u2(x) +
T−k∑

i=x2+1

[(
T − (x1 + 1) − i + 1

) · v2(i) −
T−i+1∑

j=k+1

v1(j)
]

≤
T−k∑

i=x2+1

[
(T − x1 − i + 1) · v2(i) −

T−i+1∑

j=k+1

v1(j)
]
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Here the second equality holds by the fact that t(x + e1) = t(x) − 1. The
first inequality follows from the induction hypothesis, because P t(x)−1 is an
equilibrium path from x + e1 to (k, T − k). The second inequality arises from
the upper bound on u(x) given by Lemma 4.

Next suppose buyer 2 wins at decision node x. Then we have:

t(x)∑

j=0

u2(x + je1) = v2(x2 + 1) + u2(x + e2) + u1(x + e2)

− v1(x1 + 1) − u1(x + e1) +
t(x)−1∑

j=1

u2(x + je1) (11)

Here the equality holds by definition (4) of u(x) and by noting that u2(x +
t(x)e1) = 0 because x + t(x)e1 is a terminal node.

To simplify this we make repeated applications of Lemma 5 on −u1(·):

−u1(x + e1) = −
t(x)−1∑

j=1

u2(x + je1) + (t(x) − 1) · v2(x2 + 1)

+
t(x)−1∑

j=1

u2(x + e2 + je1) −
T−x2∑

j=x1+2

v1(j) (12)

In turn, by Lemma 4, u1(x + e2) ≤ ∑k
j=x1+1 v1(j). Plugging this and (12)

into (11) and noting that t(x + e2) = t(x) − 1, we obtain:

t(x)∑

j=0

u2(x + je1) ≤ t(x) · v2(x2 + 1) −
T−x2∑

j=k+1

v1(j) +
t(x+e2)∑

j=0

u2(x + e2 + je1)

As P t(x)−1 is an equilibrium path from x + e2 to (k, T − k), by the induction
hypothesis we obtain the desired inequality. ��

Note that given an equilibrium path P from 0 to (k, T − k), Theorem 3 and
Corollary 1 imply a class of valid inequalities corresponding to each node xt of
P . However these inequalities depend on the specific form of P and we want
inequalities valid for every equilibrium path from 0 to (k, T − k). The following
theorem provides such valid inequalities.

Theorem 4. Suppose P is an equilibrium path from 0 to (k, T − k). Then for
any 0 ≤ � < T − k:

T−k∑

i=�+1

[
(T − i + 1) · v2(i) −

T−i+1∑

j=k+1

v1(j)
]

≥ 0 (13)
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Proof. Let P be an equilibrium path from 0 to (k, T − k), and 0 ≤ � < T − k
an integer. Observe that P must contain a decision node (x�, �); otherwise, the
endpoint of the path P could not have been (k, T − k). Now, by Theorem 3 and
Corollary 1:

T−k∑

i=�+1

[
(T − x� − i + 1) · v2(i) −

T−i+1∑

j=k+1

v1(j)
]

≥ 0

On the other hand,
∑T−k

i=�+1 x� · v2(i) ≥ 0 as incremental valuations are non-
negative and x� ≥ 0. Summing up the two inequalities yields the desired result.

��
To conclude this section, we write inequality (13) in a more amenable form.

Specifically, for any given T ∈ N, 0 ≤ k ≤ T and 0 ≤ � < T − k, an equivalent
formulation is:

T−k∑

i=�+1

(T − i + 1) · v2(i) −
T−�∑

i=k+1

(T − i − � + 1) · v1(i) ≥ 0 (14)

In the remainder of this paper, we will show that the addition of the valid
inqualities (14) will allow us to obtain sharp bounds on the efficiency of sequential
auctions for both concave and general valuation functions.

4 The Price of Anarchy with Concave Valuation
Functions

In this section, we prove that the price of anarchy is exactly
(
1 − 1

e

)
when both

buyers have concave valuation functions. We begin by deriving a lower bound
conditional on the final allocation.

Theorem 5. Let each buyer have a non-decreasing, concave valuation function.
If (T, 0) is an optimal allocation and P is an equilibrium path from 0 to (k, T −k)
then:

Γ (P ) ≥ 1
T

(

k +
T−k∑

j=1

j

k + j

)

Proof. Recall buyer i has a concave valuation function if and only if the incre-
mental valuations satisfy vi(j) ≥ vi(j + 1) for all 1 ≤ j ≤ T − 1. The addition
of these inequalities plus the valid inequalities (14) to linear program (9) yields
a linear program whose value provides a lower bound on the efficiency of the
auction when (T, 0) is an optimal allocation with opt(0) = 1 and there is an
equilibrium path from 0 to (k, T − k). Further, by weak duality we may lower
bound this primal LP by considering its dual LP.

In the dual LP, we assign a dual variable σl to the welfare constraint for
when buyer 1 wins l items (for 0 ≤ l ≤ T ). We assign a dual variable κi,j for
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each concavity constraint j ∈ [T − 1] of buyer i; for convenience we also set
κi,0 = κi,T = 0. Finally, we have a dual variable μ� for the valid inequalities of
type (14) for 0 ≤ � < T − k. The dual linear program is then:

maximize σT +
T−1∑

l=0

σl

subject to
T∑

l=i

σl − κ1,i + κ1,i−1 ≤ 1 ∀ 1 ≤ i ≤ k

T∑

l=i

σl − κ1,i + κ1,i−1 −
T−i∑

�=0

(T − i − � + 1) · μ� ≤ 0 ∀ k + 1 ≤ i ≤ T

T−i∑

l=0

σl − κ2,i + κ2,i−1 +
i−1∑

�=0

(T − i + 1) · μ� ≤ 1 ∀ 1 ≤ i ≤ T − k

T−i∑

l=0

σl − κ2,i + κ2,i−1 ≤ 0 ∀ T − k + 1 ≤ i ≤ T

σT ∈ R

σl ≤ 0 ∀ 0 ≤ l < T

κi,j ≤ 0 ∀i ∈ {1, 2}, j ∈ [T − 1]
κi,j = 0 ∀i ∈ {1, 2}, j ∈ {0, T}
μ� ≥ 0 ∀ 0 ≤ � < T − k

Consider the dual solution given by:

σT =
1
T

(

k +
T−k∑

j=1

j

k + j

)

(15)

μ0 =
1
T

μ� =
1

T − �
− 1

T − � + 1
∀ 0 < � < T − k

κ1,i =

{
i · (σT − 1) 0 < i ≤ k

−(T − i) · σT +
∑T−i−1

j=0
T−i−j
T−j k ≤ i ≤ T − 1

and all other dual variables set to 0. Through meticulous case analysis, this
solution can be shown to be feasible. This dual solution has value σT = 1

T

(
k +

∑T−k
j=1

j
k+j

)
. It follows that the efficiency is at least 1

T

(
k +

∑T−k
j=1

j
k+j

)
. ��

Theorem 6. There exists a 2-buyer sequential auction with the following prop-
erties: both buyers have non-decreasing, concave valuation functions, the alloca-
tion (T, 0) maximizes social welfare and there is an equilibrium path P from 0
to (k, T − k) with:
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Γ (P ) =
1
T

(

k +
T−k∑

j=1

j

k + j

)

Proof. Consider a sequential auction with the following valuation profiles:

v1(j) = 1 1 ≤ j ≤ T

v2(j) =

{
T−k−j+1

T−j+1 1 ≤ j ≤ T − k

0 else

Observe that the unique optimal allocation is (T, 0) with social welfare opt(0) =
T . Meanwhile, sw(k|0) = k+

∑T−k
j=1

j
k+j . Therefore, it suffices to show that there

exists an equilibrium path from 0 to (k, T −k). Computation of forward utilities
shows that for any 0 ≤ � < T − k we have b1(0, �) = b2(0, �), and at any other
decision node x, we have b1(x) > b2(x). Hence by breaking all ties in favour of
buyer 2, we obtain an equilibrium path P from 0 to (k, T − k) on which buyer 2
wins the first T − k items and buyer 1 wins the last k items. ��

These conditional bounds readily extend to an asymptotically tight constant
lower bound for efficiency.

Theorem 7. Given non-decreasing, concave valuation functions. For any T ∈
N, any equilibrium path P from 0 has efficiency at least 1 − 1

e . This bound is
asymptotically tight as T → ∞.

Proof. Fix T and let P be an equilibrium path from 0. By Corollary 2, we may
assume that (T, 0) is the unique optimal allocation. If buyer 1 wins T items then
Γ (P ) = 1 > 1 − 1

e . So suppose that buyer 1 wins k < T items. By Theorem 5,
we have Γ (P ) ≥ 1

T

(
k +

∑T−k
j=1

j
k+j

)
.

Next, observe that:

1
T

·
T−k∑

j=1

j

k + j
=

T−k−1∑

j=0

1
T

· 1 − k/T − j/T

1 − j/T
≥

∫ 1−k/T

0

1 − k/T − x

1 − x
dx

The inequality holds as we have an upper Darboux sum. Therefore:

Γ (P ) ≥ min
k∈[T ]∪{0}

k

T
+

∫ 1−k/T

0

1 − k/T − x

1 − x
dx

≥ inf
α∈[0,1]

α +
∫ 1−α

0

1 − α − x

1 − x
dx = inf

α∈[0,1]
1 + α ln α

The infimum is attained for α = 1
e , with value 1 − 1

e . Setting k = �T/e� for the
valuations given in Theorem 6 shows the asymptotic tightness of the bound. ��
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5 The Price of Anarchy with General Valuation Functions

In this section we consider the case of general non-decreasing valuation functions.
We show that the price of anarchy is then exactly 1/T . In particular, this bound
is no longer a constant but deteriorates linearly with the number of items for
sale in the auction. This value was first identified in [3] as an upper bound for
the price of anarchy for general non-decreasing valuations. Again, we begin with
the lower bound, and then present the matching upper bound.

Theorem 8. Let the buyers have non-decreasing valuation functions. Then any
equilibrium path has efficiency at least 1/T , where T is the number of items.

Proof. By induction on T . The bound holds for the base case T = 1 because
single-item second-price auctions have full efficiency. Now consider T > 1 and
suppose the valuations are such that there exists an equilibrium path P from
0 with Γ (P ) ≤ 1/T . Note it cannot be that Γ (P ) ≥ Γ (PT−1); otherwise, by
the induction hypothesis, Γ (P ) ≥ 1/(T − 1). Therefore, by Corollary 2, we
may assume that the unique optimal allocation is (T, 0) and that buyer 2 wins
T − k > 0 items on the equilibrium path P .

To lower bound Γ (P ), we add the valid inequalities (14) to the linear program
(9) to obtain a linear program whose value is a lower bound on the efficiency of
the auction when (T, 0) is an optimal allocation with opt(0) = 1 and there is
an equilibrium path from 0 to (k, T − k). Again to lower bound this primal LP
we consider its dual LP. We assign a dual variable σl to the welfare constraint
for when buyer 1 wins l items (for 0 ≤ l ≤ T ). We have a dual variable μ� for
the valid inequalities of type (14) for 0 ≤ � < T − k. The dual linear program is
then:

maximize σT +
T−1∑

l=0

σl

subject to
T∑

l=i

σl ≤ 1 ∀ 1 ≤ i ≤ k

T∑

l=i

σl −
T−i∑

�=0

(T − i − � + 1) · μ� ≤ 0 ∀ k + 1 ≤ i ≤ T

T−i∑

l=0

σl +
i−1∑

�=0

(T − i + 1) · μ� ≤ 1 ∀ 1 ≤ i ≤ T − k

T−i∑

l=0

σl ≤ 0 ∀ T − k + 1 ≤ i ≤ T

σT ∈ R

σl ≤ 0 ∀ 0 ≤ l < T

μ� ≥ 0 ∀ 0 ≤ � < T − k
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Now consider setting σT = μ0 = 1/T and all other variables 0. It is easy to
verify that this is dual feasible and has objective value 1/T . This implies that
Γ (P ) ≥ 1/T as desired. ��
Theorem 9. There exists a 2-buyer sequential auction with the following prop-
erties: both buyers have non-decreasing valuation functions, the allocation (T, 0)
maximizes social welfare and there is an equilibrium path P from 0 with:

Γ (P ) =
1
T

Proof. Consider a sequential auction with the following valuation profiles:

v1(j) =

{
0 j < T

1 j = T
v2(j) =

{
1/T j = 1
0 j > 1

With the given valuation profile, the optimal allocation is (T, 0) with a welfare of
1, while any other allocation has social welfare 1/T . Solving for forward utilities
by backwards induction yields b1(0) = b2(0) = 1/T , so buyer 1 and 2 tie at
decision node 0. Then by breaking the tie in favour of buyer 2, there exists an
equilibrium path from 0 which awards at least one item to buyer 2, attaining an
efficiency of 1/T . ��
Theorem 10. The price of anarchy for 2-buyer sequential auctions with non-
decreasing valuations is exactly 1/T . ��
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Abstract. In this paper, we introduce a Bayesian revenue-maximizing
mechanism design model where the items have fixed, exogenously-given
prices. Buyers are unit-demand and have an ordinal ranking over pur-
chasing either one of these items at its given price, or purchasing nothing.
This model arises naturally from the assortment optimization problem,
in that the single-buyer optimization problem over deterministic mech-
anisms reduces to deciding on an assortment of items to “show”. We
study its multi-buyer generalization in the simplest setting of single-
winner auctions, or more broadly, any service-constrained environment.
Our main result is that if the buyer rankings are drawn independently
from Markov Chain ranking models, then the optimal mechanism is com-
putationally tractable, and structurally a virtual welfare maximizer. We
also show that for ranking distributions not induced by Markov Chains,
the optimal mechanism may not be a virtual welfare maximizer.

Keywords: Bayesian mechanism design · Assortment optimization

1 Introduction

In this paper, we study auction design for unit-demand buyers when the prices
of the products are fixed. In particular, a seller is endowed with n substitutable
products with exogenously-given prices r1, . . . , rn ≥ 0. A buyer’s outcome and
payment from participating in the auction will always take the form “receive
product j and pay price rj”, for some j = 0, . . . , n, where we let j = 0 represent
the “no-purchase” option with r0 = 0.

We restrict attention to mechanisms that are deterministic and dominant-
strategy (DS) truthful. Under this restriction, a buyer’s preference is fully cap-
tured by a weak ordering of the options “buy product j for price rj”, for
j = 0, . . . , n. Our mechanisms will be DS incentive-compatible, where a buyer
can never get a more-preferred option from lying about her ranking, and DS
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individually-rational, where a buyer can never get an option she ranks below the
no-purchase option.

We study revenue maximization in a Bayesian setting, where the buyers’
rankings are drawn from known, independent (non-identical) distributions. There
is also a feasibility constraint on the inventory of products available to be allo-
cated to buyers. The problem is then: maximize the expected revenue of a mech-
anism with respect to these random rankings, subject to it being deterministic,
DS incentive-compatible and individually-rational, and satisfying the feasibility
constraint in its allocations.

1.1 Motivation and Related Problems

We now explain why we believe this to be a well-motivated problem that arises
naturally in relation to the streams of existing literature.

Mechanism Design Without Money. Although we use the language of
“prices” and “revenue”, we are technically designing mechanisms “without
money”, because the auctioneer cannot charge arbitrary payments. Our use of
ordinal preferences with an outside option has previously appeared in the house
allocation problem [17,19], and our focus on deterministic mechanisms and DS
truthfulness is inherited from the more general context of allocation mechanisms
under one-sided ordinal preferences [4,5,20,21]. Our paper is different from these
lines of work in that we are maximizing the Bayesian expectation of a cardinal
objective function, where we have been given real numbers r1, . . . , rn as the
rewards for the successful allocations of the products. By contrast, these lines
of work derive settings and conditions under which the feasible space of mech-
anisms can be nicely characterized, e.g. using top-trading cycles [17,19], serial
dictatorships [21], or the uniform allocation rule [20].

Bayesian Mechanism Design. The difference between our mechanisms and
those for Bayesian unit-demand revenue maximization [7,9,10] is that we must
charge the fixed prices r1, . . . , rn, instead of being able to tweak the payments to
entice buyers into higher-valued products. Also, the distributional assumption
we make on the buyers’ rankings (namely, being generated by Markov chains)
is combinatorial, and generally incomparable to the assumptions made in this
literature (e.g. on valuations being independent across products).

Assortment Optimization and Sequential Posted Assortment. When
there is a single buyer, our mechanism design problem reduces to the assortment
optimization problem, where the mechanism must decide on a subset of products
to show1 the buyer. This is a standard problem in revenue management [22]
1 We will formally prove this reduction using the taxation principle. Note that the

optimal mechanism may not show all products, instead “hiding” some lower-priced
products to prevent them from being chosen in lieu of higher-priced products.
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motivated by brick-and-mortar retailers who do not control the pricing but can
decide the set of products to carry. There has also been a recent line of work
on the “sequential posted assortment” problem [14,15,18], motivated by online
retailers who recommend personalized subsets to their heterogeneous customers.

Our problem is a generalization of the assortment optimization problem
to multiple buyers. On the other hand, our mechanisms form a superclass of
“sequential posted assortment” mechanisms, which is analogous to the well-
known relationship between classical auctions and “sequential posted pricing”
[8]. In light of these relationships, we will refer to our mechanism design problem
as assortment auction problem.

1.2 Results for Assortment Auctions

Our results are focused on the special case of our model where the feasibil-
ity constraints are product-independent, only depending on the set of “winners”
allocated a non-zero product but not which specific products they were allo-
cated. It still captures the fundamental setting of a single-winner auction, as
well as the single-leg revenue management problem where b identical units (e.g.
flight seats, hotel rooms) could be sold using different “fare classes” with fixed
prices [22]. This assumption is generally justified whenever the products corre-
spond to different “packagings” of an underlying item, or different “services”
which share the same limiting resource (e.g. different types of massages with
the masseur/masseuse, different VIP packages for time backstage). These set-
tings are also the focus in the papers by [1,2], in which they are called service-
constrained environments. We note that our combination of fixed prices with a
service-constrained environment is quite natural in the application of the airline
selling b seats under different fare classes.

In the Introduction we will describe our results in the further special case
of auctions with a single winner, and start to describe our results by relating
our problem to classical single-item auctions. Suppose that the preferences are
buy-down, where any realizable ranking prefers the non-zero products in order
of low-to-high prices. Such a ranking is characterized by a valuation, equal to
the maximum price of a product ranked higher than product 0. In this case, the
well-known result of Myerson [16] says that the optimal mechanism is determin-
istic, dominant-strategy truthful, and can be implemented in a way where the
winner always pays one of the prices in r1, . . . , rn.2 Hence, Myerson’s mechanism
is the optimal solution in our setting in the special case of buy-down preferences.
Moreover, Myerson’s mechanism is structurally a virtual welfare maximizer, in
that each buyer, based on only her report and distribution, is assigned a univari-
ate score called a virtual valuation, after which the buyer with the highest virtual
valuation is declared the winner. We will call this a “Myersonian” structure.

2 See [12], who derives Myerson’s mechanism for discrete valuations. Although there do
exist randomized, symmetric implementations of Myerson, the one which is deter-
ministic and breaks ties in a consistent order always charges one of the prices in
r1, . . . , rn, and thus can be implemented as an assortment auction.
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Our first result is a negative one, which shows that for general preference
distributions, the optimal auction may not have the “Myersonian” structure
described above. Namely, when non-zero products are not necessarily ranked in
order of low-to-high prices, even with two IID buyers, the optimal allocation rule
may want buyer 1 to win the auction when the buyers report the same ranking,
and buyer 2 to win when they report different rankings. Such an allocation rule
clearly cannot be defined via virtual valuations. Although it was already known
that assortment optimization (the special case of our problem with a single
buyer) is NP-hard for general preference distributions [3], this result shows that
even structurally, one cannot hope to derive the optimal auction using only
Myersonian mechanisms based on virtual valuations.

Our main positive result is that for preference distributions induced by
Markov Chain choice models, the optimal mechanism is structurally Myersonian,
and computationally tractable. This is a well-studied class of choice models where
the random ranking satisfies a memorylessness property that the next product in
the ranking depends probabilistically on only the current product, and not the
entire history. Markov Chain choice models capture the buy-down preferences
corresponding to the classical auctions setting, so our result generalizes Myer-
son’s mechanism for discrete valuations. They also capture the commonly-used
Multi-Nomial Logit (MNL) choice model (a.k.a. the Plackett-Luce vase model),
as well as the case of single-minded buyers. Finally, we should mention that
the tractability of assortment optimization for Markov Chain choice models was
already known [6,11,13], so our auction extends this result to multiple buyers.

1.3 Description of Optimal Myersonian Auction

We now explain how our generalized Myersonian mechanism assigns each buyer
a virtual valuation based on her reported ranking and ranking distribution. It
is a generalization of how virtual valuations can be assigned in the classical
auctions setting based on the “ironed revenue curve”. We will consider the fol-
lowing example: there are four products A,B,C,D with prices rA = 12, rB =
7.5, rC = 4.5, rD = 4. One buyer’s ranking distribution is uniform over lists
(CBA), (CB), (CD), (C), where e.g. list (CB) means that her first choice is to
buy C at price rC , second choice is to buy B at price rB , and third choice is to
buy nothing (we can ignore ordering after the no-purchase option).

Auction pre-processing. Fix a buyer and consider the assortment optimiza-
tion problem with just that buyer. For an assortment S, let Q(S) denote the
probability of selling a product when S is offered, and let R(S) denote the
expected revenue. In the example above, if S = {A,B,D}, then Q(S) = 3

4 and
R(S) = 1

2rB + 1
4rD = 4.75.

Now, consider the two-dimensional plot consisting of points (Q(S), R(S)) for
every assortment S. Call the upper concave envelope of these points the revenue
frontier. The revenue frontier is formed by connecting the points for a sequence
of efficient assortments. In the example above, this sequence is {A}, {A,D},
{A,B,D}, {A,B,C,D} (see Fig. 1).
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Fig. 1. The points (Q(S), R(S)) plotted for every S, all of which are equivalent to one
of the six assortments shown. The revenue frontier is the upper concave envelope in
red, formed by joining the sequence of efficient assortments. The slopes of the revenue
frontier and the resulting virtual valuations V are shown in blue. (Color figure online)

Virtual Valuation Assignment. Fix a buyer and suppose that the sequence
of efficient assortments for her list distribution has been identified. Now, if she
reports a realized list of �, then we find the first efficient assortment S which
intersects �, and set her virtual valuation equal to the slope of the revenue frontier
on the left side of point (Q(S), R(S)).

In the example above, if � = (CD), then {A,D} is the first efficient assort-
ment to intersect �, since the earlier assortment in the sequence, {A}, does not.
The virtual valuation is the slope of the line segment from (Q({A}), R({A})) to
(Q({A,D}), R({A,D})), equal to 4 (see Fig. 1).

Winner and Allocation. Suppose that each buyer has been assigned a vir-
tual valuation based on her list and distribution, as described above. The win-
ner is then the buyer with the highest virtual valuation. She is allocated her
most-preferred product from the assortment whose left-side slope represents the
minimum virtual valuation she could have had to win the auction.

In the example above, suppose that the buyer’s list realizes to (CBA) and
that her virtual valuation of 12 is the highest. If the second-highest virtual
valuation is 3.5, then she would get her most-preferred product from assortment
{A,D}, whose left-side slope is 4 (see Fig. 1). As a result, she would end up paying
12 for product A. On the other hand, if the second-highest virtual valuation is
2.5, then she would get to choose from assortment {A,B,D}, whose left-side
slope is 3. As a result, she would get her more-preferred option of B.

Like in Myerson’s original mechanism, a negative virtual valuation is not
allowed to win the auction, and hence even with no competition from other
buyers, this buyer would still be restricted to assortment {A,B,D} (not
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{A,B,C,D}, whose left-side slope is −1). {A,B,D} is our analogue of a reserve
price, and is the solution to the assortment optimization problem for this single
buyer.

1.4 Establishing Optimality for Markov Chain Choice Models

Nothing from the auction described in Sect. 1.2 required the list distributions to
arise from Markov chains. We now explain what could go wrong without such
an assumption, thereby sketching the proof of our main result.

First, we need to show that the revenue frontier and efficient assortments
from Sect. 1.2 can be tractably computed. We show that for a Markov Chain
choice model, the revenue frontier is always defined by a nested sequence of
efficient assortments, which can be greedily constructed (Sect. 3). Our greedy
procedure modifies the “externality-adjustment” technique of [11], and generates
a sequence of products which yield the revenue frontier, which is different than
the sequence used by [11] for their constrained assortment optimization problem.

Second, we need to show that in the allocation rule from Sect. 1.2, when-
ever the winner has a positive virtual valuation, the assortment she gets to
“choose from” actually contains a product she wants. This is not obvious; in
fact, there exist distributions (Sect. 2.3) for which the winner may choose no
product. Nonetheless, we introduce a condition called implementability, under
which the winner always chooses a product and the virtual surplus3 is earned by
the Myersonian mechanism (Sect. 2.2). We use the nested property of the efficient
assortments of a Markov Chain choice model to establish this (Sect. 3.1).

Third, we need to show that earning the virtual surplus is optimal. This does
not follow from above; in fact, in our example (Sect. 2.3) where the optimal auc-
tion is non-Myersonian, implementability is satisfied. Nonetheless, we introduce
a condition called insurmountability which ensures that the virtual surplus can-
not be exceeded by a truthful mechanism (Sect. 2.2). We show that it is satisfied
under Markov Chain choice models, by proving that the cannibalization pat-
terns from our non-Myersonian example cannot arise under the memorylessness
property of Markov chains (Sect. 3.1).

We should note that our implementability and insurmountability conditions
are similar to the revenue linearity condition from [1], who also studied the
existence of Myersonian mechanisms under product-independent feasibility con-
straints. However, they focus on cardinal instead of ordinal preferences, and
their definitions are stated with respect to Bayesian instead of dominant-strategy
truthfulness, which is why we independently develop our conditions using the
language of assortment optimization. Importantly, our main result for Markov
Chain ordinal preferences is quite general in that it holds regardless of the prices
r1, . . . , rn of the products, which cannot be derived from their results.

3 This is the expected value of the maximum among all virtual valuations and 0.
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2 Definition of Assortment Auctions

A seller has a set of products N = {1, . . . , n}. Each product j ∈ N has a fixed
price rj , and the products are indexed so that 0 ≤ r1 ≤ · · · ≤ rn. We also let
j = 0 refer to a “no-purchase” product, with r0 = 0, which is always available.
Throughout this paper, for an arbitrary subset of products S ⊆ N , we will let
S+ denote the set S ∪ {0}.

There is a set of buyers M = {1, . . . , m}. Each buyer i ∈ M has a ranked list
�i from which she is willing to purchase at most one product, at its corresponding
price. For example, the ranked list (1, 3) indicates that the buyer’s first choice is
to purchase product 1 at price r1, second choice is to purchase product 3 at price
r3, and third choice is to make no purchase. The list omits product 0 and all the
products ranked after it, which are irrelevant. We let Ω denote the universe of
all possible lists, which are the ordered subsets of N .

The ranked list can be interpreted as the set of products for which the buyer’s
utility minus price is positive, sorted in decreasing order. We treat �i as both a set
and a ranking, where �i(j) denotes the rank of product j in list �i, with smaller
numbers meaning more preferred. We define �i(0) = |�i| + 1 and �i(j) = ∞ for
all j ∈ N \ �i. When presented with an assortment of products S ⊆ N , a buyer
i chooses her most-preferred product from S+, i.e. argminj∈S+

�i(j).
We let � = (�1, . . . , �m) denote the list profile, which consists of all buyers’

ranked lists. We often write � as (�i, �−i), where �−i consists of all ranked lists
except that of buyer i. A mechanism takes in a list profile � and outputs an allo-
cation vector (j1(�), . . . , jm(�)) ∈ (N+)m, where each buyer i receives product
ji(�) and pays rji(�).

We only consider deterministic mechanisms, to avoid defining the preferences
of an ordinal ranking under uncertainty. Similarly, we only consider dominant-
strategy truthfulness, and say that a mechanism is truthful if

�i(ji(�i, �−i)) ≤ �i(ji(�′
i, �−i)) ∀i ∈ M, �−i ∈ Ωm−1, �i ∈ Ω, �′

i ∈ Ω; (1)

�i(ji(�i, �−i)) ≤ �i(0) ∀i ∈ M, �−i ∈ Ωm−1, �i ∈ Ω. (2)

(1) imposes that the mechanism is incentive-compatible, where a buyer i always
receives a less-preferred product when she misreports her list as �′

i instead of
her true list �i. (2) imposes that the mechanism is individually-rational, where a
buyer i cannot be forced into purchasing a product which is less-preferred to 0.

Hereafter, we restrict to truthful mechanisms and make no distinction
between a buyer’s reported list and true list. We also assume that the lists are
strictly ordered, where we note that the truthfulness constraints (1)–(2) are only
easier to satisfy if we allow for indifference in the lists. The following statement
provides a useful characterization of all deterministic truthful mechanisms, and
is analogous to the “taxation principle” for classical auctions.

Proposition 1 (Taxation Principle for Assortment Auctions). Any
deterministic truthful mechanism can be characterized by functions Ti for the
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buyers i ∈ M , where each Ti takes in the other lists �−i and outputs an assort-
ment Ti(�−i), such that the allocation vector satisfies

ji(�) = argminj∈Ti(�−i)+�i(j) ∀i ∈ M. (3)

Proposition 1 can be proven by for each buyer i, fixing �−i and considering the
possible products she could be allocated by the mechanism through the different
lies �′

i she could tell. The corresponding assortment Ti(�−i) she is allowed to
choose from in Proposition 1 is then the union ∪�′

i∈Ωji(�′
i, �−i).

2.1 Bayesian Revenue Maximization with Product-Independent
Feasibility Constraints

Our paper assumes the Bayesian setting, where the seller has full distributional
information about the buyers’ private lists. We assume that the list of a buyer i is
drawn independently from a distribution over Ω, given by its discrete probability
mass function Pi, which could be different across buyers. In the Bayesian setting,
we use �i to refer to the realized list of buyer i, and l to refer to an arbitrary list
in Ω, with Pr[�i = l] = Pi(l). We discuss how the distributions over Ω can have
compact representations in the form of choice models, in Sect. 3.

Our paper also focuses on the case of product-independent feasibility con-
straint, where the auction is constrained by the set of “winners” who are allo-
cated non-zero products, as discussed in the Introduction. Formally, such a fea-
sibility constraint is described as

{i ∈ M : ji(�) 	= 0} ∈ F ∀� ∈ Ωm (4)

where F is an arbitrary downward-closed feasible family.
We are now ready to define the main problem studied in this paper.

Problem 1 (Revenue Maximization with Assortment Auctions). Find the allo-
cation functions j1, . . . , jm : Ωm → N+ which maximize the expected revenue
E� [

∑m
i=1 rji(�)], subject to truthfulness (1)–(2) and feasibility (4).

In the case of a single buyer, Problem 1 reduces (via Proposition 1) to
maxT1⊆N E�1 [rj1(�1)], where j1(�1) = argminj∈T1∪{0}�1(j), which is the basic
assortment optimization problem.

We will frequently reference the special case where customers “buy down”,
because it corresponds to known results in the classical auctions setting, which
we can then build upon. In this special case, ranked lists always take the form
(1, . . . , j), for some product j ∈ N+, whose price rj corresponds to the cus-
tomer’s maximum willingness-to-pay. Therefore, we can consider an instance in
the classical single-item auction setting where each buyer i has an independent
valuation vi that equals rj with probability Pi

(
(1, . . . , j)

)
, for all j ∈ N+. Myer-

son’s optimal auction specifies an (ironed) virtual valuation function φi for each
buyer i, which maps the discrete valuation set {r0, . . . , rn} to R [12]. This can
then be translated back into an optimal assortment auction, in this special case.
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Proposition 2. Suppose that the list distribution Pi for every buyer i is sup-
ported within {(1, . . . , j) : j ∈ N+} and that F = {M ′ ⊆ M : |M ′| ≤ 1}. Then
the optimal auction is: each buyer i, upon reporting list (1, . . . , j), is assigned
virtual valuationφi(rj); declare the winner to be the buyer i∗ with the highest4

positive5 virtual valuation, and allocate her the lowest-priced product j whose
virtual valuation φi∗(rj) would have won the auction. Moreover, the optimal
revenue equals the expected virtual surplus, defined as the expected value of the
maximum virtual valuation (or zero if all virtual valuations are non-positive).

2.2 Implementable and Insurmountable Virtual Valuations

Myerson’s result for classical auctions can be interpreted as: given any valua-
tion distributions, it is always possible to find functions φ1, . . . , φn which are
simultaneously “low enough”, in that the virtual surplus (defined according to
φ1, . . . , φn) can be earned by a mechanism which allocates to the highest vir-
tual valuation; “high enough”, in that the virtual surplus is an upper bound
on the revenue of any feasible truthful mechanism. We will see in Sect. 2.3 that
for general preference distributions, the two conditions above cannot always be
simultaneously satisfied. Nonetheless, here we derive what it means for virtual
valuations to be “low enough” and “high enough” for assortment auctions.

For assortment auctions, the natural generalization of a function φ which
maps valuations to virtual valuations is a function V defined on lists.

Definition 1. A virtual valuation mapping (VVM) is a function V : Ω → R.
Given a VVM Vi for every buyer i ∈ M and a downward-closed feasible family
F , define the expected virtual surplus as

E�

[

max
M ′∈F

∑

i∈M ′
Vi(�i)

]

. (5)

For convenience, a VVM Vi will often leave virtual valuations undefined for lists
of measure zero. The virtual valuation of the empty list ∅ is understood to be
−∞, which can always be excluded since F is downward-closed.

We now introduce conditions on individual VVM’s V , omitting the buyer
subscript i. In the classical auctions setting, φ was a function defined based on
a valuation distribution. Similarly, in our setting, a VVM V is always defined
based on a specific list distribution P .

Definition 2. Fix a list distribution P . For all assortments S ⊆ N , define:

– Qj(S) = {l ∈ Ω : j = argminj∈S+
l(j)}, the subset of lists l which choose

product j when offered assortment S, defined for all j ∈ S;
4 With discrete valuations, we can perturb the functions φ1, . . . , φm slightly so that

different buyers cannot have the same virtual valuation. This is equivalent to using
an arbitrary deterministic tie-breaking rule.

5 Only a positive virtual valuation can win the auction; otherwise no buyer is allocated
any product.
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– Q(S) =
⋃

j∈S Qj(S), the subset of lists l which make a purchase under S;
– R(S) =

∑
j∈S rj · P (Qj(S)), the expected revenue when offering S;

– Q(S) = P (Q(S)), the probability of getting a sale when offering S.

We now present the first of our conditions on a VVM V for a distribution P .

Definition 3. We say that a virtual valuation mapping V for a distribution P
is implementable if for any threshold w ∈ R, we can find an assortment S such
that Q(S) = {l ∈ Ω : V (l) ≥ w} and

∑

l∈Q(S)

V (l)P (l) ≤ R(S). (6)

It can be checked that the virtual valuations defined for the example in Sect. 1.2
satisfy this condition. Indeed, the relevant thresholds are w = 12, 4, 3,−1,
and for each of these thresholds we can find the respective assortments S =
{A}, {A,D}, {A,B,D}, {A,B,C,D} which satisfy (6) as equality. Note that in
Definition 3, it is important for V (∅) to be understood to be −∞, since the empty
list ∅ cannot lie in Q(S) for any assortment S.

If for every buyer, the VVM defined for her is implementable, then the virtual
valuations are “low enough” in the sense described earlier.

Lemma 1. Suppose that VVM Vi is implementable for distribution Pi for all i ∈
M . Then revenue equal to the virtual surplus (5) can be attained by a Myersonian
mechanism, which on each realization of � offers assortments in a way so that
buyers in argmaxM ′∈F

∑
i∈M ′ Vi(�i) are allocated a non-zero product.

The virtual valuations for the example from Sect. 1.2 were defined based on
the efficient assortments and the revenue frontier. If these virtual valuations sat-
isfy implementability (which is not always the case—see Sect. 2.3), then they
will maximally inflate the expected virtual surplus earned by the Myersonian
mechanism. One may hope that this means the Myersonian mechanism is opti-
mal. Surprisingly though, it is not sufficient for the optimality of the Myersonian
mechanism, which motivates the need for our second condition.

Definition 4. We say that a virtual valuation mapping V for distribution P is
insurmountable if for all assortments S ⊆ N ,

∑

l∈Q(S)

V (l)P (l) ≥ R(S). (7)

The virtual valuations defined for the example in Sect. 1.2 are also insurmount-
able, although this is much more difficult to check. In the special case of buy-
down preferences, Q(S) always corresponds to a contiguous block of lists exceed-
ing some price threshold, and insurmountability becomes a trivial condition,
which is always satisfied by Myerson’s ironed virtual valuations. However, with
general preference lists, there are exponentially many possibilities for Q(S), and
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whether insurmountability holds depends on the specific substitution patterns
across those preference lists. In fact, an assortment S can violate (7) even when it
is “inefficient” and has a small value of R(S), especially if Q(S) contains many
lists with low virtual valuations. And when (7) is violated, a non-Myersonian
mechanism can indeed surpass the expected virtual surplus.

Nonetheless, if for every buyer, the VVM defined for her is insurmountable,
then the expected virtual surplus cannot be surpassed.

Lemma 2. Suppose that VVM Vi is insurmountable for distribution Pi for all
i ∈ M . Then the expected virtual surplus (5) is an upper bound on the revenue
of any feasible truthful mechanism.

Combining Lemmas 1–2, we see that if for each buyer we can find a VVM
which is simultaneously implementable and insurmountable, then a Myersonian
mechanism is optimal.

2.3 Examples

All examples are deferred to the full version of this paper (available online).

3 Optimal Assortment Auction for Markov Chains

In this section we derive the optimal assortment auction under Markov Chain
choice models, by specifying a procedure for defining a buyer’s virtual valuation
based on her reported list and list distribution. Our procedure in essence effi-
ciently constructs the revenue frontier and defines virtual valuations following
the example in Sect. 1.2. We focus on a single buyer and omit the subscript i.

Definition 5 (Markov Chain Choice Model). Under a Markov Chain
choice model, the list distribution P is implicitly defined in the following way.
There is a Markov Chain with node set N+ (recall for any set S, we defined
S+ = S ∪{0}). For all nodes j ∈ N and j′ ∈ N+, the probability of transitioning
from node j to node j′ is ρjj′ . The outgoing probabilities from every node j ∈ N
satisfy

∑
j′∈N+

ρjj′ = 1, and 0 is a terminal node with no outgoing transitions.
To generate a list � ∈ Ω according to distribution P , we start at each node

j′ ∈ N+ with probability λj′ (these probabilities satisfy
∑

j′∈N+
λj′ = 1), in which

case we start with the singleton list (j′). We then transition probabilistically along
the Markov chain, adding every node visited to the end of the list, but only if that
node doesn’t already appear on the list. The list immediately ends upon terminal
node 0 being reached (and 0 is never added to the list). It is assumed that 0 is
the only absorbing state, so that � terminates with probability 1.

Definition 6 (Notation). In this section, we will use the following notation,
which facilitates the analysis of the Markov Chain choice model.

– For any j ∈ N+, we will often use j to refer to the singleton set {j}.
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– Consider the discrete probability space defined by the Markov Chain’s distri-
bution P . For any s ∈ N+ and S ⊆ N+ \ s, let s ≺ S denote the event node
s is visited before any nodes in S, and let P[s ≺ S] denote its probability.

– Similarly, for any s ∈ N , s′ ∈ N+ \ s, and S ⊆ N+ \ {s, s′}, let P[s ≺ s′ ≺ S]
denote the probability that s is visited before s′, which in turn is visited before
any of the nodes in S. Let Ps[s′ ≺ S] denote the probability that starting
from node s (instead of starting according to the probabilities λk), s′ is visited
before any of the nodes in S.

– For s ∈ N , s′ ∈ N+ \ s, and S ⊆ N+ \ {s, s′}, let L(s ≺ s′ ≺ S) denote
the subset of lists l ∈ Ω for which s ≺ s′ ≺ S. Note that although the list l
is truncated upon reaching node 0, since s 	= 0, whether s ≺ s′ ≺ S is fully
determined by l.

We are now ready to define our virtual valuation mapping V : Ω → R.
Based on the distribution P , our procedure constructs a sequence of products
s(1), . . . , s(K), where each product s(k) maximizes the incremental efficiency
when added to assortment S(k−1) = {s(1), . . . , s(k−1)}. These efficiencies are
computed using externality-adjusted prices, which were introduced in [11]. We
emphasize, however, that our procedure is different from theirs, in that our
sequence of products forms the revenue frontier while theirs accomplishes a dif-
ferent purpose, as illustrated in Example 1 below. Having constructed the rev-
enue frontier, we define the virtual valuation of a list l to be the incremental
efficiency of the first product in our sequence s(1), . . . , s(K) which appears in l.

Definition 7 (Procedure for Defining Virtual Valuations)

– Initialize assortment S(0) = ∅, and r
(0)
j = rj for all products j ∈ N .

– For iterations k = 1, 2, . . .
1. Set s(k) to be a product j ∈ N \ S(k−1) with Pj [0 ≺ S(k−1)] 	= 0 which

maximizes the incremental efficiency, defined as

r
(k−1)
j

Pj [0 ≺ S(k−1)]
. (8)

If there are no such products satisfying Pj [0 ≺ S(k−1)] 	= 0, then STOP.
2. Define the virtual valuation V (l) for every list l ∈ L(s(k) ≺ 0 ≺ S(k−1))

to be this maximum incremental efficiency, equal to (8) with j = s(k).
3. Update the assortment after iteration k to be S(k) = S(k−1) ∪ {s(k)},

and update the externality-adjusted prices for all remaining products j ∈
N \ S(k) to be r

(k)
j = r

(k−1)
j − r

(k−1)

s(k) Pj [s(k) ≺ S
(k−1)
+ ].

After the procedure stops, define K to be last iteration on which virtual valuations
were defined, i.e. K = |S(k)|, which is at most n.

Our virtual valuation generation procedure is different from the iterative
assortment optimization procedure of [11] in that at each iteration, it maximizes
the incremental efficiency instead of the externality-adjusted price r

(k−1)
j . Their
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Fig. 2. The demonstration of our procedure from Definition 7 on Example 1. In the
Markov chain, any arrival probabilities λ or transition probabilities ρ not depicted are
0. In each iteration k, the highest incremental efficiency (given by (8)) and the product
selected s(k) are shown.

procedure addresses the single-buyer problem under additional capacity and
knapsack constraints. By contrast, our procedure addresses the unconstrained
problem for multiple buyers, where the increase in sales probability (correspond-
ing to the term in our denominator) is highly relevant, as it prevents allocations
from being made to another buyer. The following example demonstrates our
procedure and the difference from their procedure.

Example 1 (Illustration of our Procedure and its difference from [11]). There are
four products A,B,C,D with prices rA = 6, rB = 5, rC = 4, rD = 3. The ranking
distribution is uniform over lists (CBA), (CB), (CD), (D). It is easy to see that
this distribution is generated by the Markov chain pictured in Fig. 2. Iterations
k = 1, 2, 3 of the procedure are depicted in Fig. 2, with the externality-adjusted
prices r

(k−1)
j shown on the nodes.

In iteration k = 1, the highest-priced product A is selected, with a virtual
valuation of rA = 6.

In iteration k = 2, our procedure diverges from what [11] would do, in that
it selects product B, instead of product D which has the highest externality-
adjusted price. This is because we care about minimizing the denominator of (8),
in which PB [0 ≺ S(1)] = 1/2 while PD[0 ≺ S(1)] = 1, reflecting the fact that
we want to minimize the increase in sales probability. As a result, even though
r
(1)
B < r

(1)
D and R(S(1) ∪ B) < R(S(1) ∪ D), our procedure adds product B to

assortment S(1) = {A}, which maximizes the gain in revenue relative to the
increase in sales probability.
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In iteration k = 3, our procedure selects product D and then stops. Even
though the assortment S(3) = {A,B,D} does not contain C, the stopping crite-
rion PC [0 ≺ S(3)] = 0 is met. It can also be checked that r

(3)
C = r

(2)
C −r

(2)
D PC [D ≺

S(2)] = −1/3, which is negative.

3.1 Implementability and Insurmountability of Procedure

All proofs are deferred to the full version of this paper (available online).
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4. Barberà, S., Jackson, M.O., Neme, A.: Strategy-proof allotment rules. Games Econ.
Behav. 18(1), 1–21 (1997)

5. Bhalgat, A., Chakrabarty, D., Khanna, S.: Social welfare in one-sided matching
markets without money. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P.
(eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp. 87–98. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-22935-0 8

6. Blanchet, J., Gallego, G., Goyal, V.: A Markov chain approximation to choice
modeling. Oper. Res. 64(4), 886–905 (2016)

7. Chawla, S., Hartline, J.D., Kleinberg, R.: Algorithmic pricing via virtual valua-
tions. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp.
243–251. ACM (2007)

8. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism
design and sequential posted pricing. In: Proceedings of the Forty-Second ACM
Symposium on Theory of Computing, pp. 311–320. ACM (2010)

9. Chawla, S., Malec, D., Sivan, B.: The power of randomness in Bayesian optimal
mechanism design. Games Econ. Behav. 91, 297–317 (2015)

10. Chen, X., Diakonikolas, I., Orfanou, A., Paparas, D., Sun, X., Yannakakis, M.:
On the complexity of optimal lottery pricing and randomized mechanisms. In:
Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer
Science, pp. 1464–1479. IEEE (2015)

11. Désir, A., Goyal, V., Segev, D., Ye, C.: Capacity constrained assortment optimiza-
tion under the Markov chain based choice model. Manage. Sci. (2019, Forthcoming)

12. Elkind, E.: Designing and learning optimal finite support auctions. In: Proceedings
of the Eighteenth Annual ACM-SIAM symposium on Discrete Algorithms, pp.
736–745. Society for Industrial and Applied Mathematics (2007)

13. Feldman, J.B., Topaloglu, H.: Revenue management under the Markov chain choice
model. Oper. Res. 65(5), 1322–1342 (2017)

14. Golrezaei, N., Nazerzadeh, H., Rusmevichientong, P.: Real-time optimization of
personalized assortments. Manage. Sci. 60(6), 1532–1551 (2014)

https://doi.org/10.1007/978-3-642-22935-0_8


176 W. Ma

15. Ma, W., Simchi-Levi, D.: Algorithms for online matching, assortment, and pricing
with tight weight-dependent competitive ratios. Oper. Res. (2020)

16. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
17. Roth, A.E.: Incentive compatibility in a market with indivisible goods. Econ. Lett.

9(2), 127–132 (1982)
18. Rusmevichientong, P., Sumida, M., Topaloglu, H.: Dynamic assortment optimiza-

tion for reusable products with random usage durations. Manage. Sci. 66, 2820–
2844 (2020)

19. Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ. 1(1), 23–37 (1974)
20. Sprumont, Y.: The division problem with single-peaked preferences: a characteriza-

tion of the uniform allocation rule. Econometrica J. Econometric Soc. 59, 509–519
(1991)

21. Svensson, L.G.: Strategy-proof allocation of indivisible goods. Soc. Choice Welfare
16(4), 557–567 (1999)

22. Talluri, K., Van Ryzin, G.: Revenue management under a general discrete choice
model of consumer behavior. Manage. Sci. 50(1), 15–33 (2004)



Robust Revenue Maximization Under
Minimal Statistical Information

Yiannis Giannakopoulos1 , Diogo Poças2(B) ,
and Alexandros Tsigonias-Dimitriadis1

1 TU Munich, Munich, Germany
{yiannis.giannakopoulos,alexandros.tsigonias}@tum.de

2 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
dmpocas@fc.ul.pt

Abstract. We study the problem of multi-dimensional revenue maxi-
mization when selling m items to a buyer that has additive valuations
for them, drawn from a (possibly correlated) prior distribution. Unlike
traditional Bayesian auction design, we assume that the seller has a very
restricted knowledge of this prior: they only know the mean μj and an
upper bound σj on the standard deviation of each item’s marginal dis-
tribution. Our goal is to design mechanisms that achieve good revenue
against an ideal optimal auction that has full knowledge of the distri-
bution in advance. Informally, our main contribution is a tight quan-
tification of the interplay between the dispersity of the priors and the
aforementioned robust approximation ratio. Furthermore, this can be
achieved by very simple selling mechanisms.

More precisely, we show that selling the items via separate price lot-
teries achieves an O(log r) approximation ratio where r = maxj(σj/μj) is
the maximum coefficient of variation across the items. If forced to restrict
ourselves to deterministic mechanisms, this guarantee degrades to O(r2).
Assuming independence of the item valuations, these ratios can be fur-
ther improved by pricing the full bundle. For the case of identical means
and variances, in particular, we get a guarantee of O(log(r/m)) which
converges to optimality as the number of items grows large. We demon-
strate the optimality of the above mechanisms by providing matching
lower bounds. Our tight analysis for the deterministic case resolves an
open gap from the work of Azar and Micali [ITCS’13].
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1 Introduction

Optimal auction design is one of the most well-studied and fundamental problems
in (algorithmic) mechanism design. In the traditional Myersonian [42] setting,
an auctioneer has a single item for sale and there are n interested bidders. Each
bidder has a (private) valuation for the item which, intuitively, represents the
amount of money they are willing to spend to buy it. The standard Bayesian
approach is to assume that the seller has only an incomplete knowledge of these
valuations, in the form of a prior joint distribution F . A selling mechanism
receives bids from the buyers and then decides to whom the item should be
allocated (which, in general, can be a randomized rule) and for what price. The
goal is to design a truthful selling mechanism that maximizes the auctioneer’s
revenue, in expectation over F .

Myerson [42] provided a complete and very elegant solution for this problem
when bidder valuations are independent, that is, F is a product distribution.
In particular, when the distributions are identical and further satisfy a regu-
larity assumption, the optimal mechanism takes the very satisfying form of a
second-price (Vickrey) auction with a reserve price. Unfortunately, in general
these characterizations collapse when we move to multi-dimensional environ-
ments where there are m > 1 items for sale. Multi-item optimal auction design
is one of the most challenging and currently active research areas of mechanism
design. Given that the exact description of the revenue maximizing auctions in
such settings is a notoriously hard task, there is an impressive stream of recent
papers, predominantly from the algorithmic game theory community, that try
to provide good approximation guarantees to the optimal revenue.

The critical common underlying assumption throughout the aforementioned
optimal auction design settings is that the seller has full knowledge of the prior
joint distribution F of the bidders’ valuations. In many applications though,
this might arguably be an unrealistic assumption to make: usually an auctioneer
can derive some distributional properties about the bidder population, but to
completely determine the actual distribution would require enormous resources.
Thus, inspired by the parametric auctions of Azar and Micali [2] for the single-
dimensional case, we would like to be able to design robust auctions that (1) make
only use of minimal statistical information about the valuation distribution,
namely its mean and variance; and (2) still provide good revenue guarantees
even in the worst case against an adversarial selection of the actual distribution
F ; in particular, no further assumptions (e.g., independence of item valuations
or regularity) should in general be made about F . This is our main goal in this
paper.

1.1 Related Work

As mentioned in the introduction, there has been an impressive stream of recent
work on optimal [11,22,26,29,37] and approximately-optimal [4,12,17,31,35,
44,46] multi-dimensional auction design, which tries to extend the traditional,
single-dimensional auction setting studied in the seminal paper of Myerson [42].
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A prominent characteristic that can often be seen in these papers is the “sim-
plicity vs optimality” approach: knowing the computational hardness [19–21]
and structural complexity [22,30] of describing exact optimality, emphasis is
placed on designing both simple and practical mechanisms that can still provide
good revenue guarantees. Of course, this idea can be traced back to the work
of Hartline and Roughgarden [33] and Bulow and Klemperer [9] for the single-
dimensional setting. For a more thorough overview we refer to the recent review
article of Roughgarden and Talgam-Cohen [43] and the textbook of Hartline [32].

Related to this, and placed under the general theme of what has come to be
known as “Wilson’s doctrine” [45] (see also [38, Sect. 5.2]), there has also been
significant effort towards the direction of robust revenue maximization: designing
auctions that make as few assumptions as possible on the seller’s prior knowl-
edge about the bidders’ valuations for the items. Examples include models where
the auctioneer can perform quantile queries [18] or knows some estimate of the
actual prior [7,10,36]. Another line of work studies robustness with respect to
the correlation of valuations across bidders or items [6,14,28]. Other approaches
regarding the parameterization of partial distributional knowledge were consid-
ered by [24] and [5]. See also the recent survey by Carroll [15].

Most relevant to our work in the present paper is the model of parametric
auctions, introduced by Azar and Micali [2]. More specifically, they study single-
dimensional (digital goods and single-item) auction settings with independent
item valuations, under the assumption that the seller has only access to the mean
μi and the variance σ2

i of each buyer’s i prior distribution. Using Chebyshev-like
tail bounds, they show that for the special single-bidder, single-item case, deter-
ministically pricing at a multiple of the standard deviation below the mean, i.e.
offering a take-it-or-leave-it price of μ−k ·σ, guarantees an approximation ratio
of ρ̃(r), where ρ̃ is an increasing function taking values in [1,∞) and r = σ/μ.
Under an extra assumption of Monotone Hazard Rate (MHR), they show how
the even simpler selling mechanism that just prices at μ achieves an approxima-
tion ratio of e.

It is interesting to notice here that Azar and Micali [2] provide an exact
solution, for deterministic mechanisms, to the robust optimization problem of
maximizing the expected revenue. Then, they use this maximin revenue-optimal
mechanism and compare it to the optimal social welfare (which is trivially also
an upper bound on the optimal revenue), to finally derive their upper bound
guarantee on the approximation ratio of revenue. As such, their results are not
tailored to be tight for the ratio benchmark. As a matter of fact, in [3] the
authors also provide an explicit lower bound that can be written as 1+ r2. This
is an important motivating factor for our work, since one of our main goals in
this paper is to close these gaps and provide tight approximation ratio bounds.

Azar et al. [1] use a clever reduction (see also [16]) to show how these results
can be paired with the work of Dhangwatnotai et al. [23] regarding the VCG
mechanism with reserves, in order to design parametric auctions for very general
single-dimensional settings. In particular, they show how in matroid-constrained
environments with the extra assumption of regularity on the prior distributions
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(or MHR for more general downward-closed environments), using the aforemen-
tioned parametric prices as lazy reserves guarantees a 2ρ̃(r)-approximation to the
optimal (Myersonian) revenue and a ρ̃(r)-approximation to the optimal social
welfare. Here r = maxi σi/μi.

Another work which is close to ours is that of Carrasco et al. [13]. The authors
essentially extend the model of Azar and Micali [2] to randomized mechanisms,
solving the maximin robust optimization problem with respect to revenue. Again,
in principle their results cannot be immediately translated to tight bounds for
the approximation ratio; however, unlike the deterministic case for which in the
present paper we have to design a new mechanism in order to achieve ratio
optimality, we will show that the maximin optimal lottery of Carrasco et al. [13]
is actually also optimal for the ratio benchmark.

1.2 Results and Techniques

The main focus of our paper is a multi-dimensional auction setting where a sin-
gle bidder has additive valuations for m items, drawn from a joint probability
distribution F . We make no further assumptions on F ; in particular, we do not
require F to be a product distribution nor do we enforce any kind of regularity.
The seller knows only the mean μj and (an upper bound on) the standard devi-
ation σj of each item’s j marginal distribution. Based on this limited statistical
information, they are asked to fix a truthful (possibly randomized) mechanism to
sell the items. Then, an adversary chooses the actual distribution F (respecting,
of course, the statistical (μj , σj)-information) and the seller realizes the expected
revenue of the auction, in the standard Bayesian way, in expectation with respect
to F . The main quantity of interest, which we call the robust approximation ratio
is the ratio of the optimal revenue (which has full knowledge of F in advance)
to this revenue.

Our worst-case, min-max approach is similar in spirit to the previous work
of [1,3] and [13]. However, the critical difference in the present paper is that our
main goal is to optimize the ratio against the optimal revenue and not just the
expected revenue of the selling mechanism on its own. It turns out that, similarly
to the aforementioned previous work, our bounds can be stated with respect to
the ratio rj = σj/μj of each item’s marginal distribution. This is an important
statistical quantity called the coefficient of variation (CV); it is essentially a
“unit-independent” measure of the dispersion of the distribution (see, e.g., [40]
or [34, Sect. 2.21]).

In Sect. 2 we formally introduce our model and necessary notation. In the
following two sections we focus on the single-item case, since this will be the
building block for all our results. In particular, in Sect. 3 we show that the robust
approximation ratio of deterministic mechanisms is exactly ρD(r) ≈ 1+4r2 (see
Definition 1), closing a gap open from the work of [3]. Similarly to previous work,
in order to achieve this we solve exactly the corresponding min-max problem
(see Lemma 2); however, the method and the solution itself have to be different,
since we are dealing with the ratio, which is a more “sensitive” quantity than the
revenue on its own.



Robust Revenue Maximization Under Minimal Statistical Information 181

Next, in Sect. 4 we deal with general randomized auctions and we show
(Theorem 2) that a lottery proposed by [13], which we term log-lottery, although
designed for a different objective, achieves an approximation ratio of ρ(r) ≈
1 + ln(1 + r2) (see Definition 1) in our setting, which is asymptotically optimal.
The construction of the lower bound instance (Theorem 3) is arguably the most
technically challenging part of our paper, and is based on a novel utilization
of Yao’s minimax principle that might be of independent interest for deriving
robust approximation lower bounds in other Bayesian mechanism design settings
as well.

In Sect. 5 we demonstrate how the O(log r)-approximate mechanism of the
single-item case can be utilized to provide optimal approximation ratios for the
multi-dimensional case of m items as well. More specifically, we show that sell-
ing each item j separately using the log-lottery guarantees an approximation
ratio of ρ(rmax) where rmax = maxj rj is the maximum CV across the items.
If the seller has extra information that item valuations are independent (that
is, F is a product distribution), then switching to a lottery that offers all items
in a single full bundle can give an improved approximation ratio of ρ(r̄), where
r̄ =

√∑
j σ2

j /
∑

j μj is the CV of the average valuation. We complement these
upper bounds by tight lower bounds in Theorem 5; these constructions have at
their core the single-item lower bound, but they take care of delicately assign-
ing valuations to the remaining items so that they respect independence and
the common prior statistical information. An interesting corollary of our upper
bounds (Corollary 1) is that for the special case of independent valuations with
the same mean and variance, the approximation ratio is at most ρ

(
σ

μ
√

m

)
, con-

verging to optimality as the number of items grows large.
Due to space constraints, additional material and all omitted proofs can be

found at the full version of the paper [27].

2 Preliminaries

2.1 Model and Notation

A real nonnegative random variable will be called (μ, σ)-distributed if its expec-
tation is μ and its standard deviation is at most σ. We let Fμ,σ denote the class
of (μ, σ) distributions.

For the most part of this paper we study auctions with m items and a single
additive bidder, whose valuations (v1, . . . , vm) for the items are drawn from a
joint distribution F over R

m
≥0. We denote the marginal distribution of vj by

Fj , and assume that it has finite mean and variance. In general, we make no
further assumptions for F ; in particular, we do not assume independence of
the random variables v1, . . . , vm nor do we enforce any regularity or continuity
assumption. For vectors �μ = (μ1, . . . , μm) ∈ R

m
>0, �σ = (σ1, . . . , σm) ∈ R

m
≥0 we

denote by F�μ,�σ the class of all m-dimensional distributions whose j-th marginal
is (μj , σj)-distributed, for all j = 1, . . . ,m.
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A (direct revelation, possibly randomized) selling mechanism for a single
bidder and m items is defined by a pair (x, π) where x : Rm

≥0 → [0, 1]m is the
allocation rule and π : Rm

≥0 → R≥0 is the payment rule. If the buyer submits as
bid a valuation vector of �v, then they receive each item i with probability xi(�v),
and are charged (a total of) π(�v). We restrict our study to truthful mechanisms,
which are characterized by the conditions x(�v) · �v − π(�v) ≥ x(�w) · �v − π(�w) for
all �v, �w and x(�v) · �v − π(�v) ≥ 0 for all �v. Informally, the first condition states
that the bidder can not be “better off” by misreporting their true valuation; the
second condition, known as individual rationality, ensures that the bidder cannot
harm themselves by truthfully participating in the mechanism.

Let Am denote the space of all truthful selling mechanisms. Then, given an m-
dimensional distribution F , we denote by REV(A;F ) = E�v∼F [π(�v)] the expected
revenue of A (the expectation is taken w.r.t. F ), by WEL(A;F ) = E�v∼F [x(�v) ·�v]
the expected welfare of A, by OPT(F ) = supA∈Am

REV(A;F ) the optimum
revenue, and by VAL(F ) = supA∈Am

WEL(A;F ) the optimum welfare. By defi-
nition, this is also the welfare of a VCG auction; moreover, for a single additive
bidder with a joint distribution in F�μ,�σ, this is just the sum of the marginal expec-
tations, VAL(F ) =

∑m
j=1 μj . Note that, due to individual rationality, we imme-

diately have the so-called welfare bounds for the above quantities: for any mech-
anism and distribution, REV(A;F ) ≤ WEL(A;F ) and OPT(F ) ≤ VAL(F ).

Our goal in this paper is to quantify the following benchmark

APX(�μ, �σ) = inf
A∈Am

sup
F∈F�μ,�σ

OPT(F )
REV(A;F )

, (1)

which we call the robust approximation ratio. The semantics are the following:
a seller chooses the best (revenue-maximizing) selling mechanism A, given only
knowledge of the means �μ and standard deviations �σ and then an adversary
(“nature”) responds by choosing a worst-case “valid” distribution that respects
the statistical information �μ and �σ. At some parts of our paper, we restrict
our attention to deterministic mechanisms A; that is, mechanisms whose alloca-
tion rule satisfies x(�v) ∈ {0, 1}, for all �v. Under this additional constraint, the
quantity in (1) will be denoted by DAPX(�μ, �σ).

For the special case of a single item (m = 1), we know from the seminal
work of [42] that an auction A ∈ A1 is truthful if and only if its allocation
rule is monotone nondecreasing and the payment rule is given by π(v) = v ·
x(v)− ∫ v

0
x(z) dz. In particular, this implies that every deterministic mechanism

A ∈ A1 is completely determined by a single take-it-or-leave-it price p ≥ 0; thus,
we will feel free to sometimes abuse notation and write REV(p;F ) instead of
REV(A;F ) if A is the deterministic auction that sells at price p.

Most importantly for our work, every randomized auction for a single item
can be seen as a nonnegative random variable over prices (see [13, Footnote 10]).
In particular, since the allocation rule is monotone and takes values in [0, 1],
it can be interpreted as the cumulative distribution of a certain randomization
over prices, which assigns the item with the same probability as the original
mechanism. In this way, for a randomized single-item auction we can abuse
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notation and write p ∼ A to denote that a price p is sampled according to A. In
this way, REV(A;F ) = Ep∼A[REV(p;F )].

Finally, from [42] we also know that for single-item settings the optimum rev-
enue can always be achieved by a deterministic mechanism, that is, OPT(F ) =
supp≥0 REV(p;F ) = supp≥0 p · (1 − F (p−)) where we use F (·) for the cumula-
tive function (cdf) of distribution F and F (p−) = Pr [X < p] = limx→p− F (x),
where X ∼ F . We shall call OPT(·) the Myerson operator and for now we sim-
ply observe that this is a functional mapping distributions to real nonnegative
numbers.

2.2 Determinism vs Randomization

We would like to give some basic intuition on how randomization helps to hedge
uncertainty. To this end, we present a simple example where a randomized strat-
egy beats every price.

Example 1. Assume that we are facing a very restricted adversary who can
choose between two distributions. Distribution A has just a point mass at 1.
Distribution B is a two-point mass distribution, which returns either 0 or 2 with
probability 1/2 each. If the seller is restricted to deterministic pricing rules, it
is not hard to see that their best strategy is to post a price equal to 1 (and for
the adversary to choose distribution B), for a worst-case expected revenue of
1
2 . If the seller posts anything above 1, then the adversary will always respond
with distribution A, resulting in zero revenue. Consider now the following ran-
domization over prices: The seller posts a price of 1 with probability 2/3, and
a price of 2 with probability 1/3. If the adversary chooses Distribution A, then
the expected revenue will be 1 · 23 = 2

3 . Similarly if Distribution B is chosen, then
the expected revenue becomes 1 · 2

3 · 1
2 + 2 · 1

3 · 1
2 = 2

3 .

Regardless of the adversarial response, a randomization over two prices
strictly outperforms the best deterministic pricing. In subsequent sections we
formalize this intuition, by showing a significant separation between the power
of deterministic and randomized mechanisms. A separation between determin-
ism and randomization in single-dimensional settings, but under a sample access
model, has been demonstrated by [25].

2.3 Auxiliary Functions and Distributions

To state our bounds, it will be convenient to define the following auxiliary
functions.

Definition 1 (Functions ρD, ρ). For any r ≥ 0, let ρD(r) = ρ, resp. ρ(r) = ρ,
be the unique positive solution of equation

(ρ − 1)3

(2ρ − 1)2
= r2, resp.

1
ρ2

(
2eρ−1 − 1

)
= r2 + 1.
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Lemma 1. For the functions ρD, ρ defined in Definition 1, we have the bounds
and asymptotics,

1 + 4r2 ≤ ρD(r) ≤ 2 + 4r2 for all r ≥ 0; ρ(r) = 1 + (1 + o(1)) ln(1 + r2).

We now define a specific randomized selling mechanism, which essentially
corresponds to the lottery proposed by [13, Proposition 4]:

Definition 2 (Log-Lottery). Fix any μ > 0 and σ ≥ 0. A log-lottery is a
randomized mechanism that sells at a price P log

μ,σ, which is distributed over the
nonnegative interval support [π1, π2] according to the cdf

F log
μ,σ(x) =

π2 ln x
π1

− (x − π1)
π2 ln π2

π1
− (π2 − π1)

,

where parameters π1, π2 are the (unique) solutions of the system of equations
π1

(
1 + ln π2

π1

)
= μ and π1(2π2 − π1) = μ2 + σ2.

We will sometimes slightly abuse notation and use P log
μ,σ to refer both to the

log-lottery mechanism and the corresponding random variable of the prices.

3 Single Item: Deterministic Pricing

In this section we begin our study of robust revenue maximization by looking at
the simplest case: one item and deterministic pricing rules. Note that [3] already
established a lower bound of 1+r2 for this setting, together with an upper bound
which can be shown to be 1+

(
27
4 + o(1)

)
r2. Our result (Theorem1) is a refined

analysis that captures the exact robustness ratio (and in particular the “correct”
constant in the quadratic term).

Our first observation (Lemma 2) will be that the worst-case adversarial
response (for a specific selling price) can be characterized in terms of a two-
point mass distribution, which allows the problem to be solved exactly. These
types of distributions have appeared already in the results of [2] and [13], and
we will start by introducing some notation to reason about them.

A two-point mass distribution F takes some value x with probability α and
some value y with probability 1 − α, where without loss x < y. When the
distribution is constrained to have mean μ and variance exactly equal to σ2,
only one free parameter remains, i.e. F can be characterized by the position x of
its first point mass. The other two parameters can be obtained by solving the first
and second moment conditions μ = αx+(1−α)y and μ2+σ2 = αx2+(1−α)y2.
For the remainder, we let Fx, x ∈ [0, μ), denote this distribution. Note that the
limiting case x → μ corresponds to α(x) → 1 and y(x) → ∞, meaning that Fx

weakly converges to μ.
By first solving the innermost optimization problem in (1), i.e. by character-

izing the worst-case adversarial response against a specific deterministic pricing,
we can derive the robustness ratio for deterministic mechanisms.
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Lemma 2. For any choice of mean μ and variance σ2, and any deterministic
pricing scheme, the worst-case robust approximation ratio is achieved over a
limiting two-point mass distribution. Formally, for any μ, σ, and any price p,

1. if p ≥ μ, then the worst-case response corresponds to playing Fx, with x → μ−,
and

sup
F∈Fμ,σ

OPT(F )
REV(p;F )

= ∞;

2. if 0 < p < μ, then the worst-case response corresponds to playing Fx with
x → p−, and

sup
F∈Fμ,σ

OPT(F )
REV(p;F )

= max
{
1 +

σ2

(μ − p)2
,
μ

p
+

σ2

p(μ − p)

}
.

Theorem 1. The deterministic robust approximation ratio of selling a single
(μ, σ)-distributed item is exactly equal to

DAPX(μ, σ) = ρD(r) ≈ 1 + 4 · r2,

where r = σ/μ and function ρD(·) is given in Definition 1. In particular, this is
achieved by offering a take-it-or-leave-it price of p = ρD(r)

2ρD(r)−1 · μ.

4 Single Item: Lotteries

In this section, we continue to focus on a single-item setting, but now we study
the robust approximation ratio that can be achieved by a randomized mecha-
nism, i.e. by randomizing over posted prices. Carrasco et al. [13] have given the
explicit solution to the robust absolute revenue problem,

sup
A∈A1

inf
F∈Fμ,σ

REV(A;F ). (2)

We state below a proposition that can be directly derived from their work and
which would be very useful for our setting.

Proposition 1. For μ > 0, σ ≥ 0, the value of the maximin problem (2) is
given by

sup
A∈A1

inf
F∈Fμ,σ

REV(A;F ) = π1,

where π1 is derived by the unique solution of the system in Definition 2. More-
over, this value is achieved by the log-lottery P log

μ,σ described in Definition 2.

The above characterization can be directly used to derive a logarithmic upper
bound on the robust approximation ratio:

Theorem 2. The robust approximation ratio of selling a single (μ, σ)-
distributed item is at most

APX(μ, σ) ≤ ρ(r) ≈ 1 + ln(1 + r2),

where r = σ/μ and function ρ is given in Definition 1. In particular, this is
achieved by the log-lottery described in Definition 2.
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By looking at the proof of the previous theorem, it is not difficult to see that
our upper bound is also an upper bound with respect to welfare (which for a
single (μ, σ) distribution is simply given by μ). If we were interested in comparing
the revenue of our auction to the maximum welfare, then it immediately follows
from Proposition 1 that the bound is exact and tight. However, our main goal in
the present paper is to provide tight bounds with respect to the optimal revenue,
and achieving this requires some extra work.

Before we go into the actual construction of our lower bound instances, we
need some technical preliminaries and to recall Yao’s principle (see, e.g., [8,
Sect. 8.3] or [41, Sect. 2.2.2]). As we already mentioned (see Sect. 2.1), a ran-
domized mechanism A ∈ A1 can be interpreted as a randomization over prices
p ∼ A. From (1), we are interested in the value of a game in which the mechanism
designer plays first, randomizing over posted prices, and the adversary plays sec-
ond, choosing a worst-case distribution. Intuitively, Yao’s principle states that
this is at least the value of another game in which the adversary plays first, ran-
domizing over their choices, and the mechanism designer plays second, choosing
a deterministic response, i.e. a single posted price.

However, to define this second game formally, we would have to first explain
what it means for the adversary to randomize over probability distributions,
which form an infinite-dimensional space. Informally, this corresponds to a space
of “distributions over distributions”; but in order to avoid technical or measure-
theoretical issues, we focus on a specific model of randomization, which in the
literature gives rise to the concept of mixture or contagious distribution (see,
e.g., [39, Chap. III.4]).

Definition 3. Let F be a class of cumulative distribution functions over the
nonnegative reals, and consider any measure space over a ground set T . By an F-
mixture with parameter space T , we mean a pair (Θ,F ), where Θ is a probability
measure in T , and F is a measurable function of type F : R≥0 × T → R, whose
sections are in F; i.e. for any parameter θ ∈ T , the function Fθ : R≥0 → R given
by Fθ(x) = F (x; θ) is a cumulative distribution in F.

Given an F-mixture (Θ,F ), we denote its posterior distribution by Eθ∼Θ[Fθ];
this is specified by the cdf

E
θ∼Θ

[Fθ](z) =
∫

F (z; θ)dΘ(θ) = E
θ∼Θ

[Fθ(z)].

When F = Fμ,σ is the class of (μ, σ) distributions, we shall let Δμ,σ denote the
class of (μ, σ) mixtures, that is, the class of mixtures over Fμ,σ (with arbitrary,
unspecified parameter space). We can interpret (Θ,F ) as a convex combination
of distributions, so that the cdf of Eθ∼Θ[Fθ] is the convex combination of the
corresponding cdfs; alternatively, Eθ∼Θ[F ] can be seen as the cdf of a random
variable that first samples a distribution Fθ according to θ ∼ Θ, and then samples
a value z according to Fθ.

Now that we have carefully described the adversarial model, we are ready to
state our main technical tool, whose proof makes use of a “non-standard” version
of Yao’s principle involving continuous spaces.
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Lemma 3. For any μ, σ, the robust approximation ratio is lower bounded by

APX(μ, σ) ≥ sup
(Θ,F )∈Δμ,σ

Eθ∼Θ[OPT(Fθ)]
OPT(Eθ∼Θ[Fθ])

. (3)

To construct an adversarial instance, we design a distribution over two-point
mass distributions, finely-tuned such that the resulting mixture becomes a trun-
cated “equal-revenue style” distribution. This gives rise to the following lower
bound, which asymptotically matches that of Theorem 2.

Theorem 3. For a single (μ, σ)-distributed item, the robust approximation ratio
is at least

APX(μ, σ) ≥ 1 + ln(1 + r2), where r = σ/μ.

5 Multiple Items

In this section we finally consider the more general setting of a single additive
buyer with valuations for m items. As it turns out, the main tools developed
in Sect. 4 can be leveraged very naturally to produce similar upper and lower
bounds. We get the following upper bounds for both correlated and independent
item valuations.

Theorem 4. The robust approximation ratio of selling m (possibly correlated)
(�μ, �σ)-distributed items is at most

APX(�μ, �σ) ≤ ρ(rmax), where rmax = max
j=1,...,m

rj , rj =
σj

μj

and function ρ is given in Definition 1. This is achieved by selling each item j
separately using the log-lottery P log

μj ,σj
from Definition 2.

Furthermore, if the items are independently distributed, the above bound
improves to

APX(�μ, �σ) ≤ ρ(r̄), where r̄ =
σ̄

μ̄
, μ̄ =

m∑
j=1

μj , σ̄ =

√√√√
m∑

j=1

σ2
j ,

achieved by selling the items in a single full-bundle using the log-lottery P log
μ̄,σ̄

from Definition 2.

Corollary 1. The robust approximation ratio of selling m independently (μ, σ)-
distributed items is at most

APX(�μ, �σ) ≤ ρ

(
r√
m

)
,

where r = σ/μ, achieved by selling the items in a single full-bundle using the
mechanism given in Theorem2.
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Although the mechanisms presented in Theorem 4 are extremely simple (lot-
teries over separate pricing or bundle pricing), we can actually show asymptoti-
cally matching lower bounds for any choice of the coefficients of variation:

Theorem 5. Fix any positive integer m and positive real numbers r1, . . . , rm,
and let r = maxj rj. Then, for any ε > 0, there exist �μ = (μ1, . . . , μm) ∈ R

m
>0,

�σ = (σ1, . . . , σm) ∈ R
m
≥0 with rj = σj/μj, such that

APX(�μ, �σ) ≥ 1 − ε + ln(1 + r2).

Furthermore, this lower bound is achieved by independent (μj , σj)-distributions.
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Abstract. We investigate revenue guarantees for auction mechanisms in a model
where a distribution is specified for each bidder, but only some of the distri-
butions are correct. The subset of bidders whose distribution is correctly speci-
fied (henceforth, the “green bidders”) is unknown to the auctioneer. The question
we address is whether the auctioneer can run a mechanism that is guaranteed to
obtain at least as much revenue, in expectation, as would be obtained by running
an optimal mechanism on the green bidders only. For single-parameter feasibil-
ity environments, we find that the answer depends on the feasibility constraint.
For matroid environments, running the optimal mechanism using all the specified
distributions (including the incorrect ones) guarantees at least as much revenue in
expectation as running the optimal mechanism on the green bidders. For any fea-
sibility constraint that is not a matroid, there exists a way of setting the specified
distributions and the true distributions such that the opposite conclusion holds.

1 Introduction

In a seminal paper nearly forty years ago [30], Roger Myerson derived a beautifully
precise characterization of optimal (i.e., revenue maximizing) mechanisms for Bayesian
single-parameter environments. One way this result has been critiqued over the years is
by noting that auctioneers may have incorrect beliefs about bidders’ values; if so, the
mechanism recommended by the theory will actually be suboptimal.

In this paper we evaluate this critique by examining revenue guarantees for optimal
mechanisms when a subset of bidders’ value distributions are misspecified, but the auc-
tioneer doesn’t know which of the distributions are incorrect. Our model is inspired by
the literature on semi-random adversaries in the theoretical computer science literature,
particularly the work of Bradac et al. [8] on robust algorithms for the secretary prob-
lem. In the model we investigate here, the auctioneer is given (not necessarily identical)
distributions for each of n bidders. An unknown subset of the bidders, called the green
bidders, draw their values independently at random from these distributions. The other
bidders, called the red bidders, draw their values from distributions other than the given
ones.
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The question we ask in this paper is, “When can one guarantee that the expected
revenue of the optimal mechanism for the given distributions is at least as great as the
expected revenue that would be obtained by excluding the red bidders and running an
optimal mechanism on the green subset of bidders?” In other words, can the presence
of bidders with misspecified distributions in a market be worse (for the auctioneer’s
expected revenue) than if those bidders were absent? Or does the increased competition
from incorporating the red bidders always offset the revenue loss due to ascribing the
wrong distribution to them?

We give a precise answer to this question, for single-parameter feasibility environ-
ments. We show that the answer depends on the structure of the feasibility constraint
that defines which sets of bidders may win the auction. For matroid feasibility con-
straints, the revenue of the optimal mechanism is always greater than or equal to the
revenue obtained by running the optimal mechanism on the set of green bidders. For
any feasibility constraint that is not a matroid, the opposite holds true: there is a way of
setting the specified distribution and the true distributions such that the revenue of the
optimal mechanism for the specified distributions, when bids are drawn from the true
distributions, is strictly less than the revenue of the optimal mechanism on the green
bidders only.

The economic intuition behind this result is fairly easy to explain. The matroid
property guarantees that the winning red bidders in the auction can be put in one-to-one
correspondence with losing green bidders who would have won in the absence of their
red competitors, in such a way that the revenue collected from each winning red bidder
offsets the lost revenue from the corresponding green bidder whom he or she displaces.
When the feasibility constraint is not a matroid, this one-to-one correspondence does
not always exist; a single green bidder might be displaced by two or more red bidders
each of whom pays almost nothing. The optimal mechanism allows this to happen at
some bid profiles, because the low revenue received on such bid profiles is compensated
by the high expected revenue that would be received if the red bidders had sampled val-
ues from elsewhere in their distributions. However, since the red bidders’ distributions
are misspecified, the anticipated revenue from these more favorable bid profiles may
never materialize.

Our result can be interpreted as a type of revenue monotonicity statement for opti-
mal mechanisms in single-parameter matroid environments. However it does not follow
from other known results on revenue monotonicity, and it is illuminating to draw some
points of distinction between our result and earlier ones. Let us begin by distinguish-
ing pointwise and setwise revenue monotonicity results: the former concern how the
revenue earned on individual bid profiles varies as the bids are increased, the latter
concern how (expected) revenue varies as the set of bidders is enlarged.

– VCG mechanisms are neither pointwise nor setwise revenue monotone in general,
but in single-parameter matroid feasibility environments, VCG revenue satisfies both
pointwise and setwise monotonicity. In fact, Dughmi et al. [19] observed that VCG
revenue obeys setwise monotonicity if and only if the feasibility constraint is a
matroid. The proof of this result in [19] rests on a slightly erroneous characteri-
zation of matroids but a part of our work (namely Lemma 4 below) can be used to
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correct this minor error. A complete discussion and a proposed fix is included in the
full version of our paper.

– Myerson’s optimal mechanism is not pointwise revenue monotone, even for single-
item auctions. For example, consider using Myerson’s optimal mechanism to sell a
single item to Alice whose value is uniformly distributed in [0, 4] and Bob whose
value is uniformly distributed in [0, 8]. When Alice bids 0 and Bob bids 5, Bob wins
and pays 4. If Alice increases her bid to 4, she wins but pays only 3.

– However, Myerson’s optimal mechanism is always setwise revenue monotone
in single-parameter environments with downward-closed feasibility constraints,
regardless of whether the feasibility constraint is a matroid. This is because the
mechanism’s expected revenue is equal to the expectation of the maximum, over all
feasible sets of winners, of the winners’ combined ironed virtual value. Enlarging
the set of bidders only enlarges the collection of sets over which this maximization
is performed, hence it cannot decrease the expectation of the maximum.

Our main result is analogous to the setwise revenue monotonicity of Myerson revenue,
except that we are considering monotonicity with respect to the operation of enlarging
the set of bidders by adding bidders whose value distributions are potentially misspeci-
fied.We show that the behavior of Myerson revenue with respect to this stricter notion of
setwise revenue monotonicity holds under matroid feasibility constraints but not under
any other feasibility constraints, in contrast to the traditional setwise revenue mono-
tonicity that is satisfied by Myerson mechanisms under arbitrarily downward-closed
constraints.

1.1 Related Work

Semi-random models are a class of models studied in the theoretical computer science
literature in which the input data is partly generated by random sampling, and partly by a
worst-case adversary. Initially studied in the setting of graph coloring [7] and graph par-
titioning [20,28], the study of semi-randommodels has since been broadened to statisti-
cal estimation [18,26], multi-armed bandits [27], and secretary problems [8]. Our work
extends semi-random models into the realm of Bayesian mechanism design. In partic-
ular, our model of green and red bidders resembles in a sense that of Bradac et al. [8]
for the secretary problem which served as inspiration for this work. In both settings,
green players/elements behave randomly and independently while red players/elements
behave adversarially. In the secretary model of [8], red elements can choose arbitrary
arrival times while green elements’ arrival times are i.i.d. uniform in [0, 1] and inde-
pendent of the red arrival times. Similarly, in our setting red bidders can set their bids
arbitrarily whereas green bidders sample their bids from known distributions, indepen-
dently of the red bidders and one another.

Our work can be seen as part of a general framework of robust mechanism design,
a research direction inspired by Wilson [34], who famously wrote,

Game theory has a great advantage in explicitly analyzing the consequences of
trading rules that presumably are really common knowledge; it is deficient to the
extent it assumes other features to be common knowledge, such as one agent’s
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probability assessment about another’s preferences or information. I foresee the
progress of game theory as depending on successive reductions in the base of
common knowledge required to conduct useful analyses of practical problems.
Only by repeated weakening of common knowledge assumptions will the theory
approximate reality.

This Wilson doctrine has been used to justify more robust solution concepts such as
dominant strategy and ex post implementation. The question of when these stronger
solution concepts are required in order to ensure robustness was explored in a research
program initiated by Bergemann and Morris [4] and surveyed in [5]. Robustness and the
Wilson doctrine have also been used to justify prior-free [21] and prior-independent [24]
mechanisms as well as mechanisms that learn from samples [9–11,15,17,25,29]. A
different approach to robust mechanism design assumes that, rather than being given the
bid distributions, the designer is given constraints on the set of potential bid distributions
and aims to optimize a minimax objective on the expected revenue. For example Azar
and Micali [2] assume the seller knows only the mean and variance of each bidder’s
distribution, Carrasco et al. [12] generalize this to sellers that know the first N moments
of each bidder’s distribution, Azar et al. [1] consider sellers that know the median or
other quantiles of the distributions, and Carroll [13] introduced a model in which bids
are correlated but the seller only knows each bidder’s marginal distribution (see [3,22]
for further work in this correlation-robust model). Bergemann and Schlag [6] develop
mechanisms for the single-item/single-bidder setting with robust revenue guarantees
when the seller is assumed to be given a distribution which lies in a small neighborhood
of the true distribution. Brustle et al. [9] and Cai and Daskalakis [11], as part of their
work, derive mechanism robustification results (where robustness is defined in a similar
sense to [6]) for more general settings.

