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Abstract. Deep active inference has been proposed as a scalable app-
roach to perception and action that deals with large policy and state
spaces. However, current models are limited to fully observable domains.
In this paper, we describe a deep active inference model that can learn
successful policies directly from high-dimensional sensory inputs. The
deep learning architecture optimizes a variant of the expected free energy
and encodes the continuous state representation by means of a variational
autoencoder. We show, in the OpenAI benchmark, that our approach has
comparable or better performance than deep Q-learning, a state-of-the-
art deep reinforcement learning algorithm.
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1 Introduction

Deep active inference (dAIF) [1–6] has been proposed as an alternative to Deep
Reinforcement Learning (RL) [7,8] as a general scalable approach to perception,
learning and action. The active inference mathematical framework, originally
proposed by Friston in [9], relies on the assumption that an agent will perceive
and act in an environment such as to minimize its free energy [10]. Under this
perspective, action is a consequence of top-down proprioceptive predictions com-
ing from higher cortical levels, i.e., motor reflexes minimize prediction errors [11].

On the one hand, works on dAIF, such as [2,12,13], have focused on scal-
ing the optimization of the Variational Free-Energy bound (VFE), as described
in [9,14], to high-dimensional inputs such as images, modelling the generative
process with deep learning architectures. This type of approach preserves the
optimization framework (i.e., dynamic expectation maximization [15]) under
the Laplace approximation by exploiting the forward and backward passes of
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the neural network. Alternatively, pure end-to-end solutions to VFE optimiza-
tion can be achieved by approximating all the probability density functions with
neural networks [1,3].

On the other hand, Expected Free Energy (EFE) and Generalized Free
Energy (GFE) were proposed to extend the one-step ahead implicit action com-
putation into an explicit policy formulation, where the agent is able to compute
the best action taking into account a time horizon [16]. Initial agent implemen-
tations of these approaches needed the enumeration over every possible policy
projected forward in time up to the time horizon, resulting in significant scaling
limitations. As a solution, deep neural networks were also proposed to approxi-
mate the densities comprising the agent’s generative model [1–6], allowing active
inference to be scaled up to larger and more complex tasks.

However, despite the general theoretical formulation, current state-of-the-art
dAIF, has only been successfully tested in toy problems with fully observable
state spaces (Markov Decision Processes, MDP). Conversely, Deep Q-learning
(DQN) approaches [7] can deal with high-dimensional inputs such as images.

Here, we propose a dAIF model1 that extends the formulation presented in [3]
to tackle problems where the state is not observable2 (i.e. Partially Observable
Markov Decision Processes, POMDP), in particular, the environment state has
to be inferred directly high-dimensional from visual input. The agent’s objective
is to minimize its EFE into the future up to some time horizon T similarly
as a receding horizon controller. We compared the performance of our proposed
dAIF algorithm in the OpenAI CartPole-v1 environment against DQN. We show
that the proposed approach has comparable or better performance depending
on observability.

2 Deep Active Inference Model

Fig. 1. Observations-state neural network architecture. The VAE encodes the visual
features that are relevant to reconstruct the input images. The encoder network encodes
observations to a state representation of the environment. The decoder reconstructs
the input observations from this representation.

1 The code is available on: https://github.com/Grottoh/Deep-Active-Inference-for-
Partially-Observable-MDPs.

2 We formulate image-based estimation and control as a POMDP—see [17] for a dis-
cussion.

https://github.com/Grottoh/Deep-Active-Inference-for-Partially-Observable-MDPs
https://github.com/Grottoh/Deep-Active-Inference-for-Partially-Observable-MDPs
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We define the active inference agent’s objective as optimizing its variational free
energy (VFE) at time t, which can be expressed as:

−Ft =DKL[q(s, a)‖p(ot, s0:t, a0:t)] (1)
= − Eq(st)[ln p(ot|st)] + DKL[q(st)‖p(st|st−1, at−1)]

+ DKL[q(at|st‖p(at|st)] (2)

where ot is the observation at time t, st is the state of the environment, at is the
agent’s action and Eq(st) is the expectation over the variational density q(st).

