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Abstract. Online system identification is the estimation of parameters
of a dynamical system, such as mass or friction coefficients, for each mea-
surement of the input and output signals. Here, the nonlinear stochastic
differential equation of a Duffing oscillator is cast to a generative model
and dynamical parameters are inferred using variational message passing
on a factor graph of the model. The approach is validated with an exper-
iment on data from an electronic implementation of a Duffing oscillator.
The proposed inference procedure performs as well as offline prediction
error minimisation in a state-of-the-art nonlinear model.
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1 Introduction

Natural agents are believed to develop an internal model of their motor system
by generating actions in muscles and observing limb movements [11]. It has been
suggested that forming this internal model is analogous to a form of online system
identification [24]. System identification, i.e. estimating dynamical parameters
from observed input and output signals, has a rich history in engineering. But
there might still be much to gain from considering biologically-plausible proce-
dures. Here, I explore online system identification using a leading theory of how
brains process information: free energy minimisation [3,8].

To test free energy minimisation for use in engineering applications, I consider
a specific benchmark1 problem called a Duffing oscillator. Duffing oscillators are
relatively well-behaved nonlinear differential equations, making them excellent
toy problems for methodological research. Its differential equation is cast to a
generative model, with a corresponding factor graph. The factor graph admits
a recursive parameter estimation procedure through message passing [12,14].
Specifically, variational message passing minimises free energy [5,13,18]. Here,
I infer the parameters of a Duffing oscillator using online variational message
passing. Experiments show that it performs as well as a nonlinear ARX model
with parameters trained offline using prediction error minimisation [2].
1 http://nonlinearbenchmark.org/.
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2 System

Consider a rigid frame with two prongs facing rightwards (see Fig. 1 left). A
steel beam is attached to the top prong. If the frame is driven by a periodic
forcing term, the beam will displace horizontally as a driven damped harmonic
oscillator. Two magnets are attached to the bottom prong, with the steel beam
suspended in between. These act as a nonlinear feedback term on the beam’s
position, attracting or repelling it as it gets closer [15].

Fig. 1. (Left) Example of a physical implementation of a Duffing oscillator. (Right)
Example of input and output signals.

Let y(t) be the observed displacement, x(t) the true displacement, and u(t)
the observed driving force. The position of the beam is described as follows [25]:

m
d2x(t)

dt2
+ c

dx(t)
dt

+ ax(t) + bx3(t) = u(t) + w(t) (1a)

y(t) = x(t) + v(t), (1b)

where m is mass, c is damping, a the linear and b the nonlinear spring stiffness
coefficient. Both the state transition as well as the observation likelihood contain
noise terms, which are assumed to be Gaussian distributed: w(t) ∼ N (0, τ−1)
(process noise) and v(t) ∼ N (0, ξ−1) (measurement noise). The challenge is to
estimate m, c, a, b, τ and ξ such that the output of the system can be predicted
as accurately as possible.

3 Identification

First, I discretise the state transition of Eq. 1 using a central difference for the
second derivative and a forward difference for the first derivative. Re-arranging
to form an expression in terms of xt+1 yields:

xt+1 =
2m + cδ − aδ2

m + cδ
xt +

−bδ2

m + cδ
x3

t +
−m

m + cδ
xt−1 +

δ2

m + cδ
(ut + wt) , (2)
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where δ is the sample time step. Secondly, to ease inference at a later stage, I
perform the following variable substitutions:

θ1 =
2m+cδ−aδ2

m+cδ
, θ2 =

−bδ2

m+cδ
, θ3 =

−m

m+cδ
, η =

δ2

m+cδ
, γ =

τ(m+cδ)2

δ4
, (3)

where the square in the numerator for γ stems from absorbing the coefficient
into the noise term (V[ηwt] = η2

V[wt]). Note that the mapping between φ =
(m, c, a,b, τ) and ψ = (θ1, θ2, θ3, η, γ) can be inverted to recover point estimates:

m =
−θ3δ

2

η
, c =

(1 + θ3)δ
η

, a =
1 − θ1 − θ3

η
, b =

−θ2
η

, τ = γη2 . (4)