Another related subject is that of revenue monotonicity of mechanisms—regardless
of the existence of adversarial bidders. Dughmi et al. [19] prove a result very close
in spirit to ours. They consider the VCG mechanism in a single-parameter downward-
closed environment and prove that it is revenue monotone if and only if the environment
is a matroid akin to our Theorems 1 and 2. Devanur et al. [16] prove that optimal auction
revenue is monotone under first-order stochastic dominance, a result which they apply
to the study of sample complexity in auction revenue maximization. Rastegari et al. [32]
study revenue monotonicity properties of mechanisms (including VCG) for Combina-
torial Auctions. Under some reasonable assumptions, they prove that no mechanism can
be revenue monotone when bidders have single-minded valuations. Chen et al. [14] use
a type of reverse setwise revenue monotonicity—the revenue that optimal mechanisms
extract from a fixed set of bidders is non-increasing as other bidders join the auction—
to derive revenue approximation guarantees in an information elicitation setting where
knowledge about the players’ distributions is scattered among the players and the seller
is trying to both elicit this knowledge and sell (multiple) item(s).
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2 Preliminaries

2.1 Matroids

Given a finite ground set E and a collection I ⊆ 2E of subsets of E such that ∅ ∈ I,
we callM = (E,I) a set system.M is a downward-closed set system if I satisfies the
following property: (I1) (downward-closed axiom) If B ∈ I and A ⊆ B then A ∈ I.
Furthermore,M is called a matroid if it satisfies both (I1) and: (I2) (exchange axiom)
If A, B ∈ I and |A| > |B| then there exists x ∈ A\B such that B + x ∈ I1.

In the context of matroids, sets in (resp. not in) I are called independent
(resp. dependent). An (inclusion-wise) maximal independent set is called a basis. A
fundamental consequence of axioms (I1), (I2) is that all bases of a matroid have equal
cardinality and this common quantity is called the rank of the matroid. A circuit is a
minimal dependent set. The set of all circuits of a matroid will be denoted by C. The
following is a standard property of C.
Proposition 1 ([31, Proposition 1.4.11]). For any C which is the circuit set of a
matroid M, let C1,C2 ∈ C, e ∈ C1 ∩ C2 and f ∈ C1\C2. Then there exists C3 ∈ C
such that f ∈ C3 ⊆ (C1 ∪C2) − e.

For any set systemM = (E,I) and any given S ⊆ E, define I|S = I ∩ 2S and call
M|S = (S ,I|S ) the restriction ofM on S . Notice that restrictions maintain properties
(I1), (I2) if they were satisfied already inM.

IfM = (E,I) is equipped with a weight function w : E → R+ it is called a weighted
matroid. The problem of finding an independent set of maximum sum of weights is
central to the study of matroids. A very simple greedy algorithm is guaranteed to find
the optimal solution and in fact matroids are exactly the downward-closed systems for
which that greedy algorithm is always guaranteed to find the optimal solution.

Greedy. Sort the elements of E in non-increasing order of weights w(e1) ≥ w(e2) ≥
. . . ≥ w(en). Loop through the elements in that order adding each element to the current
solution as long as the current solution remains an independent set.

Lemma 1 ([31, Lemma 1.8.3.]). Let M = (E,I) be a weighted downward-closed
set system. Then Greedy is guaranteed to return an independent set of maximum total
weight for every weight function w : E → R+ if and onlyM is a matroid.

In what follows we’re going to assume without loss of generality that the function
w is one-to-one, meaning that no two element have the same weight. All proofs can be
adapted to work in the general case using any deterministic tie breaking rule.

The following proposition provides a convenient way for updating the solution to
an optimization problem under matroid constraints when new elements are added. The
proof is standard in Matroid Theory and is omitted.

Proposition 2. LetM = (E,I) be a weighted matroid with weight function w : E →
R
+. Consider the max-weight independent set I of the restricted matroidM|E−x. Then
1 We use the shorthand B + x (resp. B − x) to mean B ∪ {x} (resp. B\{x}) throughout the paper.
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the max-weight independent set I∗ ofM can be obtained from I as follows: if (I+ x) ∈ I
then I∗ = I + x, otherwise, I∗ = (I + x) − y where y is the minimum-weight element in
the unique circuit C of I + x.

For a more in-depth study of matroid theory, we point the reader to the classic text
of Oxley [31].

2.2 Optimal Mechanism Design

We study auctions modeled as a Bayesian single-parameter environment, a standard
mechanism design setting in which a seller (or mechanism designer) holds many iden-
tical copies of an item they want to sell. A set of n bidders (or players), numbered 1
through n, participate in the auction and each bidder i has a private, non-negative value
�i ∼ Fi, sampled (independently across bidders) from a distribution Fi known to the
seller. Abusing notation, we’ll use Fi to also denote the cumulative distribution func-
tion and fi to denote the probability density function of the respective distribution. The
value of each bidder expresses their valuation for receiving one item. Let Vi be the sup-
port of distribution Fi and define V = V1 × . . . × Vn. For a vector v ∈ V , we use the
standard notation v−i = (�1, . . . , �i−1, �i+1, . . . , �n) to express the vector of valuations of
all bidders except bidder i. When the index set [n] is partitioned into two sets A, B and
we have vectors vA ∈ RA, wB ∈ RB, we will abuse notation and let (vA,wB) denote the
vector obtained by interleaving vA and wB, i.e. (vA,wB) is the vector u ∈ Rn such that
ui = vi for i ∈ A and ui = wi for i ∈ B. Similarly, when v ∈ V , i ∈ [n], and z ∈ R, (z, v−i)
will denote the vector obtained by replacing the ith component of v with z.

A feasibility constraint I ⊆ 2[n] defines all subsets of bidders that can be simul-
taneously declared winners of the auction. We will interchangeably denote elements
of I both as subsets of [n] and as vectors in {0, 1}n. Of special interest are feasibility
constraints which define the independent sets of a matroid. We will sometimes use the
phrase matroid market to indicate this fact. Matroid markets model many real world
applications. For example when selling k identical copies of an item, the market is a
uniform rank k matroid. Another example is kidney exchange markets which can be
modeled as transversal matroids [33].

In a sealed-bid auction, each bidder i submits a bid bi ∈ Vi simultaneously to the
mechanism. Formally, a mechanism A is a pair (x, p) of an allocation rule x : V → I
accepting the bids and choosing a feasible outcome and a payment rule p : V → Rn
assigning each bidder a monetary payment they need to make to the mechanism. We
denote by xi(b) (or just xi when clear from the context) the i-th component of the 0-1
vector x(b) and similarly for p. An allocation rule is called monotone if the function
xi(z,b−i) is monotone non-decreasing in z for any vector b−i ∈ V−i and any bidder i.

We assume bidders have quasilinear utilitiesmeaning that bidder’s i utility for win-
ning the auction and having to pay a price pi is ui = �i − pi and 0 if they do not win and
pay nothing. Bidders are selfish agents aiming to maximize their own utility.

A mechanism is called truthful if bidding bi = �i is a dominant strategy for each
bidder, i.e. no bidder can increase their utility by reporting bi � �i regardless the values
and bids of the other bidders. An allocation rule x is called implementable if there exists
a payment rule p such that (x, p) is truthful. Such mechanisms are well understood and
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easy to reason about since we can predict how the bidders are going to behave. In what
follows we focus our attention only on truthful mechanisms and thus use the terms value
and bid interchangeably.

A well known result of Myerson [30] states that a given allocation rule x is imple-
mentable if and only if x is monotone. In case x is monotone, Myerson gives an explicit
formula for the unique2 payment rule such that (x, p) is truthful. In the single-parameter
setting we’re studying, the payment rule can be informally described as follows: pi is
equal to the minimum bi that bidder i has to report such that they are included in the set
of winners—we’ll refer to such a bi as the critical bid of bidder i.

The mechanism designer, who is collecting all the payments, commonly aims to
maximize her expected revenue which for a mechanism A is defined as Rev(A) =
Ebi∼Fi

[∑
i∈[n] pi

]
.

Lemma 2 [30]. For any truthful mechanism (x, p) and any bidder i ∈ [n]:

E
[
pi
]
= E
[
φi(bi) · xi(bi,b−i)]

where the expectations are taken over b1, . . . , bn ∼ F1, . . . , Fn, the function φi(·) is
defined as

φi(z) = z − 1 − Fi(z)
fi(z)

and φi(bi) is called the virtual value of bidder i.

The importance of this lemma is that it reduces the problem of revenue maximiza-
tion to that of virtual welfare maximization. More specifically, consider a sequence
of distributions F1, . . . , Fn which have the property that all φi are monotone non-
decreasing (such distributions are called regular). In this case, the allocation rule that
chooses a set of bidders with the maximum total virtual value (subject to feasibility
constraints) is monotone (a consequence of the regularity condition) and thus imple-
mentable. We’ll frequently denote this revenue-maximizing mechanism by MyerOPT.

More precisely, the MyerOPT mechanism works as follows:

– Collect bids bi from every bidder i ∈ [n].
– Compute φi(bi) and discard all bidders whose virtual valuation is negative.
– Solve the optimization problem S ∗ = argmaxS∈I

∑
i∈S φi(bi).

– Allocate the items to S ∗ and charge each bidder i ∈ S ∗ their critical bid.
Handling non-regular distributions is possible using the standard technique of iron-

ing. Very briefly, it works as follows. So far, we’ve been expressing x, p and φ as a
function of the random vector v. It is convenient to switch to the quantile space and
express them as a function of a vector q ∈ [0, 1]n where for a given sample z from Fi

we let qi = Prbi∼Fi [bi ≥ z]. Another way to think of this is, instead of sampling values,
we sample quantiles qi distributed uniformly at random in the interval [0, 1] which are
then transformed into values vi(qi) = F−1i (1− qi)3. Let Ri(qi) = qi · vi(qi) and notice that
2 Unique up to the normalizing assumption that pi = 0 whenever bi = 0.
3 In general, vi(qi) = min {v | Fi(v) ≥ qi}.
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φi(vi(qi)) =
dRi

dq

∣∣∣∣
q=qi

. Now, since vi(·) is a non-increasing function we have that φi(·) is
monotone if and only if R is concave.

Now, suppose that Fi is such that Ri is not concave. One can consider the concave
hull of Ri of Ri which replaces Ri with a straight line in every interval that Ri was not

following that concave hull. The corresponding function φi(·) = dRi

dq is called ironed
virtual value function.

Lemma 3 ([23, Theorem 3.18]). For any monotone allocation rule x and any virtual
value function φi of bidder i, the expected virtual welfare of i is upper bounded by their
expected ironed virtual value welfare.

E
[
φi(vi(qi)) · xi(vi(qi), v−i(q))] ≤ E

[
φi(vi(qi)) · xi(vi(qi), v−i(q))

]

Furthermore, the inequality holds with equality if the allocation rule x is such that for
all bidders i, x′i (q) = 0 whenever Ri(q) > Ri(q).

As a consequence, consider the monotone allocation rule which allocates to a feasi-
ble set of maximum total ironed virtual value. On the intervals where Ri(q) > Ri(q), Ri

is linear as part of the concave hull so the ironed virtual value function, being a deriva-
tive of a linear function, is a constant. Therefore, the allocation rule is not affected when
q ranges in such an interval.

A crucial property of any (ironed) virtual value function φ corresponding to a distri-
bution F is that z ≥ φ(z) for all z in the support of F. This is obvious for φ as defined in
Lemma 2. We claim it also holds for ironed virtual value functions: if z lies in an interval
where φ = φ it holds trivially. Otherwise, if z ∈ [a, b] for some interval where φ needed
ironing (i.e. R(q) > R(q) in the quantile space), we have: z ≥ a ≥ φ(a) = φ(a) = φ(z).
We’ve thus proven:

Proposition 3. Any (possibly non-regular) distribution F having an ironed virtual
value function φ satisfies z ≥ φ(z) for any z in the support of F.
Remark 1. For simplicity, in the remainder of the paper we’ll use φ and φ interchange-
ably and we will refer to φ as virtual value function. The reader should keep in mind that
if the associated distribution is non-regular, then ironed virtual value functions should
be used instead.

3 Revenue Monotonicity on Matroid Markets

We extend the standard single-parameter environment to allow for bidders with mis-
specified distributions. Formally, the n bidders are partitioned into sets G and R; the
former are called green and the latter red. The color of each bidder (green or red) is
not revealed to the mechanism designer at any point. Green bidders sample their val-
ues from their respective distribution Fi but red bidders are sampling vi ∼ F′i for some
{F′i }i∈R which are completely unknown to the mechanism designer and can be adversar-
ially chosen.

In this section we are interested in studying the behavior of Myerson’s optimal
mechanism when designed under the (wrong) assumption that vi ∼ Fi for all i ∈ [n].
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Specifically, we ask the question of whether the existence of the red bidders could harm
the expected revenue of the seller compared to the case where the seller was able to
identify and exclude the red bidders, thus designing the optimal mechanism for the
green bidders alone. The following definition makes this notion of revenue monotonic-
ity more precise.

Definition 1 (RMMB). Consider a single-parameter, downward-closed marketM =
(E,I) of |E| = n bidders. A mechanism A is Revenue Monotone under Misspecified
Bidders (RMMB) if for any distributions F1, . . . , Fn, any number 1 ≤ k ≤ n of green
bidders and any fixed misspecified bids bR ∈ RR of the red bidders:

E [Rev(A(bG,bR))] ≥ E [Rev(A(bG))] (1)

where both expectation are taken over bG ∼∏i∈G Fi.

An alternative definition of the revenue monotonicity property allows red bidders to
have stochastic valuations drawn from distributions F′i � Fi instead of fixed bids. We
note that the two definitions are equivalent: if A is RMMB according to Definition 1
then inequality (1) holds pointwise for any fixed misspecified bids and thus would also
hold in expectation. For the other direction, if inequality (1) holds in expectation over
the red bids, regardless of the choice of distributions {F′i | i ∈ R} then we may specialize
to the case when each F′i is a point-mass distribution with a single support point bi for
each i ∈ R, and then Definition 1 follows.

In what follows we assume bidders always submit bids that fall within the support
of their respective distribution. Green bidders obviously follow that rule and red bidders
should do as well, otherwise the mechanism could recognize they are red and just ignore
them.

Consider first the simpler case of selling a single item. This corresponds to a uniform
rank 1 matroid market. Intuitively when the item is allocated to a green bidder, the
existence of the red bidders is not problematic and in fact could help increase the critical
bid and thus the payment of the winner. On the other hand, when a red bidder wins one
has to prove that they are not charged too little and thus risk bringing the expected
revenue down.

Let m = max(maxi∈G φi(bi), 0) be the random variable denoting the highest non-
negative virtual value in the set of green bidders. Let also X be an indicator a random
variable which is 1 if the winner belongs toG and Y denote an indicator random variable
which is 1 if the winner belongs to R. For the mechanism MyerOPT have:

E
[
revenue from green bidders

]
= E [m · X] (2)

E [revenue from red bidders] ≥ E [m · Y] (3)

where (2) follows from Myerson’s lemma and (3) follows from the observation that the
winner of the optimal auction never pays less than the second-highest virtual value. To
see why the latter holds, let φs be the second highest virtual value, r be the red winner
and g is the green player with the highest virtual value. The critical bid of the red winner
is at least φ−1r (φs) ≥ φ−1r (φg(bg)) ≥ φg(bg) where we applied the fact that x ≥ φ(x) to the
virtual value function φ = φr and the value x = φ−1r (φg(bg)).
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Summing (2) and (3) and using the fact that X + Y = 1 whenever m > 0, we find:

E [Revenue from all bidders 1, . . . , n] ≥ E [m · X] + E [m · Y]
= E [m]

= E
[
revenue of MyerOPT on G

]

We therefore concluded that Myerson’s optimal mechanism is RMMB in the single-
item case. We are now ready to generalize the above idea to any matroid market.

Theorem 1. LetM = (E,I) be any matroid market. Then MyerOPT inM is RMMB.

Proof. CallG the set of green bidders and R the set of red bidders. Let (x, p) denote the
allocation and payment rules for the mechanism MyerOPT that runs Myerson’s optimal
mechanism on all n bidders, using the given distribution of each. Let (x′, p′) denote the
allocation and payment rules for the mechanism MyerOPTG that runs Myerson’s opti-
mal mechanism in the bidder setG only. For a set S ⊆ [n], let TS be the random variable
denoting the independent subset of S that maximizes the sum of ironed virtual values.
In other words, TS is the set of winners chosen by Myerson’s optimal mechanism on
bidder set S .

By Myerson’s Lemma, the revenue of MyerOPTG satisfies:

E

⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
p′i(b)

⎤⎥⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
x′i (b) · φi(bi)

⎤⎥⎥⎥⎥⎥⎦ (4)

By linearity of expectation, we can break up the expected revenue of MyerOPT into
two terms as follows:

E

⎡⎢⎢⎢⎢⎢⎢⎣
∑

i∈[n]
pi(b)

⎤⎥⎥⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
pi(b)

⎤⎥⎥⎥⎥⎥⎦ + E
⎡⎢⎢⎢⎢⎢⎣
∑

i∈R
pi(b)

⎤⎥⎥⎥⎥⎥⎦ (5)

The first term on the right side of (5) expresses the revenue original from the green
bidders. Using Myerson’s Lemma, we can equate this revenue with the expectation of
the green winners’ combined virtual value:

E

⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
pi(b)

⎤⎥⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
xi(b) · φi(bi)

⎤⎥⎥⎥⎥⎥⎦ . (6)

To express the revenue coming from the red bidders in terms of virtual valuations,
we provide the argument that follows. One way to derive TG+R from TG is to start with
TG and sequentially add elements of TG+R∩R in arbitrary order while removing at each
step the least weight element in the circuit that potentially forms (repeated application
of Proposition 2). Let e be the i-th red element we’re adding. If no circuit forms after the
addition, then e pays the smallest value in its support which is a non-negative quantity.
Otherwise, let C be the unique circuit that forms after that addition. Let f be the mini-
mum weight element inC and let bf be the associated bid made by player f . Notice that
f must be green; by assumption, every red element we’re adding is part of the eventual
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optimal solution so it cannot be removed at any stage of this process. The price charged
to e is their critical bid which we claim is at least φ−1e (φ f (b f )). The reason is that e is part
of circuit C and f is the min-weight element of that circuit. The min-weight element
of a circuit is never in the max-weight independent set4 so if bidder e bids any value v
such that φe(v) < φ f (b f ) they will certainly not be included in the set of winners, TG+R.
By Proposition 3 it follows that φ−1e (φ f (b f )) ≥ φ f (b f ) thus pe(b) ≥ φ f (b f ).

The above reasoning allows us “charge” each red bidder’s payment to a green
player’s virtual value in TG \ TG+R:

E

⎡⎢⎢⎢⎢⎢⎣
∑

i∈R
pi(b)

⎤⎥⎥⎥⎥⎥⎦ ≥ E
⎡⎢⎢⎢⎢⎢⎢⎣
∑

i∈TG\TG+R

φi(bi)

⎤⎥⎥⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
(x′i (b) − xi(b)) · φi(bi)

⎤⎥⎥⎥⎥⎥⎦ (7)

The second line is justified by observing that for i ∈ G, x′i (b) = xi(b) unless i ∈ TG \
TG+R, in which case x′i (b) − xi(b) = 1.

Combining Inequalities/Equations (4)–(7) we get:

E

⎡⎢⎢⎢⎢⎢⎢⎣
∑

i∈[n]
pi(b)

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ E
⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
xi(b) · φi(bi)

⎤⎥⎥⎥⎥⎥⎦ + E
⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
(x′i (b) − xi(b)) · φi(bi)

⎤⎥⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
x′i (b) · φi(bi)

⎤⎥⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎢⎣
∑

i∈G
p′i(b)

⎤⎥⎥⎥⎥⎥⎦

In other words, the expected revenue of MyerOPT is greater than or equal to that of
MyerOPTG.

4 General Downward-Closed Markets

When the market is not a matroid, the existence of red bidders can do a lot of damage
to the revenue of the mechanism as shown in the following simple example.

Example 1. Consider a 3-element downward-closed set system on E = {a, b, c} with
maximal feasible sets: {a, b} and {c}. Let c be a green bidder with a deterministic value of
1 and a, b be red bidders each with a specified value distribution given by the following
cumulative distribution function F(x) = 1− (1+ x)1−N for some parameter N. Note that
the associated virtual value function is φ(x) =

(
1 − 1

N−1
)
x − 1

N−1 . For this virtual value
function we have φ−1(0) = 1

N−2 , φ
−1(1) = N

N−2 .
Consider the revenue of Myerson’s mechanism when the red bidders, instead of

following their specified distribution, they each bid φ−1(1)—and the green bidder bids
1, the only support point of their distribution. The set {a, b} wins over {c} since the
former sums to a total virtual value of 2 over the latter’s virtual value 1 so bidders a, b
pay their critical bid.

4 This is a consequence of the optimality of the Greedy algorithm since the min-weight element
of a circuit is the last to be considered among the elements of the circuit and its inclusion will
violate independence.
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To compute that, notice that each of the bidders a, b could unilaterally decrease their
bid to any ε > 1

N−2 and they would still win the auction since the set {a, b} would still
have a total virtual value greater than 1. Therefore, each of a, b pays 1

N−2 for a total
revenue of 2

N−2 .
On the other hand, the same mechanism when run on the set {c} of only the green

bidder, always allocates an item to c and collects a total revenue of 1.
Letting N → ∞we see that the former revenue tends to zero while the latter remains

1, violating the revenue monotonicity property of Definition 1 by an unbounded multi-
plicative factor.

To generalize the above idea to any non-matroid set system we need the following
lemma.

Lemma 4. A downward-closed set system S = (E,I) is not a matroid if and only if
there exist I, J ∈ I with the following properties:

1. For every K ∈ I|I∪J, if |K| ≥ |I| then K ⊇ I\J.
2. |J\I| ≥ 1.
3. I is a maximum cardinality element of I|I∪J.
Proof. For the forward direction, suppose S is not a matroid and let V be a minimum-
cardinality subset of E that is not a matroid. Since I|V is downward-closed and non-
empty, it must violate the exchange axiom. Hence, there exist sets I, J ∈ I|V such that
|I| > |J| but J + x � I for all x ∈ I\J. Note that V = I ∪ J, since otherwise I ∪ J is a
strictly smaller subset of E satisfying the property that (I ∪ J,I|I∪J) is not a matroid.

Observe that J is a maximal element of IV . The reason is that V = I ∪ J, so every
element of V\J belongs to I. By our assumption on the pair I, J, there is no element
y ∈ I such that J + y ∈ I|V . Since I|V is downward-closed, it follows that no strict
superset of J belongs to I|V .

We now proceed to prove that I, J satisfy the required properties of the lemma:

(1) Let K ∈ IV with |K| ≥ |I|. It follows that |K| > |J|, but J is maximal in I|V , so K and
J must violate the exchange axiom. Thus, I|K∪J is not a matroid. By the minimality
of V , this implies K ∪ J = V hence K ⊇ I\J.

(2) If J\I = ∅ then J ⊆ I which contradicts the fact that I, J violate the exchange axiom.
(3) Suppose there exists I′ ∈ I|V with |I′| > |I|, then by property (1) we have I′ ⊇ I\J.

Remove elements of I\J from I′ one by one, in arbitrary order, until we reach a
set K ∈ IV such that |K| = |I|. This is possible because after the entire set I\J is
removed from I′, what remains is a subset of J, hence has strictly fewer elements
than I. The set K thus constructed has |K| = |I| but K � I\J, violating property (1).

For the “only if” direction, supposing that S is a matroid, we must show that no
I, J ∈ I satisfy all three properties. To this end, suppose I and J satisfy (2) and (3).
Since S|I∪J is a matroid, there exists K ⊇ J such that K ∈ I|I∪J and |K| = |I|. By
property (2), we know that no |I|-element superset of J contains I − J as a subset.
Therefore, the set K violates property (1).

We are now ready to generalize Example 1 to every non-matroid set system.
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Theorem 2. For anyM = (E,I) which is not a matroid, MyerOPT is not RMMB.

Proof. Consider a downward-closedM = (E,I) which is not a matroid. We are going
to show there exists a partition of players into green and red sets and a choice of valua-
tion distributions and misspecified red bids such that the RMMB property is violated.

Let I, J ⊆ E be the subsets whose existence is guaranteed by Lemma 4. Define
G = J to be the set of green bidders, R = I\J to be the set of red bidders. All other
bidders are irrelevant and can be assumed to be bidding zero. Set the value of each
green bidder to be deterministically equal to 1. For each red bidder r, the specified
value distribution has the same cumulative distribution function F(x) = 1 − (1 + x)1−N
defined in Example 1.

Now let’s consider the expected revenue of Myerson’s mechanism when every bid-
der in R bids φ−1(1).5 Every bidder’s virtual value is 1, so the mechanism will choose
any set of winners with maximum cardinality which, according to Lemma 4, property
(3), is |I|. For example, the set of winners could be I.

A consequence of Lemma 4, property (1) is that for every red bidder r there is no
set of bidders disjoint from {r} with combined virtual value greater than |I| − 1. Thus
each red bidder pays φ−1(0). Elements of I∩ J correspond to green bidders who win the
auction and pay 1, because a green bidder pays 1 whenever they win. There are |I ∩ J|
such bidders. Thus, the Myerson revenue is |I ∩ J| + 1

N−2 |I\J|. The optimal auction on
the green bidders alone charges each of these bidders a price of 1, receiving revenue
|J| = |I ∩ J| + |J\I|. This exceeds |I ∩ J| + 1

N−2 |I\J| as long as (N − 2) · |J\I| > |I\J|.
This inequality is satisfied, for example, when N = |I\J| + 3, because J\I has at least
one element (Lemma 4, property (2)).
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Abstract. We study the power and limits of optimal dynamic pricing in
combinatorial markets; i.e., dynamic pricing that leads to optimal social
welfare. Previous work by Cohen-Addad et al. [EC’16] demonstrated the
existence of optimal dynamic prices for unit-demand buyers, and showed
a market with coverage valuations that admits no such prices. However,
finding the most general class of markets (i.e., valuation functions) that
admit optimal dynamic prices remains an open problem. In this work we
establish positive and negative results that narrow the existing gap.

On the positive side, we provide tools for handling markets beyond
unit-demand valuations. In particular, we characterize all optimal alloca-
tions in multi-demand markets. This characterization allows us to parti-
tion the items into equivalence classes according to the role they play in
achieving optimality. Using these tools, we provide a poly-time optimal
dynamic pricing algorithm for up to 3 multi-demand buyers.

On the negative side, we establish a maximal domain theorem, show-
ing that for every non-gross substitutes valuation, there exist unit-
demand valuations such that adding them yields a market that does
not admit an optimal dynamic pricing. This result is the dynamic pricing
equivalent of the seminal maximal domain theorem by Gul and Stacchetti
[JET’99] for Walrasian equilibrium. Yang [JET’17] discovered an error
in their original proof, and established a different, incomparable version
of their maximal domain theorem. En route to our maximal domain the-
orem for optimal dynamic pricing, we provide the first complete proof of
the original theorem by Gul and Stacchetti.

1 Introduction

We study the power and limitations of pricing schemes for social welfare opti-
mization in combinatorial markets. We consider combinatorial markets with m
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heterogeneous, indivisible goods, and n buyers with publicly known valuation
function vi : 2[m] → R≥0 over bundles of items. The goal is to allocate items to
buyers in a way that maximizes the social welfare.

Apart from being simple, pricing schemes are attractive since they do not
require an all powerful central authority. Once the prices are set, the buyers
arrive and simply choose a desired set of items from the available inventory.
This is the mechanism we see everywhere, from supermarkets to online stores.
Formally, the seller sets items prices p = (p1, . . . , pm) ∈ R

m
≥0, buyers arrive

sequentially in an arbitrary order, and every buyer chooses a bundle T from
the remaining items that maximizes the utility: ui(T,p) = vi(T ) − ∑

j∈T pj ,
breaking ties arbitrarily.

A reader familiar with the fundamental notion of Walrasian equilibrium, may
conclude that the problem is solved for any market that admits a Walrasian
equilibrium. A Walrasian equilibrium is a pair of an allocation S = (S1, . . . , Sn)
and prices p, such that for every buyer i, Si maximizes i’s utility given p. By
the first welfare theorem, every Walrasian equilibrium maximizes social welfare.

Are Walrasian prices a solution to our problem? The answer is no [1,3]. Wal-
rasian prices cannot resolve a market without coordinating the tie breaking. If a
buyer is faced with multiple utility-maximizing bundles, it is crucial that a cen-
tral authority coordinates the tie breaking in accordance with the corresponding
optimal allocation. In real-world markets, however, buyers are only faced with
prices and choose a desired bundle by themselves without caring about global
efficiency. [1] demonstrated that lacking a tie-breaking coordinator, Walrasian
pricing can lead to arbitrarily bad welfare. Moreover, they showed that no fixed
prices whatsoever can guarantee more than 2/3 of the optimal social welfare,
even when restricted to unit-demand buyers.1

In order to circumvent this state of affairs, [1] proposed a more powerful
pricing scheme, dynamic pricing, in which the seller updates prices in between
buyer arrivals. The updated prices are set based on the remaining buyers and
the current inventory. The main result of [1] is that every unit-demand market
admits an optimal dynamic pricing. They also showed an example of a market
with coverage valuations (a strict sub-class of submodular valuations) in which
dynamic prices cannot guarantee optimal welfare. A natural question arises:

What markets (i.e., what valuation classes) can be resolved optimally using
dynamic pricing?

A similar question was considered for Walrasian equilibrium, where it was
shown that every market with gross-substitutes buyers admits a Walrasian equi-
librium [4]. Moreover, [2] show that gross-substitutes valuations are also maximal
with respect to guaranteed existence of a Walrasian equilibrium:

Theorem 1 (Maximal Domain Theorem for Walrasian Equilibrium
[2]). Let v1 be a non gross-substitutes valuation. Then, there exist unit-demand

1 A unit demand buyer has a value for every item, and the value for a set is the
maximum value of any item in the set.
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valuations v2, . . . , v� for some � such that the valuation profile (v1, v2, . . . , v�)
does not admit a Walrasian equilibrium.

Although the notions of dynamic pricing and Walrasian are incomparable,
Cohen-Addad et al. [1] conjectured that GS valuations are also maximal and
sufficient with respect to the existence of dynamic prices. For the special case
of markets with a unique optimal allocation, they showed that every GS market
admits static prices guaranteeing optimal welfare, and there exists a market with
non-GS (though submodular) valuations such that no pricing, even dynamic,
guarantee optimal welfare.

1.1 Our Results and Techniques

In this work we shrink the known gap between markets that can and cannot be
resolved optimally via dynamic pricing, from both ends.

A natural extension of unit-demand valuations is multi-demand valuations,
where every buyer i has a public cap ki ∈ N on the number of desired items, and
the value for a set is the sum of the values for the ki most valued items in the
set. The case of ki = 1 is simply unit-demand. Every multi-demand valuation is
gross-substitutes. Our main positive result is the following:

Theorem 2. Every market with up to 3 buyers, each with a multi-demand val-
uation function, admits an optimal dynamic pricing. Moreover, the prices can be
computed in polynomial (in the number of items m) time, using value queries2.

On the negative side, we show the first general negative result for dynamic
prices, which takes the form of a maximal domain result in the spirit of [2]:

Theorem 3. Let v1 be a non gross-substitutes valuation. Then, there are unit-
demand valuations v2, . . . , v� such that the valuation profile (v1, v2, . . . , v�) does
not admit an optimal dynamic pricing.

En route, we provide the first complete proof of the maximal domain theorem
by Gul-Stacchetti (Theorem 1 above), whose original proof was imprecise.

Techniques: Positive Results. We first review the solution of Cohen-Addad
et al. [1] for unit-demand valuations, and show why we need a more fundamental
technique in order to get past unit-demand bidders. Their scheme computes an
optimal allocation X = (x1, . . . , xn), where item xi is allocated to buyer i, and
then constructs a complete, weighted directed graph in which the vertices are
the items. An edge xi → xj in this graph represents a preference constraint,
requiring that buyer i strongly prefers item xi over xj , relative to the output
prices. Hereafter, we term this graph the preference graph.

If there exist prices p that satisfy all edge constraints, then all buyers strongly
prefer their items over the rest, and the allocation obtained after the last buyer
2 A value query for a valuation v receives a set S as input, and returns v(S).
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leaves the market is precisely X, which is optimal. Unfortunately, in some cases
such prices do not exist. In order to circumvent this problem, [1] proves the
following two claims:

– An edge xi → xj participates in a 0-weight cycle iff there is an alternative
optimal allocation in which xj is allocated to buyer i.

– If 0-weight cycles are removed from the graph, then one can compute prices
that satisfy the remaining edge constraints.

Their pricing scheme removes every edge that participates in a 0-weight cycle,
and then computes the prices as per the second bullet above. Relative to these
prices, every buyer strongly prefers her allocated item to every other item, except
perhaps for the set of items that are allocated to her in some alternative optimal
allocation. Since every buyer takes at most one favorite item, as the buyers are
unit-demand, this property guarantees that allocating this item to the buyer
is consistent with an optimal allocation (not necessarily X), as desired. When
agents are multi-demand, they might take multiple items, and this breaks the
solution by [1].

e

c

d

a

b

Fig. 1. Consider a market with 5 items a, b, c, d, e and
3 buyers, 1, 2, 3. Buyers 1 and 2 are both 2-demand,
and buyer 3 is unit-demand. Buyer 1 values a, b, c, d at 1
and e at 0, Buyer 2 values c, d, e at 1 and a, b at 0, and
buyer 3 values a, b, e at 1 and c, d at 0. One can verify
that allocating a, b to 1, c, d to 2 and e to 3 maximizes
social welfare. The figure depicts two 0-weight cycles in
the preference graph constructed in the running exam-
ple (edge weights are omitted). The thin red, thick blue
and dashed green arrows correspond to the constraints of
buyers 1, 2, 3 respectively.

To illustrate this, con-
sider the example given
in Fig. 1, which serves
as a running example
throughout the paper.
Removing the given 0-
weight cycles could result
in buyer 1 taking c and
d instead of a and b, and
the only remaining item
that gives buyer 2 any
positive value is e. This
decreases the maximum
attainable welfare from 5
to 4. The reason for this
is that the two cycles
intersect, and item e acts
as a bottleneck for the
two cycles. The machin-
ery developed in [1] can-
not identify the special role of item e, which is crucial for resolving this instance.

Our first step is to gain a better structural understanding of optimal allo-
cations in multi-demand markets. This is cast in the following theorem that
characterizes the set of optimal allocations in multi-demand markets with any
number of buyers. For the sake of simplicity, we present the theorem for markets
in which all m items are allocated in every optimal allocation, and in which the
total demand of the players equals supply, i.e. m =

∑n
i=1 ki, where ki is the cap

of buyer i. In the full version, we show that an analogous result holds in the
general case.
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Theorem (Informal. See Theorem 4). In a market with multi-demand buy-
ers, an allocation is optimal if and only if the following hold:

– Every buyer i receives ki items.
– If item x is allocated to buyer i, then there exists an optimal allocation where

x is allocated to i.

Put informally, the above states that one can mix-and-match items given to a
buyer in different optimal allocations, and as long as each buyer i receives exactly
ki items, the resulting allocation is also optimal. While the only if direction is
straightforward, it is not a-priori clear that the other direction holds as well.
We prove this direction by reducing the problem to unit-demand valuations and
proving for this case.

This characterization significantly simplifies the problem. It allows us to
ignore the concrete values, and consider for each item only the set of buyers
that receives it in some optimal allocation. Two items are essentially equivalent
if their corresponding sets of buyers coincide. Thus, we group items into equiva-
lence classes, providing a compact view of the market. For example, in markets
with up to 3 multi-demand buyers, there are at most 8 (non-empty) equivalence
classes corresponding to the possible subsets of players, while the total number
of items can be arbitrarily large. We construct a new directed graph, termed the
item-equivalence graph, where the vertices are these equivalence classes (refined
after intersecting them with the bundles from the initial optimal allocation X),
and there is an edge C → D whenever the buyer that receives the items in C
in the allocation X also receives every item in D in some optimal allocation.
Figure 2 depicts the item-equivalence graph for the running example.

a, b c, d ee1 e2

e3

Fig. 2. The item-equivalence graph for the
running example. E.g., the items a, b are
equivalent since the set of buyers that
receive any of them in some optimal allo-
cation is the same ({1, 3}).

We show that there is a corre-
spondence between cycles in the item-
equivalence graph and 0-weight cycles
in the preference graph. Thus our chal-
lenge is reduced to removing enough
edges from the first (and translating
these removals back to the second), in
a way that eliminates all cycles, but
also guarantees the following: every
deviation by any buyer from her pre-
scribed bundle, implied by the edge removals, allows the other buyers to simulta-
neously compensate for their “stolen” items by replacing them with items from
other relevant equivalence classes. The optimal allocation characterization the-
orem then guarantees that the obtained allocation is indeed optimal. We devise
an edge-removal method satisfying these requirements whenever the number of
buyers is at most 3.

We believe this characterization theorem and the item equivalence graph may
prove useful in other problems related to multi-demand markets.



On the Power and Limits of Dynamic Pricing in Combinatorial Markets 211

Techniques: Negative Results. The original proof of Theorem1 by Gul and
Stacchetti considers two cases, and for each case, they construct a different mar-
ket that does not admit a Walrasian equilibrium. Yang [7] showed one of the con-
structions does not work by finding an instance such that the constructed mar-
ket does admit a Walrasian equilibrium. The error could not be easily fixed, and
Yang proceeded by establishing an alternative, incomparable theorem; namely,
that for every non gross-substitutes valuation there is a (single) gross-substitutes
valuation for which the obtained market has no Walrasian equilibrium. While
Yang’s version of the assertion requires only a single valuation, this valuation
has a complex structure compared with the simple unit-demand valuations in
the original version. In the full version, we prove the maximal domain theorem
as originally stated. The proof relies on a theorem which allows us to consider
only the case with the correct construction in the original proof.

Our proof of Theorem3, which is deferred to the full version, is driven by
the following lemma from Cohen-Addad et al. [1]—in the case of a unique opti-
mal allocation, the existence of optimal dynamic prices implies the existence of
Walrasian prices. We modify the construction of Gul and Stacchetti to a market
with an optimal allocation that is “almost” unique. This market still does not
admit a Walrasian equilbrium. We then adapt the lemma in [1] to show that
the existence of optimal dynamic prices in this market also implies the exis-
tence of Walrasian prices. The non-existence of Walrasian prices now implies
non-existence of dynamic prices.

2 Preliminaries

We consider a setting with a finite set of indivisible items M (with m := |M |)
and a set of n buyers (or players). Every buyer has a valuation function v : 2M →
R≥0. As standard, we assume monotonicity and normalization of all valuations,
i.e. v(S) ≤ v(T ) whenever S ⊆ T , and v(∅) = 0. A valuation profile of n buyers
is denoted v = (v1, . . . , vn) and we assume that it is known by all. An allocation
is a vector A = (A1, . . . , An) of disjoint subsets of M , indicating the bundles of
items given to each player (not all items have to be allocated). The social welfare
of an allocation A is given by SW(A) =

∑n
i=1 vi(Ai). An optimal allocation is

an allocation that achieves the maximum social welfare among all allocations.
A pricing or a price vector is a vector p ∈ R

n
≥0 indicating the price of

each item. We assume a quasi-linear utility, i.e. the utility of a buyer i from
a bundle S ⊆ M given prices p is ui(S,p) = vi(S) − ∑

x∈S px. The demand
correspondence of buyer i given p is the collection of utility maximizing bundles
Dp(v) := arg maxS⊆M{u(S,p)}.

Dynamic Pricing. In the dynamic pricing problem buyers arrive to the market
in an arbitrary and unknown order. Before every buyer arrival new prices are
set to the items that are still available, and these prices are based only on the
set of buyers that have not yet arrived (their arrival order remains unknown).
The arriving buyer then chooses an arbitrary utility-maximizing bundle based
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on the current prices and available items. The goal is to set the prices so that
for any arrival order and any tie breaking choices by the buyers, the obtained
social welfare is optimal.

We are interested in proving the guaranteed existence of an optimal dynamic
pricing for any market composed entirely of buyers from a given valuation class
C. It can be easily shown by induction that the problem is reduced to proving the
guaranteed existence of item prices p such that any utility-maximizing bundle
of any buyer can be completed to an optimal allocation. In other words, we can
rephrase dynamic pricing as follows:

Definition 1. An optimal dynamic pricing (hereafter, dynamic pricing) for the
buyer profile v = (v1, . . . , vn) is a price vector p ∈ R

m
≥0 such that for any buyer

i and any S ∈ Dp(vi) there is an optimal allocation in which player i receives S.

3 Dynamic Pricing for Multi-demand Buyers

In this section we prove Theorem 2, namely we establish a dynamic pricing
scheme for up to n = 3 multi-demand buyers that runs in poly(m) time. As we
shall see most of the tools we use hold for any number of buyers n. We fix a
multi-demand buyer profile v = (v1, . . . , vn) over the item set M , where each
vi is ki-demand. We assume w.l.o.g. that all items are essential for optimality
(i.e. all items are allocated in every optimal allocation) since otherwise we can
price all unnecessary items at ∞ in every round to ensure that no player takes
any of them (and price the rest of the items as if the unnecessary items do not
exist). Note that under this assumption, each optimal allocation gives buyer i
at most ki items, for every i. In particular we have m ≤ ∑n

i=1 ki. For the sake
of simplicity we further assume for the rest of this section that every optimal
allocation gives each buyer i exactly ki items, and thus m =

∑n
i=1 ki. The case

m <
∑

ki introduces substantial technical difficulty. We show the solution for
the general case in the full version. We first go over the tools used in our dynamic
pricing scheme. We then present the dynamic pricing scheme for n = 3 buyers.

3.1 Tools and Previous Solutions

We start by presenting the main combinatorial construct of our solution, namely
the preference-graph, which generalizes the construct given by [1] in their solu-
tion for unit-demand buyers. Then we explain the obstacles for generalizing the
approach of [1] to the multi-demand setting. Finally, we develop the necessary
machinery needed to overcome these obstacles. All the tools we develop and their
properties hold for any number of buyers n.

The Preference Graph and an Initial Pricing Attempt. Let O be an
arbitrary optimal allocation. The preference graph based on O is the directed
graph H whose vertices are the items in M . Furthermore there is a special
‘source’ vertex denoted s. For any two different players i, j and items x ∈ Oi, y ∈
Oj we have a directed edge e = x → y with weight w(e) = vi(x)−vi(y). We also
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have a 0-weight edge s → x for every item x ∈ M . Since an optimal allocation
can be computed in poly(n,m) time with value queries (since the valuations
are gross substitutes, see [5]), it follows that the preference graph can also be
computed in poly(n,m) time with value queries. When |Oi| = 1 for every i, the
graph is exactly the one introduced by [1] in their unit-demand solution3. The
proofs of the following two lemmas and corollary are deferred to the full version.

Lemma 1. Let C := x1 → x2 → · · · xk → x1 be a cycle in H, where xi is
allocated to player i in O and xi �= xj for every i �= j. Then the weight of the
cycle is w(C) = SW(O) − SW(A) where A is the allocation obtained from O by
transferring xi+1 to player i for every i (we identify player k + 1 with player 1).

Corollary 1. Every cycle in H has non-negative weight.

Corollary 1 implies that the weight of the min-weight path from s to x,
denoted δ(s, x), is well-defined for any item x.

Lemma 2. Let px := −δ(s, x) for every item x. Let i be some player, and let
x, y be items such that x ∈ Oi, y /∈ Oi. Then: (1) px ≥ 0. (2) vi(x) − px ≥
vi(y) − py (3) vi(x) − px ≥ 0.

Note that the utility player i obtains from any bundle of size at most ki is the
sum of the individual utilities obtained by the individual items. Thus, Lemma2
shows that setting the prices px = −δ(s, x) almost achieves the requirements of
dynamic pricing. However, since the inequalities in Lemma 2 are not strict, the
incoming player might deviate from the designated bundle.

Solution for Unit-Demand Valuations and its Failure to Generalize. The inequal-
ities of Lemmas 2 can be made strict by decreasing the weight of all edges by an
appropriately selected ε > 0, but in the case H has zero-weight cycles, this can
introduce negative cycles to H, in which case δ(s, x) is not defined for any x in
such cycle. To circumvent this issue, [1] remove every edge that participates in
a 0-weight cycle in H. Therefore, by choosing a small enough ε to decrease from
the remaining edges, the remaining cycles are guaranteed to be strictly positive.
Removing an edge x → y for x ∈ Oi, y /∈ Oi cancels the preference guarantee
of Lemma 2 (part 2), leading to a possible deviation by buyer i from taking x
to taking y. However, since 0-weight cycles correspond to alternative optimal
allocations (see Lemma 1 with w(C) = 0), then this is not a problem: if the edge
x → y was removed, then there is an optimal allocation in which player i receives
y instead of x. As for the edges x → y that were not removed, the ε decrement
causes i to strongly prefer x over y. The other inequalities of Lemma 2 would
also be strict, and we are thus guaranteed that the incoming player indeed takes
a one-item bundle that is part of some optimal allocation, as desired.

This approach works in the unit-demand setting, but poses problems in the
multi-demand setting, as illustrated in the running example (presented in the

3 A similar graph structure has been used by Murota in order to compute Walrasian
equilibria in gross-substitutes markets [6].
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introduction, see Fig. 1). Therefore, a more sophisticated method of eliminating
0-weight cycles must be employed instead of simply removing all edges that
participate in some 0-weight cycle. Our informal goal is:

Remove a set of edges from the preference graph so that no 0-weight cycles
are left, and every possible deviation implied by the removed edges is con-
sistent with some optimal allocation.

Legal Allocations.

Definition 2

– An item x ∈ M is legal for player i if there is some optimal allocation
X = (X1, . . . , Xn) such that x ∈ Xi.

– A bundle S ⊆ M is legal for player i if |S| = ki and every x ∈ S is legal for
player i.

– A legal allocation A = (A1, . . . , An) is an allocation in which Ai is legal for
player i, for every i.

In a legal allocation every player i receives exactly ki items, each of which is
allocated to her in some optimal allocation. Note that a legal bundle for buyer i
might not form a part of any optimal allocation (e.g., the bundle {c, d} for buyer
1 in the running example). The following theorem provides a characterization
of the collection of optimal allocations in the given market v. The subsequent
Corollary follows directly from the theorem and Definition 1. We next provide a
proof sketch, for the full proof, we refer the reader to the full version.

Theorem 4. An allocation is legal if and only if it is optimal.

Proof (sketch). We first show that the theorem holds for unit-demand valuations,
and then reduce the case of multi-demand valuations to unit-demand valuations.
The if direction is trivial; we show the only if direction in this sketch. Let OPT
denote the optimal welfare, and let ML = {(i, �i)}i∈[n] be a legal allocation
(which is also a perfect matching since m =

∑
i ki = n). For each edge (i, �i) in

ML, let M i represent an optimal allocation, which is also a max-weight matching,
in which (i, �i) participates (there must exist such a matching by the definition of
legal allocations). Let G =

⋃
i M i be the bipartite multigraph that is the union

of all the perfect matchings. This is an n-regular bipartite graph which has ML

as a subgraph. We decompose G as follows—we first remove the matching ML

from G, resulting in an n − 1 regular graph. We then decompose this graph into
n − 1 perfect matchings M ′

1, . . . ,M
′
n−1 (which is possible due to the regularity

of the graph). For a matching M , we use w(M) to denote its weight. We notice
that w(ML) +

∑n−1
i=1 w(M ′

i) =
∑n

i=1 w(M i) = n · OPT. Since w(M ′
i) ≤ OPT for

every i, it follows that w(ML) ≥ OPT. Therefore, ML is optimal.
We now describe the reduction: each ki-demand buyer is decomposed into ki

identical unit-demand buyers, each of whom has the same value as the original
buyer for every item j. The corresponding allocations are naturally defined:
A single multi-demand buyer receiving k ≤ ki items in the original market
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corresponds to allocating these k items to k copies of this agent in the unit-
demand market (one item to each copy). In the other direction, all the items
allocated to copies of a particular multi-demand buyer are allocated to that
buyer in the original market. It is not hard to see that an allocation is legal
(resp. optimal) in the original market if and only if the corresponding allocation
is legal (resp. optimal) in the corresponding unit-demand market. 
�
Corollary 2. A price vector p is a dynamic pricing if for every player i and
S ∈ Dp(i), S is legal for player i and there exists an allocation of the items
M \ S to the other players in which every player receives a legal bundle.

Going back to our informal goal, Theorem4 determines the deviations from the
bundles Oi which are tolerable. A buyer can only deviate to a bundle which is
legal for her, in a way that the leftover items can be partitioned “legally” among
the rest of the buyers. The proof of Theorem4 is deferred to the full version.

The Item-Equivalence Graph. Let O be some optimal allocation and H the
corresponding preference graph. For every player i and set of players C ⊆ [n]\{i},
we denote by Bi,C the set of items allocated to buyer i in O, and whose set of
players to which they are legal is exactly {i} ∪ C. For example, B1,{2,3} is the
set of items x ∈ O1 such that there are optimal allocations O′,Õ in which x is
allocated to players 2, 3 (respectively), and for any other player j /∈ {1, 2, 3},
there is no optimal allocation in which x is allocated to j. Formally,

Bi,C :=
{

x ∈ Oi

∣
∣
∣
∣
∀j ∈ {i} ∪ C x is legal for j
∀j /∈ {i} ∪ C x is not legal for j

}

We make a few observations:

– The sets Bi,C form a partition of M (some of these sets might be empty sets).
– Let x ∈ Oi and y ∈ Oj for i �= j. If x → y participates in a 0-weight cycle in

H and y ∈ Bj,C , then i ∈ C.

The second observation holds since if x → y participates in a 0-weight cycle,
then there is an alternative optimal allocation in which y is allocated to player
i (see Lemma 1 with w(C) = 0).

Definition 3 (Item-Equivalence Graph). Given an optimal allocation O,
its associated item-equivalence graph is the directed graph B = (T,D) with
vertices T = {Bi,C �= ∅ | i ∈ [n] , C ⊆ [n] \ {i}} and directed edges
D = {Bi,C1 → Bj,C2 | i ∈ C2}.

For example, (B1,∅ → B2,{1,4}) and (B2,{1,5} → B6,{2}) are edges in the
item-equivalence graph (assuming that the participating sets are non-empty),
whereas, for example, (B1,∅ → B1,{2}) and (B2,{1} → B3,{1,4}) are not. Note
also that the number of vertices is at most m.

The next Lemma shows that the item-equivalence graph can be computed
efficiently. The proof is deferred to the full version.
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Lemma 3. Given an optimal allocation O, its associated item-equivalence graph
can be computed in poly(m,n) time and value queries.

The following lemma uses Theorem 4 to establish a correspondence between
0-weight cycles in H and cycles in B. Its proof is deferred to the full version.

Lemma 4. Let O be an optimal allocation and let H and B be the corresponding
preference graph and item-equivalence graph, respectively. Then:

1. If Bi1,C1 → · · · → Bik,Ck
→ Bi1,C1 is a cycle in B then for any items

x1 ∈ Bi1,C1 , . . . , xk ∈ Bik,Ck
, the cycle C = x1 → x2 → · · · → xk → x1 is a

0-weight cycle in H.
2. If C = x1 → x2 → · · · → xk → x1 is a 0-weight cycle in H, and x� ∈ Bi�,C�

for every 1 ≤ � ≤ k then C ′ := Bi1,C1 → · · · → Bik,Ck
→ Bi1,C1 is a cycle

in B.

As explained before, our main challenge in the dynamic pricing problem is
to come up with a method to remove all 0-weight cycles from H in a way that
each potential deviation of any player i from the designated bundle Oi, that
emanates from the edge removals, is consistent with some optimal allocation. In
particular the method must overcome the “bottleneck problem” (as illustrated
in Fig. 1). Lemma 4 allows us to shift the focus from removing 0-weight cycles
in H to removing cycles in B and translate these removals back to H.

[Running Example]. Figure 2 shows the item-equivalence graph obtained from
the initial optimal allocation. Each of the items a, b is allocated to buyer 3 in some
other optimal allocation, and is never allocated to buyer 2. Thus a, b ∈ B1,{3}.
Similarly we have c, d ∈ B2,{1} and e ∈ B3,{2}. Removing any edge of the item-
equivalence graph makes it cycle-free. Thus, by Lemma 4, if we choose one of the
edges e1, e2, e3 and remove all edges in the preference graph corresponding to the
chosen edge, then the preference graph will remain cycle-free. Removing the edges
corresponding to e1 could cause player 1 to take the bundle {c, d} instead of the
designated bundle {a, b}, which cannot be completed to an optimal allocation.
On the other hand, removing the preference graph edges that correspond to the
edges e2, e3 is fine. If player 2 arrives first to the market, then the removal of edge
e2 might cause her to take the item e instead of c or d, and both options are consis-
tent with some optimal allocation. Likewise if player 3 arrives first and takes a or
b instead of e then this too can be completed to an optimal allocation. The impor-
tant property here is that B3,{2} has minimal size in the cycle, and thus removing
its incoming and outgoing edges introduces tolerable potential deviations.

3.2 Solution for Up to 3 Multi-demand Buyers

We are now ready to present the dynamic pricing scheme for up to n = 3
multi-demand buyers. The algorithm makes use of the item-equivalence graph.
We abuse notation and instead of writing Bi,{j} (Bi,{j,k}) we write Bij (Bijk).
Thus the vertices of the item-equivalence graph for 3 buyers are B1,∅, B2,∅, B3,∅,
B12, B21, B31, B123, B213, B312, B13, B23, B32 (only the non-empty sets out
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of these appear in the graph). For 2 buyers there are at most 4 vertices in the
graph: B1,∅, B2,∅, B12, B21. Step 4 is only relevant for the case of 3 buyers.

ALGORITHM 1: Dynamic Pricing Scheme for up to 3 Multi-Demand Buyers.

Input: Multi-demand valuations v1, v2, and also v3 when n = 3.
Output: prices p = (px)x∈M .

1 Compute some optimal allocation O.
2 Compute the preference graph H and the item-equivalence graph B based on O.
3 Mark all edges that participate in a cycle of size 2 in B.
4 In each of the cycles B13 → B21 → B32 → B13 and B12 → B31 → B23 → B12 (if

these exist) choose a set of minimal size and mark its incoming edge and
outgoing edge in the cycle.

5 For every edge Bi1,C1 → Bi2,C2 in B that was marked, and for every
x ∈ Bi1,C1 , y ∈ Bi2,C2 , remove the edge x → y from H . Denote the obtained
graph by H .

6 Let Δ > 0 be the difference in social welfare between the optimal and 2nd optimal

allocation. Denote := Δ
m+1

and for every edge e that was not removed (except

for edges starting at the source vertex s) update its weight to w (e) = w(e) − .
7 Compute the min-weight paths from s to every x in H , and let δ(s, x) be its

weight. For every item x set the price px = −δ(s, x) + .
8 return (px)x∈M

When n = 2, the only cycle in the item-equivalence graph is B12 → B21 →
B12 (assuming both of these are non-empty sets), and both of its edges were
marked in step 3. Thus, by Lemma 4, all edges that participate in a 0-weight
cycle in the preference graph were removed in step 5. Thus for n = 2 Algorithm
1 is, effectively, the straightforward generalization of the Cohen-Addad et al. [1]
unit-demand solution to multi-demand buyers.

As stated before, computing O, H and B can be done in polynomial time.
Finding the cycles in B can also be done efficiently (B has a constant number of
vertices) as well as computing min-weight paths. Thus the algorithm indeed runs
in poly(m) time as desired. The proofs of the following 4 lemmas are deferred to
the full version.

Lemma 5. After step 5 every cycle in H ′ has strictly positive weight.

Lemma 6. For any item x, px > 0.

Lemma 7. For any player i, x ∈ Oi and y �∈ Oi, if e = x → y ∈ H ′ then
ui(x,p) > ui(y,p).

Lemma 8. For any player i and item x ∈ Oi we have vi(x) − px > 0.

We are now ready to prove that the output of our dynamic pricing scheme
meets the requirements of Corollary 2. This is cast in the following lemma:

Lemma 9. Let p be the price vector output by Algorithm 1. Then, for every
player i and S ∈ Dp(i), (a) S is legal for player i; and (b) S can be completed to
a legal allocation, i.e. there exists an allocation of the items M \ S to the other
players in which every player receives a bundle that is legal for her.
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Proof. We prove for i = 1 (the same proof applies also for i = 2, 3). We first
prove part (a). We start by showing that every S ∈ Dp(1) is of size k1. Since
all item prices are positive (Lemma 6) and player 1 is k1-demand, it cannot be
the case that player 1 maximizes utility with a bundle consisting of more than
k1 items. Furthermore, by Lemma 8 there are at least k1 legal items from which
she derives positive utility. Combining, every demanded bundle has exactly k1
items. Now, for any two items x, y where x ∈ O1 and y is not legal for player
1, the edge x → y was not removed in the transition from H to H ′ (since
there is no corresponding edge in the item-equivalence graph that could have
been marked). Thus, player 1 strongly prefers x over y (by Lemma 7) and we
conclude that every demanded bundle contains only legal items, as desired.

We proceed to prove part (b). Let S ∈ Dp(1). We refer to the items in S \O1

as the items that player 1 ‘stole’ from players 2 (and 3 if n = 3), and to the
items in O1 \ S as those player 1 ‘left behind’. We need to show that players
2 and 3 can compensate for their stolen items in a ‘legal manner’, that is, by
completing their leftover bundles O2 \ S and O3 \ S to k2 and k3 legal items,
respectively. The first step is to determine where the stolen and left behind
items are taken from. Since B1,∅ does not participate in any cycle in the item-
equivalence graph (as it has no incoming edge), then none of its outgoing edges
were marked, implying (by Lemma7) that player 1 strongly prefers every item
of B1,∅ over every item y /∈ O1. Since buyer 1 derives positive utility from these
items (Lemma 8), we conclude that B1,∅ is contained in every demanded bundle
and in particular in S. In other words, all the items player 1 left-behind are in
B12 if n = 2, or in B12 ∪ B13 ∪ B123 if n = 3. Thus, if n = 2 we are done: buyer
2 can compensate for her stolen items by taking the leftover items in B12 which
are legal for her (the amount of stolen items equals the amount of leftover items
since |O1| = |S| = k1). We assume for the rest of the proof that n = 3. Since S is
legal for buyer 1, the stolen items S \O1 are contained in B21∪B213∪B31∪B312.

Denote a2 := |(O1 \ S) ∩ B12| , a3 := |(O1 \ S) ∩ B13| , a23 :=
|(O1 \ S) ∩ B123| , b2 := |(S \ O1) ∩ B21| , b23 := |(S \ O1) ∩ B213| , b3 :=
|(S \ O1) ∩ B31| , b32 := |(S \ O1) ∩ B312|.

In words, a2 is the number of items player 1 left behind in B12, b2 is the
number of items she ‘stole’ from player 2 out of the items in B21, b32 is the
amount she ‘stole’ from player 3 out of the items in B312, etc. By the discussion
in the previous paragraph, these account for all stolen and leftover items, and
we get

b2 + b23 + b3 + b32 = |S \ O1| = |O1 \ S| = a2 + a23 + a3. (1)

Consider the bipartite graph G whose left side consists of the items in S \O1

and whose right side consists of the items in O1 \ S, with edges (x, y) whenever
the stolen item x can be replaced by the leftover item y legally (e.g., if x ∈ O2,
then y ∈ B12∪B123). Specifically, G is composed of a bi-clique between the stolen
items from B21 ∪ B213 (the stolen items of player 2) and the leftover items from
B12∪B123 (these are the leftover items that are legal for player 2), and of another
bi-clique between the stolen items of B31 ∪ B312 (the stolen items of player 3)
and the leftover items of B13 ∪ B123 (the leftover items that are legal for player
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3). If there is a perfect matching in G, then every stolen item can be replaced
with the item it was matched to in the perfect matching, resulting in a legal
allocation, and we are done. Thus we assume that there is no perfect matching
in G. Since Hall’s condition does not hold, we have that either b2+b23 > a2+a23,
or b3 + b32 > a3 +a23. Assume w.l.o.g. that b2 + b23 > a2 +a23. Then, by Eq. (1),
we have a3 > b3+b32 ≥ 0. We claim that this implies b23 = 0. The reason is that
otherwise, player 1 stole some item, denoted y, from B213 and left behind some
item, denoted x, in B13. But this cannot be the case since this would imply (by
Lemma 7) that the edge x → y was removed in the transition from H to H ′, but
the edge B13 → B213 was never marked in the pricing scheme. Therefore b23 = 0
and b2 > a2 + a23 ≥ 0. The combination of b2 > 0 and a3 > 0 implies that the
edge B13 → B21 was marked in step 4, and so one of B13, B21 is of minimal size
in the cycle B13 → B21 → B32 → B13. In particular,

|B32| ≥ min{|B13| , |B21|} ≥ min{a3, b2}
≥ min{a3 − (b3 + b32) , b2 − (a2 + a23)} = b2 − (a2 + a23) ,

where the equality holds by Eq. (1). In order to complete S to a legal allocation,
player 2 compensates for his stolen b2 items by taking the a2 + a23 items player
1 left behind in B12 ∪ B123 and by “stealing” b2 − (a2 + a23) items from B32

(indeed there are enough items there for player 2 to steal). Player 3 now has to
compensate for the items stolen from her by both players, a total of (b32 + b3)+
(b2 − (a2 + a23)) = a3 items. Since player 1 left precisely this number of items
in B13, player 3 can take them. Note that the resulting allocation is indeed legal
and thus optimal. 
�
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Abstract. Motivated by demand-responsive parking pricing systems we
consider posted-price algorithms for the online metrical matching prob-
lem and the online metrical searching problem in a tree metric. Our main
result is a poly-log competitive posted-price algorithm for online metrical
searching.

1 Introduction

Since 2011 SFpark has been San Francisco’s system for managing the availability
of on-street parking [2,3,28]. The goal of the system is to reduce the time and
fuel wasted by drivers searching for an open space. The system monitors parking
usages via sensors embedded in the pavement and distributes this information in
real-time to drivers via SFpark.org and phone apps. SFpark periodically adjusts
parking meter pricing to manage demand, to lower prices in underutilized areas,
and to raise prices in overutilized areas. Prices can range from a minimum of
25 cents to a maximum of 7 dollar per hour during normal hours with a 18
dollars per hour cap for special events such as baseball games or street fairs.
Several other cities in the world have similar demand-responsive parking pricing
systems, for example Calgary has had the ParkPlus system since 2008 [1].

The problem of centrally assigning drivers to parking spots to minimize time
and fuel usage is naturally modeled by the online metrical matching problem.
The setting for online metrical matching consists of a collection of k servers (the
parking spots) located at various locations within a metric space. The algorithm
then sees an online sequence of requests over time that arrive at various locations
in the metric space (the drivers arriving to look for a parking spot). In response
to a request, the online algorithm must match the request (car) to some server
(parking spot) that has not been previously matched; Conceptually we interpret
this matching as the request (car) moving to the location of the matched server
(parking spot). The objective goal is to minimize the aggregate distance traveled
by the requests (cars).
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We also consider what we call the online metrical search problem, which is
an important special case of the online metrical matching problem. This is a
promise problem in that the adversary is constrained to guarantee that there is
an optimal matching for which only one edge has positive cost. It is useful to
conceptually think of online metrical search as the following parking problem:
the setting consists of many parking spots at various locations in a metric space
and a single car that is initially parked at some location in the metric space.
Over time the parking spots are decommissioned one by one until only one
parking spot is left in commission. If at any time the car is not parked at an
in-commission parking spot, then the car must move to a parking spot that is
still in commission. The objective is to minimize the aggregate distance traveled
by the car. The optimal solution is to move the car directly to the last remaining
parking spot.

The online metrical search problem is a special case of the online metrical
matching problem because the parking spots can be viewed as servers and the
decommissioning of a parking spot can be simulated by the arrival of a request at
the location of that parking spot. So a lower bound on the competitive ratio for
the online metrical search problem for a particular metric space also gives a lower
bound for the online metrical matching problem on the metric space. Conversely
it seems that in terms of the optimal competitive ratio, online metric search is
no easier than metric matching. In particular, there is no known example of a
metric space where the optimal competitive ratio for online metrical matching is
known to be significantly greater than the optimal competitive ratio for online
metrical search on that metric space. For example on a line metric, the online
metrical search problem is better known as the “cow path problem”, and the
optimal deterministic competitive ratio is known to be 9 [13], while the best
known lower bound on the deterministic competitive ratio for online metrical
matching on a line metric is 9.001 [18], worse only by a minuscule factor.

In order to be implementable within the context of SFpark, online algorithms
must be posted-price algorithms. In this setting, posted-price means that before
each request arrives, the online algorithm sets a price on each unused server
(parking spot) without knowing the location where the next request will arrive.
Furthermore, each request is assumed to be a selfish agent who moves to the
available server (parking spot) that minimizes the sum of the price of and dis-
tance to that server. The objective remains to minimize the aggregate distance
traveled by the requests. So conceptually the objective of the parking pricing
agency is minimizing social cost, not maximizing revenue.

Research into posted-price algorithms for online metrical matching was ini-
tiated in [14] as part of a line of research to study the use of posted-price algo-
rithms to minimize social cost in online optimization problems. As a posted-
price algorithm is a valid online algorithm, one can not expect to obtain a better
competitive ratio for posted-price algorithms than what is achievable by online
algorithms. So this research line has primarily focused on problems where the
optimal competitive ratio achievable by an online algorithm is (perhaps approx-
imately) known and seeks to determine whether a similar competitive ratio can
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be (again perhaps approximately) achieved by a posted-price algorithm. The
higher level goal is to determine the increase in social cost that is necessitated
by the restriction that an algorithm has to use posted prices to incentivize selfish
agents, instead of being able to mandate agent behavior.

An O(log Δ)-competitive randomized posted-price algorithm for metric
matching on a line metric is given in [14] where Δ is the ratio of the dis-
tance between the furthest two servers and the distance between the closest
two servers. No o(log k)-competitive (not necessarily posted-price) algorithm is
known for online metric matching on a line metric. So arguably, on a line metric
there is a posted-price algorithm that is nearly as competitive as the best known
centralized online algorithm.

Our original research goal was to determine whether posted-price algorithms
can be similarly competitive with a centralized online algorithm for tree metrics
for online metrical matching. In order to be more specific about our goal, we
need to review a bit. A tree metric is represented by a tree T = (V,E) with
positive real edge weights where the distance dT (u, v) between vertices u, v ∈ V
is the shortest path between vertices u and v in T . There is a deterministic online
algorithm that is (2k − 1)-competitive for online metric matching in any metric
space, and no deterministic online algorithm can achieve a better competitive
ratio for online metric searching in a tree metric [21,22]. An O(log k)-competitive
randomized algorithm for online metric matching in O(log k)-HST’s (Hierarchi-
cally Separated Trees) is given in [25]. By combining this result with results
about randomly embedding metric spaces into HST’s [10,11,16,25] obtained
an O(log3 k)-competitive randomized algorithm for online metric matching in
a general metric space. Following this general approach, [9] later obtained an
O(log2 k)-competitive randomized algorithm for online metrical search in an
arbitrary metric by giving an O(log k)-competitive randomized algorithm for
2-HST’s. No better results are known for tree metrics, so all evidence points
to tree metrics as being as hard as general metrics for online metrical match-
ing. Thus, more specifically our original research goal was to determine whether
there is poly-log competitive randomized posted-price algorithm for the online
metrical matching problem on a tree metric. Before stating our progress toward
this goal, it will be useful to review the literature a bit more.

1.1 Prior Related Work

The most obvious algorithmic design approach for posted-price problems is to
directly design a pricing algorithm from scratch, as is done for metrical task sys-
tems in [14], but this is not the most common approach in the literature. Two
less direct algorithmic design paradigms have emerged in the literature. The
first algorithmic design paradigm is what we will call mimicry. A posted-price
algorithm A mimics an online algorithm B if the probability that B will take a
particular action is equal the probability that a self-interested agent will choose
this same action when the prices of actions are set using A. For example, [14]
shows how to set prices to mimic the O(log Δ)-competitive Harmonic algorithm
for online metric matching on a line metric from [19]. As another example, [17]
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shows how to set prices to mimic the O(1)-competitive algorithm Slow-Fit from
[7,8] for the problem of minimizing makespan on related machines. However,
for some problems it is not possible to mimic known competitive algorithms
using posted prices. For such problems, another algorithmic design paradigm
is what we will call monotonization. In the monotonization algorithm design
approach, one first seeks to characterize the online algorithms that can be mim-
icked, and then designs such an online algorithm. In the examples in the lit-
erature, this characterization involves some sort of monotonicity property. For
example, monotonization is used in [14] to obtain an O(k)-competitive posted-
price algorithm for the k-server problem on a line metric, and in [15] to obtain
an O(k)-competitive posted-price algorithm for the k-server problem on a tree
metric. Since no deterministic algorithm can be better than k-competitive for
the k-server problem in any metric [24], this shows that in these settings, there
is minimal increase in social cost necessitated by the use of posted-prices. As
another example, monotonization is used in [20] to obtain an O(1)-competitive
posted-price algorithm for minimizing maximum flow time on related machines.

For online metric matching on a line metric, better competitive ratios are
achievable. An O(k.59)-competitive deterministic online algorithm was given in
[4]. Subsequently several different O(log n)-competitive randomized online algo-
rithms for a line are given in [19]; these algorithms leverage special properties of
HST’s constructed from a line metric. As already mentioned, [19] also showed
that the natural Harmonic algorithm is O(log Δ)-competitive. An O(log2 k)-
competitive deterministic online algorithm was given in [26], and this was later
improved to O(log k) in [27]. Super-constant lower bounds for various types of
algorithms are given in [5,23]. More generally, the algorithm for online metric
matching given in [26] has the property that for every metric space, its competi-
tive ratio is at most O(log2 k) times the optimal competitive ratio achievable by
any deterministic algorithm on that metric space.

1.2 Our Contribution

There is no hope to mimic any of the online algorithms for online metrical match-
ing that are based on HST’s as HST’s by their very nature lose too much informa-
tion about the structure of a tree metric. Therefore we adopt the monotonization
approach. In Sect. 2 we identify a monotonicity property that characterizes mim-
icable algorithms for online metrical matching in tree metrics. Roughly speaking
this property says that if a request were to have arrived on the route to its desired
server, then the probability that the request would still have been matched to
this server can not decrease. Thus we reduce finding a post-priced algorithm to
finding a monotone algorithm.

In Sect. 3 we give an algorithm TreeSearch for the online metrical search
problem on a tree metric. The algorithm is based on the classic multiplicative
weights algorithm for online learning from experts [6]. Conceptually there is one
expert E� for each leaf � of the tree T . Expert E� always recommends that
the car/request travels toward the leaf �. Thus expert E� pays a cost of one
whenever a parking spot on the path from the root to � is decommissioned, a
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cost of zero when other parking spots are decommissioned, and an infinite cost
if there are no remaining parking spots on the path from the root to �. Let π�

t

be the probability that the multiplicative weights algorithm has associated with
expert E� right before request rt arrives. Let v�

t be the location of the car just
before request rt arrives if the advice of expert E� had always been followed.
The algorithm TreeSearch maintains the invariant that right before request rt

arrives, the probability that the car is at a vertex v is
∑

�:v�
t=v π�

t , the sum of
the probabilities of the experts that recommend that the car should be parked
at v. The most technically difficult part of the algorithm design process was
maintaining this invariant. We then upper bound the expected number of jumps
made by the TreeSearch algorithm, where a jump is a movement of the car by a
positive amount. Finally, we show how to extend TreeSearch to be a monotone
algorithm TreeMatch for online metrical matching on a tree metric.

In Section algorithm for online metric searching on a tree metric. Before any
requests arrive, an algorithm GroveBuild embeds the tree metric into what we
will call a grove, which is a refinement of an HST that retains more information
about the topology of the original metric space. It is probably easiest to explain
what a grove is by explaining the difference in how one is constructed in com-
parison to how an HST is constructed. The construction of each starts with a
Low Diameter Decomposition (LDD) of the metric space. A LDD is a partition
P = {P1, . . . , Pn} of the vertices of the metric space where each part is connected
and the diameter of each part is an α factor smaller than the diameter of the
whole metric space. The top of the HST consists of a star where the center of the
star is the root of the HST, and there is one child of the root for each part Pi.
In contrast, the top of a grove consists of the tree that remains after collapsing
each part to a single vertex. For both an HST and a grove, the construction then
proceeds recursively on each part. So intuitively the key difference is that groves
retain information about the distances between parts in the LDD that the HST
instead discards. See Fig. 1 for a comparison of an HST and a grove constructed
from the same LDD.

We then give a monotone algorithm GroveMatch for online metrical matching
on a tree metric that utilizes the algorithm TreeMatch on each tree in the grove
constructed from the tree metric. We show that GroveMatch is poly-log compet-
itive (more precisely O(log6 Δ log2 n)-competitive) on metric search instances by
induction on the levels of the grove. This is an extension of a similar induction
argument in [25] that shows that a O(log n)-competitive algorithm for a star (or
a complete unit metric) can be extended to an algorithm for a O(log n)-HST
with the loss of a poly-log factor in the competitiveness. However, our situation
is complicated by the fact the possible ways that a request can potentially move
within a grove is more complicated than the possible ways a request can move
within an HST, and thus the induction is more complicated as the induction
depends on when the request is moving “up” and when the request is moving
“down” in trees within the grove. The bound on the number of jumps made
by TreeSearch translates to a bound on the number of recursive calls made by
GroveMatch. There is not a lot of wiggle room in our analysis, and thus both the
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algorithm design and algorithm analysis process are necessarily quite delicate.
For example, if TreeSearch made just 1% more jumps than the bound that
we can show, then the resulting competitiveness of GroveMatch would not be
poly-logarithmic. One consequence of this delicateness is that we can not use a
black box LDD construction to build our grove, we need to construct our LDD
in a way that tightly controls the variance of random properties of our grove.

Due to space requirements, proofs have mostly been removed. See [12] for
the full paper with complete proofs.
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Fig. 1. An example of a LDD, the corresponding HST, and the corresponding grove.

2 Pricing Monotone Algorithms

In this section, we show that an algorithm for the online metrical matching can
be implemented as a posted-price algorithm if and only if the algorithm satisfies
the following monotonicity property. We note that monotonicity does not have
a natural interpretation within the context of online metrical searching, which
explains why we give a monotone algorithm for online metrical matching, even
though we only analyze its competitiveness for online metrical search.

Definition 1. An algorithm A for online metric matching is monotone if for
every instance, every request rt in that instance, every possible sequence R of
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random events internal to A prior to rt’s arrival, and all vertices u, v, s where v
is on the path from u to s it is the case that: Pr [AR(rt) = s | ER and rt = u] ≤
Pr [AR(rt) = s | ER and rt = v] where AR(rt) is the event that A matches rt to
s, and ER is the event that the past random events internal to A are equal to R.

Theorem* 1. Any algorithm A for the online metrical matching problem can
be implemented as a posted-price algorithm if and only if A is monotone.

3 The Algorithm TreeMatch

In Subsect. 3.1 we define algorithm TreeSearch for the metric search problem on
a tree T = (V,E) rooted at vertex a ρ. The distance metric on T will not be of
interest to us in this section. We will use the interpretation of a car moving when
its parking spot is decommissioned, as introduced earlier, as we think that this
interpretation is more intuitive. The description of TreeSearch in Subsect. 3.1
uses a probability distribution qσ

t (τ) that is complicated to define, so its exact
definition is postponed until Subsect. 3.2, in which we also show that it achieves
our goal of matching the experts distribution. Finally in Subsect. 3.3, we show
how to convert TreeSearch into a monotone algorithm TreeMatch for online
metrical matching that is identical to TreeSearch on online metrical search
instances.

3.1 Algorithm Description

We start with some needed definitions and notation.

Definition 2. A parking spot si in the collection S of parking spots is a
leaf-spot if there are no other parking spots in the subtree rooted at si. Let
L(T ) = {�1, ..., �d} denote the collection of leaf-spots. Let H be the maximum
initial number of parking spots in T on the path from the root ρ to a leaf-
spot in L(T ). For σ ∈ [d], define Tσ ⊆ V as the set of parking spots on
the path from the root ρ to �σ, inclusive. We define Tσ to be alive if there
is still an in-commission parking spot in Tσ, and dead otherwise. A Tσ is
killed by rt if rt is the last parking spot to be decommissioned in Tσ. Let
At = {σ ∈ [d] | Tσ is alive just before the arrival of rt}. For a vertex v ∈ V ,
let L(v) denote the collection of leaf-spots that are descendants of v in T . Let ct

be the location of the car just before the arrival of request rt.

Algorithm TreeSearch: The algorithm has two phases: the prologue phase and
the core phase. The algorithm starts in the prologue phase and transitions to
the core phase after the first time m when there is no available parking space on
the path from the new parking spot cm+1 to the root ρ, inclusive. The algorithm
then remains in the core phase until the end. In the prologue phase, whenever the
car is not parked at a vertex with an in-commission parking spot, the following
actions are taken:
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1. If there is an in-commission parking spot at ct then no action is taken.
2. Else if there is an in-commission parking spot on the path between ct and the

root ρ, inclusive, then the car moves to the first in-commission parking spot
on this path nearest to ct.

3. Else the car moves to the root ρ and enters the core phase to determine where
to go from there. So for analysis purposes, the movement to ρ counts as being
part of the prologue phase, and the rest of the movement counts as being in
the core phase.

If the car is at the root ρ and the algorithm is just transitioning into the core
phase, then a live Tτ is picked uniformly at random from At+1, an internal
variable γ is set to be τ , and the car moves to the first in-commission parking
spot on the path from ρ to �τ . Subsequently in the core phase, when a parking
spot rt is decommissioned then:

1. If the car is not parked at rt, that is if ct �= rt, then no action is taken.
2. Else the car moves to the first in-commission parking spot in Tτ with proba-

bility qγ
t (τ) and sets γ to be τ . ( qγ

t (τ) is defined in the next subsection.)

Intuitively γ stores the last random choice of the algorithm.

3.2 The Definition of qσ
t (τ )

In this section we only consider times in the core phase. We conceptually divide
up the tree T into three regions. Given vertex v and time t, we let zv

t be the
number of in-commission parking spots on the path from v to ρ, inclusive, just
before decommission rt. We then define the regions as follows:

1. The root region is the set of all vertices v such that zv
t = 0. Note that this

region is connected, and no decommissioning can occur in this region since
there are no parking spots left.

2. The frontier region is the set of all vertices v such that zv
t = 1. A decommis-

sioning rt is called a frontier decommissioning if rt is in the frontier region.
3. The outer region is the set of all vertices v such that zv

t > 1. A decommis-
sioning rt is called a outer decommissioning if rt is in the outer region.

Observe that these regions have no dependence on random events internal to the
algorithm. Further observe that step 2 of the core phase in algorithm TreeSearch
maintains the invariant that the car is always parked at a spot in the frontier
region. This means that any outer decommissionings will not move the car from
its current parking spot.

Definition 3. Let rm be the last decommissioning handled in the prologue phase
of TreeSearch. Define Xt = At ∩L(rt) to be the collection of σ’s such that Tσ is
alive and contains rt and define Yt = At \Xt = At ∩L(rt) to be the collection of
σ’s such that Tσ is alive and doesn’t contain rt. Define Ft = Xt ∩ At+1 to be the
collection of σ’s such that Tσ is killed by rt. Let nσ

t denote the number of frontier
decommissionings strictly before time t from Tσ. Define wσ

t = (1 − ε)nσ
t for each
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σ ∈ [d]. Define Wt(J ) =
∑

σ∈J wσ
t for any J ⊆ {1, ..., d}. Define πσ

t as the
probability the experts algorithm would give to expert σ, that is πσ

t = wσ
t∑

τ∈[d] wτ
t
.

Define π̃σ
t as πt normalized amongst all experts in At, that is π̃σ

t = wσ
t∑

τ∈At
wτ

t

if σ ∈ At, and 0 otherwise. Define pσ
t as the probability that γ = σ right before

time t.

We are now ready to define qσ
t (τ). Note that by the definition of TreeSearch,

qσ
t (τ) is only used for σ ∈ Xt since the algorithm only reaches step 2 of the core

phase when rt ∈ Tγ . We show in Lemma 1 that this definition of qσ
t (τ) indeed

defines a probability distribution over τ ∈ [d]. We then show in Lemma 2 that
the definition of qσ

t (τ) guarantees that our desired invariant pσ
t = π̃σ

t holds.

Definition 4

qσ
t (τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εwτ
t

(1−ε)Wt(Xt\Ft)+Wt(Yt)
if τ ∈ Yt and σ ∈ Xt \ Ft

wτ
t

(1−ε)Wt(Xt\Ft)+Wt(Yt)
if τ ∈ Yt and σ ∈ Ft

1−∑
ς∈Yt

qσ
t (ς)

|Xt\Ft| if τ ∈ Xt \ Ft

0 if τ ∈ Ft or τ ∈ At

Lemma* 1. For all times t in the core phase and for all σ ∈ Xt, qσ
t (τ) forms

a distribution over τ ∈ [d].

Lemma* 2. For all times t during the core phase and for all σ ∈ [d], pσ
t = π̃σ

t .

Definition 4 and Lemmas 1 and 2 give us the following bound on the cost:

Theorem* 2. During the prologue phase,
∑m

t=1 1
TM(t) ≤ H and during the

core phase, E
[∑k−1

t=m+1 1
TM(t)

]
≤ (1 + ε)H + ln d

ε where 1TM(t) is an indicator
random variable that is 1 if TreeSearch moves the car to a new parking spot
on the decommissioning rt and 0 otherwise.

3.3 Monotonicity

We show that any neighbor algorithm for online metrical search can be extended
to a monotone algorithm for online metrical matching, where a neighbor algo-
rithm has the property that if it moves the car to a parking spot si with positive
probability then it must be the case that there is no in-commission parking spot
on the route to si. As TreeSearch is obviously a neighbor algorithm, it then
follows that it can be extended to a monotone algorithm for online metrical
matching, which we will call TreeMatch.

Lemma* 3. Let A be a neighbor algorithm for online metrical search. Then
there exists a monotone algorithm B for online metrical matching on a tree
metric that is identical to A for online metrical search instances.
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4 The GroveMatch Algorithm

In Subsect. 4.1 we describe an algorithm GroveBuild that builds a grove G from
a tree metric T with distance metric dT before any request arrives. We assume
without loss of generality that the minimum distance in T is 1. In Subsect. 4.2 we
then give an algorithm GroveMatch for online metrical matching on a tree metric
that utilizes the algorithm TreeMatch on each tree in the grove constructed by
GroveBuild, and we prove some basic properties of the grove G. In Subsect. 4.3
we show that GroveMatch is a monotone online metrical matching algorithm
on a tree metric, and is O(log6 Δ log2 n)-competitive for online metrical search
instances.