We approximate the densities of Eq. 2 with deep neural networks as proposed
in [1,3,4]. The first term, containing densities q(st) and p(ot|st) concerns the
mapping of observations to states, and vice-versa. We capture this objective
with a variational autoencoder (VAE). A graphical representation of this part
of the neural network architecture is depicted in Fig. 1 – see the appendix for
network details.

We can use an encoder network qθ(st|ot−3:t) with parameters θ to model
q(st), and we can use a decoder network pϑ(ot−3:t|zt) with parameters ϑ to
model p(ot|st). The encoder network encodes high-dimensional input as a dis-
tribution over low-dimensional latent states, returning the sufficient statistics of
a multivariate Gaussian, i.e. the mean sμ and variance sΣ. The decoder net-
work consequently reconstructs the original input from reparametrized sufficient
statistics z. The distribution over latent states can be used as a model of the
environment in case the true state of an environment is inaccessible to the agent
(i.e. in a POMDP).

The second term of Eq. 2 can be interpreted as state prediction error, which
is expressed as the Kullback-Leibler (KL) divergence between the state derived
at time t and the state that was predicted for time t at the previous time
point. In order to compute this term the agent must, in addition to the already
addressed q(st), have a transition model p(st|st−1, at−1), which is the probability
of being in a state given the previous state and action. We compute the MAP
estimate with a feedforward network ŝt = fφ(sμ,t−1, at−1). To compute the state
prediction error, instead of using the KL-divergence over the densities, we use
the Mean-Squared-Error (MSE) between the encoded mean state sμ and the
predicted state ŝ returned by fφ

The third and final term contains the last two unaddressed densities q(at|st)
and p(at|st). We model variational density q(at|st) using a feedforward neu-
ral network qξ(at|sμ,t, sΣ) parameterized by ξ, which returns a distribution over
actions given a multivariate Gaussian over states. Finally, we model action condi-
tioned by the state or policy p(at|st). According to the active inference literature,
if an agent that minimizes the free energy does not have the prior belief that
it selects policies that minimize its (expected) free energy (EFE), it would infer
policies that do not minimize its free energy [16]. Therefore, we can assume that
our agent expects to act as to minimize its EFE into the future. The EFE of a
policy π after time t onwards can be expressed as:
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Fig. 2. Computing the gradient of the value network with the aid of a bootstrapped
EFE estimate.

Gπ =
∑

τ>t

Gπ,t

Gπ,τ = − ln p(oτ )︸ ︷︷ ︸
−rτ

+DKL[q(sτ |π)‖q(sτ |oτ )]
(3)

Note that the EFE has been transformed into a RL instance by substituting
the negative log-likelihood of an observation − ln p(oτ ) (i.e. surprise) by the
reward rτ [3,18]. Since under this formulation minimizing one’s EFE involves
computing one’s EFE for each possible policy π for potentially infinite time
points τ , a tractable way to compute Gπ is required. Here we estimate Gπ

via bootstrapping, as proposed in [3]. To this end the agent is equipped with
an EFE-value (feedforward) network fψ(sμ,t, sΣ,t) with parameters ψ, which
returns an estimate G̃t that specifies an estimated EFE for each possible action.
This network is trained with the aid of a bootstrapped EFE estimate Ĝt, which
consists of the free energy for the current time step, and a β ∈ (0, 1] discounted
value net approximation of the free energy expected under q(a|s) for the next
time step:

Ĝt = −rt + DKL[q(st)‖q(st|ot)] + βEq(at+1|st+1)G̃t (4)

In this form the parameters of fψ(sμ,t, sΣ,t) can be optimized through gradient
descent on (see Fig. 2):

Lt = MSE(G̃t, Ĝt) (5)

The distribution over actions can then at last be modelled as a precision-weighted
Boltzmann distribution over our EFEs estimate [3,16]:

p(at|st) = σ(−γG̃t) (6)
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Finally, Eq. 2 is computed with the neural network density approximations as –
see Fig. 3.

−Ft = − Eqθ(st|ot−3:t)[ln pϑ(ot−3:t|zt)]

+ MSE(sμ,t, fφ(sμ,t−1, at−1))
+ DKL[qξ(at|sμ,t, sΣ,t)‖σ(−γfψ(sμ,t, sΣ,t))] (7)

where sμ,t and sΣ,t are encoded by qθ(st|ot−3:t).