Thirdly, the state transition can be cast to a multivariate first-order form:[
xt+1

xt

]
︸ ︷︷ ︸

zt

=
[
0 0
1 0

]
︸ ︷︷ ︸

S

[
xt

xt−1

]
︸ ︷︷ ︸

zt−1

+
[
1
0

]
︸︷︷︸

s

g(θ, zt−1) +
[
1
0

]
ηut +

[
1
0

]
w̃t , (5)

where g(θ, zt−1) = θ1xt + θ2x
3
t + θ3xt−1 and w̃t ∼ N (0, γ−1). The system is now

a nonlinear autoregressive process. Lastly, integrating out w̃t and vt produces a
Gaussian state transition and a Gaussian likelihood, respectively:

zt ∼ N (f(θ, zt−1, η, ut), V ) (6a)

yt ∼ N (s�zt, ξ
−1) , (6b)

where f(θ, zt−1, η, ut) = Szt−1 + sg(θ, zt−1) + sηut and V =
[
γ−1 0 ; 0 ε

]
. The

number ε represents a small noise injection to stabilise inference [6].
To complete the generative model description, priors must be defined. Mass

m and process precision τ are known to be strictly positive parameters, while
the damping and stiffness coefficients can be both positive and negative. By
examining the variable substitutions, it can be seen that θ1, θ2, θ3 and η can be
both positive and negative, but γ can only be positive. As such, the following
parametric forms can be chosen for the priors:

θ ∼ N (m0
θ, V

0
θ ) , η ∼ N (m0

η, v0
η) , γ ∼ Γ (a0

γ , b0γ) , ξ ∼ Γ (a0
ξ , b

0
ξ) . (7)

3.1 Free Energy Minimisation

Given the generative model, a free energy functional with a recognition model q
can be formed as follows:

− log p(y,u) ≤
∫∫

q(ψ, z)
q(ψ, z)

p(y,u, z, ψ)
dzdψ = F [q] (8)

where z = (z1, . . . , zT ), y = (y1, . . . , yT ) and u = (u1, . . . , uT ). I assume the
states factor over time and that the parameters are largely independent:

q(ψ, z) = q(θ)q(η)q(γ)q(ξ)
T∏

t=1

q(zt). (9)
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All recognition densities are Gaussian distributed, except for q(γ) and q(ξ), which
are Gamma distributed. In free energy minimisation, the parameters of the recog-
nition distributions depend on each other and are iteratively updated.

3.2 Factor Graphs and Message Passing

In online system identification, parameter estimates should be updated at each
time-step. That puts time constraints on the inference procedure. Message pass-
ing is an ideal inference procedure due to its efficiency in factorised generative
models [12]. Figure 2 is a graphical representation of the generative model, with
nodes for factors and edges for variables. Square nodes with Greek letters rep-
resent stochastic operations while · and = represent deterministic operations.
The node marked “NLARX” represents the state transition described in Eq. 6a.
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Fig. 2. Forney-style factor graph of the generative model of a Duffing oscillator. Nodes
represent conditional distributions and edges represent variables. Nodes send messages
to connected edges. When two messages on an edge collide, the marginal belief q for the
corresponding variable is updated. Each belief update reduces free energy. By iterating
message passing, free energy is minimised.

The terminal nodes on the left represent the initial priors for the
states and dynamical parameters. Inference starts when these nodes
pass messages. The subgraph - separated by columns of dots - rep-
resents the structure of a single time step, recursively applied. Mes-
sages 1 , 2 , 3 , 4 and 10 represent beliefs q from previous time-steps.
Message 5 , arriving at the state transition node, originates from the likeli-
hood node attached to observation yt. Messages 6 , 7 , 8 , 9 and 11 combine
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priors from previous time steps and likelihoods of observations, and are used to
update beliefs q. Message 12 is the current state belief and becomes message 1
in the next time step.