4.1 The GroveBuild Algorithm

Definition 5. A grove G is either: a rooted tree X consisting of a single vertex,
or an unweighted rooted tree X with a grove X(v) associated with each vertex
v ∈ X. The tree X is the canopy of the grove G. Each X(v) is a subgrove of X.
The canopy of a subtree X(v) is a child of X. Trees in G are descendants of X.

GroveBuild Description: GroveBuild is a recursive algorithm that takes as
input a tree metric T , a designated root ρ of T , positive real R, a positive real α
and a positive integer d. In the initial call to GroveBuild, T is the original tree
metric, ρ is an arbitrary vertex in T , R is the maximum distance Δ between ρ
and any other vertex in T , d is 1, and α is a parameter to be determined later
in the analysis.

If T consists of a single vertex v, then the recursion ends and the algorithm
outputs a rooted tree consisting of only the vertex v. We call this tree a leaf of
the grove. Otherwise the algorithm’s first goal is to partition the vertices of T
into parts P1, . . . , Pk, and designate one vertex �i of each partition Pi as being
the leader of Pi. To accomplish this, the algorithm sets partition P1 to consist of
the vertices in T that are within a distance z of ρ, where z is selected uniformly
at random from the range [0, R

α ]. The leader �1 is set to be ρ. To compute Pi

and �i after the first i − 1 parts and leaders are computed the algorithm takes
the following steps. Let �i be a vertex such that �i /∈ ∪i−1

j=1Pj and for each vertex
v on the path (�i, ρ) it is the case that v ∈ ∪i−1

j=1Pj . So �i is not in but adjacent
to the previous partitions. Then Pi consists of all vertices v ∈ T − ∪i−1

j=1Pj that
are within distance R

α from �i in T . So Pi intuitively is composed of vertices that
are not in previous partitions and that are close to �i.

The tree X at this point in the recursion has a vertex for each part in the
partition of T . There is an edge between vertices/parts Pi and Pj in X if and
only if there is an edge (v, w) in T such that v ∈ Pi and w ∈ Pj . We identify
this edge in X with the edge (v, w) ∈ T . The root of X is the vertex/part P1.
The tree X is at depth d in the grove. The grove X(Pi) associated with vertex
Pi in X is the result of calling GroveBuild on the subtree of T induced by the
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vertices in Pi, with �i designated as the root, parameter R decreased by an α
factor, parameter α unchanged, and parameter d incremented by 1.

So from here on, let G denote the grove built by GroveBuild on the original
tree metric T .

Definition 6

– For an edge (u, v) ∈ T , let δ(u, v) be the depth in the grove G of the tree X
that contains (u, v). Note that each edge in T occurs in exactly one tree in G.

– For an edge (u, v) ∈ T , define dG(u, v) to be Δ
αδ(u,v)−1 .

– For vertices u0, uh ∈ T , connected by the simple path (u0, u1, . . . , uh) in T ,
define dG(u0, uh) to be

∑h−1
i=0 dG(ui, ui+1). Obviously dG forms a metric on

the vertices of T .

Lemma* 4. Recall that dT (u, v) is the shortest path distance between two
vertices u, v of tree T . For all vertices u, v ∈ T , we have that dG(u, v) ≥ dT (u, v)
and E [dG(u, v)] ≤ α(1 + log Δ) · dT (u, v).

Corollary* 1. An algorithm B that is c-competitive for online metric matching
on T with distance metric dG is O(c · α log Δ)-competitive for online metric
matching on T with distance metric dT .

4.2 GroveMatch Description

We now describe an algorithm GroveMatch for online metrical matching for tree
metrics.

GroveMatch Description: Conceptually within GroveMatch, a separate copy
TreeMatch(X) of the online metric matching algorithm TreeMatch will be run
on each tree X in the grove G constructed by the algorithm GroveBuild. In
order to accomplish this, we need to initially place servers at the vertices in
X. We set the number of servers initially located at each vertex x ∈ X to the
number of servers in T that are located at vertices v ∈ T such that v ∈ x (recall
that each vertex in a tree in the grove G corresponds to a collection of vertices
in T ).

When a request rt arrives at a vertex v in T , the algorithm GroveMatch
calls the algorithm TreeMatch on a sequence (X1, x1), (X2, x2), . . . where each
Xi is a tree of depth i in G and xi is a vertex in Xi. Initially X1 is the
depth 1 tree in G, and x1 is the vertex in X1 that contains v. Assume that
TreeMatch has already been called on (X1, x1), (X2, x2), . . . (Xi−1, xi−1), then
the algorithm GroveMatch processes (Xi, xi) in the following manner. First,
TreeMatch(Xi) is called to respond to a request at xi. Let yi be the vertex
in Xi that TreeMatch(Xi) moved this request to. If Xi is a leaf in G, then
TreeMatch(Xi) sets yi = xi, and GroveMatch moves request rt to the unique
vertex in T corresponding to xi. If Xi is not a leaf in G, then Xi+1 is set to
be the canopy of the grove Xi(yi), and xi+1 = arg minw∈T :w∈Xi+1

dT (v, w) or
equivalently xi+1 is the first vertex in Xi+1 that one encounters if one walks in
T from v to the vertices of Xi+1.
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Lemma* 5. Consider a tree X at depth δ with root ρ in grove G. For any vertex
v in X, the number of hops in X between ρ and v is at most α+1. Furthermore,
by the time that TreeMatch (X) enters its core phase, it must be the case that
for every descendent tree Y of X in G there will be no future movement of the
car on edges in Y while TreeMatch (Y ) is in its prologue phase.

4.3 GroveMatch Analysis

We now analyze GroveBuild and GroveMatch under the assumption that α =
(ln n)(log2α Δ) and ε = 1

logα Δ .

Lemma 6. The algorithm GroveMatch is O(log n log3 Δ)-competitive for online
metrical search instances with the metric dG.

Proof. If GroveMatch directs a request to traverse an edge (u, v) ∈ T , we will
say that the cost of this traversal is charged to the unique tree in G that contains
(u, v). Define P (δ) to be the charge incurred by a tree X of depth δ in G and all
subgroves X(v) of X during the prologue phase of TreeMatch(X). Define C(δ)
to be the charge incurred by a tree X of depth δ in G and all subgroves X(v) of
X during the core phase of TreeMatch(X).

Recall that the distance under the dG metric of ever edge in X is Δ
αδ−1 and

by Lemma 5 there are at most α + 1 vertices on the path from any leaf to the
root of X. This gives us that the distance in X under dG from the root to any
leaf is at most α Δ

αδ−1 = Δ
αδ−2 and that the diameter of X is at most 2 Δ

αδ−2 .
The only subgroves X(v) of X that incur costs during the prologue phase of
TreeMatch(X) are those subgroves for which v is traversed by the car on its
path to the root of X. Thus we obtain the following recurrence:

P (δ) ≤ (α + 1) (P (δ + 1) + C(δ + 1)) +
Δ

αδ−2
. (1)

Note that once the core phase begins in TreeMatch(X), by Lemma 5 all instances
of TreeMatch(Y ) on any tree Y that is a descendent of X in G can incur no
most costs in their prologue phase. By Theorem 2 the core phase cost on X is
at most (1 + ε)(α + 1) + lnn

ε times the diameter of X, which is at most 2 Δ
αδ−2 .

Thus we obtain the following recurrence:

C(δ) ≤
(

C(δ + 1) + 2
Δ

αδ−2

)(

(1 + ε)(α + 1) +
ln n

ε

)

(2)

We expand the recurrence relation for C(δ) first. Treating ((1 + ε)(α + 1) +
ln(n)

ε ) as a constant Z, and expanding C(δ) we obtain:

C(δ) ≤
(

C(δ + 1) + 2
Δ

αδ−2

)

Z ≤ 2Δ logα Δ

αδ−1

(
Z

α

)logα(Δ)

≤ 2e4Δ logα Δ

αδ−1
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Now expanding the recurrence relation for P (δ) we obtain:

P (δ) ≤ (α + 1) (P (δ + 1) + C(δ + 1)) +
Δ

αδ−2
≤ 3e5Δ log2α Δ

αδ−2

Hence the cost of the algorithm GroveMatch is O
(

Δ
αδ−2 log2 Δ

)
. However, note

that TreeMatch only pays positive cost on X if for any optimal solution there
is at least one request that such a solution must pay positive cost for in X. The
reason for this is that if TreeMatch(X) moves the car out of a vertex v in X, then
there are no in-commission parking spots left in v, and therefore every algorithm
would have to move the car out of v. Since every edge in X has distance Δ

αδ−1 , this
gives us that GroveMatch must be O(α log2 Δ) = O(log n log3 Δ) competitive on
the metric dG.

Together with Corollary 1, Lemma 6 gives us the following theorem:

Theorem 3. GroveMatch is O(log6 Δ log2 n)-competitive for online metrical
search instances.

Lemma* 7. GroveMatch is a monotone algorithm for online metrical
matching.
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Abstract. We consider flows over time within the deterministic queue-
ing model and study the solution concept of instantaneous dynamic equi-
librium (IDE) in which flow particles select at every decision point a
currently shortest path. The length of such a path is measured by the
physical travel time plus the time spent in queues. Although IDE have
been studied since the eighties, the efficiency of the solution concept is
not well understood. We study the price of anarchy for this model and
show an upper bound of order O(U ·τ) for single-sink instances, where U
denotes the total inflow volume and τ the sum of edge travel times. We
complement this upper bound with a family of quite complex instances
proving a lower bound of order Ω(U · log τ).

Keywords: Dynamic flows · Flows over time · Price of anarchy

1 Introduction

Dynamic flows have gained substantial interest over the last decades in modeling
dynamic network systems such as urban traffic or the Internet. A widely used
model for describing dynamic flows is based on the fluid queueing model due
to Vickrey [23]. There is a directed graph G = (V,E), where edges e ∈ E are
associated with a queue with positive rate capacity νe ∈ R+ and a physical
transit time τe ∈ R+. If the total inflow into an edge e = vw ∈ E exceeds the
rate capacity νe, a queue builds up and arriving flow particles need to wait in the
queue before they are forwarded along the edge. The total travel time along e is
thus composed of the waiting time spent in the queue plus the physical transit
time τe.

Due to the decentralized nature of the above mentioned applications, the
physical flow model needs to be complemented by a behavioral model prescrib-
ing the actions of flow particles. Most works in the transportation science litera-
ture as well as recent works in the mathematics and computer science literature
adopt the full information model, i.e., all flow particles have complete infor-
mation on the state of the network for all points in time (including the future
evolution of all flow particles) and based on this information travel along a short-
est path. This leads to the concept of dynamic equilibrium (Nash equilibrium)
and has been analyzed in the transportation science literature for decades, see
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Friesz et al. [7], Meunier and Wagner [18], Zhu and Marcotte [24] and the more
recent works by Koch and Skutella [16] and Cominetti, Correa and Larré [3].
The full information assumption has been justified by assuming that the game is
played repeatedly and a dynamic equilibrium is then an attractor of a learning
process. In light of the wide-spread use of navigation devices, this concept may
not be completely realistic anymore, because drivers are informed in real-time
about the current traffic situation and, if beneficial, reroute instantaneously no
matter how good or bad that route was in hindsight. This aspect is also discussed
in Marcotte et al. [17], Hamdouch et al. [12] and Unnikrishnan and Waller [22].

Instead of the (classical) dynamic equilibrium, we consider in this paper
instantaneous dynamic equilibria (IDE), where for every point in time and at
every decision node, flow only enters those edges that lie on a currently shortest
path towards the respective sink. This concept assumes far less information (only
the network-wide queue length which are continuously measured) and leads to a
distributed dynamic using only present information that is readily available via
real-time information. IDE have been proposed already in the late 80’s (cf. Ran
and Boyce [19, § VII-IX], Boyce, Ran and LeBlanc [2,20], Friesz et al. [8]) and
it is known that IDE do exist under quite general conditions, see Graf, Harks
and Sering [11].

Price of Anarchy. In comparison to dynamic equilibrium, an IDE flow behaves
quite differently and several fundamental aspects of IDE are not well understood.
There are, for instance, simple single-source single-sink instances in which the
unique IDE flow exhibits cycling behavior, that is, some flow particles travel
along cycles before they reach the sink. This behavior is impossible for dynamic
equilibria as every particle chooses a path once and never gets into a cycle. This
raises the question of the (time) price of anarchy of IDE flows.

Question (PoA): Assuming single-sink instances with constant inflow rates
for a finite time interval, what is the maximum time needed so that every flow
particle reaches the sink?1

1.1 Our Results and Proof Techniques

We study the termination time of IDE flows for single-sink instances and derive
the first quantitative upper bound on the termination of IDE flows. Our bound
is parameterized in the numbers U and τ denoting the total flow volume injected
into the sources and the sum of physical travel times, respectively. We denote
by PoA(U, τ) the price of anarchy over the family of instances parameterized by
U and τ .

Theorem 1: For multi-source single-sink networks, any IDE flow over time
terminates after at most O(Uτ) time. Moreover, PoA(U, τ) ∈ O(Uτ).

1 For multi-sink instances, it is known that IDE flows may cycle forever, thus, the
termination time and the PoA is infinity in this case.
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We prove this bound by first deriving a general termination bound for acyclic
graphs. Using this bound, we then show that there exist so-called sink-like sub-
graphs that can effectively be treated as acyclic graphs. This way, we can argue
that at all times a sufficiently large flow volume enters the current sink-like sub-
graph and, by the bound for acyclic graphs, reaches the sink within the claimed
time. The proof technique and the bound itself are completely different to those
for dynamic equilibria in [4].

We then turn to lower bounds on the termination time (PoA) of IDE flows.

Theorem 4: For (U, τ) ∈ N
∗ × N

∗ with U ≥ 2τ , we have PoA(U, τ) ∈
Ω(U log τ).

The lower bound is based on a quite complex instance (see Fig. 2) that works
roughly as follows. We combine two gadgets: A “cycling gadget” consisting of a
large cycle made of edges with capacity ≈U and a “blocking gadget” consisting of
paths with low capacity and length of about τ connecting the nodes on the cycle
to the sink node. An IDE flow within this graph can then alternate between two
different phases: A “charging phase”, wherein the main amount of flow travels
once around the big cycle, loosing a small amount of flow to each of the paths
leading towards the sink, and a “blocking phase”, in which the particles traveling
along the paths form queues again and again in just the right way as to keep
the main amount of flow traveling around on the large cycle without loosing any
more flow. In order to derive a lower bound on the price of anarchy we then
augment this instance in such a way that the optimal flow can just bypass the
two gadgets and reach the sink in constant time while any IDE flow gets diverted
into the cycling gadget.

1.2 Further Related Work

The concept of flows over time was studied by Ford and Fulkerson [5]. Shortly
after, Vickrey [23] introduced a game-theoretic variant using a deterministic
queueing model. Since then, dynamic equilibria have been studied extensively
in the transportation science literature, see Friesz et al. [8]. New interest in this
model was raised after Koch and Skutella [16] gave a novel characterization of
dynamic equilibria in terms of a family of static flows (thin flows). Cominetti,
Correa and Omar [3] refined this characterization and Koch and Sering [21]
incorporated spillbacks in the fluid queuing model.

Regarding the price of anarchy of dynamic equilibria, Koch and Skutella [16]
derived the first results on the price of anarchy for dynamic equilibria, which
were recently improved by Correa, Cristi and Oosterwijk [4] devising a tight
bound of e

e−1 , provided that a certain monotonicity conjecture holds. Israel
and Sering [14] investigated the price of anarchy for the model with spillbacks.
Bhaskar, Fleischer and Anshelevich [1] devised Stackelberg strategies in order to
improve the efficiency of dynamic equilibria. Recently, Frascaria and Olver [6]
considered a flexible departure choice model from an optimization point of view



240 L. Graf and T. Harks

and derived insights into devising tolls for improving the performance of dynamic
equilibria.

Ismaili [13] considered a discrete version of IDEs and investigated the price
of anarchy. He used the utilitarian social cost (not the makespan as we do) and
derived lower bounds of order Ω(|V | + n) for the setting that only simple paths
are allowed. Here n denotes the number of discrete players in the game. For
general multi-commodity instances allowing also cycles, he proves that the price
of anarchy is unbounded. Similarly, Graf, Harks and Sering [11] showed that for
the continuous version multi-commodity IDE flows may cycle forever and, thus,
the price of anarchy is infinity. For IDE flows in single-sink networks, on the
other hand, they showed that termination is always guaranteed. However, due
to the non-constructive nature of their proof they could not derive any explicit
bound on the termination time or the price of anarchy for those instances.

2 Model

Let N = (G, (νe)e∈E , (τe)e∈E , (uv)v∈V \{ t }, t) be a network consisting of a
directed graph G = (V,E), edge capacities νe ∈ N

∗, edge travel times τe ∈ N
∗,2

a single sink node t ∈ V reachable from every other node and for every node
v ∈ V \ { t } a corresponding integrable (network) inflow rate uv : R≥0 → R≥0.
The idea then is that, at all times θ ∈ R≥0 infinitesimal small agents enter the
network at node v at a rate according to uv(θ) and start traveling through the
graph towards the common sink t. Such a dynamic can be described by a flow
over time, a tuple f = (f+, f−) where f+, f− : E × R≥0 → R≥0 are integrable
functions. For any edge e ∈ E and time θ ∈ R≥0 the value f+

e (θ) describes the
(edge) inflow rate into e at time θ and f−

e (θ) is the (edge) outflow rate from e
at time θ.

For any such flow over time f we define the cumulative (edge) in- and outflow
rates F+ and F− as

F+
e (θ) :=

∫ θ

0

f+
e (ζ)dζ and F−

e (θ) :=
∫ θ

0

f−
e (ζ)dζ,

respectively. The queue length of edge e at time θ is then defined as

qe(θ) := F+
e (θ) − F−

e (θ + τe). (1)

We call such a flow f a feasible flow for a given set of network inflow rates
uv : R≥0 → R≥0 for each node v ∈ V \{t}, if it satisfies the following constraints
(2) to (5). The flow conservation constraints are modeled for all nodes v �= t as∑

e∈δ+
v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) = uv(θ) for all θ ∈ R≥0, (2)

2 Throughout this paper we will restrict ourselves to integer travel times and edge
capacities to make the statements and proofs cleaner. However, all results can
be easily applied to instances with rational travel times and capacities by simply
rescaling the instance appropriately. Note, however, that all bounds will then scale
accordingly.
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where δ+v := { vu ∈ E } and δ−
v := {uv ∈ E } are the sets of outgoing edges

from v and incoming edges into v, respectively. For the sink node t we require
∑
e∈δ+

t

f+
e (θ) −

∑
e∈δ−

t

f−
e (θ) ≤ 0 (3)

and for all edges e ∈ E we always assume

f−
e (θ) = 0 f.a. θ < τe. (4)

Finally we assume that the queues operate at capacity which can be modeled by

f−
e (θ + τe) =

{
νe, if qe(θ) > 0
min { f+

e (θ), νe } , if qe(θ) ≤ 0
for all e ∈ E, θ ∈ R≥0. (5)

Termination Time for Flows over Time. We will now introduce some additional
notation in order to formally define the termination time of a feasible flow. Since
termination is only relevant for flows with finitely lasting inflow rates, from here
on we will always assume that there exists some time θ0, such that the supports
of all network inflow rates uv are contained in [0, θ0].

Following [21], for any feasible flow f and every edge e ∈ E we define the
edge load function FΔ

e that gives us for any time θ the total amount of flow
currently on edge e (either waiting in its queue or traveling along the edge):

FΔ
e : R≥0 → R≥0, θ �→ F+

e (θ) − F−
e (θ).

The function FΔ(θ) :=
∑

e∈E FΔ
e (θ) then gives the total amount of flow in the

network at time θ. It is a straightforward calculation to show that after θ0 the
function FΔ is monotonically decreasing.

Lemma 1. Let f be a feasible flow. Then for all θ2 ≥ θ1 ≥ θ0, we have FΔ(θ2) ≤
FΔ(θ1). In particular, for θ̂ ≥ θ0 with FΔ(θ̂) = 0, we have FΔ(θ̂) = 0 for all
θ ≥ θ̂.

This motivates the following definition of termination time.

Definition 1. A feasible flow over time f terminates if it satisfies

inf { θ ≥ θ0 | FΔ(θ) = 0 } < ∞.

We then say that Θ := inf { θ ≥ θ0 | FΔ(θ) = 0 } is the termination time of f or
f terminates by time Θ. Lemma 1 then implies FΔ(θ) = 0 for all θ > Θ.

IDE Flows and their PoA. Following [11] we define an IDE flow as a feasible
flow with the property that whenever a particle arrives at a node v �= t, it can
only enter an edge that is the first edge on a currently shortest v-t path. Here,
the current or instantaneous travel time is defined for any edge e and time θ as

ce(θ) := τe +
qe(θ)
νe

. (6)
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We then define time dependent node labels 	v(θ) corresponding to current short-
est path distances from v to the sink t. For the sink t we set 	t(θ) = 0 for all
times θ ∈ R≥0, while for all other nodes v ∈ V \ { t } and θ ∈ R≥0 we recursively
define 	v(θ) = min

e=vw∈E
{	w(θ) + ce(θ)}. We say that an edge e = vw is active at

time θ, if 	v(θ) = 	w(θ)+ ce(θ) and we denote the set of active edges by Eθ ⊆ E.
We call a v-t path P an active v-t path at time θ, if all edges of P are active for
i at θ or, equivalently,

∑
e∈P ce(θ) = 	v(θ). For differentiation we call paths that

are minimal with respect to the transit times τ physical shortest paths.

Definition 2. A feasible flow over time f is an instantaneous dynamic equilib-
rium (IDE), if for all θ ∈ R≥0 and e ∈ E it satisfies

f+
e (θ) > 0 ⇒ e ∈ Eθ. (7)

Since in an IDE flow particles act selfishly and without cooperation we should
expect that the termination time of an IDE flow is not optimal. To quantify this
difference between termination times of IDE flows and optimal flows we will
use the price of anarchy, which we define as follows: For any instance N =
(G, (νe)e∈E , (τe)e∈E , (uv)v∈V \{ t }, t) we define the worst case termination time
of an IDE flow in N as

ΘIDE(N ) := sup {Θ termination time of f | f an IDE flow in N }
and the optimal termination time in N as

ΘOPT(N ) := inf {Θ termination time of f | f a feasible flow in N } .

Definition 3. For any pair of whole numbers (U, τ) we define the Price of Anar-
chy (PoA) for instances with total flow volume U and total edge length τ as

PoA(U, τ) := sup

⎧⎨
⎩

ΘIDE(N )
ΘOPT(N )

∣∣∣∣∣∣ N s.th.
∑

v∈V \{ t }

∫ θ0

0

uv(θ)dθ = U,
∑
e∈E

τe = τ

⎫⎬
⎭ .

Remark 1. At first it might seem strange that the PoA depends only on U and
τ while being independent of the capacities νe. However, this is only the case
here because we always assume that all capacities are at least 1 throughout
this paper. In order to transfer our results to networks with arbitrary capacities
one has to rescale the network and, in particular, replace U by 1

νmin
U , where

νmin := min { νe | e ∈ E }.

3 Upper Bounds

In this section we will show an upper bound for the termination time of IDE
flows in terms of τ(G) :=

∑
e∈E τe and U :=

∑
v∈V \{ t }

∫ θ0

0
uv(θ)dθ. From this

we can then derive an upper bound for the PoA. However, before we can turn
to these general termination results we first have to look at acyclic graphs and
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give a termination bound for all feasible flows in such networks in terms of U
and τ(Pmax), where the latter denotes the physical length of a longest v-t path.
Even though the bound may seem obvious its proof requires a quite lengthy and
careful analysis which can be found in the full version of this paper [10].

Lemma 2. In an acyclic network, every feasible flow over time terminates
before θ0 + τ(Pmax) + U .

Similarly to the proof of termination in [11, Theorem 4.6] we will apply
our result for feasible flows in acyclic graphs to IDE flows in general graphs
by using the fact ([11, Lemma 4.4]) that, whenever the total flow volume in a
subgraph is small enough, only the physically shortest paths in this subgraph
can be active. Since these edges form an acyclic subgraph, for an IDE flow we
can then apply Lemma 2. For the following proof we will look at a particular
type of subgraph, which we will call a sink-like subgraph: a subgraph containing
all physically shortest paths from its nodes towards the sink, with a sufficiently
low flow volume at the beginning of some interval as well as a low inflow into
this subgraph over the course of said interval.

Definition 4. An induced subgraph T ⊆ G is a sink-like subgraph on an interval
[θ1, θ2] with θ1 ≥ θ0 if the following two properties hold:

– For each node v ∈ V (T ) all physically shortest v-t paths are contained in T .
– T satisfies volT (θ1, θ2) :=

∑
e∈E(T ) FΔ

e (θ1) +
∑

e∈δ−
T

∫ θ2

θ1
f−

e (θ)dθ < 1
2 .

Here δ−
T := { vw ∈ E | v /∈ V (T ), w ∈ V (T ) } denotes the set of edges entering

the subgraph T . Using [11, Lemma 4.4] we can show that inside a sink-like
subgraph only physically shortest paths towards the sink can be active (see [10]
for the full proof).

Lemma 3. Let T be a sink-like subgraph on an interval [θ1, θ2]. Then during
this interval only physically shortest paths towards t can be active.

Together with Lemmas 1 and 2 this implies that any IDE flow will terminate
once the whole graph is sink-like.

Corollary 1. Let f be an IDE flow and θ̃ ≥ θ0 such that the whole graph G is
sink-like at time θ̃. Then, the flow terminates before θ̃ + τ(Pmax) + 1

2 .

To get an upper bound on the termination time of an IDE flow it now suffices
to find a large enough time horizon such that it contains at least one point in
time where the whole graph is sink-like. To determine such a time, we first show
that if we have a sink-like subgraph over a sufficiently long period of time, we
can extend this subgraph to a larger sink-like subgraph over a slightly smaller
subinterval. Note, that the proof of [11, Theorem 4.6] uses a similar strategy, but
is non-constructive and, therefore, only establishes the existence of a termination
time without revealing anything about the length of this time. Thus, a more
thorough analysis is needed here.
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Lemma 4. Let T � G be an induced subgraph, v the closest node to t not in T
and T ′ the subgraph of G induced by V (T ) ∪ { v }. Let θ1 be some time after θ0,
θ2 := θ1 +

∑
e∈E\E(T )(τe + 1

2νe
) and θ′

2 := θ1 +
∑

e∈E\E(T ′)(τe + 1
2νe

).
If T is sink-like on [θ1, θ2], then T ′ is a sink-like subgraph on [θ1, θ′

2].

Proof. Since it is clear that T ′ fulfills the first property of being sink-like (by the
choice of v), we only need to show that volT ′(θ1, θ′

2) ≤ volT (θ1, θ2), from which
the lemma follows immediately (as T is sink-like on [θ1, θ2]). More precisely
we will show that the flow volume on edges between v and T (i.e. edges in
E(T ′)\E(T ) = (δ+v ∩δ−

T )∪ (δ−
v ∩δ+T )) at time θ1 as well as the inflow into v over

the interval [θ1, θ′
2] is already accounted for by the inflow into T on the interval

[θ1, θ2] via edges from v to T . This is formalized in the following three claims:

Fig. 1. A sink-like subgraph T and a closest node v ∈ V \ V (T ) as in the statement
of Lemma 4. By Claim 1 all flow on the dash-dotted edge from T to v will reach v
before time θv. By Claim 2 between θ1 and θv all flow reaching v (either via the dotted
or via the dash-dotted edges) will travel towards T from there (i.e. enter one of the
dashed edges). By Claim 3 the dashed edges will never carry a larger flow volume than
1
2

between θ1 and θv and all flow particles using these edges within this time interval
will reach T before θ2.

Claim 1. All flow on edges from T to v (dash-dotted edges in Fig. 1) at time θ1
reaches v before θv := θ1 +

∑
e∈E\E(T ′)(τe + 1

2νe
) +

∑
e∈δ−

v ∩δ+
T
(τe + 1

2νe
), i.e.

FΔ
e (θ1) ≤

∫ θv

θ1

f−
e (θ)dθ for all e ∈ δ+T ∩ δ−

v .

Claim 2. All flow reaching v (from T or G \ T ′, i.e. via the dash-dotted or
via the dotted edges in Fig. 1) between θ1 and θv will enter an edge towards T
(dashed edges in Fig. 1), i.e.

∑
e∈δ−

v

∫ θv

θ1

f−
e (θ)dθ =

∑
e∈δ+

v ∩δ−
T

∫ θv

θ1

f+
e (θ)dθ.
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Claim 3. For any edge from v to T (dashed edges in Fig. 1) the total amount of
flow currently traveling on this edge at any time θ ∈ [θ1, θv] is less than 1

2 , i.e.

FΔ
e (θ) <

1
2
for all e ∈ δ+v ∩ δ−

T and θ ∈ [θ1, θv].

Additionally all this flow will reach T before θ2, i.e.

FΔ
e (θ1) +

∫ θv

θ1

f+
e (θ)dθ ≤

∫ θ2

θ1

f−
e (θ)dθ for all e ∈ δ+v ∩ δ−

T .

From Claims 1 to 3 we then directly get

∑
e∈E(T ′)\E(T )

FΔ
e (θ1) +

∑
e∈δ−

T ′

∫ θv

θ1

f−
e (θ)dθ

=
∑

e∈δ+
T ∩δ−

v

FΔ
e (θ1) +

∑
e∈δ+

v ∩δ−
T

FΔ
e (θ1) +

∑
e∈δ−

T \δ+
v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ−

v \δ+
T

∫ θv

θ1

f−
e (θ)dθ

Cl. 1≤
∑

e∈δ+
T ∩δ−

v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ+

v ∩δ−
T

FΔ
e (θ1) +

∑
e∈δ−

T \δ+
v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ−

v \δ+
T

∫ θv

θ1

f−
e (θ)dθ

Cl. 2=
∑

e∈δ+
v ∩δ−

T

FΔ
e (θ1) +

∑
e∈δ−

T \δ+
v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ+

v ∩δ−
T

∫ θv

θ1

f+
e (θ)dθ

Cl. 3≤
∑

e∈δ−
T \δ+

v

∫ θv

θ1

f−
e (θ)dθ +

∑
e∈δ+

v ∩δ−
T

∫ θ2

θ1

f−
e (θ)dθ,

implying volT ′(θ1, θ′
2) ≤ volT ′(θ1, θv) =

∑
e∈E(T ′) FΔ

e (θ1) +
∑

e∈δ−
T ′

∫ θv

θ1
f−

e (θ)dθ

≤ ∑
e∈E(T ) FΔ

e (θ1) +
∑

e∈δ−
T

∫ θ2

θ1
f−

e (θ)dθ = volT (θ1, θ2) < 1
2 . This shows that

T ′ is indeed sink-like on [θ1, θ′
2]. The proofs of the claims are relatively straight-

forward calculations (see [10]) using [11, Lemma 4.4] and a strengthened version
of [11, Lemma 4.2]. Note, that the proofs have to be done in reverse order, as
the proof of Claim 2 uses Claim 3 and the proof of Claim 1 uses both Claims 2
and 3. ��
Theorem 1. For multi-source single-sink networks, any IDE flow over time
terminates before θ̂ := θ0 + 2U

∑
e∈E(τe + 1

2νe
) + τ(Pmax) + 1

2 .

Proof. Starting with the subgraph consisting only of the sink node t (which
trivially contains all shortest paths towards t) and iteratively applying Lemma
4 we immediately get

Claim 4. If, after time θ0, the sink node t has a total cumulative inflow of
less than 1

2 for some interval of length
∑

e∈E(τe + 1
2νe

), then the whole graph is
sink-like at the beginning of this interval. �
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Since all flow reaching t vanishes from the network there can be at most
2U (pairwise disjoint) intervals of length

∑
e∈E(τe + 1

2νe
) with inflow of at least

1
2 into t. Thus, there must be some time θ̃ ≤ 2U

∑
e∈E(τe + 1

2νe
) which is the

beginning of an interval of length
∑

e∈E(τe + 1
2νe

) with total inflow of less than
1
2 into t. So, by Claim 4, the whole graph is sink-like at θ̃, which, by Claim 1,
implies that the flow terminates before θ̃ + τ(Pmax) + 1

2 ≤ θ̂. ��
Remark 2. This means that for any single-sink network any IDE flow terminates
within O(

Uτ(G)
)
.

Since ΘOPT is trivially bounded below by θ0 + 1 this immediately leads to
the following upper bound on the PoA for IDE flows:

Theorem 2. For any pair of integers (U, τ) we have PoA(U, τ) ∈ O(Uτ). ��

4 Lower Bounds on the Termination Time of IDE Flows

It is easy to see that a general bound for the termination time cannot be better
than O(U +τ(G)), since any feasible flow in the network consisting of one source
node with an inflow rate of U over the interval [0, 1], one sink node and a single
edge between the two nodes with capacity 1 and some travel time τ terminates by
U +τ(G). In the following, we will construct a family of instances, parameterized
by K,L ∈ N

∗, that provide a lower bound on the termination time in single-sink
networks of order Ω(U · log(τ(G))) – which is strictly larger than O(U + τ(G)).

For any given pair of positive integers K,L ∈ N
∗ the instance is of the form

sketched in Fig. 2, with u3K+1 as source node and t as its sink. The graph has a
“width” (i.e. length of the horizontal paths from u1 to u3K+1) of ≈3K+1 and a
“height” (length of the vertical paths from nodes ui, vi and wi to t) of ≈K3K+1.
All edges on the horizontal path (including the one edge back to u1) have a
capacity of 2U with U ≈ L3K+1, while all the edges on the vertical paths have
capacities of either 1 or 3.

If we let flow enter at node u3K+1 at a rate of 2U over the interval [−0.5, 0], we
will observe the following behavior: At first, all flow enters the direct downwards
path towards the sink t until a queue of length 1 has built up on the first edge
of this path. After that almost all flow will enter the edge towards u1 and some
flow will go downwards to keep the queue length constant. Assuming U � 1,
most of the flow will travel towards u1 and arrive there one time step later with
a slightly lower inflow rate and over a slightly shorter interval as at u3K+1. At
u1 the same flow split happens again: First all flow enters the edge to u′

1 until
a queue of sufficient length to induce a waiting time of 1 has formed, then most
of flow travels towards the next node v1. Similarly, at all the following nodes on
the horizontal path, this pattern repeats, i.e., a small amount of flow (of volume
≈3) starts traveling downwards while most of the flow is diverted further to the
right. Finally the main block of flow arrives at u3K+1 and is diverted back to u1

(having lost a total volume of ≈3K+1 to the downwards paths). By the time this
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Fig. 2. A network with a total edge travel time of ≈32K that, given an inflow volume
of ≈L3K+1, has a termination time of more than KL3K+1.

flow arrives at u1 again, the flow particles that traveled along the edges u1u
′
1,

v1v
′
1 and w1w

′
1 join up again at node x1 in such a way that they form a queue of

length ≈3 on the edge y1z1. This queue is long enough to divert the main block
of flow away towards u2 (over the direct edge u1u2 of length 3). This pattern,
again, repeats at all subsequent nodes ui until the main flow finally arrives at
node u3K+1 (having lost no additional flow volume) and is again diverted back
to u1. This time, the flow particles from the queues on the edges y1z1, y2z1 and
y3z1 met at node z1 and now form a queue of length ≈9 on edge a1b1. Thus, our
main flow can now be diverted away directly to node u4 and so on. This way, the
main amount of flow can travel along the horizontal path for ≈K times without
losing a significant amount of flow until all the flow on the vertical paths finally
reaches the sink t. After that the pattern described until now repeats. Thus, flow
remains in the network until at least time ≈3K+1K U

3K+1 = 3K+1KL.

Theorem 3. Given any pair K,L ∈ N
∗, there exists an instance GK,L with

τ(GK,L) ∈ O(32K) and UK,L ∈ O(L3K) such that there exists an IDE flow that
does not terminate before LK(3K+1 + 1).

Proof. The detailed construction as well as the formal proof of its correctness
can be found in [10]. ��

In order to derive a lower bound on the price of anarchy from Theorem 3, we
will slightly modify the instance used there in such a way that the termination
time of the worst case IDE flow remains approximately the same, while there
exists an optimal termination time in O(1).
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Theorem 4. For any pair of positive integers (U, τ) satisfying U ≥ 2τ , we have
PoA(U, τ) ∈ Ω(U log τ).

Proof. Wlog assume that there exist positive integers L ≥ 3K such that U =
(L+3K)3K and τ = 32K . Then we take the graph GK,L constructed in the proof
of Theorem 3 and modify it by adding two new vertices s and v and four new
edges as indicating in Fig. 3.

Fig. 3. The instance from the proof of Theorem 3 (on the left), two additional nodes
s and v as well as four new edges.

We now use s as our new source node and a constant inflow rate of 2UK,L +1

over the interval [−0.5−ε, 0], where ε :=
4+τe

3K+1
2UK,L

≤ 1
2 . The optimal termination

time of the resulting network N is then at most 3, since we can just send all flow
on the direct edge from s to t, where the last particle arrives 3 time steps later.

In an IDE flow, however, all flow particles travel first to v (as the path s-v-t
is shorter than the path s-t), where they enter the edge towards t. This continues
until a queue of length τe3K+1

+ 3 has built up at edge vt and the edge towards
u3K+1 becomes active, which happens at time θ = 0.5. From there on, flow splits
between the two edges, entering edge vt at a rate of 1 and edge vu3K+1 at a rate
of 2UK,L throughout the interval [0.5, 1]. Thus, over the interval [1.5, 2] flow
arrives at node u3K+1 at a rate of 2UK,L. Continuing with the flow described
before the statement of Theorem 3 is then again an IDE flow. This shows that
ΘIDE(N ) ≥ LK(3K+1 + 1).
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From τ(N ) = τ(GK,L) + 4 ∈ O(32K) and UN =
(

1
2 + ε

)
(2UK,L + 1) ∈

O(L3K + 32K) = O(L3K) we get 32K ∈ Ω(τ(N )) and L3K ∈ Ω(UN ), which
implies ΘIDE(N ) ≥ LK(3K + 1) ∈ Ω

(
UN log τ(N )

)
. Thus, in particular,

PoA(U, τ) ≥ ΘIDE(N )
ΘOPT(N ) ∈ Ω(U log τ). ��

Remark 3. Expanding the network constructed in the proof of Theorem 4 into
an acyclic network results in an instance with constant optimal termination time,
but IDE termination time of τ(Pmax) � τ(Pmin), where τ(Pmin) is the physical
length of a shortest path from the source to the sink node.

Together with the upper bound from Lemma 2 this implies the following
bounds for the IDE price of anarchy for acyclic networks:

PoA
∣∣
acyclic

∈ Ω(τ(Pmax)) ∩ O(U + τ(Pmax)).

5 Conclusions and Open Questions

We studied the efficiency of IDE flows and derived the first upper and lower
bounds on the time price of anarchy of IDE flows. These bounds are of order
O(Uτ) and Ω(U log τ), respectively. Comparing these bounds to the constant
bound of e

e−1 for dynamic equilibria (cf. Correa, Cristi and Oosterwijk [4]) shows
in some sense a “price of shortsightedness”. While instantaneous dynamic equi-
libria may be significantly less efficient than dynamic equilibria, in many situ-
ations this might be a price one has to pay as the full information needed for
dynamic equilibria might just not be available.

Generally, it would be interesting to test the different equilibria on real
instances and see how their efficiency compares there. A large-scale computa-
tional study seems more feasible for IDEs compared to dynamic equilibria, as
already calculating a single α-extension is much more difficult for the full infor-
mation model, while it is easy for IDE flows using a simple water-filling pro-
cedure. Indeed, for calculating a single extension phase the only positive result
for dynamic equilibria is based on a recent work of Kaiser [15] showing that for
series-parallel graphs a single phase can be computed in polynomial time. The
question of whether a finite number of such extensions is enough to compute a
complete equilibrium flow is still open for dynamic equilibria, while we were able
to answer this question positively for IDE flows in an upcoming paper [9].
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real world data as well as theory. First, we reveal through data analyt-
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ing behavior. Agents only consider, in their strategy sets, paths whose
free-flow costs (informally their lengths) are within a small multiplica-
tive (1 + θ) constant of the optimal free-flow cost path connecting their
source and destination where θ ≥ 0. In the case of Singapore, θ = 1 is a
good estimate of agents’ route (pre)selection mechanism. In contrast, in
Pigou networks the ratio of the free-flow costs of the routes and thus θ is
infinite, so although such worst case networks are mathematically simple
they correspond to artificial routing scenarios with little resemblance to
real world conditions, opening the possibility of proving much stronger
Price of Anarchy guarantees by explicitly studying their dependency on
θ. We provide an exhaustive analysis of this question by providing prov-
ably tight bounds on PoA(θ) for arbitrary classes of cost functions both
in the case of general congestion/routing games as well as in the special
case of path-disjoint networks. For example, in the case of the standard
Bureau of Public Roads (BPR) cost model, ce(x) = aex

4 + be and more
generally quartic cost functions, the standard PoA bound for θ = ∞
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for path-disjoint/parallel-edge networks is even smaller (1.3652), show-
ing that both the route geometries as captured by the parameter θ as
well as the network topology have significant effects on PoA (Fig. 1).
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(a) Comparison between PoA(θ) in the
case of quartic costs for general/path-
disjoint networks resp. and the standard
bound PoA(∞)=2.1505 from [21]. More
results can be found in Table 1.
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sus chosen path. Discussion on
data analytics can be found in
Section 2.

Fig. 1. Improved Price of Anarchy bounds in data-driven routing models

1 Introduction

Modern cities are wonders of emergent, largely self-organizing, behavior. Major
capitals buzz with the collective hum of millions of people whose lives are inter-
twined and coupled in myriad and diverse ways. One of the most palpable
such phenomena of collective behavior is the emergence and diffusion of traffic
throughout the city. A bird’s eye view of any major city would reveal a complex
and heterogeneous landscape of thousands upon thousands of cars, buses, trucks,
motorcycles, running though the veins of a maze of remarkable complexity and
scale consisting of a vast number of streets and highways. As Fig. 2 suggests,
the full magnitude of the multi-scale complexity of these real-life networks lies
outside the perceptive capabilities of any single individual. Nevertheless, as a
phenomenon that we get to experience daily, such as the weather, we would like
to understand at least some macroscopic, high level characteristics of traffic rout-
ing. Quite possibly, one of the most interesting such questions is how efficient is
a traffic network?

This question has received a lot of attention within algorithmic game theory.
Using the model of congestion games, seminal papers in the area established
tight bounds on their Price of Anarchy (PoA), i.e., the worst case inefficiency of
traffic routing [13,23]. For example, the Price of Anarchy of linear non-atomic
congestion games is 4/3, whereas if we apply the standard Bureau of Public
Roads (BPR) cost functions that are polynomials of degree four, then the Price
of Anarchy is roughly 2.151. On the positive side, these bounds apply to all
networks (within the prescribed class of delay/cost functions) regardless of their



254 F. Benita et al.

size or their total demand, or number of agents and are tight even for the simplest
possible network instances, i.e., Pigou networks with just two parallel links.

The common interpretation of these bounds is that they are strong and a
PoA anywhere in that range (e.g. PoA = 2) immediately translates to practi-
cal guarantees about real traffic. Some recent purely experimental work, how-
ever, has produced new insights that allow us to reexamine these results from
a different perspective. For example, [16] showed that the efficiency of real-life
traffic networks, as estimated from traffic measurements alone, is really close
to optimal even when compared to very optimistic estimates of optimal perfor-
mance. A Price of Anarchy of 2 implies that the average commuter can increase
their mean speed by 100%. Measurements suggest that this level of inefficien-
cies/improvements is rather unlikely. Since Price of Anarchy is a macroscopic
characteristic of a system with countless moving parts, a more useful analogy is
that of weather or climate (e.g., average temperature). The differences between
10% and 20% increase to system inefficiency are significant and a 100% increase,
i.e., PoA of 2 would have catastrophic consequences.

A Natural Question Emerges: Can we create classes of models, i.e., congestion
games, which come closer to representing real world traffic? In this paper we do,
by leveraging an intuitive but largely unexplored characteristic of real world traf-
fic routing. Commuters only consider in their strategy sets paths/routes whose
free-flow costs (informally their lengths) are approximately equal to each other
(within a multiplicative factor of 1 + θ). We call such games θ-free flow games.
We generalize the special case of linear congestion θ-free flow games [4] to the
case of arbitrary classes of cost functions as well as simultaneously studying both
general networks as well as path-disjoint networks. θ = 0 means that all paths
considered by each user have exactly equal free-flow cost/length, whereas θ = 1
allows for paths whose lengths are within a factor of 2. Pigou networks may feel
intuitively very simple and thus natural due to their small size, but they fail to
satisfy this property in the most extreme sense. The ratio of the free-flow costs
of the two edges is infinite (θ = ∞). It is like considering two possible paths from
home to work, one which is the shortest distance route and one that circumnav-
igates the globe along the way. Such unnatural paths may indeed be available
to us, but we unconsciously and automatically prune them out from the set of
alternatives that we consider. Amazingly, enforcing such a natural property on
the set of models (routing games) we consider immediately removes from con-
sideration Pigou networks, the worst case examples from a PoA perspective, and
thus opens up the possibility of proving stronger Price of Anarchy guarantees.
What are the implications of such characteristics to PoA? What other type of
attributes can we take advantage of when creating new models? Finally, how
well do they match real traffic conditions?

We hope that this paper opens up a new direction for tighter coupling
between data analytics, modelling and theory in congestion games and beyond.
Analyzing different cities as well as introducing models that take into account the
difference between public and private transport seem like an exciting direction
for future work.
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Fig. 2. For each trip segment, we find the best free-flow time and the data free-flow
time. The reconstruction of the selected route uses datapoints logged along the trip. In
yellow, the fastest route in free-flow condition is highlighted. The reconstructed route
is in green, along which we find the data free-flow time.

1.1 Our Contribution

In Sect. 2, we start off by experimentally computing estimates of θ from real
world traffic data. We employ an experimental dataset that contains detailed
information (sampled every 13 s) on the routing behavior of tens of thousands of
commuters in Singapore. Based on this fine-grained information and in combina-
tion with a graph representation of the road network of Singapore that we have
created we can estimate numerous characteristics of the actual routing behavior
at an unprecedented level of accuracy. Using these tools that we believe are of
independent interest as well, we find that the θ values for the vast majority of
commuters (close to 80%) are below 1.

Inspired by the above evidence, we introduce a new class of congestion games,
that we call free-flow games, parametrized by θ (Sect. 3). We provide two para-
metric tight bounds on the Price of Anarchy of free-flow games under general
latency functions satisfying mild assumptions, thus largely extending the results
given in [4] which are restricted to affine latencies only. The first of these bounds
applies to the general case of unrestricted network topologies (indeed, it applies
even to congestion games) (Theorem 1), while the second one holds for path-
disjoint networks (Theorem 2) which includes the fundamental parallel-links
topology. These bounds are never equal as long as θ /∈ {0,∞}. In fact, differently
from what happens in the classical setting without the free-flow assumption,
where the worst-case situation already arises in a two parallel-links network (the
Pigou network), for free-flow games the absence of intersections among paths
allows for more efficient equilibria. More precisely, as θ goes to infinity, both
bounds converge to the same limit, but the convergence of the one for parallel-
link networks can be significantly slower (see, for instance, Fig. 1(a)). We also
stress that, with respect to the case of affine latency functions, our findings
improve on the results given in [4], as we close the gap between upper and lower
bound on the Price of Anarchy for parallel-link networks that was left as an open
problem.
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One of the most important messages coming from our investigation is that
the separation outlined by Theorems 1 and 2 sheds new light on the question
of whether the Price of Anarchy is affected by the network topology. In fact, a
famous, and perhaps counter-intuitive, result by Roughgarden [21] states that
the PoA is independent of the network topology as, in almost all notable cases,
worst-case instances are already attained by simple networks, such as parallel-
link graphs. Under the free-flow assumption, however, this situation ceases to
hold, and the network topology begins to play a critical, if not dominant, role in
the efficiency of equilibria. This evidence has major practical implications, as it
signifies the fundamental importance of careful road network design and planning
for selfish routing. As shown in Fig. 1 and in more details in Table 1, in the case
of the standard Bureau of Public Roads (BPR) cost model, ce(x) = aex

4 + be

and more generally quartic cost functions, applying the constraint θ = 1 nearly
halves the percentage of inefficiency, and applying the additional constraint of a
path-disjoint network halves it once again.

At the technical level, our general formulas depend on whether the free-
flow traversing time of some edges is larger than zero, i.e., whether the limit of
the edge cost/latency as its load goes to zero is strictly positive. Latency func-
tions for which this does not hold have been termed homogeneous by Rough-
garden [21] and they represent one of the few exceptions for which he could
not prove that the PoA is independent of the network topology. Since under
homogeneous latency functions any congestion game is a 0-free flow game, as a
by-product of our results, we also obtain that, for (free-flow) games with homo-
geneous latency functions, the Price of Anarchy is lower than the one attained
by non-homogeneous latencies, and it is tight even for parallel-links topologies
(Theorem 2), thus answering the open question posed by Roughgarden in [21].

To summarize, we obtain that the Price of Anarchy is independent of the
network topology (i.e., the worst-case PoA is attained by parallel-link games) if
and only if one of the following cases occurs: (i) θ = 0 (which include the case
of homogeneous latency functions as a special case) and (ii) θ = ∞.

For the sake of a more concrete exposition of our results and for empiri-
cal purposes, we provide explicitly an instantiation of the PoA bounds in the
case of polynomial latency functions. The resulting bounds depend on both the
maximum and minimum degree of the polynomials and, in the case of non-
homogeneous polynomials only, they also depend on θ. A quantitative represen-
tation of our results is partially summarized in Table 1.

Due to the lack of space, a detailed discussion of the results and some missing
proofs are deferred to the full version of this paper [1].
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Table 1. The Price of Anarchy of free-flow games with non-homogeneous (i.e., with
constant terms allowed) polynomial latency functions of maximum degree p ≤ 4 and
minimum degree q. Unlabelled bounds are proven in this paper. Bounds for homoge-
neous (i.e., without constant terms) polynomials can be obtained from the case θ = 0
(the same upper bounds have been given in [9], but tight lower bounds were only con-
jectured to exist). As it can be appreciated, the PoA depends on the network topology
whenever 0 < θ < ∞.

(p, q) θ = 0 θ = 1/2 θ = 1 θ = ∞
General Path-disjoint General Path-disjoint General Path-disjoint General Path-disjoint

(1, 1) 1 [4] 1 1.1547 [4] 1.0909 1.2071 [4] 1.1429 1.3333 [23] 1.3333 [23]

(2, 1) 1.0355 1.0355 1.2873 1.1472 1.3852 1.2383 1.6258 [21] 1.6258 [21]

(2, 2) 1 1 1.2873 1.1472 1.3852 1.2383 1.6258 [21] 1.6258 [21]

(3, 1) 1.0982 1.0982 1.4078 1.1869 1.5475 1.3093 1.8956 [21] 1.8956 [21]

(3, 2) 1.0147 1.0147 1.4078 1.1869 1.5475 1.3093 1.8956 [21] 1.8956 [21]

(3, 3) 1 1 1.4078 1.1869 1.5475 1.3093 1.8956 [21] 1.8956 [21]

(4, 1) 1.1676 1.1676 1.5202 1.2170 1.6994 1.3652 2.1505 [21] 2.1505 [21]

(4, 2) 1.0450 1.0450 1.5202 1.2170 1.6994 1.3652 2.1505 [21] 2.1505 [21]

(4, 3) 1.0080 1.0080 1.5202 1.2170 1.6994 1.3652 2.1505 [21] 2.1505 [21]

(4, 4) 1 1 1.5202 1.2170 1.6994 1.3652 2.1505 [21] 2.1505 [21]

1.2 Related Work

Price of Anarchy in Routing Games: Introduced by Koutsoupias and Papadim-
itriou [13], the ratio between the social cost of the worst equilibrium of a game
and its optimum was given the name Price of Anarchy (PoA) in [20]. For net-
works of linear latency and general topology, PoA was bounded tightly by 4/3
[23] and 5/2 in the atomic case [6]. Following results by Roughgarden [22] stud-
ied more general latency functions and atomic routing games and again gave
tight bounds on PoA. However, for a large class of natural latency functions,
PoA tends to 1 as the demand on the network approaches infinitesimally small
or infinitely high levels [7,8]. This casts doubts on the predictive power of PoA
on the state of a real system, as noted in Monnot et al. [16].

Strategy sets of routing games are typically exponential in the number of
vertices, hence restricting them is a common assumption. The unnatural char-
acter of Pigou in real systems was noted by Lu and Yu [15], who assume players
have at least one strategy that is not more than λ away from the fastest strategy
in congestion games. Restricting the strategy sets to obtain tighter bounds for
PoA is also employed in [3], [?] for load balancing games (i.e., congestion games
where the strategies of players are singleton sets). Fotakis [10] proved a pure PoA
bound for symmetric atomic congestion games on extension-parallel networks,
an interesting class of networks with linearly independent paths, that is equal to
that of non-atomic congestion games.

Primal-dual techniques for bounding the Price of Anarchy in non-cooperative
games have been proposed by Bilò [2], Kulkarni and Mirrokni [14], Nadav and
Roughgarden [18] and Thang [24]. The methods proposed in [2] and [18] operate
by explicitly formulating the problem of maximizing the Price of Anarchy of a
class of games. Despite using the same formulation, they differ in the choice of
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the variables. While [18] uses the probability distributions defining the outcomes
occurring in the formulation, [2] adopts suitable multipliers for the resource cost
functions. The methods in [14] and [24], instead, build on a formulation for
the problem of optimizing the social function, and then implement the equilibria
conditions within the choice of the dual variables. We adopt the method proposed
in [2] as it appears to be more flexible and powerful in our realm of application.
The first advantage is that it generalizes to any type of cost functions, while
all the others require some restrictions: the method in [18] can only be applied
to affine functions, the one in [14] requires convex functions, while that of [24]
needs non-decreasing ones. Secondly, the method (if properly used) always yields
tight bounds on the Price of Anarchy, while those in [14] and [24] are limited by
the integrality gap of the formulation. Last but not least, it models in a simple,
direct and intuitive way any new twist, as the free-flow property considered in
this work, one may want to add to the scenario of application.

Transportation Research: The seminal work of Wardrop [26] introduces and for-
malizes one of the first notions of equilibrium in transportation networks. A
proof of the equal social costs for equilibria and optimum (i.e., PoA = 1) in
parallel links routing games appears in Nagurney and Qiang [19]. Related ideas
from sensitivity analysis for edge cost functions are treated in Tobin and Friesz
[25]. The Price of Anarchy was estimated for the city of Boston with different
means from our study by Zhang et al. [27], where the sensitivity of the social cost
at equilibrium with respect to edge parameters is also discussed. The previously
cited works rely on the BPR estimation of cost functions [5], which are included
in the family of weakly monomial latency functions we define in Sect. 3. The
free-flow property in transportation networks has been first proposed by Jahn
et al. [12] with respect to the problem of optimizing a centralized traffic flow
without imposing too longer detours to some users.

2 Experimental Evidence for θ-Free-Flow Time in
Singapore

We look for experimental evidence that commuters use the heuristic presented in
the introduction to guide their routing decisions. Namely, we make the conjecture
that commuters consider only paths with “length” at most a mutliplicative factor
1 + θ away from the shortest path taking them to their destination (where
“length” is measured as a latency, or travel time). Does this conjecture hold
in practice? To answer, we obtain data on the routing behavior of a sampled
population. Modelling assumptions and a formal definition of θ are presented in
the next Sect. 3.

2.1 The National Science Experiment

The NSE is a nationwide project in Singapore in which over 90,000 students from
primary, secondary and junior college wore a sensor, called SENSg, for up to one
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week per student in 2015 and 2016. The SENSg sensors collect various envi-
ronmental data, and 9-degree of freedom motion data sampled every 13 s using
the Wi-Fi based localization system. The semantic data covers the identifica-
tion of individual trips within the discrete stream of locations [11], inference of
the activity performed at each endpoint and transportation mode classification
[16,17].

We use the NSE 2016 dataset which contains data from 49,526 students,
and we implement the mode identification algorithm developed in [28] where
five different modes can be identified, namely: (a) stationary; (b) walking; (c)
riding a train; (d) riding a bus; and (e) riding a car. To ensure the quality of our
empirical results, we perform a strict data cleaning process over the complete
dataset. A total of 34,121 clean trips are considered, with 16,563 unique students
and 89 different schools. This work focuses on morning travels of students who
get to their schools from their homes.

Our dataset contains highly granular information concerning the routing deci-
sions of the subjects. With the help of the onboard sensors in the device and
the mode identification algorithm, we are able to obtain for each trip an accu-
rate representation of its segments and their endpoints. For instance, typical
segments making up a trip may be “Walk - Car - Walk”, or “Walk - Bus - Train
- Bus - Walk”. The following study focuses on car trip segments. In this dataset
[16], looking at the population of public transport users only, Price of Anarchy
was upper bounded by 1.18. Converserly, Price of Anarchy for car users only
was bounded by 1.86. Putting both populations together, Price of Anarchy was
bounded by 1.34.

2.2 Estimation of Free-Flow Time for Selected Route

We compute a graph representation from a road map of Singapore, where each
vertex is located at an intersection or a bend in the road. Every edge is assigned
with a cost representing how much time is needed to traverse it. This latency is
obtained from edge features such as the road type and the posted speed limit
on the road. For each private transportation trip segment in the dataset, we
associate its origin and destination with the closest vertex in the graph. We
run a shortest path algorithm to estimate the free-flow travel time of the trip
segment, referred to in the following as the best free-flow time. This best free-
flow time is compared with the data free-flow time, or the time it would take the
subject to travel its selected route if no one was on the road. We describe how
the data free-flow time is estimated in the following paragraph.

A segment measured by the sensor consists of a stream of geographical loca-
tions. For each datapoint, we associate the closest edge in the graph. The size
of the graph (61,151 vertices and 65,596 edges) implies a lengthy lookup phase
to associate the point to its closest edge. For this reason, we consider a smaller
dataset of 449 car segments out of the 17,897 segments in the larger dataset.
These selected segments are well distributed across Singapore as depicted by
Fig. 2. By adding the free-flow time of traversing each edge associated to the
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data points, connected via heuristics detailed in our online version [1], we obtain
the data free-flow time.

2.3 Estimate of θ

We compare the best free-flow time to the data free-flow time for each sample
in our dataset, and denote by θ the percent increase between the two. A small
value of θ yields support to the hypothesis that agents only consider routes
which connect origin and destination in a straightforward manner (under no
congestion) as part of their strategy set, see Fig. 3.
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Fig. 3. The deviation is measured by the ratio of the selected route free-flow time to
the minimum free-flow time among all routes between the origin and the destination.
Close to 80% of the θ values are below 1, implying that the free-flow time of the selected
route is rarely twice as long as the best free-flow time.

This experimental result provides justification for the upper bound of PoA
estimated from the same dataset in previous work [16]. This benchmark is mean-
ingful for real road networks, as latency functions are typically estimated using
affine quartic monomials [5]. As noted in our introduction as well as in more
details in the next section, our model is based on the assumption of a uniform θ
bound over the whole population. We should note that this assumption is con-
sistent with our experimental measurements, since these measurements provide
us with estimates on the lower bounds of the agents’ θ’s. More detailed models
with a heterogeneous population/distribution of θ’s is an interesting direction
for future work.

3 Model and Definitions

For a positive integer i, let [i] := {1, 2, . . . , i}. Given a set A and a set B ⊇ A,
let χA : B → {0, 1} denote the indicator function, i.e., χA(x) = 1 if x ∈ A
and χA(x) = 0 if x /∈ A. Given a tuple of numbers (α1, α2, . . . , αk), we write
(α1, α2, . . . , αk) > 0 if αi ≥ 0 for any i ∈ [k] and αi > 0 for some i ∈ [k].

Non-atomic Congestion Games. A non-atomic congestion game (from
now on, simply a congestion game) is a tuple CG = ([n], (ri)i∈[n], E, (�e)e∈E ,
(Σi)i∈[n]), where [n] is a set of types, E is a set of resources, �e : R>0 → R>0

is the latency function of resource e ∈ E, and, for each i ∈ [n], ri ∈ R≥0 is the
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amount of players of type i and Σi ⊆ 2E \ ∅ is the set of strategies for players
of type i (i.e. a strategy is a non-empty subset of resources). We assume that
latency functions are non-decreasing, positive, and continuous.

Classes of Congestion Games. A network congestion game is a congestion
game based on a graph G = (V,E), where the set of resources coincides with E,
each type i is associated with a pair of nodes (ui, vi) ∈ V × V , so that the set
of strategies of players of type i is the set of paths from ui to vi in graph G. If
there exists u∗ ∈ V such that u∗ = ui for any i ∈ [n], the game is called single-
source network congestion game. Let P be the set of all the paths P connecting
source ui with destination vi, for any pair source-destination (ui, vi). The game
is called path-disjoint network congestion game if all the paths in P are pair-wise
node-disjoint.

A load balancing game is a congestion game in which each strategy is a
singleton, i.e., S = {e} for some e ∈ E, for any strategy S ∈ Σi and type i ∈ [n].
A parallel-link game (or symmetric load balancing game) is a load balancing game
in which all players have the same set of strategies. It is well-known that each
load balancing game (resp. parallel-link game) can be modelled as a single-source
congestion game (resp. path-disjoint network congestion game).

Latency Functions. For the sake of simplicity, we extend the domain of each
latency function �(x) to x = 0 in such a way that �(0) = limx→0+ �(x). Given
a class of latency functions F , let [F ]H := {f : f(x) = g(x) − g(0), g ∈ F}.
Observe that f(0) = 0 for any f ∈ [F ]H by definition. In the following, we use
similar definitions as in [21]. F is homogeneous if F = [F ]H . F is weakly diverse
if [F ]H ⊆ F and it contains at least one constant function (i.e., a function
f such that f(x) = β for any x > 0, for some β > 0). F is scale-closed if
it contains all the functions f such that f(x) = αg(x), for any g ∈ F and
α > 0. F is strongly diverse if contains all the functions f such that f(x) =
αg(x) + β, for any g ∈ [F ]H and (α, β) > 0. A polynomial latency function
of maximum degree p and minimum degree q (with p ≥ q ≥ 1) is defined as
�e(x) :=

∑p
d=q αe,dx

d + βe, where αe,q, αe,q+1, . . . , αe,p, βe > 0. Let Pp,q denote
the class of polynomial latency functions of maximum degree p and minimum
(non-zero) degree q. A latency function �e is affine if �e ∈ PP1.

Strategy Profiles and Pure Nash Equilibria. A strategy profile is a tuple
σ := (σi,S)i∈[n],S∈Σi

with
∑

S∈Σi
σi,S = ri for any i ∈ [n], that is a state

of the game where σi,S ≥ 0 is the total amount of players of type i selecting
strategy S for any i ∈ [n] and S ∈ Σi. Given a strategy profile σ, ke(σ) :=∑

i∈[n],S∈Σi:e∈S σi,S is the congestion of e in σ, i.e., the total amount of players
selecting e in σ, and given a strategy S, cS(σ) :=

∑
e∈S �e(ke(σ)) is the cost

of players selecting S in σ. A strategy profile σ is a pure Nash equilibrium
(or Wardrop equilibrium, or equilibrium flow) if and only if, for each i ∈ [n],
S ∈ Σi : σi,S > 0 and S′ ∈ Σi, it holds that cS(σ) ≤ cS′(σ).

Quality of Equilibria. A social function that is usually used as a measure of
the quality of a strategy profile in congestion games is the total latency, defined
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as SUM(σ) :=
∑

e∈E ke(σ)�e(ke(σ)) =
∑

i∈[n] rici(σ) at equilibrium σ. A social
optimum is a strategy profile σ∗ minimizing SUM.

The Price of Anarchy of a congestion game CG (with respect to the
social function SUM), denoted as PoA(CG), is the supremum of the ratio
SUM(σ)/SUM(σ∗), where σ is a pure Nash equilibrium for CG and σ∗ is a
social optimum for CG. As shown in [23], all pure Nash equilibria of any con-
gestion game have the same total latency. Thus, the Price of Anarchy can be
redefined as the ratio SUM(σ)/SUM(σ∗), where σ is an arbitrary pure Nash
equilibrium for CG and σ∗ is a social optimum for CG.

Free-Flow Congestion Games. Given θ ∈ [0,∞], a θ-free-flow congestion
game CGθ is a congestion game in which, for each i ∈ [n] and S, S′ ∈ Σi, it holds
that

∑
e∈S �e(0) ≤ (1+ θ)

∑
e∈S′ �e(0), i.e., all the strategies available to players

of type i, when evaluated in absence of congestion, are within a factor 1 + θ one
from the other. Observe that free-flow congestion games are congestion games
obeying some special properties. Thus, all positive results holding for congestion
games carries over to θ-free-flow congestion games for any value of θ. Moreover,
for θ = ∞, any congestion game is a θ-free-flow congestion game.

4 Price of Anarchy of Free-Flow Congestion Games

In this section, we give tight bounds on the Price of Anarchy of free-flow conges-
tion games. A detailed discussion of the implications of our theoretical results on
the Price of Anarchy and how they relate to previous work, is given in the full
version of this paper. Before going into details, we sketch the high level building
blocks of the proofs of the upper bounds. For the general case, by adapting [2],
we formulate the problem of bounding the Price of Anarchy of θ-free-flow con-
gestion games by means of a factor-revealing pair of primal-dual linear programs.
The techniques work as follows.

Given a θ-free-flow congestion game CGθ and a family of latency func-
tions F , we know that we can model the latency of every resource e ∈ E as
�e(x) = αefe(x) + βe, with fe ∈ [F ]H , αe ∈ {0, 1} and βe ≥ 0. We fix a Nash
equilibrium σ and a social optimum σ∗ for CGθ. Hence, for every e ∈ E, the con-
gestions ke(σ) and ke(σ∗) of e in σ and σ∗, respectively, become fixed constants.
As the Price of Anarchy measures the worst-case ratio of SUM(σ) over SUM(σ∗),
our goal becomes that of choosing suitable values for αe and βe, for every e ∈ E,
so as to maximize SUM(σ) under the assumption that SUM(σ∗) = 1, σ is a Nash
equilibrium and CGθ is a θ-free-flow game. In particular, constraint SUM(σ∗) = 1
can be assumed without loss of generality by a simple scaling argument, pro-
vided we relax the condition αe ∈ {0, 1} with αe ≥ 0. Thus, an optimal solution
to the resulting linear program, call it LP, provides an upper bound to the Price
of Anarchy of CGθ. Next step is to compute and analyze the dual of LP, that
we call DLP. DLP has three variables, namely x, y and γ, with x ≥ 0, y ≥ 0
and γ defining its objective value. Thus, by the Weak Duality Theorem, any
feasible solution (x∗, y∗, γ∗) for DLP yields an upper bound of γ∗ to the optimal
solution of LP and so an upper bound to the Price of Anarchy of CGθ. For each
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function fe ∈ FH , DLP has two constraints, namely c1(fe, ke(σ), ke(σ∗), x, γ)
and c2(fe, ke(σ), ke(σ∗), y, γ), providing two lower bounds
on γ, denoted as γ(G) := infx≥1 supl>0,f∈G

(
k+x(−k+l)

l

)
f(k)
f(l) and γθ(G) :=

supk>l>0,f∈G
f(k)(k(1+θ)−l)

f(k)(k−l)(1+θ)+lf(l)θ .

An important advantage of the primal-dual method is that, whenever LP pro-
vides a tight characterization of the properties possessed by the games and the
equilibria under analysis, an optimal solution to DLP can be fruitfully exploited
to construct, quite systematically, but not without effort, matching lower bound-
ing instances. We manage to achieve this result also in this case, but, given the
very technical nature of the constructions, we refer the interested reader to the
full version of this paper.1

For the case of parallel-links and path-disjoint games, we apply a similar,
although more direct approach. We fix once again CGθ, the family of latency
functions F , the latency of every resource e ∈ E, a Nash equilibrium σ and a
social optimum σ∗ for CGθ, so as to obtain constant values for both ke(σ) and
ke(σ∗). This time, instead of resorting to linear programming, we write down
the parametric expression of the Price of Anarchy as a function of ke(σ), ke(σ∗)
and the latency functions of the resources in the game. A key feature of this case,
that makes it different from the general setting analyzed before, is that, here,
we need have

∑
e∈E ke(σ) =

∑
e∈E ke(σ∗). By exploiting this equality, together

with the equilibrium conditions and the θ-free-flow property of CGθ, we create a
sequence of more and more relaxed upper bounds for the Price of Anarchy, until
we end up to a sufficiently simple formula. Also in this case, we can show that
the performed analysis is tight by providing matching lower bounding instances
whose description is again deferred to the full version of this paper.

4.1 The Main Theorems

Theorem 1. Let CGθ be a θ-free-flow congestion game with latency functions
in F and θ ∈ [0,∞]. We have PoA(CGθ) ≤ γ([F ]H) if θ = 0, PoA(CGθ) ≤ γ(F)
if θ = ∞, and PoA(CGθ) ≤ max{γ([F ]H), γθ([F ]H)} if θ ∈ (0,∞). These bounds
are tight for single-source network games if F is weakly diverse and even for load
balancing games if F is strongly diverse.

We now show that, when considering either parallel-links games or path-
disjoint network congestion games, a better bound on the Price of Anarchy can
be achieved. To this aim, given a class of latency functions G, let us define
ηθ(G) := supk>l>0,f∈G

kf(k)(1+θ)
kf(k)(1+θ)+(lf(l)−lf(k))θ .

Theorem 2. Fix a value θ ∈ [0,∞) and a class of latency functions F . Let PLGθ

be a θ-free-flow path-disjoint network congestion game with latency functions in

1 In the related literature, bounds on the Price of Anarchy are often obtained by
exploiting Roughgarden’s smoothness framework [22]. Similarities and differences
between such framework and the primal-dual method are given in the full version of
this paper [1].
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F . Then, PoA(PLGθ) ≤ max{γ([F ]H), ηθ([F ]H)}. The bound is tight in general
and even for parallel-links networks if F is scale-closed.

By using Theorems 1 and 2, we can determine the exact Price of Anarchy
of free-flow congestion games with polynomial latency functions in Pp,q. In
particular, we show that γθ([Pp,q]H) = supt>1

tp(t(1+θ)−1)
tp(t−1)(1+θ)+θ , γ([Pp,q]H) =

pp

(p+1)p+1

(
p−q

√(
(p+1)p+1qq

(q+1)q+1pp

)p+1
)

(
p−q

√
(p+1)p+1qq

(q+1)q+1pp − 1
)−1

χ[p−1](q) + χ{p}(q),

ηθ([Pp,q]H) = supt>1
tp+1(1+θ)

tp+1(1+θ)+(1−tp)θ , and by using such values in Theorems
1 and 2 we are able to derive tight bounds on the Price of Anarchy.
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Abstract. We build upon recent work by Kleinberg, Oren, and Ragha-
van [10–12] that considers present biased agents, who place more weight
on costs they must incur now than costs they will incur in the future.
They consider a graph theoretic model where agents must complete a
task and show that present biased agents can take exponentially more
expensive paths than optimal. We propose a theoretical model that adds
competition into the mix – two agents compete to finish a task first. We
show that, in a wide range of settings, a small amount of competition
can alleviate the harms of present bias. This can help explain why biased
agents may not perform so poorly in naturally competitive settings, and
can guide task designers on how to protect present biased agents from
harm. Our work thus paints a more positive picture than much of the
existing literature on present bias.

Keywords: Present bias · Behavioral economics · Incentive design

1 Introduction

One of the most influential lines of recent economic research has been behav-
ioral game theory [3,9]. The majority of economics research makes several ide-
alized assumptions about the behavior of rational agents to prove mathematical
results. Behavioral game theory questions these assumptions and proposes mod-
els of agent behavior that more closely align with human behavior. Through
experimental research [5,6], behavioral economists have observed and codified
several common types of cognitive biases, from loss aversion [9] (the tendency
to prefer avoiding loss to acquiring equivalent gains) to the sunk cost fallacy
[4] (the tendency to factor in previous costs when determining the best future
course of action) to present bias [7] (the current topic). One primary goal of
theorems in game theory is to offer predictive power. This perspective is espe-
cially important in the many computer science applications of these results, from
modern ad auctions to cryptocurrency protocols. If these theorems are to pre-
dict human behavior, the mathematical models ought to include observed human
biases. Thus, rather than viewing behavioral game theory as conflicting with the
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standard mathematical approach, the experimental results of behavioral game
theory can inform more sophisticated mathematical models. This paper takes a
step towards this goal, building on seminal work of Kleinberg, Oren, and Ragha-
van [10–12] who formulated a mathematical model for planning problems where
agents are present biased.

Present bias refers to overweighting immediate costs relative to future costs.
This is a ubiquitous bias in human behavior that explains diverse phenomena.
The most natural example is procrastination, the familiar desire to delay difficult
work, even when this predictably leads to negative consequences later. Present
bias can also model the tendency of firms to prefer immediate gains to long-term
gains and the tendency of politicians to prefer immediate results to long-term
plans. One simple model of present bias [10–12] is to multiply costs in the current
time period by present bias parameter b when making plans. This model is a
special case of hyperbolic discounting, where costs are discounted in proportion
to how much later one would experience them. But even this special case suffices
to induces time-inconsistency, resulting in a rich set of strategies consistent with
human behavior.

Examples of time inconsistent behavior extend beyond procrastination. For
example, one might undertake a project, and abandon it partway through,
despite the underlying cost structure remaining unchanged. One might fail to
complete a course with no deadlines, but pass the same course with weekly dead-
lines. Many people pay for a gym membership but never use it. Kleinberg and
Oren [10] presented the key insight that this diverse range of phenomena can all
be expressed in a single graph-theoretic framework, which we describe below.

Fix a directed, acyclic graph G, with designated source s and sink t. Refer to
G as a task graph, where s is the start of the task and t the end. A path through
this graph corresponds to a plan to complete the task; each edge represents one
step of the plan. Each edge has a weight corresponding to the cost of that step.

The goal of an agent is to complete the task while incurring the least cost (i.e.,
to take the cheapest path from s to t). An optimal agent will simply follow such
a cheapest path. A naive present biased agent with bias parameter b behaves
as follows. At s, they compute their perceived cost for taking each path to t by
summing the weights along this path with the first edge scaled up by b > 1.
They choose the path with the lowest perceived cost and take one step along
this path, say to v, and recompute their perceived cost along each the path from
v to t. Notice that such an agent may choose a path at s, take one edge along
that path, and then deviate away from it. This occurs because the agent believes
that, after the current choice of edge, they will pick the path from v to t with
lowest true cost. But once they arrive at v, their perceived cost of a path differs
from the true cost, and they pick a path with lowest perceived cost. This is
why the agents are considered naive: they incorrectly assume their future self
will behave optimally, and thus exhibit time-inconsistent behavior. See Fig. 1 for
an example. The power of this graph theoretic model is that it allows us to
answer questions over a range of planning problems, and to formally investigate
which tasks represent the “worst-case” cost of procrastination. This is useful
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Fig. 1. The optimal path is (s, x, t) with total cost 6. However, an agent with bias
b = 2 will take path (s, v, z, t), with cost 21. Importantly, when the agent is deciding
which vertex to move to from s, they evaluate x as having total cost 12, while v has
total cost 11. This is because they assume they will behave optimally at v by taking
path (v, y, t). However, they apply the same bias at v and deviate to the worst possible
path.

both to understand how present-biased behavior differs from optimal behavior
and to design tasks to accommodate present bias. We now briefly summarize the
existing literature, to motivate our introduction of competition to the model.

1.1 Prior Work

The most striking result is that there are graphs where the cost ratio (the ratio
of the optimal agent’s cost to the biased agent’s cost) is exponential in the
size of the graph. In addition, all graphs with exponential cost ratio have a
shared structure – they all have a large n-fan as a graph minor (and graphs
without exponential cost ratio do not) [10,15]. So this structure encodes the
worst-case behavior for present bias in the standard model (and we later show
how competition is especially effective in this graph). An n-fan is pictured in
Fig. 2.
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Fig. 2. A naive agent with bias b > c > 1 will continually choose to delay finishing the
task.

The exponential cost ratio demonstrates the severe harm caused by present
bias. How, then, can designers of a task limit the negative effects of present bias?
Kleinberg and Oren [10] propose a model where a reward is given after finishing
the task, and where the agent will abandon the task if at any point, they perceive
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the remaining cost to be higher than the reward. Unlike an optimal agent, a
biased agent may abandon a task partway through. As a result, they give the
task designer the power to arbitrarily delete vertices and edges, which can model
deadlines. They then investigate the structure of minimally motivating subgraphs
– the smallest subgraph where the agent completes the task, for some fixed
reward. Follow-up work of Tang et al. [15] shows that finding any motivating
subgraph is NP-hard. Instead of deleting edges, Albers and Kraft [2] consider
the problem of spreading a fixed reward onto arbitrary vertices to motivate an
agent, and find that this too is NP-hard (with a constrained budget). For other
recent work involving present bias, see [1,8,13,14,16].

The above results all focus on accommodating present bias rather than alle-
viating it. By that, we mean that the approaches all focus on whether the agent
can be convinced to complete the task – via edge deletion or reward dispersal –
but not on guarding the agent from suboptimal behavior induced by their bias.
[11] partially investigates the latter question in a model involving sophisticated
agents, who plan around their present bias. They consider several types of com-
mitment devices – tools by which sophisticated agents can constrain their future
selves. However, these tools may require more powerful agents or designers and
don’t necessarily make sense for naive agents. We take a different approach – we
show that adding competition can simultaneously explain why present-biased
agents may not perform exponentially poorly in “natural” games and guide task
designers in encouraging biased agents towards optimal behavior.

1.2 Our Model

In our model, a task is still represented by a directed, acyclic graph G, with a
designated source s and sink t. There are two naive present-biased agents, A1

and A2, both with bias b, who compete to get to t first. The cost of a path is
the sum of the weights along the path, and time is represented by the number of
edges in the path, which we call the length of the path. In other words, each edge
represents one unit of time. The first agent to get to t gets a reward of r; ties
are resolved by evenly splitting the reward. Recall that naive agents believe that
they will behave optimally in the future. Thus, an agent currently at u considers
the cost to reach the target t to be bc(u, v) plus the cost of the optimal path
from v to t minus the reward of that path. More formally, let P(v → t) denote
the set of paths from v → t and let P (s → u) denote the path the agent has
taken to u. Let Cn(u, v) denote the remaining cost that the naive agent believes
they will incur while at u and planning to go to v. The subscript n stands for
“naive” (to help distinguish from c(u, v), the cost of the edge (u, v)). Then:

Cn(u, v) = b·c(u, v)+min
P (v→t)∈P(v→t)

c(P (v → t))−RA2(P (s → u) ∪ (u, v) ∪ P (v → t)), (1)

where c(P ) =
∑

e∈P c(e) denotes the cost of path P and RA2(P ) denotes the
reward of taking path P from s to t. This reward depends on the path the other
agent A2 takes. Specifically, if A2 takes a path of length k, and Q := P (s →
u) ∪ (u, v) ∪ P (v → t) is a path of length �, then R(Q) is r if � < k, r/2 if � = k
and 0 if � > k. We will often rewrite the second term in (1), for ease of notation,
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as minPv
c(Pv)−RA2(Ps→u,v→t). We sometimes refer instead to the naive agent’s

utility, which is the negation of this cost. Given this cost function, the naive agent
chooses the successor of node u via S(u) = argminv:(u,v)∈ECn(u, v). See Fig. 3
for an example.

s u x t

y

v

z

2

2
2

4
5

7
4

2

Fig. 3. Suppose r = 5, the bias b = 2, and assume A2 takes path (s, u, x, t). Then at s,
A1 prefers to take u for perceived cost 4 + 4 + 5 − 2.5 = 10.5. Notice that, due to the
reward, the path A1 believes he will take from u is (u, x, t), despite (u, y, z, t) having
lower cost. However, at u, A1 evaluates the lower path to be cheaper, despite losing the
race. This shows that a reward of 5 does not ensure a Nash equilibrium on (s, u, x, t)
when b = 2.

We now consider how this model of competition might both explain the
outcomes of natural games and inform task designers on how to elicit better
behavior from biased agents. For a natural game, consider the classic example of
two companies competing to expand into a new market. Both companies want
to launch a similar product, and are thus considering the same task graph G.
The companies are also present biased, since shareholders often prefer immediate
profit maximization/loss minimization over long term optimal behavior. The first
company to enter the market gains an insurmountable advantage, represented
by reward r. If the companies both enter the market at the same time, they split
the market share, each getting reward r/2. This arrangement can be modeled
within our framework, and the competition between the companies should lead
them to play a set of equilibrium strategies.

For a designed game, consider the problem of encouraging students to submit
final projects before they are due. The instructor sets a deadline near the end
of finals week to give students flexibility to complete the project when it best
fits their schedule. The instructor also knows that (1) students tend to procras-
tinate and (2) trying to complete the final project in a few days is much more
challenging than spreading it out. They would like to convince students to work
on and possibly submit their assignments early, without changing the deadline
(to allow flexibility for the students whom it suits best). One possible solution
would be to give a small amount of extra credit to the first submission. How
might they set this reward to encourage early submissions?

In both these examples, the intuition is that competition will alleviate the
harms of present bias by driving agents towards optimal behavior.
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1.3 Summary of Results

We have introduced a model of competition for completing tasks along some
graph. We warm up by analyzing these games absent present bias. Namely, we
classify all Nash equilibria for an arbitrary task graph with unbiased agents, by
first defining and eliminating all dominated paths.

We then analyze the model where agents have equal present bias. We show
that a very small reward induces a Nash equilibrium on the optimal path, for any
graph with a dominant path. This is a substantial improvement over the expo-
nential worst case cost ratio experienced without competition. We then discuss
how time-inconsistency defeats the intuition that higher rewards cause agents to
prefer quicker paths. Despite this complication, we describe an algorithm that,
given arbitrary graph G and path Q, determines the minimum reward needed
to get a Nash equilibrium on Q, if possible.

Finally, we add an element of bias uncertainty to the model, by drawing
agents’ biases iid from distribution F and, for the n-fan, describe the relationship
between F and the reward required for a Bayes-Nash equilibrium on the optimal
path. For a wide range of distributions, we find small rewards suffice to ensure
that agents behave optimally (with high probability) in equilibrium. For the
stronger goal of ensuring a constant expected cost ratio, it suffices to offer reward
linear in n when F is not heavy-tailed; competition thus helps here as well.

2 Nash Equilibria with Unbiased Competitors

To build intuition, we first describe the Nash equilibria of these games when
agents have no present bias. We also pinpoint where the analysis will change
with the introduction of bias. Notice that each path P in the graph is a strategy,
with payoffs either uw = r − c(P ), ut = r/2 − c(P ) or ul = −c(P ), depending
on whether the agent wins, ties or loses, respectively. (These in turn depend
on the path taken by the opponent.) We first rule out dominated paths. Notice
that if ul(P ) ≥ uw(P ′), path P ′ is dominated by path P , regardless of the path
taken by the opponent. Also, if uw(P ) ≥ uw(P ′) and |P | ≤ |P ′| (where |P |
is the number of edges in P ), then P ′ is dominated. Therefore, for any length
k, a single cheapest path of length k will (weakly) dominate all other paths of
length k.