Fig. 3. Variational Free Energy computation using the approximated densi-
ties. The VAE encodes high-dimensional input as a latent state space, which
is used as input to the other networks. Note that the third term of Eq. 7
(DKL[qξ(at|sμ,t, sΣ,t)‖σ(−γfψ(sμ,t, sΣ,t))]) has been split into an energy and an
entropy term (Any KL divergence can be split into an energy term and an entropy).

3 Experimental Setup

To evaluate the proposed algorithm we used the OpenAI Gym’s CartPole-v1, as
depicted in Fig. 4. In the CartPole-v1 environment, a pole is attached to a cart
that moves along a track. The pole is initially upright, and the agent’s objective
is to keep the pole from tilting too far to one side or the other by increasing or
decreasing the cart’s velocity. Additionally, the position of the cart must remain
within certain bound. An episode of the task terminates when the agent fails

Fig. 4. Cartpole-v1 benchmark (left) and cropped visual input used (right).
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either of these objectives, or when it has survived for 500 time steps. Each time
step the agent receives a reward of 1.

The CartPole state consists of four continuous values: the cart position, the
cart velocity, the pole angle and the velocity of the pole at its tip. Each run the
state values are initialized at random within a small margin to ensure variability
between runs. The agent can exact influence on the next state through two
discrete actions, by pushing the cart to the left, or by pushing it to the right.

Tests were conducted in two scenarios: 1) an MDP scenario in which the agent
has direct access to the state of the environment, and 2) a POMDP scenario in
which the agent does not have direct access the environment state, and instead
receives pixel value from which it must derive meaningful hidden states. By
default, rendering the CartPole-v1 environment returns a 3 × 400 × 600 (color,
height, width) array of pixel values. In our experiments we provide the POMDP
agents with a downscaled and cropped image. There the agents receive a 3 ×
37 × 85 pixel value array in which the cart is centered until it comes near the
left or right border.

4 Results

The performance of our dAIF agents was compared against DQN agents for the
MDP and the POMDP scenarios, and against an agent that selects it actions at
random. Each agent was equipped with a memory buffer and a target network
[19]. The memory buffer stores transitions from which the agent can sample
random batches on which to perform batch gradient descent. The target network
is a copy of the value network of which the weights are not updated directly
through gradient descent, but are instead updated periodically with the weights
of the value network. In between updates this provides the agent with fixed EFE-
value or Q-value targets, such that the value network does not have to chase a
constantly moving objective.

Fig. 5. Average reward comparison for the CartPole-v1 problem.
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The VAE of the POMDP dAIF agent is pre-trained to deconstruct input
images into a distribution over latent states and to subsequently reconstruct
them as accurately as possible.

Figure 5 shows the mean and standard deviation of the moving average
reward (MAR) over all runs for the five algorithms at each episode. Each agent
performed 10 runs of 5000 episodes. The moving average reward for an episode
e is calculated using an smoothing average:

MARe = 0.1CRe + 0.9MARe−1 (8)

Where CRe is the cumulative reward of episode e and MARe−1 is the MAR of
the previous episode.

The dAIF MDP agent results closely resemble those presented in [3] and
outperforms the DQN MDP agent by a significant margin. Further, the standard
deviation shadings show that the dAIF MDP is agent is more consistent between
runs than the DQN agent. The POMDP agents are both demonstrated to be
capable of learning successful policies, attaining comparable performance.

We have exploited probabilistic model based control through a VAE that
encodes the state. On the one hand, this allows the tracking of an internal
state which can be used for a range of purposes, such the planning of rewarding
policies and the forming of expectations about the future. On the other hand,
it makes every part of the algorithm dependent on the proper encoding of the
latent space, conversely to the DQN that did not require a state representation
to achieve the same performance. However, we expect our approach to improve
relative to DQN in more complex environments where the world state encoding
can play a more relevant role.