The graph actually contains more messages, such as those sent by equal-
ity nodes. I have hidden them to avoid complicating the figure. Their form has
been extensively described in the literature and can be looked up easily [12,14].
Modern message passing toolboxes, such as Infer.NET and ForneyLab.jl, auto-
matically incorporate them. However, the NLARX node is new. Its messages can
be computed with2:

6 −→ν (θ) = exp
(
Eq(zt)q(zt−1)q(η)q(γ)

[
log N (f(θ, zt−1, η, ut), V )

])
(10a)

7 −→ν (η) = exp
(
Eq(zt)q(zt−1)q(θ)q(γ)

[
log N (f(θ, zt−1, η, ut), V )

])
(10b)

8 −→ν (γ) = exp
(
Eq(zt)q(zt−1)q(θ)q(η)

[
log N (f(θ, zt−1, η, ut), V )

])
(10c)

9 −→ν (zt) = exp
(
Eq(zt−1)q(θ)q(η)q(γ)

[
log N (f(θ, zt−1, η, ut), V )

])
, (10d)

where I use a first-order Taylor expansion to approximate the expected value of
the nonlinear autoregressive function g(θ, zt−1).

Loeliger et al. (2007) have written an accessible introduction on message pass-
ing in factor graphs [14]. Variational message passing in autoregressive processes
has been described in detail as well [5,19].

4 Experiment

The Duffing oscillator has been implemented in an electronic system called Sil-
verbox [25]. It consists of T = 131702 samples, gathered with a sampling fre-
quency of 610.35 Hz. Figure 3 shows the time-series, plotted at every 80 time
steps. There are two regimes: the first 40000 samples are subject to a linearly
increasing amplitude in the input (left of the black line in Fig. 3) and the remain-
ing samples are subject to a constant amplitude but contain only odd harmonics
(right of the black line). The second regime is used as a training data set, where
both input and output data were given and parameters needed to be inferred.
The first regime is used as a validation data set, where the inferred parameters
are fixed and the model needs to make predictions for the output signal.

I performed two experiments3: a 1-step ahead prediction error and a simula-
tion error setting. I used ForneyLab.jl, with NLARX as a custom node, to run the
message passing inference procedure [4]. I call the model above FEM-NLARX,

2 Derivations at https://github.com/biaslab/IWAI2020-onlinesysid.
3 Experiment notebooks at https://github.com/biaslab/IWAI2020-onlinesysid.

https://github.com/biaslab/IWAI2020-onlinesysid
https://github.com/biaslab/IWAI2020-onlinesysid
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Fig. 3. Silverbox data set, sampled at every 80 time steps for visualisation. The black
line splits it into validation data (left) and training data (right).

for Nonlinear Latent Autoregressive model with eXogenous input using Free
Energy Minimisation. I implemented two baselines: the first is NLARX without
the nonlinearity (i.e. the nonlinear spring coefficient b = 0), dubbed FEM-
LARX. The second is a standard NARX model, implemented using MATLAB’s
System Identification Toolbox. I modelled the static nonlinearity with a sigmoid
network of 4 units (in line with the 4 coefficients used by NLARX and LARX).
Parameters were inferred offline using Prediction Error Minimisation. Hence,
this baseline is called PEM-NARX.

I chose uninformative priors for the coefficients θ and η: Gaussians centred
at 1 with precisions of 0.1. The authors of Silverbox indicate that the signal-
to-noise ratio at measurement time was high [25]. I therefore chose informative
priors for the noise parameters: a0

ξ = 1e8 and a0
γ = 1e3 (shape parameters) and

b0ξ = 1e3 and b0γ = 1e1 (scale parameters).