For a given graph G, let P1, . . . , Pn be a minimal set of non-dominated paths,
where |Pi| < |Pi+1| for each 1 ≤ i < n. Thus, P1 is the quickest path, the
remaining path of minimum length. Summarizing what we know about these
paths:

1. Winning is better than losing : for any pair of paths (Pi, Pj), we know that
uw(Pi) > ul(Pj). Thus, in particular, c(P1) − c(Pn) ≤ r.

2. Longer paths are more rewarding : That is, c(Pi) > c(Pi+1) for each i. Oth-
erwise, Pi+1 would be dominated since its length is greater. Therefore, in
particular, Pn is the cheapest path, i.e., the lowest cost/weight path from s
to t.
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We’re interested in characterizing, across all possible task graphs, the pure Nash
equilibria, restricting attention to paths in P1, . . . , Pn.

Proposition 1. Let G be an arbitrary task graph. As above, let P1, . . . , Pn be
a minimal set of (non-dominated) paths ordered so P1 is the quickest and Pn

the cheapest. Suppose n ≥ 3. Then, path Pi, where i > 1, is a symmetric Nash
equilibrium if and only if c(Pi−1) − c(Pi) ≥ r/2. P1 is a symmetric Nash if and
only if c(P1) − c(Pn) ≤ r/2. There are no other pure Nash equilibria. Therefore,
there can be either 0, 1 or 2 pure Nash equilibria.

If n = 2, there is an additional asymmetric pure Nash equilibrium where one
player plays the quickest path P1 and the other plays the cheapest path P2 if
c(P1) − c(P2) = r/2.

The proof can be found in the full version. We next turn our attention to the
biased version of this problem. In the unbiased case, we could take a “global”
view of the graph, and think about paths purely in terms of their overall length
and cost. But when agents are biased, the actual structure of the path is very
important; time-inconsistency means that agents look at paths locally, not glob-
ally. It is thus very difficult to cleanly rule out dominated paths – even paths
with exponentially high cost may be taken, as we see next.

3 Nash Equilibria to Elicit Optimal Behavior from Biased
Agents

We assume that the agents are both naive, present biased agents, with shared
bias parameter b.1 Our high-level goal is to show that competition convinces
biased agents to take cheap paths, as unbiased agents do without competition.
To this end, we show that a small amount of reward creates a Nash equilibrium
on the cheapest path, for all graphs which have a dominant path – a cheapest
path that is also the uniquely quickest path.

3.1 Graphs with an Unbiased Dominant Strategy

To focus exclusively on the irrationality of present bias rather than the optimiza-
tion problem of choosing between cheap, long paths and short, expensive paths,
we focus on graphs with a dominant path – a cheapest path2 that is also the
uniquely quickest path. An example of such a graph is the n-fan. In this setting,
the problem is trivial for unbiased agents; simply take this dominant path. But
for biased agents, the problem is still interesting; as the n-fan shows, they may
take paths that are exponentially more costly than the dominant path. However,
we prove that a small amount of competition and reward suffices to ensure the
existence of a Nash equilibrium where both agents take the dominant path.
1 The homogeneity of the agents is not particularly important to our results in this

section. If the agents have different bias parameters, our results go through by setting
b equal to the larger of the two biases.

2 There may be other cheapest paths which are longer.
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Theorem 1. Suppose G is a task graph that has a dominant path, O. Then,
a reward of r ≥ 2b · maxe∈O c(e) guarantees a Nash equilibrium on O, for two
agents with bias b.

Proof. Assume that A2 takes O. Recall that a biased agent perceives the remain-
ing traversal cost of going to v from t as Cn(u, v) = b · c(u, v) + minPv

c(Pv) −
RA2(Ps→u,v→t). We know that for any vertex v∗ on the dominant path, the
path that minimizes the second term is just the fragment of the dominant path
from v∗ → t (it is both the quickest and cheapest way to get from v∗ to t).
Further, any deviation from the dominant path results in no reward. So, for
any v not on the dominant path, the path that minimizes the second term
is again the cheapest path from v → t. Thus, the cost equation simplifies to
Cn(u, v) = b · c(u, v) + d(v) − r/2 · 1{D}, where d(v), the distance from v → t,
denotes the cost of the cheapest path from v to t (ignoring rewards) and 1{D}
is simply an indicator variable that’s 1 if the agent has not deviated from the
dominant path.

Now, let O = (s = v∗
0 , v

∗
1 , v

∗
2 , . . . , t = v∗

l ) be the dominant path and suppose
A2 takes this path. In order for A1 to choose O, we require, for all i:

S(v∗
i ) = v∗

i+1

⇐⇒ v∗
i+1 = argmin

v:(v∗
i ,v)∈E

b · c(v∗
i , v) + d(v) − r/2 · 1{D}

⇐⇒ ∀v : (v∗
i , v) ∈ E, bc(v∗

i , v) + d(v) ≥ bc(v∗
i , v

∗
i+1) + d(v∗

i+1) − r/2

Now, let i be arbitrary, let v 
= v∗
i be an arbitrary neighbor of v∗

i , and for ease of
notation, let c = c(v∗

i , v), c∗ = c(v∗
i , v

∗
i+1), d = d(v), and d∗ = d(v∗

i+1). Then, we
get the following bound on the reward: r/2 ≥ b(c∗ − c) + d∗ − d. To get a rough
sufficient bound, notice that c + d ≥ c∗ + d∗, since O is the cheapest path. This
implies that bc∗ > b(c∗ − c) + d∗ − d. Thus, it suffices to set r ≥ 2bc∗ in order to
ensure S(v∗

i ) = v∗
i+1. Repeating this argument for all i, we see that a sufficient

reward is r = 2b · maxe∈O c(e). ��
One might object to our claim that r = 2b maxe∈O c(e) is “small”. To cali-

brate our expectations, notice that we can view this problem as an agent trying
to pick between several options (i.e. paths), each with their own reward and cost
structure. We want to convince the agent to pick one particular option – namely,
the cheapest path. But it would be unreasonable to expect that a reward signifi-
cantly smaller than the cost of any option would sway the agent’s decision. Our
theorem above shows that a reward that is at most proportional to the cheapest
option suffices; and in many cases the reward is only a fraction of the cost of
the optimal path (e.g. when the optimal path has balanced cost among many
edges).

For a point of comparison, even internal edge rewards (which required the
same reward budget as competitive rewards for the n-fan) can require O(n) times
as much reward in some instances. To see the intuition, notice that internal edge
rewards must be applied at every step where the agent might want to deviate.
The agent also immediately “consumes” this reward; it doesn’t impact his future
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Fig. 4. A graph with many suboptimal deviations. For an agent with bias b > 2, a
designer with access to only edge rewards must spend O(n) total reward for optimal
behavior (b− 2 on each (vi, vi+1) edge). In our competitive setting, only 2(b− 2) total
reward is required.

decision making. However, the competitive reward is “at stake” whenever the
agent considers deviating; this reward can sway the agent’s behavior without
being immediately consumed. For a concrete example, see Fig. 4.

3.2 Increasing the Number of Competitors

A very natural extension to this model would involve more than 2 agents com-
peting. The winner takes all, and ties are split evenly among those who tied.
However, this modification doesn’t change much when trying to get a Nash equi-
librium on the dominant path. The only change is that if m agents are competing,
the reward needed is O(m), as a single agent will get a 1/m fraction of the reward
in a symmetric equilibrium. This is true because there is no way for any agent to
beat the dominant path, and claim the entire O(m) reward for themselves. So if
the reward is scaled appropriately (i.e. in Theorem1 set r ≥ mb·maxe∈O c(e)), we
will still guarantee a Nash equilibrium. Put another way, the per-agent reward
needed for a Nash equilibrium on the dominant path does not change as the
number of competitors varies.

4 General Nash Equilibria

In this section, we describe a polynomial time algorithm that, given an arbitrary
graph G, path Q and bias b, determines if Q can be made a Nash equilibrium, and
if so, the minimum required reward to do so. Finding and using this minimum
required reward will generally cost much less than the bound given by Theorem1.
Moreover, this algorithm does not assume the existence of a dominant path.
We start by describing how time-inconsistency defeats the intuition that higher
rewards cause agents to prefer quicker paths. We then present a very high level
overview of how to compute the minimum reward that results in Q being a
symmetric Nash equilibrium.

4.1 Higher Rewards Need Not Encourage Quicker Paths

The proof of Theorem1 suggests the following algorithm for this problem. Start
with a reward of 0, and step along each vertex u ∈ Q, increasing the reward by
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just enough to ensure A1 stays on Q for one more step (assuming A2 is taking
Q). However, if A1 wants to deviate onto a quicker/tied path at any point, return
⊥; decreasing the reward would cause them to deviate earlier, and, intuitively,
it seems that increasing the reward could not cause them to switch back to Q
from the quicker/tied path. After one pass, simply pass through again to ensure
that the final reward doesn’t cause A1 to deviate early on. The following lemma,
which we prove in the full version, shows that this algorithm is tractable, by
showing that we can compute the minimum reward required for A1 to stay on Q
at any step (and determine whether A1 wants to deviate onto a quicker path).

Lemma 1. Assuming that A2 takes path Q, A1 can efficiently compute
minPv

c(Pv) − RA2(Ps→u,v→t) by considering the cheapest path (from v → t),
the cheapest path where A1 ties A2, and the cheapest path where A1 beats A2.
(Some of these paths may coincide, and at least one must exist).

Unfortunately, while tractable, the approach described above does not yield a
correct algorithm. This is because it relies implicitly on the following two prop-
erties, which formalize the intuition that increasing the reward causes agents to
favor quicker paths.

Property 1. If a reward r guarantees a Nash equilibrium on some path Q, any
reward r′ > r will either (a), still result in a Nash equilibrium on Q, or (b),
cause an agent to deviate to a quicker path Q′.

Property 2. If A1 deviates from Q onto a quicker/tied path for some reward r,
increasing the reward will not cause them to follow Q

Both properties are intuitive – if we increase the reward, that should motivate the
agent to take a path that beats their opponent. And vice versa – increasing the
reward shouldn’t cause them to shift onto a slower path or shift between equal
length paths. But surprisingly, both properties are false, as Fig. 5 demonstrates.

s

q1

v1

q2

v2

q3
8

t

5 v3 v4

x

2
15

s 1 v1

q1

v2

q2

v3 10 t

2

100
(a) (b)

Fig. 5. Graphs which do not exhibit the two expected properties. Unlabeled edges have
cost 0.

For Property 1, consider the graph in Fig. 5(a) and define paths Q =
(s, q1, q2, t), V = (s, v1, v2, v3, t), and X = (s, v1, t). Suppose both agents have
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bias 10 and that A2 takes Q. Then a reward of 1 guarantees that A1 takes Q, as
the optimal path from v1 → t would follow V . However, if r = 300, the optimal
path from v1 → t follows X. So, A1 goes to v1, intending to beat A2. But at
v1, the perceived cost of (v1, t) is actually 1000, and so the agent prefers to take
path V . Thus, increasing the reward from 1 to 300 causes the agent to deviate
from Q onto a slower path!

For Property 2, consider the graph in Fig. 5(b) and define paths Q,V , and
X in the obvious manner. Again, suppose both agents have bias 10 and that A2

takes Q. Then, with a reward of 10, A1 to stick to Q as well. But if r = 2, the
optimal path from v1 → t follows V and thus loses, which is not as meaningful.
So A1 goes to v1, intending to follow V . But there, with b = 10, deviating to
X is more attractive than remaining on V , and thus the agent takes X. So,
although A1 deviates from Q to a quicker path for reward 2, they remain on Q
with reward 10.

To summarize, Property 1 fails because present biased agents can take slower
paths than they planned and Property 2 fails because present biased agents can
take quicker paths than they planned. In other words, while higher rewards do
tempt agents to take quicker paths, and lower rewards tempt agents towards
cheaper paths, their time inconsistency may make them do the opposite.

4.2 A Description of the Algorithm

We now describe, at a very high level, how to efficiently find the set of rewards
which induce a symmetric Nash equilibrium on a path Q. The algorithm narrows
down the set of feasible rewards (rewards that ensure that Q is a Nash equilib-
ria) by computing the set of rewards that ensure that A1 takes (u, v) for every
(u, v) ∈ Q. The key idea is that we can efficiently compute all r that ensures
that A1 prefers (u, v) over (u, v′) by splitting into cases based on whether the
optimal paths from v → t and v′ → t involve winning, tying, or losing. From
this algorithm, we get the following theorem:

Theorem 2. There exists a polynomial time algorithm that returns the mini-
mum r that ensures that Q is a Nash equilibrium, or ⊥ if no such r exists.

We prove this theorem and fully define the algorithm in the full version.

5 Extending the Model with Bias Uncertainty and
Multiple Competitors

One of the shortcomings of the prior results is that agents are assumed to have
publicly known, identical biases, which seems unrealistic. We therefore add the
agents’ uncertainty about their competitors bias to the model. The agents’ biases
are now represented by random variables B1 and B2 drawn iid from distribution
F , which is publicly known to both the agents and the designer. b1 and b2
correspond to the realizations of these random variables. Our goal is now to
construct, as cheaply as possible, Bayes-Nash equilibria (BNE) where agents



Competition Alleviates Present Bias in Task Completion 277

behave optimally with high probability. In this setting, the cost equation becomes
Cn(u, v) = b ·c(u, v)+minPv

c(Pv)−EA2 [RA2(Ps→u,v→t)], where the expectation
is over A2’s choice of paths.

In this section, we provide a closed form BNE for the n-fan. We start with the
case of two agents and then briefly consider m competing agents. Since we are
searching for BNE, we assume that the agents know their competitor’s strategy.

5.1 Bayes-Nash Equilibria on the n-fan

As before, let Pi represent the path that includes edge (vi, t), and let P0 represent
the optimal path. Then, the following strategy is a Bayes-Nash equilibrium.

Theorem 3. Let G be an n-fan with reward r and suppose B1, B2 are drawn
from distribution B with CDF F . Let p be the solution to F ( rp2 + c) = p. If
p > 1

cn−1+1 , then the following strategy is a Bayes-Nash equilibrium:

P (b) =

{
take P0, b ≤ rp

2 + c

take Pn, otherwise

In this equilibrium, for either agent, the probability that they take P0 is p. So the
expected cost ratio will be p + (1 − p)cn.

We prove this in the full version. Notice that while the trivial solution p =
0 satisfies F ( rp2 + c) = p, this is not above 1

cn−1+1 , so the trivial solution is
not relevant for finding Bayes-Nash equilibria. One might wonder if there’s a
straightforward generalization of this BNE to other graphs with a dominant
path, as in the case without bias uncertainty. In the full version, we discuss
challenges that we encountered trying to do this.

We now use the theorem to understand how much reward is required for
optimal behavior with high probability, or a low expected cost ratio (which is a
much stronger requirement). Since the expected cost is p + cn(1 − p), in order
for this to be low, 1− p has to be close to 1/cn. Plugging this in to the CDF, we
see that for this to happen, we must have

F

(
r

2

(

1 − 1
cn

)

+ c

)

= 1 − 1
cn

which essentially requires that exponentially little probability mass (in n)
remains after r/2 distance from c. For an exponential distribution, this requires
r to be linear in n, and with a heavier tailed distribution like the Equal Revenue
distribution, this requires r to be exponential in n. But we may be content with
simply guaranteeing optimal behavior with high probability. In that case, so long
as r is increasing in n, the agents will take the optimal path with high proba-
bility for at least the equal revenue, exponential, and uniform distributions. We
more precisely explore the probability of optimal behavior and the cost ratios
for these distributions in the full version.
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5.2 Increasing Number of Competitors

We saw earlier that increasing the number of competitors doesn’t change the per-
agent reward needed for optimal behavior. But one might hope that in Bayesian
settings such as bias uncertainty, increasing the number of agents significantly
decreases the per-agent reward needed to encourage optimal behavior – in par-
ticular, as the number of agents increases, the probability of some agent having
a very low bias increases. In the full version, we provide evidence against this
belief. We first show that the BNE in Theorem3 can be tweaked slightly to
remain a BNE with a variable number of agents. We then consider the equal
revenue distribution, which required an exponentially high reward to get a low
expected cost ratio with just two competitors. But we show that even as number
of competing agents goes to ∞, this relationship between the reward and the
probability of optimal behavior doesn’t significantly change. We conjecture that,
in general, increasing the number of agents does not significantly decrease the
per-agent reward required for optimal behavior.

6 Conclusion

We studied the impact of competition on present bias, showing that in many
settings where naive agents can experience exponentially high cost ratio, a small
amount of competition drives agents to optimal behavior. This paper is a first
step towards painting a more optimistic picture than much of the work surround-
ing present bias. Our results highlight why, in naturally competitive settings, oth-
erwise biased agents might behave optimally. Further, task/mechanism designers
can use our results to directly alleviate the harms of present bias. This competi-
tive model might be a more natural model than other motivation schemes, such
as internal edge rewards, and is able to more cheaply ensure optimal behavior.
Our work also leaves open many exciting questions.

First, with bias uncertainty, we only obtain concrete results on the n-fan. So
one obvious direction is to determine which graphs have Bayes-Nash equilibria
on the optimal path, and what these equilibria look like. Second, we explore two
“dimensions” of competition – the amount of reward and the number of com-
petitors, finding that the latter is unlikely to be significant. Another interesting
goal is thus to explore new dimensions of competition.

Lastly, we could extend our work beyond cost ratios, moving to the model
where agents can abandon their path at any point. For one, this move would
allow us to integrate results on sunk-cost bias, represented as an intrinsic cost
for abandoning a task that’s proportional to the amount of effort expended. Pre-
vious work [12] has shown that agents who are sophisticated with regard to their
present-bias, but naive with respect to their sunk cost bias can experience expo-
nentially high cost before abandoning their traversal (this is especially interesting
because sophisticated agents without sunk cost bias behave nearly optimally).
Can competition alleviate this exponential worst case? There are also interest-
ing computational questions in this model. For instance, given a fixed reward
budget r, is it possible to determine in polynomial time if one can induce an
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equilibrium where both agents traverse the graph? Such problems are NP-hard
for other reward models, but may be tractable with competition. Overall, the
abandonment setting has several interesting interactions with competition that
we have not explored.

References

1. Albers, S., Kraft, D.: On the value of penalties in time-inconsistent planning. arXiv
preprint arXiv:1702.01677 (2017)

2. Albers, S., Kraft, D.: Motivating time-inconsistent agents: a computational app-
roach. Theory Comput. Syst. 63(3), 466–487 (2019). https://doi.org/10.1007/
s00224-018-9883-0

3. Ariely, D., Jones, S.: Predictably Irrational. Harper Audio, New York (2008)
4. Arkes, H.R., Blumer, C.: The psychology of sunk cost. Organ. Behav. Hum. Decis.

Processes 35(1), 124–140 (1985)
5. DellaVigna, S.: Psychology and economics: evidence from the field. J. Econ. Lit.

47(2), 315–72 (2009)
6. DellaVigna, S., Malmendier, U.: Paying not to go to the gym. Am. Econ. Rev.

96(3), 694–719 (2006)
7. Frederick, S., Loewenstein, G., O’donoghue, T.: Time discounting and time pref-

erence: a critical review. J. Econ. Lit. 40(2), 351–401 (2002)
8. Gravin, N., Immorlica, N., Lucier, B., Pountourakis, E.: Procrastination with vari-

able present bias. arXiv preprint arXiv:1606.03062 (2016)
9. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk.

Econometrica 47(2), 263–292 (1979)
10. Kleinberg, J., Oren, S.: Time-inconsistent planning: a computational problem in

behavioral economics. In: Proceedings of the Fifteenth ACM Conference on Eco-
nomics and Computation, pp. 547–564 (2014)

11. Kleinberg, J., Oren, S., Raghavan, M.: Planning problems for sophisticated agents
with present bias. In: Proceedings of the 2016 ACM Conference on Economics and
Computation, pp. 343–360 (2016)

12. Kleinberg, J., Oren, S., Raghavan, M.: Planning with multiple biases. In: Proceed-
ings of the 2017 ACM Conference on Economics and Computation, pp. 567–584
(2017)

13. Ma, H., Meir, R., Parkes, D.C., Wu-Yan, E.: Penalty bidding mechanisms for allo-
cating resources and overcoming present bias. arXiv preprint arXiv:1906.09713
(2019)

14. Oren, S., Soker, D.: Principal-agent problems with present-biased agents. In:
Fotakis, D., Markakis, E. (eds.) SAGT 2019. LNCS, vol. 11801, pp. 237–251.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30473-7 16

15. Tang, P., Teng, Y., Wang, Z., Xiao, S., Xu, Y.: Computational issues in time-
inconsistent planning. In: Thirty-First AAAI Conference on Artificial Intelligence
(2017)

16. Yan, W., Yong, J.: Time-inconsistent optimal control problems and related issues.
Modeling, Stochastic Control, Optimization, and Applications. TIVMA, vol. 164,
pp. 533–569. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25498-
8 22

http://arxiv.org/abs/1702.01677
https://doi.org/10.1007/s00224-018-9883-0
https://doi.org/10.1007/s00224-018-9883-0
http://arxiv.org/abs/1606.03062
http://arxiv.org/abs/1906.09713
https://doi.org/10.1007/978-3-030-30473-7_16
https://doi.org/10.1007/978-3-030-25498-8_22
https://doi.org/10.1007/978-3-030-25498-8_22


Improving Approximate Pure Nash
Equilibria in Congestion Games

Vipin Ravindran Vijayalakshmi1(B) and Alexander Skopalik2

1 Chair of Management Science, RWTH Aachen, Aachen, Germany
vipin.rv@oms.rwth-aachen.de

2 Mathematics of Operations Research, University of Twente, Enschede, Netherlands
a.skopalik@utwente.nl

Abstract. Congestion games constitute an important class of games to
model resource allocation by different users. As computing an exact [18]
or even an approximate [34] pure Nash equilibrium is in general PLS-
complete, Caragiannis et al. [9] present a polynomial-time algorithm that
computes a (2 + ε)-approximate pure Nash equilibria for games with lin-
ear cost functions and further results for polynomial cost functions. We
show that this factor can be improved to (1.61+ ε) and further improved
results for polynomial cost functions, by a seemingly simple modifica-
tion to their algorithm by allowing for the cost functions used during
the best response dynamics be different from the overall objective func-
tion. Interestingly, our modification to the algorithm also extends to effi-
ciently computing improved approximate pure Nash equilibria in games
with arbitrary non-decreasing resource cost functions. Additionally, our
analysis exhibits an interesting method to optimally compute universal
load dependent taxes and using linear programming duality prove tight
bounds on the PoA under universal taxation, e.g., 2.012 for linear conges-
tion games and further results for polynomial cost functions. Although
our approach yield weaker results than that in Bilò and Vinci [6], we
remark that our cost functions are locally computable and in contrast
to [6] are independent of the actual instance of the game.

Keywords: Congestion games · Approximate pure Nash equilibria ·
Price of anarchy · Universal taxes

1 Introduction

Congestion games constitute an important class of games that succinctly rep-
resents a game theoretic model for resource allocation among non-cooperative
users. A canonical example for this is the road transportation network, where
the time needed to commute is a function on the total amount of traffic in the
network. A congestion game is a cost minimization game defined by a set of
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resources E, a set of N players with strategies S1, . . . , SN ⊆ 2E , and for each
resource e ∈ E, a cost function fe : N �→ R+. Congestion games were first intro-
duced by Rosenthal [28], and using a potential function argument proved that it
belongs to a class of games in which a pure Nash equilibrium always exists, i.e.,
the game always consists of a self-emerging solution in which no user is able to
improve by unilaterally deviating.

Convergence to Pure Nash Equilibria. Fabrikant et al. [18] show that com-
puting a pure Nash equilibrium is PLS-complete. They show that regardless
of the order in which local search is performed, there are initial states from
where it could take exponential number of steps before the game converges to
a pure Nash equilibrium. Also, they show PLS-completeness for network con-
gestion games with asymmetric strategy spaces. As a positive result, Fabrikant
et al. [18] present a polynomial time algorithm to compute a pure Nash equi-
librium in certain restricted strategy spaces e.g., symmetric network congestion
games. Ackermann et al. [1] show that network congestion games with linear
cost functions are PLS-complete. However, if the set of strategies of each player
consists of the bases of a matroid over the set of resources, then they show that
the lengths of all best response sequences are polynomially bounded in the num-
ber of players and resources. This alludes to studying approximate pure Nash
equilibria in congestion games.

To our knowledge, the concept of α-approximate equilibria1 was introduced
by Roughgarden and Tardos [29] in the context of non-atomic selfish routing
games. An α-approximate pure Nash equilibrium is a state in which none of the
users can unilaterally deviate to improve by a factor of at least α. Orlin et al. [25]
show that every local search problem in PLS admits a fully polynomial time ε-
approximation scheme. Although their approach can be applied to congestion
games, this does not yield an approximate pure Nash equilibrium, but rather only
an approximate local optimum of the potential function. In case of congestion
games, Skopalik and Vöcking [34] show that in general for arbitrary cost func-
tions, finding a α-approximate pure Nash equilibrium is PLS-complete, for any
α > 1. However, for polynomial cost function (with non-negative coefficients) of
maximum degree d, Caragiannis et al. [9] present an approximation algorithm.
They present a polynomial-time algorithm that computes (2 + ε)-approximate
pure Nash equilibria for games with linear cost functions and an approximation
guarantee of dO(d) for polynomial cost functions of maximum degree d. Inter-
estingly, they use the convergence of subsets of players to a (1 + ε)-approximate
Nash equilibrium (of that subset) as a subroutine to generate a state which is
an approximation of the minimal potential function value (of that subset), e.g.
2 · opt for linear congestion games. This approximation factor of the minimal
potential then essentially turns into the approximation factor of the approxi-
mate equilibrium. Feldotto et al. [19] using a path-cycle decomposition technique
bound this approximation factor of the potential for arbitrary cost functions.

1 Here we refer to the multiplicative notion of approximation. There is also a additive
variant which is often denoted by ε-Nash.
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Our Contribution. In this paper we improve the approximation guarantee
achieved in the computation of approximate pure Nash equilibrium with the
algorithm in Caragiannis et al. [9], using a linear programming approach which
generalizes the smoothness condition in Roughgarden [30], to modify the cost
functions that users experience in the algorithm. Although we only make a seem-
ingly simple modification to their algorithm in [9], we would like to remark that
the analysis is significantly involved, and does not immediately follow from [9],
since the sub-game induced by the algorithm with the modified costs is not a
potential game anymore. Table 1 lists the results for resource cost functions that
are bounded degree polynomials of maximum degree d. Our main contribution
in this paper is presented as Theorem 1.

Table 1. Approximate pure Nash equilibria of congestion games with polynomial cost
functions of degree at most d.

d Previous Approx. [9,19] Our Approx. ρd + ε

1 2 + ε 1.61 + ε

2 6 + ε 3.35 + ε

3 20 + ε 8.60 + ε

4 111 + ε 27.46 + ε

5 571 + ε 98.14 + ε

Theorem 1. For every ε > 0, the algorithm computes a (ρd + ε)-approximate
equilibrium for every congestion game with non-decreasing cost functions that
are polynomials of maximum degree d in a number of steps which is polynomial
in the number of players and 1/ε.

Our approach also yields a simple and distributed method to compute load
dependent universal taxes that improves the inefficiency of equilibria in con-
gestion games. Table 2 lists our results for the price of anarchy (PoA) under
refundable taxation for resource cost functions that are bounded degree polyno-
mials. Bilò and Vinci [6] present an algorithm to compute load dependent taxes
that improve the price of anarchy e.g., for linear congestion games from 2.5 to 2.
Although our methods yield slightly weaker results, our cost functions are locally
computable and in contrast to [6] are independent of the actual instance of the
game. Furthermore, using linear programming duality we derive a reduction to
a selfish scheduling game on identical machines, which implies a matching lower
bound on the approximation factor. We would like to remark that our results
for PoA were achieved independently of that in Paccagnan et al. [26] by a very
similar technique.

2 Preliminaries

A strategic game denoted by the tuple
(N , (Su)u∈N , (cu)u∈N

)
consists of a finite

set of players N , and for each player u ∈ N , a finite set of strategies Su and
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Table 2. PoA under taxation in congestion games with polynomial cost functions of
degree at most d.

d PoA without taxes Optimal taxes Universal taxes Ψd

Aland et al. [2] Bilò and Vinci [6] Local search w.r.t ζsc

1 2.5 2 2.012

2 9.583 5 5.10

3 41.54 15 15.56

4 267.6 52 55.46

5 1514 203 220.41

a cost function cu : S → R+ mapping a state s ∈ S := S1 × S2 × · · · × SN to
the cost of player u ∈ N . A congestion game is a strategic game that succinctly
represents a decentralized resource allocation problem involving selfish users.

A congestion game denoted by G =
(N , E, (Su)u∈N , (fe)e∈E

)
consists of a

set of N players, N = {1, 2, . . . , N}, who compete over a set of resources E. Each
player u ∈ N has a set of strategies denoted by Su ⊆ 2E . Each resource e ∈ E has
a non-negative and non-decreasing cost function fe : N �→ R+ associated with it.
Let ne(s) denote the number of players on a resource e ∈ E in the state s, then
the cost contributed by a resource e ∈ E to each player using it is denoted by
fe(ne(s)). Therefore, the cost of a player u ∈ N in a state s = (s1, . . . , sN ) of the
game is given by cu(s) =

∑
e∈E:e∈su

fe(ne(s)). For a state s, cu(s′
u, s−u) denotes

the cost of player u, when only u deviates. A best-response move denoted by
BRu(s) is a move that minimizes a player’s cost while all the other players are
fixed to their strategy in s. With some abuse of notation, BRu(0) denotes the
best response of a player u assuming that no other player participates in the
game.

A state s ∈ S is a pure Nash equilibrium (PNE), if there exists no player who
could deviate to another strategy and decrease their cost, i.e., ∀u ∈ N , and ∀s′

u ∈
Su, cu(s) ≤ cu(s′

u, s−u). A weaker notion of PNE is the α-approximate pure Nash
equilibrium for α ≥ 1, which is a state s in which no player has an improvement
that decreases their cost by a factor of at least α, i.e, ∀u ∈ N , and ∀s′

u ∈ Su α ·
cu(s′

u, s−u) ≥ cu(s). For congestion games the exact potential function φ(s) =
∑

e∈E

∑ne(s)
i=1 fe(i), guarantees the existence of a PNE by proving that every

sequence of unilateral improving strategies converges to a PNE. We denote social
or global cost of a state s as c(s) =

∑
u∈N cu(s) and the state that minimizes

social cost is called the optimal, i.e., s∗ = arg mins∈S c(s). The inefficiency of
equilibria is measured using the price of anarchy (PoA) [22], which is the worst
case ratio between the social cost of an equilibrium and the social optimum.

A local optimum is a state s in which there is no player u ∈ N with an
alternative strategy s′

u such that c(s′
u, s−u) < c(s), and an α-approximate local

optimum is a state s in which there is no player u who has an α-move with
a strategy s′

u such that α · c(s′
u, s−u) < c(s). Let us remark that there is an
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interesting connection between a local optimum and a PNE. A PNE is a local
optimum of the potential function φ, and similarly, a local optimum is a Nash
equilibrium of a game in which we change the resource cost functions from f(x)
to the marginal contribution to social cost, e.g., to f ′(x) = xf(x)−(x−1)f(x−1).
Analogous to the PoA, the stretch of a congestion game is the worst case ratio
between the value of the potential function at an equilibrium and the potential
minimizer.

3 Approximate Equilibria in Congestion Games

In this section we aim at improving the approximation factor of an approximate
pure Nash equilibria in congestion games with arbitrary non-decreasing resource
cost functions. We extend an algorithm based on Caragiannis et al. [9] to compute
an approximate pure Nash equilibrium in congestion games with polynomial cost
functions with non-negative coefficients. A key element of this algorithm is the
so called stretch of a (sub-) game. This is the worst case ratio of the potential
function at an equilibrium and the global minimum of the potential.

This algorithm generates a sequence of improving moves that converges to
an approximate PNE in polynomial number of best-response moves. The idea is
to divide the players into blocks based on their costs and hence their prospective
ability to drop the potential of the game. In each phase of the algorithm, players
of two consecutive blocks are scheduled to make improving moves starting with
the blocks of players with high costs. One block only makes q-moves, which are
improvements by a factor of at least q which is close to 1. The other block does p-
moves, where p is slightly larger than the stretch of a q-approximate equilibrium,
and slightly smaller than the final approximation factor.

The key idea here is that blocks first converge to a q-approximate equilib-
rium, and thereby generate a state with a stretch of approximately p. Later,
when players of a block are allowed to do p-moves, there is not much poten-
tial left to move. In particular, there is no significant influence on players of
blocks that moved earlier possible. This finally results in the approximation fac-
tor of roughly p. We modify the algorithm in [9] by changing the cost seen by
the players during their q-moves to be the modified cost generated using a lin-
ear programming approach, to achieve a significantly smaller stretch, and this
results in an improved approximation factor. For the sake of completeness we
present the algorithm as Algorithm 1, but note that only the definition of θ(q)
using λ := maxe∈E λe, the definition of p in Line 1, and the use of the modified
cost functions in Line 11 has been changed. Before we analyze the correctness
of the algorithm, we describe how the modified cost functions can be computed.

Modified Cost Functions
After a long series of papers in which various authors (e.g. [2,3,14]) show upper
bounds on the price of anarchy, Roughgarden exhibited that most of them essen-
tially used the same technique, which is formalized as (λ, μ)-smoothness [30]. A
game is called (λ, μ)-smooth, if for every pair of outcomes s, s∗, it holds that,
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Algorithm 1. Computing a λ(1 + ε)-approximate pure Nash equilibria in con-
gestion games.
Input: Congestion game G =

(N , E, (Su)u∈N , (fe)e∈E

)
and ε > 0.

Output: A state of G in λ(1 + ε)-approximate pure Nash equilibrium.

1: Set q =
(
1 + 1

Nc

)
, p =

(
1

θ(q)
− 1+q+2λ

Nc

)−1

, c = 10 log
(

λ
ε

)
, Δ = maxe∈E

fe(N)
fe(1)

and

θ(q) = λ

1+ 1−q
q

Nλ
, where λ := maxe∈E λe

2: foreach u ∈ N do
3: set �u = cu (BRu (0));
4: end for
5: Set �min = minu∈N �u , �max = maxu∈N �u and ẑ = 1 + �log2ΔN2c+2 (�max/�min)�;
6: Assign players to blocks B1, B2, · · · , Bẑ such that

u ∈ Bi ⇔ �u ∈
(
�max

(
2ΔN2c+2

)−i
, �max

(
2ΔN2c+2

)−i+1
]
;

7: foreach u ∈ N do
8: set the player u to play the strategy su ← BRu (0);
9: end for

10: for phase i ← 1 to ẑ − 1 such that Bi �= ∅ do
11: while ∃u ∈ Bi with a p-move w.r.t the original cost f or ∃u ∈ Bi+1 with a

q-move w.r.t to modified cost f ′ do
12: u deviates to that best-response strategy su ← BR (s1, · · · , sn).
13: end while
14: end for

∑
u∈N cu(s∗

u, s−u) ≤ λ · c(s∗) + μ · c(s). The price of anarchy of a (λ, μ)-smooth
game with λ > 0 and μ < 1 is then at most λ

1−μ . Observe that the original
smoothness definition can be extended to allow for an arbitrary objective func-
tion h(s) instead of the social cost function c(s) =

∑
u∈N cu(s).

Definition 1. A game is (λ, μ)-smooth with respect to an objective function h,
if for every pair of outcome s, s∗, λ ·h(s∗) ≥ ∑

u∈N cu(s∗
u, s−u)−∑

u∈N cu(s)+
(1 − μ)h(s).

From the definition above, we restate the central smoothness theorem [30].

Theorem 2. Given a (λ, μ)-smooth game G with λ > 0, μ < 1, and an objective
function h, then for every equilibrium s and the global optimum s∗, h(s) ≤

λ
1−μh(s∗).

The proof is analogous to Roughgarden’s proof [30]. We remark that a vari-
ant to our extension of Roughgarden’s smoothness framework is independently
introduced as generalized smoothness in [11–13].

In the following we study games in which we change the cost functions cu

experienced by the players. By scaling the cost functions appropriately, we always
ensure that we can satisfy the above inequality with μ = 0. Observe that, given
a game G =

(N , (Su)u∈N , (cu)u∈N
)
, we can determine new cost functions c′

u

for which the value of λ is minimized, for all pairs of solutions s, s∗. However,
observe that since the state space S grows exponentially in the number of players,
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this would be computationally inefficient. Therefore, we typically have to work
with games in which the players’ costs and the objective function h can be
represented in a succinct way. In congestion games, the players cost and the
global objective function are implicitly defined by the resource cost function.
In the following, we allow for an arbitrary, additive objective function h(s),
i.e., of the form h(s) =

∑
e∈E he(ne(s)), and we can conveniently restate the

smoothness condition as follows.

Lemma 1. A congestion game is (λ, 0)-smooth with respect to an objective func-
tion h(s) =

∑
e∈E he(ne(s)), if for every non-decreasing cost function f ′

e : N �→
R+ and for every 0 ≤ n,m ≤ N, λ · he(m) ≥ mf ′

e (n + 1) − nf ′
e(n) + he(n).

Lemma 1 immediately gives rise to the following optimization problem: Given
an objective function h(s) =

∑
e∈E he(ne(s)), find functions f ′

e that minimize λ.
For a resource objective function he and a bound on the number of players N
this can be easily solved by the following linear program LPh with the variables
f ′

e(0), . . . , f ′
e(N + 1) and λe.

min λe

λe · he(m) − mf ′
e(n + 1) + nf ′

e(n) ≥ he(n) for all n ∈ [0, N ],m ∈ [0, N ]
f ′

e(n + 1) ≥ f ′
e(n) for all n ∈ [0, N ]

f ′
e(n) ≥ 0 for all n ∈ [0, N + 1]

Henceforth, we use f ′ = (f ′
e)e∈E whenever we refer to cost functions that are

the solution to an optimization problem and denote the players cost by c′
u(s) =∑

e∈su
f ′

e(ne(s)). Observe that LPh is compact, i.e, the number of constraints
and variables are polynomially bounded in the number of players. Hence, we
state the following theorem.

Theorem 3. Optimal resource cost functions f ′
e for objective functions he can

be computed in polynomial time.

Improving the Approximation Factor
In order to achieve a better approximation factor than that in Caragiannis
et al. [9] we modify the algorithm in [9] by changing the cost functions seen
by the players during their q-moves to be the modified cost generated by the
linear program LPφ arising from Lemma 1 with the potential as its objective
function. This results in an improved approximation factor λ(1 + ε) for ε > 0,
where λ := maxe∈E λe is the optimal solution value of LPφ that we state below.
Unfortunately, it is not possible to simply use the LP above with the potential
function as its objective function, since Algorithm 1 uses the potential func-
tion argument for a subset of players F ⊆ N . More precisely, it needs that
the approximation factor also holds for an arbitrary subset of players and its
induced subgame. Let us denote by nF

e (s) the number of players in F that use
the resource e in the state s. Define the potential of this subset as the potential in
the subgame induced by these players in s, i.e, φF (s) :=

∑nF
e (s)

i=1 fe(i+n
N\F
e (s)).

With slight abuse of notation, we remark that φF (s) and φF (s) are equiv-
alent. Now consider an arbitrary subset of players F ⊆ N and a state s.
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Then, GF
s := (F,E, (Su)u∈F , (fF

e )e∈E) is the subgame induced by freezing the
remaining players from N \F , with fF

e (x) := fe(x+n
N\F
e (s)), where n

N\F
e (s) is

the number of players outside of F on resource e in the state s. Henceforth, for our
purposes, the following definition is a stronger notion of the (λ, 0)-smoothness.

Definition 2. A strategic game is strongly (λ, 0)-smooth with respect to an
objective function h, and for some λ > 0, if for every subset F ⊆ N and for
every s, s∗ ∈ S, λ · hF (s∗) ≥ ∑

u∈F c′
u(s∗

u, s−u) − ∑
u∈F c′

u(s) + hF (s), where
hF (s) :=

∑
e∈E he(ne(s)) − he(n

N\F
e (s)).

We would like to remark that all future references to (λ, 0)-smoothness in Sect. 3
imply strong (λ, 0)-smoothness. As a consequence of Definition 2, we state the
following lemma.

Lemma 2. For every congestion game G with non-decreasing cost functions
f ′

e : N �→ R+, which is (λ, 0)-smooth with respect to the potential function φe for
every subgame GF

s induced by an arbitrary subset F ⊆ N , and arbitrary states
s, s∗ ∈ S, i.e., λ · φF

e (s∗) − nF
e (s∗) · f ′

e(ne(s) + 1) + nF
e (s) · f ′

e(ne(s)) ≥ φF
e (s),

with λ > 0, is also strongly (λ, 0)-smooth.

This subset property is of particular importance for the algorithm to compute
an approximate equilibrium, but may be of independent interest as well. We are
not aware of other approximation algorithms that can guarantee this property
as well. From Lemma 2, for any resource e ∈ E, the modified cost functions f ′

e

are computed by the following linear program LPφ.

min λe

λe

m+z∑

i=z+1

fe(i) − mf ′
e(n + z + 1) + nf ′

e(n + z) ≥
n+z∑

i=z+1

fe(i) ∀(n + z),m ∈ [0, N ]

f ′
e(n + 1) ≥ f ′

e(n) ∀n ∈ [0, N ]
f ′

e(n) ≥ 0 ∀n ∈ [0, N + 1]

We are now ready to prove Theorem 1, by restating it as follows.

Theorem 4. For every constant ε > 0, Algorithm 1 computes a λ (1 + ε)-
approximate equilibrium for every congestion game with non-decreasing cost
functions, and λ = maxe∈E λe, in number of steps which is polynomial in the
number of players, Δ := f(N)

f(1) and 1/ε.

The proof of the theorem follows the proof scheme of Caragiannis et al. [9],
which we have to rework to accommodate for our modification. The complete
proof of the theorem is omitted due to space constraints (see full version [33]).
Note that for cost functions which are polynomials of maximum degree d with
non negative coefficients, Δ is polynomial in the number of players. In the fol-
lowing, we sketch the main proof idea. Here, we have to take into account that
the game played by the players from Bi ∪Bi+1 in phase i is no longer a potential
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game as the players use different cost functions. However, we can show that the
strong smoothness constraints of the LP guarantees that the values of the new
cost functions can be conveniently bounded.

Lemma 3. Let f ′ to be the modified cost functions generated by the LPφ and f
to be the original cost functions. Then for all i ≥ 1, fe(i) ≤ f ′

e(i) ≤ λfe(i).

To bound the stretch of any (sub-)game in a q-approximate equilibrium the
following lemma is useful. We remark that for this lemma, the property that the
induced subgames are also smooth (Lemma 2) is crucial.

Lemma 4. Let s be any q-approximate equilibrium with respect to the modified
cost function, and s∗ be a strategy profile with minimal potential. Then for every
F ⊆ N , φF (s) ≤ θ(q) · φF (s∗).

We now bound the potential of the set of players Ri ⊆ Bi ∪ Bi+1 that move in
phase i. Most importantly, the players of Bi, were in an q-approximate equilib-
rium with respect to c′

u at the end of the previous round. Hence, for every subset
of Bi, we can exploit Lemma 4 to obtain a small upper bound on the potential
amongst players Ri participating in a phase i at the beginning of the phase. For
a phase i, let bi := 	max

(
2ΔN2c+2

)−i+1 and si denote the state of the game
after the execution of phase i.

Lemma 5. For every phase i ≥ 2, it holds that φRi
(si−1) ≤ bi

Nc .

To analyze convergence, we have to take into account the fact that players use
different latency functions. However, it turns out that the Rosenthal potential
with respect to the modified cost functions can serve as an approximate potential
function, i.e., it also decreases for the p-moves of players using the original cost
functions.

Lemma 6. Let u ∈ N be a player that makes a p-move with respect to the
original cost function f . Then, p · cu(s′

u, s−u) − cu(s) ≥ q · c′
u(s′

u, s−u) − c′
u(s),

where cu and c′
u are the cost of the player u with respect to f and f ′, respectively.

Using Lemma 5 and Lemma 6, we can bound the runtime which has to be
slightly larger and has to depend on Δ to allow for arbitrary non-decreasing
functions.

Lemma 7. The algorithm terminates after at most O(λΔ3N5c+5) best-response
moves.

The next lemma shows that when players involved in phases i ≥ 2 make their
moves, they do not increase the cost of players in the blocks B1, B2, · · · , Bi−1

significantly.

Lemma 8. Let u be a player in the block Bt, where t ≤ ẑ−2. Let s′
u be a strategy

different from the one assigned to u by the algorithm at the end of the phase t.
Then, for each phase i ≥ t, it holds that, cu(si) ≤ p·cu(s′

u, si
−u)+ 2p+1

Nc

∑i
k=t+1 bk.
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As no players’ costs and alternatives is significantly influenced by moves in
later blocks, they remain in an approximate equilibrium which can be used to
finally prove the correctness of the algorithm.

Lemma 9. The state computed by the algorithm is a p
(
1 + 5

Nc

)
-approximate

equilibrium.

Linear and Polynomial Cost Functions. We now turn to the important class
of polynomial cost functions with non-negative coefficients. We can show that
for polynomials of small degree, it is sufficient to restrict the attention to the
first K = 150 values of the cost functions. Hence, we only need to solve a linear
program of constant size. The following lemma states that for the larger values
of n and appropriate values of λd and ν, we can easily obtain (λd, 0)-smoothness
by choosing f ′(n) = νnd. We further note, that for a given λd > 0, and for each
n and z we only need to consider a limited range for m.

Lemma 10. For d ≤ 5 and n ≥ 150, the function f ′(n) = νnd with ν = d+1
√

λd

is (λd, 0)-smooth with respect to the potential function φ for an appropriate λd.

Lemma 11. For fixed n, z, if λd · ∑m+z
i=z+1 id − mf ′(n + z + 1) + nf ′(n + z) ≥

∑n+z
i=z+1 id is true ∀m ≤ (n+z+1)2(d+1), it also holds ∀m > (n+z+1)2(d+1).

By Lemma 10 and 11 it remains to solve a linear program of constant size to
obtain our results ρd as listed in Table 1 for d ≤ 5.

Corollary 1. For every congestion game with polynomial cost functions of
degree d ≤ 5, and for every constant ε > 0, the algorithm computes a (ρd + ε)-
approximate pure Nash equilibrium in polynomial time.

Lower Bound. Any feasible solution to the linear program LPh emerging from
Lemma 1 are cost functions f ′

e : N �→ R+ that guarantees that the objective
value associated with the function h is at most λ. We can show that this is in
fact optimal. That is, LPh is not only optimizing the smoothness inequality, but
also that there exists no other resource cost function that can guarantee a smaller
objective value than λ. To that end, we consider the dual of LPh (LPDh) and
show that for every feasible solution of the dual, we can construct an instance of
a selfish scheduling game on identical machines with an objective value that is
equal to the value of the dual LP solution, regardless of the actual cost function
of the game.

Lemma 12. Every optimal solution of LPDh with objective value λ can be
turned into an instance of selfish scheduling on identical machines with an objec-
tive value of λ − ε for an arbitrary ε > 0.
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4 Extensions

The smoothness framework introduced by Roughgarden [30] also extends to
equilibrium concepts such as mixed Nash and (coarse) correlated equilibria. The
same is true for our variant with respect to an arbitrary objective function h. We
now look at an extension of Lemma 1 for computing load dependent universal
taxes in congestion games.

Load Dependent Universal Taxes. One of the many approaches used to
improve the PoA is the introduction of taxes. For a set of resources E, the load
dependent tax function t, is the excess cost incurred by the user on a resource
e ∈ E with cost f(x), e.g., f ′(x) = f(x) + t(x). We remark that the taxes we
consider in this work are refundable, and do not contribute to the overall cost
of the game.

Meyers and Schulz [24] studied the complexity of computing an optimal
solution in a congestion game and prove NP-hardness. Makarychev and Sviri-
denko [23] give the best known approximation algorithm using randomized
rounding on a natural feasibility LP with approximation factor Bd+1 which is
the d + 1th Bell number, where d is the maximum degree of the polynomial cost
function. Interestingly, the same was later achieved using load dependent taxes
by Bilò and Vinci [6], where they apply the primal-dual method [4] to upper
bound the PoA under refundable taxation in congestion games. They deter-
mine a load specific taxation to show that the PoA is at most [O(d/log d)]d+1

under refundable taxation. However, we remark that the load dependent taxes
computed in [6] aren’t universal, i.e, they are sensitive to the instance of the
game.

We give a rather simple approach to locally (on resource) compute load
dependent universal taxes. Table 2 lists the improved PoA bounds under refund-
able taxation using our technique for congestion games with resource cost func-
tions that are bounded degree polynomials of maximum degree d. By the smooth-
ness argument [30] the new bounds immediately extends to mixed, (coarse) corre-
lated equilibria and outcomes generated by no-regret sequences. Moreover, since
the linear program that computes the cost or tax function does only depend on
the original cost function of that resource, the computed taxes are robust against
perturbations of the instance such as adding or removing of resources or players.

Optimal Universal Taxes. We seek to compute universal load dependent taxes
that minimize the PoA under refundable taxation. We consider the following
optimization problem. For an objective function h(s) =

∑
e∈E ne(s) · fe(ne(s)),

find functions f ′
e that satisfies Lemma 1 minimizing λ. For a resource objective

function he(ne(s)) = ne(s) · fe(ne(s)) and a bound on the number of players N ,
this can be easily solved by the following linear program LPsc with the variables
f ′

e(0), . . . , f ′
e(N + 1) and λe.

min λe

λe · he(m) − mf ′
e(n + 1) + nf ′

e(n) ≥ he(n) for all n ∈ [0, N ],m ∈ [0, N ]
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f ′
e(n + 1) ≥ f ′

e(n) ∀n ∈ [0, N ]
f ′

e(n) ≥ 0 for all n ∈ [0, N + 1]

Observe that we can solve LPsc locally for each resource with cost function fe.
For the LP solution λe and f ′

e(n), define the tax function as te(n) := f ′
e(n) −

fe(n). The resulting price of anarchy under taxation is then λ := maxe∈E λe.
From Lemma 12 we remark that the taxes computed by LPsc are optimal. Evi-
dently our lower bound of 2.012 for congestion games with linear cost func-
tions matches the price of anarchy bound for selfish scheduling games on iden-
tical machines [10]. For any (distributed) local search algorithm (such as Bjelde
et al. [8]) that seeks to minimizes the social cost c(s) =

∑
e∈E ne(s)fe(ne(s)), we

define ζsc(s) :=
∑

e∈E

∑ne(s)
i=1 f ′

e(i) as a pseudo-potential function. Then, from
Lemma 1 it is guaranteed that every local optimum with respect to ζsc(s) has
an approximation factor of at most λ := maxe∈E λe with respect to the social
cost c(s). Using approximate local search by Orlin et al. [25], we can compute a
solution close to that in polynomial time, and more so to state the following.

Corollary 2. For every congestion game the ε-local search algorithm using
ζsc(s), produces a λ(1 + ε) local optimum in running time polynomial in the
input length and 1/ε.

Linear and Polynomial Cost Functions. For the interesting case of polyno-
mial resource cost functions of maximum degree d, similar to Sect. 3, we show
that for polynomials of small degree, it is sufficient to restrict the attention to
the first 1154 values of the cost functions. Hence, we only need solve a linear
program of constant size. We further note, that for a fixed λd > 0, and for each
n we only need to consider a limited range for m in the LPsc.

Lemma 13. For d ≤ 5 and n ≥ 1154, the function f ′(n) = νnd with ν =
d+1

√
(d + 1)λd is (λd, 0)-smooth with respect to h(n) = nd+1 and an appropriate

λd.

Lemma 14. For a fixed n, if λd · md+1 − mf(n + 1) + nf(n) ≥ nd+1 is true for
all m ≤ (n + 1)2, it also holds for all m > (n + 1)2.

As a consequence of Lemma 13 and 14 it only remains to solve a linear
program of constant size for each d ≤ 5 to obtain our results Ψd (listed in
Table 2). Our results match the recent results that were obtained independently
by Paccagnan et al. [26].

Corollary 3. For every congestion game with polynomial cost functions of
degree d ≤ 5, each cost function f ′

e can be computed in constant time and the
resulting game is (Ψd, 0)-smooth with respect to social cost.

5 Conclusion and Open Problems

The most interesting question which was the initial motivation for this work
is the complexity of approximate equilibria. We find it very surprising that
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the technique yields such a significant improvement, e.g., for linear congestion
games from 2 to 1.61, by using essentially the same algorithm of Caragiannis
et al. [9]. However, the algorithmic technique is limited only by the lower bound
for approximation factor of the stretch implied in Roughgarden [31]. Hence, fur-
ther significant improvements may need new algorithmic ideas. On the lower
bound side, not much is known for linear or polynomial congestion games. The
only computational lower bound for approximate equilibria is from Skopalik and
Vöcking [34] using unnatural, and very steep cost functions.

We believe that the technique of perturbing the instance of an (optimization)
problem such that a simple local search heuristic (or an equilibrium) guarantees
an improved approximation ratio can be applied in other settings as well. It
would be interesting to see, whether one can achieve similar results for variants
and generalizations of congestion games such as weighted [3], atomic- or integer-
splittable [27,32] congestion games, scheduling games [16,17,20], etc. Consid-
ering other heuristics such as greedy or one-round walks [5,7,15,21] would be
another natural direction.
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34. Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceed-
ings of the 40th Annual ACM Symposium on Theory of Computing. STOC (2008)

https://arxiv.org/abs/2007.15520


The Curse of Rationality in Sequential
Scheduling Games

Cong Chen1(B) and Yinfeng Xu2

1 School of Business Administration, South China University of Technology,
Guangzhou, China

chencong@scut.edu.cn
2 School of Management, Xi’an Jiaotong University, Xi’an, China

Abstract. Despite the emphases on computability issues in research of
algorithmic game theory, the limited computational capacity of players
have received far less attention. This work examines how different levels
of players’ computational ability (or “rationality”) impact the outcomes
of sequential scheduling games. Surprisingly, our results show that a lower
level of rationality of players may lead to better equilibria.

More specifically, we characterize the sequential price of anarchy
(SPoA) under two different models of bounded rationality, namely, play-
ers with k-lookahead and simple-minded players. The model in which
players have k-lookahead interpolates between the “perfect rationality”
(k = n − 1) and “online greedy” (k = 0). Our results show that the
inefficiency of equilibria (SPoA) increases in k the degree of lookahead:
SPoA = O(k2) for two machines and SPoA = O

(
2k min{mk, n})

for
m machines, where n is the number of players. Moreover, when play-
ers are simple-minded, the SPoA is exactly m, which coincides with the
performance of “online greedy”.

Keywords: Scheduling game · Subgame-perfect equilibrium ·
Bounded rationality · Sequential price of anarchy

1 Introduction

Research on algorithmic game theory – a fascinating fusion of both game theory
and algorithms – has attracted a lot of computer scientists and economists. The
core of this research field is to take the computability (computational complexity)
into consideration while studying game theory problems, such as the complexity
of finding Nash equilibria and the computational issues in mechanism design.
However, the computational ability of players has received little attention from
the community, despite its strong ties to computational complexity and the
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Table 1. An example from [4] with 5 jobs and 2 machines, where the SPE is shown as
gray boxes.

Job 1 Job 2 Job 3 Job 4 Job 5

Machine 1 3 − 11ε ε ε 1 − 2ε 2 − 8ε

Machine 2 ε 2 − 9ε 2 − 8ε 1 − 2ε 1 − 2ε

actual behavior of players playing a game. Most research assumes the players
always have the ability to compute an optimal decision, even though sometimes
finding an optimal decision is a very difficult problem (e.g. NPC problem). Our
work examines the impact of different levels of computational ability (also termed
as “rationality” in this paper) of players on the outcomes of sequential scheduling
games. Surprisingly, the results show that a lower level of rationality may produce
better equilibrium outcomes.

Sequential Scheduling Game (On Unrelated Machines). There are n jobs N =
{1, 2, . . . , n} as players and m machines M = {1, 2, . . . , m} as strategies. Each
job j will take pi,j units of time if processed by machine i. The jobs sequentially
choose one of the machines for processing, starting with job 1 and ending with
job n. The load of a machine is the total processing times of the jobs processed
on it. The goal of each job is to choose a machine with a smallest possible load.

When a job makes decision, he knows the choices made by his predecessors
as well as the processing times of his successors. However, it is very hard for the
job to compute an optimal decision. Indeed, [11] showed that for the unrelated
machine scheduling computing a subgame-perfect equilibrium (SPE) is PSPACE-
complete. One can glance at the example shown in Table 1 to see how hard to
find the optimal decision (in gray box) for job 1, and how easily the job may
deviate from his optimal choice (to choose machine 2 with a very small processing
time ε) without enough computational ability.

Price of Anarchy and the Curse of Rationality. The concept of the price of anar-
chy (PoA), proposed by [8] to assess the inefficiency of equilibria outcomes, has
attracted many research over the past two decades. To further understand the
quality of SPEs outcomes of a game, [11] introduced the sequential price of anar-
chy (SPoA). While the PoA compares the cost of a worst case Nash equilibrium
to the optimal social cost, the SPoA considers the outcomes of a sequential game
where players, instead of choosing their strategies simultaneously, choose their
strategies sequentially in some arbitrary order.

It turns out the PoA is very bad (unbounded) for even two unrelated
machines, and introducing sequentiality only slightly improves the outcomes –
the SPoA grows linearly with the number n of players [4]. However, when we
look carefully at the worst case scenario, which gives the lower bound of SPoA
for two unrelated machines in [4], we find that the equilibrium is very unnatural
and can hardly be achieved in reality, unless each player can solve a PSPACE-
complete problem while making decision. The example in Table 1 already reveals
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the phenomenon that the first two players have to make a very complex compu-
tation to counter-intuitively choose a machine with a very high processing time
rather than the one with almost 0 processing time.

Perhaps surprisingly, instead of assuming all the players have such strong
rationality, if players are myopic (i.e., decisions are made only based on the
predecessors’ decision), the SPoA will be significantly improved to 2 for two
unrelated machines, where the result can be deduced from the online greedy
scheduling problem [1]. This result illustrates that full rationality may have a
negative effect on the quality of outcomes. Our work mainly investigates the
impact of different levels of rationality on the SPoA for the unrelated machines
scheduling game.

Modeling the Bounded Rationality. The notion of bounded rationality can be
traced back to the pioneering work of [14]. Herbert Simon defines bounded
rationality as “rational choice that takes account the cognitive limitations of
the decision-maker – limitations of both knowledge and computational capac-
ity”. Frank Hahn remarks that “there is only one way to be perfectly rational,
while there are an infinity of ways to be partially rational...” [10]. Indeed, there
are tons of literature tried to model the bounded rationality. We refer the readers
to some surveys (see, e.g., [6,10,15]) for details.

This paper propose two ways to model the bounded rationality of players:

1. Players with k-lookahead. We suppose each player only considers the next few
successors’ information for computing his decision, in addition to the known
predecessors’ decisions. We say a player has a k-lookahead ability if he can
compute the optimal decision depending on his next k successors’ information
and the predecessors’ decisions. Specifically, when a player makes decision, he
will draw a (k +1)-level game tree (including the node of himself), assign the
corresponding costs to the leaves, and then perform backward induction to
decide which move to make. Similar setting can also be found in [2,7,9,12].

2. Simple-minded players. As an extension, we also examine a situation where
players make decisions only via simple calculations. When a so-called simple-
minded player makes decision, he simply assumes the successors will choose
machines with minimum processing times, so he can easily find a best choice
depending on the assumption. The setting is also very natural in the unrelated
machine scheduling, since choosing a machine with minimum processing time
is mostly not a bad idea, and assuming other players doing so makes the
prediction of other players’ behaviors much simpler.

Our Contributions. This paper mainly investigates how the degree of rationality
impacts the efficiency of SPEs. We characterize the SPoA under two different
models of bounded rationality, namely, players with k-lookahead and simple-
minded players. In general, quantifying the SPoA is a challenging task, and no
general techniques are known in the literature. In this paper, the key idea of
most of our proofs is to characterize the amount of increase of the makespan or
load of machine due to an additional job or set of jobs. Out main results are as
follows (see also Table 2):



298 C. Chen and Y. Xu

Table 2. A summary of results, some of which achieved in this paper are marked
with “∗”

2 machines m machines

Online greedy (0-lookahead) 2 m

1-lookahead 2 ∗ O(m) ∗

k-lookahead O(k2) ∗ O
(
2k min{mk, n}) ∗

Perfect rationality (n-lookahead) Θ(n) O(2n)

Simple-minded 2 ∗ m ∗

1. In Sect. 3, we first show that for sequential scheduling game on 2 unrelated
machines the SPoA is 2 for players with 1-lookahead, which coincides with
the case of 0-lookahead – i.e., online greedy. This result perhaps suggests
that the strategic behavior of only one player foreseen does not bring any
negative influence on the current decision-maker. However, we will show in
the following that the interaction of more than 2 players (i.e., 2-lookahead)
may have a negative effect on the decision being made.

2. For the players with k-lookahead, we obtain that SPoA = O(k2) for 2 unre-
lated machines. This shows that the more lookahead the players have the
worst the SPoA will be. But if we compare this result to the “perfect ratio-
nality” case where the SPoA is Θ(n) [4], which grows linearly with the number
of players n, bounded rationality significantly improves the quality of SPEs.
(These results are presented in Sect. 4.)

3. We also characterize the SPoA for general m unrelated machines case. We
prove that SPoA = O

(
2k min{mk, n})

for players with k-lookahead, which
also improves the O(2n) upper bound for the perfect rationality case. (See
Sect. 4.)

4. At last, another bounded rationality model where the players are simple-
minded is discussed. It turns out that if assuming all the predecessors follow
a simple rule – choosing the machine with minimum processing time – the
player will make a decision as good as the online greedy, that is, SPoA = m.
(The results can be found in Sect. 5.)

Further Related Work. The idea of limited lookahead first appeared in the 1950s
[13]. Recently, the idea has been investigated in some game-theoretic setting by
several research [2,7,9,12]. In particular, [2] and [7] have very similar setting to
our k-lookahead model. However, they both focused on the congestion games.
[2] studied the existence of k-lookahead equilibria and the PoA for 2-lookahead
(corresponding to 1-lookahead in our setting) equilibria in congestion games with
linear latencies. [7] focused on the equilibria which are not only SPEs but also
Nash equilibria. They show that for generic simple congestion games the SPoA
coincides with the PoA (independently of k). In fact, both of the above work
failed to reveal what the role of k plays in the game, which is distinguished in
the unrelated machines scheduling game by our work.
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The SPoA for unrelated machines was first analyzed by [11], showing that
n ≤ SPoA ≤ m · 2n. The bounds are improved to 2Ω(

√
n) ≤ SPoA ≤ 2n by [3].

However, the above lower bounds use a non-constant number of machines, which
means it is still unclear whether the lower bound is constant for constant number
of machines. [4] answered the question, showing that the SPoA is not constant
for even two machines, that is, SPoA = Ω(n). They also provided a matching
upper bound, concluding that SPoA = Θ(n) for two unrelated machines.

2 Preliminaries

We formally define the sequential scheduling game on unrelated machines and
our two models of bounded rationality – players with k-lookahead and simple-
minded players.

Sequential Scheduling Game on Unrelated Machines. Let [a : b] = {a, a+1, . . . , b}
and [b] = [1 : b] where a, b ∈ N. Unrelated machine scheduling can be defined
as a tuple (N,M, (pi,j)i∈N,j∈M ), where N = [n] is the a set of jobs/players,
M = [m] is the set of machines/strategies, and pi,j is the processing time of job
j on machine i. In sequential scheduling game, the jobs sequentially choose one
of the machines for processing, starting with job 1 and ending with job n. A
schedule σ = (σ1, σ2, . . . , σn) represents the decisions of the jobs, where σj is the
machine which job j chooses. The load Li(N) of a machine i in schedule σ of
jobs N is the sum of the processing times of all jobs who choose machine i, that
is, Li(N) =

∑
j:σj=i pi,j . When job j makes decision, he will try to minimize his

own cost Lσj
(N) – the load of machine he chooses – taking into account all his

predecessors and successors. The schedule σ is thus decided. This is an extensive
form game, and so it always possesses subgame-perfect equilibria, which can be
calculated by backward induction.

Figure 1 gives an example of 3 jobs, in which the “perfect rationality” part
depicts the game tree for this example. In this game, job 1 has to draw the whole
tree, calculate the costs at each of the 23 = 8 leaves, and find the best choice by
backward induction. The following jobs will also go through an associated subtree
in a similarly fashion. The bold lines show the subgame-perfect strategies, and
the (unique) path from the root to the leaf corresponding to the black circle is
the equilibrium solution (i.e., the schedule is (2, 1, 1)).

Players with k-Lookahead. In this model, we suppose each player can only foresee
the next k players. Let Kj = [j + 1 : j + k] be the lookahead set for job j, where
|Kj | = k. When a player makes decision, he needs to draw a (k + 1)-level game
tree (consists of himself and the successors Kj), calculate the costs for this tree
(with only 2k leaves), and find the best choose by backward induction.

The “1-lookahead” part in Fig. 1 gives an example of 3 jobs when players
have 1-lookahead. In this game, job 1 only knows the information of the next
job (i.e., job 2), and considers the job as the last job. After job 1 makes decision
by backward induction, job 2 will compute a best choose according to job 1’s
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Fig. 1. An example of 3 jobs and 2 machines.

decision and the next job’s information. As shown in the figure, the SPE for this
example is (1, 2, 1).

Simple-Minded Players. Simple-minded players ignore the strategical behaviors
of their successors, and simply assume the successors will choose machines with
minimum processing times. According to this, the players can directly calculate
the load of each machine and find a best one.

In Fig. 1, the “simple-minded” part illustrates the decision process for each
player. It shows that each player just needs to calculate the costs for only 2
leaves, and selects one machine with a lower cost. The resulting SPE for this
example is (1, 1, 2).

Inefficiency of Equilibria. The (social) cost of a schedule/equilibrium is often
defined as the makespan, the maximum load over all machines. To quantify
the inefficiency of SPEs, [11] introduced the sequential price of anarchy (SPoA)
which compares the worst SPE with the optimal social cost:

SPoA = sup
J

Lmax(J)
OPT (J)

,

where J takes over all possible job sets, and OPT (J) is the makespan of the
optimal schedule (a schedule generated by a central authority to minimize the
social cost, and is not necessary an equilibrium) for jobs J .

For example, see the instance in Fig. 1. The optimal schedule is (1, 1, 2) with
a makespan of 1 + ε. Since the SPE under perfect rationality is (2, 1, 1) with a
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makespan of 3 − 4ε, the SPoA for this example is 3 (taking ε → 0). However,
when players have only 1-lookahead, the SPoA is 2 (taking ε → 0). Surprisingly,
the SPE generated by simple-minded players is exactly the optimal schedule,
that is, SPoA = 1.

Additional Notation. We introduce a notation of initial load D = (D1,
D2, . . . , Dm) on the machines, meaning the machines already have some ini-
tial load before the jobs playing a game. Thus, Li(D, J) is the load of machine
i after the set J of jobs play sequentially on the machines with a initial
load D, and Lmax(D, J) = maxi∈M Li(D, J) is the corresponding makespan.
Notice that when J = ∅, Lmax(D, ∅) = ‖D‖∞. Sometimes we use D(�) =
(D1(�),D2(�), . . . , Dm(�)) to represent the load of each machine due to the first
� ∈ N jobs, where Di(�) =

∑
j∈{j|σj=i,1≤j≤�} pi,j for i = 1, . . . ,m.

To denote the maximum possible increase of the makespan due to the set J
of jobs for any initial load D ∈ R

M
+ , we define:

ΔL(J) = sup
D∈RM

+

{Lmax(D, J) − ‖D‖∞} .

For each specific machine, we also define:

ΔLi(D, J) = Li(D, J) − ‖D‖∞.

For simplicity, we let pj = mini∈M pi,j be the minimum processing time of
job j, and xi,j represent whether job j chooses machine i in the sequential game,
i.e.,

xi,j =

{
1, if job j chooses machine i, that is, σj = i;
0, otherwise.

3 Players with 1-Lookahead on Two Unrelated Machines

In this section, we analyze the SPoA for two unrelated machine when players
has 1-lookahead. We first prove a main lemma showing that the makespan is
bounded by the total minimum processing time:

Lemma 1. Lmax(0, N) ≤ ∑
j∈N pj.

Proof. Since Lmax(0, N) = ‖D(n)‖∞ by definition, we just prove that
‖D(n)‖∞ ≤ ∑

j∈N pj . First, we will define a set of {n0, n1, . . . , nu} where
n� ∈ {0, 1, . . . , n} for � = 0, 1, . . . , u and nu = n. Then we prove a claim that
‖D(n�)‖∞ ≤ ∑n�

j=1 pj for � = 0, 1, . . . , u, which indicates ‖D(n)‖∞ ≤ ∑
j∈N pj

and proves this lemma.
For a given set N of jobs, their processing times pi,j and decisions xi,j in the

sequential game, we define a set of {n0, n1, . . . , nu} by Algorithm 1.
We next show that the two “while loops” in Algorithm 1 (Line 5 and 8) will

end at some v ≤ n. In other words, for example, if D1(v−1)+p1,v ≤ D2(v−1)+
p2,v (the first “while loop”), there must be some v′ (v ≤ v′ ≤ n) that x1,v′ = 1.
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Algorithm 1: Definition of {n0, n1, . . . , nu}
Input: pi,j and xi,j for i = 1, 2 and j = 1, . . . , n.
Output: {n0, n1, . . . , nu}.

1 u = 0; v = 1; D1(0) = 0; D2(0) = 0; n0 = 0;
2 Di(�) =

∑
1≤j≤� pi,j · xi,j for � = 1, . . . , n and i = 1, 2;

3 while v ≤ n do
4 if D1(v − 1)+ p1,v ≤ D2(v − 1)+ p2,v then (nu is the next v that x1,v == 1)
5 while x1,v == 0 do v++;
6 u++; nu = v; v++;

7 else (nu is the next v that x2,v == 1)
8 while x2,v == 0 do v++;
9 u++; nu = v; v++;

We take the first “while loop” as an example and the analysis for the second one
is similar. When D1(v−1)+p1,v ≤ D2(v−1)+p2,v, machine 1 is a better choice for
player v regardless the decision of next player v + 1. If player v chooses machine
1 (i.e., x1,v = 1), the loop ends. However, if player v chooses machine 2 (i.e.,
x1,v = 0), the only reason is that player v knows player v+1 will choose machine 1
and D1(v−1)+p1,v+p1,v+1 ≥ D2(v−1)+p2,v. What makes layer v believe player
v+1 will choose machine 1 is that D1(v−1)+p1,v +p1,v+1 ≤ D2(v−1)+p2,v+1.
Therefore, for player v +1 (after player v has made his/her decision), machine 1
is a better choice regardless the decision of next player v + 2. Similarly, if player
v + 1 chooses machine 2 (i.e., x1,v+1 = 0), it holds that player v + 1 believes the
next player v + 2 will also choose machine 1. In a similar fashion, we know that
if player v′′ chooses machine 2 (i.e., x1,v′′ = 0), player v′′ +1 will choose machine
1 regardless the decision of next player v′′ + 2. Therefore, when player v′′ + 1 is
the last player (i.e. v′′ + 1 = n), player v′′ + 1 will surely choose machine 1 (i.e.,
x1,v′′+1 = 1) and the loop ends.

Given the set {n0, n1, . . . , nu} where n0 = 0 and nu = n, we claim that:

Claim 1. ‖D(n�)‖∞ ≤ ∑n�

j=1 pj for � = 0, 1, . . . , u.

We prove the claim by induction on � = 0, 1, . . . , u. The base case (� = 0) is
trivial, since ‖D(0)‖∞ = 0 and

∑0
j=1 pj = 0. Assume ‖D(n�)‖∞ ≤ ∑n�

j=1 pj

holds for � = v. We then prove that

‖D(nv′)‖∞ ≤
nv′∑

j=1

pj , (1)

where v′ = v+1. Since the first nv jobs create load D(nv) on the machines (with
a makespan ‖D(nv)‖∞), we only need to show that the increment of makespan
after the allocation of job {nv + 1, nv + 2, . . . , nv′} is no greater than the total
minimum processing times of jobs {nv + 1, nv + 2, . . . , nv′}, namely,
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‖D(nv′)‖∞ − ‖D(nv)‖∞ ≤
nv′∑

j=nv+1

pj .

Therefore, we focus on the subgame played by players {nv + 1, nv + 2, . . . , nv′}.
Without loss of generality, we consider the case D1(nv) + p1,nv+1 ≤ D2(nv) +
p2,nv+1 (the proof for the other case D1(nv) + p1,nv+1 > D2(nv) + p2,nv+1 is
similar). According to Algorithm 1, jobs {nv + 1, nv + 2, . . . , nv′ − 1} choose
machine 2 and job nv′ chooses machine 1 (as shown in the following Table 3
where gray boxes represent the choices). We know that

‖D(nv′)‖∞ = max

⎧
⎨

⎩
D1(nv) + p1,nv′ , D2(nv) +

nv′ −1∑

j=nv+1

p2,j

⎫
⎬

⎭
. (2)

Table 3. Decisions of jobs {nv + 1, nv + 2, . . . , nv′}

Machine 1 D1(nv) p1,nv+1 p1,nv+2 . . . p1,nv′ −1 p1,nv′

Machine 2 D2(nv) p2,nv+1 p2,nv+2 . . . p2,nv′ −1 p2,nv′

In this case (D1(nv) + p1,nv+1 ≤ D2(nv) + p2,nv+1), we first give a upper
bound on D1(nv) + p1,nv+1 prepared for the following proof. Since

D1(nv) + p1,nv+1 ≤ D2(nv) + p2,nv+1 ≤ max {D1(nv), D2(nv)} + p2,nv+1

and
D1(nv) + p1,nv+1 ≤ max {D1(nv), D2(nv)} + p1,nv+1 ,

we obtain that

D1(nv) + p1,nv+1 ≤ max {D1(nv), D2(nv)} + min {p1,nv+1, p2,nv+1}
= ‖D(nv)‖∞ + pnv+1 . (3)

We then analyze properties that holds for the subgame. According to the
decisions of players, we know that for any n′ ∈ {nv + 1, nv + 2, . . . , nv′ − 1}, the
reason why player n′ choose machine 2 is that he/she believes player n′ + 1 will
choose machine 1 if he/she choose machine 1, i.e.,

D1(nv) + p1,n′ + p1,n′+1 ≤ D2(nv) +
n′−1∑

j=nv+1

p2,j + p2,n′+1 (4)

Thus, machine 2 is a better choice for player n′, i.e.,

D2(nv) +
n′

∑

j=nv+1

p2,j ≤ D1(nv) + p1,n′ + p1,n′+1 . (5)
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Define a function

Φ(n′) = max

⎧
⎨

⎩
D1(nv) + p1,n′+1 , D2(nv) +

n′
∑

j=nv+1

p2,j

⎫
⎬

⎭
.

Due to (5), we have

Φ(n′) ≤ max {D1(nv) + p1,n′+1 , D1(nv) + p1,n′ + p1,n′+1}
= D1(nv) + p1,n′ + p1,n′+1 (6)

≤ max

⎧
⎨

⎩
D1(nv) + p1,n′ , D2(nv) +

n′−1∑

j=nv+1

p2,j

⎫
⎬

⎭
+ p1,n′+1 . (7)

Substituting (4) into (6) yields

Φ(n′) ≤ D2(nv) +
n′−1∑

j=nv+1

p2,j + p2,n′+1

≤ max

⎧
⎨

⎩
D1(nv) + p1,n′ , D2(nv) +

n′−1∑

j=nv+1

p2,j

⎫
⎬

⎭
+ p2,n′+1 . (8)

According to (7) and (8), we get a critical inequality of Φ(n′):

Φ(n′) ≤ max

⎧
⎨

⎩
D1(nv) + p1,n′ , D2(nv) +

n′−1∑

j=nv+1

p2,j

⎫
⎬

⎭
+ min {p1,n′+1, p2,n′+1}

(9)

= Φ(n′ − 1) + pn′+1 .

Therefore, we obtain that

Φ(nv′ − 1) ≤ Φ(nv′ − 2) + pnv′ ≤ . . . ≤ Φ(nv + 1) +
nv′∑

j=nv+3

pj

where

Φ(nv + 1) ≤ max {D1(nv) + p1,nv+1 , D2(nv)} + pnv+2 by inequality (9)
≤ max {‖D(nv)‖∞ + pnv+1 , D2(nv)} + pnv+2 by inequality (3)
= ‖D(nv)‖∞ + pnv+1 + pnv+2 .

Therefore, it holds that

Φ(nv′ − 1) ≤ ‖D(nv)‖∞ +
nv′∑

j=nv+1

pj .
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Since (2), we have

‖D(nv′)‖∞ = Φ(nv′ − 1) ≤ ‖D(nv)‖∞ +
nv′∑

j=nv+1

pj ,

which concludes the proof of Claim 1, and therefore the lemma is proved. �	
Theorem 1. For the sequential scheduling game on two unrelated machines
where players have 1-lookahead, SPoA = 2.

Proof. According to Lemma 1 and an obvious lower bound on the optimal cost,
namely OPT (N) ≥ ∑

j∈N pj/2, we obtain

SPoA =
Lmax(0, N)
OPT (N)

≤
∑

j∈N pj
∑

j∈N pj/2
= 2 .

We then introduce a game that shows SPoA ≥ 2. There are only two jobs in this
game (as shown in Table 4). The first job has processing times 1 + ε and 1 on
machines 1 and 2, respectively, and the second job has processing times 2 and
1 + ε on machines 1 and 2, respectively.

Table 4. A game of two players

Job 1 Job 2

Machine 1 1 + ε 2

Machine 2 1 1 + ε

In this sequential game job 1 will choose machine 2, and thus job 2 will choose
machine 1. The resulting makespan is 2. However, the optimal makespan is 1+ε,
where job 1 chooses machine 1 and job 2 chooses machine 2. Therefore, we have
SPoA ≥ 2

1+ε . By taking ε → 0, we obtain SPoA ≥ 2. �	

4 Players with k-Lookahead

This section focuses on the general case where players have k-lookahead. We first
prove a key lemma showing that each job can only contribute a certain amount
to the makespan:

Lemma 2. ΔL([� : n]) ≤ ΔL([� + 1 : n]) + p� + ΔL(K�) for � = 1, 2, . . . , n.

Proof. For � ∈ [1 : n], given a job set [� : n] and an initial load vector D. We
define two notations regarding the decision of job �. One is the new initial load
after job � chooses machine i ∈ M :

D̃�i = D + (0, . . . , 0
︸ ︷︷ ︸

i−1

, pi,�, 0, . . . , 0
︸ ︷︷ ︸

m−i

) .
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The other one is the anticipated cost of job � with a lookahead set K� if he/she
chooses machine i ∈ M :

L̃i = Li(D̃�i,K�) .

Without loss of generality, we suppose job � chooses machine i∗. Thus, the
makespan for the game of the set [� : n] of players and the initial load D is

Lmax(D, [� : n]) = Lmax(D̃�i∗
, [� + 1 : n])

≤ ‖D̃�i∗‖∞ + ΔL([� + 1 : n]) .

We first discuss a trivial case, where ‖D̃�i∗‖∞ = ‖D‖∞, that is, ‖D‖∞ will
not increase after job � chooses machine i∗. This case indicates that

Lmax(D, [� : n]) ≤ ‖D‖∞ + ΔL([� + 1 : n]) .

The lemma is proved, since the inequality holds for any D:

ΔL([� : n]) = sup
{
Lmax(D, [� : n]) − ‖D‖∞ : D ∈ R

M
+

}

≤ ΔL([� + 1 : n]) .

Then we discuss the case ‖D̃�i∗‖∞ > ‖D‖∞. Because the increment of ‖D‖∞
is due to job � chooses machine i∗, we know that ‖D̃�i∗‖∞ = Di∗ + pi∗,�. This
indicates that the anticipated cost of job � is at least ‖D̃�i∗‖∞, i.e.,

L̃i∗ ≥ ‖D̃�i∗‖∞ .

Let’s focus on the moment when job � makes decision. Job � knows the initial
load D and the lookahead set K�. Thus, the anticipated cost of job � for choosing
any machine i ∈ M is

L̃i = Li(D̃�i,K�) = ‖D̃�i‖∞ + ΔLi(D̃�i,K�) .

Since job � chooses machine i∗, it holds that

˜Li∗ ≤ min
i∈M

{

˜Li

}

= min
i∈M

{

‖ ˜D�i‖∞ + ΔLi(˜D�i, K�)
}

≤ min
i∈M

{

‖ ˜D�i‖∞
}

+ ΔL(K�) .

According to the definition of D̃�i, we know that

‖D̃�i‖∞ ≤ ‖D‖∞ + pi,� .

Thus it holds that

L̃i∗ ≤ ‖D‖∞ + min
i∈M

{pi,�} + ΔL(K�) = ‖D‖∞ + p� + ΔL(K�) .

Since L̃i∗ ≥ ‖D̃�i∗‖∞, it follows that

‖D̃�i∗‖∞ ≤ ‖D‖∞ + p� + ΔL(K�)
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Therefore we have

Lmax(D, [� : n]) ≤ ‖D̃�i∗‖∞ + ΔL([� + 1 : n])
≤ ‖D‖∞ + p� + ΔL(K�) + ΔL([� + 1 : n]) .

Since the inequality holds for any D, we obtain

ΔL([� : n]) = sup
{
Lmax(D, [� : n]) − ‖D‖∞ : D ∈ R

M
+

}

≤ p� + ΔL(K�) + ΔL([� + 1 : n]) ,

which completes the proof. �	
According to Lemma 2, we obtain the following theorem (see the full version

[5] for the detailed proof):

Theorem 2. For the sequential scheduling game where players have k-
lookahead, the SPoA is at most O(k2) for the two unrelated machines case, and
at most O(2k · min{mk, n}) for the m unrelated machines case.

5 Simple-Minded Players

A simple-minded player makes decision only via simple calculations. When a
simple-minded player j makes decision, job j will select a machine with mini-
mum anticipated load assuming that all the follow-up players will simply choose
machines with minimum processing time. We show in this section that the SPoA
is exactly m, the number of machines. The proofs are in the full version.

Theorem 3. For the sequential scheduling game on m unrelated machines where
players are simple-minded, SPoA = m.