5 Conclusion

We described a dAIF model that tackles partially observable state problems, i.e.,
it learns the policy from high-dimensional inputs, such as images. Results show
that in the MDP case the dAIF agent outperforms the DQN agent, and performs
more consistently between runs. Both agents were also shown to be capable of
learning (less) successful policies in the POMDP version, where the performance
between dAIF and DQN models was found to be comparable. Further work will
focus on validating the model on a broader range of more complex problems.
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Appendix

Deep Q Agent MDP

Networks & params. Description

Ns Number of states.

Na Number of actions.

Q-value network Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: Ns × 64 × Na.

γ Discount factor set to 0.98

Memory size Maximum amount of transition that can be stored in
the memory buffer: 65,536

Mini-batch size 32

Target network freeze
period

The amount of time steps the target network’s parame-
ters are frozen, until they are updated with the param-
eters of the value network: 25

Deep Q Agent POMDP

Networks & params. Description

Na Number of actions.

Q-value network Consists of three 3D convolutional layers (each followed
by batch normalization and a rectified linear unit) with
5×5×1 kernels and 2×2×1 strides with respectively 3,
16 and 32 input channels, ending with 32 output chan-
nels. The output is fed to a 2048× 1024 fully connected
layer which leads to a 1024 × Na fully connected layer.
Uses an Adam optimizer with the learning rate set to
10−5.

γ Discount factor set to 0.99

Memory size Maximum amount of transition that can be stored in
the memory buffer: 65,536

Mini-batch size 32

Target network freeze
period

The amount of time steps the target network’s parame-
ters are frozen, until they are updated with the param-
eters of the value network: 25
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Deep Active Inference Agent MDP

Networks & params. Description

Ns Number of states.

Na Number of actions.

Transition network Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: (Ns + 1)× 64×Ns.

Policy network Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: Ns × 64 × Na, a
softmax function is applied to the output.

EFE-value network Fully connected network using an Adam optimizer with
a learning rate of 10−4, of the form: Ns × 64 × Na.

γ Precision parameter set to 1.0

β Discount factor set to 0.99

Memory size Maximum amount of transition that can be stored in
the memory buffer: 65,536

Mini-batch size 32

Target network freeze
period

The amount of time steps the target network’s parame-
ters are frozen, until they are updated with the param-
eters of the value network: 25
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Deep Active Inference Agent POMDP

Networks & params. Description

Nl Size of the VAE latent space, here set to 32.

Na Number of actions.

Encoder-network
qθ(st|ot−3:t)

Consists of three 3D convolutional layers (each followed
by batch normalization and a rectified linear unit) with
5×5×1 kernels and 2×2×1 strides with respectively 3,
16 and 32 input channels, ending with 32 output chan-
nels. The output is fed to a 2048× 1024 fully connected
layer which splits to two additional 1024×Nl fully con-
nected layers. Uses an Adam optimizer with the learning
rate set to 10−5.

Decoder-network
pϑ(ot−3:t|zt)

Consists of a Nl × 1024 fully connected layer leading to
a 1024 × 2048 fully connected layer leading to three 3D
transposed convolutional layers (each followed by batch
normalization and a rectified linear unit) with 5× 5× 1
kernels and 2×2×1 strides with respectively 32, 16 and
3 input channels, ending with 3 output channels. Uses
an Adam optimizer with the learning rate set to 10−5.

Transition-network
fφ(sμ,t, at)

Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: (2Nl +1)×64×Nl.

Policy-network
qξ(sμ,t, sΣ,t)

Fully connected network using an Adam optimizer with
a learning rate of 10−3, of the form: 2Nl × 64 × Na, a
softmax function is applied to the output.

EFE-value-network
fψ(sμ,t, sΣ,t)

Fully connected network using an Adam optimizer with
a learning rate of 10−4, of the form: 2Nl × 64 × Na.

γ Precision parameter set to 12.0

β Discount factor set to 0.99

α A constant that is multiplied with the VAE loss to take
it to the same scale as the rest of the VFE terms, set to
4 × 10−5

Memory size Maximum amount of transition that can be stored in
the memory buffer: 65,536

Mini-batch size 32

Target network freeze
period

The amount of time steps the target network’s parame-
ters are frozen, until they are updated with the param-
eters of the value network: 25
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