4.1 1-Step Ahead Prediction Error

At each time-step in the validation data, the models were given the previous
output signal yt−1, yt−2 and the current input signal ut and had to infer the cur-
rent output yt. It is a relatively easy task, which is reflected in all three models’
performance. The top row in Fig. 4 shows the predictions of all three models in
purple and their squared error with respect to the true output signal in black.
The left column shows the offline NARX baseline (PEM-NARX), the middle
column the linear online latent autoregressive baseline (FEM-LARX) and the
right column the nonlinear online latent autoregressive model (FEM-NLARX).
Note that the errors in the top row seem completely flat. The bottom row in the
figure plots the errors on a log-scale. PEM-NARX has a mean squared error of
5.831e−5, FEM-LARX one of 5.945e−5 and FEM-NLARX one of 5.830e−5.

4.2 Simulation Error

In this experiment, the models were not given the previous output signal, but had
to use their predictions from the previous time-step. This is a much harder task,
because errors will accumulate. The top row in Fig. 5 again shows the predictions
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Fig. 4. 1-step ahead prediction errors. (Left) Offline NARX model with sigmoid net
(PEM-NARX), (middle) online linear model (FEM-LARX) and (right) online nonlinear
model (FEM-NLARX). (Top) Predictions (purple) and squared error (black). (Bottom)
Squared prediction errors in log-scale. (Color figure online)

of all three models (purple) and their squared error (black). It can already be
seen that the errors increase as the input signal’s amplitude rises. The bottom
row plots the errors on a log-scale. PEM-NARX has a mean squared error of
1.000e−3, FEM-LARX one of 1.002e−3 and FEM-NLARX one of 0.926e−3.

5 Discussion

The experimental results seem to justify looking to nature for inspiration. Free
energy minimisation, in the form of variational message passing, seems a gener-
ally applicable and well-performing inference technique. The difficulties mostly
lie in deriving variational messages (i.e. Eqs. 10).

Improvements in the proposed procedure could be made with a richer approx-
imation of the nonlinear autoregressive function (e.g. unscented transform) [20].
Alternatively, a hierarchy of latent Gaussian filters or autoregressive processes
could be used to obtain time-varying noise parameters or time-varying coeffi-
cients [19,22]. Furthermore, instead of discretising such that an auto-regressive
model is obtained, one could express the evolution of the states in generalised
coordinates. Lastly, black-box models could be explored for further performance
improvements.

A natural next step is for an active inference agent to determine the control
signal regime (i.e. optimal design). Unfortunately, this is not straightforward:
the current formulation relies on variational free energy which does not produce
an epistemic term in the objective. The epistemic term is needed to encourage
exploration; i.e. try sub-optimal inputs to reduce uncertainty. To arrive at an
epistemic term, one would need to work with expected free energy [17]. But it
is unclear how expected free energy could be incorporated into factor graphs.
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Fig. 5. Simulation errors. (Left) Offline NARX model with sigmoid net (PEM-NARX),
(middle) online linear model (FEM-LARX) and (right) online nonlinear model (FEM-
NLARX). (Top) Predictions (purple) and squared error (black). (Bottom) Squared
prediction errors in log-scale. (Color figure online)

5.1 Related Work

Online system identification procedures typically employ recursive least-squares
or maximum likelihood inference, with nonlinearities modelled by basis expan-
sions or neural networks [7,16,23]. Online Bayesian identification procedures
come in two flavours: sequential Monte Carlo samplers [1,10] and online varia-
tional Bayes [9,26]. This work is novel in the use of variational message passing
as an efficient implementation of online variational Bayes and its application to
a nonlinear autoregressive model.

6 Conclusion

I have presented a free energy minimisation procedure for online system identifi-
cation. Experimental results showed comparable performance to a state-of-the-
art nonlinear model with parameters estimated offline. This indicates that the
procedure performs well enough to be deployed in engineering applications.

Future work should test variational message passing in more challenging
nonlinear identification settings, such as a Wiener-Hammerstein benchmark
[21]. Furthermore, problems with time-varying dynamical parameters, such as a
robotic arm picking up objects with mass, would be interesting for their connec-
tion to natural agents.

Acknowledgements. The author thanks Magnus Koudahl, Albert Podusenko and
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