6 Conclusion

One of our main contributions to the area of algorithmic game theory is the
reconsideration of “perfect rationality” assumption for the players. This work
helps, in some degree, to understand why some games in reality perform much
better than the theoretical prediction. As an example, the inefficiency of the
subgame-perfect equilibrium for scheduling game on two unrelated machines is
unbounded (for unbounded number of players). However it might not be so bad
in realty, since the real world players might only have bounded rationality. Our
results just explain this phenomenon in a theoretical way. We believe this work
takes a promising step in further understanding the role that bounded rationality
plays in algorithmic game theory.
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lookahead. In: André, E., Koenig, S., Dastani, M., Sukthankar, G. (eds.) Proceed-
ings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2018, Stockholm, Sweden, 10–15 July 2018, pp. 1941–1943. ACM
(2018). http://dl.acm.org/citation.cfm?id=3238031

8. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Comput. Sci. Rev.
3(2), 65–69 (2009). https://doi.org/10.1016/j.cosrev.2009.04.003

9. Kroer, C., Sandholm, T.: Limited lookahead in imperfect-information games. Artif.
Intell. 283, 103218 (2020). https://doi.org/10.1016/j.artint.2019.103218

10. Lee, C.: Bounded rationality and the emergence of simplicity amidst complexity.
J. Econ. Surv. 25(3), 507–526 (2011)
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Abstract. We consider the classical machine scheduling, where n jobs
need to be scheduled on m machines, and where job j scheduled on
machine i contributes pi,j ∈ R to the load of machine i, with the goal
of minimizing the makespan, i.e., the maximum load of any machine in
the schedule. We study inefficiency of schedules that are obtained when
jobs arrive sequentially one by one, and the jobs choose themselves the
machine on which they will be scheduled, aiming at being scheduled on
a machine with small load. We measure the inefficiency of a schedule as
the ratio of the makespan obtained in the worst-case equilibrium sched-
ule, and of the optimum makespan. This ratio is known as the sequential
price of anarchy (SPoA). We also introduce two alternative inefficiency
measures, which allow for a favorable choice of the order in which the
jobs make their decisions. As our first result, we disprove the conjecture
of [22] claiming that the sequential price of anarchy for m = 2 machines
is at most 3. We show that the sequential price of anarchy grows at least
linearly with the number n of players, assuming arbitrary tie-breaking
rules. That is, we show SPoA ∈ Ω(n). Complementing this result, we
show that SPoA ∈ O(n), reducing previously known exponential bound
for 2 machines. Furthermore, we show that there exists an order of the
jobs, resulting in makespan that is at most linearly larger than the opti-
mum makespan. To the end, we show that if an authority can change the
order of the jobs adaptively to the decisions made by the jobs so far (but
cannot influence the decisions of the jobs), then there exists an adaptive
ordering in which the jobs end up in an optimum schedule.

Keywords: Machine scheduling · Price of anarchy · Price of stability

1 Introduction

We consider the classical optimization problem of scheduling n jobs on m unre-
lated machines. In this problem, each job has a (possibly different) processing
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time on each of the m machines, and a schedule is simply an assignment of
jobs to machines. For any such schedule, the load of a machine is the sum of
all processing times of the jobs assigned to that machine. In this optimization
problem, the objective is to find a schedule minimizing the makespan, that is,
the maximum load among the machines.

In the game-theoretic version of this scheduling problem, also known as the
load balancing game, jobs correspond to players who selfishly choose the machine
to which the job is assigned. The cost of a player is the load of the machine to
which the player assigned its own job. Such a setting models, for example, the
situation where the machines correspond to servers, and the communication with
a server has a latency that depends on the total traffic to the server.

The decisions of the players lead to some equilibrium in which no player
has an incentive to deviate, though the resulting schedule may not necessarily
be optimal in terms of makespan. Such an equilibrium might have a rather
high social cost, that is, the makespan of the corresponding schedule1 is not
guaranteed to be the optimal one, as in Example 1 below.

Example 1 (two jobs on two unrelated machines [5]). Consider two jobs and two
unrelated machines, where the processing times are given by the following table:

job 1 job 2
machine 1 1 �

machine 2 � 1

The allocation represented by the gray box is a pure Nash equilibrium in the
load balancing game (if a job moves to the other machine, its own cost increases
from � to � + 1), and has makespan �. The optimal makespan is 1 (swap the
allocations). This example shows that the makespan of an equilibrium can be
arbitrarily larger than the optimum.

The inefficiency of equilibria is a central concept in algorithmic game theory.
Typically, one aims to quantify the efficiency loss resulting from a selfish behavior
of the players, where the loss is measured in terms of the social cost. Arguably, the
two most popular measures of inefficiency of equilibria are the price of anarchy
(PoA) [27] and the price of stability (PoS) [4], which, intuitively, consider the
most pessimistic and the most optimistic scenario:

– The price of anarchy is the ratio of the cost of the worst equilibrium over the
optimal social cost ;

– The price of stability is the ratio of the cost of the best equilibrium over the
optimal social cost.

1 When each player chooses deterministically one machine, this definition is obvious.
When equilibria are mixed or randomized, each player chooses one machine according
to some probability distribution, and the social cost is the expected makespan of the
resulting schedule.
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The price of anarchy corresponds to the situation (anarchy) in which there is no
authority, and players converge to some equilibrium by themselves. In the price
of stability, one envisions that there are means to suggest the players how to play,
and if that is an equilibrium, then they will indeed follow the suggestion, as no
unilateral deviation can improve a player’s individual cost. Furthermore, the
price of stability provides a lower bound on the efficiency loss of an equilibrium
outcome, if, for example, no equilibrium is actually a social optimum.

Example 1 thus shows that the price of anarchy of load balancing games
is unbounded even for two jobs and two machines. Interestingly, the
price of stability instead is one (PoS = 1), for any number of jobs and any
number of machines. This is because there is always an optimal solution that
is also a pure Nash equilibrium [17] (see Sect. 1.3 for details). In a pure Nash
equilibrium, players choose their strategies deterministically, as opposed to mixed
Nash equilibria. In this work, we will also focus on the case in which players act
deterministically, though in a sequential fashion (see below).

As the price of anarchy for unrelated machines is very high (unbounded in
general), one may ask whether Nash equilibria are really what happens as an
outcome in the game, or whether a central authority, which cannot influence the
choices of the players (jobs), may alter some aspects of the scheduling setting,
and as a result, improve the performance of the resulting equilibria.

Motivated by these issues, in [28] the authors consider the variant in which
players, instead of choosing their strategies simultaneously, play sequentially
taking their decisions based on the previous choices and also knowing the order
of players that will make play. Formally, this corresponds to an extensive-form
game, and the corresponding equilibrium concept is called a subgame-perfect
equilibrium. Players always choose their strategy deterministically. The resulting
inefficiency measure is called the sequential price of anarchy (SPoA).

There are two main motivations to study a sequential variant of the load bal-
ancing game. First, assuming that all players decide simultaneously to choose the
machine to process their jobs is a too strong and unnatural modeling assumption
in many situations; furthermore, expecting that all players choose the worst-case
machine, as was the case in Example 1, is unnatural as well. Second, one may
have the power to explicitly ask the players to make sequential decisions, and
make this the policy, which the players are aware of, with the view of lowering
the loss of efficiency of the resulting equilibrium schedules. In a sense, such an
approach of adjusting the way the players access the machines resembles coordi-
nation mechanisms [11], which are scheduling policies aiming to achieve a small
price of anarchy (see Sect. 1.3 for more details).

1.1 Prior Results (SPoA for Unrelated Machines)

The first bounds on the SPoA for unrelated machines have been obtained in
[28], showing that

n ≤ SPoA ≤ m · 2n.

Therefore, SPoA is constant for a constant number of machines and jobs, while
PoA is unbounded even for two jobs and two machines (recall Example 1).
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The large gap in the previous bound naturally suggests the question of what
happens for many jobs and many machines. This was addressed by [7] which
improved significantly the prior bounds by showing that

2Ω(
√

n) ≤ SPoA ≤ 2n.

At this point, one should note that these lower bounds use a non-constant num-
ber of machines. In other words, it still might be possible that for a constant
number of machines the SPoA is constant. For two machines, [22] proved a
lower bound SPoA ≥ 3, and in the same work the authors made the following
conjecture:

Conjecture 1 [22]. For two unrelated machines, SPoA = 3 for any number of
jobs.

1.2 Our Contributions

In this paper, we disprove Conjecture 1 by showing that in fact, SPoA on two
machines is not even constant. Indeed, it must grow linearly and the conjecture
fails already for few jobs:

– For five jobs we have SPoA ≥ 4 (Theorem 2);
– In general, with arbitrary tie-breaking rules, it holds that SPoA ≥ Ω(n)

(Theorem 3).

Note that the result of Theorem 3 uses suitable player-specific tie-breaking rules
(see Definition 1). We discuss the implications of using tie-breaking rules more
in detail at the end of this subsection.

While Theorem 2 settles the conjecture, the result of Theorem 3 says that
SPoA is non-constant already for two machines (as the number of jobs grows)
for generic tie-breaking rules. We actually conjecture that there exist instances
for which the SPoA is unbounded without having ties. Moreover, it implies a
strong separation with the case of identical machines, where SPoA ≤ 2 − 1

m ,
for any number m of machines [22]. In Theorem 4 we show that SPoA is upper
bounded by 2(n − 1), reducing the exponential upper bound obtained in [7] for
arbitrarily many machines to linear bound for 2 machines.

The original idea behind the notion of price of stability (PoS) is that an
authority can suggest to the players how to play:

[...] The best Nash equilibrium solution has a natural meaning of stability
in this context – it is the optimal solution that can be proposed from which
no user will defect. [...] As a result, the global performance of the system
may not be as good as in a case where a central authority can simply dictate
a solution; rather, we need to understand the quality of solutions that are
consistent with self-interested behavior [4].

We borrow this idea of an authority suggesting desirable equilibria. Specifically
for our setting, the authority suggests the order in which players make their
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decisions, so to induce a good equilibrium. This can be viewed as the price
of stability (PoS) for these sequential games. We introduce this notion in two
variants (a weaker and a stronger):

– Sequential Price of Stability (SPoS). The authority can choose the order of
the players’ moves. This order determines the tree structure of the corre-
sponding game.

– Adaptive Sequential Price of Stability (adaptive SPoS). The authority
decides the order of the players’ moves adaptively according to the choices
made at each step.

The study of these two notions for two unrelated machines is also motivated by
our lower bound, and by the lack of any good upper bound on this problem.
We prove the following upper bounds for two unrelated machines (Theorems 5
and 6):

SPoS ≤ n

2
+ 1 , adaptive SPoS = 1 .

The next natural question is to consider three or more machines. Here we show an
impossibility result, namely adaptive SPoS ≥ 3/2 already for three machines
(Theorem 7). That is, even with the strongest type of adaptive authority, it
is not possible to achieve the optimum. This shows a possible disadvantage of
having players capable of complex reasoning, like in extensive-form games. In
the classical strategic-games setting, where we consider pure Nash equilibrium,
here is an optimum which is an equilibrium, that is, PoS = 1 for any number
of machines and jobs. This result follows from [17] (see Sect. 1.3 for details).

As mentioned above, some of our results rely on the use of a suitable tie-
breaking rules. Using tie-breaking rules to prove lower bounds on the SPoA is
not new: in [25] the authors showed that, in routing games, the sequential price
of anarchy is unbounded. Their proof is based on carefully chosen tie-breaking
rules. This way of using tie-breaking rules is not part of the players’ strategy
interactions. In contrast, some works consider settings where among equivalent
choices, each player i can use the one that hurts prior agents who chose a strategy
that player i would prefer they had not chosen (see [30]).

1.3 Further Related Work

The load balancing games considered in this work are one of the most stud-
ied models in algorithmic game theory (see, e.g., [2,15,16,18,19,26,27]). In all
these works, players correspond to jobs, their cost is the load of the machine
they choose, and the social cost is defined as the makespan of the jobs alloca-
tion. In particular, the seminal paper [27] which introduced the concept of the
price of anarchy, considers the case of identical and related machines, two sim-
pler versions of unrelated machines (related machines is the setting where each
machine has a speed, each job has a certain size, and the processing time equals
the job size divided by the machine speed; the case of identical machines is the
restriction in which all speeds are the same).
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Interestingly, the price of anarchy for related or identical machines is much
better than in the case of unrelated machines (where the price of anarchy is
unbounded). Indeed, for related and identical machines, the price of anarchy
is bounded for any constant number of machines [15,16,18–20,26,27] (some of
these results give bounds also for mixed Nash equilibria). Specifically, for pure
Nash equilibria, PoA = (2 − 2

m+1 ) for identical machines as implied by the
analysis of [20], while PoA = O( log m

log log m ) for related machines [15].
As already mentioned above, the PoS for unrelated machines is 1. This is due

to the work [17] which shows that, starting from any schedule, an iterative pro-
cess of applying unilateral improving-strategy changes of players leads to a pure
Nash equilibrium (the same property has been observed earlier in [21] for related
machines). This condition implies the existence of a pure Nash equilibrium.

Requiring that players make their decisions sequentially, according to a given
and known order can be seen as a mean of a central authority that can control
access to the resources (machines), but not the choices of the players (jobs). In
this sense, changing the access from simultaneous to sequential can be seen as a
kind of control mechanism like a coordination mechanism [11]. In load balancing
games where the cost of a player (job) is the completion time of the job (and
not the total load of the machine on which the job is scheduled), a coordination
mechanism is a scheduling policy, one for every machine, which determines the
order of the jobs in which they will be scheduled on the machine. The scheduling
policy needs to be fixed and (publicly) known to the players. For load balanc-
ing games in normal form (i.e., where players make simultaneous decisions, as
opposed to the sequential decisions, which we consider in this paper), coor-
dination mechanisms have been studied both for the version where the social
cost is the makespan (see, e.g., [6,8,9,24] and the references therein), or the
total (weighted) completion time (see, e.g., [1,12,14,23,31] and the references
therein).

As already discussed above, the concept of a sequential price of anarchy is
not new. In addition to the results for unrelated machines discussed in Sect. 1.1,
the sequential price of anarchy has been studied also for other games. These
include congestion games with affine delay functions [25], isolation games [3],
and network congestion games [13]. Interestingly, the latter work shows that the
sequential price of anarchy for these games is unbounded, as opposed to the price
of anarchy which was known to be 5/2.

Naturally, there is a huge literature on the classical algorithm-theoretic
research on machine scheduling, see, e.g., the textbook [29] and the survey [10]
for fundamental results and further references.

2 Preliminaries

In unrelated machine scheduling there are n jobs and m machines, and the
processing time of job j on machine i is denoted by pij . A solution (or schedule)
consists of an assignment of each job to one of the machines, that is, a vector
s = (s1, . . . , sn) where sj is the machine to which job j is assigned to. The load
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li(s) of a machine i in schedule s is the sum of the processing times of all jobs
allocated to it, that is, li(s) =

∑
j:sj=i pij . The social cost of a solution s is the

makespan, that is, the maximum load among all machines.
Each job j is a player who attempts to minimize her own cost costj(s), that

is, the load of the machine she chooses: costj(s) = lsj
. Every player j decides sj ,

the assignment of job j to a machine. The combination of all players strategies
gives a schedule s = (s1, . . . , sn).

In the extensive-form version of these games, players play sequentially; they
decide their strategies based on the choices of the previous players and knowing
that the remaining players will play rationally. We consider a full information
game. As players enter the game sequentially, they can compute their optimal
moves by the so-called backward induction: the last player makes her move greed-
ily, the player before the last makes the move also greedily (taking into account
what the last player will do), and so on. Any game of this type can be modeled
by a decision tree, which is a rooted tree where the non-leaf vertices correspond
to the players in certain states, while edges correspond to the strategies available
to the players in a given state.

Each leaf corresponds to a solution (schedule), which is simply the strategies
on the unique leaf-to-root path. Given the processing times P = (pij), the players
can compute the loads on the machines in each of the leaves. In case of ties,
all players know the deterministic tie-breaking rules of all the other players. A
player can calculate what the final outcome would be for each of her strategies,
and choose the strategy that minimizes her cost. This method is called backward
induction. Strategies obtained in this way for each internal node constitute what
is called the subgame-perfect equilibrium: for each subtree, we know what is the
outcome achieved by the players in this subtree if they play rationally. We usually
represent the strategies (edges) that are chosen by players in the subgame
perfect equilibrium in bold, and the other strategies as dashed edges.

It is easy to see that a subgame-perfect equilibrium always exists and it
is unique, for given tie-breaking rules. On the other hand, its computation is
difficult, as proved in [28]:

Theorem 1 [28]. Computing the outcome of a subgame perfect equilibrium in
Unrelated Machine Scheduling is PSPACE-complete.

Notation and Formal Definitions. We consider n jobs and m machines, denoted
by J = (J1, J2, . . . , Jn) and M = (M1,M2, . . . ,Mm) respectively. The processing
times are given by a matrix P = (pij), with pij being the processing time of job
Jj on machine Mi. The set of all such nonnegative n × m matrices is denoted
by Pn,m and it represents the possible instances of the game. For any P ∈ Pn,m

as above, we denote by Tn,m the set of all possible depth-n, complete m-ary
decision trees where each path from the root to a leaf contains every job (player)
exactly once. The whole game (and the resulting subgame perfect equilibrium)
is fully specified by P , T , and the tie-breaking rule used by the players. The most
general – worst case – scenario is that ties are arbitrary (see Definition 1). In the
following, we do not specify the dependency on the ties, and simply denote by
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SPE(P, T ) the cost (makespan) of the subgame perfect equilibrium of the game.
One type of worst-case analysis is to assume the players’ order to be adversarial,
and the tree T being chosen accordingly. This is the same as saying that players
arrive in a fixed order (say J1, J2, . . . , Jn) and their costs P is chosen in an
adversarial fashion. In this case, we simply write SPE(P ) as the tree structure
is fixed. For a fixed order σ (a permutation) of the players, and costs P , we also
write SPE(P, σ) to denote the quantity SPE(P, T ) where T is the tree resulting
from this order σ of the players. The optimal social cost (makespan) is denoted
by OPT (P ).

We next introduce formal definitions to quantify the inefficiency of subgame
perfect equilibria in various scenarios (from the most pessimistic to the most
optimistic). The sequential price of anarchy (SPoA) compares the worst sub-
game perfect equilibrium with the optimal social cost,

SPoA = sup
P∈Pn,m

SPE(P )
OPT (P )

.

In the sequential price of stability (SPoS), we can choose the order σ in which
players play depending on the instance P . The resulting subgame perfect equi-
librium has cost SPE(P, σ), which is then compared to the optimum,

SPoS = sup
P∈Pn,m

min
σ∈Sn

SPE(P, σ)
OPT (P )

,

where σ ranges over all permutations Sn of the n players. In adaptive sequential
price of stability (adaptive SPoS), we can choose the whole structure of the
tree, meaning that for each choice of a player, we can adaptively choose which
player will play next. This means that every path from any leaf to the root
corresponds to a permutation of the players. The adaptive price of stability is
then defined as

adaptive SPoS = sup
P∈Pn,m

min
T∈Tn,m

SPE(P, T )
OPT (P )

.

Note that by definition adaptive SPoS ≤ SPoS ≤ SPoA.

3 Linear Lower Bound for SPoA

In this section, we consider the sequential price of anarchy for two unrelated
machines. In [22] the authors proved a lower bound SPoA ≥ 3 for this case, and
they conjectured that this was also a tight bound. We show that unfortunately
this is not the case: Already for five jobs, SPoA ≥ 4, and with more jobs the
lower bound grows linearly, i.e., SPoA = Ω(n).

3.1 A Lower Bound for n = 5 Players

Theorem 2. For two machines and at least five jobs, the SPoA is at least 4.
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3.2 Linear Lower Bound

Extending the construction for n = 5 players is non-trivial as this seems to
require rather involved constants that multiply the ε terms. However, we notice
that these terms only help to induce more involved tie-breaking rules of the
following form:

Definition 1 (arbitrary tie-breaking rule). We say that the tie-breaking
rule is arbitrary if each player uses a tie-breaking rule between machines which
possibly depends on the allocation of all players.

The following theorem gives our general lower bound:

Theorem 3. Even for two machines, the SPoA is at least linear in the number
n of jobs, in the case of arbitrary tie-breaking rule.

Note that it is important to have seemingly equivalent jobs J2 and J3. They
use different tie-breaking rules, which creates the asymmetry between them and
increases the SPoA.

We solved linear programs with strict inequalities obtained from the subgame
perfect equilibria tree structure given in the example from the proof of Theorem
3, by introducing small ε for strict inequalities. We found solutions for n = 8 and
n = 11, that is linear programs are feasible. Therefore, at least for small n’s we
can drop the assumption about tie-breaking rules. As the solutions replace the ε
terms by rather more complicated coefficients, we do not present them here. For
the general case, we conjecture that the statement of Theorem 3 holds without
the assumption on the tie-breaking rules, and that the latter are merely used to
make the analysis easier:

Conjecture 2. For two machines, the SPoA is at least linear in n.

4 Linear Upper Bound for SPoA

Additional Notation. To prove the upper bound for SPoA, we introduce some
additional notation. We define a vector D = (d1, d2) of initial load on the
machines before the jobs play the game. Consequentially, the load of each
machine i becomes

li(D, s) = di +
∑

j:sj=i

pij ,

where s = (s1, s2, . . . , sn) is the schedule (SPE) achieved by the jobs playing the
game with initial load D on the machines; the cost of each job j is

costj(D, s) = lsj
(D, s) .

The notation for the makespan is renewed as SPED(P ) for the SPE with initial
load D. Additionally, we define ΔSPE(P ) as the maximum possible increase of
the makespan due to the players, with processing time P , for any initial load D:

ΔSPE(P ) = sup
D

{SPED(P ) − ||D||∞} .
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Moreover, for a given P , we use P[u:v] to represent the processing times only for
jobs (Ju, Ju+1, . . . , Jv), that is, P[u:v] = (pij) where j = u, u + 1, . . . , v.

We first show a key lemma showing that each job can only contribute a certain
amount (bounded by the total minimum processing time) to the makespan:

Lemma 1. ΔSPE
(
P[�:n]

)
− ΔSPE

(
P[�+1:n]

)
≤

∑n
j=� mini pij for � =

1, 2, . . . , n − 1.

Theorem 4. For two machines, the SPoA is at most 2(n − 1).

Proof. Applying Lemma 1, we have

ΔSPE
(
P[1:n]

)
≤ ΔSPE

(
P[2:n]

)
+

n∑

j=1

min
i

pij

≤ ΔSPE
(
P[3:n]

)
+ 2

n∑

j=1

min
i

pij

≤ . . .

≤ (n − 1)
n∑

j=1

min
i

pij .

Since the optimal cost is at least OPT ≥
∑n

j=1 mini pij/2 (for 2 machines), it
follows that

SPoA ≤
ΔSPE

(
P[1:n]

)

OPT
≤ 2(n − 1) ,

which completes the proof. ��

5 Linear Upper Bound on the SPoS

In this section, we give a linear upper bound on the sequential price of stability
for two machines (Theorem 5 below). Unlike in the case of the sequential price
of anarchy, here we have the freedom to choose the order of the players. Each
player can choose any tie-breaking rule. Since we consider a full information
setting, the tie-breaking rules are also public knowledge.

Though finding the best order can be difficult, we found that a large set of
permutations already gives a linear upper bound on SPoS. In particular, it is
enough that the authority divides the players into two groups and puts players
in the first group first, followed by the players from the second group. Inside
each group players can form any order. The main result of this section is the
following theorem:

Theorem 5. For two machines, the SPoS is at most n
2 + 1.

This result cannot be extended to three or more machines, because the third
machine changes the logic of the proof. In particular, we can no longer assume
that the players on the second machine in the optimal assignment can guarantee
low costs for themselves by simply staying on that machine. For two machines,
we conjecture that actually there is always an order which leads to the optimum:
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Conjecture 3. For two machines, the SPoS is 1.

Though we are not able to prove this conjecture, in the next section, we
introduce a more restricted solution concept, and show that in that case the
optimum can be achieved.

6 Achieving the Optimum: The Adaptive SPoS

In this section, we study the adaptive sequential price of stability. Unlike the
previous models, here we assume that there is some authority, which has full
control over the order of the players’ arrival in the game. It does not only fix
the initial complete order, but can also change the order of arrivals depending
on the decision that previous players made. On the other hand, the players still
have the freedom to choose any action in a given state, each of them aiming at
minimizing her own final cost. The players also know the whole decision tree,
and thus the way the authority chooses the order. As in the previous section,
each player can use any tie-breaking rule, and the tie-breaking rules are also
known to all players.

This model is the closest instantiation of a general extensive form game com-
pared to the previously studied models in this paper. In this way, the authority
has an option to punish players for deviating from the optimal path (path lead-
ing to a social optimum) by placing different players after the deviating decisions
of the deviating player. As a result, rational players may achieve much better
solutions in the end. The following theorem shows that achieving the optimum
solution is possible for 2 machines:

Theorem 6. For two machines, the adaptive SPoS is 1.

The previous result cannot be extended to more than 2 machines:

Theorem 7. For three or more machines, the adaptive SPoS is at least 3
2 .

Proof. Consider the following instance with three machines and three jobs, where
the optimum is shown as gray boxes:

J1 J2 J3

M1 4 − ε 2 2
M2 4 3 3
M3 6 6 − ε 6 − ε

We distinguish two cases for the first player to move (the root of the tree), and
show that in neither case the players will implement the optimum:

1. The First to Move is J1. This player will choose the cheapest machine M1,
because none will join this machine. Indeed, the second player to move will
choose M2 knowing that the last one will then choose M3.
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2. The First to Move is J2 or J3. This player will choose M2 and not M1. Indeed,
if the first player to move, say J2, chooses M1, then either (I) the other two
follow also the optimum (which costs 4 to J2) or (II) they choose another
solution, whose cost is at least 6 − ε. In the latter case, we have the lower
bound. In case (I), we argue that choosing M2 is better for J2, because no
other player will join: for the following players, being both on machine M1 is
already cheaper than being on M2 with J2.

In the first case, given that J1 is allocated to M1, the cheapest solution costs
6 − ε. In the second case, one among J2 or J3 is allocated to M2. The best
solution, in this case, costs again 6 − ε. This completes the proof. ��

Remark 1. The following example shows that the analysis of Theorem 6 can-
not be extended to 3 machines even in the case of identical machines. Assume
that we have m = 3 machines, the initial loads on these machines are (0, 2, 6)
and there are 3 jobs left to be assigned with processing times 7, 5 and 5. Note
that the constrained optimum here is (10, 9, 6), that is the first job with pro-
cessing time 7 gets assigned to the second machine M2, while both jobs with
processing times 5 and 5 get assigned to machine M1. On the other hand, if
any of these players chooses different machine their cost is strictly decreasing in
the subgame perfect equilibrium solution. We did not find any example showing
that adaptive SPoS > 1 for more than 2 identical machines, unlike the case of
unrelated machines.

7 Conclusions

In this paper, we disprove a conjecture from [22] and give a linear lower bound
construction for the sequential price of anarchy. On the other hand, we show
linear upper bound. For the best sequence of players, we prove a linear upper
bound, that is 4 times lower than the upper bound for sequential price of anarchy.
Moreover, we prove the existence of a sequential extensive game which gives an
optimum solution. One possible direction for future research is to investigate
whether the sequential price of stability is 1 for any number of identical machines.
In this work, we give some evidence that the case of three (or more) machines
is different from the case of two machines (see Theorem 7 and Remark 1).

Our linear lower bound on the sequential price of anarchy (Theorem 3) sug-
gests that subgame perfect equilibria do not guarantee in the worst case a price
of anarchy independent of the number of jobs, even for two machines. Though
our lower bound is based on a suitable tie-breaking rule, we believe it holds
without any tie being involved (Conjecture 2).
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Abstract. In load balancing problems there is a set of clients, each
wishing to select a resource from a set of permissible ones, in order
to execute a certain task. Each resource has a latency function, which
depends on its workload, and a client’s cost is the completion time of
her chosen resource. Two fundamental variants of load balancing prob-
lems are selfish load balancing (aka. load balancing games), where clients
are non-cooperative selfish players aimed at minimizing their own cost
solely, and online load balancing, where clients appear online and have
to be irrevocably assigned to a resource without any knowledge about
future requests. We revisit both selfish and online load balancing under
the objective of minimizing the Nash Social Welfare, i.e., the geometric
mean of the clients’ costs. To the best of our knowledge, despite being
a celebrated welfare estimator in many social contexts, the Nash Social
Welfare has not been considered so far as a benchmarking quality mea-
sure in load balancing problems. We provide tight bounds on the price
of anarchy of pure Nash equilibria and on the competitive ratio of the
greedy algorithm under very general latency functions, including poly-
nomial ones. For this particular class, we also prove that the greedy
strategy is optimal as it matches the performance of any possible online
algorithm.

1 Introduction

In load balancing problems there is a set of clients, each wishing to select a
resource from a set of permissible ones, in order to execute a certain task. Each
resource has a latency function, which depends on its workload, and a client’s
cost is the completion time of her chosen resource. These problems stand at the
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foundations of the Theory of Computing and have been studied under a variety
of objective functions, such as the maximum client’s cost (aka. the makespan)
[24–26,30] and the average weighted client’s cost (see [18] for an excellent survey).

Two extensively studied variants of load balancing problems are selfish load
balancing [40] (aka. load balancing games) and online load balancing [24]. Self-
ish load balancing, where clients are non-cooperative selfish players aimed at
minimizing their own cost solely, constitutes a notable subclass of weighted con-
gestion games [34] and, as such, enjoys some nice theoretical properties. For
instance, they always admit pure Nash Equilibria [27]. In online load balancing,
instead, clients appear online and have to be irrevocably assigned to a resource
without any knowledge about future requests. Interpreting the set of clients of
a load balancing problem as a society and adopting the terminology of welfare
economics, the makespan and the average weighted client’s cost objective func-
tions get called, respectively, the egalitarian and the utilitarian social function.
In the case of unweighted tasks, the egalitarian function is defined as maxi xi,
and the utilitarian one is defined as 1

n

∑
i xi, where n is the number of clients

and x = (x1, x2, ...) is the vector encoding the clients’ costs. Another inter-
esting social function is the Nash Social Welfare (NSW) [32], which is defined
as (

∏
i xi)

1
n , i.e., as the geometric mean of the clients’ costs. These definitions

naturally extend to the more general case of weighted tasks (see Sect. 2).
The NSW is a celebrated welfare measure in many settings, such as Fisher

markets [6,13] and fair division [16,20], as it satisfies a set of interesting proper-
ties and achieves a balanced compromise between the equity of the egalitarian
social welfare function and the efficiency of the utilitarian one. We notice that
when xi > 0, for any i = 1, . . . , n, this balance holds regardless of whether the
objective is maximizing or minimizing the NSW. It is easy to see that an outcome
that minimizes the NSW is Pareto optimal. Another interesting motivation for
considering the NSW in load balancing comes from the following observation.
An alternative reasonable way to define a client’s cost can come by taking the
ratio between the completion time of her chosen resource and the completion
time she could obtain when being the only client in the system (i.e., when she is
the unique user of the fastest resource). This definition avoids situations where
the cost of a specific client determines almost completely the value of the social
welfare. This happens, for instance, when there is a client i owing a highly time-
consuming task. Here, both the utilitarian and the egalitarian social welfare end
up depending on the cost of i, thus almost neglecting the other clients’ costs. In
this setting, the NSW is the proper metric to use. More generally, the NSW is
the only correct mean to use when averaging normalized results, that is, results
that are presented as ratios to reference values [22]. It is important to emphasize
the scale-freeness of the NSW in load balancing problems, that is, the NSW is
a robust social welfare function as its analysis is not affected by this change in
the definition of a client’s cost.
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1.1 Related Work

Selfish Load Balancing. The literature concerning the efficiency of Nash equi-
libria in selfish load balancing is highly tied with that of its superclass of con-
gestion games. In the following, we first focus on results for the mostly studied
case of the utilitarian social welfare. In this setting, it is assumed that all clients
selecting the same resource experience the same cost.

Exact bounds for both weighted and unweighted congestion games with poly-
nomial latency functions have been given in [1], and in [7,23] it is proved that
they hold even for unweighted load balancing games and symmetric weighted
load balancing games, respectively. These results have been further generalized
in [10], where it is shown that, under general latency functions encompassing
polynomial ones, the worst-case price of anarchy of both symmetric weighted
congestion games and unweighted congestion games is attained by load balanc-
ing instances. For the class of non-atomic congestion games, bounds on the price
of anarchy under general latency functions are given in [35–37], where it is also
proved that they are tight even for a two-node network with two parallel links.
The price of anarchy for the egalitarian social welfare of load balancing has been
studied in [21,29].

Online Load Balancing. The performance of greedy load balancing with
respect to the utilitarian social welfare and under affine latency functions has
been studied in [3,15,38]. A more general model where each client has a load
vector denoting her impact on each resource (i.e., how much her assignment to
a resource will increase its load) and the objective is to minimize the Lp norm
of the load of the resources is considered in [3,14]. A logarithmic tight bound on
the competitiveness of the greedy algorithm under the egalitarian social welfare
is given in [2,4]. A different online algorithm (usually termed one-round walk
starting from the empty state) for load balancing under affine latency functions
has been analysed in [9,19]. Bounds for the case of polynomial latencies are given
in [8,11,28], while more general latency functions are addressed in [10,39], with
respect to atomic and non-atomic congestion games, respectively.

1.2 Our Contribution

We revisit both selfish and online load balancing under the objective of mini-
mizing the NSW. To the best of our knowledge, this is the first work adopting
the NSW as a benchmarking quality measure in load balancing problems. We
analyze the price of anarchy [29] of pure Nash equilibria (the loss in optimality
due to selfish behavior) and the competitive ratio of online algorithms (the loss
in optimality due to lack of information) under very general latency functions.
These questions have been widely addressed under the utilitarian and egalitarian
functions, but never under the NSW.

We notice that, by adopting the NSW as new metric, we are not going to
modify the set of Nash equilibria but only the social values. The main difference
between the NSW and the classical notion of utilitarian social welfare consists
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in the fact that, while in the latter the players’ costs are summed, in the former
they are multiplied. This may lead to think that, by turning the costs into their
logarithms, a classical utilitarian analysis can be easily adapted to deal with the
NSW, but this is not the case.1 Thus, the analysis of the NSW requires different
proof arguments. Furthermore, while the simpler combinatorial structure of load
balancing games does not improve the price of anarchy of general congestion
games for the utilitarian social welfare (see [10,15]), the price of anarchy drops
from n to 2 for the NSW and linear latency functions (the details are deferred
to the full version of this paper).

All upper bounds shown in this paper are quite general, given that they hold
for any non-decreasing and positive latency function. Moreover, the provided
matching lower bounds hold for latency functions verifying mild assumptions;
it is worth to remark that they are satisfied by the well studied class of poly-
nomial latency functions and by many other ones. In particular, in Subsects.
3.1, 3.2, and 3.3, we provide tight bounds to the price of anarchy of weighted,
unweighted, and non-atomic games, respectively, and we apply such results to
the case of polynomial latency functions. For the online setting, we analyze the
greedy algorithm that assigns every client to a resource minimizing the total cost
of the instance revealed up to the time of its appearance. We provide a tight
analysis of the competitive ratio of the greedy algorithm, and we show that,
when considering polynomial latency functions, there exists no online algorithm
achieving a competitive ratio better than the one of the greedy algorithm (see
Sect. 4). In Table 1, we summarize the results obtained for polynomial latency

Table 1. Tight bounds on the performance of load balancing with polynomial latency
functions of maximum degree p, under the NSW and the utilitarian social welfare
(USW). Φp denotes the unique solution of equation xp+1 = (x + 1)p, and k := �Φp�.
We observe that the performance for the NSW is definitely better (even asymptotically)
than that for the USW, except for the non-atomic setting.

NSW USW

Weighted 2p (Φp)
p+1 ∼ Θ

(
p

log(p)

)p+1

, [1]

Unweighted 2p (k+1)2p+1−kp+1(k+2)p

(k+1)p+1−(k+2)p+(k+1)p−kp+1 ∼ Θ
(

p
log(p)

)p+1

, [1]

Non-atomic
(
e

1
e

)p (
1 − p(p + 1)−(p+1)/p

)−1

∼ Θ
(

p
log(p)

)
, [35]

Online 4p (21/(p+1) − 1)−(p+1) ∼ Θ(p)p+1, [14]

1 In fact, on the one hand, using this idea for bounding a performance ratio (e.g., the
price of anarchy or the competitive ratio), one obtains a bound on the ratio between
two logarithms (each one having the product of the players’ costs as argument). On
the other hand, we are interested in bounding the ratio between the argument of
these logarithms, and there is no direct correlation between these two ratios (notice
that logarithm of the latter ratio is equal to the difference between the corresponding
utilitarian social costs, and therefore it is not related to the former one).
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functions, and we compare them with the ones holding for the utilitarian social
welfare studied in some previous works.

Due to lack of space, some proofs are either sketched or omitted, and are left
to the full version of the paper.

2 Model

Given k ∈ N, let [k] := {1, 2, . . . , k}. A class C of functions is called ordinate-
scaling if, for any f ∈ C and α ≥ 0, the function g such that g(x) = αf(x) for any
x ≥ 0, belongs to C; abscissa-scaling if, for any f ∈ C and α ≥ 0, the function
g such that g(x) = f(αx) for any x ≥ 0, belongs to C; all-constant-including if
it contains all the constant functions (i.e., all functions f such that f(x) = c for
some c > 0); unbounded-including if all the latency functions f , except for the
constant ones, verify limx→∞ f(x) = ∞. Let P(p) denote the class of polynomial
latencies of maximum degree p, i.e., the class of functions f(x) =

∑p
d=0 αdx

d,
with αd ≥ 0 for any d ∈ [p] ∪ {0} and αd > 0 for some d ∈ [p] ∪ {0}. A
function f is quasi-log-convex if x ln(f(x)) is convex. We first deal with selfish
load balancing, and then we turn our attention to the online setting.

2.1 Selfish Load Balancing

(Atomic) Load Balancing Games. A weighted (atomic) load bal-
ancing game, or load balancing game for brevity, is a tuple LB =
(N,R, (�j)j∈R, (wi)i∈N , (Σi)i∈N ) , where N is a set of n ≥ 1 players (corre-
sponding to clients), R is a finite set of resources, �j : R>0 → R>0 is the (non-
decreasing and positive) latency function of resource j ∈ R, and, for each i ∈ N ,
wi > 0 is the weight of player i and Σi ⊆ R (with Σi �= ∅) is her set of strategies
(or admissible resources). For notational simplicity, we assume that each latency
function � verifies �(0) = 0.

An unweighted load balancing game is a weighted load balancing game with
unitary weights. A symmetric weighted load balancing game is a load balancing
game in which each player can select all the resources, i.e., Σi = R for any i ∈ N .

Given a class C of latency functions, let ULB(C) be the class of unweighted
load balancing games, WLB(C) be the class of weighted load balancing games,
and SWLB(C) be the class of weighted symmetric load balancing games, all hav-
ing latency functions in the class C. We say that resources are identical if all of
them have the same latency function.

Non-atomic Load Balancing Games. The counterpart of the class of atomic
load balancing games is that of non-atomic load balancing games [5,33,41]:
these games are a good approximation for atomic ones when players become
infinitely many and the contribution of each player to social welfare becomes
infinitesimally small. A non-atomic load balancing game is a tuple NLB =
(N,R, (�j)j∈R, (ri)i∈N , (Σi)i∈N ), where N is a set of n ≥ 1 types of players,
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R is a finite set of resources, �j : R>0 → R>0 is the (non-decreasing and posi-
tive) latency function of resource j ∈ R; moreover, given i ∈ N , ri ∈ R≥0 is the
amount of players of type i and Σi ⊆ R is the set of strategies of every player of
type i.

Given a class C of latency functions, let NLB(C) be the class of non-atomic
load balancing games, and SNLB(C) be the class of symmetric non-atomic load
balancing games, all having latency functions in the class C.

Strategy Profiles and Cost Functions. In atomic load balancing games, a
strategy profile is an n-tuple σ = (σ1, . . . , σn), where σi ∈ Σi is the resource
chosen by each player i ∈ N in σ. Given a strategy profile σ, let kj(σ) :=∑

i∈N :σi=j wi be the congestion of resource j ∈ R in σ, and let costi(σ) :=
�σi

(kσi
(σ)) be the cost of player i ∈ N in σ.

In non-atomic load balancing games, a strategy profile is an n-tuple Δ =
(Δ1, . . . ,Δn), where Δi : Σi → R≥0 is a function denoting, for each resource
j ∈ Σi, the amount Δi(j) of players of type i selecting resource j, so that∑

j∈Σi
Δi(j) = ri. Observe that Δi(j) = 0 if j /∈ Σi. For a strategy profile

Δ, the congestion of resource j ∈ R in Δ, denoted as kj(Δ) :=
∑

i∈N Δi(j),
is the total amount of players using resource j in Δ and its cost is given by
costj(Δ) = �j(kj(Δ)). The cost of a player of type i selecting a resource j ∈ Σi

is equal to costj(Δ) and each player aims at minimizing it.

Nash Social Welfare. In atomic load balancing games, the Nash Social Welfare
(NSW) of a strategy profile σ is defined as:

NSW(σ) :=

(
∏

i∈N

costi(σ)wi

) 1∑
i∈N wi

.

Using the previous definition, for unweighted games we get NSW(σ) =
(∏

i∈N costi(σ)
) 1

n . Given a strategy profile σ, let R(σ) := {j ∈ R : kj(σ) > 0}.
For weighted load balancing games we get:

NSW(σ) =

(
∏

i∈N

costi(σ)wi

) 1∑
i∈N wi

=

⎛

⎝
∏

j∈R(σ)

�j(kj(σ))kj(σ)

⎞

⎠

1∑
i∈N wi

=

⎛

⎝
∏

j∈R(σ)

�j(kj(σ))kj(σ)

⎞

⎠

1∑
j∈R(σ ) kj(σ )

.

Let SP(LB) be the set of strategy profiles of an atomic load balancing game
LB. An optimal strategy profile σ∗(LB) of a load balancing game LB is a strat-
egy profile σ∗ ∈ arg minσ∈SP(LB) NSW(σ), i.e., a strategy profile minimizing the
NSW. Analogously, for the non-atomic setting, we have
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NSW(Δ) =

⎛

⎝
∏

j∈R(Δ)

costj(Δ)kj(Δ)

⎞

⎠

1∑
j∈R(Δ ) kj(Δ )

,

where R(Δ) := {j ∈ R : kj(Δ) > 0}. Let SP(NLB) be the set of strat-
egy profiles of a non-atomic load balancing game NLB. An optimal strategy
profile Δ∗(NLB) of a load balancing game NLB is a strategy profile Δ∗ ∈
arg minΔ∈SP(NLB) NSW(Δ), i.e., a strategy profile minimizing the NSW.

Pure Nash Equilibria and their Efficiency. In the atomic setting, for a
given strategy profile σ, let (σ−i, σ

′
i) := (σ1, σ2, . . . , σi−1, σ

′
i, σi+1, . . . , σn), i.e.,

a strategy profile equal to σ, except for strategy σ′
i. A pure Nash equilibrium

is a strategy profile σ such that costi(σ) ≤ costi(σ−i, σ
′
i) for any σ′

i ∈ Σi

and i ∈ N , i.e., a strategy profile in which no player can improve her cost by
unilateral deviations. Let PNE(LB) be the set of pure Nash equilibria of a load
balancing game LB. The Nash price of anarchy of LB is defined as: NPoA(LB) =
supσ∈PNE(LB)

NSW(σ)
NSW(σ∗(LB)) Given a class G of load balancing games, the Nash price

of anarchy of G is defined as NPoA(G) = supLB∈G NPoA(LB). In the non-atomic
setting, a pure Nash equilibrium is a strategy profile Δ such that, for any player
type i ∈ N , resources j, j′ ∈ Σi such that Δi(j) > 0, costj(Δ) ≤ costj′(Δ) holds,
that is, an outcome of the game in which no player can improve her situation by
unilaterally deviating to another strategy. The Nash price of anarchy of a non-
atomic game NLB (denoted as NPoA(NLB)) is defined as in the atomic setting,
and again, given a class G of non-atomic load balancing games, the Nash price
of anarchy of G is defined as NPoA(G) = supNLB∈G NPoA(NLB).

2.2 Online Load Balancing

We now introduce online load balancing. There is a natural correspondence
between a load balancing game and an instance of the online load balancing
problem. When dealing with the online setting, as usual in the literature, we
adopt a different nomenclature. In particular, an instance I of the online load bal-
ancing problem is a tuple I = (N,R, (�j)j∈R, (wi)i∈N , (Σi)i∈N ) , where N = [n]
is a set of n ≥ 1 clients, R is a finite set of resources, �j : R>0 → R>0 is the (non-
decreasing and positive) latency function of resource j ∈ R, and, for each i ∈ N ,
wi > 0 is the weight of client i and Σi ⊆ R (with Σi �= ∅) is her set of admissible
resources. Furthermore, in the online setting an assignment of clients to resources
is called state: A state is an n-tuple σ = (σ1, . . . , σn), where σi ∈ Σi ⊆ R is the
resource assigned to player i ∈ N in σ. As in load balancing games, given a class
of latency functions C, let WLB(C) denote class of load balancing instances with
latency functions in C.

The NSW of a state and the optimal state are defined analogously to the
selfish load balancing setting.

The Online Setting. In online load balancing, clients appear in online fashion,
in consecutive steps; when a client appears, an irrevocable decision has to be
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taken in order to assign it to a resource. We assume w.l.o.g. that clients appear
in increasing order, i.e., client i ∈ [n] appears before client j ∈ [n] if and only if
i < j. More formally, for any i ∈ [n], an online algorithm has to assign client i
to a resource being admissible for it without the knowledge of the future clients
i + 1, i + 2, . . .; the assignment of client i decided by the algorithm at step i
cannot be modified at later steps.

Notice that at each step i > 1 a new instance is obtained by adding client i
to the instance of step i − 1.

Competitive Ratio. Following the standard performance measure in competi-
tive analysis, we evaluate the performance of an online algorithm in terms of its
competitiveness (or competitive ratio).

An online algorithm A is c-competitive on instance I if the following holds:
Let σ and σ∗ be the state computed by algorithm A and the optimal state for
I, respectively. Then, NSW(σ) ≤ c · NSW(σ∗). The competitive ratio CRA(I) of
algorithm A on instance I is the smallest c such that A is c-competitive on I [12].

Given a class I of load balancing instances, the competitive ratio CRA(I) of
Algorithm A on I is simply given by the supremum competitive ratio of A over
all instances I ∈ I,i.e., CRA(I) = supI∈I CRA(I).

Greedy Algorithm. A natural algorithm proposed in [3] for this problem is to
assign each client to the resource yielding the minimum increase to the social wel-
fare (ties are broken arbitrarily). This results to greedy assignments. Therefore,
given an instance of online load balancing, an assignment of clients to resources
is called a greedy assignment if the assignment of a client to a resource minimizes
the total cost of the instance revealed up to the time of its appearance.

3 Selfish Load Balancing

In this section we focus on selfish load balancing. In particular, in Subsect. 3.1
we deal with the analysis of the price of anarchy in weighted load balancing
games, in Subsect. 3.2 we consider the subclass of unweighted load balancing
games, while in Subsect. 3.3 we analyze the price of anarchy of non-atomic load
balancing games.

3.1 The NPoA for Weighted Load Balancing Games

We first provide an upper bound to the Nash price of anarchy of weighted
load balancing games. Given a class of latency function C, define ψ(C) :=

supf1,f2∈C,k1,k2,o1,o2∈R:k1≥o1>0,o2>k2≥0

(
f1(k1+o1)

f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)

f2(o2)

) (k1−o1)o2
k1o2−k2o1 .

Theorem 1. Let C be a class of latency functions. The Nash price of anarchy of
weighted load balancing games with latency functions in C is NPoA(WLB(C)) ≤
ψ(C).
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Proof. Let LB ∈ WLB(C) be a weighted load balancing game with latency func-
tions in C, and let σ and σ∗ be a worst case pure Nash equilibrium and an optimal
strategy profile of LB, respectively. Let kj denote kj(σ) and oj denote kj(σ∗).
Since σ is a pure Nash equilibrium, we have that costi(σ) ≤ costi(σ−i, σ

∗
i ).

Thus, we get
∏

i∈N costi(σ)wi ≤ ∏
i∈N costi(σ−i, σ

∗
i )wi .

Since costi(σ) = �σi
(kσi

) and costi(σ−i, σ
∗
i ) ≤ �σ∗

i
(kσ∗

i
+ wi), it holds

that
∏

i∈N costi(σ)wi =
∏

i∈N �σi
(kσi

)wi =
∏

j∈R(σ) �j(kj)
∑

i:j=σi
wi =

∏
j∈R(σ) �j(kj)kj and

∏
i∈N costi(σ−i, σ

∗
i )wi ≤ ∏

i∈N �σ∗
i
(kσ∗

i
+ wi)wi ≤

∏
i∈N �σ∗

i
(kσ∗

i
+oσ∗

i
)wi =

∏
j∈R(σ∗) �j(kj+oj)

∑
i:j=σ∗

i
wi =

∏
j∈R(σ∗) �j(kj+oj)oj .

By putting together the above inequalities we get
∏

j∈R(σ)

�j(kj)kj =
∏

i∈N

costi(σ)wi ≤
∏

i∈N

costi(σ−i, σ
∗
i )wi ≤

∏

j∈R(σ∗)

�j(kj + oj)oj .

(1)

By exploiting the properties of the logarithmic function and by using (1), we
obtain

ln (NPoA(LB)) = ln

⎛
⎜⎝

(∏
j∈R(σ ) �j(kj)

kj

) 1∑
i∈N wi

(∏
j∈R(σ ∗) �j(oj)oj

) 1∑
i∈N wi

⎞
⎟⎠

≤ ln

⎛
⎜⎝

(∏
j∈R(σ ∗) �j(kj + oj)

oj

) 1∑
i∈N wi

(∏
j∈R(σ ∗) �j(oj)oj

) 1∑
i∈N wi

⎞
⎟⎠

=

∑
j∈R(σ ∗) oj (ln(�j(kj + oj)) − ln(�j(oj)))∑

i∈N wi
. (2)

Since
∑

i∈N wi =
∑

j∈R kj =
∑

j∈R oj , we have that (2) is upper bounded by
the optimal solution of the following optimization problem on some new linear
variables (αj)j∈R (as (2) is the solution obtained by setting α = 1 for each
j ∈ R):

max

∑
j∈R(σ ∗) αjoj (ln(�j(kj + oj)) − ln(�j(oj)))∑

j∈R αjkj

s.t.
∑
j∈R

αjkj =
∑
j∈R

αjoj , αj ≥ 0 ∀j ∈ R. (3)

Fact 1. The value of the optimal solution of (3) is at most supk1≥o1>0,
o2>k2≥0,
f1,f2∈C

(o2−k2)o1(ln(f1(k1+o1))−ln(f1(o1)))+(k1−o1)o2(ln(f2(k2+o2))−ln(f2(o2)))
k1o2−k2o1

.

By Fact 1, and by continuing from (2), we have that the upper bound pro-
vided in Fact 1 is higher or equal than ln(NPoA(LB)). Thus, by exponentiat-
ing this inequality, we get NPoA(LB) ≤ ψ(C). Hence, by the arbitrariness of
LB ∈ WLB(C), the claim follows. ��

In the following theorem we show that the upper bound derived in Theorem
1 is tight under mild assumptions on the latency functions.
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Theorem 2. Let C be a class of latency functions. (i) If C is abscissa-scaling
and ordinate-scaling, then NPoA(WLB(C)) ≥ ψ(C). (ii) If C is abscissa-scaling,
ordinate-scaling, and unbounded-including, the previous inequality holds even for
symmetric weighted load balancing games.

Proof (Sketch of the proof). We show part (ii) of the claim only, as the proof of
part (i) resorts to similar arguments. Let us assume that C is abscissa-scaling,
ordinate-scaling, and unbounded-including. In order to prove part (ii), we equiv-
alently show that for any M < ψ(C) there exists a game LB ∈ WLB(C) such that
NPoA(LB) > M .

Let f1, f2 ∈ C, k1, k2, o1, o2 ≥ 0 such that k1 ≥ o1 > 0, o2 > k2 ≥ 0, and

a sufficiently small ε > 0 such that
(

f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)

f2(o2)

) (k1−o1)o2
k1o2−k2o1

>

M + ε. Let f, g ∈ C be such that f(x) := f1(o1x) and g(x) := f2(o2x), and let

k := k1/o1 and h := k2/o2. Since
(

f1(k1+o1)
f1(o1)

) (o2−k2)o1
k1o2−k2o1

(
f2(k2+o2)

f2(o2)

) (k1−o1)o2
k1o2−k2o1 =

(
f(k+1)

f(1)

) 1−h
k−h

(
g(h+1)

g(1)

) k−1
k−h

we have that, for some f, g ∈ C, k ≥ 1, and h < 1,

(
f(k + 1)

f(1)

) 1−h
k−h

(
g(h + 1)

g(1)

) k−1
k−h

> M + ε. (4)

Observe that f and g can be chosen in such a way that they are non-constant
functions. Indeed, if one of them is constant, it is sufficient replacing it with an
arbitrary non-constant function, so that (4) holds as well. As C is unbounded-
including and functions f, g are non-constant, we have that limx→∞ f(x) =
limx→∞ g(x) = ∞.

We consider the case h > 0 only (the case h = 0 is analogue and is omit-
ted). Given two integers m ≥ 3 and s ≥ 1, let LB(m, s) be a symmetric
weighted load balancing game where the resources are partitioned into 2m groups
R1, R2, R3 . . . , R2m. Each group Rj has sj−1 resources and the latency function
of each resource r ∈ Rj is defined as �r(x) := αj f̂j (βjx) with

f̂j :=

{
f if j ≤ m − 1
g if j ≥ m

, βj :=

{(
s
k

)j−1 if j ≤ m − 1
(

s
h

)j−m (
s
k

)m−1 if m ≤ j ≤ 2m
, (5)

αj :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
f(k)

f(k+1)

)j−1

if j ≤ m − 1
(

g(h)
g(h+1)

)j−m (
f(k)

g(h+1)

) (
f(k)

f(k+1)

)m−2

if m ≤ j ≤ 2m − 1
g(h)
g(1)

(
g(h)

g(h+1)

)m−1 (
f(k)

g(h+1)

) (
f(k)

f(k+1)

)m−2

if j = 2m

. (6)

The set of players N is partitioned into 2m − 1 sets N1, N2, . . . , N2m−1, and
each group Nj has sj players having weight wj := 1/βj+1. Let σ be the strategy
profile in which, for any j ∈ [2m − 1], each resource of group Rj is selected by
exactly s players of group Nj (see Fig. 1a). One can show that, for any integer
m ≥ 3, there exists a sufficiently large sm such that σ is a pure Nash equilibrium
of the game LB(m, sm).
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Fig. 1. The LB used in the proof of Theorem 2. Columns represent resources and
squares represent players (number j inside a square means that the player belongs
to group Nj). (a): a Nash equilibrium σ; (b): the strategy profile σ∗.

Now, let σ∗ be the strategy profile of LB(m, sm) in which, for any j ∈ [2m−1],
each resource of group Rj+1 is selected by exactly one player of group Nj

(see Fig. 1b). By exploiting the definitions of αj ,βj , f̂j , wj , and Nj , and by
choosing a sufficiently large m, one can show that the following inequali-

ties hold: NSW(σ)
NSW(σ∗) ≥ limm→∞

( ∏2m−1
j=1 (αj f̂j(βjsmwj))|Nj |wj

∏2m
j=2(αj f̂j(βjwj−1))|Nj−1|wj−1

) 1
∑2m−1

j=1 |Nj |wj − ε =
(

f(k+1)
f(1)

) 1−h
k−h

(
g(h+1)

g(1)

) k−1
k−h − ε > M + ε − ε = M, thus showing part (ii) of the

claim. ��
As the class of polynomial latency functions is ordinate-scaling, abscissa-

scaling, and unbounded-including, the following corollary of Theorems 1 and 2
establishes the exact Nash price of anarchy for polynomial latency functions.

Corollary 1. The Nash price of anarchy of weighted load balancing games with
polynomial latency functions (even for symmetric games) of maximum degree p
is NPoA(WLB(C)) = 2p.

When considering identical resources with polynomial latency functions, the
price of anarchy does not decrease (the proof is deferred to the full version).

3.2 The NPoA for Unweighted Load Balancing Games

We first provide an upper bound to the Nash price of anarchy of unweighted
load balancing games.

Theorem 3. Let C be a class of latency functions. The Nash price of anarchy of
unweighted load balancing games with latency functions in C is NPoA(ULB(C)) ≤
supf∈C,k∈N,o∈[k]

(
f(k+1)

f(o)

) o
k

.

We show that the upper bound derived in Theorem3 is tight if the considered
latency functions are ordinate-scaling (the proof is deferred to the full version).
The following result for polynomial latency functions holds.



334 V. Bilò et al.

Corollary 2. The Nash price of anarchy of unweighted load balancing games
with polynomial latency functions of maximum degree p is NPoA(ULB(C)) = 2p.

3.3 The NPoA for Non-atomic Load Balancing Games

We first provide an upper bound to the Nash price of anarchy of non-atomic
load balancing games.

Theorem 4. Let C be a class of latency functions. The Nash price of anarchy of
non-atomic load balancing games with latency functions in C is NPoA(NLB(C)) ≤
supf∈C,k,o∈R:k≥o>0

(
f(k)
f(o)

) o
k

.

We show that the upper bound derived in Theorem4 is tight the considered
latency functions are all-constant-including (the proof is deferred to the full
version). The following result for polynomial latency functions holds.

Corollary 3. The Nash price of anarchy of non-atomic load balancing games
with polynomial latency functions of maximum degree p (even for symmetric

games) is NPoA(NLB(P(p))) = NPoA(SNLB(P(p))) =
(
e

1
e

)p

 (1.44)p.

4 Online Load Balancing

We first provide an upper bound on the competitive ratio of the greedy algo-
rithm.

Theorem 5. Let C be a class of quasi-log-convex functions. The competitive
ratio of the greedy algorithm G applied to load balancing instances with latency

functions in C is CRG(WLB(C)) ≤ sup f1,f2∈C,
k1,k2,o1,o2∈R:

k1≥o1>0,o2>k2≥0

(
f1(k1+o1)

k1+o1

f1(k1)k1f1(o1)o1

) o2−k2
o2k1−o1k2

(
f2(k2+o2)

k2+o2

f2(k2)k2f2(o2)o2

) k1−o1
o2k1−o1k2

, where we set f2(0)0 := 1.

We show that, when considering the greedy algorithm, the upper bound derived
in Theorem 5 is tight if the considered latency functions are abscissa-scaling and
ordinate-scaling (the proof is deferred to the full version). The following result
for polynomial latency functions holds.

Corollary 4. The competitive ratio of the greedy algorithm applied to weighted
load balancing instances with polynomial latency functions of maximum degree p
is CRG(WLB(C)) = 4p.

We show that, when considering polynomial latency functions, the upper
bound of Corollary 4 is tight for any online algorithm, i.e., we are able to provide
a matching lower bound to the online load balancing problem (the proof is
deferred to the full version).
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5 Concluding Remarks and Open Problems

To the best of our knowledge, this is the first work that adopts the NSW as a
benchmarking quality measure in load balancing problems. Several open prob-
lems deserve further investigation. Our paper mostly focuses on evaluating the
performance of selfish and online load balancing. Concerning complexity issues,
it is worth noticing that, on the one hand, when considering unweighted players,
an optimal configuration with respect to the NSW can be trivially computed in
polynomial time by exploiting the same techniques developed in [17,31] for the
utilitarian social welfare; on the other hand, when considering weighted play-
ers, a simple reduction from the NP-complete problem PARTITION shows that
the problem becomes NP-hard. Therefore, an interesting open problem is that
of providing better polynomial time approximation algorithms for the weighted
case and polynomial latency functions (we notice that, as shown in Corollary 4,
the greedy algorithm provides a constant approximation factor).
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Abstract. We present a polynomial-time algorithm that computes an
ex-ante envy-free lottery over envy-free up to one item (EF1) determin-
istic allocations. It has the following advantages over a recently proposed
algorithm: it does not rely on the linear programming machinery includ-
ing separation oracles; it is SD-efficient (both ex-ante and ex-post); and
the ex-ante outcome is equivalent to the outcome returned by the well-
known probabilistic serial rule. As a result, we answer a question raised
by Freeman, Shah, and Vaish (2020) whether the outcome of the prob-
abilistic serial rule can be implemented by ex-post EF1 allocations. In
the light of a couple of impossibility results that we prove, our algorithm
can be viewed as satisfying a maximal set of properties. Under binary
utilities, our algorithm is also ex-ante group-strategyproof and ex-ante
Pareto optimal. Finally, we also show that checking whether a given ran-
dom allocation can be implemented by a lottery over EF1 and Pareto
optimal allocations is NP-hard.

1 Introduction

Who gets what is a significant and ubiquitous issue. When making any kind of
allocation among self-interested agents, fairness is an important concern. Does
a fair allocation exist? Is there an efficient algorithm to compute such an alloca-
tion? These are important questions that have been studied in fair division for
decades. In this paper, we consider the issue of finding probabilistic allocations
that are ex-ante and ex-post fair.

Suppose there are two agents who have additive utilities over three items
a, b, c. Both agents have the highest value for items a, then b, and then c. From
an ex-ante perspective, envy-freeness can be achieved by giving each item to
each agent with probability half. However, there are many ways to achieve this
expected probability, some perhaps not too fair. For example, the uniform lottery
over the following two deterministic allocations: ({a, b, c}, ∅) and (∅, {a, b, c}). It
may be desirable to achieve both ex-ante envy-freeness and some weaker form
of ex-post envy-freeness. For example a uniform lottery over the following allo-
cations is fairer ex-post: ({a}, {b, c}) and ({b, c}, {a}).

As seen from the example above, achieving target fairness properties is easy
when we consider fractional outcomes or view outcomes from an ex-ante per-
spective. Implementing such desirable ex-ante outcomes by randomizing over
c© Springer Nature Switzerland AG 2020
X. Chen et al. (Eds.): WINE 2020, LNCS 12495, pp. 341–355, 2020.
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desirable deterministic outcomes can pose interesting challenges (see, e.g. [1,11]).
This issue was explored by Freeman et al. [15]. They focussed on ex-ante envy-
freeness and ex-post envy-freeness up to one item as the target fairness require-
ments. Both of the properties are known to be individually achievable. An ex-
ante envy-free random allocation always exists (for example the outcome of the
probabilistic serial rule [8] achieves ex-ante envy-freeness). Similarly, a determin-
istic envy-free up to one item (EF1) allocation always exists [10]. For example,
running the round robin sequential algorithm obtains an EF1 allocation [12].
Freeman et al. [15] explore the question of achieving ex-ante envy-freeness and
ex-post EF1 simultaneously. They showed that there exists a polynomial-time
algorithm to compute a lottery over envy-free up to one item allocations that is
also ex-ante envy-free.1

The inventive polynomial-time algorithm of Freeman et al. [15] has a couple of
possible limitations. Firstly, it requires using the machinery of linear program-
ming separation oracles. It may be desirable to get similar results by simpler
combinatorial algorithms. Secondly, the algorithm of Freeman et al. is not ex-
post weakly SD (stochastic dominance)-efficient and hence not ex-ante weakly
SD-efficient. This is evident from Example 2 of Freeman et al. where they note
that their algorithm does not satisfy ordinal efficiency.2 The fact that an algo-
rithm is not ex-post weakly SD-efficient implies that it can return a deterministic
allocation such that there exists another deterministic allocation that gives each
agent strictly more utility for all utility functions consistent with the underlying
ordinal preferences. Another implication of violating ex-post weak SD-efficiency
is that all the agents can trade one of their items for another item to get more util-
ity. Such unamiguous compromise on welfare can be undesirable. For example,
the random serial dictatorship rule (which is ex-post SD-efficient) has received
criticism that it is not ex-ante SD-efficient [8].

We overcome the two limitations discussed above and show that the algo-
rithmic result of Freeman et al. [15] can be achieved in a relatively simpler and
faster way while additionally satisfying SD-efficiency. To the best of our knowl-
edge, our is the first algorithm to simultaneously satisfy weak SD-efficiency,
ex-ante EF, and ex-post EF1. The latter two guarantees even hold for all addi-
tive utilities consistent with the agents’ underlying ordinal preferences. In other
words, our algorithm satisfies ex-ante SD-envy-freeness and ex-post SD-EF1. We
also show how the algorithm can be further modified by using parametric net-
work flows to additionally achieve both ex-ante and ex-post SD-efficiency. Our
results can be viewed as being optimal in the view of the following two impossi-
bility results that we prove. Firstly, ex-ante SD-envy-freeness, ex-post EF1, and

1 Freeman et al. [15] also presented several other results charting the landscape of
possibility and impossibility results when considering fairness and efficiency proper-
ties ex post and ex-ante. In particular, they study in detail the rule that maximizes
ex-ante Nash welfare. However, they show that the rule cannot be implemented by
EF1 allocations.

2 SD-efficiency is also referred to as ordinal efficiency in the literature [8].
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ex-post Pareto optimality are incompatible. Secondly, ex-ante Pareto optimality
and ex-ante SD-envy-freeness are incompatible.

Our algorithm calls the probabilistic serial algorithm as well as the Birkhoff’s
decomposition algorithm as subroutines. Freeman et al. raised the question
whether the outcome of the probabilistic serial algorithm can be implemented
using ex-post EF1 randomized allocations: “we were not able to determine
whether the fractional allocation produced by probabilistic serial can always be
implemented using an ex-post EF1 randomized allocation.” We answer the ques-
tion in the affirmative: our algorithm’s outcome is ex-ante equivalent to the
outcome of the probabilistic serial rule. In particular, it can be viewed as a
desirable way to instantiate the probabilistic serial outcome. Under binary util-
ities, our algorithm is group-strategyproof, ex-ante efficient, ex-ante envy-free,
and ex-post EF1. Finally, we also show that checking whether a given random
allocation can be represented over a lottery over EF1 and Pareto optimal allo-
cations is NP-hard.

2 Preliminaries

An allocation problem is a triple (N,O, u) such that N = {1, . . . , n} is the set of
agents, O = {o1, . . . , om} is the set of objects, and u specifies an additive utility
function ui : O → R

+. The utility function profile u induces the preference
profile �= (�1, . . . ,�n) which specifies for each agent i his preferences �i over
objects in O such that o �i o′ if and only if ui(o) ≥ ui(o′). We use �i for the
strict part of �i, i.e., o �i o′ iff o �i o′ but not o′ �i o. A random allocation p
is a (n × m) matrix [pi,oj ] such that pi,oj ∈ [0, 1] for all i ∈ N , and oj ∈ O; and∑

i∈N pi,oj = 1 for all oj ∈ O. For a given set S ⊂ N , we will refer by �S the
preference profile restricted to agents in S.

The value pi,oj represents the probability of object oj being allocated to agent
i. Each row pi = (pi,o1 , . . . , pi,om) represents the allocation of agent i. The set
of columns correspond to the objects o1, . . . , om. A feasible random allocation is
deterministic if pi,o ∈ {0, 1} for all i ∈ N and o ∈ O. When we say ‘an allocation’,
we will mean random allocation unless we specially specify it is deterministic.

For any agent i, j ∈ N and an allocation p, the utility of agent i for a bundle pj
is ui(pj) =

∑
o∈O pj,oui(o). Given two random allocations p and q, pi �SD

i qi that
is, an agent i SD prefers allocation pi to allocation qi if

∑
oj∈{ok:ok�io} pi,oj ≥

∑
oj∈{ok:ok�io} qi,oj for all o ∈ O. We write pi �SD

i qi if pi �SD
i qi and not

qi �SD
i pi.

Fairness Properties. A random allocation p is SD-envy-free if for all i, j ∈ N ,
pi �SD

i pj . An random allocation p is envy-free (EF) if ui(pi) ≥ ui(pj) for all
i, j ∈ N . For an agent’s allocation pj , we will denote by p−o

j the allocation pj in
which pj,o is set to 0. For an agent’s allocation pj and S ⊆ O, we will denote by
p−S
j the allocation pj in which pj,o is set to 0 for all o ∈ S. A random allocation

p is SD-EF1 if for all i, j ∈ N , either pi �SD
i pj or pi �SD

i p−o
j for some o. o. A

random allocation p is envy-free up to k items (EFk) if there exist some S ⊂ O
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such that |S| ≤ k such that ui(p−S
i ) ≥ ui(p−S

j ). Note that SD-envy-freeness
implies envy-freeness which implies EFk. And SD-EF implies SD-EFk.

A given random allocation can be implemented by a lottery over determin-
istic allocations.3 We call the latter an implementation of the given random
allocation. We say that random allocation p satisfies a property X ex-ante if the
fractional allocation representing p satisfies property X. When we discuss the
ex post properties of a random allocation p, we will also need to consider the
lottery implementation over deterministic allocations which achieves the ran-
dom allocation p. In that case we say that random assignment with a lottery
implementation deterministic allocations over M1, . . . ,MK satisfies property X
ex-post if M1, . . . ,MK satisfy property X. Therefore for any given property for
allocations, we consider it ex-ante as well as ex-post. Figure 1 shows the key fair-
ness concepts that are appropriate from ex-ante and ex-post perspectives. Note
that we do not focus ex-post envy-freeness since a deterministic envy-free allo-
cation is not guaranteed to exist. Furthermore, checking whether a deterministic
envy-free allocation exists is NP-complete even for 1-0 utilities [2].

ex-ante
SD-EF

ex-ante
EF

ex-post
SD-EF1

ex-post
EF1

Fig. 1. Logical relations between fairness concepts.

Example 1. Consider the example in which N = {1, 2}, O = {a, b, c, d} and the
agents have the following utilities over four items.

a b c d
1 4 3 2 1
2 4 2 3 1

Then, the following is one possible random allocation.

p =

a b c d( )
1 1/2 1 0 1/2
2 1/2 0 1 1/2

In the allocation, u1(p1) = 1
2 (4) + 1(3) + 1

2 (1) = 5.5 and u1(p2) = 1
2 (4) +

1(2) + 1
2 (1) = 4.5. Hence agent 1 is not envious of agent 2.

Allocation p can be implemented by the following uniform lottery over two
deterministic allocations as follows.

3 The statement follows from the well-known Carathéodory’s Theorem.
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p = 1
2

a b c d( )
1 1 1 0 0
2 0 0 1 1

+ 1
2

a b c d( )
1 0 1 0 1
2 1 0 1 0

We say that a deterministic allocation q is consistent with a random alloca-
tion p if for each qi,o = 1, we have that pi,o > 0. For n = m, a deterministic
allocation can be represented by a permutation matrix in which an entry of one
denotes the row agent getting the column object. A decomposition of a ran-
dom allocation p is a sum

∑k
i=1 λiPi such that λi ∈ (0, 1] for i ∈ {1, . . . , k},

∑k
i=1 λi = 1, and each Pi is a permutation matrix (consistent with p).

3 The PS-Lottery Algorithm

In this section, we present our main algorithm that we refer to as the PS-Lottery
Algorithm. Before we proceed, we summarize two well-known algorithms that we
will use as building blocks for our algorithm to simultaneously achieve ex-ante
EF and ex-post EF1.

Probabilistic Serial (PS) Algorithm. The PS rule [8] takes as input the strict
ordinal preferences of agents over items as well as the available amounts of each
of the items. Agents start eating their most preferred item at unit speed until the
item is consumed. They continue eating their most preferred items until all the
items are consumed. The outcome is a random allocation in which each agent’s
probability of getting an item is the fraction of the item that she ate. Initially,
only presented for the case of single-unit demands, the rule extends seamlessly
for the case where agents want to get multiple items [21]. Although described
as a continuous rule where agents eat infinitesimal amounts, the PS outcome
can be computed by a discrete algorithm in polynomial time O(nm) (see the
appendix).

Birkhoff’s Algorithm. Consider any random allocation with n agents and n items
in which each agent gets one unit of items. Birkhoff’s algorithm can decom-
pose such a random allocation (which can be represented by a bistochastic
matrix) into a convex combination of at most n2 − n + 1 deterministic allo-
cations (represented by permutation matrices) [7,22]. The following is a descrip-
tion of Birkhoff’s algorithm. We initialize i to 1. For a bistochastic matrix M , a
permutation matrix Pi consistent with M is guaranteed to exist. Such a permu-
tation matrix corresponds to a perfect matching in a bipartite graph (N ∪O,E)
where (i, o) ∈ E iff Mi,o > 0. Such a perfect matching and hence the permuta-
tion matrix can be computed via the Hopcroft-Karp-Karzanov algorithm which
takes time O(n2.5) [18,19]. We initialize index i to 1. M is set to M −λiPi where
λi ∈ (0, 1] is the smallest non-zero entry in Pi. Index i is incremented by one.
The updated M is again bistochastic. The process is repeated (say k − 1 times)
until M is the zero matrix. Then M =

∑k
i=1 λiPi.
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Now that we have defined the two algorithms, we are in a position to present
Algorithm 1. The high-level description of the algorithm is as follows. We first
add some dummy items to ensure that there are nc items. The expanded set of
items is called O′. We then simulate PS. We track information about how much
of each item has been eaten at time steps 1, . . . , c. We use this information to
form an allocation q′ of items in O′ to agents in N ′ = {i1, . . . , ic : i ∈ N}. The
agents i1, . . . , ic are called the representative agents of each agent i. An agent
ij ’s allocation is what agent i ate in time interval [j − 1, j]. Allocation q′ can be
represented by a bistochastic matrix. We decompose q′ into a convex combination
of permutation matrices via Birkhoff’s algorithm. The permutation matrices are
suitably modified to remove the dummy items and also give the allocation of
all representatives to the agent they represent. The convex combination over
the modified permutation matrices gives us the desired solution, which is both
ex-ante EF and ex-post EF1.

Algorithm 1. PS-Lottery Algorithm
Input: I = (N,O,�) where |N | = n, |O| = m and c = �m/n�.
Output: EF fractional allocation q =

∑K
j=1 λjPi where each Pj represents a

deterministic EF1 allocation and K ≤ (cn)2 − 2cn + 2.
1: If m is a multiple of n, D = ∅. Else, D = {d1, . . . , dnc−m}.
2: O′ ← O ∪ D so that |O′| = cn.
3: N ′ = {i1, . . . , ic : i ∈ N}. The agents i1, . . . ic are termed as the representa-

tives of agent i.
4: Set preference profile �′ of agents in N ′ ∪ N as follows: for all o, o′ ∈ O and

for all ij for j ∈ {1, . . . , c}, o �′
ij

o′ iff o �i o′. For all o ∈ O and d ∈ D,
o �′

ij
d. All the ties in �′ are broken lexicographically.

5: Run PS on instance (N,O′,�′
N ) to get a random outcome r.

6: For each bundle ri, let agent i re-eat her bundle at unit-speed according to
preferences of her representative agents �′

ik
with each representative agent

ij eating on behalf of agent i in time interval [j − 1, j]. Let the result of this
eating be allocation q′ which is an allocation of items O′ to agent represen-
tatives in N ′.

7: For the (bistochastic) matrix corresponding to q′, compute a Birkhoff decom-
position q′ =

∑K
j=1 λjP

′
j where K ≤ (cn)2 − 2cn + 2.

8: Convert q′ =
∑K

j=1 λjP
′
j into q =

∑K
j=1 λjPj where all the dummy items are

ignored and each agent gets the allocation of its representatives.
9: return Allocation q for instance I and its decomposition

∑K
j=1 λjPj .

Before we prove the main properties of the PS-Lottery Algorithm, we recall a
class of deterministic allocation algorithms. The sequential allocation algorithm
takes as input a sequence π of turns of the agents and returns a deterministic
allocation which is a result of agents picking a most preferred unallocated item
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in their turn. A sequence of turns is called recursively balanced (RB) if at each
prefix, all agents have the same number of turns, or differ by one [5]. An RB
sequence can be viewed as agents coming in c rounds. Note that cn ≤ (m + n).
In each round except the last one, each agent gets exactly one turn. Since each
agent weakly prefers her picked item over all items picked in later rounds, it can
easily be proved that the outcome of sequential allocation with an RB sequence
is EF1 [3].4 Since sequential allocation with an RB sequence only uses ordinal
preferences of the agents, it is EF1 with respect to all positive utilities consistent
with the ordinal preferences [3] and hence SD-EF. An allocation is called an
RB-allocation if it is an outcome of sequential allocation with respect to some
RB-sequence. We will use the perspective of RB-allocations to establish that our
algorithm returns a lottery over EF1 allocations.

Theorem 1. Let c = �m/n�. Algorithm 1 is polynomial-time algorithm that
takes time O((cn)4) that computes a lottery over at most (cn)2 deterministic EF1
allocations that is equivalent to the outcome of the probabilistic serial algorithm.

Proof. Algorithm 1 works as follows. If m < n, we set D = {d1, . . . , dn−m}.
If m > n, we set D = {d1, . . . , dcn−m}. We are now in a position to fix a new
allocation instance I ′ = (N ′, O′,�′) that only uses ordinal preferences. The item
set O′ is O∪D where |O′| = cn. The ‘representative’ set N ′ is {i1, . . . , ic :i ∈ N}.
Note that the number of representatives |N ′| is equal to the number of items
|O′|. The preferences are consistent with the underlying preference profile. The
preferences �′ of the representatives are set as follows: for all o, o′ ∈ O and for
all ij for j ∈ {1, . . . , c} o �′

ij
o iff o �i o. For all o ∈ O and d ∈ D, o �′

ij
d. All

the ties in �′ are broken lexicographically.
Note that for the modified allocation problem instance I ′, an allocation has

a corresponding allocation in the original instance I: an agent i gets all the allo-
cations of its representatives i1, . . . ic. The allocation of dummy items is ignored.

Let q′ be the allocation as a result of applying PS with agent set N and
item set O′, but for each j = 0 to c − 1, we change the name of each agent
i to ij+1 in time interval [j, j + 1]. Note that computing r and q′ takes time
(cn)2. The allocation has a corresponding bistochastic matrix in which the rows
correspond to the representatives and the columns correspond to the items. Each
entry in the matrix represents the amount of the corresponding item eaten by
the corresponding representative.

Note that since q′ is bistochastic, a permutation matrix P ′
k consistent with

q′ exists by Birkhoff’s theorem. We want to show that any such matrix P ′
k must

correspond to an RB-allocation of items in O′ to agents in N . The RB-allocation
is viewed as proceeding in rounds. In each round, each of the representatives
representing the n agents pick a most preferred available item. In the j-th round,
the representatives involved are 1j , . . . , nj . In any P ′

k, each item is allocated to
an agent representative and each agent representative gets one item. In order to
4 In fact an RB allocation satisfies a stronger properly called strong EF1. Stronger

EF1 requires that upon removing the same item from agent i’s bundle, no other
agent j envies i, for all i and j. The property was proposed by Conitzer et al. [13].
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establish that P ′
k is an RB-allocation of N , it is sufficient to prove two claims:

(1) no representative agent strictly prefers any item picked in a later round; and
(2) within each round, the items allocated to the representative agents are as a
result of sequential allocation.

Claim (1) follows from the fact that no representative ij strictly prefers any
item allocated in a later round. The reason is that when it stopped eating in its
turn, it was always eating an item at least as preferred as in later rounds.

Next, we prove Claim (2). Consider any round in which each representative
receives one item. We claim that no set of representatives want to reallocate
the items given in that round to get an improvement for all representatives
in the set. Suppose for contradiction there is a trading cycle in which every
agent in the cycle improves: o1, 1, o2, 2, . . . , oj , j. Representative 1 prefers item
o2 over o1 which means that it started eating o1 after o2 was finished. Since 1
ate a strictly positive fraction of o1, it implies that o1 finishes strictly after o2.
By a similar argument each i ∈ {1, . . . j − 1} wants to get oi+1 which means
that it started eating oi after oi+1 was finished. Agent j prefers item o1 over
oj which means that it started eating oj after o1 was finished which means
that oj finishes strictly after o1. But then the order of the items according to
the finishing times is: o1, oj , oj−1, . . . , o3, o2, o1. We have shown that o1 has two
different finishing times which is a contradiction. Since there exists no trading
cycle for representatives in the same round, we know that the items in the round
can be allocated as a result of sequential allocation.

From the two claims above, the allocation P ′
k is an RB-allocation for agents in

N if each agent gets the allocations of its representatives. Since any permutation
matrix consistent with q′ also corresponds to an RB-allocation, we can use P ′

k

as one of the permutation matrices in which q′ is decomposed during Birkhoff’s
decomposition. We can continue decomposing q′ into permutation matrices until
we can represent q′ by a convex combination of at most K ≤ (cn)2 permuta-
tion matrices P ′

1, . . . , P
′
K . Each permutation matrix in the decomposition can be

computed by computing a perfect matching in a corresponding bipartite graph
via the Hopcroft-Karp-Karzanov algorithm which takes time O((cn)2.5).

Finally, note that we can convert allocations (q′, P ′
1, . . . , P

′
K) for instance I ′

into the corresponding allocations (q, P1, . . . , PK) for instance I. We do so by
removing the dummy items and for each i ∈ N , giving the allocations of all the
representatives i1, . . . , ic to agent i. Note that q is the outcome of running PS
on instance I. Also, P1, . . . , PK are RB-allocations for instance I and hence EF1
for instance I. ��
Remark 1. Algorithm 1 is combinatorial algorithm that computes a lottery over
at most (cn)2 ≤ (m + n)2 deterministic allocations. By Carathéodory’s Theo-
rem, any n × m random allocation that is represented by a convex combination
of a given K deterministic allocations, can be represented by at most nm + 1
deterministic allocations among the K deterministic allocations. We can reduce
the support of the lottery returned by Algorithm 1 to one involving at most
nm+1 deterministic EF1 and SD-efficient allocations as follows. By using Gaus-
sian elimination, we compute the subset of the set of matrices {P1, . . . , Pk} that
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forms the basis of P1, . . . , Pk. We can compute a convex combination of the
matrices in the basis to achieve the same outcome q.

We note that whereas our algorithm provides a way to implement PS by
EF1 allocations, not every implementation of the PS outcome may satisfy ex-
post EF1. For example, consider the case of two agents with identical preferences
over two items. In that case, tossing a coin and then giving both items to one
agent is ex-ante equivalent to the PS outcome. However, it is not EF1 if agents
have strictly positive utilities for both items.

Algorithm 1 bears similarities to the exponential-time Algorithm 1 (Recursive
PS) of Freeman et al. [15]. Just like their algorithm, we make agents successively
eat one unit of items. Unlike the algorithm of Freeman et al., we derive the
lottery decomposition only after the PS outcome has been computed. In contrast,
Freeman et al. probabilistically generate a partial deterministic allocation after
each unit time. Their algorithm “branches out into a polynomial number of
subinstances” a polynomial number of times which makes it an exponential-
time algorithm. In order to ensure polynomial-time computability, they resort
to a result about convex polytopes and separation oracles [16].

4 Additionally Achieving Efficiency

In this section, we consider the additional issue of efficiency. Before, we proceed,
we present some definitions.

Efficiency Properties. A random allocation p is fractional Pareto optimal (fPO)
if there exists no other random allocation q such that ui(qi) ≥ ui(pi) for all i ∈ N
and ui(qi) > ui(pi) for some i ∈ N . A deterministic allocation p is Pareto optimal
(PO) if there exists no other deterministic allocation q such that ui(qi) ≥ ui(pi)
for all i ∈ N and ui(qi) > ui(pi) for some i ∈ N . A random allocation p is SD-
efficient is there exists no random allocation q such that qi �SD

i pi for all i ∈ N
and qi �SD

i pi for some i ∈ N . An allocation p is weakly SD-efficient is there
exists no allocation q such that qi �SD

i pi for all i ∈ N . Note that fPO implies
PO which implies SD-efficiency which in turn implies weak SD-efficiency. Just
as in the case of fairness, we will consider efficiency of both the ex-ante random
allocation as well as efficiency properties of the ex-post deterministic allocations
that are involved in the lottery.

We note that the random allocation maximizing the Nash social welfare is
well-known to be equivalent to the competitive equilibrium with equal incomes
solution (see e.g., [14,23]) and satisfies fPO as well as ex-ante envy-freeness.
However, due to Theorem 3 of Freeman et al. [15], a rule that is fPO and ex-
ante envy-free cannot be ex-post EF1.

Since the outcome returned by Algorithm 1 is a lottery implementation of the
PS rule outcome, our algorithm also inherits all the desirable ex-ante properties
that the PS rule and its outcome are known to satisfy. Note that Algorithm 1
first breaks ties in the ordinal preferences before running the PS algorithm.
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This results in the outcome satisfying weak SD-efficiency rather than SD-
efficiency if there are indeed ties in the original preferences. If we care about
SD-efficiency, then we do not artificially break any ties and can run the extended
probabilistic serial (EPS) algorithm [20]. The EPS algorithm makes coordinated
choices for agents to eat one of their most preferred items and uses paramet-
ric network flows to compute the outcome. For number of items m ≥ n, the
algorithm takes time O(m3 log m).5

The exact specification of our EPS-Lottery algorithm is to take the PS-
Lottery algorithm and replace Step 5 with the following step: Run EPS on
instance (N,O′,�′′

N ) to get a random outcome r. Here, the preference profile �′′

is the same as �′ except that only ties within D are broken lexicographically and
ties are within O are not broken. Therefore the returned outcome r and hence q′

is SD-efficient rather than just weak SD-efficient. The argument of implementing
the outcome with EF1 deterministic allocations remains unchanged. The run-
ning time is unchanged as well as the bottleneck step is to compute a Birkhoff
decomposition which takes time O((cn)4).

Note that if a random allocation q is SD-efficient, then in any decomposition
of q, each of the deterministic allocations is SD-efficient as well. The reason is
that if one of the deterministic allocations is not SD-efficient, then q is not SD-
efficient. Hence, our algorithm additionally achieves SD-efficiency both ex-ante
and ex-post.

Theorem 2. Let c = �m/n�. The EPS-Lottery Algorithm runs takes time
O((cn)4) and computes a lottery over at most (cn)2 ≤ (m + n)2 determinis-
tic EF1 allocations that is equivalent to the outcome of the extended probabilistic
serial algorithm (which is SD-envy-free and SD-efficient).

We note that our algorithm does not achieve ex-post Pareto optimality. One
approach to achieving ex-post PO and ex-post EF1 is to check certain random
allocations for these properties. Next, we show for an arbitrary random alloca-
tion, checking whether it is ex-post EF1 and ex-post Pareto optimal is NP-hard.

Theorem 3. For n agents and n items, checking whether a given random allo-
cation can be implemented by a lottery over EF1 and Pareto optimal allocations
is NP-hard. For n agents and n items, checking whether a given random alloca-
tion can be implemented by a lottery over SD-EF1 and Pareto optimal allocations
is NP-hard.

Proof. It was proved that for n agents and n items, checking whether a given
random allocation can be implemented by a lottery over balanced Pareto opti-
mal allocations is NP-hard [4]. Their setting assumed ordinal preferences but it
works as well for any cardinal preferences consistent with the ordinal preferences.
5 The original EPS algorithm [20] is presented for the case of single-unit demands.

However, it can easily be extended to the case of multiple items (see e.g., the Con-
trolled Cake Eating Algorithm (CCEA) algorithm [6]). CCEA is described in the
context of cake cutting with piecewise constant valuations. It also applies to alloca-
tion of items: each cake segment can be treated as a separate item.
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We consider utility functions ui consistent with ordinal preference �i and assume
that ui(o) > 0 for all o ∈ O. Since ui(o) > 0 for all o ∈ O, we know that in any
unbalanced deterministic allocation one agent i ∈ N gets zero items and another
agent j gets at least two items. Even if one of j’s items is removed, i will be
envious of j. Hence, an unbalanced allocation is not EF1. In the other direction,
a balanced allocation gives one item to each agent. Even if an agent i ∈ N is
envious of agent j, agent i will not be envious if j’s item is removed. We have
established that for n agents and n items, the set of deterministic EF1 alloca-
tions is equal to the set of deterministic balanced allocations. Therefore, the set
of deterministic EF1 and Pareto optimal allocations is equivalent to the set of
deterministic balanced and Pareto optimal allocations. It follows that checking
whether a given random allocation can be implemented by a lottery over EF1
and Pareto optimal allocation is NP-hard.

The same argument also works for the problem of checking whether a given
random allocation can be implemented by a lottery over SD-EF1 and Pareto
optimal allocations. ��

5 Impossibility Results

We first recall that Freeman et al. [15] proved that even for two agents, ex-ante
fPO, ex-ante envy-freeness, and ex-post EF1 are incompatible. In this section,
we present a couple of more impossibility results. The results are logically incom-
parable to the main impossibility result of Freeman et al. [15]. Our first impos-
sibility is the following one.

Theorem 4. Ex-ante SD-EF, ex-post EF1, and ex-post PO are incompatible
even for 2 agents.

Proof. Consider the example in which N = {1, 2}, O = {a, b1, b2, b3} and the
agents have the following utilities over four items.

a b1 b2 b3
1 7 1 1 1
2 4 2 2 2

The three items b1, b2, b3 are identical items that we refer to as b items. Ex-
ante SD-EF implies that each agent in expectation gets 1/2 of a and 1.5 units of
type b items. Our first claim is that in any lottery implementing such an ex-ante
SD-EF allocation, there is at least one ex-post allocation in which agent 2 must
get item a. This follows from the fact that agent 2 gets 1/2 of a in expectation.

Our second claim is that in any deterministic ex-post EF1 and ex-post PO
allocation, agent 2 cannot get item a. Suppose for contradiction that agent 2
gets a. Then, EF1 requires that agent 1 gets at least 2 items of type b. But then,
agent 1 can exchange these two items for a to obtain a Pareto improvement.

From the two claims above, it follows that for the problem instance, there
exists no lottery over ex-post EF1 and ex-post PO outcomes that implements
the SD-EF random outcome. ��
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Next, we point out that ex-ante fPO and ex-ante SD-EF are incompatible
even for 2 agents. The theorem follows directly from Theorem 5 [6] but we re-
prove it in our context for the sake of completeness.

Theorem 5. Ex-ante fPO and ex-ante SD-EF are incompatible even for 2
agents.

Proof. Consider the following two-agent profile.

a b
1 u1(a) u1(b)
2 u2(a) u2(b)

Consider an SD-EF and ex-ante PO allocation p. Suppose u1(a), v1
b ,

u2(a), u2(b) > 0 in such a way that u1(a) > u1(b) and u2(a) > u2(b) and
u1(a)
u1(b)

> u2(a)
u2(b)

. Due to SD-EF, the outcome should be

p =

a b( )
1 1/2 1/2
2 1/2 1/2

On the other hand, in order for the mechanism to be ex-ante fPO, p1,b = 0 or
p2,a = 1. ��

6 Binary Utilities

We assumed that the agents have additive utilities. If we consider the case in
which agents have 1-0 utilities, we can achieve stronger results. We show that
our EPS-lottery algorithm satisfies very strong properties when agents have 1-0
utilities. In order to ensure ex-ante efficiency of the EPS-lottery algorithm under
1-0 utilities, we can assume that agents do not consume zero utility items and
leave them for the consumption by other agents as is done by the Controlled
Cake Eating Algorithm (CCEA) algorithm [6]. In case this leads to unbalanced
allocations, we can make the allocation balanced by adding appropriate number
of extra dummy items so that we can implement our lottery decomposition
algorithm for a balanced allocation.

Before we proceed, let us recall the definition of leximin optimality. For an
allocation π we denote by u(π) ∈ R

n the vector of the utilities in π sorted in
increasing order. For two vectors u,v ∈ R

k, we say that u leximin-dominates v,
written u �lex v, if there exists an i ≤ k such that uj = vj ,∀j < i, and ui > vi.
Finally, π is leximin-optimal if there is no π′ such that u(π′) �lex u(π).

Under 1-0 utilities, it is known that the following rules are equivalent
and polynomial-time computable: (1) leximin rule (2) maximum Nash welfare
(MNW) rule (3) competitive equilibirum with equal incomes (CEEI) [23] and
(4) Controlled Cake Eating Algorithm (CCEA) rule [6] (which can be viewed
as an extension for EPS for multi-unit demands that is also careful about zero
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utilities). For example, CEEI and MNW are well-known to be equivalent even for
general additive utilities. Under binary utilities, leximin, CEEI, and CCEA are
equivalent [6]. CCEA satisfies envy-freeness. The conclusion about envy-freeness
is also derived from the fact that CEEI outcomes are envy-free (see, e.g. [24]).
It is well-known that under additive utilities, the utility profile of the agents is
unique (see, e.g., [24]).

For 1-0 utilities, the rules above are known to be ex-ante group-strategyproof
(no group of agents can misreport their preferences so that all agents get at least
as much utility and at least one agent gets strictly more utility). This fact has
been known before as well (see, e.g., [9,20] and [6]). Since the rules are equivalent
to the leximin rule, the outcome is by definition leximin optimal and hence ex-
ante fPO.

We have already shown that an outcome of the EPS rule can be implemented
by a lottery over EF1 allocations. Also, every deterministic allocation consistent
with the SD-efficient random outcome is SD-efficient (follows from Lemma 2 [20])
and hence ex-post Pareto optimal for binary utilities. Therefore, we achieve ex-
post EF1 and ex-post Pareto optimality.

Theorem 6. For binary utilities, the EPS-Lottery Algorithm is group-
strategyproof, ex-ante fPO, ex-post fPO, ex-ante envy-free, and ex-post EF1. Its
outcome is ex-ante equivalent to the leximin random allocation as well as the
maximum Nash welfare allocation.

The theorem above recovers some results that have been proved by Halpern
et al. [17] including their Theorem 4 and Corollary 1.

7 Conclusion

We studied the problem of simultaneously achieving desirable fairness properties
ex-post and ex-ante. Our main contribution is an algorithm to find a lottery over
EF1 allocations that is ex-ante equivalent to the outcome of the (E)PS rule. We
noted that we actually compute a lottery over RB-allocations that satisfy strong
EF1.

Figure 2 depicts the logical relations between various properties. It also shows
some sets of properties that are possible or not possible to satisfy simultaneously.
We noted that under 1-0 utilities, all meaningful ex-ante and ex-post fairness
and efficiency properties are simultaneously satisfied. Coming back to general
additive utilities, we recall that our algorithm achieves ex-ante SD-efficiency
and ex-ante SD-EF. If we wish to replace ex-ante SD-efficiency with ex-ante
fPO, then such an algorithm does not exist in view of Theorem 5. Again, note
that our algorithm achieves ex-post SD-efficiency, ex-ante SD-EF, and ex-post
SD-EF1. Even if we weaken ex-post SD-EF1 to ex-post EF1 but strengthen
ex-post SD-efficiency to ex-post PO, we again get an impossibility (Theorem 4).
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Fig. 2. Logical relations between fairness and efficiency concepts. An arrow from (A) to
(B) denotes that (A) implies (B). The properties in green are simultaneously satisfied
by our algorithm. The combined properties in the pink shapes (dotted, dashed, or
shaded) are impossible to simultaneously satisfy. (Color figure online)
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Abstract. In the allocation of resources to a set of agents, how do fair-
ness guarantees impact social welfare? A quantitative measure of this
impact is the price of fairness, which measures the worst-case loss of
social welfare due to fairness constraints. While initially studied for divis-
ible goods, recent work on the price of fairness also studies the setting
of indivisible goods.

In this paper, we resolve the price of two well-studied fairness notions
in the context of indivisible goods: envy-freeness up to one good (EF1)
and approximate maximin share (MMS). For both EF1 and 1/2-MMS we
show, via different techniques, that the price of fairness is O(

√
n), where

n is the number of agents. From previous work, it follows that these
guarantees are tight. We, in fact, obtain the price-of-fairness results via
efficient algorithms. For 1/2-MMS our bound holds for additive valua-
tions, whereas for EF1, it holds for the more general class of subadditive
valuations. This resolves an open problem posed by Bei et al. (2019).

1 Introduction

What does it mean for an allocation of resources among a set of agents to be fair?
The most compelling notion of fairness advocated in prior work is envy-freeness
(EF) [15], which demands that no agent envy any other (i.e., value the resources
allocated to any other agent more than those allocated to herself). When the
resources to be allocated contain indivisible goods, guaranteeing envy-freeness
is impossible.1 Hence, researchers have sought relaxations such as envy-freeness
up to one good (EF1) [8,10], which states that it should be possible to eliminate
any envy one agent has toward another by removal of at most one good from
the latter’s allocation.

A different notion advocated in the context of indivisible goods is the max-
imin share guarantee (MMS) [8]. When there are n agents, the maximin share

1 The canonical example is that of a single indivisible good and two agents—the agent
that does not receive the good will inevitably envy the other.

c© Springer Nature Switzerland AG 2020
X. Chen et al. (Eds.): WINE 2020, LNCS 12495, pp. 356–369, 2020.
https://doi.org/10.1007/978-3-030-64946-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64946-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-64946-3_25


Optimal Bounds on the Price of Fairness for Indivisible Goods 357

of an agent a is defined as the maximum value a could obtain if she were to
divide the goods into n bundles and then receive the least-valued (according
to her) bundle. An MMS allocation is an allocation where each agent receives
at least her maximin share. This generalizes the classical cut-and-choose proto-
col for dividing a cake between two agents, where one agent cuts the cake into
two pieces, the other agent chooses a piece, and the first agent then receives
the remaining piece. Even for agents with additive valuations over the goods,2

MMS allocations may not exist [18,23]. However, under additive valuations, an
allocation where each agent receives at least 3/4-th of her maximin share—i.e., a
3/4-MMS allocation—always exists [16,17].

While fairness is important, it is clearly not the only objective of interest.
Another central criterion in resource allocation is the aggregate value of the
agents from the resources they receive, or the social welfare of the allocation.
The tradeoff between fairness and social welfare is quantitatively measured by
the price of fairness, the supremum over all instances of the ratio between the
maximum welfare of any allocation and the maximum welfare of any allocation
satisfying the desired fairness notion. Intuitively, this quantity measures the
factor by which welfare may be lost to achieve desired fairness.

Caragiannis et al. [9] initiated the study of the price of fairness in the canon-
ical setting of cake-cutting, in which a heterogeneous divisible good is to be
allocated (hence, envy-freeness can be guaranteed) and agents have additive val-
uations. They proved that the price of envy-freeness is between Ω(

√
n) and O(n),

where n is the number of agents. Later, Bertsimas et al. [6] closed the gap by
proving that the correct bound is Θ(

√
n), and that the matching upper bound

can be achieved by maximizing the Nash welfare [6].
For indivisible goods and additive valuations, Bei et al. [5] studied the price

of fairness for various notions of fairness. They showed that the price of envy-
freeness up to one good (EF1) is between Ω(

√
n) and O(n). One might immedi-

ately wonder if maximizing the Nash welfare (which is known to satisfy EF1 in
the case of indivisible goods and additive valuations [10]) can be used to derive
a matching O(

√
n) upper bound, as in cake-cutting. Unfortunately, Bei et al.

also showed that maximizing the Nash welfare can result in an Ω(n)-factor loss
with respect to social welfare, and posed settling the price of EF1 as a significant
open question. For approximate MMS allocations (since exact MMS allocations
may not exist), the price of fairness has not been studied earlier, though a lower
bound of Ω(

√
n) can be obtained from previous constructions [9].

Our Contributions. We consider the allocation of m indivisible goods among
n agents. An allocation A = (A1, . . . , An) partitions the goods into n bundles,
where Ai is the bundle assigned to agent i. The preferences of each agent i are
specified via a valuation function vi, which assigns a non-negative value to every
subset of goods. Then, vi(Ai) is the value to agent i under A and

∑n
i=1 vi(Ai)

is the social welfare of A. The price of a fairness notion, as defined above, is the

2 A valuation is additive iff the value of a bundle of goods is equal to the sum of the
values of the individual goods in the bundle.
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supremum of the ratio between the maximum social welfare obtainable, and the
maximum social welfare subject to the fairness notion.

Our main contribution is to comprehensively settle the price of EF1 and
1/2-MMSfairness notions. First, we show that the price of EF1 is O(

√
n). This

matches the Ω(
√

n) lower bound due to Bei et al. [5]. The lower bound is for
additive valuations, whereas our upper bound holds for the more general class
of subadditive valuations. Hence, our work settles this open question for all
valuation classes between additive and subadditive. Computationally, we obtain
this upper bound via a polynomial-time algorithm. For subadditive valuations,
given the absence of succinct representation, we assume access to a demand-
query oracle.3 As a consequence of this result, we also settle the price of a
weaker fairness notion—proportionality up to one good (Prop1)—as Θ(

√
n) for

additive valuations.
For the 1/2-MMS fairness notion and additive valuations, we similarly estab-

lish, via a different algorithm, that the price of fairness is Θ(
√

n). We show that
for a fixed ε > 0, a (1/2 − ε)-MMS allocation with welfare within O(

√
n) factor

of the optimal can be computed in polynomial time.

Related Work. For resource allocation, the price of fairness was first studied
by Caragiannis et al. [9] and Bertsimas et al. [6]. Caragiannis et al. [9] left
open the question of the price of envy-freeness in cake-cutting, later settled by
Bertsimas et al. [6] as Θ(

√
n). Bertsimas et al. also showed that the price of

proportionality is Θ(
√

n) and the price of equitability is Θ(n). In addition, they
extended their analysis to the case where agents dislike the cake (i.e., a divisible
chore is being allocated), and the case with indivisible goods or chores. However,
in case of indivisible goods, notions such as envy-freeness, proportionality, and
equitability cannot be guaranteed. The analysis of Caragiannis et al. [9] simply
excluded instances which do not admit allocations satisfying these criteria.

Bei et al. [5] instead focused on notions that can be guaranteed with indivis-
ible goods and chores, such as envy-freeness up to one good (EF1). While they
did not settle the price of EF1 (which is the focus of our work), they showed
that the price of popular allocation rules such as the maximum Nash welfare
rule [10], the egalitarian rule [24], and the leximin rule [7,19] is Θ(n). They also
considered allocations that are balanced, i.e., give all agents an approximately
equal number of goods, and settled the price of this guarantee as Θ(

√
n). To the

best of our knowledge, our work is the first to consider the price of approximate
maximin share guarantee.

2 Preliminaries

For k ∈ N, define [k] := {1, . . . , k}. We study discrete fair division problems,
wherein a set [m] of indivisible goods need to be partitioned in a fair manner
among a set [n] of agents.

3 Section 2 provides a formal description of the valuation classes and the query models.
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Agent Valuations. The cardinal preference of each agent i ∈ [n] (over the
goods) is specified via the valuation function vi : 2[m] �→ R≥0, where vi(S) ∈ R≥0

is the value that agent i has for the subset of goods S ⊆ [m]. We assume
valuations are normalized (vi(∅) = 0), nonnegative (vi(S) ≥ 0 for all S ⊆ [m]),
and monotone (vi(A) ≤ vi(B) for A ⊆ B ⊆ [m]). A fair-division instance is given
by a tuple

〈
[n], [m], {vi}i∈[n]

〉
. We primarily consider two valuation classes:

– Additive: vi(S) =
∑

g∈S vi(g) for each agent i ∈ [n] and subset of goods
S ⊆ [m]. Here, vi(g) denotes the value that agent i has for good g ∈ [m].

– Subadditive: vi(S∪T ) ≤ vi(S)+vi(T ) for each agent i ∈ [n] and subsets S, T ⊆
[m]. Note that the family of subadditive valuations encompasses additive
valuations.

Oracle Access. Since describing subadditive valuations may require size expo-
nential in the number of goods, to design efficient algorithms, we assume oracle
access to the valuation functions. The literature focuses on two query models.

– Value queries: Given an agent i ∈ [n] and a subset of goods S ⊆ [m], the oracle
returns vi(S).

– Demand queries: Given an agent i ∈ [n] and a price pg ∈ R≥0

for each good g ∈ [m], the oracle returns a “profit-maximizing” set
S∗ ∈ arg maxS⊆[m]vi(S) − ∑

g∈S pg.

Demand queries are strictly more powerful than value queries [22, Section 11.5].

Allocations. Write Πn([m]) to denote the set of all n-partitions of the set of
goods [m]. An allocation A = (A1, A2, . . . , An) ∈ Πn([m]) corresponds to an
n-partition wherein the subset Ai ⊆ [m] is assigned to agent i ∈ [n]; such a
subset is called a bundle. The term partial allocation denotes an n-partition
(P1, P2, . . . , Pn) ∈ Πn(S) of a subset of goods S ⊆ [m]. Here, as before, subset
Pi is assigned to agent i ∈ [n].

Fairness. The notions of fairness considered in this work are defined next.

Definition 1 (Prop1). An allocation A is called proportional up to one good
(Prop1) if for each agent i ∈ [n], there exists a good g ∈ [m], such that vi(Ai ∪
{g}) ≥ vi([m])/n.

Definition 2 (EF1). An allocation A is called envy-free up to one good (EF1)
iff for all agents i, j ∈ [n] with Aj �= ∅, there exists a good g ∈ Aj such that
vi(Ai) ≥ vi(Aj \ {g}).

It is easy to check that EF1 implies Prop1 for additive valuations. In a fair-
division instance I =

〈
[n], [m], {vi}i∈[n]

〉
, the maximin share of agent i ∈ [n] is

defined as

MMSi := max
(P1,...,Pn)∈Πn([m])

min
j∈[n]

vi(Pj)
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Definition 3 (α-MMS). For α ∈ [0, 1], an allocation A is called α-approximate
maximin share fair (α-MMS) if vi(Ai) ≥ α · MMSi for each agent i ∈ [n].

Social Welfare. The social welfare of an allocation A, denoted SW(A), is
defined as the sum of the values that A generates among the agents: SW(A) =∑n

i=1 vi(Ai). We will use W∗ = (W ∗
1 ,W ∗

2 , . . . , W ∗
n) to denote a social welfare

maximizing allocation, i.e., W∗ ∈ arg maxA∈Πn([m]) SW(A), and OPT to denote
the optimal social welfare, OPT = SW(W∗).

Price of Fairness. Given a fairness property X, the price of X is the supremum,
over all fair division instances, of the ratio between the maximum social welfare
of any allocation and the maximum social welfare of any allocation satisfying
property X.

Scaling. To ensure that valuations are on the same scale, much of the literature
on fair division assumes that agents’ valuations are scaled, i.e., vi([m]) = 1 for
all i ∈ [n]. Noting that unscaled valuations are common in other areas of social
choice (e.g., [13]), we consider both scaled and unscaled valuations.

All missing proofs appear in the full version of the paper [4].

3 Price of Envy-Freeness Up to One Good (EF1)

We begin by studying the price of fairness for EF1 allocations for agents with
subadditive valuations. For scaled additive valuations, Bei et al. [5] show that
the price of EF1 is between Ω(

√
n) and O(n). We tighten their upper bound

to O(
√

n) (thus matching their lower bound) even when the valuations are sub-
additive. For unscaled valuations, we show that the bound is Θ(n). Our main
result in this section is as follows.

Theorem 1. theorem The price of EF1 is O(
√

n) for scaled subadditive valu-
ations and O(n) for unscaled subadditive valuations. Both bounds are tight even
when the valuations are additive.

We begin by proving the upper bounds for EF1, using Algorithms 1 and 2.

3.1 An Absolute Welfare Guarantee

First, we show (via Algorithm 1) that when agents have subadditive valuations
{vi}i∈[n] (not necessarily scaled), there always exists an EF1 allocation A with
social welfare SW(A) ≥ 1

2n

∑n
i=1 vi([m]).

This absolute welfare guarantee has two implications. First, since∑n
i=1 vi([m]) is a trivial upper bound on the optimal social welfare, OPT, the

result establishes an O(n) upper bound on the price of EF1. For unscaled val-
uations, this is exactly the bound we need. For scaled valuations, we need to
improve this to O(

√
n). Since

∑n
i=1 vi([m]) = n under scaled valuations, the

result gives SW(A) ≥ 1/2. Hence, if OPT = O(
√

n), then we have the desired
O(

√
n) upper bound. We analyse the case when OPT = Ω(

√
n) in Sect. 3.2.
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Algorithm 1. Alg-EF1-Abs

Input: Fair-division instance I = 〈[n], [m], {vi}i∈[n]〉 with value-query oracle access to
the subadditive valuations vis.
Output: An EF1 allocation B with social welfare SW(B) ≥ 1

2n

∑
i∈[n] vi([m]).

1: Consider the weighted bipartite graph G = ([n]∪ [m], [n]× [m]) with weight of each
edge (i, g) ∈ [n]× [m] set as vi(g). Let π be a maximum-weight matching in G that
matches all nodes in [n].

2: Construct the partial allocation B′ such that B′
i = {π(i)} for each i ∈ [n]. {Note

that B′ is trivially EF1 because each agent is assigned a single good.}
3: Use the algorithm of Lipton et al. [20] to extend the partial EF1 allocation B′ into

a complete EF1 allocation B such that vi(Bi) ≥ vi(B
′
i) for each agent i ∈ [n].

4: return Allocation B

Lemma 1. Let I = 〈[n], [m], {vi}i∈[n]〉 be a fair-division instance in which agent
valuations are subadditive. Then, given value-query oracle access to the valua-
tions, Alg-EF1-Abs (Algorithm 1) efficiently computes an EF1 allocation B
with social welfare SW(B) ≥ 1

2n

∑
i∈[n] vi([m]).

3.2 The Case of High Optimal Welfare

As noted in Sect. 3.1, Lemma 1 allows us to focus on fair division instances
with scaled subadditive valuations in which the optimal social welfare is
OPT = Ω(

√
n). This allows us to sacrifice O(

√
n) of the welfare in OPT,

obtain O(
√

n) approximation to the remaining welfare through an EF1 allo-
cation, and yet achieve O(

√
n) approximation to OPT. In particular, we present

an algorithm that efficiently finds an EF1 allocation A with social welfare
SW(A) ≥ OPT−2

√
n

12
√

n
.

Ideally, we would like to use as reference an allocation W∗ with the opti-
mal social welfare OPT. However, for subadditive valuations, computing such
an allocation is NP-hard under both value queries and demand queries [12]. For
values queries, Θ(

√
m) is the best possible approximation to OPT with a poly-

nomial number of queries [12,21]. Instead, we turn to demand queries, for which
a 2-approximation algorithm is given by Feige [14]. In particular, this algorithm
efficiently computes an allocation W with social welfare at least 1

2 OPT.4 Out-
side of the black-box use of this algorithm, the rest of our algorithm uses value
queries (which are a special case of demand queries). We emphasize that our use
of value or demand queries is only for computation. Our main result—the price
of EF1—is existential and independent of any query model.

Starting with the high-welfare allocation W returned by Feige’s algorithm,
our algorithm works as follows. It first indexes the m goods as g1, g2, . . . , gm

such that the goods in each Wi receive consecutive indices.5 Alternatively,
4 This allocation serves as a reference in our algorithm, and may not be EF1 itself.
5 For example, we can index the goods such that Wi =

{
gk : 1 +

∑i−1
j=1 |Wj | ≤

k ≤ ∑i
j=1 |Wi|

}
for each agent i ∈ [n].
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consider a line graph L = ([m], E) over the set of goods with edges E =
{(gk, gk+1) : k ∈ [m − 1]}. Then, each Wi induces a connected subgraph of L.

Definition 4. Let L = ([m], E) be a line graph over the goods. We say that
S ⊆ [m] is a connected bundle in L if S induces a connected subgraph of L.
Given a partial allocation P, define U(P) as the set of connected components of
L that remain after removing the allocated goods ∪i∈[n]Pi. We refer to U ∈ U(P)
as an unassigned connected bundle.

U1 Pi U2 Pj Un+1

W1 W2

Fig. 1. Line graph over the goods and unassigned components.

In this terminology, each Wi is a connected bundle in L (see Fig. 1). Alg-
EF1-High builds a partial allocation P by giving each agent i her most valuable
good from Wi. This allocation trivially satisfies two properties: it is EF1, and
each Pi is a connected bundle in L. The algorithm then iteratively updates P to
improve its social welfare while maintaining both these properties. This iterative
process is inspired by a similar algorithm for (divisible) cake-cutting (Algorithm
1, Arunachaleswaran et al. [3]).

In particular, at every iteration, our algorithm computes the set of unassigned
connected bundles U(P); note that removing n connected bundles from P can
create at most n + 1 unassigned connected bundles, as shown in Fig. 1. If there
is an unassigned connected bundle U ∈ U(P) that some agent envies, then
the algorithm finds an inclusion-wise minimal subset of U that is envied and
allocates it to an envious agent. While this preserves exact envy-freeness in the
cake-cutting setting of Arunachaleswaran et al. [3], in our setting we argue that
inclusion-wise minimality preserves the EF1 property of P. We also argue that
this iterative process terminates at a partial allocation P that satisfies the desired
social welfare guarantee. Finally, we use the algorithm of Lipton et al. [20] (see
also [2]) to extend this partial EF1 allocation into a complete EF1 allocation
without losing social welfare. The detailed algorithm is presented as Algorithm2.

We start by proving some relevant properties of Alg-EF1-High.

Lemma 2. When Alg-EF1-High is run on an instance I = 〈[n], [m], {vi}i∈[n]〉
with subadditive valuations, the following hold regarding the partial allocation Pt

constructed after t iterations of the while loop.

1. If t ≥ 1, then for each agent i ∈ [n], either P t
i = P t−1

i or vi(P t
i ) > vi(P t−1

i ).
2. For each agent i ∈ [n], Pi is a connected bundle under the line graph L

constructed in Line 6.
3. Pt is EF1.



Optimal Bounds on the Price of Fairness for Indivisible Goods 363

Algorithm 2. Alg-EF1-High

Input: A fair division instance I = 〈[n], [m], {vi}i∈[n]〉 with demand-query oracle access
to the subadditive valuations vis.
Output: An EF1 allocation A with social welfare SW(A) ≥ OPT

12
√

n
− 1

6
.

1: Use Feige’s algorithm [14] to compute an allocation W with social welfare
SW(W) ≥ 1/2 · OPT

2: Re-index the m goods as g1, g2, . . . , gm such that in the line graph L over the goods
containing edges (gk, gk+1) for k ∈ [m − 1], each Wi forms a connected subgraph

3: Initialize t = 0
4: For each agent i ∈ [n] with Wi 	= ∅, pick g∗

i ∈ arg maxg∈Wi
vi(g) and set P t

i = {g∗
i }

5: For each agent i ∈ [n] with Wi = ∅, set P t
i = ∅

{For a partial allocation Pt, let U(Pt) denote the collection of connected compo-
nents in the line graph L that remain after the removal of ∪i∈[n]P

t
i }

6: while ∃ agent i ∈ [n] and connected component U ∈ U(Pt) with vi(P
t
i ) < vi(U)

do
7: Let U consist of goods {ga, ga+1, . . . , gb}
8: Let c ∈ [a, b] be the smallest index such that vk(P t

k) < vk({ga, ga+1, . . . , gc}) for
some k ∈ [n]
{The choice of c ensures that no agent k values {ga, . . . , gc−1} more than her
current bundle, i.e., vk(P t

k) ≥ vk({ga, . . . , gc−1}) for every agent k.}
9: Pick an arbitrary agent k for which vk(P t

k) < vk({ga, ga+1, . . . , gc})
10: Set P t+1

k = {ga, . . . , gc} and P t+1
j = P t

j for all j 	= k
11: Update t ← t + 1
12: end while

{At this point, vi(P
t
i ) ≥ vi(U) for all i ∈ [n] and U ∈ U(Pt). We will show that Pt

is a partial EF1 allocation.}
13: Use the algorithm of Lipton et al. [20] to extend the partial EF1 allocation Pt into

a complete EF1 allocation A such that vi(Ai) ≥ vi(P
t
i ) for each i ∈ [n]

14: return Allocation A

Lemma 3. When Alg-EF1-High is run on an instance I = 〈[n], [m], {vi}i∈[n]〉
with subadditive valuations, the following hold.

1. The while loop terminates after T = O(nm2) iterations.
2. The partial allocation PT constructed at the end of the while loop satisfies

vi(PT
i ) ≥ vi(U) for every agent i ∈ [n] and unassigned connected bundle

U ∈ U(PT ).

Using Lemmas 2 and 3, we can derive the key technical result of this section.

Lemma 4. Given a fair division instance I = 〈[n], [m], {vi}i∈[n]〉 with scaled
subadditive valuations, Alg-EF1-High terminates in polynomial time and
returns an EF1 allocation A satisfying

SW(A) ≥ OPT
12

√
n

− 1
6
,

where OPT is the optimal social welfare achievable in instance I.
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We now prove the upper bounds in Theorem 1, using Lemmas 1 and 4. As
mentioned earlier, the lower bound for scaled valuations is already obtained
by Bei et al. [5]. The lower bound for unscaled valuations is shown in the full
version [4].

Proof (of Theorem 1). For unscaled valuations, Lemma 1 shows that there exists
an EF1 allocation B with SW(B) ≥ 1

2n

∑
i∈[n] vi([m]) ≥ 1

2n OPT, which yields
the desired O(n) bound.

For an instance I with scaled valuations, we consider two cases: either OPT ≤
8
√

n or OPT > 8
√

n.

Case 1: Suppose OPT ≤ 8
√

n. Because valuations are scaled (i.e., vi([m]) = 1 for
each agent i ∈ [n]), Lemma 1 implies that the EF1 allocation B returned by Alg-
EF1-Abs satisfies SW(B) ≥ 1

2n

∑
i∈[n] vi([m]) = 1

2 . Hence, SW(B) ≥ 1
16

√
n

OPT.

Case 2: Suppose OPT > 8
√

n. Then, 1
6 < OPT

48
√

n
. Now, Lemma 4 implies that

the EF1 allocation A returned by Alg-EF1-High satisfies

SW(A) ≥ OPT
12

√
n

− 1
6

≥ OPT
12

√
n

− OPT
48

√
n

=
OPT
16

√
n

.

Thus, in either case, there exists an EF1 allocation with social welfare at
least 1

16
√

n
OPT, which yields the desired O(

√
n) bound. To obtain the required

EF1 allocation, we simply run both algorithms and take the allocation with
higher social welfare.

Before concluding this section, we recall that for additive valuations, EF1 implies
proportionality up to one good (Prop1). Hence, our upper bounds of O(

√
n)

and O(n) on the price of EF1 under scaled and unscaled additive valuations,
respectively, carry over to the price of Prop1 as well. These bounds are tight: Our
lower bound construction from the proof of Theorem 1 for unscaled valuations
and the construction due to Bei et al. [5] for scaled valuations can be modified
slightly for Prop1 as well.

Corollary 1. The price of Prop1 is Θ(
√

n) for scaled additive valuations and
Θ(n) for unscaled additive valuations.

4 Price of 1/2-Approximate Maximin Share Guarantee

We now study the price of approximate MMS for additive valuations. Our main
result settles the price of 1/2-MMS for scaled and unscaled additive valuations.

Theorem 2. The price of 1/2-MMS is Θ(
√

n) for scaled additive valuations and
Θ(n) for unscaled additive valuations.

We sketch the proof of the upper bound, based on Algorithms 3 and 4.
Recall that W∗ = (W ∗

1 , . . . , W ∗
n) ∈ arg maxA∈Πn([m]) SW(A) is a social welfare

maximizing allocation, and OPT = SW(W∗) is the maximum social welfare.



Optimal Bounds on the Price of Fairness for Indivisible Goods 365

4.1 An Absolute Welfare Guarantee

First, we show that when agents have additive valuations {vi}i∈[n] (not neces-
sarily scaled), there always exists a 1/2-MMS allocation A with social welfare
SW(A) ≥ 1

3n

∑n
i=1 vi([m]). Algorithm 3 computes such an allocation efficiently.

As for EF1 allocations, there are two implications of this. First, for both
scaled and unscaled additive valuations, this establishes that the price of 1/2-
MMS is O(n). For unscaled valuations, this is the bound we seek. For scaled
valuations, since vi([m]) = 1 for each agent i ∈ [n], so SW(A) ≥ 1/3 = Ω(1).
Thus, if OPT = O(

√
n), this gives the desired upper bound of O(

√
n). In Sect.

4.2, we thus limit our attention to instances with OPT = Ω(
√

n).

Algorithm 3. Alg-MMS-Abs

Input: A fair division instance I = 〈[n], [m], {vi}i〉 with additive valuations {vi}i∈[n].
Output: A 1/2-MMS allocation B with SW(B) ≥
1
3n

∑n
i=1 vi([m]).

1: Initialize set of agents A = [n], set of goods G = [m], and bundles Bi = ∅, for all
i ∈ [n]

2: while there exists agent i ∈ A and good g ∈ G such that vi(g) ≥ 1
2|A|vi(G) do

3: Set (i′, g′) ∈ arg max{(i,g)∈A×G : vi(g)≥ 1
2|A| vi(G)} vi(g)

4: Set Bi′ = {g′} and update A ← A \ {i′} along with G ← G \ {g′}
5: end while
6: Efficiently compute a Prop1 allocation (Bi)i∈A of the fair division instance〈

A, G, {vi}i∈A

〉

7: return allocation B = (B1, B2, . . . , Bn)

Algorithm 3 is a refinement of the algorithm of Amanatidis et al. [1] for com-
puting a 1/2-MMS allocation: in Line 3, we use an arg max to break ties, whereas
they use an arbitrary pair (i, g). Since Amanatidis et al. [1] prove that their
algorithm always returns a 1/2-MMS allocation, regardless of any tie-breaking,
it follows that our refinement, Algorithm 3, also always returns a 1/2-MMS allo-
cation. It remains to prove that it also provides the desired welfare guarantee,
which is shown in the following lemma.

Lemma 5. Given any fair division instance I =
〈
[n], [m], {vi}i∈[n]

〉
with addi-

tive valuations, Alg-MMS-Abs (Algorithm 3) efficiently computes a 1/2-MMS
allocation B with social welfare SW(B) ≥ 1

3n

∑n
i=1 vi([m]).

4.2 The Case of High Optimal Welfare

As argued in Sect. 4.1, Lemma 5 allows us to restrict our attention to scaled
additive valuations in which the optimal social welfare OPT = Ω(

√
n). Similar

to the case of EF1, we can now safely sacrifice O(
√

n) welfare, and simply achieve
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O(
√

n) approximation of the remaining welfare. This is achieved by Alg-MMS-
High (Algorithm 4).

However, Alg-MMS-High requires knowledge of the maximin share MMSi

of each agent i. While computing this quantity is known to be strongly NP-hard,
there exists a polynomial-time approximation scheme (PTAS) for it [25]. For a
fixed ε ∈ (0, 1), this PTAS can compute an estimate Zi ∈ [(1− ε)MMSi,MMSi]
for each agent i in polynomial time. We pass these estimates as input to Alg-
MMS-High, which runs in polynomial time and yields a (12 −ε)-MMS allocation
with the desired welfare guarantee.

We emphasize that the approximation here is solely for computational pur-
poses. To derive our main existential result about the price of 1/2-MMS, we can
simply pass Zi = MMSi to Alg-MMS-High, and it returns an exact 1/2-MMS
allocation with the desired welfare guarantee.

The intuition behind the algorithm is as follows. Our goal is to assign
each agent i a bundle of value at least 1

2 · Zi ≥ (
1
2 − ε

) · MMSi, and ensure

that most (all but
√

n) agents i achieve a value at least Ω
(

1√
n
vi(W ∗

i )
)
; here,

W = (W ∗
1 , . . . , W ∗

n) denotes a social welfare maximizing allocation. Therefore,
throughout the algorithm, we keep track of two sets of agents, T (temporary)
and P (permanent). Each agent i ∈ T ∪P must have received a bundle Bi worth
vi(Bi) ≥ 1

2 ·Zi, and agent i ∈ P further has vi(Bi) ≥ 1
3
√

n
·vi(W ∗

i ). The algorithm
ensures that an agent is never removed after being added to P ∪ T . Specifically,
once she is added to T , she can only be moved to P . Additionally, once an agent
is included in the set P , her assignment is never updated and she remains in P .

Lines 5 and 9 handle easy cases, when an agent i either has MMSi = 0, or can
be added directly to P by giving her a single good from W ∗

i . Line 13 addresses
agents to whom giving a single good (not necessarily from W ∗

i ) is sufficient to
add them to P ∪ T . These steps leverage the fact that the maximin share is
maintained while assigning away singleton bundles.

Finally, Line 17 leverages an idea similar to what we utilized for EF1. This
step slowly grows a bundle by iteratively adding goods ordered according to
W∗, and assigns the bundle as soon as its value for some agent is at least half of
her maximin share. Line 24 plays a key role in bookkeeping, as we show in our
proofs. The following lemma states the main result for Algorithm 4.

Lemma 6. Given a fair division instance I =
〈
[n], [m], {vi}i∈[n]

〉
with scaled

additive valuations, and, for a fixed ε ∈ [0, 1), an estimate Zi ∈ [(1 − ε)MMSi,
MMSi] for each agent i, Alg-MMS-High (Algorithm 4) efficiently computes a
( 12 − ε)-MMS allocation B with the property that 3

√
n · SW(B) + 4

√
n ≥ OPT;

here, OPT denotes the optimal social welfare in I.

Using the properties of Alg-MMS-Abs and Alg-MMS-High from Sect.
4.1 and 4.2, we can directly prove the upper bounds on the price of 1/2-MMS
in Theorem 2. For the lower bounds, we use constructions that appeared in the
work of Caragiannis et al. [11]. The complete proofs appear in the full version [4].
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Algorithm 4. Alg-MMS-High

Input: A fair division instance I = 〈[m], [n], {vi}i〉 with scaled additive valuations,
and for a fixed ε ∈ [0, 1), an estimate Zi ∈ [(1 − ε)MMSi,MMSi] for each agent i.
Output: A

(
1
2

− ε
)
-MMS allocation B with SW(B) ≥ 1

3
√

n
OPT − 4

3
.

1: Compute a social welfare maximizing allocation W∗ ∈ arg maxA∈Πn([m]) SW(A)
2: Index the goods as g1, . . . , gm so that, for each i ∈ [n], the goods in W ∗

i receive
consecutive indices

3: Initialize B with Bi = ∅ for each i ∈ [n]
4: Initialize P = T = ∅
5: For each i ∈ [n] with MMSi = 0, update P ← P ∪ {i} if vi(W

∗
i ) = 0, and

T ← T ∪ {i} otherwise. {MMSi = 0 iff agent i has positive value for less than n
goods, which can be checked efficiently.}

6: Let Γsingle =
{

i ∈ [n] : Zi < 2
3
√

n
vi(W

∗
i ) and ∃g ∈ W ∗

i s.t. vi(g) ≥ 1
3
√

n
vi(W

∗
i )

}

7: for each i ∈ Γsingle do
8: Pick gi ∈ arg maxg∈W ∗

i
vi(g), and set Bi = {gi}

9: Update P ← P ∪ {i}, and if i ∈ T , update T ← T \ {i}
10: end for
11: while there exists an agent a ∈ [n] \ (P ∪ T ) and a good h ∈ [m] \ ∪b∈[n]Bb such

that va(h) ≥ 1
2

· Za do
12: Set Ba = {h}.
13: If va(Ba) ≥ 1

3
√

n
va(W ∗

a ), update P ← P ∪ {a}, else update T ← T ∪ {a}
14: end while

15: Let R ← [m] \ ∪a∈[n]Ba be the set of remaining goods
16: Initialize K = ∅ and index t = 1
17: for t = 1, . . . , m do
18: if gt /∈ R then
19: continue
20: end if
21: Update K ← K ∪ {gt}
22: if there exists an agent i ∈ T such that gt ∈ W ∗

i and vi(K) ≥ 1
3
√

n
vi(W

∗
i ) then

23: Set (Bi, K) ← (K, Bi) {Swap Bi and K}
24: Update P ← P ∪ {i} and T ← T \ {i}
25: end if
26: if there exists an agent a ∈ [n] \ (P ∪ T ) such that va(K) ≥ 1

2
· Za then

27: Set Ba = K and update K = ∅
28: If va(Ba) ≥ 1

3
√

n
va(W ∗

a ), update P ← P ∪ {a}, else update T ← T ∪ {a}
29: end if
30: end for
31: Let X = [m]\∪a∈[n]Ba be the set of unassigned goods. Assign each g ∈ X to agent

i such that g ∈ W ∗
i , i.e., Bi ← Bi ∪ (W ∗

i ∩ X).
32: return allocation (B1, B2, . . . , Bn)
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Abstract. We study fair allocation of indivisible goods among agents.
Prior research focuses on additive agent preferences, which leads to an
impossibility when seeking truthfulness, fairness, and efficiency. We show
that when agents have binary additive preferences, a compelling rule—
maximum Nash welfare (MNW)—provides all three guarantees. Specifi-
cally, we show that deterministic MNW with lexicographic tie-breaking
is group strategyproof in addition to being envy-free up to one good and
Pareto optimal. We also prove that fractional MNW—known to be group
strategyproof, envy-free, and Pareto optimal—can be implemented as a
distribution over deterministic MNW allocations, which are envy-free
up to one good. Our work establishes maximum Nash welfare as the
ultimate allocation rule in the realm of binary additive preferences.

Keywords: Fair division · Mechanism design

1 Introduction

Fair division [13,28] is a sprawling field that cuts across scientific disciplines.
Among its many challenges, the division of indivisible goods—an ostensible
oxymoron—is arguably the most popular in recent years. The goods are “indi-
visible” in the sense that each must be allocated in its entirety to a single agent
(think of pieces of jewelry or tickets to different football games in a season).
Each agent has her own valuation function, which represents the benefit the
agent derives from bundles of goods.

A fully expressive model of valuation functions would have to account for
combinatorial preferences. Classic examples include a right shoe that is worthless
without its matching left shoe (complementarities), and two identical refrigera-
tors (substitutes). However, rich preferences can be difficult to elicit. It is often
assumed, therefore, that the valuation functions are additive, that is, that each
agent’s value for a bundle of goods is the sum of her values for individual goods
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in the bundle. Additive valuations strike a balance between expressiveness and
ease of elicitation; in particular, each agent need only report her value for each
good separately.

Another advantage of additive valuations is that they admit a practical
rule that is both (economically) efficient and fair. Specifically, the Maximum
Nash Welfare (MNW) solution—which maximizes the product of valuations and,
therefore, is obviously Pareto optimal (PO)—is envy-free up to one good (EF1):
for any two agents i and j, it is always the case that i prefers her own bundle to
that of j, possibly after removing a single good from the latter bundle [16].

The MNW solution, however, is not strategyproof, that is, agents can benefit
by misreporting their preferences. In fact, under additive valuations, the only
Pareto optimal and strategyproof rule is serial dictatorship, which is patently
unfair [24]. This profound clash between efficiency and truthfulness holds true
even when agents can only have three possible values for goods!

The only hope for reconciling efficiency, fairness and truthfulness, therefore, is
to assume that agents’ values for goods are binary. This assumption is not just a
theoretical curiosity: while it obviously comes at a significant cost to expressive-
ness, it leads to extremely simple elicitation. In this sense, it arguably represents
another natural point on the conceptual expressiveness-elicitation Pareto fron-
tier. The same bold tradeoff has long been considered sensible in the literature
on voting, where binary values are implicitly represented as approval votes [12];
in fact, the assumption underlying some of the recent work on approval-based
multi-winner elections [17,26] is nothing but that of binary additive valuations.
Thus, it is not surprising that many works in fair division pay special attention
to the case of binary additive valuations [1,6,11,20,23].

With this rather detailed justification for binary additive valuations in mind,
our primary research question is this: do binary additive valuations admit rules
that are efficient, fair, and truthful?

1.1 Our Contribution

We provide a positive answer— and then some. Specifically, Theorem 1 asserts
that, under binary additive valuations, a particular form of the MNW solution
is Pareto optimal, EF1, group strategyproof (even a coalition of agents can-
not misreport its members’ preferences in a way that benefits them all) and
polynomial-time computable.

Furthermore, we show that by randomizing over MNW allocations, we can
achieve ex ante envy-freeness (each agent’s expected value for their random
allocation is at least as high as for any other agent’s), ex ante Pareto optimality,
ex ante group strategyproofness, and ex post EF1 simultaneously in polynomial
time. In other words, randomization allows us to circumvent the mild unfairness
that is inherent in deterministic allocations of indivisible goods without losing
the other guarantees. In our view, these results are essentially the final word on
how to divide indivisible goods under binary additive valuations.
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1.2 Related Work

There is an extensive body of work on fair division, much too large to survey
here. Instead, we focus on the most closely related work on fair division with
binary valuations.

The most closely related work is that of Babaioff et al. [5], who, independently
and in parallel to our work, also discovered some of the results that we present
for the deterministic MNW rule. Specifically, their prioritized egalitarian mech-
anism is identical to our deterministic MNWtie mechanism presented in Sect. 3.
They show that this rule is strategyproof, EFX,1 PO, Lorenz-dominating, and
polynomial-time computable. This is very similar to our Theorem 1. The dif-
ference is that we strengthen strategyproofness to group strategyproofness, but
only establish EF1 (weaker than EFX) and do not establish Lorenz-dominance.
We note that the EFX property is also established by Amanatidis et al. [3].
We view these results as complementary to ours. Together, they establish that
MNWtie is group strategyproof, EFX, PO, Lorenz-dominating, and polynomial-
time computable, making it even more compelling. We note that Babaioff et al.
[5] do not study randomized allocation rules, which we focus on in Sect. 4.

Ortega [31] studies a slightly more general problem where there may be
multiple copies of each good, but each agent can receive at most one copy of any
good. His egalitarian solution is identical to our fractional MNW rule in terms
of the probability of each good going to each agent, but he does not discuss
how to implement these fractional allocations as a distribution over integral
allocations with good properties. He shows that this rule is ex ante envy-free, ex
ante PO, and ex ante group strategyproof. However, he uses a weaker notion of
strategyproofness, where agents are only allowed to report a good that they like
as one that they do not like, but not vice-versa. As we note in Sect. 4, in our
(standard) setting with a single copy of each good, these guarantees (including
the stronger strategyproofness notion, or even group strategyproofness) follow
directly from prior work [25]. Hence, our main focus in Sect. 4 is to prove an ex
post EF1 guarantee, which Ortega [31] does not provide.

Two central concepts in our work are maximum Nash welfare (MNW) and
leximin allocations. Aziz and Rey [4] show that under binary additive valuations,
all leximin allocations are also MNW allocations. As we observe in Sect. 3, this,
together with known properties of the two solutions, immediately implies that
the sets of MNW and leximin allocations are identical. Benabbou et al. [7] extend
this equivalence to a more general valuation class.

On the computation front, our polynomial-time computability result for the
deterministic MNWtie rule builds upon on efficient algorithms by Darmann and
Schauer [20] and Barman et al. [6] for finding an MNW allocation under binary
additive valuations; specifically, our algorithm starts from an arbitrary MNW
allocation computed by either of these algorithms, and then iteratively finds a
special MNW allocation that MNWtie outputs. Benabbou et al. [7] also show
1 There are two popular definitions of EFX [3]; this result holds for the stronger one:

an allocation is EFX if the envy that one agent has toward another can be eliminated
by removing any good from the envied agent’s bundle.
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that an MNW allocation can be computed efficiently under their more general
valuation class.

2 Preliminaries

For k ∈ N, let [k] = {1, . . . , k}. Let N = [n] denote a set of agents, and M denote
a set of m indivisible goods. Each agent i has a valuation function vi : 2M →
R�0 such that vi(∅) = 0. It is assumed that valuations are additive: ∀T ⊆ M,
vi(T ) =

∑
g∈T vi({g}). To simplify notation, we write vi(g) instead of vi({g}).

We focus on a subclass of additive valuations known as binary additive valu-
ations, under which vi(g) ∈ {0, 1} for all i ∈ N and g ∈ M. We say that agent i
likes good g if vi(g) = 1. Sometimes it is easier to think of the valuation function
of agent i as the set of goods that agent i likes, denoted Vi = {g ∈ M : vi(g) = 1}.
Note that vi(T ) = |Vi ∩ T | for all T ⊆ M. For a set of agents S ⊆ N , let
VS =

⋃
i∈S Vi be the set of goods that at least one agent in S likes. The vector

of agent valuations v = (v1, . . . , vn) is called the valuation profile. A problem
instance is given by the tuple (N ,M,v).

For a set of goods T ⊆ M and k ∈ N, let Πk(T ) denote the set of partitions of
T into k bundles. We say that A = (A1, . . . , An) is an allocation if A ∈ Πn(T )
for some T ⊆ M. Here, Ai is the bundle of goods allocated to agent i, and
vi(Ai) is the utility to agent i. Let us denote AS =

⋃
i∈S Ai for S ⊆ N . Let

A =
⋃

T⊆M Πn(T ) denote the set of all allocations.
We say that good g is non-valued if vi(g) = 0 for all agents i; all the remaining

goods are called valued. Let Z denote the set of non-valued goods. We say that
an allocation A is complete if it allocates every valued good, i.e., if AN ⊇ M\Z;
we say that it is minimally complete if it is complete and does not allocate any
non-valued goods, i.e., if AN = M \ Z.

We are interested in fair allocations. One of the most prominent notions of
fairness is envy-freeness [21].

Definition 1 (Envy-freeness). An allocation A is called envy-free (EF) if,
for all agents i, j ∈ N , vi(Ai) � vi(Aj).

Envy-freeness requires that no agent prefer another agent’s bundle over her
own. This cannot be guaranteed (imagine two agents liking a single good). Prior
literature focuses on its relaxations, such as envy-freeness up to one good [14,27],
which can be guaranteed.

Definition 2 (Envy-freeness up to one good). An allocation A is called
envy-free up to one good (EF1) if, for all agents i, j ∈ N such that Aj 	= ∅,
there exists g ∈ Aj such that vi(Ai) � vi(Aj \ {g}).

EF1 requires that it should be possible to remove envy between any two
agents by removing at most one good from the envied agent’s bundle. We remark
that there is a stronger fairness notion called envy-freeness up to the least posi-
tively valued good (EFX) [16], which coincides with EF1 under binary additive
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valuations.2 Finally, another classic desideratum in resource allocation is Pareto
optimality, which is a notion of economic efficiency.

Definition 3 (Pareto optimality). An allocation A is called Pareto optimal
(PO) if there does not exist an allocation A′ such that for all agents i ∈ N ,
vi(A′

i) � vi(Ai), and at least one inequality is strict.

It is easy to see that with binary additive valuations, Pareto optimality is
equivalent to ensuring that each valued good is allocated to one of the agents
who likes it, i.e., that the utilitarian social welfare (sum of utilities) is maximized
and is equal to the number of valued goods.

3 Deterministic Setting

In this section, our main goal is to establish the existence of a deterministic allo-
cation rule that is fair, efficient, and truthful under binary additive valuations.
Our rule builds upon the concept of maximum Nash welfare allocations [16],
which we define below. All missing proofs can be found in the full version of this
paper.

Definition 4 (Maximum Nash welfare allocation). We say that A is
a maximum Nash welfare (MNW) allocation if, among the set of allo-
cations A, it maximizes the number of agents receiving positive utility
and, subject to that, maximizes the product of positive utilities. Formally,
let W (A) = {i ∈ N : vi(Ai) > 0} and AM = argmaxA∈A |W (A)|. Then,
argmaxA∈AM

∏
i∈W (A) vi(Ai) is the set of MNW allocations.

Even under general additive valuations, all maximum Nash welfare alloca-
tions satisfy EF1 and PO [16]. Our work uses a connection between MNW allo-
cations and the classic concept of leximin allocations, that holds under binary
additive valuations.

Definition 5 (Leximin comparison). For an allocation A, let its utility vec-
tor be (v1(A1), . . . , vn(An)), and its utility profile be the utility vector sorted
in a non-descending order. Given two utility profiles s = (s1, . . . , sn) and
s′ = (s′

1, . . . , s
′
n), we say that s leximin-dominates s′, denoted s 
lex s′, if there

exists k ∈ [n] such that uk > u′
k and ur = u′

r for all r < k. We say that s weakly
leximin-dominates s′, denoted s �lex s′, if s 
lex s′ or s = s′. Note that this is a
total order among utility profiles. We extend these comparisons to utility vectors
by applying them to the utility profiles they induce, and call two utility vectors
leximin-equivalent if they induce the same utility profile.

2 There are two popular definitions of EFX [3]. The original definition by Caragiannis
et al. [16] asks that agent i not envy agent j after removal of any good from agent
j’s bundle that has positive value for agent i, whereas a latter definition omits
the requirement of “positive value”. Under binary additive valuations, the former
definition is equivalent to EF1 whereas the latter definition is stronger than EF1.
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Definition 6 (Leximin allocations). We say that an allocation A is a lex-
imin allocation if, among all allocations, it lexicographically maximizes the util-
ity profile, i.e., maximizes the minimum utility, subject to that maximizes the
second minimum, and so on. Thus, leximin allocations are those whose utility
profile is the greatest element of the total order 
lex. We also extend the notions
of leximin-dominance and weak leximin-dominance to allocations by comparing
their utility vectors.

Leximin is a refinement of the traditional Rawlsian fairness, which requires
maximization of the minimum utility. Plaut and Roughgarden [32] and Freeman
et al. [23] study leximin allocations (and variants of this definition), and show
that they have related fairness properties as well.

Important to our work is the observation that for binary additive valuations,
the sets of leximin and MNW allocations coincide. This is established under a
more general valuation class by the contemporary work of Benabbou et al. [7],
but for binary additive valuations, this can also be inferred easily from the
following observations, which we will use in our work.

Lemma 1. All leximin allocations have the same utility profile. Further, any
allocation with this utility profile is a leximin allocation.

Lemma 2 (Lemma 21 of Freeman et al. [23]). Under binary additive valu-
ations, all maximum Nash welfare allocations have the same utility profile. Fur-
ther, any allocation with this utility profile is a maximum Nash welfare allocation.

Under binary additive valuations, given the observations above, the sets of
MNW and leximin allocations can be either identical or disjoint. Aziz and Rey
[4] shows that all leximin allocations are also MNW allocations, which implies
that the two sets are identical.

Lemma 3. Under binary additive valuations, the set of maximum Nash welfare
allocations coincides with the set of leximin allocations.

Henceforth, we will use the terms “MNW allocation” and “leximin allocation”
interchangeably. Before we define our deterministic rule, let us define this concept
formally. Fix the set of agents N and the set of goods M. A deterministic rule f
takes a valuation profile v as input and returns an allocation A. Note that f is
not allowed to return ties. We say that f is EF1 (resp. PO) if it always outputs
an allocation that is EF1 (resp. PO). The game-theoretic literature offers the
following strong desideratum to prevent strategic manipulations by agents.

Definition 7 (Group strategyproofness). A deterministic rule f is called
group strategyproof (GSP) if there do not exist valuation profiles v and v′, and a
group of agents C ⊆ N , such that v′

k = vk for all k ∈ N \C and vj(A′
j) > vj(Aj)

for all j ∈ C, where A = f(v) and A′ = f(v′).

A weaker requirement, which only imposes the above property for group C
of size 1 (i.e. prevents manipulations by a single agent) is commonly known as
strategyproofness (SP). We are now ready to define our rule, which chooses a
special MNW allocation.
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Definition 8 (MNWtie). The deterministic rule MNWtie returns an allocation
A such that:

1. A is an MNW allocation with lexicographically greatest utility vector among
all MNW allocations (i.e., among all MNW allocations, it maximizes v1(A1),
subject to that maximizes v2(A2), and so on);3 and

2. A is minimally complete (i.e. AN = M \ Z).

If there are several allocations satisfying both conditions, MNWtie arbitrarily
picks one.

First, observe that MNWtie is well-defined, i.e., that the set of allocations
satisfying both conditions is non-empty. Indeed, the set of allocations satisfying
the first condition is trivially non-empty. And for any allocation in this set,
there is a corresponding minimally complete allocation—obtained by throwing
away all non-valued goods—which has the same utility vector, and therefore still
satisfies the first condition.

The following result establishes the compelling properties of MNWtie. The
key idea for polynomial-time computability is as follows. Darmann and Schauer
[20] and Barman et al. [6] show that under binary additive valuations, an MNW
allocation can be computed efficiently. Starting from this MNW allocation, we
keep moving to lexicographically better MNW allocations, as in the definition
of MNWtie. The algorithm and proof are formally presented in the full version
of this paper.

Theorem 1. Under binary additive valuations, MNWtie is envy-free up to one
good, Pareto optimal, group strategyproof, and polynomial-time computable.

4 Randomized Setting

In the previous section, we established the existence of a deterministic rule which
is EF1, PO, and GSP. For deterministic rules, it is necessary to relax EF to EF1.
For example, in case of a single good that is liked by two agents, giving it to either
agent would be EF1 but not EF. However, if one is willing to randomize, the
natural solution of assigning the good to an agent chosen at random would be “ex
ante EF” in addition to being “ex post EF1”. This is because each deterministic
allocation in the support is EF1, but in expectation, no agent envies the other.
This leads to a natural question. Can randomness help achieve ex ante EF and
ex post EF1, in addition to PO and GSP?

In this section, we answer this question affirmatively for binary additive val-
uations. In parallel to our work, Freeman et al. [22] show that ex ante EF and ex
post EF1 can be achieved simultaneously even under general additive valuations,
but they show an impossibility when ex ante PO is added to the combination.

3 We note that tie-breaking by agent index is without loss of generality. One can break
ties according to any given ordering of the agents, and the corresponding rule will
still satisfy all the desiderata.



Fair Division with Binary Valuations: One Rule to Rule Them All 377

Our positive result circumvents this impossibility for binary additive valuations.
Additionally, it satisfies GSP, which Freeman et al. [22] do not consider. Missing
proofs can be found in the full version of this paper.

Let us first formally extend our framework to include randomness.

Definition 9 (Fractional and randomized allocations). A fractional allo-
cation A = (A1, . . . , An) is such that Ai(g) ∈ [0, 1] denotes the fraction of good
g allocated to agent i and

∑
i∈N Ai(g) ≤ 1 for each good g. A randomized allo-

cation A is a probability distribution over deterministic allocations.

There is a natural fractional allocation A associated with each randomized
allocation A, where Ai(g) is the probability of good g being allocated to agent i
under A. In this case, we say that randomized allocation A implements fractional
allocation A. There may be several randomized allocations implementing a given
fractional allocation.

We refer to the expected utility of agent i under a randomized allocation A
as simply the utility of agent i under A. Note that this is equal to the utility
of agent i from the corresponding fractional allocation A, defined as vi(Ai) =∑

g∈M Ai(g) · vi(g). With this notation, the definitions of envy-freeness and
Pareto optimality extend naturally to fractional allocations.4 We say that a
randomized allocation A is ex ante envy-free (resp. ex ante Pareto optimal) if
the corresponding fractional allocation A is envy-free (resp. Pareto optimal).

With a fixed set of agents N and a fixed set of goods M, a randomized rule
f takes a valuation profile v as input and returns a randomized allocation A.
We say that f is ex ante envy-free (resp. ex ante Pareto optimal) if it always
returns a randomized allocation that is ex ante envy free (resp. ex ante Pareto
optimal). We say that f is ex ante group strategyproof if no group of agents
can misreport their preferences so that each agent in the group receives strictly
greater expected utility. Note that these ex ante guarantees depend only on the
fractional allocation corresponding to the randomized allocation returned by f .
Hence, when talking about ex ante guarantees, we will think of the randomized
rule f as directly returning a fractional allocation. However, when talking about
ex post guarantees, we would need to specify which randomized allocation f
returns.

Definition 10 (Ex post EF1). We say that a randomized allocation A is ex
post envy-free up to one good if each deterministic allocation in its support
is EF1. A randomized rule is ex post EF1 if it always returns a randomized
allocation that is ex post EF1.

Fractional leximin allocations, like their deterministic counterpart, lexico-
graphically maximize the utility profile among all fractional allocations. The
same can be said about fractional MNW allocations; however, we can skip the
first step of maximizing the number of agents who receive positive utility because

4 In case of Pareto optimality of a fractional allocation, we require that no other
fractional allocation Pareto-dominate it.
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in the fractional case we can simultaneously give positive utility to every agent
who likes at least one good (and thus can possibly get positive utility).

Definition 11 (Fractional MNW allocations). We say that a fractional
allocation is a fractional maximum Nash welfare allocation if it maximizes the
product of utilities of agents who do not have zero value for every good.

Bogomolnaia and Moulin [9], Bogomolnaia et al. [10], and Kurokawa et al. [25]
study fractional leximin allocations under an assignment setting, and establish
several desirable properties. In addition, fractional MNW allocations, also known
as competitive equilibria with equal incomes (CEEI), are widely studied in fair
division with additive valuations [18,19,30,33]. Our first result shows that under
binary additive valuations, these two concepts coincide.

Theorem 2. Under binary additive valuations, the set of fractional leximin allo-
cations coincides with the set of fractional maximum Nash welfare allocations.
All such allocations have identical utility vectors.

Note that the identical utility vector guarantee in Theorem 2 is much stronger
than the identical utility profile guarantee in the deterministic case.

Even under general additive valuations, it is known that every fractional
MNW allocation is ex ante EF and ex ante PO [33], and one such allocation can
be computed in strongly polynomial time [30,34]. Hence, these properties carry
over to our binary additive valuations domain, and due to Theorem 2, also apply
to fractional leximin allocations.

For ex ante GSP, we build on the literature on fractional leximin alloca-
tions. Kurokawa et al. [25] show that returning a fractional leximin allocation
satisfies ex ante EF, ex ante PO, and ex ante GSP whenever four key require-
ments are satisfied. We describe them in the full version, and show that they
are easily satisfied under binary additive valuations, if we return a minimally
complete leximin allocation. Hence, we define our fractional leximin/MNW rule
to always return a minimally complete fractional leximin/MNW allocation (like
our deterministic rule MNWtie).

Definition 12 (Fractional maximum Nash welfare rule). The fractional
maximum Nash welfare rule returns a minimally complete fractional maximum
Nash welfare allocation.

Theorem 3. Under binary additive valuations, every fractional maximum Nash
welfare (equivalently, leximin) allocation is ex ante envy-free and ex ante Pareto
optimal. Further, the fractional maximum Nash welfare rule is ex ante group
strategyproof.

The only missing property at this point is ex post EF1. Therefore, the main
question we seek to answer in this section is the following: Can every fractional
MNW allocation be implemented as a distribution over deterministic EF1 allo-
cations? We go one step further and show that it can in fact be implemented
as a distribution over deterministic MNW allocations, which are in turn EF1.
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Our main tool is the bihierarchy framework introduced by Budish et al. [15],
which is a generalization of the classic Birkhoff-von Neumann theorem [8,29].
At a high level, the framework allows implementing any fractional allocation
A using deterministic allocations which satisfy a set of constraints, as long as
the set of constraints forms a bihierarchy structure and the fractional allocation
itself satisfies those constraints.

In our case, we start with a minimally complete fractional MNW allocation
A∗. Let u∗

i denote the utility to agent i under this allocation. We want to imple-
ment this as a randomized allocation. We impose the following constraints on a
deterministic allocation A in the support, where A is represented as a matrix
in which Ai(g) ∈ {0, 1} indicates whether good g is allocated to agent i.

H1 :
∑

i∈N Ai(g) =
∑

i∈N A∗
i (g),∀g ∈ M,

H2 :�u∗
i  ≤ ∑

g∈M Ai(g) · vi(g) ≤ �u∗
i �,∀i ∈ N .

(1)

The first family of constraints ensures that under each deterministic alloca-
tion A, the set of goods allocated matches that under A∗. Since A∗ is minimally
complete, this implies that A must be minimally complete as well. Crucially, the
second family of constraints ensures that each agent has utility that is either the
floor or the ceiling of her utility under A∗. That is, A is not allowed to stray far
from A∗.

It can be checked that these constraints form a bihierarchy (each of H1 and
H2 is a hierarchy); for a formal definition of a hierarchy, we refer the reader to
the work of Budish et al. [15]. Importantly, they also provide a polynomial-time
algorithm that computes a random allocation such that (a) it implements the
fractional allocation A∗, and (b) each deterministic allocation A in its support
satisfies the constraints in 1. We show that in this case, every deterministic
allocation in the support must be a deterministic MNW allocation, yielding the
desired result.

Theorem 4. Under binary additive valuations, given any fractional maximum
Nash welfare allocation, one can compute, in polynomial time, a randomized allo-
cation which implements it and has only deterministic maximum Nash welfare
allocations in its support.

Proof. Let A∗ be a given fractional MNW allocation with utility vector u∗.
Let Ā be the randomized allocation implementing A∗ that is returned by the
polynomial-time algorithm of Budish et al. [15] with the bihierarchy constraints
in Eq. 1. Let A denote the set of deterministic allocations in the support of Ā.
Our goal is to show that every allocation in A is an MNW allocation.

First, let us partition the set of agents N into sets S1, . . . , St such that any
two agents i and j are in the same set if and only if �u∗

i  = �u∗
j. For k ∈ [t], let Lk

denote the common floor of utilities of agents in Sk under A∗, and Uk = Lk + 1.
Hence, for k ∈ [t] and each agent i ∈ Sk, u∗

i ∈ [Lk, Uk). Further, order the sets
so that Uk ≤ Lk+1 for each k ∈ [t − 1]. This ensures that if i ∈ Sr, j ∈ Sr′ , and
r′ > r, then u∗

j > u∗
i .
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We argue that for each k ∈ [t], the agents in ∪r∈[k]Sr must be fully allocated
all of the goods that they like (i.e. all the goods in V∪r∈[k]Sr

) under A∗, resulting
in

∑
r∈[k]

∑
i∈Sr

u∗
i = |V∪r∈[k]Sr

|. If this is not true, then a positive fraction of
some good g ∈ V∪r∈[k]Sr

must be allocated to an agent j ∈ Sr′ for r′ > k. Let
i ∈ ∪r∈[k]Sr be an agent such that g ∈ Vi. Let r ∈ [k] be such that i ∈ Sr. Then,
by the above argument, we know that u∗

j > u∗
i . However, then, transferring a

sufficiently small fraction of g from agent j to agent i in A∗ will improve the
Nash welfare, which contradicts the fact that A∗ is a fractional MNW allocation.

Note that in any deterministic allocation A, |V∪r∈[k]Sr
| is the highest utility

that agents in ∪r∈[k]Sr can collectively have; hence, in any feasible utility vector
u, ∑

r∈[k]

∑
i∈Sr

ui ≤ ∑
r∈[k]

∑
i∈Sr

u∗
i ,∀k ∈ [t]. (2)

Because a convex combination of allocations in A yields the allocation A∗, and
utilities are additive, a convex combination of their utility vectors yields the
utility vector u∗. Hence, for the utility vector u of any allocation in A, Eq. 2
must hold with equality. Further, by subtracting each equation from the next,
we get that it must further satisfy the following. Here, H2 is from the bihierarchy
constraints (Eq. 1).

H2 : �u∗
i  ≤ ui ≤ �u∗

i �,∀i ∈ N ,

H3 :
∑

i∈Sk
ui =

∑
i∈Sk

u∗
i ,∀k ∈ [t].

(3)

We say that a utility vector is a rounded if it satisfies the constraints in
Eq. (3), and say that a deterministic allocation is rounded if it has a rounded
utility vector. We have already established that every allocation in A is a rounded
allocation. The following lemma completes the proof of Theorem 4.

Lemma 4. The set of rounded allocations coincides with the set of maximum
Nash welfare allocations.

Let us amend the definition of the fractional MNW rule so that it uses The-
orem 4 to implement a minimally complete fractional MNW allocation. Then,
we have the following.

Corollary 1. Under binary additive valuations, the fractional maximum Nash
welfare rule is ex ante envy-free, ex ante Pareto optimal, ex ante group strate-
gyproof, ex post envy-free up to one good, and polynomial-time computable.

5 Discussion

To recap, we showed that under binary additive valuations a deterministic vari-
ant of the maximum Nash welfare rule is envy-free up to one good (EF1), Pareto
optimal (PO), and group strategyproof (GSP). We also demonstrated that its
randomized variant is ex ante EF, ex ante PO, ex ante GSP, and ex post EF1.
All our rules are polynomial-time computable.
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Amanatidis et al. [2] show that under general additive valuations, there is no
deterministic rule that is envy-free up to one good (EF1) and strategyproof, even
with two agents and m � 5 goods. At first glance, Theorem 1, which establishes
MNWtie as both GSP and EF1, seems to show that this impossibility result
does not hold for the special case of binary additive valuations. However, the
impossibility result of Amanatidis et al. [2] only applies to rules that allocate all
the goods; by contrast, MNWtie does not allocate non-valued goods. This begs
the following question: Under binary additive valuations, is there a deterministic
rule that allocates all the goods and achieves EF1, PO, and GSP? In the full
version, we show that this cannot be achieved by any variant of MNW.

Another open question is whether the ex ante GSP guarantee of Corollary 1
can be strengthened to ex post GSP, which would require the randomized rule
to be implementable as a probability distribution over deterministic GSP rules.

Modulo these minor caveats, though, our results are the strongest one could
possibly hope for in the domain of binary additive valuations.
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Abstract. Consensus halving refers to the problem of dividing a
resource into two parts so that every agent values both parts equally.
Prior work has shown that when the resource is represented by an inter-
val, a consensus halving with at most n cuts always exists, but is hard to
compute even for agents with simple valuation functions. In this paper,
we study consensus halving in a natural setting where the resource con-
sists of a set of items without a linear ordering. When agents have addi-
tive utilities, we present a polynomial-time algorithm that computes a
consensus halving with at most n cuts, and show that n cuts are almost
surely necessary when the agents’ utilities are drawn from probabilis-
tic distributions. On the other hand, we show that for a simple class of
monotonic utilities, the problem already becomes PPAD-hard. Further-
more, we compare and contrast consensus halving with the more general
problem of consensus k-splitting, where we wish to divide the resource
into k parts in possibly unequal ratios, and provide some consequences
of our results on the problem of computing small agreeable sets.

Keywords: Consensus halving · PPAD-hardness · Resource allocation

1 Introduction

Given a set of resources, how can we divide it between two families in such a way
that every member of both families believes that the two resulting parts have the
same value? This is an important problem in resource allocation and has been
addressed several times under different names [1,15,20], with consensus halving
being the name by which it is best known today [26].

In prior studies of consensus halving, the resource is represented by an inter-
val, and the goal is to find an equal division into two parts that makes a small
number of cuts in the interval.1 Using the Borsuk-Ulam theorem from topology,
1 Simmons and Su [26] assume that the resource is a two- or three-dimensional object
but only consider cuts by parallel planes; their model is therefore equivalent to that
of a one-dimensional object.
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Simmons and Su [26] established that for any continuous preferences of the n
agents involved, there is always a consensus halving that uses no more than n
cuts—this also matches the smallest number of cuts in the worst case. In addi-
tion, the same authors developed an algorithm that computes an ε-approximate
solution for any given ε > 0, meaning that the values of the two parts differ by
at most ε for every agent. Although the algorithm is more efficient than a brute-
force approach, its running time is exponential in the parameters of the prob-
lem. This is in fact not a coincidence: Filos-Ratsikas and Goldberg [9] recently
showed that ε-approximate consensus halving is PPA-complete, implying that
the problem is unlikely to admit a polynomial-time algorithm. Filos-Ratsikas
et al. [11] strengthened this result by proving that the problem remains hard
even when the agents have simple valuations over the interval. In particular, the
PPA-completeness result holds for agents with “two-block uniform” valuations,
i.e., valuation functions that are piecewise uniform over the interval and assign
non-zero value to at most two separate pieces.

While these hardness results stand in contrast to the positive existence result,
they rely crucially on the resource being in the form of an interval. Most practical
division problems do not fall under this assumption, including when we divide
assets such as houses, cars, stocks, business ownership, or facility usage. When
each item is homogeneous, a consensus halving can be easily obtained by splitting
every item in half. However, since splitting individual assets typically involves
an overhead, for example in managing a joint business or sharing the use of
a house, we want to achieve a consensus halving while splitting only a small
number of assets. Fortunately, a consensus halving that splits at most n items
is guaranteed to exist regardless of the number of items—this can be seen by
arranging the items on a line in arbitrary order and applying the aforementioned
existence theorem of Simmons and Su [26]. The bound n is also tight: if each
agent only values a single item and the n valued items are distinct, all of them
clearly need to be split. Nevertheless, given that the items do not inherently lie
on a line, the hardness results from previous work do not carry over. Could it
be that computing a consensus halving efficiently is possible when the resource
consists of a set of items?

1.1 Overview of Results

We assume throughout the paper that the resource is composed of m items. Each
item is homogeneous, so the utility of an agent for a (possibly fractional) set of
items depends only on the fractions of the m items in that set. For this overview
we focus on the more interesting case where n ≤ m, but all of our results can be
extended to arbitrary n and m.

We begin in Sect. 2 by considering agents with additive utilities, i.e., the util-
ity of each agent is additive across items and linear in the fraction of each item.
Under this assumption, we present a polynomial-time algorithm that computes
a consensus halving with at most n cuts by finding a vertex of the polytope
defined by the relevant constraints. This positive result stands in stark contrast
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with the PPA-hardness when the items lie on a line, which we obtain by dis-
cretizing an analogous hardness result of Filos-Ratsikas et al. [11]. We then show
that improving the number of cuts beyond n is difficult: even computing a con-
sensus halving that uses at most n− 1 cuts more than the minimum possible for
a given instance is NP-hard. Nevertheless, we establish that instances admitting
a solution with fewer than n cuts are rare. In particular, if the agents’ utilities
for items are drawn independently from non-atomic distributions, it is almost
surely the case that every consensus halving requires no fewer than n cuts.

Next, in Sect. 3, we address the broader class of monotonic utilities, wherein
an agent’s utility for a set does not decrease when any fraction of an item is added
to the set. For such utilities, we show that the problem of computing a consensus
halving with at most n cuts becomes PPAD-hard, thereby providing strong evi-
dence of its computational hardness.2 Perhaps surprisingly, this hardness result
holds even for the class of utility functions that we call “symmetric-threshold
utilities”, which are very close to being additive. Indeed, such utility functions
are additive across items; for each item, having a sufficiently small fraction of
the item is the same as not having the item at all, having a sufficiently large
fraction of it is the same as having the whole item, and the utility increases
linearly in between. On the other hand, we present a number of positive results
for monotonic utilities when the number of agents is constant in the full version
of our paper [13].

In Sect. 4, we provide some implications of our results on the “agreeable
sets” problem studied by Manurangsi and Suksompong [18]. A set is said to be
agreeable to an agent if the agent likes it at least as much as the complement
set. Manurangsi and Suksompong proved that a set of size at most

⌊
m+n

2

⌋
that

is agreeable to all agents always exists, and this bound is tight. They then
gave polynomial-time algorithms that compute an agreeable set matching the
tight bound for two and three agents. We significantly generalize this result by
exhibiting efficient algorithms for any number of agents with additive utilities,
as well as any constant number of agents with monotonic utilities. In addition,
we present a short alternative proof for the bound

⌊
m+n

2

⌋
via consensus halving.

Finally, in Sect. 5, we study the more general problem of consensus k-splitting
for agents with additive utilities. Our aim in this problem is to split the items
into k parts so that all agents agree that the parts are split according to some
given ratios α1, . . . , αk; consensus halving corresponds to the special case where
k = 2 and α1 = α2 = 1/2. Unlike for consensus halving, however, in consensus
k-splitting we may want to cut the same item more than once when k > 2, so
we cannot assume without loss of generality that the number of cuts is equal
to the number of items cut. For any k and any ratios α1, . . . , αk, we show that
there exists an instance in which cutting (k−1)n items is necessary. On the other
hand, a generalization of our consensus halving algorithm from Sect. 2 computes
a consensus k-splitting with at most (k − 1)n cuts in polynomial time, thereby
implying that the bound (k−1)n is tight for both benchmarks. We also illustrate

2 We refer to [22, Chapter 20] for a discussion of the complexity class PPAD.
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further differences between consensus k-splitting and consensus halving, both
with respect to item ordering and from the probabilistic perspective.

1.2 Related Work

Consensus halving falls under the broad area of fair division, which studies how
to allocate resources among interested agents in a fair manner [4,5,19]. Common
fairness notions include envy-freeness—no agent envies another agent in view
of the bundles they receive—and equitability—all agents have the same utility
for their own bundle. The fair division literature typically assumes that each
recipient of a bundle is either a single agent or a group of agents represented
by a single preference. However, a number of recent papers have considered an
extension of the traditional setting to groups, thereby allowing us to capture the
differing preferences within the same group as in our introductory example with
families [16,17,25]. Note that a consensus halving is envy-free for all members of
the two groups; moreover, it is equitable provided that the utilities of the agents
are additive and normalized so that every agent has the same value for the entire
set of items.

A classical fair division algorithm that dates back over two decades is the
adjusted winner procedure, which computes an envy-free and equitable divi-
sion between two agents [4].3 The procedure has been suggested for resolving
divorce settlements and international border disputes, with one of its advan-
tages being the fact that it always splits at most one item. Sandomirskiy and
Segal-Halevi [24] investigated the problem of attaining fairness while minimiz-
ing the number of shared items, and gave algorithms and hardness results for
several variants of the problem. Like in our work, both the adjusted winner pro-
cedure and the work of Sandomirskiy and Segal-Halevi [24] assume that items
are homogeneous and, as in Sect. 2, that the agents’ utilities are linear in the
fraction of each item and additive across items. Moreover, both of them require
the assumption that all items can be shared—if some items are indivisible, then
an envy-free or equitable allocation cannot necessarily be obtained.4

Besides consensus halving, another problem that also involves dividing items
into equal parts is necklace splitting, which can be seen as a discrete analog
of consensus halving [1,12]. In a basic version of necklace splitting, there is a
necklace with beads of n colors, with each color having an even number of beads.
Our task is to split the necklace using at most n cuts and arrange the resulting
pieces into two parts so that the beads of each color are evenly distributed
between both parts. Observe that the difficulty of this problem lies in the spatial
3 See http://www.nyu.edu/projects/adjustedwinner for a demonstration and imple-
mentation of the procedure.

4 This motivates relaxations such as envy-freeness up to one item (EF1) and envy-
freeness up to any item (EFX), which have been extensively studied in the last few
years (e.g., [6,21]). However, as Sandomirskiy and Segal-Halevi [24] noted, when a
divorcing couple decides how to split their children or two siblings try to divide
three houses between them, it is unlikely that anyone will agree to a bundle that is
envy-free up to one child or house.

http://www.nyu.edu/projects/adjustedwinner
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ordering of the beads—the problem would be trivial if the beads were unordered
items as in our setting. While consensus halving and necklace splitting have
long been studied by mathematicians, they recently gained significant interest
among computer scientists thanks in large part to new computational complexity
results [9–11]. In particular, the PPA-completeness result of Filos-Ratsikas and
Goldberg [9] for approximate consensus halving was the first such result for a
problem that is “natural” in the sense that its description does not involve a
polynomial-sized circuit.

2 Additive Utilities

We first formally define the problem of consensus halving for a set of items.
There is a set N = [n] of n agents and a set M = [m] of m items, where
[r] := {1, 2, . . . , r} for any positive integer r. A fractional set of items contains
a fraction xj ∈ [0, 1] of each item j. We will mostly be interested in fractional
sets of items in which only a small number of items are fractional—that is,
most items have xj = 0 or 1. Agent i has a utility function ui that describes
her nonnegative utility for any fractional set of items; for an item j ∈ M , we
sometimes write ui(j) to denote ui({j}). A partition of M into fractional sets
of items M1, . . . ,Mk has the property that for every item j ∈ M , the fractions
of item j in the k fractional sets sum up to exactly 1.

Definition 1. A consensus halving is a partition of M into two fractional sets
of items M1 and M2 such that ui(M1) = ui(M2) for all i ∈ N . An item is said
to be cut if there is a positive fraction of it in both parts of the partition.

In this section, we assume that the agents’ utility functions are additive. This
means that for a set M ′ containing a fraction xj of item j, the utility of agent i
is given by ui(M ′) =

∑
j∈M xj · ui(j). Observe that under additivity, M ′ forms

one part of a consensus halving exactly when

∑

j∈M

xj · ui(j) =
1
2

∑

j∈M

ui(j) ∀i ∈ N. (1)

As we mentioned in the introduction, a consensus halving with no more than
n cuts is guaranteed to exist regardless of the number of items. Our first result
shows that such a division can be found efficiently for additive utilities.

Theorem 1. For n agents with additive utilities, there exists a polynomial-time
algorithm that computes a consensus halving with at most min{n,m} cuts.

Proof. If n ≥ m, a partition that divides every item in half is clearly a consensus
halving and makes m = min{n,m} cuts. We therefore assume from now on that
n ≤ m and describe a polynomial-time algorithm that computes a consensus
halving using no more than n cuts.

The main idea of our algorithm is to start with the trivial consensus halving
where x1 = x2 = · · · = xm = 1/2, and then gradually reduce the number of cuts.
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We stop when the process cannot be continued, at which point we show that
the consensus halving must contain at most n cuts. Our algorithm is presented
below.

1. Let x1 = x2 = · · · = xm = 1/2.
2. Let S denote the set of n equations

∑
j∈M

(
yj − 1

2

) ·ui(j) = 0 for i ∈ N , and
let T = ∅.

3. While there exists a solution (y1, . . . , ym) �= (x1, . . . , xm) to S ∪ T , do the
following:
(a) For every j ∈ M such that yj �= xj , compute

γj :=

{
1−xj

yj−xj
if yj > xj ;

xj

xj−yj
if yj < xj .

(b) Let j∗ = argminj∈M,yj �=xj
γj .

(c) For every j ∈ M , let sj := (1 − γj∗) · xj + γj∗ · yj , and update the value
of xj to sj .

(d) Add the equation yj∗ = xj∗ to T .
4. Output (x1, . . . , xm).

Finding a solution (y1, . . . , ym) to S ∪ T that is not equal to (x1, . . . , xm) or
determining that such a solution does not exist (Step 3) can be done in polyno-
mial time via Gaussian elimination.5 Moreover, it is obvious that the other steps
of the algorithm run in polynomial time.

We next prove the correctness of our algorithm, starting with arguing that
(x1, . . . , xm) forms a consensus halving. Since we start with a consensus halving
x1 = · · · = xm = 1/2, it suffices to show that each execution of the loop in Step 3
preserves the validity of the solution. Observe that, since both (x1, . . . , xm) and
(y1, . . . , ym) are solutions to the Eqs. (1), their convex combination (in Step 3c)
also satisfies the Eqs. (1). Furthermore, for each j such that yj �= xj , the value
γj is chosen so that if we replace γj∗ by γj in the formula for sj , we would have
sj = 1 for the case yj > xj , and sj = 0 for the case yj < xj . Since γj∗ ≤ γj ,
we have that sj ∈ [0, 1] for all j such that yj �= xj . In addition, the value of xj

does not change for j such that yj = xj . Thus, (x1, . . . , xm) remains a consensus
halving throughout the algorithm.

Finally, we are left to show that at most n items are cut in the output
(x1, . . . , xm). As noted above, our definition of γj ensures that xj∗ ∈ {0, 1}
after the execution of Step 3c. Furthermore, as the constraint yj∗ = xj∗ is then
immediately added to T , the value of xj∗ does not change for the rest of the
algorithm. As a result, every item j ∈ T is uncut. Thus, it suffices to show that
|T | ≥ m − n at the end of the execution.

5 Specifically, if the linear equations in S ∪ T lead to a unique solution (x1, . . . , xm),
then Gaussian elimination immediately results in this solution. Otherwise, Gaussian
elimination will yield a row echelon form; by setting one of the non-pivots yj to
be an arbitrary number not equal to xj , we obtain a solution that is not equal to
(x1, . . . , xm).
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When the while loop in Step 3 terminates, (x1, . . . , xm) must be the unique
solution to S ∪ T . Recall that a system of linear equations with m variables can
only have a unique solution when the number of constraints is at least m. This
means that |S ∪ T | ≥ m at the end of the algorithm. Since |S| = n, we must
have |T | ≥ m − n, as desired. 	


Note that the above algorithm can be viewed as finding a vertex of the
polytope defined by the constraints (1) and 0 ≤ xj ≤ 1 for all j ∈ M . In
fact, it suffices to use a generic algorithm for this task; however, to the best of
our knowledge, such algorithms often involve solving a linear program, whereas
the algorithm presented above is conceptually simple and can be implemented
directly. We also remark that our algorithm works even when some utilities ui(j)
are negative, i.e., some of the items are goods while others are chores. Allocating
a combination of goods and chores has received increasing attention in the fair
division community [2,3].

As we discussed in the introduction, an important reason behind the positive
result in Theorem 1 is the lack of linear order among the items. Indeed, as we
show next, if the items lie on a line and we are only allowed to cut the line using
n cuts, finding a consensus halving becomes computationally hard. This follows
from discretizing the hardness result of Filos-Ratsikas et al. [11] and holds even
if we allow the consensus halving to be approximate instead of exact. Formally,
when the items lie on a line, we may place a number of cuts, with each cut
lying either between two adjacent items or at some position within an item. All
(fractional or whole) items between any two adjacent cuts must belong to the
same fractional set of items in a partition, where the left and right ends of the
line also serve as “cuts” in this requirement (see Fig. 1 for an example). We
say that a partition into fractional sets of items (M1,M2) is an ε-approximate
consensus halving if |ui(M1) − ui(M2)| ≤ ε · ui(M) for every agent i.

M1 M2 M1 M2 M1

Fig. 1. Consensus halving for items on a line: in this example there are 15 items
(represented by gray balls) that lie on a line and we have used 4 cuts to obtain a
partition into fractional sets of items (M1,M2). The labels M1 and M2 indicate the set
to which each segment belongs.

Theorem 2. Suppose that the items lie on a line. There exists a polynomial p
such that finding a 1/p(n)-approximate consensus halving for n agents with at
most n cuts on the line is PPA-hard, even if the valuations are binary and every
agent values at most two contiguous blocks of items.
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The proof of Theorem 2, along with all other omitted proofs, can be found
in the full version of our paper [13].

Although Theorem 1 allows us to efficiently compute a consensus halving with
no more than n cuts in any instance, for some instances there exists a solution
using fewer cuts. An extreme example is when all agents have the same utility
function, in which case a single cut already suffices. This raises the question of
determining the least number of cuts required for a given instance. Unfortunately,
when there is a single agent, deciding whether there is a consensus halving that
leaves all items uncut is already equivalent to the well-known NP-hard problem
Partition. For general n, even computing a division that uses at most n−1 cuts
more than the optimal solution is still computationally hard, as the following
theorem shows.

Theorem 3. For n agents with additive utilities, it is NP-hard to compute a
consensus halving that uses at most n − 1 cuts more than the minimum number
of cuts for the same instance.

Theorem 3 implies that there is no hope of finding a consensus halving with
the minimum number of cuts or even a non-trivial approximation thereof in
polynomial time, provided that P �= NP. Nevertheless, we show that instances
that admit a consensus halving with fewer than n cuts are rare: if the utilities
are drawn independently at random from probability distributions, then it is
almost surely the case that any consensus halving needs at least n cuts. We say
that a distribution is non-atomic if it does not put positive probability on any
single point.

Theorem 4. Suppose that for each i ∈ N and j ∈ M , the utility ui(j) is drawn
independently from a non-atomic distribution Di,j. Then, with probability 1,
every consensus halving uses at least min{n,m} cuts.

As our final remark of this section, consider utility functions that are again
additive across items, but for which the utility of each item scales quadratically
as opposed to linearly in the fraction of the item. That is, for a set M ′ containing
a fraction xj of item j, the utility of agent i is given by ui(M ′) =

∑
j∈M x2

j ·
ui(j). Even though these utility functions appear different from the ones we
have considered so far, it turns out that the set of consensus halvings remains
exactly the same. Indeed, a partition (M1,M2) is a consensus halving under the
quadratic functions if and only if

∑

j∈M

x2
j · ui(j) =

∑

j∈M

(1 − xj)2 · ui(j) ∀i ∈ N.

Since x2
j − (1 − xj)2 = xj − (1 − xj) = 2xj − 1, the above condition is equivalent

to (1), so all of our results in this section apply to the quadratic functions as
well.
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3 Monotonic Utilities

Next, we turn our attention to utility functions that are no longer additive as in
Sect. 2. We assume that the utilities are monotonic, meaning that the utility of an
agent for a set of items cannot decrease upon adding any fraction of an item to the
set. Our main result is that finding a consensus halving is computationally hard
for such valuations; in fact, the hardness holds even when the utilities take on a
specific structure that we call symmetric-threshold. Symmetric-threshold utilities
are additive over items, and linear with symmetric thresholds within every item.
Formally, the utility of agent i for a fractional set of items M ′ containing a
fraction xj ∈ [0, 1] of each item j can be written as ui(M ′) =

∑
j∈M fij(xj)·ui(j),

where

fij(xj) :=

⎧
⎨

⎩

0 if xj ≤ cij ;
xj−cij
1−2cij

if cij < xj < 1 − cij ;
1 if xj ≥ 1 − cij ,

xj

fij(xj)

1

cij 1 − cij 10

where cij ∈ [0, 1/2) is the threshold or cap of agent i for item j. Intuitively,
symmetric-threshold utilities model settings where having a small fraction of an
item is the same as not having the item at all, while having a large fraction of
the item is the same as having the whole item. The point where this threshold
behavior occurs is controlled by the cap cij , which can be different for every pair
(i, j) ∈ N × M . It is easy to see that the resulting utility functions are indeed
monotonic. Note that although general monotonic utility functions do not neces-
sarily admit a concise representation (see the discussion preceding Theorem 7),
symmetric-threshold utility functions can be described succinctly.

Even though symmetric-threshold utility functions are very close to being
additive, we show that finding a consensus halving for such utilities is compu-
tationally hard. Recall that a partition (M1,M2) is an ε-approximate consensus
halving if |ui(M1) − ui(M2)| ≤ ε · ui(M) for every agent i.

Theorem 5. There exists a constant ε > 0 such that finding an ε-approximate
consensus halving for n agents with monotonic utilities that uses at most n cuts
is PPAD-hard, even if all agents have symmetric-threshold utilities.

At a high level, we prove this result by reducing from a modified version of
the generalized circuit problem. The generalized circuit problem is the main tool
that has been used (implicitly or explicitly) to prove hardness of computing Nash
equilibria in various settings [7,8,23]. A generalized circuit is a generalization
of an arithmetic circuit, because it allows cycles, which means that instead of a
simple computation, the circuit now represents a constraint satisfaction problem.
The version of the problem we use is different from the standard one in two
aspects. First, instead of the domain [0, 1], we use [−1, 1], which is more adapted
to the consensus halving problem. Second, we will only allow the circuit to use
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three types of arithmetic gates. We show that these modifications do not change
the complexity of the problem.

4 Connections to Agreeable Sets

We now present some implications of results from consensus halving on the
setting of computing agreeable sets. Let us first formally define the agreeable
set problem, introduced by Manurangsi and Suksompong [18].6 As in consensus
halving, there is a set N of n agents and a set M of m items. Agent i has a
monotonic utility function ui over non-fractional sets of items, where we assume
the normalization ui(∅) = 0; this corresponds to a set function.

Definition 2. A subset of items M ′ ⊆ M is said to be agreeable to agent i if
ui(M ′) ≥ ui(M\M ′).

As one of their main results, Manurangsi and Suksompong [18] showed that
for any n and m, there exists a set of at most min

{�m+n
2 ,m}

items that is
agreeable to all agents, and this bound is tight. Their proof relies on a graph-
theoretic statement often referred to as “Kneser’s conjecture”, which specifies
the chromatic number for a particular class of graphs called Kneser graphs. Here
we present a short alternative proof that works by arranging the items on a line
in arbitrary order, applying consensus halving, and rounding the resulting frac-
tional partition. As a bonus, our proof yields an agreeable set that is composed
of at most �n/2 + 1 blocks on the line.

Theorem 6 ([18]). For n agents with monotonic utilities, there exists a subset
M ′ ⊆ M such that

|M ′| ≤ min
{⌊

m + n

2

⌋
,m

}

and M ′ is agreeable to all agents.

Proof. Let s =
⌊

m+n
2

⌋
. If s ≥ m, the entire set of items M has size m =

min{s,m} and is agreeable to all agents due to monotonicity, so we may assume
that s ≤ m. Arrange the items on a line in arbitrary order, and extend the
utility functions of the agents to fractional sets of items in a continuous and
monotonic fashion.7 Consider a consensus halving with respect to the extended
utilities that uses at most n cuts on the line; some of the cuts may cut through
items, whereas the remaining cuts are between adjacent items. Let r ≤ n be the
number of items that are cut by at least one cut. Without loss of generality,
assume that the first part M ′ contains no more full items than the second part
M ′′, so M ′ contains at most

⌊
m−r
2

⌋
full items. By moving all cut items from

6 The notion of agreeability was introduced in an earlier conference version of the
paper [27]. Gourvès [14] considered an extension of the problem that takes into
account matroidal constraints.

7 For example, one can use the Lovász extension or the multilinear extension (see the
full version of our paper [13]). .
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M ′′ to M ′ in their entirety, M ′ contains at most
⌊

m−r
2

⌋
+ r =

⌊
m+r
2

⌋ ≤ s items.
Since we start with a consensus halving and only move fractional items from
M ′′ to M ′, we have that M ′ is agreeable to all agents. Moreover, one can check
that M ′ is composed of at most

⌈
n+1
2

⌉
=

⌊
n
2

⌋
+ 1 blocks on the line.

In light of Theorem 6, an important question is how efficiently we can com-
pute an agreeable set whose size matches the worst-case bound. Manurangsi and
Suksompong [18] addressed this question by providing a polynomial-time algo-
rithm for two agents with monotonic utilities and three agents with “responsive”
utilities, a class that lies between additive and monotonic utilities. They left the
complexity for higher numbers of agents as an open question, and conjectured
that the problem is hard even when the number of agents is a larger constant.
We show that this is in fact not the case: the problem can be solved efficiently for
any number of agents with additive utilities, as well as for any constant number
of agents with monotonic utilities. Note that since the input of the problem for
monotonic utilities can involve an exponential number of values (even for con-
stant n), and consequently may not admit a succinct representation, we assume
a “utility oracle model” in which the algorithm is allowed to query the utility
ui(M ′) for any i ∈ N and M ′ ⊆ M .

Theorem 7. There exists a polynomial-time algorithm that computes a set of
at most min

{⌊
m+n

2

⌋
,m

}
items that is agreeable to all agents, for each of the

following two cases:

(i) All agents have additive utilities.
(ii) All agents have monotonic utilities and the number of agents is constant

(assuming access to a utility oracle).

5 Consensus k-Splitting

In this section, we address two important generalizations of consensus halving,
both of which were mentioned by Simmons and Su [26]. In consensus splitting,
instead of dividing the items into two equal parts, we want to divide them into
two parts so that all agents agree that the split satisfies some given ratio, say
two-to-one. In consensus 1/k-division, we want to divide the items into k parts
that all agents agree are equal. We consider a problem that generalizes both of
these problems at once.

Definition 3. Let α1, . . . , αk > 0 be real numbers such that α1+ · · ·+αk = 1. A
consensus k -splitting with ratios α1, . . . , αk is a partition of M into k fractional
sets of items M1, . . . ,Mk such that

ui(M1)
α1

=
ui(M2)

α2
= · · · =

ui(Mk)
αk

∀i ∈ N.

When the ratios are clear from context, we will simply refer to such a partition
as a consensus k-splitting.
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As in Sect. 2, we will assume that the utility functions are additive, in which
case our desired condition is equivalent to ui(M�) = α� ·ui(M) for all i ∈ N and
� ∈ [k].

While there is no reason to cut an item more than once in consensus halving,
one may sometimes wish to cut the same item multiple times in consensus k-
splitting in order to split the item across three or more parts. Hence, even though
the number of cuts made is always at least the number of items cut, the two
quantities are not necessarily the same in consensus k-splitting. If there are n
items and each agent only values a single distinct item, then it is clear that we
already need to make (k − 1)n cuts for any ratios α1, . . . , αk, in particular k − 1
cuts for each item. Nevertheless, it could still be that for some ratios, it is always
possible to achieve a consensus k-splitting by cutting fewer than (k − 1)n items.
We show that this is not the case: for any set of ratios, cutting (k − 1)n items is
necessary in the worst case.

Theorem 8. For any ratios α1, . . . , αk > 0, there exists an instance with addi-
tive utilities in which any consensus k-splitting with these ratios cuts at least
(k − 1)n items.

Next, we show that computing a consensus k-splitting with at most (k − 1)n
cuts can be done efficiently using a generalization of our algorithm for consensus
halving (Theorem 1). Note that such a splitting also cuts at most (k−1)n items.

Theorem 9. For n agents with additive utilities and ratios α1, . . . , αk, there
is a polynomial-time algorithm that computes a consensus k-splitting with these
ratios using at most (k − 1) · min{n,m} cuts.

As in Theorem 1, our algorithm does not require the nonnegativity assump-
tion on the utilities and therefore works for combinations of goods and chores.

When the items lie on a line, there is always a consensus halving that makes
at most n cuts on the line and therefore cuts at most n items—this matches
the upper bound on the number of items cut in the absence of a linear order.
Theorem 9 shows that the bound n continues to hold for consensus splitting into
two parts with any ratios. As we show next, however, this bound is no longer
achievable for some ratios with ordered items, thereby demonstrating another
difference that the lack of linear order makes.8

Theorem 10. Let n ≥ 2, k = 2 and (α1, α2) = ( 1
n , n−1

n ). There exists an
instance such that the n agents have additive utilities, the items lie on a line,
and any consensus k-splitting with ratios α1 and α2 makes at least 2n − 4 cuts
on the line.

For consensus halving, Theorem 4 shows that in a random instance, any
solution almost surely uses at least the worst-case number of cuts min{n,m}.
One might consequently expect that an analogous statement holds for consensus
k-splitting, with (k−1) ·min{n,m} cuts almost always being required. However,

8 See the definition of the consensus halving problem on a line before Theorem 2.
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we show that this is not true: even in the simple case where n = 1 and the
agent’s utilities are drawn from the uniform distribution over [0, 1], it is likely
that we only need to make one cut (instead of k − 1) for large m.

Theorem 11. Let n = 1, and suppose that the agent’s utility for each item
is drawn independently from the uniform distribution on [0, 1]. For any ratios
α1, . . . , αk > 0, with probability approaching 1 as m → ∞, there exists a con-
sensus k-splitting with these ratios using at most one cut. Moreover, there is a
polynomial-time algorithm that computes such a solution.

6 Conclusion

In this paper, we studied a natural version of the consensus halving problem
where, in contrast to prior work, the items do not have a linear structure. We
showed that computing a consensus halving with at most n cuts in our version
can be done in polynomial time for additive utilities, but already becomes PPAD-
hard for a class of monotonic utilities that are very close to additive. We also
demonstrated several extensions and connections to the problems of consensus
k-splitting and agreeable sets.

While our PPAD-hardness result serves as strong evidence that consensus
halving for a set of items is computationally hard for non-additive utilities, it
remains open whether the result can be strengthened to PPA-completeness—
indeed, the membership of the problem in PPA follows from a reduction to
consensus halving on a line, as explained in the introduction. Obtaining a PPA-
hardness result will most likely require new ideas and perhaps even new insights
into PPA, since all existing PPA-hardness results for consensus halving heavily
rely on the linear structure. Of course, it is also possible that the problem is
in fact PPAD-complete. In addition to consensus halving, settling the compu-
tational complexity of the agreeable sets problem for a non-constant number of
agents with monotonic utilities would also be of interest.
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Abstract. This paper addresses the computational challenges of learn-
ing strong substitutes demand when given access to a demand (or val-
uation) oracle. Strong substitutes demand generalises the well-studied
gross substitutes demand to a multi-unit setting. Recent work by Bald-
win and Klemperer shows that any such demand can be expressed in a
natural way as a finite list of weighted bid vectors. A simplified version of
this bidding language has been used by the Bank of England. Assuming
access to a demand oracle, we provide an algorithm that computes the
unique list of weighted bid vectors corresponding to a bidder’s demand
preferences. In the special case where their demand can be expressed
using positive bids only, we have an efficient algorithm that learns this
list in linear time. We also show super-polynomial lower bounds on the
query complexity of computing the list of bids in the general case where
bids may be positive and negative. Our algorithms constitute the first
systematic approach for bidders to construct a bid list corresponding to
non-trivial demand, allowing them to participate in ‘product-mix’ auc-
tions.

Keywords: Learning demand · Preference elicitation · Bidding
language · Query protocol · Product-mix auction · Strong substitutes

1 Introduction

The Product-Mix Auction [10–12] was devised by Klemperer as a means of
providing liquidity to commercial banks and has been used regularly by the
Bank of England since 2011. In it, there are a number of distinct goods available
in multiple discrete units, and a set of buyers who express strong substitutes
demands amongst these goods.1 Given strong substitutes constraints on the total
quantity of goods available, it is possible to compute market-clearing prices and
allocations, in the sense that all buyers receive an allocation that they demand at

1 In the banking context, the goods correspond to liquidity secured against alternative
kinds of collateral. Commercial banks pay for liquidity ‘products’ by committing to
interest rates. The values of the bids submitted by the commercial banks correspond
to the interest rates they are willing to pay.
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those prices, and all goods are sold. The strong substitutes property guarantees
the existence of a competitive equilibrium.

Importantly for the present paper, the auction introduces a novel bidding
language in which buyers express their demands in terms of lists of bids, where
each bid consists of a price vector (one price for each good) and a weight. Any
bid b is understood as a willingness to buy some quantity of goods (the weight
of b), and for each good i a price bi is offered. A bid is rejected if all prices offered
are lower than the market-clearing prices of the corresponding goods, otherwise
it is accepted on some good that maximises the price offered minus the market-
clearing price. The auction currently run by the Bank of England only permits
bidders to submit bids with one non-zero vector entry and positive weights, and
any such list of such positive bids has the strong substitutes property. It has
subsequently been shown that any strong-substitutes demand function can be
uniquely represented as a list of bids with positive and negative weights [2].

While this gives the buyer a general-purpose means of communicating any
strong substitutes demand, the buyer faces the problem of expressing her demand
in this language. It may be easier for a buyer to answer queries of the form “what
bundle would you demand, given the following per-unit prices of goods?”. In this
paper, we develop query protocols that assist a buyer in constructing her demand
function based on a sequence of queries. Given an unknown demand function,
the algorithm is assumed to have access to a demand oracle: for any given prices
for goods, the algorithm can learn a bundle of goods demanded at those prices.
We are interested in minimising the number of queries to the demand oracle.

1.1 Our Contributions

This paper addresses the computational challenges of learning strong substitutes
demand, given access to a demand oracle. Under the mild assumption that bid-
ders are able to answer questions of the form “What bundle do you demand
at the following per-unit prices?”, our algorithms constitute the first system-
atic approach for bidders to generate a bid list corresponding to their demand,
allowing them to participate in Product-Mix Auctions with non-trivial demand
preferences. We provide upper and lower bounds on the query complexity of
learning demand preferences and expressing these in the bidding language of
the Product-Mix Auction, which encodes any strong substitutes demand in a
conceptually simple and natural fashion. Full proofs for all the results that are
omitted from this paper are given in our full paper [8].

Section 2 outlines three complementary characterisations of the strong sub-
stitutes property and introduces the bidding language algebraically and geomet-
rically. A first result of this paper, given in Sect. 3, is to show that demand
oracles are not unreasonably powerful: when given access instead to a valuation
oracle, it is possible to simulate a demand oracle with O(n3 log(W/n)) valuation
queries, where n is the number of goods and W is the maximum weight of a bid
vector. In Sects. 4 and 5, we consider algorithms that learn the unique bid list
corresponding to a bidder’s demand. The algorithm in Sect. 4 learns demands
that can be represented by lists of positive bids, and has linear query complexity.



Learning Strong Substitutes Demand via Queries 403

In the setting where demand may require positive and negative bids to express,
we provide an exponential-cost algorithm that proceeds by learning all hyper-
planes that contain facets of the Locus of Indifference Prices (LIP), a geometric
object introduced by Baldwin and Klemperer [3] to characterise demand.

In the full version of this paper [8] we identify lower bounds on the query
complexity of learning bid lists. We note briefly that Ω(B log M) queries are
required to learn a list of B positive bids, where M is the magnitude of the bid
vectors w.r.t. the L∞ norm. In order to identify the dependence on the number of
goods n, we construct an adversarial game using a novel ‘island gadget’ consisting
of bids with weight ±1. Crucially, the island gadget only changes demand in a
local region. For fixed n, we identify the overall query complexity of learning bid
lists corresponding to strong substitutes demand as Θ(B log M + Bn).

1.2 Related Work

Our work relates to the theory of preference elicitation. In this setting, a cen-
tralised agent, such as an auctioneer, wishes to identify an optimal allocation of
goods via queries to participants’ preferences. Queries typically take the form of
value queries, where an agent reports a valuation for a given bundle of goods,
or demand queries, where an agent reports a bundle that is demanded at given
prices. This paper focuses on using demand queries to learn the bid list represen-
tation of strong substitutes demand preferences. This representation can then be
used to compute an optimal allocation of goods to agents via the methods of [1].

Much early work in preference elicitation highlights the deep connections
to exact learning via membership and equivalence queries from computational
learning theory, and our results can also be viewed through this lens. Some
notable examples include [4,21]. The authors of [5] explore the use of ranking
oracles to exploit the topological structure of bidder preferences to learn optimal
allocations. This approach is extended in [6,7], and verified empirically in [9]. The
authors of [16] explore the communication complexity of preference elicitation in
combinatorial auctions, where they show that for general valuations, finding a
value-maximising allocation requires an exponential communication cost in the
number of items. In [13], the authors explore connections between preference
elicitation and exact learning, but they demonstrate that the representation
length of the valuation is an important parameter in the query complexity of
computing optimal allocations. This dependence on the representation length
provides a way of side-stepping lower bounds from [16], and further justifies the
need for succinct yet expressive bidding languages, as explored further in [15].

Our problem is conceptually similar to a problem studied recently in [20],
in which the authors also consider algorithms with access to demand queries,
and attempt to learn the underlying valuation that gives rise to the demand
correspondence. The main difference between their work and ours however is that
they consider a different class of value functions. In [20], there are n goods, each
in unit supply (whereas we allow multiple copies of goods), and the buyer wants
at most k goods, and has additive valuations (whereas our strong substitutes
valuations are more general).
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2 Preliminaries

We denote [n] := {1, . . . , n} and [n]0 := {0, . . . , n}. In our auction model, there
are n distinct goods numbered from 1 to n; a single copy of a good is an item.
A bundle of goods, typically denoted by x or y in this paper, is a vector in
Z

n
+ whose i-th entry denotes the number of items of good i. Vectors p, q ∈ R

n

typically denote vectors of prices, with a price entry for each of the n goods.
We write p ≤ q when the inequality holds component-wise. Occasionally, it is
convenient to work with a notional reject good 0 for which prices are always
zero; the set of goods is then [n]0 and we identify bundles and prices with the
n + 1-dimensional vectors obtained by adding a 0-th entry of value 0. For any
subset X ⊆ [n], eX denotes the characteristic vector of X, i.e. an n-dimensional
vector whose i-th entry is 1 if i ∈ X, and 0 otherwise. Furthermore, ei denotes
the vector whose i-th entry is 1 and other entries are 0.

For any vector v ∈ R
n, the L1 and L∞ norms are defined as ‖v‖1 =

∑
i∈[n] |vi|

and ‖v‖∞ = maxi∈[n] |vi|. The L∞ ball Bε
p of radius ε at p consists of all points

q ∈ R
n that satisfy ‖p−q‖∞ ≤ ε; note that this a hypercube with edge length 2ε.

Any hypercube centred at p can be partitioned into 2n orthants, where every
orthant Oa is described by some vector a ∈ {−1, 1}n and consists of the set
of points Oa = p + {x ∈ R

n | aixi ≥ 0,∀i ∈ [n]}.2 Every such orthant can be
triangulated into n! simplices as follows. For every ordering [i1, . . . , in] of the
indices [n], we define a simplex as the set of points in the orthant that satisfy
ai1xi1 ≤ ai2xi2 ≤ . . . ≤ ainxin .

2.1 Strong-Substitutes Demand Preferences

Throughout, we assume that bidders have quasi-linear strong substitutes (SS)
demand. The SS property is appealing because it is a generalisation of gross
substitutes (GS) from the single-unit setting that guarantees the existence of a
competitive equilibrium in multi-unit auction markets. We first present a char-
acterisation of SS by Shioura and Tamura [18] that elucidates the relationship
between GS and SS before introducing the two equivalent characterisations that
underpin our algorithmic results and draw from tropical geometry and discrete
convex analysis, respectively. For a detailed survey on the relationship between
GS and SS, we refer to Shioura and Tamura [18].

Bidders have an implicit valuation v : A → R for bundles of goods, where
A ⊂ Z

n
+ is a finite set. This is equivalent to defining the valuation as v : Zn → R,

where R := R ∪ {−∞} denotes the partially extended reals, and we assume
that the effective domain dom v = {x ∈ Z

n | v(x) > −∞} of v is finite and non-
negative in the sense that x ≥ 0 for all x ∈ dom v. Moreover, bidders have
quasi-linear utilities, i.e. the utility they derive from bundle x at prices p is
u(x;p) := v(x) − p · x. A bidder’s demand correspondence Dv maps prices p to
the set of bundles x that maximise u(x;p) for this p.

2 Orthants in n-dimensional space generalise the notion of quadrants and octants in
two- and three-dimensional space, respectively.
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Fig. 1. Left: An illustration of a strong-substitutes demand correspondence with two
goods, partitioning price space into piecewise-linear convex regions. Each region is
labelled with the bundle demanded at prices in the region. The dashed lines comprise
the Locus of Indifference Prices (LIP). Right: Six positive (solid) and two negative
(hollow) bids of unit weight are required to express this demand.

Definition 1 captures how GS and SS demand changes when we (weakly)
increase prices. Intuitively, the GS property states that the bidder’s demand for
those goods with unchanged prices does not decrease, while the law of aggregate
demand (LAD) guarantees that the overall number of items that are demanded
does not increase. The SS property combines the GS property with LAD.

Definition 1 (cf. [18]). A demand correspondence Dv is gross substitutes
(GS) if, for any prices p′ ≥ p with Dv(p) = {x} and Dv(p′) = {x′}, we have
x′

k ≥ xk for all k such that pk = p′
k. Dv is strong substitutes (SS) if x and x′

additionally satisfy ‖x′‖1 ≤ ‖x‖1 (the law of aggregate demand).

Geometric Approach. We give some geometric intuition for strong substitutes
demand correspondences that underpins the algorithmic ideas in this paper. It
is well-known that any quasi-linear demand divides price space into piecewise-
linear convex regions corresponding to bundles. When demand is SS, each such
region is a convex lattice [14]. Figure 1 illustrates this.

Recently, Baldwin and Klemperer [3] proposed a new way of characterising
demand types. Borrowing from the tropical geometry literature, they introduce
the Locus of Indifference Prices (LIP), a piecewise-linear geometric object con-
sisting of the set of all prices at which the bidder is indifferent between two
or more bundles. They show that the LIP corresponds in a natural way to a
polyhedral complex with n − 1-dimensional facets. In Fig. 1, the LIP is drawn
using dashed lines. Noting that the orientation of the separating facet between
two adjacent demand regions characterises how demand changes when moving
from one region to the other, Baldwin and Klemperer [3] propose a new way
of defining demand types by the set of facet-normal vectors of the LIP. In this
new paradigm, the strong substitutes demand type is defined as the family of
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demand correspondences whose LIP facets are normal to ei or ei − ej for some
i, j ∈ [n]. In two dimensions, facets of SS LIPs are either horizontal, vertical or
normal to (1,−1). Hence it follows directly from this definition that the demand
correspondence in Fig. 1 enjoys the strong substitutes property.

Discrete Convex Analysis. A ‘price-free’ characterisation of the strong sub-
stitutes property using the language of discrete convex optimisation is given by
Shioura and Tamura [18]. A function f : Zn → R is called M �-concave if it satis-
fies the following exchange property : for any x,y ∈ domf and i ∈ supp+(x−y),
there exists j ∈ supp−(x − y) ∪ {0} such that f(x) + f(y) ≤ f(x − ei + ej) +
f(y + ei − ej). Here we define the positive and negative support of a vector
z ∈ Z

n as supp+(z) = {i ∈ [n] | zi > 0} and supp−(z) = {i ∈ [n] | zi < 0}, and
let e0 = 0.

Theorem 1 ([18, Theorem 4.1]). A quasi-linear demand correspondence Du is
strong substitutes if and only if its valuation u is M �-concave.

M �-concave functions are closely related to M -concave functions, which sat-
isfy the above exchange property for some non-zero j ∈ supp−(x − y). Every
n-dimensional M �-concave function can be obtained as the projection of an n+1-
dimensional M -concave function onto an n-dimensional hyperplane. Conversely,
the corresponding M -concave function f̂ of an M �-concave function f is given by

f̂(x0,x) =

{
f(x) if x0 = −∑

i∈[n] xi,

−∞ otherwise,
(1)

where (x0,x) ∈ Z
n+1. For further details on M �- and M -concave functions we

refer to Murota [14].

2.2 The Bidding Language

The Product-Mix Auction introduces a novel bidding language that allows us
to express every strong substitutes demand with a finite list B of positive and
negative bids. A bid consists of an n-dimensional integral vector b ∈ Z

n and
a weight w(b) ∈ Z. When working with the notional reject good 0 introduced
above, we identify a bid vector b with the n + 1-dimensional vector obtained by
adding a 0-th entry of value 0. We note that any bid with a weight of w(b) ∈ Z

is equivalent to w(b) unit bids with the same vector and sign. This allows us
to normalise bid lists to their most succinct form, where no two bids share the
same vector. In this paper, we wish to learn the unique normalised bid list that
represents the bidder’s demand correspondence.

For each bid b, we can understand bi as the amount that b is willing to
spend on good i. Suppose the auctioneer sets prices p. The bid is rejected at p
if bi < pi for all goods i. Otherwise, the bid demands a good i ∈ [n] that
maximises bi − pi at price p. The notational ‘reject’ good 0 simplifies notation:
recalling that we defined b0 = 0 = p0, we say that b demands good i ∈ [n]0 if
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i ∈ arg maxi∈[n]0(bi − pi), and receiving the ‘reject’ good is equivalent to the bid
being rejected. If the set of demanded goods arg maxi∈[n]0(bi − pi) at p contains
more than one good, we say that b is indifferent between these goods at p. (In
particular, a bid may be indifferent between demanding goods and being rejected
when maxi∈[n]0(bi − pi) = 0). A price p is marginal if there are bids indifferent
between goods at p, and non-marginal otherwise.

We can now introduce the demand correspondence DB(p) for a bid list B as
follows. If p is non-marginal, the unique bundle demanded at p is obtained by
adding w(b) items of i(b) to the bundle for each b ∈ B, where i(b) is the unique
good that b demands at p. If p is marginal, DB(p) consists of the discrete convex
hull of the bundles demanded at non-marginal prices arbitrarily close to p, where
the discrete convex hull of a set of bundles X is defined as conv(X) ∩ Z. In
general, this implies that we cannot independently allocate to each bid one of
the goods it demand, as this may result in bundles that are not in DB(p).

Baldwin and Klemperer [2] show that any strong substitutes demand corre-
spondence Dv can be represented as a finite list B of positive and negative bids
such that Dv(p) = DB(p) for all prices p, and this representation is essentially
unique (if we restrict ourselves to positive and negative bids of unit weight). The
bids in Fig. 1 (right) represent the strong substitutes demand shown in Fig. 1
(left). Conversely, however, not all lists of positive and negative bids induce a
strong substitutes demand correspondence; we call a bid list valid if it does.
Theorem 2, taken from [1], gives a criterion that allows us to check validity. It is
known that the problem of deciding the validity of a bid list is coNP-complete [1].

Theorem 2. A bid list is valid if and only if the weights of the bids indifferent
between i and i′ at p sum to a non-negative number for all p ∈ R

n and i, i′ ∈ [n]0.

A special subclass of the strong substitutes demand type is the family of
demand correspondences that can be expressed using only positive bids. This
family is of particular practical interest, as the Bank of England currently runs
the Product-Mix Auction with positive bids only. Note that any list of positive
bids is valid, as it trivially satisfies Theorem 2.

2.3 The Computational Challenges

Consider a bidder who has an (unknown) strong substitutes demand correspon-
dence Dv on n goods. We study the problem of learning the unique list B of
positive and negative bids of unit weight that represent a bidder’s demand cor-
respondence, i.e. such that Dv = DB. We consider algorithms that learn B by
querying the demand correspondence Dv at different price vectors. More specifi-
cally, our algorithms have access to an adversarial demand oracle QB; given any
price vector p, QB(p) returns a bundle from DB(p). A bidder may demand mul-
tiple bundles at some price (i.e. when |DB(p)| > 1), in which case the adversarial
oracle simply returns a single demanded bundle at that price, and we have no
control over which such bundle is returned. Another related setting we address



408 P. W. Goldberg et al.

in Sect. 3 is the complexity of learning B given access to a valuation oracle,
i.e. given a bundle x, the bidder reports their valuation v(x).

Let B := |B| be the number of bids we wish to learn. Moreover, let
M := maxb∈B ‖b‖∞ be the magnitude of the bids w.r.t to the L∞ norm and
W := maxb∈B w(b) be the maximum bid weight. For any unknown bid list B, we
can determine the value of M with O(log M) demand queries, as M corresponds
to the smallest value m such that the bidder demands the empty bundle at price
vector p = me[n], which can be found using binary search. We are interested in
the query complexity of learning B, measured in terms of n, B, log M and log W .
Note that nB log M + B log W bits are required to store the bid list B, under
the natural assumption that bid vectors and weights are encoded in binary.

3 Simulating QB with a Valuation Oracle

In this section we show that demand oracles are not unreasonably powerful,
in the sense that we can use a valuation oracle to simulate a demand oracle
with polynomial overhead. Consider the setting where we are given query access
to a bidder’s valuation function v. We show that a single query to QB can be
simulated with a polynomial number of queries to a valuation oracle. This result
utilises the equivalence of the strong substitutes property and M �-convexity from
the discrete convex analysis literature.

Recall that the utility of bundle x at prices p is given by u(x;p) = v(x)−p·x.
We define up := u(·;p) for convenience. In order to simulate a demand oracle on
input p, we wish to compute a bundle x ∈ Dv that maximises up(x). Note that
we can compute up(x) for any bundle x using a single query to the valuation
oracle. In order to compute a maximiser of up(·), we draw from the discrete
convex analysis literature. Firstly, we see that up is M �-concave. Indeed, it is
well-known [18] that strong substitutes valuations are M �-concave and subtract-
ing a linear term preserves this property. Secondly, let û be the corresponding
M -concave function to up as defined in (1). We see that maximising up is equiv-
alent to maximising û. Moreover, we can compute û(x0,x) with a single query
to the valuation oracle. Thirdly, note that we have ‖x‖1 ≤ BW for any bundle x
that the bidder demands, as every bid b ∈ B contributes at most W items to x.

Murota [14, Chapter 10] provides multiple algorithms for maximising M -
concave functions f with bounded effective domains dom f . The simplest such
algorithm, a straightforward steepest descent method, finds a maximiser with
O(n2L) queries, where L := max{‖x − y‖1 | x, y ∈ dom f}. In our setting, we
have L = BW , yielding a query complexity of O(n2BW ). This query complexity
can be improved to O(n3 log(BW/n)) by applying the more involved algorithms
for maximising M -concave functions given in [17] and [19]. We note that this
query complexity is polynomial in n,B and log W .
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4 Learning Positive-Weighted Bids

In this section we assume that the bidder’s demand correspondence can be
expressed by a list of positive bids. Our algorithm learns a list of B positive
bids using O(nB log M) demand queries. This is close to our lower bound of
Ω(B log M). We proceed by repeatedly finding a bid and ‘removing’ it, thereby
reducing the size of the remaining demand correspondence until all bids have
been found. Let L denote the subset of bids from B that have already been learnt,
and let B′ := B − L be the list of remaining bids. We can simulate a demand
oracle QB′(p) for the demand correspondence associated with B′: at price vector
p, first determine a bundle x demanded by all bids in B with a single query
QB(p), and then subtract from x a bundle y demanded at p by the bids in L.3

In this way, the problem of learning a bid list reduces to repeatedly identifying a
single bid. In the next section, we describe a subroutine that learns the location
of a single bid in B′ using O(n log M) queries. As this subroutine is called B
times, this yields an overall query complexity of O(nB log M) for learning all
bids in B. Recall that we can compute M with O(log M) queries.

4.1 Finding a Single Positive Bid

We present an algorithm that performs binary searches using delta queries to
successively learn the coordinates x1, x2, . . . of a bid’s location x together with
its weight. We begin by defining delta queries and establishing some fundamental
facts about the results returned by these queries.

Definition 2. A delta query Δ(q) at q ∈ Z
n consists of two queries q+ and

q− defined by q+ := q′ + 1
2ne

1 and q− := q′ − 1
2ne

1, where we define q′ := q +
∑

i∈{2,...,n}
1

2(n−i+1)e
i. The return value of the delta query is Δ(q) := x−

1 − x+
1 ,

where x+ and x− are the bundles of goods uniquely demanded at q+ and q−.

Note that q+1 = q1 + 1
2n and q−

1 = q1 − 1
2n , and the two query points q+

and q− agree on all other coordinates i ≥ 2. Secondly, q± is non-marginal
by construction, so any bid b ∈ Z

n uniquely demands some good i at q±. The
intuition behind delta queries is as follows. Consider the hyperplane normal to e1

that contains q. In a first step, we carefully perturb q such that the resulting
point q′ remains on the hyperplane and no bid is indifferent between any two
goods in {2, . . . , n}. The points q− and q+ are then obtained by perturbing q′

in directions ±e1 such that the prices become non-marginal.
In [8] we observe that bids b satisfying b1 = q1 and b ≤ q demand good 1

at q− and are rejected at q+, while all other bids demand the same good at both
prices q±. Hence demand changes only in terms of good 1, and Δ(q) captures
the magnitude of this change. In our current setting where all bids have positive
3 Note that B′ is valid, as lists of positive bids are always valid. If B consisted of

positive and negative bids, removing a single positive bid might result in a bid list
that is no longer valid, in which case the algorithm described in this section may fail
and return points not corresponding to bid locations.
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Algorithm 1. Learning Positive Bids
1: Perform binary search to find largest price p ∈ {(k, M, . . . , M) | k ∈ [M ]0} at which

Δ(p) > 0, and fix x1 = p1.
2: for i = 2 . . . n do
3: Binary search to find smallest price p ∈ {(x1, . . . , xi−1, k, M, . . . , M) | k ∈ [M ]0}

at which Δ(p) > 0, and fix xi = pi.
4: return bid vector x = (x1, . . . , xn) and weight Δ(x).

weights, Corollary 1 notes that this is equivalent to summing the weights of the
bids b that satisfy b1 = q1 and b ≤ q(S). Our algorithm exploits this fact in
order to learn the coordinates of a bid location as well as the bid weight.

Corollary 1. Δ(q) is the sum of the weights of all bids b ∈ B satisfying b1 = q1
and b ≤ q.

Algorithm 1 learns the vector x and weight of a single positive bid with
O(n log M) queries. It determines the value of xi, i ∈ [n], by performing a binary
search on line segment Li := {(x1, . . . , xi−1, z, M, . . . , M) | 0 ≤ z ≤ M}, where
the values of x1, . . . , xi−1 have already been determined and are fixed. As Li

is well-ordered, we can define the ‘smallest’ and ‘largest’ points on Li as si :=
(x1, . . . , xi−1, 0,M, . . . ,M) and li := (x1, . . . , xi−1, M . . . , M).

Algorithm 1 starts by finding the largest point on L1 at which demand for
good 1 is positive. At any p ∈ L1, no bid demands items of good i ≥ 2, i.e. every
bid demands an item of good 0 or 1 (or is indifferent between the two). Moreover,
the function mapping prices p on L1 to the demand of good 1 at p is monoton-
ically decreasing and changes only at integral points, as the bids are integral.
As B items of good 1 are demanded at s1, there is a largest price p∗ ∈ L1 at
which demand is positive. Hence, we can find p∗ using binary search on L1 by
querying demand at O(log M) prices of the form (k,M, . . . ,M) with k ∈ [M ]0.

The second kind of binary search uses delta queries to find the smallest
point p∗ for each line segment Li, i ≥ 2, at which Δ(p∗) is positive. Suppose
i ≥ 2. Corollary 1 implies that Δ(q) restricted to the line Li is monotonically
increasing. Theorem 4 establishes the correctness and running time of Algorithm
1. The proof (given in our full paper [8]) proceeds by induction and makes use
of Observation 3. Crucially, we show that the invariant Δ(li) > 0 holds when
we perform binary search on Li. Moreover, Δ only changes in value at integral
points along Li, so we can perform binary search to find p∗ with O(log M) delta
queries at prices (x1, . . . , xi−1, k,M, . . . ,M), where k ∈ [M ]0.

Observation 3. Let i ≥ 2. Suppose Algorithm 1 has successfully determined
the first i − 1 coordinates x1, . . . , xi−1 and binary search (using delta queries)
finds the smallest point p = (x1, . . . , xi, M, . . . , M) on Li at which Δ(p) > 0. By
Corollary 1 (a) none of the bids b ∈ B satisfy b ≤ p and bi < pi, and (b) there
is at least one bid b with b ≤ p and bi = pi.

Theorem 4. Algorithm 1 finds a bid vector and weight with O(n log M) queries.
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5 Learning Positive and Negative Bids

In this section, we provide an algorithm for learning valid bid lists that may
contain both positive and negative bids. Introducing negative bids significantly
complicates learning the location of bids, as negative bids are able to ‘cancel out’
facets. Consider, for instance, a bid b of weight 2 at position (2, 4) in the setting
with two goods. Without negative bids, its horizontal and vertical facets extend
indefinitely from b in direction e1 and e2. In contrast, Fig. 1 demonstrates how
two negative bids of weight 1 cancel out b’s horizontal facet (from (7, 4) onwards).
Similarly, the vertical facet of the bid at (4, 2) in the same figure is cancelled
out by the negative bid at (4, 4). As a result, some bids may only be detectable
if we query in their local neighbourhood; for more details see our full paper [8],
where we exploit this phenomenon to show a super-polynomial lower bound on
learning positive and negative bids.

Recall from Sect. 2.1 that the demand correspondence of a SS demand
(and hence of a valid bid list) corresponds to a polyhedral complex over price
space, the LIP, where the boundaries between unique demand regions are n− 1-
dimensional facets. Our algorithm learns the collection of all hyperplanes that
contain these facets, as well as each vertex arising from the intersection of n
such hyperplanes. We note that every bid must lie at a vertex but, conversely,
not every such vertex contains a bid. In order to check for existence of a bid
at a vertex, we introduce super queries. These super queries, applied at integral
points p, provide complete information about the demand correspondence in the
local neighbourhood of p. This also allows us to perform a principled search for
new hyperplanes: at each iteration of the algorithm, either the local information
around two vertices points us in the direction of a new hyperplane, or we have
succeeded in learning all hyperplanes, and thus all bids.

Super Queries. Suppose p ∈ Z
n is an integral price vector. We show that it is pos-

sible to obtain complete knowledge of DB(p′) for all prices p′ with ‖p − p′‖∞ < 1
using a super query, which consists of a specific set of demand queries at non-
marginal query points in the vicinity of p. Intuitively, this works because bid
vectors are integral and facets of an SS LIP can only have specific orientations.
Super queries (Definition 3) are used by our algorithm in two ways: firstly to
determine the existence and weight of a bid at a given integral point p, and sec-
ondly to provide information that leads to a new separating hyperplane. With a
slight abuse of notation, we say that we ‘super query’ a price vector p if we query
all price vectors in SQ(p). Figure 2 illustrates super queries in the case of two
goods (n = 2). The following lemma demonstrates the use of super queries. Let
U1(p), . . . , U2n(p) denote the 2n orthants of the unit L∞-ball around p. Each
orthant is a hypercube that can be triangulated into n! simplices (one for each
permutation of the coordinates [n]), as described in Sect. 2. We denote these
simplices for the i-th orthant by U1

i (p), . . . , Un!
i (p).

Definition 3. A super query at p ∈ Z
n is a collection SQ(p) of representative

prices from the interior of each U j
i (p), where i ∈ [2n] and j ∈ [n!].
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Lemma 1. Querying the points in SQ(p) once is sufficient to ascertain DB(p′)
for any p′ with ‖p − p′‖∞ < 1. This allows us to learn all facets of the LIP
containing p, as well as determining the existence and weight of a bid at p.

p1

p2

1 2 3 4 5

1

2

3

4

5

(1, 0)(2, 0)

(1, 0)(2, 0)

no bid found

(0, 0)(1, 0)

(0, 1)
(1, 0)

(0, 1)

bid of weight 1 found

Fig. 2. A snapshot of Algorithm 2 learning the bid list consisting of one negative bid
of weight −1 at (3, 3) and three positive bids of weight 1 at (1, 3), (3, 1) and (5, 5).
The initial axis-aligned hyperplanes are drawn in orange. Moreover, the algorithm has
learnt one additional vertical hyperplane (x = 1) drawn in purple. The super queries
made at the hyperplane intersections are represented by blue query points. Two super
queries are highlighted to illustrate how the existence of a bid is determined. (Colour
figure available online)

Finding Separating Hyperplanes. Suppose 0 ≤ q, q′ ≤ (M + 1)e[n] are distinct
price vectors in the interior of different demand regions. Note that we have
‖q − q′‖∞ ≤ M + 1. As demand regions are convex and have piecewise-linear
boundaries, there exists some facet F of the LIP separating q and q′. In order to
find the hyperplane containing F , we perform O(log M) steps of binary search
on conv(q, q′) to obtain a point p that is within ε = 1/4 (w.r.t. the L∞ norm)
of the closest point to q at which demand differs from demand at q. Hence by
construction, the L∞-ball B∞

ε (p) of radius ε at p intersects F . Let p′ be the point
obtained from p by rounding each entry to the nearest integer. Then it follows
that F also intersects B∞

ε+ 1
2
(p′). Moreover, the geometry of integral bids implies

that any facet intersecting B∞
ε+ 1

2
(p′) must contain p′. Hence we can learn F , and

the hyperplane containing F , with a single super query at p′. In total, we see
that finding a separating hyperplane costs O (log M + 2nn!) queries.

5.1 The Main Algorithm

Algorithm 2 learns bid lists that may comprise positive and negative bids. The
algorithm maintains a set of hyperplanes H that it has learnt. We initialise H
with the axis-aligned hyperplanes ei = 0 and ei = M for all i ∈ [n]. The
algorithm also keeps track of the corresponding set of vertices V arising from
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Algorithm 2. Learning Positive and Negative Bids
Initialisation:
1: Let H be hyperplanes of the form ei · x = 0 and ei · x = M for all i ∈ [n].
2: Update V, Q and P according to H.
3: Super query at each v ∈ V to check for bid at v and add each new-found bid to B̂.
Main loop:
4: while ∃ hyperplane witnesses q, q′ ∈ Q do
5: Find a hyperplane separating q and q′ (cf. Sect. 5) and add it to H.
6: Update V, Q and P accordingly (cf. Sect. 5).
7: for each new vertex v in V do
8: Super query at v to check for bid at v and add a newly found bid to B̂.
9: return B̂

intersections of hyperplanes in H, the set of query points Q =
⋃

v∈V SQ(v), as
well as the set of polytopes P of the subdivision of Rn by the hyperplanes in H.
Finally, B̂ denotes the set of bids that the algorithm has learnt. Two query points
q, q′ ∈ Q are hyperplane witnesses if they lie in the same polytope P ∈ P but
have different demand. Figure 2 shows a snapshot of Algorithm 2 after learning
a single hyperplane.

We now argue that Algorithm 2 is well-defined and learns a bid list in O(Bn2)
iterations by identifying all the hyperplanes containing a facet of the LIP. As each
bid gives rise to at most O(n2) facets, the total number of such hyperplanes is
O(Bn2). The algorithm learns a new hyperplane in each iteration, as hyperplane
witnesses lie in the same polytope by definition, which implies that Step 5 of the
algorithm finds a new hyperplane that is not in H. Moreover, every bid must lie
at the intersection of n such hyperplanes, and we perform a super query at each
intersection to check for the existence of a bid at that point. We show in our
full paper [8] that Algorithm 2 learns all O(Bn2) hyperplanes containing facets
of the LIP. This immediately implies that the algorithm identifies the locations
and weights of all bids, leading to Theorem 5.

Theorem 5. Algorithm 2 requires O
(
Bn2 log M + 2nn!

(
Bn2

n

))
queries to learn

a bid list that may consist of positive and negative bids. For n constant, this is
O (B log M + Bn).

6 Conclusions

Our algorithms for learning demand are conceptually simple and provide the first
systematic approach for bidders to express their preferences in the bidding lan-
guage used by the Product-Mix Auction. This allows bidders with non-technical
backgrounds to participate in these auctions under the mild assumption that
they are able to answer demand oracle queries. In the setting where demand
can be expressed using positive bids only, our algorithm achieves linear query
complexity. When demand may only be expressible using positive and negative
bids, our hyperplane finding algorithm performs well if the number of goods is



414 P. W. Goldberg et al.

not too large. Further work could address extending our positive-bid algorithm
to allow a small number of negative bids, approximate learning of the demand
function, and dealing with errors in answers to queries.
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Abstract. In various situations, decision makers face experts that may
provide conflicting advice. This advice may be in the form of proba-
bilistic forecasts over critical future events. We consider a setting where
the two forecasters provide their advice repeatedly and ask whether the
decision maker can learn to compare and rank the two forecasters based
on past performance. We take an axiomatic approach and propose three
natural axioms that a comparison test should comply with. We propose a
test that complies with our axioms. Perhaps, not surprisingly, this test is
closely related to the likelihood ratio of the two forecasts over the realized
sequence of events. More surprisingly, this test is essentially unique. Fur-
thermore, using results on the rate of convergence of supermartingales,
we show that whenever the two experts’ advice are sufficiently distinct,
the proposed test will detect the informed expert in any desired degree
of precision in some fixed finite time.

Keywords: Forecasting · Probability · Testing

1 Introduction

Consider an individual who repeatedly consults two weather forecasting websites.
It is reasonable to ask what should the individual do when the two forecasts
repeatedly contradict. In what way can the individual rank the two? Should the
individual trust one site and (eventually) ignore the other?

The weather example above serves as a metaphor for a plethora of settings
where a decision maker faces conflicting expert advice. Take for example an
elected official who must rely on professional input from civil servants, a patient
who receives prognosis from various doctors or, more abstractly, a learning algo-
rithm mechanism that uses input from various sources.

In this paper, we set the stage for defining the notion of a cardinal compar-
ison test. The setting we have in mind is a sequential one. At each stage t two
forecasters provide a probability over some future event (e.g., the occurrence of
rain) and then the event is either realized or its complement is. Before the next
day’s forecasts the test must rank the two forecasters. We calibrate these ranks
so they add up to one. One way to think of the rank is a recommendation for a
coin flip to decide which of the two experts’ advice should be taken.

We pursue a test that complies with the following set of properties which we
consider natural:
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Anonymity - A test is anonymous if it does not depend on the identity of the
experts but only on their forecasts.

Error-free - A test is error-free if from their perspective, each of the experts
cannot entertain the thought that the other expert will be overwhelmingly pre-
ferred (i.e., he assigns relatively lower probability). Another way to think about
a notion of an error-free test is to assume that one of the experts has the correct
model. In such a case, the test will probably not point at the second expert as
the superior one.

Reasonable - Let us consider an event, A, that has positive probability accord-
ing to the first expert but relatively lower probability according to the second.
Conditional on the occurrence of event A, a reasonable test must assign positive
probability to the first expert being better informed than the second.

One thing to emphasize about the cardinal comparison test we pursue and
the related properties is that they are not designed to evaluate whether either of
the two forecasters is correct in some objective sense. They are only designed to
compare the two. To make this point, assume that Nature follows a fair coin for
deciding on rain and one forecaster insists on forecasting rain with probability
60% while the other insists on 10%. While both are wrong, a cardinal comparison
test should somehow gravitate towards the former one as being better.

There is a large body of literature on expert testing that studies the question
of whether a self-proclaimed expert is a true expert or a charlatan (see Sect. 1.2
for more details) and many of the results point to the difficulty or impossibility
of designing such tests that are immune to strategic forecasters.

A comparison test may often be a more natural question than the one on
whether the forecaster is correct. Indeed, when a decision maker must act, then
she must choose which of the experts to follow. In the case of a single expert,
the dismissal of that expert leaves the decision maker working with her own
unsubstantiated beliefs, which may lead to an even worse outcome. In case a
decision maker faces two forecasters with conflicting input, she may choose to
somehow aggregate the two instead of dismissing one or the other. We discuss
this alternative line of research in Sect. 1.2.

Due to space constraints, all omitted proofs and extensions of our results are
relegated to the full version of the paper [12].

1.1 Results

Given an ordered pair of forecasters, f and g, at any finite time t, we consider
the corresponding likelihood ratio of the actual outcome and calibrate it so that
it and its inverse add up to one. We call this the finite derivative test at time t.
We prove that this test is anonymous, error-free and reasonable. Furthermore,
modulo an equivalence relation, it is unique. In fact, for any test that differs
from the aforementioned construction and which is anonymous and reasonable,
there exist two forecasters which render the test not error-free.

Moreover, our constructed test perfectly identifies the correct forecaster
whenever the two measures induced by the forecasters are mutually singular
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with respect to each other. Requiring the test to identify the correct expert
when the measures are not mutually singular is shown to be impossible.

A test could potentially take a long while until it converges to a verdict on
the better expert. We show that the proposed comparison test converges fast and
uniformly. In fact, when disregarding the stages at which the two experts provide
similar forecasts, then with high probability the correct verdict will emerge in
finite time that is independent of the underlying probabilities.

One can ask whether ideal tests can exist, that is, tests that always rank the
correct forecaster higher regardless of what forecasting strategies other experts
might submit. Unfortunately, this turns out to be impossible as we discuss in [12].
Since an ideal test does not exist, it is natural to explore the ideality of a test over
a limited class of data-generating processes. We provide a full characterization
for the existence of ideal tests over sets by showing that an ideal test with respect
to a set A exists if and only if, A is pairwise mutually singular.

1.2 Related Literature

Single expert testing. A substantial part of the literature on expert testing
focuses on the single expert setting. This literature dates back to the semi-
nal paper of [5], who proposes the calibration test as a scheme to evaluate the
validity of weather forecasters. Dawid asserts that a test must not fail a true
expert. [9] show how a charlatan, who has no knowledge of the weather, can
produce forecasts which are always calibrated. The basic ingredient that allows
the charlatan to fool the test is the use of random forecasts. [13] and [19] extend
this observation to a broader class of calibration-like tests. Finally, [18] shows
that there exists no error-free test that is immune to such random charlatans
(see also extensions of Sandroni’s result in [20] and [16]).

To circumvent the negative results, various authors suggest limiting the set
of models for which the test must be error-free (e.g., [1] and [17]), or limiting
the computational power associated with the charlatan (e.g., [8]) or replacing
measure theoretic implausibility with topological implausibility by resorting to
the notion of category one sets (e.g., [6]).

Multiple expert testing. Comparing performance of two (or more) experts
gained very little attention in the literature. Apart from our previous work, [11],
we are only familiar with [2]. That paper proposes a test based on the likelihood
ratio for comparing two experts. They show that if one expert knows the true
process whereas the other is uninformed, then one of the following must occur:
either, the test correctly identifies the informed expert, or the forecasts made
by the uninformed expert are close to those made by the informed one. It turns
out that the test they propose is anonymous and reasonable but is not error-free
(please refer to [12] for the formal definition).

Another approach was suggested by [7], who study an infinite horizon model
of testing multiple experts, using a cross-calibration test. In their test, N
experts are tested simultaneously; each expert is tested according to a calibration
restricted to dates where not only does the expert have a fixed forecast but the
other experts also have a fixed forecast, possibly with different values. That is to
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say, where the calibration test checks the empirical frequency of observed out-
comes conditional on each forecast, the cross-calibration test checks the empirical
frequency of observed outcomes conditional on each profile of forecasts (please
refer to [12] for the formal definition).

They showed that if an expert predicts according to the data-generating pro-
cess, the expert is guaranteed to pass the cross-calibration test with probability
1, no matter what strategies the other experts use. In addition, they prove that
in the presence of an informed expert, the subset of data-generating processes
under which an ignorant expert (a charlatan) will pass the cross-calibration test
with positive probability, is topologically “small”.

In a previous paper, [11], we construct a comparison test over the infinite
horizon. In that paper, the test outputs one verdict at the end of all times which
is in one of three forms—it points to either one of the forecasters as advantageous
or it is indecisive. The main result in that paper was the identification of an
essentially unique infinite-horizon, ordinal test that adheres with some natural
properties. The properties studied in the current paper (as well as the associated
terminology) are inspired by the ones studied in [11]. The test we identify is based
on the likelihood ratio. Interestingly, the tests identified in [2] and that identified
by [17] for testable paradigms are also based on the likelihood ratio.

An alternative approach to that of comparing and ranking experts is that
of aggregating forecasts by a non-Bayesian aggregator. For aggregation schemes
that do well in a single stage setting, see [3], as well as [14], and [15]; for schemes
that work well in a repeated setting and produce small regret, see the rich liter-
ature in machine learning surveyed in [4].

2 Model

At the beginning of each period t = 1, 2, . . . an outcome, ωt, drawn randomly by
Nature from the set Ω = {0, 1}, is realized.1 A realization is an infinite sequence
of outcomes, ω := {ω1, ω2, . . .} ∈ Ω∞. We denote by ωt := {ω1, ω2, . . . , ωt} to
be the prefix of length t of ω (sometimes referred to as the partial history of
outcomes up to period t) and use the convention that ω0 := ∅. At the risk of
abusing notation, we will also use ωt to denote the cylinder set {ω̂ ∈ Ω∞ : ω̂t =
ωt}. In other words, ωt will also denote the set of realizations which share a
common prefix of length t. For any t we denote by Gt the σ-algebra on Ω∞

generated by the cylinder sets ωt and let G∞ := σ(
∞⋃

t=0
Gt) denote the smallest

σ-algebra which consists of all cylinders (also known as the Borel σ-algebra). Let
Δ(Ω∞) be the set of all probability measures defined over the measurable space
(Ω∞,G∞).

Before ωt is realized, two self-proclaimed experts (sometimes referred to as
forecasters) simultaneously announce their forecast in the form of a probabil-
ity distribution over Ω. Let (Ω × Δ(Ω) × Δ(Ω))t be the set of all sequences
1 For expository reasons, we restrict attention to a binary set Ω = {0, 1}. The results

extend to any finite set.
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composed of realizations and pairs of forecasts made up to time t and let⋃

t≥0

(Ω × Δ(Ω) × Δ(Ω))t be the set of all such infinite sequences.

A (pure) forecasting strategy f is a function that maps finite histories to a
probability distribution over Ω. Formally, f :

⋃

t≥0

(Ω×Δ(Ω)×Δ(Ω))t −→ Δ(Ω).

Note that each forecast provided by one expert may depend, inter alia, on those
provided by the other expert in previous stages. Let F denote the set of all
forecasting strategies.

A probability measure P ∈ Δ(Ω∞) naturally induces a (set of) corresponding
forecasting strategy, denoted fP , that satisfies for any ω ∈ Ω∞ and any t such
that P (ωt) > 0

fP (ωt, ·, ·)(ωt+1) = P (ωt+1|ωt).

Thus, the forecasting strategy fP derives its forecasts from the original mea-
sure, P , via Bayes rule. Note that this does not restrict the forecast of fP over
cylinders, ωt, for which P (ωt) = 0.2

In the other direction, a realization ω, and an ordered pair of forecasting
strategies, f := (f, g), induce a unique play path, (ω,f) ∈ (Ω×Δ(Ω)×Δ(Ω))∞,
where the corresponding t - history is denoted by (ω,f)t ∈ (Ω ×Δ(Ω)×Δ(Ω))t

started at the Null history, (ω,f)0 := ∅, which in turn induce a pair of probability
measures, denoted for simplicity by (f, g), over Ω∞, as follows:

f(ωt) =
t∏

n=1

f((ω,f)n−1)[ωn], g(ωt) =
t∏

n=1

g((ω,f)n−1)[ωn].

By Kolomogorov’s extension theorem, the above is sufficient in order to derive
the whole measure. Observe that a pair of forecasting strategies induces a pair of
probability measures, whereas each single forecasting strategy does not induce
a single measure due to the dependency between the two forecasters.

2.1 A Cardinal Comparison Test

At each stage t a third party (the ‘tester’) who observes the forecasts and out-
comes compares the performance of both forecasters and decides who she thinks
is better. Formally,

Definition 1. A cardinal comparison test is a sequence T := (Tt)t>0, where
Tt : (Ω × Δ(Ω) × Δ(Ω))∞ −→ [0, 1] is Gt−measurable for all t > 0.

In other words, for any t and any realization ω and any sequence of forecasts
f , the tester, conditional on a t - history, announces her level of confidence
that the first forecaster (the one using f) is better than the second one (we

2 An expert who uses fP to derive the correct predictions is referred to as informed,
whereas an expert who concocts predictions strategically to pass the test without
any knowledge on P is referred to as uninformed.
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will interchangeably refer to this as his propensity that f is superior to g).3.
Note that announcing 0.5 means that both are equally capable (this should not
be confused with the statement that they are both capable or both incapable).
Whenever Tt(ω,f) = 1 (respectively, 0) the tester is confident that f outperforms
g (respectively, g outperforms f).

Definition 2. T is called anonymous if for all ω ∈ Ω∞, t > 0 and for all
f, g ∈ F,

Tt(ω, f, g) = 1 − Tt(ω, g, f).

In other words, the test’s propensity at each period should not depend on the
expert’s identity. Note that whenever f = g an anonymous test T must output
a propensity of 0.5 for all ω ∈ Ω∞, t > 0.

For a given test T, an ordered pair of forecasting strategies f = (f, g), and
a realization ω, we denote by T (ω,f) = limTt(ω,f) whenever the limit exists.
For ε ∈ (0, 1), let Lf

T,ε := {ω : T (ω,f) > ε} be the set of realizations for which
the limit of T exists and from some time on assigns a propensity larger than ε
to f (similarly we denote Rf

T,ε := {ω : T (ω,f) < ε}). Notice that the following
is a straightforward observation derived from Definition 2. If T is an anonymous
test, then ω ∈ R

(f,g)
T,ε if and only if ω ∈ L

(g,f)
T,1−ε; we use the last for some of our

proofs.
When ω is in Lf

T,ε and ε > 0.5, the test eventually assigns a higher propensity
to f than to g. On the other hand, for ε < 0.5, the test assigns a higher propensity
to g whenever ω is in Rf

T,ε. Thus, we will typically focus on the sets Lf
T,ε with

ε > 0.5 and on the sets Rf
T,ε for ε < 0.5.

2.2 Desirable Properties

In this section, we introduce a set of axioms we deem desirable for a cardinal
comparison test. Our first property asserts that any set that is contained in Rf

T,ε

must not be assigned a high probability according to f in comparison with the
probability assigned by g. In particular, the ratio of these probabilities must be
bounded by ε

1−ε .

Definition 3. T is error-free if for all f := (f, g) ∈ F × F, for all ε ∈ (0, 1
2 )

and for all measurable set A

f(A ∩ Rf
T,ε) ≤ (

ε

1 − ε
)g(A ∩ Rf

T,ε) (1)

(Similarly, g(A ∩ Lf
T,ε) ≤ ( 1−ε

ε )f(A ∩ Lf
T,ε) for ε ∈ ( 12 , 1)).

3 It should be emphasized that the results in this paper hold even for the general
case for which Definition 1 is extended such that a tester may condition his one
step ahead decisions on his own past decisions. Formally, whenever T has the form
Tt : (Ω × Δ(Ω) × Δ(Ω) × {f, g})∞ −→ [0, 1]..
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Note, in particular, as ε approaches 0, the set Rf
T,ε captures the paths where

g is clearly deemed better than f and so the property of error-freeness implies
that although g may assign a subset of Rf

T,ε a positive probability, it must be
the case that f assigns it near-zero probability. On the other hand, whenever
ε approaches 0.5, the corresponding ratio approaches 1 and so error-freeness
requires that f assigns that event a probability no greater than g.

In particular, each forecaster must believe that a test cannot point out the
other forecaster as correct. From his perspective, he is either preferred or the
test is indecisive.

Consider a set of realizations assigned positive probability by one forecaster
whereas his colleague assigns it a relatively lower probability. We shall call a test
‘reasonable’ if the former forecaster assigns a positive probability to the event
that the test will eventually provide a high propensity to her. Formally:

Definition 4. T is reasonable if for all f ∈ F × F, for all ε ∈ (0, 1
2 ) and for all

measurable set A,

g(A) > 0 and f(A) < (
ε

1 − ε
)g(A) =⇒ g(A ∩ Rf

T,ε) > 0. (2)

(Similarly, f(A) > 0 and g(A) < (1−ε
ε )f(A) =⇒ f(A ∩ Lf

T,ε) > 0 for ε ∈ ( 12 , 1)).

It should be emphasized that reasonableness and error-freeness are not related
notions; further analysis and examples that these properties are independent are
discussed in [12].

Remark 1. One could propose to replace error-freeness with a stronger and more
appealing property in which a test points out the better informed expert with
probability one. Informally, we would like to consider tests that have the follow-
ing property f(T (ω,f) = 1) = 1 whenever f �= g. However, there could be pairs
of forecasters that are not equal but induce the same probability distribution. In
[12], we formalize this and refer to tests that satisfy this stronger requirement as
an ideal. We, furthermore show, as the name suggests, that such tests essentially
do not exist.

3 An Error-Free and Reasonable Test

We now turn to propose an anonymous cardinal comparison test that is error-free
and reasonable. For any pair of forecasters, f := (f, g) ∈ F ×F, ω ∈ Ω∞, t ≥ 0,
the finite derivative test, D, is defined as follows:

Dt+1(ω,f) =

{
f(ωt)

f(ωt)+g(ωt) ,
1
2 ,

g(ωt) > 0 or f(ωt) > 0
other.

It should be noted that the ratio between Dt+1(ω,f), the rank associated with
the forecast f and 1−Dt+1(ω,f), the rank associated with the forecast g, equals
the likelihood ratio between the two forecasters. Clearly, D is anonymous. We



A Cardinal Comparison of Experts 423

turn to show that it is reasonable and error-free. Before doing so, some prelimi-
naries are required.4

Lemma 1. Let f := (f, g). Then the limit of Dt(·,f) exists and is finite f −a.s.

Proof. For ω ∈ Ω∞ where f(ωt) > 0 define the likelihood ratio between the two
forecasters at time t as

Dt
fg(ω) =

t∏

n=1

g((ω,f)n−1)[ωn]
f((ω,f)n−1)[ωn]

,

and observe that Dt+1(ω,f) = 1
1+Dt

fg(ω)
.5 Applying Lemma 2 from [11], we

know that the limit of Dt
fg, denoted Dfg, exists and is finite f − a.s. It readily

follows that D(ω,f) := 1
1+Dfg(ω) := limDt(ω,f) exists and is finite f − a.s. 
�

Now that we have established the existence and the finiteness of the test
D, let us contend that it complies with the two central properties for cardinal
comparison tests:

Proposition 1. D is error-free.

Proposition 2. D is reasonable.

Propositions 1 and 2 jointly prove our first main theorem:

Theorem 1. D is an anonymous, reasonable and error-free test.

We now turn to show that the finite derivative test is essentially the unique
anonymous cardinal comparison test that is reasonable and error-free.

4 Uniqueness

Although there may be other error-free and reasonable cardinal comparison tests,
they are essentially equivalent to the finite derivative test. To motivate this idea,
consider the following example.

Example 1. Consider the realization ω̃ := (1, 1, 1, , , ), and two forecasters f̃ and
g̃, both using a coin to make predictions. f̃ uses a fair coin whereas g̃ uses a
biased coin with probability one for the outcome to be 1. Let

−→
ht
1 be the history

of length t induced by (ω̃, f̃ , g̃) and let
←−
ht
1 be the one induced by (ω̃, g̃, f̃). Let

c > 1 and consider the following test:

Tt(ω,f) =

⎧
⎪⎪⎨

⎪⎪⎩

Dt(ω,f),
1

1+c·Dt
fg(ω)

,

1 − 1
1+c·Dt

fg(ω)
,

other

(ω,f)t =
−→
ht
1

(ω,f)t =
←−
ht
1.

4 Notice that D is unaffected by the so-called “counterfactual” predictions. These
predictions are referred to events which may not occur. On the contrary, the outcome
of D depends only on predictions which were made along the realized play path.

5 If f((ω, f )n−1)[ωn] = 0 for some n, we set Dt
fg(ω) = ∞ for all t ≥ n.
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Hence, the propensities of T differ from those provided by D only along the play
paths

−→
h1,

←−
h1, in which case the limit of T converges slower to 1, 0, respectively,

than D.

Proposition 3. T is an anonymous error-free and a reasonable test.

To capture the concept of equivalence, we introduce the following equivalence
relation over tests;

Definition 5. Let f := (f, g) ∈ F × F. We say that T ∼f T̂ if

f({ω : T (ω,f) �= T̂ (ω,f)}) = g({ω : T (ω,f) �= T̂ (ω,f)}) = 0.

We say that T ∼ T̂ if and only if T ∼f T̂ for all f .

That is, two tests are equivalent if and only if, given an ordered pair of
forecasting strategies, there is zero probability according to each forecaster that
the tests will converge to different propensities.

Proposition 4. The relation ∼ is an equivalence relation on � := {T : T −
cardinal comparison test}.

The next theorem asserts that, up to an equivalence class representative,
there exists a unique anonymous reasonable and error-free cardinal comparison
test. That is, any anonymous test T � TD which is reasonable, admits an error.
To this end, we will show that any T � TD can be associated with a pair of
forecasting strategies for which the error-free condition fails. More importantly,
the power of the theorem stems from the premise that T admits an error at any
pair f whenever T �f D.

Before proceeding, we make the observation that Definition 5 can be stated
equivalently by the next lemma which is invoked in our adjacent uniqueness
theorem proof.

Lemma 2. Let f := (f, g) ∈ F × F. Then T ∼f T̂ if and only if for all
ε ∈ (0, 1) ∩ Q

f((Lf
T,ε ∩ Rf

T̂ ,ε
) ∪ (Lf

T̂ ,ε
∩ Rf

T,ε)) = g((Lf
T,ε ∩ Rf

T̂ ,ε
) ∪ (Lf

T̂ ,ε
∩ Rf

T,ε)) = 0.

The uniqueness theorem is therefore stated as follows:

Theorem 2. Let T be an anonymous and reasonable cardinal comparison test.
If T � D then T is not error-free.

5 Decisiveness in Finite Time

In this section we provide a natural sufficient condition for which a tester achieves
a higher level of confidence in favor of the informed forecaster with any desired
degree of precision in some fixed finite time. To this end, we show the existence
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of a uniform bound on the rate at which a cardinal comparison test converges.
Consider expert f ′s point of view. Not only should he maintain that, whenever
expert g’s forecasts are different from his, then he should eventually be ranked
higher than him, but if expert g’s forecasts are relatively far, then this should
essentially happen uniformly fast. Indeed, as we show in this section, this holds
for our finite derivative test. This observation tightly builds on a theory of active
supermartingales due to [10].

To determine whether a test is ‘almost’ certain about a forecaster requires
the two forecasters to provide significantly different forecasts as captured by the
following definition:

Definition 6. A pair of forecasting strategies f := (f, g) is ε − close along ω
at period t > 0, if

|f((ω,f)t−1)[ωt] − g((ω,f)t−1)[ωt]| < ε

The next theorem asserts that, given an arbitrarily small ε > 0, there exists a
finite uniform bound, K, which is independent of any pair of forecasting strate-
gies, such that if the forecasts of the uninformed expert are sufficiently different
from those of the informed one in more than K periods, then the finite deriva-
tive test, D, will eventually settle on the informed expert with a high level of
confidence. In the latter scenario, it furthermore surprisingly asserts that, given
any sufficiently large time n, Dn ranks the informed expert higher than (1 − ε)
and up to ε - amount of accuracy as it would have ranked had it continued to
rank the expert following his test to infinity.

Theorem 3. For all 0 < ε < 1 there exists K = K(ε) such that for all f :=
(f, g), and for all n > 0, there is a set of which the probability according to f is
at least (1 − ε) such that for any ω in that set:

1. Either f is ε − close along ω in all but K periods in {1...n} or
2. ω ∈ Lf

D,1−ε. Furthermore, |Dt(ω,f) − Dn(ω,f)| < ε for all t ≥ n.

In words, with high probability, given any sufficiently large n and any suf-
ficiently small ε, the only reason that the tester is not ‘almost’ settled on the
correct forecaster at time n (and onward) is because the uninformed expert made
excellent predictions along the play path. Moreover, Theorem 3 is universal in
the following manner: The bound on the number of periods in which the two
experts’ forecasts must be different, K, for the finite derivative test to rank the
informed one higher, depends on the required level of accuracy, but is indepen-
dent of any pair of forecasting strategies, f or g.

The proof of Theorem 3 is relegated to [12]. Nevertheless let us briefly provide
some technical intuition. At the heart of the proof of Theorem 3 lies a theorem
due to regarding the rate of decrease of active supermartingales. Consider an
abstract setting with a probability measure P in Δ(Ω∞) and a filtration {Gt}∞

t=1.

Definition 7. A (Gt) - adapted, real-valued process D̃ := {D̃t}∞
t=0 is called a

supermartingale under P if
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1. E|D̃t| < ∞ for all t > 0;
2. E[D̃t|Gs] ≤ D̃t for all s ≤ t, P − a.s.

Intuitively, a supermartingale is a process that decreases on average. The
proof of Theorem 3 implies that the finite derivative test is associated with a
supermartingale property with respect to the natural filtration which is defined
in Sect. 2. Let us further consider the following class of supermartingales called
active supermartingales. This notion was first introduced in [10] who studied
reputations in infinitely repeated games:

Definition 8. A non-negative supermartingale D̃ is active with activity ψ ∈
(0, 1) under P if

P ({ω : | D̃t(ω)
D̃t−1(ω)

− 1| > ψ}|ω̃k−1) > ψ

for P - almost all histories ω̃t−1 such that D̃t−1(ω̃) > 0.

In other words, a supermartingale has activity ψ if the probability of a jump
of size ψ at time t exceeds ψ for almost all histories. Note that D̃ being a
supermartingale, is weakly decreasing in expectations. Showing that it is active
implies that D̃t substantially goes up or down relative to D̃t−1 with probability
bounded away from zero in each period. [10], Theorem A.1, showed the following
remarkable result

Theorem 4 ([10]). For every ε > 0, ψ ∈ (0, 1), and 0 < D− < 1 there is a time

K < ∞ such that
P ({ω : sup

t>K
D̃t(ω) ≤ D−}) ≥ 1 − ε

for every active supermartingale {D̃t} with D̃0 ≡ 1 and activity ψ.

Theorem 4 asserts that if D̃ is an active supermartingale with activity ψ,
then there is a fixed time K by which, with high probability, D̃t drops below D−
and remains below D− for all future periods. It should be noted that the power

of the theorem stems from the fact that the bound, K, depends solely on the
parameters ε > 0, ψ and D− , and is otherwise independent of the underlying

stochastic process P .
We exploit the active supermartingale property in a different way. In the

context of cardinal comparison testing, we consider two strategies, one for each
expert, which are updated using Bayes rule. Given sufficiently small ε > 0,
our comparative test ranks an expert depending on whether the posterior odds
ratio is above or below ε. The active supermartingale result implies that there
is a uniform bound (independent of neither the length of the game nor the
true distribution) on the number of periods where the uninformed expert can be
substantially wrong, without being detected, such that if this bound is exceeded,
the probability that the tester ranks high the uninformed expert is small.
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6 Concluding Remarks

The paper proposes a normative approach to the challenge of comparing between
two forecasters who repeatedly provide probabilistic forecasts. The paper postu-
lates three basic norms: anonymity, error-freeness and reasonableness and pro-
vides a cardinal comparison test, the finite derivative test, that complies with
them. It also shows that this test is essentially unique. Finally, it shows that
the test converges fast and hence is meaningful in finite time. In the future we
hope to extend our results to settings with more than two forecasters and study
alternative sets of norms.

6.1 Implications

The axiomatic premise adopted in this paper can be considered as a contribution
to the hypothesis testing literature in statistics where a forecaster is associated
with a hypothesis. In this context we propose a hypothesis test that complies
with a set of fundamental properties which we refer to as axioms. In contrast,
a central thrust for the hypothesis testing literature (for two hypotheses) is the
pair of notions of significance level and power of a test. In that literature one
hypothesis is considered as the null hypothesis while the other serves as an
alternative. A test is designed to either reject the null hypothesis, in which case
it accepts the alternative, or fail to reject it (a binary outcome). The significance
level of a test is the probability of rejecting the null hypothesis whenever it is
correct (type-1 error) while the power of the test is the probability of rejecting
the null hypothesis assuming the alternative one is correct (the complement of
a type-2 error).

In contrast with the aforementioned binary outcome that is prevalent in the
hypothesis testing literature we allow, in addition, for an inconclusive outcome.
Recall the celebrated Neyman-Pearson lemma which characterizes a test with
the maximal power subject to an upper bound on the significance level. The
possibility of an inconclusive (ranking) outcome, in our framework, allows us to
design a test where both type-1 and type-2 errors have relatively low probability.6

Interestingly, the test proposed in the Neyman-Pearson lemma, similar to
ours, also hinges on the likelihood ratio.7 In our approach we, a priori, treat
both hypotheses symmetrically. In the statistics literature, however, this is not
the case and the null hypothesis is, in some sense, the status quo hypothesis.
This asymmetry is manifested, for example, in the Neyman-Pearson lemma.
6 Note that we abuse the statistical terminology. In statistics the notion of rejection

is always used in the context of the null hypothesis. In our model, we assume sym-
metry between the alternatives and so we discuss rejection also in the context of
the alternative hypothesis. As a consequence, an error of type-1 is defined as the
probability of accepting the alternative hypothesis whenever the null hypothesis is
correct, and symmetrically, an error of type-2 is the probability of accepting the null
hypothesis whenever the alternative one is correct.

7 The test proposed in the Neyman-Pearson lemma rejects the null hypothesis when-
ever the likelihood ratio falls below some positive threshold.



428 I. Kavaler and R. Smorodinsky

Note that in order to design a test that complies with a given significance
level and a given power one must know the full specification of the two hypothe-
ses. This is in contrast with our test which is universal, in the sense that it does
not rely on the specifications of the two forecasts. Finally, let us comment that
whereas hypothesis testing is primarily discussed in the context of a finite sam-
ple, typically from some iid distribution, our framework allows for sequences of
forecasts that are dependent on past outcomes as well as past forecasts of the
other expert.
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Abstract. We consider a principal-expert problem in which a principal
contracts one or more experts to acquire and report decision-relevant
information. The principal never finds out what information is available
to which expert, at what costs that information is available, or what
costs the experts actually end up paying. This makes it challenging for
the principal to compensate the experts in a way that incentivizes acqui-
sition of relevant information without overpaying. We determine the pay-
ment scheme that minimizes the principal’s worst-case regret relative to
the first-best solution. In particular, we show that under two different
assumptions about the experts’ available information, the optimal pay-
ment scheme is a set of linear contracts.

1 Introduction

A company has to choose one of a number of different projects, where a project
might be to develop a particular product. While the company’s personnel is
suited to successfully execute any of these projects, the company lacks expertise
in market research to decide which of the projects will yield the highest expected
profit. To make an informed choice, the company (henceforth, the principal)
would like to contract faculty members from a nearby business school to give
advice on which project to pursue and to make a prediction about the outcome
of that project.

While the business school’s faculty members (henceforth, the experts) have
relevant expertise, they need to invest some effort into conducting one relevant
research project or another before they can give useful advice. The so-called
first-best solution is to acquire the information that maximizes expected profit
net of the costs of that information. The principal would have to reimburse the
experts for those costs, but could keep the rest of the project’s profits. However,
in general, the principal is unaware of what information can be acquired at what
costs and cannot verify the experts’ effort or report. The principal can use a
payment scheme or contract that compensates the experts based on both their
final collective report and the outcome of pursuing the recommended project
(but not on what would have happened if another project had been chosen).
What contract should the principal use?

One way to arrive at a solution would be for the principal to assign some
prior probability distribution over configurations of available evidence and select
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the contract that maximizes expected profit net of payment to the experts
[2,8,19,25]. However, determining such a prior is often impractical. For many
priors, it may also be computationally infeasible to identify the optimal contract.
We therefore ask what contract ensures the minimum worst-case regret relative
to the first-best solution.

Outline. After describing our setup and goals in more detail (Sects. 2 and 3),
we show (in Sects. 4 and 5) how linear contracts – which simply pay each expert
some fixed fraction of the company’s profits – ensure regret bounds. In Sect. 6,
we go on to show that the optimal regret bound is achieved only by a partic-
ular linear contract: the one that pays each of the n experts 1/(n + 1) of the
profit obtained. This ensures a regret bound of v(E∗)n/(n + 1), where v(E∗) is
the expected profit (prior to subtracting costs) of the first-best solution. Under
stronger assumptions, the approach of this paper can be used to derive different
linear contracts to achieve better optimal bounds. In Sect. 7, we give an example
of this. Section 8 puts our work in the context of the literature.

2 Setup

Principal and Experts. We consider a principal (“she”) who has to choose one
of a finite set of projects or actions A, each of which probabilistically gives rise
to outcomes from some finite set Ω. The principal would like to maximize the
expected value of some utility function u : Ω → R. To figure out which action
is best, she may interact (in ways specified below) with n experts. An important
special case is n = 1. This case has received the most attention in the literature.
Many of the assumptions that we will make later (e.g., about how the experts
coordinate) are very weak or even vacuous in the case of n = 1, while for n ≥ 2
they are realistic in some but not all applications.

Each expert i = 1, ..., n can choose to observe the value of a random variable
in some set of random variables Hi. We will refer to these variables as evidence
variables. We also require that these sets of values are finite. To observe Ei ∈ Hi,
expert i must pay a cost (or effort) of ci(Ei), where ci : Hi → R≥0 is some cost
function. We assume that each Hi contains the constant (trivial) random vari-
able E0 and that ci(E0) = 0 for all i. That is, each expert has the option to
acquire no information and expend no cost. The experts, on the other hand,
all know what evidence variables the other experts have access to and at what
costs. They also have a common prior P which, for any vector of random vari-
ables E ∈ H :=×n

i=1
Hi and any vector e of values of E, assigns a probability

P (e) := P (E = e), as well as for any outcome ω ∈ Ω and action a ∈ A, the
probability P (ω | a, e) of obtaining outcome ω after taking action a if E = e
was observed. For simplicity, we also assume that every observation of E = e
is consistent, i.e., that for all E ∈ H and e in the Cartesian product of the sets
of values of E1, ..., En, we have P (e) > 0. Some common-knowledge assump-
tions such as these are necessary to determine the experts’ strategies within
standard game-theoretic paradigms. Of course, as is usually the case in such
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models, the common-knowledge assumptions – in particular, exact knowledge of
one another’s cost of acquisition – are only approximately realistic in practice.
Alternatively, one might imagine that they have probabilistic beliefs about each
other’s costs or perhaps that they can communicate about each other’s cost.
However, this adds an additional layer of complications in expert coordination,
which is beyond the scope of the present paper.

The principal knows little about the experts. In particular, she does not know
what the Hi or ci are, nor does she know the probability distribution P which
specifies the probabilities P (e) and P (ω | a, e).

We require that u is normalized s.t. maxa∈A E [u(O) | a] = 0, where O is
the random variable distributed according to the (prior) probability distribution
P (· | a) that arises from conditioning only on null evidence E0.

Contracts for Information Elicitation. The principal wants the experts to
acquire and honestly report useful information. Since acquiring information is
costly, the principal has to set some kind of incentive. If she could observe
expended costs, then this problem would be easy: simply reimburse costs and
pay some small bonus that is positive affine in the utility obtained by the princi-
pal net of the overall reimbursements for the experts’ acquisition costs. However,
we assume that effort is unobservable to the principal. We furthermore assume
that the information obtained is unverifiable.

We will consider a simple class of mechanisms in which the experts only
submit (potentially dishonest) reports ê on what information they obtained. The
principal then takes the best action given ê, i.e., takes aê := arg maxa∈A E[u(O) |
ê, a], where ties are broken arbitrarily and O is the random variable distributed
according to P (· | ê, a). Of course, to determine aê based on ê, one has to know
(at least partially) P (· | ·, ê), which so far we have assumed the principal not
to know. For example, we could imagine that the experts convene to summarize
their evidence into a report that the principal can interpret.

Some authors have allowed the principal to randomize between projects –
giving the most probability to the best ones – to have some chance of testing
the predictions made for suboptimal actions [7,27,28]. Of course, randomization
comes at the cost of sometimes taking suboptimal actions. Indeed, our negative
results (see Sect. 6 and Theorem 5) can be extended to show that to minimize
worst-case regret, the principal must always select the best action given the
report.

Finally, each expert i is rewarded only based on the probability distribution
resulting from the overall report and the observed outcome, i.e., based on si(P (· |
ê, aê), ω), where si is some scoring rule or contract. Again, we have to imagine
that the principal somehow learns about P (· | ê, aê), e.g., by having the experts
provide that distribution. Note that the payoff depends only on the prediction
about the recommended action aê. Other predictions are not tested and it is
therefore futile to ask for predictions about them, as pointed out by Othman
and Sandholm [22, Theorems 1 and 4] and Chen et al. [7, Theorem 4.1]. It is
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easy to show that the results of this paper generalize to a setting in which the
principal’s scoring rule can depend on all of P (· | ê, ·).

More importantly, we assume that the principal scores only according to the
aggregated expert report. That is, we assume that the principal does not know
the experts’ information structure and therefore cannot determine the relative
value of individual experts’ contributions. Similarly, we assume that the princi-
pal does not ask the experts for the cost of their information. In principle, in the
case of multiple experts (i.e., n ≥ 2), different kinds of mechanisms could also
be considered. In particular, the principal could ask the experts to report on the
value and cost of each other’s information. However, this will often be unrealis-
tic. For instance, consider the members of a team in a firm. The members of the
team may have a good understanding of each other’s abilities and contributions
as well as of how costly these contributions are to the different members, but
the firm will generally not ask the team members to report on these things and
instead determine salaries based on relatively little information. (Note that none
of these considerations are relevant to the single-expert case.)

The Principal’s and Experts’ Goals. We assume that the principal accounts
for her payments to the experts quasilinearly, so that her overall utility after
payments is given by u(ω) − ∑n

i=1 si(P (· | ê, aê), ω).
As for the experts, a configuration of available evidence H with prior P

and costs (ci)i=1,...,n, and a (multi-expert) scoring rule s induce an n-player
game played by the experts. Each player’s strategy σi consists of two parts,
one determining which evidence he obtains and one determining how observed
evidence is mapped onto reports. Throughout this paper, we use E ∈ H to denote
the strategy profile in which each player i obtains and honestly reports Ei. A
strategy profile σ gives rise to an expected payoff EUi

s(σ) for expert (or player)
i and an expected utility net of payments EUs(σ) for the principal.

Since the experts play a strategic game, we use Nash equilibrium to describe
their behavior. We say that σ is a Nash equilibrium iff for each i and each
alternative strategy σ′

i for i, we have EUi
s(σ) ≥ EUi

s(σ−i, σ
′
i). In general, the

game resulting from a configuration and scoring rule will have many equilibria.
For n ≥ 2, it is futile to ask for regret bounds that hold for all Nash equilibria.
For example, imagine that the value for the principal of E being obtained is high
if E = E∗ and low otherwise. Imagine further that c(E∗

i ) is small but positive
for all i. Then in the first-best solution, E∗ is acquired. But, if there are multiple
experts, everyone obtaining E0 (no information) is also a Nash equilibrium with
(arbitrarily close to) maximum regret. Throughout the rest of this paper, we
therefore ask: what is the regret in the Nash equilibrium that is best for the
principal? (Cf. the notion of price of stability [1,24, Section 1.3], as opposed to
the price of anarchy [18,23].) Our negative results, of course, are made stronger
by the fact that they say that no Nash equilibrium can exceed a certain bound.
Our positive results, on the other hand, are mostly about a particular kind of
Nash equilibria (see Lemma 1) which arise from maximizing the experts’ profit.
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In what follows, we do not require our scoring rules to be proper, i.e., we do
not require that they incentivize the experts to report honestly. However, our
results will show that the optimal contract is indeed proper. We do require that
our scoring rules satisfy an individual rationality constraint. In particular, we
require that each expert i receives an expected payoff of at least 0 in the strategy
profile E0 = (E0, ..., E0) where everyone honestly reports the null information,
i.e., we require that for all i, EUi

s(E
0) ≥ 0. Note that this is a fairly weak notion

of individual rationality. For instance, it does not say that the expected payoff
for the expert is nonnegative if others truthfully report non-null information.
This makes our negative results stronger. The linear contracts of our positive
results will in fact satisfy stronger versions of individual rationality. For instance,
they do ensure nonnegative ex-ante expected scores whenever all experts submit
information honestly.

3 Competitive Analysis

In this paper, we analyze scoring rules in the style of competitive analysis, a
technique for analyzing algorithms that combines two ideas. The first is worst-
case analysis. To avoid dependence on some prior probability distribution over,
in our case, configurations of costs and available evidence, we consider how a
scoring rule performs in the worst case. The second idea of competitive analysis
is to consider worst-case expected utility relative to some benchmark for the
problem. Similar approaches have been used in the literature on principal-expert
and -agent problems before [4–6,16].

As is common in principal-agent problems, we use the first-best solution as
a benchmark, i.e., the utility (net of information acquisition costs) that the
principal could obtain if she had full control over the experts and knew everything
about the information structure that the experts know. Formally, let v(E) :=
EE [EO [u(O) | aE,E]] be the expected utility obtained from acquiring E and
then taking the best action according to it. Also, let c(E) :=

∑n
i=1 ci(Ei) be the

overall cost of acquiring E. Then the expected utility net of costs of the first-best
solution is EUOPT := maxE∈H v(E)− c(E). We will use E∗ to denote a first-best
solution itself, i.e., a maximizer of v(E) − c(E).

There are two ways in which the performance of an algorithm is commonly
compared against the benchmark: competitive ratios and regret. Unfortunately,
we cannot derive any nontrivial competitive ratio. Consider the case where there
is just one expert and only one available piece of evidence E with v(E) = 1.
Then to be competitive (i.e., to get positive utility at all), if the cost of E is
c(E) = 1 − ε, the principal has to reward the expert with almost 1. To be
reasonably competitive at c(E) = ε, on the other hand, she cannot give away
anything close to 1. Because the rewards cannot depend on the cost function
(which the principal does not know), obtaining a non-trivial competitive ratio is
generally impossible, even in the single-expert case. That said, we will give two
competitive-ratio-like results (Proposition 2 and Theorem 3) in which EUOPT is
replaced with a weaker benchmark.
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Our primary focus will be on regret, which is the difference between the
first-best solution’s utility (net of costs) and the utility (net of payments to the
experts) achieved by using the scoring rule. So, for any strategy profile σ we
define the regret for that strategy profile as REGRETs(σ) := EUOPT −EUs(σ).
We will also use REGRETs to denote the lowest regret achieved in any Nash
equilibrium σ for s, i.e., REGRETs = minσ∈NE(s) REGRETs(σ). Roughly, the
regret is what is sometimes called the agency cost in the literature on principal-
agent and -expert problems, or the price of stability in mechanism design [1,24,
Sect. 1.3].

4 Linear Contracts

In this paper, we study and justify the use of a particular type of scoring rule:
linear contracts. For any α ∈ (0, 1]n with

∑n
i=1 αi ≤ 1, define the linear scoring

rule qα as scoring according to qα
j (P̂ , ω) = αju(ω) for all outcomes ω and

reported probability distributions over outcomes P̂ . That is, each expert receives
a fixed fraction of the total payoff generated. Requiring αi > 0 for all i is done
for simplicity. All the positive results about linear scoring rules can easily be
generalized to linear contracts in which αi = 0 for some i.

Before proceeding with our detailed analysis of linear contracts, it is worth
pointing out some immediately obvious and appealing properties. Most impor-
tantly, by rewarding according to a positive affine transformation of the princi-
pal’s utility, they align the experts’ interests with the principal’s. In contrast, if
one were to, say, reward one expert in proportion to exp(u(ω)), then that expert
would sometimes want the principal to take a risky (high variance) rather than
a safe action, even if the risky action has lower expected utility. When using
linear scoring rules, the only misalignment between experts and principal is that
the experts only receive a fraction of the utility obtained and therefore do not
value information as highly as the principal would in the first-best solution.
Many other desirable properties have been pointed out in the literature; see the
discussion of related work in Sect. 8.

From the definition of linear contracts, it is immediately clear that, while they
reward the choice of a good action, beyond that they do not reward accurate
probabilistic forecasts about the outcome. Because the principal may addition-
ally like to know what to expect for the chosen action, this is an undesirable
aspect of linear scoring rules. Note, however, that Oesterheld and Conitzer [21,
Sect. 2.5.1] show that linear scoring rules are the only ones which incentivize hon-
est reporting of the best action without incentivizing the expert to sometimes
prefer acquiring decision-irrelevant over decision-relevant evidence variables.

A more substantial issue with linear contracts is that (in some configurations
of available evidence) they violate ex-interim individual rationality constraints.
After acquiring some piece of evidence Ei, an expert i may come to believe
that the expected utility of the principal is negative. Expert i may then wish to
withdraw from the mechanism. Also, because utilities can end up being negative,
linear contracts cannot be used if the experts are protected by limited liability.
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However, these concerns do not apply in cases where the principal always has
an option to walk away with utility 0, regardless of the evidence.

5 General Regret and Ratio Bounds for Linear Scoring
Rules

In this section, we give positive results about what regret (and competitive
ratio-like) bounds linear scoring rules achieve. Because linear contracts do not
score experts on their reported beliefs, all of these results carry over to generic
principal-agent problems. We start with a lemma on which the subsequent results
of this section are based.

Lemma 1. Let qα be a linear contract. Then for all configurations of available
evidence, any

Ê ∈ arg max
E∈H

v(E) −
n∑

i=1

1
αi

ci(Ei) (1)

is a Nash equilibrium of the game induced by qα .

Based on Lemma 1 we now give a bound on the regret of using any linear
scoring rule. Let αmin := mini αi.

Theorem 1. For all configurations of available evidence, the Nash equilibria Ê
of Lemma 1 satisfy

REGRETqα (Ê) ≤ max

(
n∑

i=1

αi, 1 − αmin

)

v(E∗). (2)

In particular, setting αj = 1/(n + 1) for all j achieves a regret bound of
REGRETqα (Ê) ≤ nv(E∗)/(n + 1).

The regret bound REGRETqα (Ê) ≤ nv(E∗)/(n+1) is the best bound that a
linear contract can achieve without any assumptions about the configuration of
available evidence. One might have hoped for a better bound, at least for larger
n. Also, it requires the principal to give each expert a share of the proceeds
equal to her own, which means that unless a large fraction of the experts pay
an amount close to v(E∗)/(n + 1), regret is generally high. However, we will
see (in Sect. 6) that the regret bound is tight not only for linear scoring rules
but that no scoring rule can achieve a better bound. We will also consider two
ways of making assumptions about the configuration of available evidence to
achieve better bounds. One is based on a competitive-ratio-type bound from the
literature and is discussed in the rest of this section. The other targets regret
and will be the subject of Sect. 7.

Theorem 1 gives a regret bound for a specific equilibrium. It is natural to ask
whether this equilibrium is a plausible one. If it was a bad equilibrium for the
experts, we might not expect that equilibrium to be played. The first thing to
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note is that in the case of n = 1, there is only one Nash equilibrium, anyway,
and in this Nash equilibrium the single expert maximizes his expected profit.
For the multi-expert case, notice first that the equilibrium of Lemma1 explicitly
maximizes a term that is closely tied to the experts’ expected utility. A more
formal point is the following.

Proposition 1. Let qα be a linear contract and Ẽ be a Nash equilibrium of the
game induced by qα . If Ẽ is not strongly Pareto-dominated (for the experts) by
E∗, then Ẽ satisfies the regret bound of Ineq. 2.

Intuitively, this means that if some equilibrium does not satisfy Ineq. 2,
then the expert dislikes this equilibrium in the sense of it being strictly Pareto
dominated by E∗. Unfortunately, E∗ itself may not be a Nash equilibrium. In
fact, it may be that all Nash equilibria of the game induced by qα are strictly
Pareto-dominated by E∗.

Lemma 1 also gives us the following result, which is a generalization to the
multi-expert case of a result shown by Chassang [6, Theorem 1.i] and Carroll [4,
Sect. 2.3].

Proposition 2. For all configurations of available evidence, the Nash equilibria
Ê of Lemma 1 for the linear scoring rule qα satisfy

EUqα (Ê) ≥
(

1 −
n∑

i=1

αi

)

max
E

(

v(E) −
n∑

i=1

1
αi

ci(Ei)

)

. (3)

Proposition 2 is essentially a competitive-ratio-type result, except that the
benchmark is lower than the first-best solution. Chassang [6, Theorem 1.ii] shows
how in a single-expert version of this result, the principal can optimize α if she
knows a bound on the cost-to-value ratio of information. If information is known
to be cheap, then α can be small. Chassang’s proof only operates on the n = 1
special case of Ineq. 3. A similar line of reasoning applies to our multi-expert
setting. Such a result is useful for practical purposes. It also shows how the
existing results can be used to give better bounds and recommendations that
are to some extent tailored to specific settings. Unfortunately, it seems that if
the cost-to-value bounds vary between experts, no succinct expression for the
optimal contracts can be given.

6 Unique Optimality of Linear Scoring Rules

Having proven bounds on the regret of linear contracts, the natural next question
is: can we do any better by using a different scoring rule? In particular, can we
do better by eliciting predictions of what outcome will materialize, in addition to
recommendations of what action to take? It is easy to come up with examples of
particular prior probability distributions over configurations of available evidence
under which the answer is yes. But it turns out that in the worst case and without
further assumptions, we cannot get any better regret bounds; moreover, linear
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contracts are in fact the only ones that achieve the optimal regret bound in
general. This is true even if the principal knows the pre-cost expected utility
v(E∗) of the information acquired in the first-best solution.

Theorem 2. Let 0 < H < maxω∈Ω u(ω) and let s be a scoring rule. Then if for
all configurations with v(E∗) = H, REGRETs ≤ nH/(n + 1), then it must be
that for all j = 1, ...,m, sj(P̂ , ω) = u(ω)/(n + 1), whenever ω ∈ supp(P̂ ). There
is no scoring rule s s.t. for all configurations, REGRETs < nH/(n + 1).

We briefly give a sketch of the proof, which consists of two parts. In the
first part, we identify “critical cases” for any s, i.e., a small set of classes of
configurations on which the bound is tight and which together determine sj

to be the hypothesized linear scoring rule. One critical case is that in which
v(E∗) = H and E∗ is in fact free to acquire. To keep regret low in this case, the
principal has to make sure that she does not give away too much. Overall, she
can only give away nH/(n + 1) in expectation. The other critical case is that in
which v(E∗) = H and in E∗ exactly one expert j acquires information at a price
of H/(n + 1) − ε. To achieve low regret in these cases, the principal must make
sure that whenever an expectation of H is achieved, any expert j receives an
expected payoff of at least H/(n + 1) (or, gets at least H/(n + 1) more than it
gets for reporting the prior). The critical cases together imply that if information
E∗ with value v(E∗) = H is acquired, each expert receives an expected payoff
of H/(n + 1) (and that if the prior is reported, each expert receives an expected
payoff of 0). The second part of the proof shows that this (across all possible
E∗ with v(E∗) = H) implies that sj is as claimed in the theorem. Roughly, in
this part we show that the scoring rule must be linear, using the fact that the
expected payoff is constant across different distributions with the same mean.

The different aspects of this result depend on the details of our setup to
different extents. The result that worst-case regret is nH/(n + 1) generalizes far
beyond our setting. In particular, even if the principal knows the experts’ infor-
mation structure, there will still be cases with regret nH/(n+1) if the principal
cannot obtain reliable information about the different experts’ costs of acquisi-
tion. The uniqueness of linear scoring rules in minimizing worst-case regret, on
the other hand, does hinge on our assumption that the principal does not know
the information structure. With knowledge of the specific information structure,
the principal can use very different contracts. As a straightforward example, if
it is known that one expert cannot obtain sufficiently useful information, the
scoring rule need not pay that expert at all.

A result analogous to Theorem 2 holds true for the competitive ratio-based
bound and can be proven with very similar ideas.

Theorem 3. Let α ∈ (0, 1)n with
∑n

j=1 αj < 1 and s be a scoring rule. Then
if for all configurations there is Nash equilibrium Ê

EUs(Ê) ≥
(

1 −
n∑

i=1

αi

)

max
E

(

v(E) −
n∑

i=1

1
αi

ci(Ei)

)

, (4)
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then it must be the case that for all j = 1, ...,m, sj(P̂ , ω) = αiu(ω), whenever
ω ∈ supp(P̂ ). There is no scoring rule s s.t. Ineq. 4 is always strict.

7 Restrictions on the Configurations of Available
Evidence

In this section we consider a setting in which the principal is assumed to have
a particular type of knowledge about the configuration of available evidence
(similar to Chassang’s [6, Theorem 1.ii] result, mentioned at the end of Sect. 5).
With this we would like to show that (as one would expect) under stronger
assumptions, substantially better bounds can be derived. Perhaps more impor-
tantly, it shows that the strategy in the proof of Theorem2 of using critical
cases to derive linear contracts and their optimality generalizes to settings with
additional assumptions.

Arguably, much of the reason why our general bound is not better than it
is that we do not know who has access to decision-relevant information. While
we use the term “experts”, we allow for configurations in which almost all of
the “experts” cannot acquire decision-relevant information at a reasonable cost.
Indeed, these cases drive the proof of Theorem 2. In many real-world settings, the
principal is able to select a set of experts who all can acquire relevant information.
We will model this by introducing the assumption that all experts have access
to the same set of evidence variables – though note that of this set each expert
can still only obtain one element.

Assumption 1. H1 = H2 = ... = Hn.

Furthermore, we assume that there is some known bound on how much acquisi-
tion costs differ.

Assumption 2. There is some known Λ ∈ (0, 1] such that for any two experts
i, j and non-trivial evidence variables Ei, Ej we have cj(Ej) > 0 and Λ ≤
ci(Ei)/cj(Ej).

If Λ = 1, then all experts pay the exact same price for all pieces of information. If
Λ is small, then some experts may be able to acquire information much cheaper
than others. Note that Assumption 2 not only restricts how costs differ between
experts but also between different evidence variables (both across experts and
for a single expert).

We add another assumption:

Assumption 3. For all vectors of information E ∈ H and any expert i, we have
v(E−i) ∈ {0, v(E)}.

Roughly, this means that any set of evidence variables is either fully complemen-
tary (in which case v(E−i) = 0 for all i that acquire non-trivial information) or
has some redundant piece of information (in which case v(E−i) = v(E) for some
i). There are some settings in which such an assumption is (at least approxi-
mately) natural. For instance, we may imagine that the principal and experts
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are morally or legally obliged to pay due diligence and cannot pursue projects
unless they are fully researched. In the context of this paper, another reason we
consider this assumption is that it allows for an equilibrium analysis that is more
powerful than that of Lemma1.

As before (Sects. 5 and 6), we first provide the positive result. That is, we
show that a particular linear scoring rule achieves a particular regret bound. We
then show (Theorem 5) that this scoring rule is optimal and the only one that
achieves the given regret bound. It turns out that in this case the optimal scoring
rule is much harder to guess. We hope that the proof sketch of Theorem5 makes
clear where its parameters come from.

Theorem 4. Let n ∈ N be the number of experts. Given Assumptions 1 to 3,
define

BΛ,n := 1 − 1
1 +

∑n
i=1

1
1+(i−1)Λ

. (5)

and for j = 1, ..., n

αj =
1

(1 + (j − 1)Λ)
(
1 +

∑n
i=1

1
1+(i−1)Λ

) . (6)

Then, REGRETqα ≤ BΛ,nv(E∗).

We now prove that the scoring rule of Theorem4 is the only one that achieves
its regret bound. Our strategy is the same as the strategy behind the proof of
Theorem 2 and the omitted proof of Theorem 3. Very roughly, the idea is as
follows. For any given linear contract qα , we guess the cases where the regret is
highest. The first such case is – as in the proof of Theorem 2 – the one in which
information is free to the experts and regret is entirely a result of the principal
having to give away some fraction of her profits that she can keep in the first-best
solution. Second, there is a critical case for each k = 1, ..., n, in which k pieces of
information are needed and the expert i with the k-th highest αi cannot quite
afford a relevant piece of information. One can then find the given bound and
parameters of the linear contract by minimizing worst-case regret across these
cases. Using these cases, one can prove as in the proof of Theorem 2 that to
obtain the bound, one has to use this linear rule.

Theorem 5. Let 0 < H < maxω∈Ω u(ω), and s be a scoring rule. Then, if
for all configurations with v(E∗) = H that satisfy Assumptions 1 to 3, we have
REGRETs ≤ BΛ,nH, then – up to permutation of the experts – for all j =
1, ...,m: sj(P̂ , ω) = αju(ω) whenever ω ∈ supp(P̂ ), where the αj are as defined in
Eq. 6. There is no scoring rule s s.t. REGRETs < BΛ,nH for all configurations.

If Λ = 0, then BΛ,n = n/(n + 1) and αj = 1/(n + 1) for j = 1, ..., n. That
is, as the restriction on the cost ratios becomes vacuous, the optimal bound and
scoring rule approach the optimal general bound and scoring rule of Theorems 1
and 2. If Λ = 1 (i.e., all costs are the same), then BΛ,n = hn/(hn + 1) and
αj = 1/((hn + 1)j), where hn =

∑n
i=1 1/i is the n-th harmonic number.
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Note that even though – for all the principal knows – the experts are all iden-
tical, the minimum-regret contract varies the numbers of shares in the project
given to different experts. Theorem 5 therefore provides another (and quite differ-
ent) demonstration of a point made by Winter [26], who shows that the optimal
reward structure for a principal-(multi-)agent problem sometimes has to treat
identical agents differently. To understand why in our setting optimal rewards
are asymmetric despite symmetry between agents, consider only the cases where
Λ = 1, i.e., where all experts pay exactly the same price for all pieces of informa-
tion. Consider the question of how many experts we should give enough shares
to overcome some given acquisition cost of c. If that number is k, then our worst-
case regret at cost c from no information being acquired is H − (k + 1)c and
occurs in the case where k + 1 pieces of information (all at cost c) are needed.
Since this number decreases with k, giving k experts sufficiently many shares to
outweigh a cost of a sufficiently large c at some point becomes non-critical for
minimizing regret. Given regret considerations in other cases (in particular the
one where all information is essentially free), the minimum-regret value of k will
therefore be smaller than n but bigger than 0 for many values of c.

8 Related Work

The most closely related strand of literature is that on principal-expert (and more
generally principal-agent) problems. Our results merely concern one of many pos-
sible variants of and approaches to such problems. For example, much of the lit-
erature on principal-expert problems differs from the present work in that they
do not let the expert submit (or reveal by selection of a contract from a contract
menu) any information apart from a recommendation. We are not the first to
approach the problem from a worst-case perspective [4–6,16]; but many others
have derived very different kinds of results without the worst-case assumption,
for instance by considering specific (types of) distributions or other restrictions
[2,8,12,14,19,25,27]. Also, many papers have richer problem representations and
specialized foci on issues that do not arise in the present framework. For instance,
most authors take into account that the expert is protected by limited liability.
With a few exceptions [2,13], existing work only considers settings with a single
expert. While, as we have noted, some of our results can be seen as generaliza-
tions of corresponding single-expert results (one of which – Proposition 2 – was
already given in the literature for the single-expert case), Sect. 7 discusses issues
that are very specific to the multi-expert case. To our knowledge, our main opti-
mality arguments (the proofs of Theorems 2, 3 and 5) and most of our results are
also unique. At the same time, our results support other work which has aimed to
discuss and explain the use of linear contracts [4–6,10,11,16,21,25, Sect. 2.5.1].

In mechanism design, a few authors have worked to characterize scoring rules
that incentivize experts to honestly report existing (or free) decision-relevant
information [7,21,22]. The setups of these papers do not give any objective
that allows one to identify particular scoring rules as optimal; they allow for
rewards of tiny scale (say, giving the experts a trillionth of the principal’s profit).
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The introduction of information acquisition costs into the model forces the use
of nontrivial rewards, and allows us to ask meaningful questions about what
scoring rule is optimal. Overcoming acquisition costs is one way to introduce a
target for optimization among scoring rules that gives a reason to give larger-
scale scores. The same can be achieved by introducing conflicts of interest that
arise if the expert has (contrary to the setup of this paper) an intrinsic interest
in the principal’s decision. The expert may have an incentive to misreport (or
not report anything if information is verifiable) to make the principal take the
expert’s (rather than the principal’s) favorite option [3,9,15,20]; cf. the literature
on Bayesian persuasion [17].

9 Conclusion

We have shown how competitive analysis can be used to derive the optimality of
particular linear contracts in principal-expert problems. We demonstrated that
when adding specific assumptions about the structure and cost of available infor-
mation, the analysis can also provide optimal scoring rules for specific settings.
The optimal scoring rules in all of these settings give away a substantial fraction
of the principal’s profit. The present work therefore motivates the use of more
complicated mechanisms when dealing with multiple experts. For instance, the
principal may look to save money by asking the experts to reveal each other’s
costs of acquisition. Can similar arguments as in this paper then still be used to
justify the use of linear scoring rules? Further, it is worth asking what the cost
of the worst-case simplification is: how much better can we do if the principal
formulates a prior over configurations of available evidence and optimizes the
expected utility over the set of contracts [2,8,19,25]?
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14. Häfner, S., Taylor, C.R.: On young turks and yes men: Optimal contracting for
advice (2019). https://doi.org/10.2139/ssrn.3229927

15. Holmström, B.: On the theory of delegation. Discussion Papers 438, Northwest-
ern University, Center for Mathematical Studies in Economics and Management
Science (1980). https://ideas.repec.org/p/nwu/cmsems/438.html

16. Hurwicz, L., Shapiro, L.: Incentive structures maximizing residual gain under
incomplete information. Technical report, pp. 77–83 (1977). https://conservancy.
umn.edu/bitstream/handle/11299/54918/1977-83.pdf

17. Kamenica, E., Gentzkow, M.: Bayesian persuasion. Am. Econ. Rev. 101, 2590–
2615 (2011)

18. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 38

19. Lambert, R.A.: Executive effort and selection of risky projects. RAND J. Econ.
17(1), 77–88 (1986)

20. Milgrom, P., Roberts, J.: Relying on the information of interested parties. RAND
J. Econ. 17(1), 18–32 (1986)

21. Oesterheld, C., Conitzer, V.: Eliciting information for decision making from
individual and multiple experts (2019). https://users.cs.duke.edu/∼ocaspar/
DecisionScoringRules.pdf. Short version appeared in WINE 2020

22. Othman, A., Sandholm, T.: Decision rules and decision markets. In: Proceedings of
the 9th International Conference on Autonomous Agents and Multiagent Systems,
pp. 625–632 (2010)

23. Papadimitriou, C.H.: Algorithms, games, and the internet. In: Talk at STOC 2001,
Hersonissos, Crete, Greece, 6-8 July 2001 (2001)
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Abstract. We study infinitely-repeated two-player zero-sum games
with one-sided private information and a persistent state. Here, only one
of the two players learns the state of the repeated game. We consider two
models: either the state is chosen by nature, or by one of the players.
For the former, the equilibrium of the repeated game is known to be
equivalent to that of a one-shot public signaling game, and we make this
equivalence algorithmic. For the latter, we show equivalence to one-shot
team max-min games, and also provide an algorithmic reduction. We
apply this framework to repeated zero-sum security games with private
information on the side of the defender and provide an almost complete
characterization of their computational complexity.

Keywords: Bayesian repeated game · Equilibrium characterization ·
Equilibrium computation · Computational complexity

1 Introduction

Private information can give one a strategic advantage over other players in
a game. However, if play is repeated, then taking advantage of one’s private
information through one’s actions risks leaking that information and thereby
the advantage. This is nicely illustrated in the movie The Imitation Game, in
which British intelligence, having cracked the Enigma code, strategically decides
not to act on some of its information, in order to preserve its informational
advantage [12]. Less dramatically, consider a buyer and a seller that interact
repeatedly. The seller has a higher-quality and a lower-quality version of the
item for sale, and offers these at different prices. The buyer may, at the current
prices, prefer the higher-quality version – but worry that choosing this option will
reveal her (persistently) high valuation/type, causing the seller to raise prices in
the future, and therefore choose the cheaper low-quality version instead.
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In equilibrium, to what extent should a party with an informational advan-
tage refrain from acting on this information? This is the question we set out
to address in this paper. It is, in its most general form, a challenging question
to answer. The state of the game may change over time; there may be a mul-
tiplicity of equilibria; the discount factor matters; and so on. Thus, answering
the question in general would require us to simultaneously resolve a number of
fundamental questions in (algorithmic) game theory. In this paper, in order to
stay focused on the question at hand, we focus on the following special case:

– The state of the game is persistent, i.e., it does not change over time (the
game is repeated rather than stochastic).

– Only one player has private information, and it does not change.
– The game is two-player and zero-sum.
– Each agent cares about their long-term average payoff.

Even in this setting, it is easy to see that the optimal answer is in general not
one of the two extremes – either exploit information fully, or never use it. Some
information may not be actionable for the adversary so that one can simply take
advantage of it and not worry about revealing it. On the other hand, for other
information, it is possible that the adversary would be able to make even better
use of it than the initially better-informed player. In that case, the benefits of
getting to use the information for one round, without the adversary being able
to use it in that particular round, will be completely wiped out by the infinitely
many remaining rounds in which the adversary can use the information better.

The technical and conceptual foundations for the study of repeated games
of incomplete information with persistent state were laid by [2]. They con-
sider a persistent state of the game drawn by nature from a common prior,
and agents who receive private signals regarding this state. [14] provides an
in-depth accounting of the special case of this model with two players and zero-
sum payoffs. The aforementioned texts reveal that the even-more-special case
we consider, that of repeated two-player zero-sum games with one-sided private
information, admits an essentially-unique equilibrium (in the sense of payoff
equivalence) with an elegant, simple, and instructive characterization which is
robust to modeling assumptions. In particular, the equilibrium of the repeated
two-player game is equivalent, in a precise technical sense, to the equilibrium of
a one-shot public signaling game with three players. Moreover, this characteriza-
tion is robust to how one chooses to model long-term payoffs; say through using
a discount factor, taking the limit of the finite repeated game as the number
of stages grows to infinity, or considering the infinite game directly. Even mild
generalizations of this special case, for example to more players, non-zero-sum
payoffs, or incomplete information on both sides, lead to the collapse of this char-
acterization, and such settings are not yet fully understood to the best of our
knowledge. This further cements our model as the timely choice for algorithmic
study.
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1.1 Our Contributions

We examine repeated two-player zero-sum games with one-sided private infor-
mation from the perspective of algorithmic game theory, both in general and as
exemplified by application to the influential domain of security games [16]. We
consider both the case when the state is drawn by nature—this is the classical
model in [2,14]—as well as a natural, and to our knowledge novel, variant in
which the (typically randomized) state is chosen by one of the players, who is
therefore the informed party. We refer to this variant as the allocation model.

The domain-agnostic part of the paper is organized as follows. For the clas-
sical model, where the game state is drawn by nature, we first provide (a) our
own exposition of the previously-described equilibrium characterization in terms
of one-shot public signaling games, one that is particularly tailored to an algo-
rithmic game theory audience and makes explicit the connection to recent work
on public signaling games (e.g., [6–8]). Then, we turn to our novel contribu-
tions. We provide (b) an efficient reduction to equilibrium computation in the
related one-shot public signaling game to make the equilibrium characterization
constructive. For the allocation model, where one of the players determines the
(persistent) state, we provide (a’) a characterization of the equilibrium of the
repeated game as equivalent, in a precise technical sense, to the equilibrium of
a one-shot three-player team max-min game, as first studied by [15]; (b’) an
efficient reduction to computing the equilibrium of the associated team max-
min game. We note that, in both (b) and (b’), the uninformed player’s strategy
is particularly nontrivial, and involves efficiently solving a related instance of
Blackwell’s approachability [1,4]. We also note that the reductions in (b) and
(b’) are “reversible”, since both the repeated game and the associated one-shot
game share the same game value. Finally, we (c) show that the allocation model
is computationally easier than the classical model by way of a polynomial time
reduction. We note that this is not reversible, and the complexity relationship
is strict, as evidenced by our results for security games which we describe next.

We then examine repeated zero-sum security games with private information
on the side of the defender. In the security games we consider, the state is a
deployment of “treasures” to “locations”, a defender strategy is a deployment
of “defensive resources” to the locations, and the attacker’s strategy is a loca-
tion to attack. Such security games are particularly versatile exemplars for both
the classical and allocation models of repeated games with persistent state. The
classical model abstracts challenges faced in recent applications to environmental
protection [9,17,18], where the locations of environmental assets (the treasures)
are determined by nature and slow to change over time. The allocation model
can be applied to armed conflict scenarios in which supply-chain assets (the
treasures) must be deployed covertly to locations early on in the conflict, and
can not be easily moved from stage to stage. We show that the classical model
of repeated security games is strongly NP-hard even when treasures, locations,
and defensive resources are homogeneous. A more nuanced picture emerges for
the allocation model of repeated security games: the fully homogeneous case is
tractable, as is the case where only the treasures are heterogeneous. The fully
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heterogeneous case is strongly NP-hard. Remaining cases are either weakly or
strongly NP-hard, and we provide an almost complete accounting of the com-
putational complexity of all combinations.

2 Preliminaries

2.1 One-Shot Games

A one-shot two-player zero-sum game of complete information is described by a
utility function U : S1 × S2 → R, where Si is the family of pure strategies for
player i, and U(s1, s2) is the utility of player 1 when player 1 plays s1 ∈ S1 and
player 2 plays s2 ∈ S2. Implicitly, the utility of player 2 is −U(s1, s2). A mixed
strategy for player i is si ∈ Δ(Si), where Δ(Si) is the set of distributions over Si.
A one-shot two-player Bayesian zero-sum game with incomplete information on
one side

(
Π,

{Uθ
}

θ∈Θ

)
is given by: (1) pure strategy sets S1 and S2 for players 1

and 2 respectively; (2) a family Θ of states of nature; (3) for each state θ ∈ Θ, a
one-shot two-player zero-sum game of complete information Uθ; and (4) a prior
distribution Π over states of nature Θ.

In such a game, nature draws θ from Θ according to the prior Π and then
player 1 learns the state θ while player 2 is uninformed about the state. Both
players simultaneously choose their strategies si (while s1 can depend on θ but
s2 cannot), which results in a utility of Uθ(s1, s2) to player 1 and −Uθ(s1, s2) to
player 2. Moreover, given a distribution Π over Θ, we denote by UΠ the game
induced by Π such that player 1’s payoff is UΠ(s1, s2) =

∑
θ∈Θ Π(θ) ·Uθ(s1, s2).

We restrict attention to games where Θ, S1, S2 are finite, or at least compact.
All mixed Nash equilibria of such a game are payoff equivalent to the Nash
equilibrium in which each player employs their maximin mixed strategy [11].

2.2 Bayesian Repeated Games

We now describe the classical model of Bayesian repeated games that we con-
sider, henceforth just Bayesian repeated games for convenience. Here, a Bayesian
zero-sum game is repeated infinitely many times, with incomplete information
on one side. We call the one-shot game the stage game, and refer to each iteration
as a stage. We replicate the standard assumptions made by [2,14], as follows.
We assume that the state of nature is persistent : it does not change from stage
to stage.1 Moreover, we assume that players observe each others’ pure strategies
after each stage, but do not observe the payoffs directly. This assumption is nec-
essary for the model to be interesting: If players can observe the payoffs directly,
then the uncertainty in the game is superfluous, as players can eventually recon-
struct relevant entries of the game matrix and the state of nature. Obscuring
1 If the state of nature is drawn afresh at each stage, then repetition is superfluous

for a zero-sum game: the folk theorem and minimax theorem imply that repeating
the minimax equilibrium at each stage is the essentially unique equilibrium of the
repeated game (up to payoff equivalence).
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payoffs in this manner can be viewed as abstracting a situation where payoffs are
delayed till the end of the (long, many stage) game. Formally, given a two-player
Bayesian zero-sum stage game Grepeated =

(
Π,

{Uθ
}

θ∈Θ

)
as described above,

the Bayesian repeated game proceeds as follows:

1. θ is drawn by nature from Π and player 1 learns θ while player 2 does not;
2. The stage game Uθ is repeated infinitely many times. After each stage, each

player observes the pure strategy played by the other player, but does not
directly observe the utility gained.

A history of play with T stages HT =
(
(s1

1, s
1
2), (s

2
2, s

2
2), . . . , (s

T
1 , sT

2 )
)

is a finite
sequence, where st

i is player i’s pure strategy at stage t. For convenience, we
will use the vectorized form without superscript si = (s1

i , · · · , sT
i ) to represent

the strategy of player i. A pure strategy for player 1 in the repeated game is a
function which maps the state θ and an observed history H to player 1’s strategy
in the next stage of the repeated game, while a pure strategy for player 2 simply
maps the observed history H to player 2’s strategy in the next stage. A mixed
strategy is naturally a distribution over such functions.

2.3 Bayesian Allocation Games

In addition to classical Bayesian repeated games, we introduce a novel vari-
ant, the Bayesian allocation game, in which the distribution Π of the states is
determined by player 1 instead of the nature. Formally, given one-shot games
Galloc =

({Uθ
}

θ∈Θ

)
, the Bayesian allocation game proceeds as follows:

1. Player 1 selects a prior Π over Θ that player 2 cannot observe;
2. θ is drawn by nature from Π and player 1 learns θ while player 2 does not;
3. The stage game Uθ is repeated infinitely many times. After each stage, each

player observes the pure strategy played by the other player, but does not
directly observe the utility gained.

In the Bayesian allocation game, in addition to choosing the actions to play
at each stage, player 1’s strategy also includes a choice of the prior Π ∈ Δ(Θ).

2.4 Utility and Equilibrium Model

We consider the utility/equilibrium models deduced from the infinitely-repeated
game perspective for agents that are interested in their long-term payoffs. Each
player’s expected utility is the limit, as T → ∞, of his average expected utility
over the first T stages alone. Though this limit may not exist in general, we can
nevertheless define a value and equilibrium as in [2,14]. The max-min value of the
game is the supremum over all player 1’s mixed strategies, of the infimum over
player 2’s mixed strategies, of the limit infimum as T → ∞ of player 1’s average
expected utility. Player 1’s max-min strategy is that attaining this supremum.
We can similarly define the min-max value of the game and Player 2’s min-max
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strategy. When both the max-min and min-max values are equal we refer to them
as the value of the game, and the corresponding max-min and min-max strategies
form the equilibrium. For a Bayesian repeated game Grepeated and a Bayesian
allocation game Galloc, we denote their game value by νrepeated(Grepeated) and
νalloc(Galloc), respectively. Several other natural utility/equilibrium models are
equivalent to this one, and we defer the detailed discussions to the full version.

Example 1. Consider a zero-sum security game with 3 identical locations
(denoted by �A, �B , �C) and 2 identical treasures, in which the defender can
defend 1 location. The defender determines how to allocate the treasures to the
locations (once) and how to defend them (every round). The attacker earns one
unit of payoff if she attacks an undefended location with a treasure, and zero oth-
erwise. For comparison, in the one-shot Bayesian allocation game (i.e., if there
is only a single round), it is straightforward to verify that the optimal strategy
for the defender is to allocate two treasures uniformly at random, and for each
realization, defend each of the two locations with a treasure with probability 1

2 ,
leading to an expected payoff 1

3 for the attacker. However, it turns out that in
the infinitely-repeated version, an optimal strategy (unique up to symmetries)
to allocate the treasures for the defender is as follows:

– Allocate a treasure to �A with probability 1;
– Allocate the remaining treasure to �B with probability α =

√
5−1
2 ≈ 0.618

and to �C with probability 1 − α = 3−√
5

2 ≈ 0.382.

In each stage of the repeated game, the defender defends �A with probability α
(so that the attacker’s utility of attacking this location is 1−α), and defends �B

with probability 1 − α (so that the attacker’s utility of attacking this location
is α2 = 1 − α). The defender never defends �C (so that the attacker’s utility for
attacking this target is also 1 − α).

The above example illustrates a fundamental difference between a one-shot
Bayesian allocation game and its infinitely-repeated counterpart. In the one-
shot version, the optimal strategy for the defender correlates the allocation and
the defensive strategy, and thus, the game is reduced to a two-player zero-sum
normal-form game so that the minimax theorem can be applied. However, in the
infinitely-repeated version, we will show that in the equilibrium, the allocation
of treasures and the defensive strategy are independent, as in the example above.
In other words, there exists no benefit for the defender to correlate the allocation
and the defensive strategy in the infinitely-repeated Bayesian allocation game.
Note that the attacker’s payoff is larger in the infinitely-repeated version as
1 − α = 3−√

5
2 > 1

3 . Intuitively, this is because the attacker can observe the
defender’s historical defensive actions in the infinitely-repeated game. This is
disadvantageous for the defender: either the defensive actions over time give
away where the treasures are, or these actions have to be chosen in such a
way that they do not, which is a costly constraint. We also emphasize that the
game value is an irrational number, demonstrating that the infinitely-repeated
Bayesian allocation game cannot be solved by a linear program.
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3 Reductions from Repeated Games to One-Shot Games

In this section, we discuss the relationship between one-shot games and both our
models of infinitely repeated games, so that one can solve the infinitely repeated
game by first solving the corresponding one-shot game. The equivalence between
classical Bayesian repeated games and public signaling games has already been
shown by [2] and [14]; for completeness, we will fully elaborate on this equivalence
first in Sect. 3.1. This will set the stage for our novel results on the equivalence
between Bayesian allocation games and team max-min games (Sect. 3.2), and
on the computational complexity of both models (Sect. 3.3). The omitted proofs
in this paper are deferred to the full version.

3.1 Equivalence Between Bayesian Repeated Games and Public
Signaling Games (Reproducing Known Results)

We begin with reproducing the known result relating the classical model of
Bayesian repeated games to public signaling games [2,14].

Definition 1 (Public Signaling Game [6–8]). Consider a one-shot two-
player zero-sum game Gsignal =

(
Π,

{Uθ
}

θ∈Θ

)
where players a-priori know

nothing about θ besides its prior Π. We consider a credible principal who is
privy to the realization of θ. The principal designs a public signaling scheme: a
randomized function ϕ : Θ → Δ(Σ) mapping states of nature to an abstract set
of signals Σ. The order of events is as follows:

– The principal commits to ϕ;
– The nature draws θ ∼ Π and the principal learns θ;
– The principal invokes the signaling scheme to obtain a signal σ ∼ ϕ(θ);
– Both players learn σ, and update their beliefs about the state θ, denoted as

Πϕ,σ, according to the Bayes’ rule: Πϕ,σ(θ) = Pr[ϕ(θ)=σ]·Π(θ)∑
θ′∈Θ Pr[ϕ(θ′)=σ]·Π(θ′) .

– Players play the equilibrium strategies in the zero-sum game UΠϕ,σ .

We assume that the principal designs ϕ so as to maximize player 1’s expected
utility, the maximum value of which, denoted by νsignal(Gsignal), is the game
value of the public signaling game.

It turns out the equilibrium in Bayesian repeated games corresponds to the
solution of the above signaling problem in a precise sense, stated below [2,14].

Theorem 1. νrepeated(Grepeated) = νsignal(Gsignal) when Grepeated = Gsignal.

We will prove Theorem 1 by constructing the equilibrium strategy s∗
1, s∗

2 for
player 1 and 2, respectively in the Bayesian repeated game Grepeated from the
solution of the public signaling game Gsignal. For convenience, in the Bayesian
repeated game, we will refer to player 1 (the informed player) as the leader and
player 2 (the uninformed player) as the follower.
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In particular, we will show that in the Bayesian repeated game Grepeated, if the
leader plays strategy s∗

1, then no matter how the follower reacts, the leader can
guarantee himself an average utility at least the game value νsignal(Gsignal) in
the public signaling game Gsignal over the first T stages as T → ∞. On the other
hand, if the follower plays strategy s∗

2, then no matter how the leader reacts,
the follower can guarantee the leader an average utility at most νsignal(Gsignal)
over the first T stages as T → ∞.

Lemma 1. When Grepeated = Gsignal, in the Bayesian repeated game Grepeated,
consider the following strategy for the leader:

– upon learning the state θ of the nature, the leader invokes the optimal signaling
strategy ϕ of the public signaling game Gsignal to obtain σ ∼ ϕ(θ);

– the leader then discards all information other than σ, i.e., behaves as if
his belief is Πϕ,σ, and plays the maximin strategy in the game UΠϕ,σ , i.e.,
argmaxs1

mins2 UΠϕ,σ (s1, s2), repeatedly.

This strategy can guarantee the leader an average expected utility νsignal(Gsignal).

Although the strategy for the leader is easy to construct from the signaling
scheme of the public signaling game, the follower’s strategy is not so straight-
forward. The main difficulty is that there does not exist a credible principal in
the repeated game as in the public signaling game, and therefore, the follower is
uncertain about whether the leader exactly follows the scheme. In particular, the
leader might have incentive to deviate by sending a different signal: conditioned
on his type θ, choose σ∗ such that σ∗ = argmaxσ∈Σ Uθ (s∗

1(σ), s∗
2(σ)), where

s∗
1(σ) = argmax

s1

min
s2

UΠϕ,σ (s1, s2) and s∗
2(σ) = argmin

s2

max
s1

UΠϕ,σ (s1, s2).

In other words, the leader can send a signal σ∗ that gives himself the maximum
utility conditioned on θ. Therefore, the follower’s strategy cannot rely on the
possibly non-credible signaling scheme.

To circumvent this difficulty, we will construct an adaptive strategy for the
follower, which does not depend on the non-credible signal σ but only depends
on the prior Π and the history of play. Our approach relies on the solution of the
dual program of the public signaling game. For convenience, given a distribution
Π over Θ, let f(Π) = maxs1 mins2 UΠ(s1, s2) be the game value of the induced
game UΠ . The problem of computing the optimal public signaling scheme can be
formulated as the following linear program with infinitely many variables x(Π ′)
for Π ′ ∈ Δ(Θ) [6–8]:

max
∑

Π′∈Δ(Θ) x(Π ′) · f(Π ′)
s.t.

∑
Π′∈Δ(Θ) x(Π ′) · Π ′(θ) = Π(θ) ∀θ ∈ Θ

x(Π ′) ≥ 0 ∀Π ′ ∈ Δ(Θ)
(1)

Intuitively, a signaling scheme can be viewed as a convex decomposition of the
prior Π into a collection of posteriors {Π ′} [8,10]. Based on the primal, we can
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construct its dual with |Θ| variables y(θ) for θ ∈ Θ as follows:

min
∑

θ∈Θ y(θ) · Π(θ)
s.t.

∑
θ∈Θ y(θ) · Π ′(θ) ≥ f(Π ′) ∀Π ′ ∈ Δ(Θ) (2)

Let x∗ and y∗ be the solution of the primal and the dual, respectively. By strong
duality,

∑
Π′∈Δ(Θ) x∗(Π ′) · f(Π ′) =

∑
θ∈Θ y∗(θ) · Π(θ) = νsignal(Gsignal). We

will interpret y and Π as vectors such that y =
(
y(θ1), · · · , y(θ|Θ|)

)
and Π =(

Π(θ1), · · · ,Π(θ|Θ|)
)
. The inner product 〈y,Π〉 is defined as

∑
θ∈Θ y(θ) · Π(θ).

The next proposition directly follows the feasibility of y∗ and strong duality:

Proposition 1. For any prior Π in the public signaling game, there exists y∗

such that 〈y∗,Π〉 = νsignal(Gsignal) and ∀Π ′ ∈ Δ(Θ), 〈y∗,Π ′〉 ≥ f(Π ′).

Hence, if the follower can ensure that for any strategy s1 deployed by the
leader, there exists an adaptive mixed strategy s2 for the follower such that,

∀θ ∈ Θ, lim
T→∞

∑T
t=1 Uθ(st

1, s
t
2)

T
≤ y∗(θ), (3)

then the average utility of the leader as T → ∞ would be

lim
T→∞

∑
θ∈Θ

Π(θ) ·
∑T

t=1 Uθ(st
1, s

t
2)

T
≤

∑
θ∈Θ

Π(θ) · y∗(θ) = νsignal(Gsignal).

To prove (3), it is equivalent to show that R(y∗) = {v | v ≤ y∗} is approachable.

Definition 2 (Blackwell’s Approachability [4]). Given a convex set R of
vectors of utilities, we say R is approachable from the perspective of the follower,
if for any strategy of the leader s1, there exists an adaptive strategy s2 for the
follower such that limT→∞ dist

(
1
T

∑T
t=1 U(st

1, s
t
2),R

)
= 0 almost surely, where

U(s1, s2) =
(Uθ1(s1, s2), · · · ,Uθ|Θ|(s1, s2)

)
and dist(u,R) = minv∈R ‖v − u‖.

Theorem 2 ([2,14]). R(y∗) = {v | v ≤ y∗} is approachable.

To establish the approachability of R(y∗), we first consider a halfspace
H(Π ′, b) such that v ∈ H(Π ′, b) if and only if 〈Π ′,v〉 ≤ b.

Lemma 2. A halfspace H(Π ′, b) is approachable if f(Π ′) ≤ b.

Theorem 3 ([4]). A convex set R is approachable if and only if all halfspaces
containing R are approachable.

All that remains to show is that all halfspaces containing R(y∗) are approach-
able.

Lemma 3. All halfspaces containing R(y∗) = {v | v ≤ y∗} are approachable.
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Proof. Notice that any minimal halfspace containing R(y∗) must cross y∗ by
the construction of R(y∗). Therefore, such a halfspace can be represented by
H(Π ′, 〈Π ′,y∗〉) with Π ′ ∈ Δ(Θ). By Proposition 1, f(Π ′) ≤ 〈Π ′,y∗〉, and
therefore, by Lemma 2, H(Π ′, 〈Π ′,y∗〉) is approachable.

Combining Theorem 3 and Lemma 3, we finish the proof of Theorem 2. We
can then apply Blackwell’s construction [4] to obtain an adaptive strategy for
the follower that approaches R(y∗) almost surely.

Intuitively, at stage t, if 1
t−1

∑t−1
τ=1 U(sτ

1 , sτ
2) ∈ R(y∗), then the follower first

finds a halfspace H(Π ′, 〈Π ′,y∗〉) that separates 1
t−1

∑t−1
τ=1 U(sτ

1 , sτ
2) and R(y∗).

Given such a Π ′, the follower plays the minimax strategy of UΠ′
at stage t, and

then the distance between the vector of average utilities and R(y∗) will become
smaller after stage t. Observe that the follower’s strategy can be computed from
the prior Π, the game Grepeated, and the history of play. In doing so, it guarantees
that the expected average utility of the leader is at most νsignal(Gsignal) in the
limit, and Proposition 2 follows:

Proposition 2. In a Bayesian repeated game Grepeated =
(
Π,

{Uθ
}

θ∈Θ

)
, given

y∗ satisfying Proposition 1 and an oracle to compute the minimax strategy of
the zero-sum game UΠ′

for all Π ′ ∈ Δ(Θ), there exists an efficient algorithm to
construct the follower’s optimal strategy.

We will elaborate the complexity of computing y∗ in Sect. 3.3.

3.2 Equivalence Between Bayesian Allocation Games and Team
Max-Min Games

Definition 3 (Team Max-Min Game [15]). In a zero-sum team max-min
game Gteam =

({Uθ
}

θ∈Θ

)
, in addition to player 1 and 2, there is a player 3

whose set of pure strategies is Θ. Player 1 and player 3 form a team and share
the same utility such that when player 1 plays s1 ∈ S1, player 2 plays s2 ∈ S2,
and player 3 plays θ ∈ Θ, the utility for both player 1 and player 3 is Uθ(s1, s2),
while the utility for player 2 is −Uθ(s1, s2). A team max-min equilibrium is a
Nash equilibrium that maximizes the team’s utility and we denote its game value
by νteam(Gteam): νteam(Gteam) = maxs1∈Δ(S1),Π∈Δ(Θ) mins2∈Δ(S2) UΠ(s1, s2).

We emphasize that player 1’s strategy and player 3’s strategy are not allowed
to be correlated; otherwise, the team max-min game degenerates to a classic
two-player zero-sum game in which player 1 and 3 can be treated as a single
player. [15] show that a team max-min equilibrium always exists. It turns out
the equilibrium in Bayesian allocation games corresponds to the solution of the
above team max-min games in a precise sense, stated below.

Theorem 4. νalloc(Galloc) = νteam(Gteam) when Galloc = Gteam.

To prove Theorem 4, we will construct strategies for players in the Bayesian
allocation game from the equilibrium strategies in the team max-min game.
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Lemma 4. When Galloc = Gteam, let s∗
1, s

∗
2,Π

∗ be the equilibrium strategies for
the team max-min game Gteam. In the Bayesian allocation game Galloc, consider
the following strategy for the leader:

– set the prior Π to be Π∗; then repeatedly play strategy s∗
1 for every stage.

This strategy can guarantee the leader an average expected utility νteam(Gteam).

In comparison to the Bayesian repeated games in which the follower knows
the prior, the follower does not even know the prior set by the leader in
the Bayesian allocation game. To overcome this obstacle, observe that in the
Bayesian repeated game, the approachability of a convex set is a property that
only depends on the collection of games

({Uθ}θ∈Θ

)
but independent of the prior.

Motivated by this observation, we show that R(νteam(Gteam) · 1) = {v | v ≤
νteam(Gteam) · 1} is approachable where 1 is a vector of all ones.

Lemma 5. R(νteam(Gteam) · 1) is approachable.

It is straightforward to show that, when R(νteam(Gteam) · 1) is approachable,
for any prior Π ∈ Δ(Θ), the average utility of the leader is at most νteam(Gteam).

Fig. 1. The relationships of computational problems, assuming the minimax strategy
of UΠ can be computed efficiently for all Π ∈ Δ(Θ): the arrows point to problems that
are computationally easier.

3.3 Computational Complexity of the Follower’s Optimal Strategy

As demonstrated before, constructing the follower’s optimal strategy in Bayesian
repeated games requires a solution to the dual program (2). Hence, it is not
immediate that one can efficiently construct the follower’s optimal strategy if
the public signaling game is efficiently solvable. Here, we say an algorithm is
efficient if the running time of the algorithm is polynomial in terms of the number
of states |Θ|, and the number of pure strategies |S1| + |S2|.

We manage to show that, when the minimax strategy of UΠ can be computed
efficiently for all Π ∈ Δ(Θ), in both Bayesian repeated games and Bayesian
allocation games, the follower’s optimal strategy can be efficiently constructed if
the corresponding game values are given. We further show that team max-min
game is computationally easier than the public signaling game, and therefore,
Bayesian allocation game is computationally easier than the Bayesian repeated
game. Figure 1 summarizes the relationships of the computational problems
discussed in this section, while the proofs are deferred to the full version.
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4 Bayesian Repeated Security Games

In Sect. 3, we have shown that Bayesian repeated games can be reduced to
public signaling games, while Bayesian allocation games can be reduced to team
max-min games. However, it has been shown that both public signaling games
and team max-min games are computationally intractable for general zero-sum
games and even worse, no FPTAS is possible [5,8]. Particularly, public signaling
games do not even admit PTAS [3,13].

Motivated by the applications in the domain of repeated security games, we
will concern ourselves with repeated games where the stage game is a security
game of a particularly simple form. The one-shot complete-information security
games are described by a set L of locations, a set M of treasures, and a set R
of defensive resources. For convenience, we use ⊥ to denote a null treasure or a
null defensive resource. v : L× (M ∪⊥) → R≥0 is a location-treasure importance
function such that v(�,m) characterizes the utility loss of the defender if location
� ∈ L with treasure m ∈ M allocated is attacked without defense. In addition,
there is a defense-quality function q : L × (M ∪ ⊥) × (R ∪ ⊥) → {0, 1} such that
q(�,m, r) characterizes the effectiveness of allocating defensive resource r ∈ R to
defend location � ∈ L that hosts treasure m. Note that in our setting, a defensive
resource is either 100% effective for a combination of location and treasure or
totally useless. For a null treasure, we have v(�,⊥) = 0 for all �, and for a null
defensive resource, we have q(�,m,⊥) = 0 for all � and m.

A state of nature is a matching θ : L → M that maps the locations to
treasures such that for any i, j ∈ L with i = j, θ(i) = ⊥, and θ(j) = ⊥, we
have θ(i) = θ(j). A pure strategy for the defender is also a matching D : L → R
that maps the locations to the defensive resources such that for any i, j ∈ L with
i = j, D(i) = ⊥, and D(j) = ⊥, we have D(i) = D(j). Finally, a pure strategy for
the attacker is a single location a ∈ L to attack. A mixed strategy is naturally a
distribution over such functions. The defender’s utility under θ when the defender
plays D and the attacker plays a is Uθ(D, a) = −(

1−q
(
a, θ(a),D(a)

))·v(
a, θ(a)

)
,

while the attacker’s utility is simply −Uθ(D, a).
We say the treasures are homogeneous if for all m ∈ M , v(�,m) equals to

some constant for all � ∈ L; the locations are homogeneous if for all � ∈ L,
v(�,m) equals to some constant for all m ∈ M ; and the defensive resources are
homogeneous if q(�,m, r) = 1 for all � ∈ L, m ∈ M , and r ∈ R. If the condition
of homogeneity is not satisfied, we say they are heterogeneous.

We analyze the complexity of repeated security games under the contexts
of both Bayesian repeated games and Bayesian allocation games. In Bayesian
repeated games, an algorithm is efficient if its running time is in polynomial
of |Θ|, |L|, |M |, and |R|; while in Bayesian allocation games, an algorithm is
efficient if its running time is in polynomial of |L|, |M |, and |R|.
Proposition 3. Given the marginals of Π, the optimal strategies for both the
defender and the attacker in the security game UΠ can be computed efficiently.

However, for our class of security games with a general prior Π, computing
the game value of the Bayesian repeated games is computationally intractable.
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Theorem 5. It is strongly NP-hard to compute the game value of the Bayesian
repeated games with a security game as the stage game, even when all of trea-
sures, locations, and defensive resources are homogeneous. Moreover, no FPTAS
is possible. Consequently, it is strongly NP-hard to compute any representation
of the equilibrium which permits computing the game value.

5 Bayesian Allocation Security Games

We turn to Bayesian allocation games with a security game as the stage game.
It turns out that a Bayesian allocation game with a security game as the stage
game can be efficiently solved when only the treasures are heterogeneous (Fig. 2).

Theorem 6. There exists an efficient algorithm to compute the game value and
the defender’s optimal strategy of a Bayesian allocation game with a security
game as the stage game, when only the treasures are heterogeneous.

Fig. 2. The computational complexity of Bayesian allocation games with a security
game as the stage game: the arrows point to more general versions of the problem.

Moreover, the following lemma illustrates that one can efficiently construct
the attacker’s strategy when the game value is given.

Lemma 6. Given the game value of a Bayesian allocation game with a secu-
rity game as the stage game, there exists an efficient algorithm to compute the
attacker’s optimal strategy.

Therefore, one can efficiently construct both the defender’s optimal strategy
and the attacker’s optimal strategy when only the treasures are heterogeneous.
However, going beyond, the problem becomes computationally intractable.

Theorem 7. It is weakly NP-hard to compute the game value of the Bayesian
allocation games with a security game as the stage game, when only the locations
are heterogeneous. Moreover, there exists a pseudo-polynomial time algorithm
that can compute the game value.
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Theorem 8. It is strongly NP-hard to compute the game value of the Bayesian
allocation games with a security game as the stage game, when only the defensive
resources are homogeneous, or only the locations are homogeneous.

There are three other settings that have not been discussed: (1) heterogeneous
everything; (2) only treasures are homogeneous; and (3) only defensive resources
are heterogeneous. For the setting in which everything is heterogeneous, it is
also strongly NP-hard to compute the game value since it is a more general
setting than the settings in which only defensive resources are homogeneous or
only locations are homogeneous. As for the setting in which only treasures are
homogeneous, it is at least weakly NP-hard to compute the game value since it is
a more general setting than the case in which only locations are heterogeneous.
We leave it as an open question to settle whether it is strongly NP-hard. Finally,
for the setting in which only defensive resources are heterogeneous, this setting
is not well-defined: since the locations and the treasures are homogeneous, a
defensive resource should be either effective or ineffective for any combination of
the locations and the treasures. Consequently, the defender can simply eliminate
the ineffective defensive resources to focus on effective ones, which reduces the
problem to the case in which everything is homogeneous.
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Abstract. Prior work considering random matching markets has sug-
gested that, when agents have uniformly-distributed preferences, the
fraction of agents with incentives to manipulate core-selecting mecha-
nisms generally tends to vanish as markets become large. Contrasting
these results, I present a class of models for non-homogeneous agent pref-
erences (drawn from the computer science literature on network struc-
ture) that support significant incentives for agents to manipulate match-
ing outcomes, even as markets become large and unbalanced.

Specifically, I consider agent preference structures that exhibit local-
ity, with focus on a simple model of spatial locality for the main results.
In an appendix, I discuss an extension of these results to a broader class
of preference-structure models, with a generalized locality condition.

A constructive probabilistic technique, similar to Hassidim et al. [1],
shows that a non-vanishing fraction of agents can improve their outcomes
by misreporting their true preferences, in a market with simple spatial
locality. Simulation results demonstrate that the fraction of such agents is
substantial in practice under market specifications between 60 and 12,000
agents. These results contrast prior work which assumed homogeneous
preferences, finding a vanishing fraction and little scope for manipula-
tion. Furthermore, this scope for manipulation corresponds directly to
core size and differences in agents’ welfare between core outcomes.

These results suggest that largeness and cross-side imbalance may be
insufficient to explain empirical observations of small cores in matching
markets; I discuss alternative explanations.

Keywords: Matching · Large markets · Incentives
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Abstract. In this work, we analyze the influence of a single strategic
agent on the quality of the other agents’ matchings in a matching market.
We consider a stable matching problem with n men and n women when
preferences are drawn uniformly from the possible (n!)2n full ranking
options. We focus on the effect of a single woman who reports a modified
preferences list in a way that is optimal from her perspective. We show
that in this case, the quality of the matching dramatically improves from
the other women’s perspective. When running the Gale–Shapley men-
proposing algorithm, the expected women-rank is O(log4 n) and almost
surely the average women-rank is O(log2+ε n), rather than a rank of
O( n

log n
) in both cases under a truthful regime. On the other hand, almost

surely, the average men’s rank is no better than Ω
(

n
log2+ε n

)
, compared

to a rank of O(log n) under a truthful regime.
All of the results hold for any matching algorithm that guarantees a

stable matching, which suggests that the core convergence observed in
real markets may be caused by the strategic behavior of the participants.

The full paper can be found at https://arxiv.org/abs/1806.04034.
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Abstract. We examine the effect of interim turnout rate polls on elec-
tions within a costly voting model of a large electorate with private
values and two alternatives. We consider that (i) one group of citizens
votes before the rest and (ii) the individuals of the second group know
the first group’s turnout rate—but not the vote tally—before they vote.
The alternative that receives more votes in total is implemented. We
show that the probability that each alternative is implemented under
this voting procedure is the same as in one-round voting without interim
turnout rate polls. An interpretation is that these polls might not be
distorting election outcomes. This observation can rationalize why some
democracies report the ongoing turnout rate at several points in time
during election day.

Keywords: Elections · Poisson games · Polls · Private value · Voting
costs · Rational voter

JEL Classification: C72 · D70 · D72

A full draft of the paper is available at https://papers.ssrn.com/sol3/papers.
cfm?abstract id=3545948
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Abstract. Motivated by high-capacity ridesharing applications where
multiple users can be assigned to the same vehicle to share a ride, we
study an online hypergraph matching problem with delays. In this model,
the problem instance is represented by a hypergraph. Vertices represent
users, and hyperedges represent groups of users that can be efficiently
served with a single vehicle. Hyperedges can contain at most k vertices,
representing the capacity of service vehicles. Users arrive to a rideshar-
ing platform sequentially, and are willing to wait up to d timesteps to
be matched, after which they will leave the system in favor of an outside
option. A hyperedge is revealed to the platform once all of its vertices
have arrived, and can only be included into the matching before any of
its vertices leave the system.

We consider both the utility maximization and cost minimization
settings in this model. In the utility maximization setting, hyperedge
weights represent the utility of serving the associated vertices with a
single vehicle. The platform’s objective is to construct a matching with
large total weight. In the cost minimization setting, hyperedge weights
represent the cost of serving the associated vertices with a single vehicle.
The platform’s objective is to find a matching with low total weight.

We present results for both variants of the problem. In the utility max-
imization setting, the optimal competitive ratio is 1

d
whenever k ≥ 3, and

is achievable in polynomial-time for any fixed k. In the cost minimization
variation, when k = 2, the optimal competitive ratio for deterministic

The full paper can be found at http://arxiv.org/abs/2009.12022. This research was
supported by the National Science Foundation under CAREER Award CMMI-1454737,
and the Toyota Research Institute (TRI).
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algorithms is 3
2

and is achieved by a polynomial-time thresholding algo-
rithm. When k > 2, we show that a polynomial-time randomized batch-
ing algorithm is (2 − 1

d
) log k-competitive, and it is NP-hard to achieve

a competitive ratio better than log k − O(log log k).

Keywords: Online algorithms · Competitive analysis · Ridesharing
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Abstract. We consider a sequential decision model over multi-tier sup-
ply chain networks and show that in particular, for series parallel net-
works, there is a unique equilibrium. We provide a linear time algorithm
to compute the equilibrium and study the impact and invariant of the
network structure to the total trade flow and social welfare. Sequential
decision making is a well-observed phenomenon in supply chains. Firms
at the top tier typically need to make decisions on the quantity and the
price to sell to firms in the next tier, and the buying firms then decide
how much to buy from which suppliers, and continue to pass on the goods
by determining the quantity and price for firms at the next level. One
needs to analyze the subgame perfect equilibria of the market, where
each firm internalizes the decisions of all the firms downstream and com-
pete with all the firms of the same tier. The length and the number of
trading routes are the two main factors that impact the efficiency of a
supply chain network. On one hand, a large variety of options to trade
indicates a high degree of competition. On the other hand, a long trading
path causes double, triple and higher degree marginalization problems.
We study series parallel networks because they are rich enough for inves-
tigating the factors described above and simple enough for characterizing
the equilibrium outcomes. The unique equilibrium and equilibrium com-
parative statics are derived from a closed-form expression between the
price and quantity, by judiciously using the structure of series parallel
networks and the concavity of the firm utilities.

The full version of this paper is available at https://arxiv.org/pdf/
2009.13021.pdf.
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Abstract. A principal faces a choice from a set A of actions that give
rise to outcomes from a set Ω. An expert has, for each action a ∈ A,
a probabilistic belief P (· | a) ∈ Δ(Ω) about which outcome will occur
given that the principal chooses a. The principal would like to select an
action from arg maxa∈AEO∼P [u(O) | a] that maximizes the expectation
of a utility function u : Ω → R given the expert ’s belief. The principal
asks the expert for a report consisting of a recommendation â and a
probabilistic prediction P̂â ∈ Δ(Ω) about what outcome will occur if
the recommendation is implemented. The principal then follows the rec-
ommendation and observes an outcome. Finally, the principal pays the
expert based on the prediction and the outcome, according to some deci-
sion scoring rule (DSR) s : Δ(Ω)×Ω → R. We assume that for any given
belief P , the expert submits the report that maximizes their expected
score. We call a DSR s proper if for all possible expert beliefs P , at least
one of the maximizers â, P̂â of the expert’s expected score consists of an
expected-utility-maximizing action a∗ and the expert’s true belief Pa∗ .

Our first result is that (aside from degenerate cases) no proper DSR
can strictly incentivize honest reporting on any aspect of the prediction
P̂â other than the expected utility of taking the recommended action. We
can thus limit attention to scoring rules s that are only a function of the
reported expected utility EP̂â

[u(O)] as opposed to the entire reported dis-
tribution. Second, the score can (aside from degenerate cases) only depend
on the utility of the outcome obtained, i.e., the score must be the same for
outcomes with equal utility. We can therefore write scores as s(µ̂, y), where
µ̂ is the reported expected utility and y is the utility obtained.

We characterize proper DSRs as ones that can be written as

s(µ̂, y) = f(µ̂)(y − µ̂) +

∫ µ̂

0

f(x)dx + C

for some non-negative, non-decreasing f and constant C ∈ R. We show
that the characterization admits the following interpretation: all DSRs
can be interpreted as giving and selling to the expert shares in the prin-
cipal’s project. Each share pays, e.g., $1 per unit of utility obtained by
the principal. Owning these shares makes the expert want to maximize
the principal’s utility by giving the best-possible recommendation. Fur-
thermore, if shares are offered at a continuum of prices, this makes the
expert reveal the value of a share and therefore the expected utility of
the principal conditional on following the recommendation.

Full paper at https://users.cs.duke.edu/∼ocaspar/DSRWINE.pdf
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Abstract. We consider a discrete-time nonatomic routing game with
single origin and destination, where the cost function of each edge
depends on some uncertain persistent state parameter. At every period,
an i.i.d. random traffic demand enters the network and travels from ori-
gin to destination according to a Bayes-Wardrop equilibrium, i.e., the
Wardrop equilibrium for the expected costs; the realized costs are then
publicly observed and the belief about the state parameter is updated
according to Bayes’ rule. We say that strong learning is achieved if beliefs
converge to the truth and weak learning is achieved if equilibrium flows
converge to the flows of a Wardrop equilibrium under complete infor-
mation. This paper studies the joint dynamics of equilibrium and beliefs
and characterizes the conditions required for the two types of learning
to occur.

We first prove that the joint dynamics of beliefs and equilibria con-
verge to a stable point where no additional information is acquired. Using
a counter-example, we show that this rest point need not belong to the
set of full-information equilibria and that it can be arbitrarily inefficient.
This counter-example generalizes in the following sense: in any dynamic
routing game with incomplete information, in the absence of exogenous
randomness, there exists a set of latency functions and states such that
neither strong nor weak learning occurs. We then prove that, when both
the support of the demand and the cost functions are unbounded, weak
learning occurs if and only if the routing network has a series-parallel
structure. We provide a constructive proof showing that if the network
does not belong to the series-parallel class, then there exist a set of cost
functions and a prior belief such that learning will not occur. Finally, we
prove that, under the same conditions, strong learning occurs if and only
if the demand’s support is R

+.

Keywords: Routing games · Incomplete information · Social learning

A full draft of the paper is available at https://arxiv.org/abs/2009.11580.
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Abstract. The paper investigates how the two key features of GDPR (EU’s
data protection regulation)—privacy rights and data security—impact personal
data driven markets. First, GDPR recognizes that individuals own and control
their data in perpetuity, leading to three critical privacy rights: (i) right to
explicit consent (data opt-in), (ii) right to be forgotten (data erasure), and
(iii) right to portability (switch data to competitor). Second, GDPR has data
security mandates protection against privacy breaches through unauthorized
access. The right to explicit opt-in allows goods exchange without data
exchange. Erasure and portability rights discipline firms to provide ongoing
value and reduces consumers’ holdup using their own data. Overall, privacy
rights restrict legal collection and use, while data security protects against illegal
access and use. We develop a two-period model of forward-looking firms and
consumers where consumers exercise data privacy rights balancing the cost
(privacy breach, price discrimination) and benefits (product personalization,
price subsidies) of sharing data with firms. We find that by reducing expected
privacy breach costs, data security mandates increase opt-in, consumer surplus
and firm profit. Privacy rights reduce opt-in and mostly increase consumer
surplus at the expense of firm profits; interestingly they hurt firms more in
competitive than in monopolistic markets. While privacy rights can reduce
surplus for both firms and consumers, these conditions are unlikely to be real-
ized when breach risk is endogenized. Further, by unbundling data exchange
from goods exchange, privacy rights facilitate trade in goods that may otherwise
fail to occur due to privacy breach risk.

Keywords: GDPR � Privacy � Data security � Personalization � Price
discrimination � Data security � Digital marketing

The full version is available at ssrn.com/abstract=3643979.
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Abstract. We consider the problem of online résumé-filtering, in which
résumés are presented to an algorithm one-by-one, and the algorithm
must give immediate decisions on whether or not to grant the applicants
interviews. This model captures the sequential nature of hiring, as deci-
sions must be made with partial knowledge of the applicant pool. We
cast this problem as a k-secretary problem, requiring that at most k
applicants be granted interviews, and seek to maximize the total quality
of selected applicants.

Algorithms which sift through applications typically numerically score
applicants, providing a basis for comparison. There is, however, wide
prevalence of bias in evaluations of applicants from different demographic
groups, and applicants experience disparate access to job and training
opportunities. These complex socio-economic issues pose unique mod-
elling challenges, which are further compounded due to the current pan-
demic. To address these issues, we introduce poset bias, which is based on
the following idea: due to experiences of applicants, which may be corre-
lated with their demographic makeups, some pairs of applicants cannot
be reliably ranked. Mathematically, we assume that the algorithm can
only observe rankings of applicants according to a fixed partial order.
This allows for a more individualized notion of bias compared to previ-
ous models, specifically generalizing the group bias model of Kleinberg
and Raghavan [2] and the intersectional model of Celis et al. [1].

When ranking candidates, one goal we attempt to meet is that sim-
ilarly qualified individuals be treated similarly. In the context of poset
bias, we interpret this idea as follows: any two applicants who can be
swapped by an order isomorphism (with respect to the partial order)
should have the same probability of being selected. In other words, we
require that any two applicants who are indistinguishable in the poset
be treated equally by the algorithm. We call this algorithmic property
ranked demographic parity, as it equalizes treatment by the partial rank-
ing of the candidate. We show that any algorithm for the k-secretary
problem under poset bias is Ω(ω)-competitive, where ω is the width of
the poset—in other words, the competitive ratio scales with the maxi-
mum number of mutually incomparable applicants. We then show that
this bound is tight by providing an O(ω)-competitive algorithm (which

This work is partially supported by the Thos and Clair Muller Research Fund. The full
paper is available at https://tinyurl.com/yypw2mqs.
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satisfies ranked demographic parity). Our proposed algorithm selects
applicants in parallel over randomly generated groups (not demographic
groups), and uses the structural information learned about the poset to
appropriately make selections within each random group.

Keywords: Secretary problem · Bias · Online selection · Affirmative
action · Poset
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In multi-agent environments in which coordination is desirable, the history of
play often causes lock-in at sub-optimal outcomes. Notoriously, technologies with
a significant environmental footprint or high social cost persist despite the suc-
cessful development of more environmentally friendly and/or socially efficient
alternatives. The displacement of the status quo is hindered by entrenched eco-
nomic interests and network effects. To exacerbate matters, the standard mech-
anism design approaches based on centralized authorities with the capacity to
use preferential subsidies to effectively dictate system outcomes are not always
applicable to modern decentralized economies. What other types of mechanisms
are feasible?

In this paper, we develop and analyze a mechanism that induces transitions
from inefficient lock-ins to superior alternatives. This mechanism does not exoge-
nously favor one option over another – instead, the phase transition emerges
endogenously via a standard evolutionary learning model, Q-learning, where
agents trade-off exploration and exploitation. Exerting the same transient influ-
ence to both the efficient and inefficient technologies encourages exploration and
results in irreversible phase transitions and permanent stabilization of the effi-
cient one. On a technical level, our work is based on bifurcation and catastrophe
theory, a branch of mathematics that deals with changes in the number and
stability properties of equilibria. Critically, our analysis is shown to be struc-
turally robust to significant and even adversarially chosen perturbations to the
parameters of both our game and our behavioral model. The full version of the
paper can be found at https://arxiv.org/abs/2007.12877.
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Fig. 1. The Quantal Response Equilibria (QRE) surface projected in time and the
transition from the prevailing wasteful technology (W) to the efficient technology (S)
via an induced catastrophe. At phase 1, all resources are invested in W , and there is
no control, i.e., T=0. As T increases, the population moves along the red line on the
QRE surface. At phase 2, T reaches the critical value at which the two upper QRE
merge into one. At the very next moment, phase 3, when T increases slightly above
the critical level, the system undergoes an abrupt transition (catastrophe) at which
the merged QRE vanish. After this point, T is reset to 0, and due to the resulting
hysteresis effect, the population converges to the new equilibrium at which the (new)
technology S is adopted.
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Abstract. Two-sided matching platforms provide users with menus of
match recommendations. To maximize the number of realized matches
between the two sides (referred to as customers and suppliers respec-
tively), the platform must balance the inherent tension between recom-
mending customers more potential suppliers to match with and avoiding
potential collisions. We introduce a stylized model to study the above
trade-off. The platform offers each customer a menu of suppliers, and
customers choose, simultaneously and independently, to either select a
supplier from their menu or remain unmatched. Suppliers then see the
set of customers that have selected them, and choose to either match
with one of these customers or remain unmatched. A match occurs if a
customer and a supplier choose each other (in sequence). Agents’ choices
are probabilistic, and proportional to the public scores of agents in their
menu and a score that is associated with the outside option of remaining
unmatched. The platform’s problem is to construct menus for customers
to maximize the number of matches. We show the problem is strongly
NP-hard and provide an efficient algorithm that achieves a constant-
factor approximation to the optimal expected number of matches. Our
algorithm uses bucketing techniques, which group similar suppliers into
buckets, together with linear programming based relaxations and round-
ing. We finally provide simulations to better understand how the algo-
rithm might behave in practice.

The full version of this paper is available at https://arxiv.org/abs/1907.04485.
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